The Monte Carlo Lock

Fall 2022 - R. L. Herman

The Monte Carlo Lock Puzzle is from Smullyan's *The Lady of the Tiger* & *Other Logic Puzzles.*

- Inspector Craig is called to a case.
- The safe combination (on one card) was lost.
- Martin Farkus, a mathematician, left clues about code.
- The safe has to be opened by June 1, or it is blown.
- The code has capital letters of any length and may be repeated.
- Entering a code will

Open the lock. Jam the lock, or It does nothing (neutral).

Goal Use Farkus' clues to open the lock.

Denoting xy as the concatenation of the codes x and y, then for any letter combinations x and y, there are "special relations" satisfying the properties below.

Property Q: For any combination x, the combination QxQ is specially related to x.

Property L: If x is specially related to y, then Lx is specially related to Qy.

Property V (the reversal property: If x is specially related to y, then Vx is specially related to the reverse of y.

Property R (the repetition property: If x is specially related to y, then Rx is specially related to yy.

Property Sp: If x is specially related to y, then if x jams the lock, y is neutral, and if x is neutral, then y jams the lock.

We write $y \rightarrow x$ to mean "x is specially related to y." Then,

- The code contains the letters L, Q, R, V.
- Denote xy as the concatenation of the codes x and y.
- Use \overleftarrow{y} for the reverse order of the code y.

For codes x and y, the following are true:

- Q: $x \to Q x Q$.
- L: If $y \to x$, then $Qy \to Lx$,
- V: If $y \to x$, then $\overleftarrow{y} \to Vx$,
- R: If $y \to x$, then $yy \to Rx$.

Craig surmised that a code x opens the safe if and only if $x \rightarrow x$. ¹

 $^1\mathrm{From}$ Property Sp, if $x\to x,$ then x both jams the lock and is neutral. This contradiction implies that x must open the lock.

A Curious Number Machine

Before attempting to solve the Monte Carlo Lock Problem, Inspector Craig visits Norman McCulloch, who has developed a number machine.

Chapter 9: Started with two rules. Chapter 10: Added two new rules and learned about Craig's Law. Chapter 11: Fergusson's Laws. Chapter 13: The Key to the Lock!

Figure 1: Number in, number out.

Honors Seminar R. L. Herman Fall 2022 4/22

McCulloch's First Number Machine

- Only acceptable numbers.
- Deterministic rules.
- *N* positive whole number.

32586

- No 0's.
- NM Concatenation.
- Rules: If $X \to Y$,

1:
$$2X \rightarrow X$$
. (Erase 2.)
2: $3X \rightarrow Y2Y$. (Associate of Y)

$$2586 \rightarrow 586 = Y$$
Honors Seminar R. L. Herman Fall 2022 5/22

$$32586 \longrightarrow \begin{array}{c} 32586 \rightarrow Y2Y \\ 2586 \rightarrow 586 \end{array} \longrightarrow 5862586$$

Only acceptable numbers begin with 2 or 3. But not all 3's, 32, 332, etc.

 $2X \rightarrow X$: $32X \rightarrow \text{Associate of } X, X2X;$ $332X \rightarrow$ Double Associate of X, X2X2X2X; $3332X \rightarrow \text{Triple Associate of } X, X2X2X2X2X2X2X2X2X; \text{ etc.}$

Problems

- 1. $N \rightarrow N$? 6. $3N \rightarrow N2N?$
- 2. $N \rightarrow N2N?$
- 5. $N \rightarrow 7N$?

- 7. $N \rightarrow 3N23N?$
- 8. $Y \rightarrow AY$? McCulloch's Law.

Ch. 10 McCulloch's Second Machine - 4 Rules

Rules 2-4: $X \rightarrow Y$.

1: $2X \rightarrow X$. (Erase 2.) 2: $3X \rightarrow Y2Y$. (Associate of Y)

3:
$$4X \rightarrow \overleftarrow{Y}$$
. (Reverse Y)
4: $5X \rightarrow YY$. (Repeat Y)

Honors Seminar R. L. Herman Fall 2022 7/22

Using Rules 3 and 4

1: $2X \rightarrow X$. (Erase 2.) 2: $3X \rightarrow Y2Y$. (Associate of Y) **Apply Rule 3:** Pick Y = 7695. Find X such that $X \rightarrow Y$, X = 27695. Input 4X into the machine:

427695
$$\longrightarrow$$
 427695 \rightarrow Reverse 7695
27695 \rightarrow 7695 \longrightarrow 596

Apply Rule 4: $527695 \rightarrow YY = 76957695$.

Problems

- 1. $N \rightarrow N$? (Before, N = 323.)
- 2. Find nonsymmetric number.
- 3. $N \rightarrow$ associate of reverse?

- 4. $N \rightarrow NN$.
- 5. $N \rightarrow \overline{NN}$
- 7. For any X, $52X \rightarrow XX$. Find X, so that $5X \rightarrow XX$.

Craig realized that many problems could be solved using one principle.

"There must be a number that produces the repeat of the of the reverse of its own associate, and a number that produces the associate of the repeat own reverse, and a number that — " - pg. 127.

Craig introduces operations on X : F(X) and operation numbers, M, such that $MX \to F(X)$.

Examples

- a. 4 determines reversal.
- b. 5 determines repetition.
- c. 3 determines association.
- d. 35 determines associate of repeat.

- e. 45 determines reverse of repeat.
- f. 54 determines repeat of reverse. Last two give same result.
- g. What does 44 represent?

Let operation number M determine M(X). This is not MX : 3(5) = 525 not 35.

Many previous problems of form:

Find a number X that produces its own repeat, $X \to 5(X)$. Find a number X that produces its own associate, $X \to 3(X)$. Find a number X that produces its own reverse, $X \to 4(X)$.

Given operation number M, find X such that $X \to M(X)$.

Example: $X \rightarrow 543(X)$, repeat of reverse of the associate of X.

Example: $X \rightarrow 354(X)$, associate of repeat of the reverse of X.

Example: $X \rightarrow 5433(X)$, repeat of reverse of the double associate of X.

Last Fact: For any operation number *M* and any numbers *Y* and *Z*, if $Y \to Z$, then $MY \to M(Z)$. [If $35 \to 525$, $535 \to 5(525) = 525525$.] Honors Seminar

Craig's Laws

Law 1 For any operation number M, there must be some number X that produces M(X).

Law 2 Given any operation number M and any number A, there must be some number X that produces M(AX).

Find $Y \rightarrow AMY$. Then, $MY \rightarrow M(AMY)$. For X = MY, $X \rightarrow M(AX)$. Consider Y = 32AM3. Noting that $32AM3 \rightarrow AM32AM3 = AMY$, then, $X = MY = M32AM3 \rightarrow M(AX)$

Example: 21 $X \rightarrow 7X7X$, repeat of 7X. Let A = 7 and M = 5. So, X = 532753.

Example: 22 $X \rightarrow$ reverse of 9X. Let A = 9 and M = 4. X = 432943. **Example:** 23 $X \rightarrow$ assoc. of 89X. Let A = 89, M = 3. X = 3328933.

Example # 23: Verification of the result

Find $X : X \rightarrow$ associate of 89X. Answer: X = 3328933.

$$3328933 \longrightarrow \begin{array}{c} 3328933 \rightarrow Z2Z, \text{ associate of } Z. \\ 328933 \rightarrow Y2Y = Z, \text{ associate of } Y. \\ 28933 \rightarrow 8933 = Y, \text{ erase } 2. \end{array} \longrightarrow Z2Z$$

Therefore, we have

$$3328933 \rightarrow Z2Z = Y2Y2Y2Y = 8933289332893328933.$$
(1)

What is the associate of 89X?

89X289X = 8933289332893328933.

Note: Y2Y2Y2Y is the double associate of Y.

Honors Seminar

R. L. Herman

Fergusson's Laws

Malcolm Fergusson, logician and student of Gottlob Frege (1848-1925). Introduced by Craig, he found new properties of the machines. **Prob.** 1 The exists X, Y such that $X \to \overleftarrow{Y}$ and $Y \to XX$. **Example:** X = 4325243, Y = 524325243² **Prob. 2** Find X, Y such that $X \to YY$ and $Y \to \overleftarrow{X2X}$. Fergusson's First Law: Given M, N there exists X, Y such that $X \to M(Y), Y \to N(X)$. To prove, one considers using Machine 1 (Rules 1,2). Find $X \neq Y$ for numbers A, B, such that 2. $X \rightarrow Y$. $Y \rightarrow X$. 5. $X \rightarrow AY$. $Y \rightarrow BX$. 3. $X \rightarrow Y$. $Y \rightarrow AX$. 6. Use Craig's 2nd law to prove Fergusson's.

²Like pulling rabbits out of a hat!

More Fergusson Laws

Double analogue of Craig's Second Law: Given two operations M and N and two numbers A and B, do there exist X, Y such that $X \rightarrow M(AY)$ and $Y \rightarrow N(BX)$.

Example 7 $X \rightarrow 7X7X, Y \rightarrow \overleftarrow{89X}.$

Given operation M, number B, find X, Y such that $X \to M(Y)$ and $Y \to BX$.

Example 8 $X \rightarrow Y2Y, Y \rightarrow 78X.$

Triplicates and Beyond

There are numbers X, Y, Z such that $X \to \overleftarrow{Y}, Y \to ZZ, Z \to X2X$.

X = 432523243, Y = 52324232523243, Z = 32432523243.

These and variations stem from Rules 1 and 2.

Triplicate Rule

Given three operation numbers M, N and P, there are numbers X, Y, Zsuch that $X \to M(Y), Y \to N(Z), Z \to P(X)$. Craig's 2^{nd} Law: There is an $X, X \to M(AY)$. Recall, X = M32AM3. Let A = N2P2. Then, X = M32N2P2M3, Y = N2P2X. So, $X \to M(Y)$. Let Z = P2X. Then, Y = N2Z, or $Y \to N(Z)$ and $Z \to P(X)$. So, Z = P2M32N2P2M3 and Y = N2P2M32N2P2M3. **Example:** There are numbers X, Y, Z such that $X \to \overleftarrow{Y}$. $Y \to ZZ$. $Z \rightarrow X2X$. Then, M = 4, N = 5, P = 3 and we have

X = 432523243, Y = 5232432523243, Z = 32432523243.

The author steps in with generalizations as many mathematicians like to generalize others' work.

Observed that with Rule 4 (repetition), do not need Rule 2 (associate).

Can prove new sets of rules. The Craig and Fergusson rules hold.

Noted Facts:

Fact 1: Any machine obeying Rules 1 and 4, obeys McCulloch's Law.

Fact 2: Any machine obeying McCulloch's Law also obeys Craig's laws.

Fact 3: Any machine obeying both Craig's 2nd Law and Rule 1, must obey Fergusson's Laws.

Craig returns from a case and meets McCulloch and Fergusson. They have a new machine with new rules.

M-I: For any X, $2X2 \rightarrow X$. M-II: If $X \rightarrow Y$ $6X \rightarrow 2Y$. M-III: If $X \rightarrow Y$ $4X \rightarrow \overleftarrow{Y}$. M-IV: If $X \rightarrow Y$ $5X \rightarrow YY$.

It has many properties. Craig has difficulty finding X such that $X \to X$. One needs all four rules this time! - He thinks some more and realizes this solves the Monte Carlo Lock Problem.

He knew from the Farkus property *sp*, that the code did not specify $x \neq y$, so allowing x = y, or $x \rightarrow x$, it says "If x jams lock, x is neutral, if x is neutral, x jams the lock." Since this is not possible, then x has to open the lock. So, we need to find x such that $x \rightarrow x$.

Honors Seminar R. L. Herman Fall 2022 17/22

The Key

The end result is that finding the combination is analogous to finding a number that produces itself in McCulloch's last machine.

We need to match letter of the code to numbers. Write Farkus' conditions using numbers where Q = 2, L = 6, V = 4, R = 5, where $x \rightarrow y$ means y is specially related to x.

So, if $y \to x$

- Q: $x \rightarrow 2x2$.
- L: $2y \rightarrow 6x$,
- V: $\overleftarrow{y} \rightarrow 4x$,
- R: $yy \rightarrow 5x$.

So, what number reproduces itself in the new machine?

The Code

M-I: For any $X, 2X2 \rightarrow X.$ M-III: If $X \rightarrow Y, 4X \rightarrow \overleftarrow{Y}.$ M-II: If $X \rightarrow Y, 6X \rightarrow 2Y.$ M-IV: If $X \rightarrow Y, 5X \rightarrow YY.$ Models a number that and uses itself.

We seek a number that produces itself.

Find H such that if $X \rightarrow Y$, $HX \rightarrow Y2Y2$

If so, then $H2Y2 \rightarrow Y2Y2$ since $X = 2Y2 \rightarrow Y$ by M-I.

If Y = H, then $H2H2 \rightarrow H2H2$.

How do we get Y2Y2 from given Y?

Reverse: \overleftarrow{Y} . Add 2 : 2 \overleftarrow{Y} . Reverse, Y2.

Repeat, Y2Y2.

Then, H = 5464 and N = H2H2 = 5464254642. Thus, RVLVQRVLVQ.³ ³Q = 2, L = 6, V = 4, R = 5.

Honors Seminar R. L. Herman Fall 2022 19/22

Verificaton of Code: RVLVQRVLVQ.

Recall Farkus' Rules: For codes x and y, the following are true:

- Q: $x \to Q x Q$.
- L: If $y \to x$, then $Qy \to Lx$,
- V: If $y \to x$, then $\overleftarrow{y} \to Vx$,
- R: If $y \to x$, then $yy \to Rx$.

Apply to the code:

```
RVLV \rightarrow QRVLVQ, Rule Q.
```

```
VLVR \rightarrow VQRVLVQ, Rule V.
```

 $QVLVR \rightarrow LVQRVLVQ$, Rule L.

```
RVLVQ \rightarrow VLVQRVLVQ, Rule V.
```

 $RVLVQRVLVQ \rightarrow RVLVQRVLVQ$, Rule R.

Therefore, this code is specially related to itself_{R. L. Herman}

Fall 2022 20/22

Is the Code Unique?

Makay, Géza. (2016). All Solutions of the Mystery of the Monte Carlo Lock. Found several codes of length 10-19. General forms were found. For example,

 $V^k R V^{\ell} L V^m Q V^k R V^{\ell} L V^m Q$ for an even k and odd ℓ and m odd.

This can be verified applying similar rule ordering as before:

 $V^{k}RV^{\ell}LV^{m} \rightarrow QV^{k}RV^{\ell}LV^{m}Q, \text{ Rule } Q$ $V^{m}LV^{\ell}RV^{k} \rightarrow V^{m}QV^{k}RV^{\ell}LV^{m}Q, \text{ Rule } V$ $QV^{m}LV^{\ell}RV^{k} \rightarrow LV^{m}QV^{k}RV^{\ell}LV^{m}Q, \text{ Rule } L$ $V^{k}RV^{\ell}LV^{m}Q \rightarrow V^{\ell}LV^{m}QV^{k}RV^{\ell}LV^{m}Q, \text{ Rule } V$ $V^{k}RV^{\ell}LV^{m}QV^{k}RV^{\ell}LV^{m}Q \rightarrow RV^{\ell}LV^{m}QV^{k}RV^{\ell}LV^{m}Q, \text{ Rule } R$ $V^{k}RV^{\ell}LV^{m}QV^{k}RV^{\ell}LV^{m}Q \rightarrow V^{k}RV^{\ell}LV^{m}QV^{k}RV^{\ell}LV^{m}Q, \text{ Rule } V$

Similarly, there are codes of the form $V^m L V^k R V^\ell Q V^m L V^k R V^\ell Q Q$, for k even and ℓ odd.

Kovács, Zoltán Hudi, István. (2007). Brute force on 10 letters. *Teach. Math. and Comp. Sci.* 5. 183-193. Verified second 10 letter code: *VRLVQVRLVQ*.

In Part IV, there are 6 chapters.

Dr. Fergusson creates logic machines.

Question: What is a proof?

Need precise definition if one wants to establish that a statement is not proveable from given axioms.

A proof consists of a finite sequence of sentences obeying certain rules. Can a machine determine if a sentence is provable?

Can a statement be true but not provable?

Craig, McCulloch, Fergusson could not construct a machine.

Long before 1931 - Gödel's Incompleteness Theorem.