	Differential Form	Integral Form	Terms	Name
	$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}$	$\oint_{S} \mathbf{E} \cdot \mathbf{n} da = \frac{q_{\text{enc}}}{\varepsilon_0}$	$\oint_{S} \mathbf{E} \cdot \mathbf{n} da = \text{Electric Flux}$	Gauss' Law for Electric Fields
	$\nabla \cdot \mathbf{B} = 0$	$\oint_{S} \mathbf{B} \cdot \mathbf{n} da = 0$	$\oint_{S} \mathbf{B} \cdot \mathbf{n} da = \text{Magnetic Flux}$	Gauss' Law for Magnetic Fields
	$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$	$\oint_{C} \mathbf{E} \cdot d\mathbf{l} = -\frac{\partial}{\partial t} \int_{S} \mathbf{B} \cdot \mathbf{n} da$	$\oint_{c} \mathbf{E} \cdot d\mathbf{l} = \text{Electric Circulation/Emf}$	Faraday's Law (Note: div curl $\mathbf{E} = 0.$)
			$\frac{\partial}{\partial t} \int_{S} \mathbf{B} \cdot \mathbf{n} da = \text{Rate of Change in}$	
			Magnetic Flux	
	$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$	$\oint_{C} \mathbf{B} \cdot d\mathbf{l} = \mu_0 I_{\text{enc}} + \mu_0 \varepsilon_0 \frac{\partial}{\partial t} \int_{S} \mathbf{E} \cdot \mathbf{n} da$	$\oint_{C} \mathbf{B} \cdot d\mathbf{l} = \text{Magnetic Circulation}$ $\frac{\partial}{\partial t} \int_{S} \mathbf{E} \cdot \mathbf{n} da = \text{Rate of Change in}$	Ampere-Maxwell Law (Extra term guarantees div curl $\mathbf{B} = 0.$)
			Electric Flux	
Coulomb's Law: $\mathbf{F} = q\mathbf{E}$, $\mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int_V \rho(\mathbf{r}') \frac{\mathbf{r} - \mathbf{r}'}{ \mathbf{r} - \mathbf{r}' ^3} dv'$ Lorentz Force: $\mathbf{F} = q\mathbf{v} \times \mathbf{B}$,			Use $\nabla_{\mathbf{r}} \cdot \frac{\mathbf{r} - \mathbf{r}'}{ \mathbf{r} - \mathbf{r}' ^3} = 4\pi \delta^{(3)} (\mathbf{r} - \mathbf{r}')$ to obtain Gauss' Law Use $\nabla_{\mathbf{r}} \times \left(\mathbf{J}(\mathbf{r}') \times \frac{\mathbf{r} - \mathbf{r}'}{ \mathbf{r} - \mathbf{r}' ^3} \right) = \mathbf{J}(\mathbf{r}') \nabla_{\mathbf{r}} \cdot \frac{\mathbf{r} - \mathbf{r}'}{ \mathbf{r} - \mathbf{r}' ^3} - (\mathbf{J}(\mathbf{r}') \cdot \nabla_{\mathbf{r}}) \frac{\mathbf{r} - \mathbf{r}}{ \mathbf{r} - \mathbf{r}' ^3}$	

Maxwell's Equations

Biot-Savart Law: $\mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int_V \mathbf{J}(\mathbf{r}') \times \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^3} dv',$ and **Continuity Equation**, $\frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{J} = 0,$ to obtain **Ampere-Maxwell Law**

The vector identity $\nabla \times (\nabla \times \mathbf{V}) = \nabla (\nabla \cdot \mathbf{V}) - \nabla^2 \mathbf{V}$ and Maxwell's equations lead to the wave equation: $\nabla^2 E - \mu_0 \varepsilon_0 \frac{\partial^2 E}{\partial t^2} = 0$.

For nonmagnetic materials add **polarization**: $\mathbf{J} = \mathbf{J}_f + \mathbf{J}_p = \mathbf{J}_f + \frac{\partial \mathbf{P}}{\partial t}$ and $\rho = \rho_f + \rho_p = \rho_f - \nabla \cdot \mathbf{P}$.

Maxwell's Equations (separating free charge ρ_f and free current \mathbf{J}_f contributions):

$$\nabla \cdot \mathbf{D} = \rho_f, \nabla \cdot \mathbf{B} = 0, \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}, \nabla \times \mathbf{H} = \mathbf{J}_f + \frac{\partial \mathbf{D}}{\partial t}, \text{ where } \mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P} = \varepsilon \mathbf{E}, \ \mathbf{H} = \frac{1}{\mu_0} \mathbf{B} - \mathbf{M} = \frac{1}{\mu} \mathbf{B} \text{ for } \mathbf{P} = \varepsilon_0 \chi_e \mathbf{E} \text{ and } \mathbf{M} = \chi_m \mathbf{H}.$$