Summary of State Vectors and Operators

1. Quantum State Vectors

a. Kets -
$$|+z\rangle, |-z\rangle, |\psi\rangle$$

b. Bras -
$$\langle +z|, \langle -z|, \langle \psi|$$

2. Superposition

a.
$$\begin{split} |\psi\rangle &= c_+ \left| +z \right\rangle + c_- \left| -z \right\rangle \\ &= \left| +z \right\rangle \left\langle +z \left| \psi \right\rangle + \left| -z \right\rangle \left\langle -z \left| \psi \right\rangle \end{split}$$

3. Inner Products:

a.
$$\langle +z|+z\rangle = \langle -z|-z\rangle = 1$$
, normalized

b.
$$\langle +z|-z\rangle = \langle -z|+z\rangle = 0$$
. orthogonal

c.
$$\langle \psi | \psi \rangle = (c_{+}^{*} \langle +z| + c_{-}^{*} \langle -z|)(c_{+}|+z\rangle + c_{-}|-z\rangle)$$
$$= |c_{+}|^{2} + |c_{-}|^{2}$$

- d. $\langle \varphi | \psi \rangle$ = Probability amplitude that a particle in state $| \psi \rangle$ can be found in state $| \varphi \rangle$.
- e. $\left|\left\langle \varphi\middle|\psi\right\rangle\right|^2=$ Probability that a particle in state $\left|\psi\right\rangle$ can be found in state $\left|\varphi\right\rangle$.

4. States in S_z -basis

a.
$$|\pm x\rangle = \frac{1}{\sqrt{2}}|+z\rangle \pm \frac{1}{\sqrt{2}}|-z\rangle$$
, $\langle \pm x| = \frac{1}{\sqrt{2}}\langle +z| \pm \frac{1}{\sqrt{2}}\langle -z|$

b.
$$|\pm y\rangle = \frac{1}{\sqrt{2}}|+z\rangle \pm \frac{i}{\sqrt{2}}|-z\rangle$$
, $\langle \pm y| = \frac{1}{\sqrt{2}}\langle +z| \mp \frac{i}{\sqrt{2}}\langle -z|$

5. General States

a.
$$|\psi\rangle = \sum_{n} c_{n} |a_{n}\rangle$$
, $|\psi\rangle = \sum_{n} c_{n}^{*} \langle a_{n}|$

b.
$$\langle \psi | \psi \rangle = \sum_{i,j} c_i^* c_j \langle a_i | a_j \rangle = \sum_{i} |c_j|^2$$

c. Expectation value:
$$\langle A \rangle = \sum_{n} P(a_n) a_n = \sum_{n} \left| c_n \right|^2 a_n$$

d. Uncertainty:
$$\Delta A = \sqrt{\left\langle \left(A - \left\langle A \right\rangle\right)^2 \right\rangle} = \sqrt{\left\langle A^2 \right\rangle - \left\langle A \right\rangle^2}$$

6. Matrix Representations of States in S_z -basis

a.
$$|\psi\rangle = c_+ |+z\rangle + c_- |-z\rangle \rightarrow \begin{pmatrix} c_+ \\ c_- \end{pmatrix} = \begin{pmatrix} \langle +z|\psi\rangle \\ \langle -z|\psi\rangle \end{pmatrix}$$

b.
$$|+z\rangle \rightarrow \begin{pmatrix} 1 \\ 0 \end{pmatrix}, |-z\rangle \rightarrow \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Summary of State Vectors and Operators

c.
$$\langle \psi | = c_+^* \langle +z | + c_-^* \langle -z | \rightarrow (c_+^*, c_-^*) = (\langle \psi | +z \rangle, \langle \psi | -z \rangle)$$

d.
$$\langle +z | \rightarrow (1,0), \langle -z | \rightarrow (0,1)$$

e.
$$|\pm x\rangle \rightarrow \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ \pm 1 \end{pmatrix}$$
, $\langle \pm x | \rightarrow \frac{1}{\sqrt{2}} (1, \pm 1)$

f.
$$|\pm y\rangle \rightarrow \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ \pm i \end{pmatrix}$$
, $\langle \pm y | \rightarrow \frac{1}{\sqrt{2}} (1, \mp i)$

7. Rotations

a.
$$\hat{R}(d\phi \mathbf{k}) = 1 - \frac{i}{\hbar} \hat{J}_z d\phi$$

b.
$$\hat{R}(\phi \mathbf{k}) = e^{-i\hat{J}_z\phi/\hbar}$$

c.
$$|+x\rangle = \hat{R}(\frac{\pi}{2}\mathbf{j})|+z\rangle$$
, $\langle +x| = \langle +z|\hat{R}^{\dagger}(\frac{\pi}{2}\mathbf{j})$

8. Projections

a.
$$\hat{P}_{+} = |+z\rangle\langle+z|$$
, $\hat{P}_{-} = |-z\rangle\langle-z|$,

b.
$$|+z\rangle\langle+z|+|-z\rangle\langle-z|=I$$
, Completeness

c.
$$\hat{P}_{+}^{2} = \hat{P}_{+}, \hat{P}_{+}\hat{P}_{-} = \hat{P}_{-}\hat{P}_{+} = 0$$

9. Eigenvalues

a.
$$\hat{J}_z |\pm z\rangle = \pm \frac{\hbar}{2} |\pm z\rangle$$

10. Matrix Representations of Operators, $A_{ij} = \left\langle i \left| \hat{A} \right| j \right\rangle$

$$\text{a.} \quad \hat{A} \big| \psi \big\rangle = \big| \varphi \big\rangle \! \to \! \begin{pmatrix} A_{\!\scriptscriptstyle 11} & A_{\!\scriptscriptstyle 12} \\ A_{\!\scriptscriptstyle 21} & A_{\!\scriptscriptstyle 22} \end{pmatrix} \! \begin{pmatrix} \langle 1 \big| \psi \big\rangle \\ \langle 2 \big| \psi \big\rangle \end{pmatrix} \! = \! \begin{pmatrix} \langle 1 \big| \varphi \big\rangle \\ \langle 2 \big| \varphi \big\rangle \end{pmatrix}$$

b.
$$\hat{A} \xrightarrow{S_z \text{ basis}} A_z = \begin{pmatrix} \langle +z | \hat{A} | +z \rangle & \langle +z | \hat{A} | -z \rangle \\ \langle -z | \hat{A} | +z \rangle & \langle -z | \hat{A} | -z \rangle \end{pmatrix}$$

c.
$$\hat{P}_{+} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
, $\hat{P}_{-} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$

d.
$$\hat{R}(\phi \mathbf{k}) = \begin{pmatrix} e^{-i\phi/2} & 0 \\ 0 & e^{i\phi/2} \end{pmatrix}$$

11. Change of Basis

a.
$$|\psi'\rangle \xrightarrow{S_z Basis} \begin{pmatrix} \langle +z|\psi'\rangle \\ \langle -z|\psi'\rangle \end{pmatrix} = \begin{pmatrix} \langle +z|\hat{R}^{\dagger}|\psi\rangle \\ \langle -z|\hat{R}^{\dagger}|\psi\rangle \end{pmatrix} = \begin{pmatrix} \langle +x|\psi\rangle \\ \langle -x|\psi\rangle \end{pmatrix} \xleftarrow{S_x Basis} |\psi\rangle$$

b.
$$\hat{A} \rightarrow A_x = S^{\dagger} A_z S$$
, where $S = \begin{pmatrix} \langle +z | +x \rangle & \langle +z | -x \rangle \\ \langle -z | +x \rangle & \langle -z | -x \rangle \end{pmatrix}$

Summary of State Vectors and Operators

- 12. Matrix/Operator Types
 - a. Adjoint $A^{\dagger} = (A^t)^*$,
 - b. Unitary $A^{\dagger}A = I$,
 - c. Hermitian $A^{\dagger} = A$

Other Topics for Exam

- 1. Stern-Gerlach Devices Behaviors of SGz, SGx, SGy, modified devices
- 2. Normalization of bras and kets
- 3. Probabilities, expectation values, uncertainties
- 4. Use of completeness relation for identity operator
- 5. Representation of states and operators in different bases
- 6. Definition/recognition of different operators/matrices unitary, Hermitian, etc
- 7. Rotation, generator, projection operators
- 8. Composition of operators, products of matrices
- 9. Change of basis for ket and operator matrix representations