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Transform Techniques in Physics

“There is no branch of mathematics, however abstract, which may not some day be applied to phenomena of the real
world.”, Nikolai Lobatchevsky (1792-1856)

7.1 Introduction

Some of the most powerful tools for solving problems in physics
are transform methods. The idea is that one can transform the prob- In this chapter we will explore the use

of integral transforms. Given a function
f (x), we define an integral transform to
a new function F(k) as

F(k) =
∫ b

a
f (x)K(x, k) dx.

Here K(x, k) is called the kernel of the
transform. We will concentrate specifi-
cally on Fourier transforms,

f̂ (k) =
∫ ∞

−∞
f (x)eikx dx,

and Laplace transforms

F(s) =
∫ ∞

0
f (t)e−st dt.

lem at hand to a new problem in a different space, hoping that the
problem in the new space is easier to solve. Such transforms appear in
many forms.

As we had seen in Chapter 3 and will see later in the book, the solu-
tions of a linear partial differential equations can be found by using the
method of separation of variables to reduce solving PDEs to solving
ODEs. We can also use transform methods to transform the given PDE
into ODEs or algebraic equations. Solving these equations, we then
construct solutions of the PDE (or ODE) using an inverse transform.
A schematic of these processes is shown below and we will describe
in this chapter how one can use Fourier and Lapace transforms to this
effect.

PDE ODE// AlgEQ//kkkk jj

7.1.1 Example 1 - The Linearized KdV Equation

As a relatively simple example, we consider the linearized Kortweg-
deVries (KdV) equation:

ut + cux + βuxxx = 0, −∞ < x < ∞. (7.1)
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This equation governs the propagation of some small amplitude water
waves. Its nonlinear counterpart has been at the center of attention in
the last 40 years as a generic nonlinear wave equation. The nonlinear counterpart to this equa-

tion is the Kortweg-deVries (KdV) equa-
tion: ut + 6uux + uxxx = 0. This equa-
tion was derived by Diederik Johannes
Korteweg (1848-1941) and his student
Gustav de Vries (1866-1934). This equa-
tion governs the propagation of traveling
waves called solitons. These were first
observed by John Scott Russell (1808-
1882) and were the source of a long de-
bate on the existence of such waves. The
history of this debate is interesting and
the KdV turned up as a generic equation
in many other fields in the latter part of
the last century leading to many papers
on nonlinear evolution equations.

We seek solutions that oscillate in space. So, we assume a solution
of the form

u(x, t) = A(t)eikx. (7.2)

Such behavior was seen in Chapters 3 and 6 for the wave equation for
vibrating strings. In that case, we found plane wave solutions of the
form eik(x±ct), which we could write as ei(kx±ωt) by defining ω = kc.
We further note that one often seeks complex solutions as a linear com-
bination of such forms and then takes the real part in order to obtain
physical solutions. In this case, we will find plane wave solutions for
which the angular frequency ω = ω(k) is a function of the wavenum-
ber.

Inserting the guess into the linearized KdV equation, we find that

dA
dt

+ i(ck− βk3)A = 0. (7.3)

Thus, we have converted the problem of seeking a solution of the par-
tial differential equation into seeking a solution to an ordinary differ-
ential equation. This new problem is easier to solve. In fact, given an
initial value, A(0), we have

A(t) = A(0)e−i(ck−βk3)t. (7.4)

Therefore, the solution of the partial differential equation is

u(x, t) = A(0)eik(x−(c−βk2)t). (7.5)

We note that this solution takes the form ei(kx−ωt), where

ω = ck− βk3.

In general, the equation ω = ω(k) gives the angular frequency as a A dispersion relation is an expression
giving the angular frequency as a func-
tion of the wave number, ω = ω(k).

function of the wave number, k, and is called a dispersion relation. For
β = 0, we see that c is nothing but the wave speed. For β 6= 0, the
wave speed is given as

v =
ω

k
= c− βk2.

This suggests that waves with different wave numbers will travel at dif-
ferent speeds. Recalling that wave numbers are related to wavelengths,
k = 2π

λ , this means that waves with different wavelengths will travel
at different speeds. For example, an initial localized wave packet will
not maintain its shape. It is said to disperse, as the component waves
of differing wavelengths will tend to part company.
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For a general initial condition, we write the solutions to the lin-
earized KdV as a superposition of plane waves. We can do this since
the partial differential equation is linear. This should remind you of
what we had done when using separation of variables. We first sought
product solutions and then took a linear combination of the product
solutions to obtain the general solution.

For this problem, we will sum over all wave numbers. The wave
numbers are not restricted to discrete values. We instead have a con-
tinuous range of values. Thus, “summing” over k means that we have
to integrate over the wave numbers. Thus, we have the general solu-
tion1 1 The extra 2π has been introduced to

be consistent with the definition of the
Fourier transform which is given later in
the chapter.

u(x, t) =
1

2π

∫ ∞

−∞
A(k, 0)eik(x−(c−βk2)t) dk. (7.6)

Note that we have indicated that A a function of k. This is similar
to introducing the An’s and Bn’s in the series solution for waves on a
string.

How do we determine the A(k, 0)’s? We introduce an initial condi-
tion. Let u(x, 0) = f (x). Then, we have

f (x) = u(x, 0) =
1

2π

∫ ∞

−∞
A(k, 0)eikx dk. (7.7)

Thus, given f (x), we seek A(k, 0). In this chapter we will see that

A(k, 0) =
∫ ∞

−∞
f (x)e−ikx dx.

This is what is called the Fourier transform of f (x). It is just one of the
so-called integral transforms that we will consider in this chapter.

In Figure 7.1 we summarize the transform scheme. One can use
methods like separation of variables to solve the partial differential
equation directly, evolving the initial condition u(x, 0) into the solution
u(x, t) at a later time.

u(x, 0)

PDE

u(x, t)

FT

IFT

A(k, 0)

ODE

A(k, t)

Figure 7.1: Schematic of using Fourier
transforms to solve a linear evolution
equation.

The transform method works as follows. Starting with the initial
condition, one computes its Fourier Transform (FT) as2 2 Note: The Fourier transform as used

in this section and the next section are
defined slightly differently than how we
will define them later. The sign of the
exponentials has been reversed.

A(k, 0) =
∫ ∞

−∞
f (x)e−ikx dx.
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Applying the transform on the partial differential equation, one ob-
tains an ordinary differential equation satisfied by A(k, t) which is
simpler to solve than the original partial differential equation. Once
A(k, t) has been found, then one applies the Inverse Fourier Transform
(IFT) to A(k, t) in order to get the desired solution:

u(x, t) =
1

2π

∫ ∞

−∞
A(k, t)eikx dk

=
1

2π

∫ ∞

−∞
A(k, 0)eik(x−(c−βk2)t) dk. (7.8)

7.1.2 Example 2 - The Free Particle Wave Function

A more familiar example in physics comes from quantum me-
chanics. The Schrödinger equation gives the wave function Ψ(x, t)
for a particle under the influence of forces, represented through the
corresponding potential function V(x). The one dimensional time de-
pendent Schrödinger equation is given by The one dimensional time dependent

Schrödinger equation.

ih̄Ψt = −
h̄2

2m
Ψxx + VΨ. (7.9)

We consider the case of a free particle in which there are no forces,
V = 0. Then we have

ih̄Ψt = −
h̄2

2m
Ψxx. (7.10)

Taking a hint from the study of the linearized KdV equation, we
will assume that solutions of Equation (7.10) take the form

Ψ(x, t) =
1

2π

∫ ∞

−∞
φ(k, t)eikx dk.

[Here we have opted to use the more traditional notation, φ(k, t) in-
stead of A(k, t) as above.]

Inserting the expression for Ψ(x, t) into (7.10), we have

ih̄
∫ ∞

−∞

dφ(k, t)
dt

eikx dk = − h̄2

2m

∫ ∞

−∞
φ(k, t)(ik)2eikx dk.

Since this is true for all t, we can equate the integrands, giving

ih̄
dφ(k, t)

dt
=

h̄2k2

2m
φ(k, t).

As with the last example, we have obtained a simple ordinary differ-
ential equation. The solution of this equation is given by

φ(k, t) = φ(k, 0)e−i h̄k2
2m t.
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Applying the inverse Fourier transform, the general solution to the
time dependent problem for a free particle is found as

Ψ(x, t) =
1

2π

∫ ∞

−∞
φ(k, 0)eik(x− h̄k

2m t) dk.

We note that this takes the familiar form

Ψ(x, t) =
1

2π

∫ ∞

−∞
φ(k, 0)ei(kx−ωt) dk,

where the dispersion relation is found as

ω =
h̄k2

2m
.

The wave speed is given as

v =
ω

k
=

h̄k
2m

.

As a special note, we see that this is not the particle velocity! Recall
that the momentum is given as p = h̄k.3 So, this wave speed is v = p

2m , 3 Since p = h̄k, we also see that the dis-
persion relation is given by ω = h̄k2

2m =
p2

2mh̄ = E
h̄ .

which is only half the classical particle velocity! A simple manipula-
tion of this result will clarify the “problem”.

We assume that particles can be represented by a localized wave
function. This is the case if the major contributions to the integral are
centered about a central wave number, k0. Thus, we can expand ω(k)
about k0:

ω(k) = ω0 + ω′0(k− k0)t + . . . . (7.11)

Here ω0 = ω(k0) and ω′0 = ω′(k0). Inserting this expression into the
integral representation for Ψ(x, t), we have

Ψ(x, t) =
1

2π

∫ ∞

−∞
φ(k, 0)ei(kx−ω0t−ω′0(k−k0)t+...) dk,

We now make the change of variables, s = k − k0 and rearrange the
resulting factors to find

Ψ(x, t) ≈ 1
2π

∫ ∞

−∞
φ(k0 + s, 0)ei((k0+s)x−(ω0+ω′0s)t) ds

=
1

2π
ei(−ω0t+k0ω′0t)

∫ ∞

−∞
φ(k0 + s, 0)ei(k0+s)(x−ω′0t) ds

= ei(−ω0t+k0ω′0t)Ψ(x−ω′0t, 0). (7.12)

What we have found is that for an initially localized wave packet,
Ψ(x, 0) with wave numbers grouped around k0 the wave function,Ψ(x, t),
is a translated version of the initial wave function, up to a phase fac-
tor. In quantum mechanics we are more interested in the probability
density for locating a particle, so from

|Ψ(x, t)|2 = |Ψ(x−ω′0t, 0)|2
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we see that the “velocity of the wave packet” is found to be

ω′0 =
dω

dk

∣∣∣
k=k0

=
h̄k
m

.

This corresponds to the classical velocity of the particle (vpart = p/m).
Thus, one usually defines ω′0 to be the group velocity, Group and phase velocities, vg = dω

dk ,
vp = ω

k .

vg =
dω

dk

and the former velocity as the phase velocity,

vp =
ω

k
.

7.1.3 Transform Schemes

These examples have illustrated one of the features of trans-
form theory. Given a partial differential equation, we can transform
the equation from spatial variables to wave number space, or time
variables to frequency space. In the new space the time evolution is
simpler. In these cases, the evolution is governed by an ordinary dif-
ferential equation. One solves the problem in the new space and then
transforms back to the original space. This is depicted in Figure 7.2
for the Schrödinger equation and was shown in Figure 7.1 for the lin-
earized KdV equation.

Figure 7.2: The scheme for solving
the Schrödinger equation using Fourier
transforms. The goal is to solve for
Ψ(x, t) given Ψ(x, 0). Instead of a direct
solution in coordinate space (on the left
side), one can first transform the initial
condition obtaining φ(k, 0) in wave num-
ber space. The governing equation in the
new space is found by transforming the
PDE to get an ODE. This simpler equa-
tion is solved to obtain φ(k, t). Then an
inverse transform yields the solution of
the original equation.

This is similar to the solution of the system of ordinary differential
equations in Chapter 3, ẋ = Ax. In that case we diagonalized the
system using the transformation x = Sy. This lead to a simpler system
ẏ = Λy. Solving for y, we inverted the solution to obtain x. Similarly,
one can apply this diagonalization to the solution of linear algebraic
systems of equations. The general scheme is shown in Figure 7.3.

Similar transform constructions occur for many other type of prob-
lems. We will end this chapter with a study of Laplace transforms,
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which are useful in the study of initial value problems, particularly
for linear ordinary differential equations with constant coefficients. A
similar scheme for using Laplace transforms is depicted in Figure 7.25.

Figure 7.3: The scheme for solving the
linear system Ax = b. One finds a trans-
formation between x and y of the form
x = Sy which diagonalizes the system.
The resulting system is easier to solve
for y. Then one uses the inverse trans-
formation to obtain the solution to the
original problem. Also, this scheme ap-
plies to solving the ODE system ẋ = Ax
as we had seen in Chapter 3.

In this chapter we will turn to the study of Fourier transforms.
These will provide an integral representation of functions defined on
the real line. Such functions can also represent analog signals. Analog
signals are continuous signals which can be represented as a sum over
a continuous set of frequencies, as opposed to the sum over discrete
frequencies, which Fourier series were used to represent in an ear-
lier chapter. We will then investigate a related transform, the Laplace
transform, which is useful in solving initial value problems such as
those encountered in ordinary differential equations.

7.2 Complex Exponential Fourier Series

We first recall from Chapter 4 the trigonometric Fourier series
representation of a function defined on [−π, π] with period 2π. The
Fourier series is given by

f (x) ∼ a0

2
+

∞

∑
n=1

(an cos nx + bn sin nx) , (7.13)

where the Fourier coefficients were found as

an =
1
π

∫ π

−π
f (x) cos nx dx, n = 0, 1, . . . ,

bn =
1
π

∫ π

−π
f (x) sin nx dx, n = 1, 2, . . . . (7.14)

In order to derive the exponential Fourier series, we replace the
trigonometric functions with exponential functions and collect like ex-
ponential terms. This gives

f (x) ∼ a0

2
+

∞

∑
n=1

[
an

(
einx + e−inx

2

)
+ bn

(
einx − e−inx

2i

)]
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=
a0

2
+

∞

∑
n=1

(
an − ibn

2

)
einx +

∞

∑
n=1

(
an + ibn

2

)
e−inx. (7.15)

The coefficients of the complex exponentials can be rewritten by
defining

cn =
1
2
(an + ibn), n = 1, 2, . . . . (7.16)

This implies that

c̄n =
1
2
(an − ibn), n = 1, 2, . . . . (7.17)

So far the representation is rewritten as

f (x) ∼ a0

2
+

∞

∑
n=1

c̄neinx +
∞

∑
n=1

cne−inx.

Re-indexing the first sum, by introducing k = −n, we can write

f (x) ∼ a0

2
+
−∞

∑
k=−1

c̄−ke−ikx +
∞

∑
n=1

cne−inx.

Since k is a dummy index, we replace it with a new n as

f (x) ∼ a0

2
+
−∞

∑
n=−1

c̄−ne−inx +
∞

∑
n=1

cne−inx.

We can now combine all of the terms into a simple sum. We first
define cn for negative n’s by

cn = c̄−n, n = −1,−2, . . . .

Letting c0 = a0
2 , we can write the complex exponential Fourier series rep-

resentation as

f (x) ∼
∞

∑
n=−∞

cne−inx, (7.18)

where

cn =
1
2
(an + ibn), n = 1, 2, . . .

cn =
1
2
(a−n − ib−n), n = −1,−2, . . .

c0 =
a0

2
. (7.19)

Given such a representation, we would like to write out the integral
forms of the coefficients, cn. So, we replace the an’s and bn’s with their
integral representations and replace the trigonometric functions with
complex exponential functions. Doing this, we have for n = 1, 2, . . . .

cn =
1
2
(an + ibn)
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=
1
2

[
1
π

∫ π

−π
f (x) cos nx dx +

i
π

∫ π

−π
f (x) sin nx dx

]
=

1
2π

∫ π

−π
f (x)

(
einx + e−inx

2

)
dx +

i
2π

∫ π

−π
f (x)

(
einx − e−inx

2i

)
dx

=
1

2π

∫ π

−π
f (x)einx dx. (7.20)

It is a simple matter to determine the cn’s for other values of n. For
n = 0, we have that

c0 =
a0

2
=

1
2π

∫ π

−π
f (x) dx.

For n = −1,−2, . . ., we find that

cn = c̄n =
1

2π

∫ π

−π
f (x)e−inx dx =

1
2π

∫ π

−π
f (x)einx dx.

Therefore, for all n we have obtained the complex exponential series
for f (x) defined on [−π, π].

Complex Exponential Series for f (x) defined on [−π, π].

f (x) ∼
∞

∑
n=−∞

cne−inx, (7.21)

cn =
1

2π

∫ π

−π
f (x)einx dx. (7.22)

We have converted the trigonometric series for functions defined on
[−π, π] to a complex exponential series in Equation (7.21) with Fourier
coefficients given by (7.22). We can easily extend the above analysis to
other intervals. For example, for x ∈ [−L, L] the Fourier trigonometric
series is

f (x) ∼ a0

2
+

∞

∑
n=1

(
an cos

nπx
L

+ bn sin
nπx

L

)
with Fourier coefficients

an =
1
L

∫ L

−L
f (x) cos

nπx
L

dx, n = 0, 1, . . . ,

bn =
1
L

∫ L

−L
f (x) sin

nπx
L

dx, n = 1, 2, . . . .

This can be rewritten as an exponential Fourier series of the form

Complex Exponential Series for f (x) defined on [−L, L].

f (x) ∼
∞

∑
n=−∞

cne−inπx/L, (7.23)

cn =
1

2L

∫ L

−L
f (x)einπx/L dx. (7.24)
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7.3 Exponential Fourier Transform

Both the trigonometric and complex exponential Fourier se-
ries provide us with representations of a class of functions of finite
period in terms of sums over a discrete set of frequencies. In partic-
ular, for functions defined on x ∈ [−L, L], the period of the Fourier
series representation is 2L. We can write the arguments in the ex-
ponentials, e−inπx/L, in terms of the angular frequency, ωn = nπ/L,
as e−iωnx. We note that the frequencies, νn, are then defined through
ωn = 2πνn = nπ

L . Therefore, the complex exponential series is seen to
be a sum over a discrete, or countable, set of frequencies.

We would now like to extend the finite interval to an infinite inter-
val, x ∈ (−∞, ∞) and to extend the discrete set of (angular) frequencies
to a continuous range of frequencies, ω ∈ (−∞, ∞). One can do this
rigorously. It amounts to letting L and n get large and keeping n

L fixed.
We first define ∆ω = π

L , so that ωn = n∆ω. Inserting the Fourier
coefficients (7.24) into Equation (7.21), we have

f (x) ∼
∞

∑
n=−∞

cne−inπx/L

=
∞

∑
n=−∞

(
1

2L

∫ L

−L
f (ξ)einπξ/L dξ

)
e−inπx/L

=
∞

∑
n=−∞

(
∆ω

2π

∫ L

−L
f (ξ)eiωnξ dξ

)
e−iωnx. (7.25)

Now, we let L get large, so that ∆ω becomes small and ωn ap-
proaches the angular frequency ω. Then

f (x) ∼ lim
∆ω→0,L→∞

1
2π

∞

∑
n=−∞

(∫ L

−L
f (ξ)eiωnξ dξ

)
e−iωnx∆ω

=
1

2π

∫ ∞

−∞

(∫ ∞

−∞
f (ξ)eiωξ dξ

)
e−iωx dω. (7.26)

Looking at this last result, we formally arrive at the definition of Definitions of the Fourier transform and
the inverse Fourier transform.the Fourier transform

F[ f ] = f̂ (ω) =
∫ ∞

−∞
f (x)eiωx dx. (7.27)

This is a generalization of the Fourier coefficients (7.22). Once we
know the Fourier transform, f̂ (ω), then we can reconstruct the original
function, f (x), using the inverse Fourier transform, which is given by

F−1[ f̂ ] = f (x) =
1

2π

∫ ∞

−∞
f̂ (ω)e−iωx dω. (7.28)
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We note that it can be proven that the Fourier transform exists when
f (x) is absolutely integrable, i.e.,∫ ∞

−∞
| f (x)| dx < ∞.

Such functions are said to be L1.

The Fourier transform and inverse Fourier transform are inverse
operations. Defining the Fourier transform as

F[ f ] = f̂ (ω) =
∫ ∞

−∞
f (x)eiωx dx. (7.29)

and the inverse Fourier transform as

F−1[ f̂ ] = f (x) =
1

2π

∫ ∞

−∞
f̂ (ω)e−iωx dω. (7.30)

then
F−1[F[ f ]] = f (x) (7.31)

and
F[F−1[ f̂ ]] = f̂ (ω). (7.32)

We will now prove the first of these equations, (7.31). [The second
equation, (7.32), follows in a similar way.]

Proof. The proof is carried out by inserting the definition of the Fourier
transform, (7.29), into the inverse transform definition, (7.30), and then
interchanging the orders of integration. Thus, we have

F−1[F[ f ]] =
1

2π

∫ ∞

−∞
F[ f ]e−iωx dω

=
1

2π

∫ ∞

−∞

[∫ ∞

−∞
f (ξ)eiωξ dξ

]
e−iωx dω

=
1

2π

∫ ∞

−∞

∫ ∞

−∞
f (ξ)eiω(ξ−x) dξdω

=
1

2π

∫ ∞

−∞

[∫ ∞

−∞
eiω(ξ−x) dω

]
f (ξ) dξ. (7.33)

In order to complete the proof, we need to evaluate the inside inte-
gral, which does not depend upon f (x). This is an improper integral,
so we first define

DΩ(x) =
∫ Ω

−Ω
eiωx dω

and compute the inner integral as∫ ∞

−∞
eiω(ξ−x) dω = lim

Ω→∞
DΩ(ξ − x).

0
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Figure 7.4: A plot of the function DΩ(x)
for Ω = 4.
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We can compute DΩ(x). A simple evaluation yields

DΩ(x) =
∫ Ω

−Ω
eiωx dω

=
eiωx

ix

∣∣∣∣Ω
−Ω

=
eixΩ − e−ixΩ

2ix

=
2 sin xΩ

x
. (7.34)

A plot of this function is in Figure 7.4 for Ω = 4. For large Ω the
peak grows and the values of DΩ(x) for x 6= 0 tend to zero as show
in Figure 7.5. In fact, as x approaches 0, DΩ(x) approaches 2Ω. For
x 6= 0, the DΩ(x) function tends to zero.

0

20

40

60

80

–4 –2 2 4

x

Figure 7.5: A plot of the function DΩ(x)
for Ω = 40.

We further note that

lim
Ω→∞

DΩ(x) = 0 x 6= 0

and limΩ→∞ DΩ(x) is infinite at x = 0. However, the area is constant
for each Ω. In fact, ∫ ∞

−∞
DΩ(x) dx = 2π.

We can show this by recalling the computation in Example 6.35,∫ ∞

−∞

sin x
x

dx = π.

Then, ∫ ∞

−∞
DΩ(x) dx =

∫ ∞

−∞

2 sin xΩ
x

dx

=
∫ ∞

−∞
2

sin y
y

dy

= 2π. (7.35)

Another way to look at DΩ(x) is to consider the sequence of func-
tions fn(x) = sin nx

πx , n = 1, 2, . . . . Then we have shown that this se-
quence of functions satisfies the two properties,

lim
n→∞

fn(x) = 0, x 6= 0,∫ ∞

−∞
fn(x) dx = 1.

This is a key representation of such generalized functions. The limiting
value vanishes at all but one point, but the area is finite.

0
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x

Figure 7.6: A plot of the functions fn(x)
for n = 2, 4, 8.

Such behavior can be seen for the limit of other sequences of func-
tions. For example, consider the sequence of functions

fn(x) =

{
0, |x| > 1

n ,
n
2 , |x| < 1

n .
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This is a sequence of functions as shown in Figure 7.6. As n→ ∞, we P. A. M. Dirac (1902-1984) introduced the
δ function in his book, “The Principles of
Quantum Mechanics”, 4th Ed., Oxford
University Press, 1958, originally pub-
lished in 1930, as part of his orthogonal-
ity statement for a basis of functions in
a Hilbert space, < ξ ′|ξ ′′ >= cδ(ξ ′ − ξ ′′)
in the same way we introduced discrete
orthogonality using the Kronecker delta.

find the limit is zero for x 6= 0 and is infinite for x = 0. However, the
area under each member of the sequences is one. Thus, the limiting
function is zero at most points but has area one.

The limit is not really a function. It is a generalized function. It is
called the Dirac delta function, which is defined by

1. δ(x) = 0 for x 6= 0.

2.
∫ ∞
−∞ δ(x) dx = 1.

Before returning to the proof that the inverse Fourier transform of
the Fourier transform is the identity, we state one more property of the
Dirac delta function, which we will prove in the next section. Namely,
we will show that ∫ ∞

−∞
δ(x− a) f (x) dx = f (a).

Returning to the proof, we now have that∫ ∞

−∞
eiω(ξ−x) dω = lim

Ω→∞
DΩ(ξ − x) = 2πδ(ξ − x).

Inserting this into (7.33), we have

F−1[F[ f ]] =
1

2π

∫ ∞

−∞

[∫ ∞

−∞
eiω(ξ−x) dω

]
f (ξ) dξ.

=
1

2π

∫ ∞

−∞
2πδ(ξ − x) f (ξ) dξ.

= f (x). (7.36)

Thus, we have proven that the inverse transform of the Fourier trans-
form of f is f .

7.4 The Dirac Delta Function

In the last section we introduced the Dirac delta function, δ(x).

Properties of the Dirac δ-function:∫ ∞

−∞
δ(x− a) f (x) dx = f (a).

∫ ∞

−∞
δ(ax) dx =

1
|a|

∫ ∞

−∞
δ(y) dy.

∫ ∞

−∞
δ( f (x)) dx =

∫ ∞

−∞

n

∑
j=1

1
| f ′(xj)|

δ(x− xj) dx.

(For n simple roots.)
These and other properties are often

written outside the integral:

δ(ax) =
1
|a| δ(x).

δ(−x) = δ(x).

δ((x− a)(x− b)) =
1

|a− b| [δ(x− a)+ δ(x− a)].

δ( f (x)) = ∑
j

δ(x− xj)

| f ′(xj)|
, f (xj) = 0, f ′(xj) 6= 0.

As noted above, this is one example of what is known as a generalized
function, or a distribution. Dirac had introduced this function in the
1930’s in his study of quantum mechanics as a useful tool. It was
later studied in a general theory of distributions and found to be more
than a simple tool used by physicists. The Dirac delta function, as any
distribution, only makes sense under an integral. [Note: The Dirac
delta function was also discussed in the optional Section ??.]

Two properties were used in the last section. First one has that the
area under the delta function is one,∫ ∞

−∞
δ(x) dx = 1.
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Integration over more general intervals gives

∫ b

a
δ(x) dx =

{
1, 0 ∈ [a, b],
0, 0 6∈ [a, b].

(7.37)

The other property that was used was the sifting property:∫ ∞

−∞
δ(x− a) f (x) dx = f (a).

This can be seen by noting that the delta function is zero everywhere
except at x = a. Therefore, the integrand is zero everywhere and the
only contribution from f (x) will be from x = a. So, we can replace
f (x) with f (a) under the integral. Since f (a) is a constant, we have
that∫ ∞

−∞
δ(x− a) f (x) dx =

∫ ∞

−∞
δ(x− a) f (a) dx = f (a)

∫ ∞

−∞
δ(x− a) dx = f (a).

Another property results from using a scaled argument, ax. In this
case we show that

δ(ax) = |a|−1δ(x). (7.38)

As usual, this only has meaning under an integral sign. So, we place
δ(ax) inside an integral and make a substitution y = ax:

∫ ∞

−∞
δ(ax) dx = lim

L→∞

∫ L

−L
δ(ax) dx

= lim
L→∞

1
a

∫ aL

−aL
δ(y) dy. (7.39)

If a > 0 then ∫ ∞

−∞
δ(ax) dx =

1
a

∫ ∞

−∞
δ(y) dy.

However, if a < 0 then∫ ∞

−∞
δ(ax) dx =

1
a

∫ −∞

∞
δ(y) dy = −1

a

∫ ∞

−∞
δ(y) dy.

The overall difference in a multiplicative minus sign can be absorbed
into one expression by changing the factor 1/a to 1/|a|. Thus,

∫ ∞

−∞
δ(ax) dx =

1
|a|

∫ ∞

−∞
δ(y) dy. (7.40)

Example 7.1. Evaluate
∫ ∞
−∞(5x + 1)δ(4(x− 2)) dx. This is a straight for-

ward integration:∫ ∞

−∞
(5x + 1)δ(4(x− 2)) dx =

1
4

∫ ∞

−∞
(5x + 1)δ(x− 2) dx =

11
4

.
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A more general scaling of the argument takes the form δ( f (x)). The
integral of δ( f (x)) can be evaluated depending upon the number of
zeros of f (x). If there is only one zero, f (x1) = 0, then one has that∫ ∞

−∞
δ( f (x)) dx =

∫ ∞

−∞

1
| f ′(x1)|

δ(x− x1) dx.

This can be proven using the substitution y = f (x) and is left as an
exercise for the reader. This result is often written as

δ( f (x)) =
1

| f ′(x1)|
δ(x− x1),

again keeping in mind that this only has meaning when placed under
an integral.

Example 7.2. Evaluate
∫ ∞
−∞ δ(3x− 2)x2 dx.

This is not a simple δ(x − a). So, we need to find the zeros of f (x) =

3x− 2. There is only one, x = 2
3 . Also, | f ′(x)| = 3. Therefore, we have

∫ ∞

−∞
δ(3x− 2)x2 dx =

∫ ∞

−∞

1
3

δ(x− 2
3
)x2 dx =

1
3

(
2
3

)2
=

4
27

.

Note that this integral can be evaluated the long way by using the substi-
tution y = 3x− 2. Then, dy = 3 dx and x = (y + 2)/3. This gives

∫ ∞

−∞
δ(3x− 2)x2 dx =

1
3

∫ ∞

−∞
δ(y)

(
y + 2

3

)2
dy =

1
3

(
4
9

)
=

4
27

.

More generally, one can show that when f (xj) = 0 and f ′(xj) 6= 0
for xj, j = 1, 2, . . . , n, (i.e.; when one has n simple zeros), then

δ( f (x)) =
n

∑
j=1

1
| f ′(xj)|

δ(x− xj).

Example 7.3. Evaluate
∫ 2π

0 cos x δ(x2 − π2) dx.
In this case the argument of the delta function has two simple roots.

Namely, f (x) = x2 − π2 = 0 when x = ±π. Furthermore, f ′(x) = 2x.
Therefore, | f ′(±π)| = 2π. This gives

δ(x2 − π2) =
1

2π
[δ(x− π) + δ(x + π)].

Inserting this expression into the integral and noting that x = −π is not in
the integration interval, we have∫ 2π

0
cos x δ(x2 − π2) dx =

1
2π

∫ 2π

0
cos x [δ(x− π) + δ(x + π)] dx

=
1

2π
cos π = − 1

2π
. (7.41)
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Finally, one can show that there is a relationship between the Heav-
iside function (or, step function) and the Dirac delta function. We
define the Heaviside function as

H(x) =

{
0, x < 0
1, x > 0

Then, it is easy to see that H′(x) = δ(x). In some texts the notation
θ(x) is used for the step function.

7.5 Properties of the Fourier Transform

We now return to the Fourier transform. Before actually comput-
ing the Fourier transform of some functions, we prove a few of the
properties of the Fourier transform.

First we note that there are several forms that one may encounter for
the Fourier transform. In applications functions can either be functions
of time, f (t), or space, f (x). The corresponding Fourier transforms are
then written as

f̂ (ω) =
∫ ∞

−∞
f (t)eiωt dt, (7.42)

or
f̂ (k) =

∫ ∞

−∞
f (x)eikx dx. (7.43)

ω is called the angular frequency and is related to the frequency ν by
ω = 2πν. The units of frequency are typically given in Hertz (Hz).
Sometimes the frequency is denoted by f when there is no confusion.
k is called the wavenumber. It has units of inverse length and is related
to the wavelength, λ, by k = 2π

λ .

1. Linearity. For any functions f (x) and g(x) for which the
Fourier transform exists and constant a, we have

F[ f + g] = F[ f ] + F[g]

and
F[a f ] = aF[ f ].

These simply follow from the properties of integration and
establish the linearity of the Fourier transform.

2. Transform of a Derivative. F
[

d f
dx

]
= −ik f̂ (k)

Here we compute the Fourier transform (7.29) of the deriva-
tive by inserting the derivative in the Fourier integral and
using integration by parts.

F
[

d f
dx

]
=

∫ ∞

−∞

d f
dx

eikx dx
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= lim
L→∞

[
f (x)eikx

]L

−L
− ik

∫ ∞

−∞
f (x)eikx dx.

(7.44)

The limit will vanish if we assume that limx→±∞ f (x) = 0.
The last integral is recognized as the Fourier transform of f ,
proving the given property.

3. Higher Order Derivatives. F
[

dn f
dxn

]
= (−ik)n f̂ (k)

The proof of this property follows from the last result, or do-
ing several integration by parts. We will consider the case
when n = 2. Noting that the second derivative is the deriva-
tive of f ′(x) and applying the last result, we have

F
[

d2 f
dx2

]
= F

[
d

dx
f ′
]

= −ikF
[

d f
dx

]
= (−ik)2 f̂ (k). (7.45)

This result will be true if

lim
x→±∞

f (x) = 0 and lim
x→±∞

f ′(x) = 0.

The generalization to the transform of the nth derivative eas-
ily follows.

4. F [x f (x)] = −i d
dk f̂ (k)

This property can be shown by using the fact that d
dk eikx =

ixeikx and the ability to differentiate an integral with respect
to a parameter.

F[x f (x)] =
∫ ∞

−∞
x f (x)eikx dx

=
∫ ∞

−∞
f (x)

d
dk

(
1
i

eikx
)

dx

= −i
d
dk

∫ ∞

−∞
f (x)eikx dx

= −i
d
dk

f̂ (k). (7.46)

This result can be generalized to F [xn f (x)] as an exercise.

5. Shifting Properties. For constant a, we have the following
shifting properties:

f (x− a)↔ eika f̂ (k), (7.47)

f (x)e−iax ↔ f̂ (k− a). (7.48)

Here we have denoted the Fourier transform pairs using a
double arrow as f (x) ↔ f̂ (k). These are easily proven by
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inserting the desired forms into the definition of the Fourier
transform (7.29), or inverse Fourier transform (7.30). The first
shift property (7.47) is shown by the following argument. We
evaluate the Fourier transform.

F[ f (x− a)] =
∫ ∞

−∞
f (x− a)eikx dx.

Now perform the substitution y = x− a. Then,

F[ f (x− a)] =
∫ ∞

−∞
f (y)eik(y+a) dy

= eika
∫ ∞

−∞
f (y)eiky dy

= eika f̂ (k). (7.49)

The second shift property (7.48) follows in a similar way.

6. Convolution We define the convolution of two functions f (x)
and g(x) as

( f ∗ g)(x) =
∫ ∞

−∞
f (t)g(x− t) dx. (7.50)

Then the Fourier transform of the convolution is the product
of the Fourier transforms of the individual functions:

F[ f ∗ g] = f̂ (k)ĝ(k). (7.51)

We will return to the proof of this property in Section 7.6.

7.5.1 Fourier Transform Examples

In this section we will compute the Fourier transforms of several
functions.

Example 7.4. Gaussian Functions. f (x) = e−ax2/2. The Fourier transform of a Gaussian is a
Gaussian.This function is called the Gaussian function. It has many applications

in areas such as quantum mechanics, molecular theory, probability and heat
diffusion. We will compute the Fourier transform of this function and show
that the Fourier transform of a Gaussian is a Gaussian. In the derivation we
will introduce classic techniques for computing such integrals.

We begin by applying the definition of the Fourier transform,

f̂ (k) =
∫ ∞

−∞
f (x)eikx dx =

∫ ∞

−∞
e−ax2/2+ikx dx. (7.52)

The first step in computing this integral is to complete the square in the
argument of the exponential. Our goal is to rewrite this integral so that a
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simple substitution will lead to a classic integral of the form
∫ ∞
−∞ eβy2

dy,
which we can integrate. The completion of the square follows as usual:

− a
2

x2 + ikx = − a
2

[
x2 − 2ik

a
x
]

= − a
2

[
x2 − 2ik

a
x +

(
− ik

a

)2
−
(
− ik

a

)2
]

= − a
2

(
x− ik

a

)2
− k2

2a
. (7.53)

We now put this expression into the integral and make the substitutions
y = x− ik

a and β = a
2 .

f̂ (k) =
∫ ∞

−∞
e−ax2/2+ikx dx

= e−
k2
2a

∫ ∞

−∞
e−

a
2 (x− ik

a )
2

dx

= e−
k2
2a

∫ ∞− ik
a

−∞− ik
a

e−βy2
dy. (7.54)

One would be tempted to absorb the − ik
a terms in the limits of integration.

However, we know from our previous study that the integration takes place
over a contour in the complex plane as shown in Figure 7.7.

x

y

z = x− ik
a

Figure 7.7: Simple horizontal contour.
In this case we can deform this horizontal contour to a contour along the

real axis since we will not cross any singularities of the integrand. So, we
now safely write

f̂ (k) = e−
k2
2a

∫ ∞

−∞
e−βy2

dy.

The resulting integral is a classic integral and can be performed using a
standard trick. Define I by 4 4 Here we show∫ ∞

−∞
e−βy2

dy =

√
π

β
.

Note that we solved the β = 1 case in
Example 5.9, so a simple variable trans-
formation z =

√
βy is all that is needed

to get the answer. However, it cannot
hurt to see this classic derivation again.

I =
∫ ∞

−∞
e−βy2

dy.

Then,
I2 =

∫ ∞

−∞
e−βy2

dy
∫ ∞

−∞
e−βx2

dx.

Note that we needed to change the integration variable so that we can write
this product as a double integral:

I2 =
∫ ∞

−∞

∫ ∞

−∞
e−β(x2+y2) dxdy.

This is an integral over the entire xy-plane. We now transform to polar
coordinates to obtain

I2 =
∫ 2π

0

∫ ∞

0
e−βr2

rdrdθ

= 2π
∫ ∞

0
e−βr2

rdr

= −π

β

[
e−βr2

]∞

0
=

π

β
. (7.55)
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The final result is gotten by taking the square root, yielding

I =
√

π

β
.

We can now insert this result to give the Fourier transform of the Gaussian
function:

f̂ (k) =

√
2π

a
e−k2/2a. (7.56)

Example 7.5. Box or Gate Function. f (x) =

{
b, |x| ≤ a
0, |x| > a

.
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Figure 7.8: A plot of the box function in
Example 7.5.

This function is called the box function, or gate function. It is shown in
Figure 7.8. The Fourier transform of the box function is relatively easy to
compute. It is given by

f̂ (k) =
∫ ∞

−∞
f (x)eikx dx

=
∫ a

−a
beikx dx

=
b
ik

eikx
∣∣∣a
−a

=
2b
k

sin ka. (7.57)

We can rewrite this as

f̂ (k) = 2ab
sin ka

ka
≡ 2ab sinc ka.

Here we introduced the sinc function,

sinc x =
sin x

x
.

A plot of this function is shown in Figure 7.9.
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Figure 7.9: A plot of the Fourier trans-
form of the box function in Example 7.5.
This is the general shape of the sinc func-
tion.

We will now consider special limiting values for the box function and
its transform. This will lead us to the Uncertainty Principle for signals,
connecting the relationship between the localization properties of a signal and
its transform.

1. a→ ∞ and b fixed.

In this case, as a gets large the box function approaches the constant
function f (x) = b. At the same time, we see that the Fourier trans-
form approaches a Dirac delta function. We had seen this function
earlier when we first defined the Dirac delta function. Compare
Figure 7.9 with Figure 7.4. In fact, f̂ (k) = bDa(k). [Recall the
definition of DΩ(x) in Equation (7.34).] So, in the limit we obtain
f̂ (k) = 2πbδ(k). This limit implies fact that the Fourier transform
of f (x) = 1 is f̂ (k) = 2πδ(k). As the width of the box becomes
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wider, the Fourier transform becomes more localized. In fact, we
have arrived at the result that∫ ∞

−∞
eikx = 2πδ(k). (7.58)

2. b→ ∞, a→ 0, and 2ab = 1.

In this case the box narrows and becomes steeper while maintaining
a constant area of one. This is the way we had found a represen-
tation of the Dirac delta function previously. The Fourier trans-
form approaches a constant in this limit. As a approaches zero, the
sinc function approaches one, leaving f̂ (k) → 2ab = 1. Thus, the
Fourier transform of the Dirac delta function is one. Namely, we
have

∫ ∞

−∞
δ(x)eikx = 1. (7.59)

In this case we have that the more localized the function f (x) is, the
more spread out the Fourier transform, f̂ (k), is. We will summarize
these notions in the next item by relating the widths of the function
and its Fourier transform.

3. The Uncertainty Principle

The widths of the box function and its Fourier transform are related
as we have seen in the last two limiting cases. It is natural to define
the width, ∆x of the box function as

∆x = 2a.

The width of the Fourier transform is a little trickier. This function
actually extends the entire k-axis. However, as f̂ (k) became more
localized, the central peak in Figure 7.9 became narrower. So, we
define the width of this function, ∆k as the distance between the
first zeros on either side of the main lobe. This gives

∆k =
2π

a
.

More formally, the uncertainty principle
for signals is about the relation between
duration and bandwidth, which are de-
fined by ∆t = ‖t f ‖2

‖ f ‖2
and ∆ω = ‖ω f̂ ‖2

‖ f̂ ‖2
, re-

spectively, where ‖ f ‖2 =
∫ ∞
−∞ | f (t)|

2 dt
and ‖ f̂ ‖2 = 1

2π

∫ ∞
−∞ | f̂ (ω)|2 dω. Under

appropriate conditions, one can prove
that ∆t∆ω ≥ 1

2 . Equality holds for Gaus-
sian signals. Werner Heisenberg (1901-
1976) introduced the uncertainty princi-
ple into quantum physics in 1926, relat-
ing uncertainties in the position (∆x) and
momentum (∆px) of particles. In this
case, ∆x∆px ≥ 1

2 h̄. Here, the uncertain-
ties are defined as the positive square
roots of the quantum mechanical vari-
ances of the position and momentum.

Combining these two relations, we find that

∆x∆k = 4π.

Thus, the more localized a signal, the less localized its transform.
This notion is referred to as the Uncertainty Principle. For general
signals, one needs to define the effective widths more carefully, but
the main idea holds:

∆x∆k ≥ c > 0.
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We now turn to other examples of Fourier transforms.

Example 7.6. f (x) =

{
e−ax, x ≥ 0

0, x < 0
, a > 0.

The Fourier transform of this function is

f̂ (k) =
∫ ∞

−∞
f (x)eikx dx

=
∫ ∞

o
eikx−ax dx

=
1

a− ik
. (7.60)

Next, we will compute the inverse Fourier transform of this result and
recover the original function.

Example 7.7. f̂ (k) = 1
a−ik .

The inverse Fourier transform of this function is

f (x) =
1

2π

∫ ∞

−∞
f̂ (k)e−ikx dk =

1
2π

∫ ∞

−∞

e−ikx

a− ik
dk.

This integral can be evaluated using contour integral methods. We recall
Jordan’s Lemma from the last chapter:

If f (z) converges uniformly to zero as z→ ∞, then

lim
R→∞

∫
CR

f (z)eikz dz = 0

where k > 0 and CR is the upper half of the circle |z| = R. A similar result
applies for k < 0, but one closes the contour in the lower half plane.

In this example, we have to evaluate the integral

I =
∫ ∞

−∞

e−ixz

a− iz
dz.

According to Jordan’s Lemma, we need to enclose the contour with a semicircle
in the upper half plane for x < 0 and in the lower half plane for x > 0 as
shown in Figure 7.10.

x

y

−ia
R−R

CR

x

y

−ia

R−R

CR

Figure 7.10: Contours for inverting
f̂ (k) = 1

a−ik .

The integrations along the semicircles will vanish and we will have

f (x) =
1

2π

∫ ∞

−∞

e−ikx

a− ik
dk

= ± 1
2π

∮
C

e−ixz

a− iz
dz

=

{
0, x < 0

− 1
2π 2πi Res [z = −ia], x > 0

=

{
0, x < 0

e−ax, x > 0
. (7.61)
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Example 7.8. f̂ (ω) = πδ(ω + ω0) + πδ(ω−ω0).
We would like to find the inverse Fourier transform of this function. In-

stead of carrying out any integration, we will make use of the properties of
Fourier transforms. Since the transforms of sums are the sums of transforms,
we can look at each term individually. Consider δ(ω−ω0). This is a shifted
function. From the shift theorems in Equations (7.47)-(7.48) we have

eiω0t f (t)↔ f̂ (ω−ω0).

Recalling from a previous example that∫ ∞

−∞
eiωt dt = 2πδ(ω),

we have
F−1[δ(ω−ω0)] =

1
2π

e−iω0t.

The second term can be transformed similarly. Therefore, we have

F−1[πδ(ω + ω0) + πδ(ω−ω0] =
1
2

eiω0t +
1
2

e−iω0t = cos ω0t.

Example 7.9. The Finite Wave Train. f (t) =

{
cos ω0t, |t| ≤ a

0, |t| > a
.

For the last example, we consider the finite wave train, which will reappear
in the last chapter on signal analysis. In Figure 7.11 we show a plot of this
function.

Figure 7.11: A plot of the finite wave
train.

A straight forward computation gives

f̂ (ω) =
∫ ∞

−∞
f (t)eiωt dt

=
∫ a

−a
[cos ω0t + i sin ω0t]eiωt dt

=
∫ a

−a
cos ω0t cos ωt dt + i

∫ a

−a
sin ω0t sin ωt dt

=
1
2

∫ a

−a
[cos((ω + ω0)t) + cos((ω−ω0)t)] dt

=
sin((ω + ω0)a)

ω + ω0
+

sin((ω−ω0)a)
ω−ω0

. (7.62)

7.6 The Convolution Theorem

In the list of properties of the Fourier transform, we de-
fined the convolution of two functions, f (x) and g(x) to be the integral

Box Function
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Figure 7.12: A plot of the box function
f (x).

( f ∗ g)(x) =
∫ ∞

−∞
f (t)g(x− t) dt. (7.63)
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In some sense one is looking at a sum of the overlaps of one of the
functions and all of the shifted versions of the other function. The
German word for convolution is faltung, which means “folding”.

First, we note that the convolution is commutative: f ∗ g = g ∗ f .
This is easily shown by replacing x− t with a new variable, y.

(g ∗ f )(x) =
∫ ∞

−∞
g(t) f (x− t) dt

= −
∫ −∞

∞
g(x− y) f (y) dy

=
∫ ∞

−∞
f (y)g(x− y) dy

= ( f ∗ g)(x). (7.64)

Example 7.10. Graphical Convolution.

Triangle Function
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Figure 7.13: A plot of the triangle func-
tion.

In order to understand the convolution operation, we need to apply it to
several functions. We will do this graphically for the box function

f (x) =

{
1, |x| < 1
0, |x| > 1

and the triangular function

g(x) =

{
x, |x| < 1
0, |x| > 1

as shown in Figures 7.12 and 7.13.
In order to determine the contributions to the integrand, we look at the

shifted and reflected function g(t− x) in Equation 7.63 for various values of
t. For t = 0, we have g(−x). This is a reflection of the triangle function as
shown in Figure 7.14.

Reflected Triangle Function
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Figure 7.14: A plot of the reflected trian-
gle function.

We then translate this function performing horizontal shifts by t. In Figure
7.15 we show such a shifted and reflected g(x) for t = 2. The following
figures show other shifts superimposed on f (x). The integrand is the product
of f (x) and g(t − x) and the convolution evaluated at t is given by the
shaded areas. In Figures 7.16 the area is zero, as there is no overlap of the
functions. Intermediate shift values are displayed in Figures 7.17-7.19 and
the convolution is shown by the area under the product of the two functions.

F[ f ∗ g] = f̂ (k)ĝ(k). (7.65)

We see that the value of the convolution integral builds up and then quickly
drops to zero. The plot of the convolution of the box and triangle functions is
given in Figure 7.20.

Shifted, Reflected Triangle Function
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Figure 7.15: A plot of the reflected trian-
gle function shifted by 2 units.

Next we would like to compute the Fourier transform of the convo-
lution integral. First, we use the definitions of Fourier transform and
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Convolution for Various t
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Figure 7.16: A plot of the box and trian-
gle functions with the overlap indicated
by the shaded area.

Convolution for Various t
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Figure 7.17: A plot of the box and trian-
gle functions with the overlap indicated
by the shaded area.

Convolution for Various t
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Figure 7.18: A plot of the box and trian-
gle functions with the overlap indicated
by the shaded area.

Convolution for Various t
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Figure 7.19: A plot of the box and trian-
gle functions with the overlap indicated
by the shaded area.

Convolution of Block & Triangle Functions
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Figure 7.20: A plot of the convolution of
the box and triangle functions.
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convolution to write the transform as

F[ f ∗ g] =
∫ ∞

−∞
( f ∗ g)(x)eikx dx

=
∫ ∞

−∞

(∫ ∞

−∞
f (t)g(x− t) dt

)
eikx dx

=
∫ ∞

−∞

(∫ ∞

−∞
g(x− t)eikx dx

)
f (t) dt. (7.66)

We now substitute y = x − t on the inside integral and separate the
integrals:

F[ f ∗ g] =
∫ ∞

−∞

(∫ ∞

−∞
g(x− t)eikx dx

)
f (t) dt

=
∫ ∞

−∞

(∫ ∞

−∞
g(y)eik(y+t) dy

)
f (t) dt

=
∫ ∞

−∞

(∫ ∞

−∞
g(y)eiky dy

)
f (t)eikt dt. (7.67)

We see that the two integrals are just the Fourier transforms of f and
g. Therefore, the Fourier transform of a convolution is the product of
the Fourier transforms of the functions involved:

Example 7.11. Convolution of two Gaussian functions f (x) = e−ax2
.

In this example we will compute the convolution of two Gaussian func-
tions with different widths. Let f (x) = e−ax2

and g(x) = e−bx2
. A direct

evaluation of the integral would be to compute

( f ∗ g)(x) =
∫ ∞

−∞
f (t)g(x− t) dt =

∫ ∞

−∞
e−at2−b(x−t)2

dt.

This integral can be rewritten as

( f ∗ g)(x) = e−bx2
∫ ∞

−∞
e−(a+b)t2+2bxt dt.

One could proceed to complete the square and finish carrying out the in-
tegration. However, we will use the Convolution Theorem to evaluate the
convolution and leave the evaluation of this integral to Problem 8.

Recalling the Fourier transform of a Gaussian from Example 7.4, we have

f̂ (k) = F[e−ax2
] =

√
π

a
e−k2/4a (7.68)

and

ĝ(k) = F[e−bx2
] =

√
π

b
e−k2/4b.

Denoting the convolution function by h(x) = ( f ∗ g)(x), the Convolution
Theorem gives

ĥ(k) = f̂ (k)ĝ(k) =
π√
ab

e−k2/4ae−k2/4b.
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This is another Gaussian function, as seen by rewriting the Fourier transform
of h(x) as

ĥ(k) =
π√
ab

e−
1
4 (

1
a +

1
b )k2

=
π√
ab

e−
a+b
4ab k2

. (7.69)

In order to complete the evaluation of the convolution of these two Gaus-
sian functions, we need to find the inverse transform of the Gaussian in Equa-
tion (7.69). We can do this by looking at Equation (7.68). We have first that

F−1
[√

π

a
e−k2/4a

]
= e−ax2

.

Moving the constants, we then obtain

F−1[e−k2/4a] =

√
a
π

e−ax2
.

We now make the substitution α = 1
4a ,

F−1[e−αk2
] =

√
1

4πα
e−x2/4α.

This is in the form needed to invert (7.69). Thus, for α = a+b
4ab we find

( f ∗ g)(x) = h(x) =
√

π

a + b
e−

ab
a+b x2

.

7.6.1 Application to Signal Analysis

Figure 7.21: Schematic plot of a signal
f (t) and its Fourier transform f̂ (ω).

There are many applications of the convolution operation. One
of these areas is the study of analog signals. An analog signal is a
continuous signal and may contain either a finite, or continuous set of
frequencies. Fourier transforms can be used to represent such signals
as a sum over the frequency content. In this section we will describe
how convolutions can be used in studying signal analysis.

The first application is filtering. For a given signal there might be
some noise in the signal, or some undesirable high frequencies. Or, the
device used for recording an analog signal might naturally not be able
to record high frequencies. Let f (t) denote the amplitude of a given
analog signal and f̂ (ω) be the Fourier transform of this signal. An
example is provided in Figure 7.21. Recall that the Fourier transform
gives the frequency content of the signal and that ω = 2πν, where ν is
the frequency in Hertz, or cycles per second (cps).

Figure 7.22: (a) Plot of the Fourier trans-
form f̂ (ω) of a signal. (b) The gate func-
tion pω0 (ω) used to filter out high fre-
quencies. (c) The product of the func-
tions, ĝ(ω) = f̂ (ω)pω0 (ω), in (a) and
(b).

There are many ways to filter out unwanted frequencies. The sim-
plest would be to just drop all of the high frequencies, |ω| > ω0 for
some cutoff frequency ω0. The Fourier transform of the filtered signal
would then be zero for |ω| > ω0. This could be accomplished by mul-
tiplying the Fourier transform of the signal by a function that vanishes
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for |ω| > ω0. For example, we could consider the gate function

pω0(ω) =

{
1, |ω| ≤ ω0

0, |ω| > ω0
. (7.70)

Figure 7.22 shows how the gate function is used to filter the signal.
In general, we multiply the Fourier transform of the signal by some

filtering function ĥ(t) to get the Fourier transform of the filtered signal,

ĝ(ω) = f̂ (ω)ĥ(ω).

The new signal, g(t) is then the inverse Fourier transform of this prod-
uct, giving the new signal as a convolution:

g(t) = F−1[ f̂ (ω)ĥ(ω)] =
∫ ∞

−∞
h(t− τ) f (τ) dτ. (7.71)

Such processes occur often in systems theory as well. One thinks of
f (t) as the input signal into some filtering device which in turn pro-
duces the output, g(t). The function h(t) is called the impulse response.
This is because it is a response to the impulse function, δ(t). In this
case, one has ∫ ∞

−∞
h(t− τ)δ(τ) dτ = h(t).

Another application of the convolution is in windowing. This rep-
resents what happens when one measures a real signal. Real signals
cannot be recorded for all values of time. Instead data is collected over
a finite time interval. If the length of time the data is collected is T,
then the resulting signal is zero outside this time interval. This can be
modeled in the same way as with filtering, except the new signal will
be the product of the old signal with the windowing function. The re-
sulting Fourier transform of the new signal will be a convolution of the
Fourier transforms of the original signal and the windowing function.

Example 7.12. Finite Wave Train, Revisited.
We return to the finite wave train in Example 7.9 given by

h(t) =

{
cos ω0t, |t| ≤ a

0, |t| > a
.

Figure 7.23: A plot of the finite wave
train.

We can view this as a windowed version of f (t) = cos ω0t obtained by
multiplying f (t) by the gate function

ga(t) =

{
1, |x| ≤ a
0, |x| > a

. (7.72)

This is shown in Figure 7.23. Then, the Fourier transform is given as a
convolution,

ĥ(ω) = ( f̂ ∗ ĝa)(ω)

=
1

2π

∫ ∞

−∞
f̂ (ω− ν)ĝa(ν) dν. (7.73)
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Note that the convolution in frequency space requires the extra factor of
1/(2π).

We need the Fourier transforms of f and ga in order to finish the computa-
tion. The Fourier transform of the box function was already found in Example
7.5 as

ĝa(ω) =
2
ω

sin ωa.

The Fourier transform of the cosine function, f (t) = cos ω0t, is

f̂ (ω) =
∫ ∞

−∞
cos(ω0t)eiωt dt

=
∫ ∞

−∞

1
2

(
eiω0t + e−iω0t

)
eiωt dt

=
1
2

∫ ∞

−∞

(
ei(ω+ω0)t + ei(ω−ω0)t

)
dt

= π [δ(ω + ω0) + δ(ω−ω0)] . (7.74)

Note that we had earlier computed the inverse Fourier transform of this func-
tion in Example 7.8.

Inserting these results in the convolution integral, we have

ĥ(ω) =
1

2π

∫ ∞

−∞
f̂ (ω− ν)ĝa(ν) dν

=
1

2π

∫ ∞

−∞
π [δ(ω− ν + ω0) + δ(ω− ν−ω0)]

2
ν

sin νa dν

=
sin(ω + ω0)a

ω + ω0
+

sin(ω−ω0)a
ω−ω0

. (7.75)

This is the same result we had obtained in Example 7.9.

7.6.2 Parseval’s Equality

As another example of the convolution theorem, we derive Parse-
val’s Equality (named after Marc-Antoine Parseval (1755-1836)):∫ ∞

−∞
| f (t)|2 dt =

1
2π

∫ ∞

−∞
| f̂ (ω)|2 dω. (7.76)

This equality has a physical meaning for signals. The integral on the
left side is a measure of the energy content of the signal in the time
domain. The right side provides a measure of the energy content of
the transform of the signal. Parseval’s equality, is simply a statement
that the energy is invariant under the transform. Parseval’s equality is
a special case of Plancherel’s formula (named after Michel Plancherel).

Let’s rewrite the Convolution Theorem in its inverse form

F−1[ f̂ (k)ĝ(k)] = ( f ∗ g)(t). (7.77)
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Then, by the definition of the inverse Fourier transform, we have∫ ∞

−∞
f (t− u)g(u) du =

1
2π

∫ ∞

−∞
f̂ (ω)ĝ(ω)e−iωt dω.

Setting t = 0,∫ ∞

−∞
f (−u)g(u) du =

1
2π

∫ ∞

−∞
f̂ (ω)ĝ(ω) dω. (7.78)

Now, let g(t) = f (−t), or f (−t) = g(t). We note that the Fourier
transform of g(t) is related to the Fourier transform of f (t) :

ĝ(ω) =
∫ ∞

−∞
f (−t)eiωt dt

= −
∫ −∞

∞
f (τ)e−iωτ dτ

=
∫ ∞

−∞
f (τ)eiωτ dτ = f̂ (ω). (7.79)

So, inserting this result into Equation (7.78), we find that∫ ∞

−∞
f (−u) f (−u) du =

1
2π

∫ ∞

−∞
| f̂ (ω)|2 dω

which yields Parseval’s Equality in the form (7.76) after subsituting
t = −u on the left.

As noted above, the forms in Equations (7.76) and (7.78) are often re-
ferred to as the Plancherel formula or Parseval formula. A more com-
monly defined Paresval equation is that given for Fourier series. For
example, for a function f (x) defined on [−π, π], which has a Fourier
series representation, we have

a2
0

2
+

∞

∑
n=1

(a2
n + b2

n) =
1
π

∫ π

−π
[ f (x)]2 dx.

In general, there is a Parseval identity for functions that can be ex-
panded in a complete sets of orthonormal functions, {φn(x)}, n =

1, 2, . . . , which is given by

∞

∑
n=1

< f , φn >2= ‖ f ‖2.

Here ‖ f ‖2 =< f , f > . The Fourier series example is just a special case
of this formula.

7.7 The Laplace Transform
The Laplace transform is named af-
ter Pierre-Simon de Laplace (1749-1827).
Laplace made major contributions, espe-
cially to celestial mechanics, tidal analy-
sis, and probability.

Up until this point we have only explored Fourier exponential
transforms as one type of integral transform. The Fourier transform is
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useful on infinite domains. However, students are often introduced to
another integral transform, called the Laplace transform, in their intro-
ductory differential equations class. These transforms are defined over
semi-infinite domains and are useful for solving ordinary differential
equations.

The Fourier and Laplace transforms are examples of a broader class
of transforms known as integral transforms. For a function f (x) defined
on an interval (a, b), we define the integral transform

F(k) =
∫ b

a
K(x, k) f (x) dx,

where K(x, k) is a specified kernel of the transform. Looking at the
Fourier transform, we see that the interval is stretched over the entire
real axis and the kernel is of the form, K(x, k) = eikx. In Table 7.1 we
show several types of integral transforms.

Laplace Transform F(s) =
∫ ∞

0 e−sx f (x) dx
Fourier Transform F(k) =

∫ ∞
−∞ eikx f (x) dx

Fourier Cosine Transform F(k) =
∫ ∞

0 cos(kx) f (x) dx
Fourier Sine Transform F(k) =

∫ ∞
0 sin(kx) f (x) dx

Mellin Transform F(k) =
∫ ∞

0 xk−1 f (x) dx
Hankel Transform F(k) =

∫ ∞
0 xJn(kx) f (x) dx

Table 7.1: A table of common integral
transforms.

Laplace transforms also have proven useful in engineering for solv-
ing circuit problems and doing systems analysis. In Figure 7.24 it is
shown that a signal x(t) is provided as input to a linear system, indi-
cated by h(t). One is interested in the system output, y(t), which is
given by a convolution of the input and system functions. By consid-
ering the transforms of x(t) and h(t), the transform of the output is
given as a product of the Laplace transforms in the s-domain. In order
to obtain the output, one needs to compute a convolution product for
Laplace transforms similar to the convolution operation we had seen
for Fourier transforms earlier in the chapter. Of course, for us to do
this in practice, we have to know how to compute Laplace transforms.

The Laplace transform of a function f (t) is defined as

F(s) = L[ f ](s) =
∫ ∞

0
f (t)e−st dt, s > 0. (7.80)

This is an improper integral and one needs

lim
t→∞

f (t)e−st = 0

to guarantee convergence.
It is typical that one makes use of Laplace transforms by referring

to a Table of transform pairs. A sample of such pairs is given in Table
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x(t)

Laplace
Transform

X(s)

h(t)

Laplace
Transform

H(s)

y(t) = h(t) ∗ x(t)

Inverse Laplace
Transform

Y(s) = H(s)X(s)

Time domain

Frequency domain

Figure 7.24: A schematic depicting the
use of Laplace transforms in systems
theory.

7.2. Combining some of these simple Laplace transforms with the
properties of the Laplace transform, as shown in Table 7.3, we can
deal with many applications of the Laplace transform. We will first
prove a few of the given Laplace transforms and show how they can
be used to obtain new transform pairs. In the next section we will
show how these can be used to solve ordinary differential equations.

f (t) F(s) f (t) F(s)

c
c
s

eat 1
s− a

, s > a

tn n!
sn+1 , s > 0 tneat n!

(s− a)n+1

sin ωt
ω

s2 + ω2 eat sin ωt ω
(s−a)2+ω2

cos ωt
s

s2 + ω2 eat cos ωt
s− a

(s− a)2 + ω2

t sin ωt
2ωs

(s2 + ω2)2 t cos ωt
s2 −ω2

(s2 + ω2)2

sinh at
a

s2 − a2 cosh at
s

s2 − a2

H(t− a)
e−as

s
, s > 0 δ(t− a) e−as, a ≥ 0, s > 0

Table 7.2: Table of selected Laplace
transform pairs.

We begin with some simple transforms. These are found by simply
using the definition of the Laplace transform.

Example 7.13. L[1]
For this example, we insert f (t) = 1 into the integral transform:

L[1] =
∫ ∞

0
e−st dt.

This is an improper integral and the computation is understood by introduc-
ing an upper limit of a and then letting a→ ∞. We will not always write this
limit, but it will be understood that this is how one computes such improper
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integrals. Proceeding with the computation, we have

L[1] =
∫ ∞

0
e−st dt

= lim
a→∞

∫ a

0
e−st dt

= lim
a→∞

(
−1

s
e−st

)a

0

= lim
a→∞

(
−1

s
e−sa +

1
s

)
=

1
s

. (7.81)

Thus, we have found that the Laplace transform of 1 is 1
s . This

result can be extended to any constant c, using the linearity of the
transform. Since the Laplace transform is simply an integral, L[c] =
cL[1]. Therefore,

L[c] = c
s

.

Example 7.14. L[eat],
For this example, we can easily compute the transform. Again, we only

need to compute the integral of an exponential function.

L[eat] =
∫ ∞

0
eate−st dt

=
∫ ∞

0
e(a−s)t dt

=

(
1

a− s
e(a−s)t

)∞

0

= lim
t→∞

1
a− s

e(a−s)t − 1
a− s

=
1

s− a
. (7.82)

Note that the last limit was computed as limt→∞ e(a−s)t = 0. This is only
true if a− s < 0, or s > a. [Actually, a could be complex. In this case we
would only need s to be greater than the real part of a, s > Re(a) = 0.]

Example 7.15. L[cos at] and L[sin at]
For these examples, we could again insert the trigonometric functions di-

rectly into the transform and integrate. For example,

L[cos at] =
∫ ∞

0
e−st cos at dt.

Recall how one evaluates integrals involving the product of a trigonometric
function and the exponential function. One integrates by parts two times
and then obtains an integral of the original unknown integral. Rearranging
the resulting integral expressions, one arrives at the desired result. However,
there is a much simpler way to compute these transforms.

Recall that eiat = cos at + i sin at. Making use of the linearity of the
Laplace transform, we have

L[eiat] = L[cos at] + iL[sin at].
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Thus, transforming this complex exponential will simultaneously provide the
Laplace transforms for the sine and cosine functions! The transform is simply
computed as

L[eiat] =
∫ ∞

0
eiate−st dt =

∫ ∞

0
e−(s−ia)t dt =

1
s− ia

.

Note that we could easily have used the result for the transform of an expo-
nential, which was already proven. In this case s > Re(ia) = 0.

We now extract the real and imaginary parts of the result using the com-
plex conjugate of the denominator:

1
s− ia

=
1

s− ia
s + ia
s + ia

=
s + ia

s2 + a2 .

Reading off the real and imaginary parts gives

L[cos at] =
s

s2 + a2

L[sin at] =
a

s2 + a2 . (7.83)

Example 7.16. L[t]
For this example we evaluate

L[t] =
∫ ∞

0
te−st dt.

This integral can be done using the method of integration by parts. (Pick
u = t and dv = e−st dt. Then, du = dt and v = − 1

s e−st.) So, we have

∫ ∞

0
te−st dt = −t

1
s

e−st
∣∣∣∞
0
+

1
s

∫ ∞

0
e−st dt

=
1
s2 . (7.84)

Example 7.17. L[tn]

We can generalize the last example to integer powers of t greater than
n = 1. In this case we have to do the integral

L[tn] =
∫ ∞

0
tne−st dt.

Following the previous example, we again integrate by parts:5 5 This integral can just as easily be done
using differentiation. We note that(
− d

ds

)n ∫ ∞

0
e−st dt =

∫ ∞

0
tne−st dt.

Since ∫ ∞

0
e−st dt =

1
s

,∫ ∞

0
tne−st dt =

(
− d

ds

)n 1
s
=

n!
sn+1 .

∫ ∞

0
tne−st dt = −tn 1

s
e−st

∣∣∣∞
0
+

n
s

∫ ∞

0
t−ne−st dt

=
n
s

∫ ∞

0
t−ne−st dt. (7.85)

We could continue to integrate by parts until the final integral is com-

We compute
∫ ∞

0 tne−st dt using an itera-
tive method.

puted. However, look at the integral that resulted after one integration by
parts. It is just the Laplace transform of tn−1. So, we can write the result as

L[tn] =
n
s
L[tn−1].
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This is an example of a recursive definition of a sequence. In this case we
have a sequence of integrals. Denoting

In = L[tn] =
∫ ∞

0
tne−st dt

and noting that I0 = L[1] = 1
s , we have the following: Here we see an example of a first order

difference equation and the solution of
the corresponding initial value problem.

In =
n
s

In−1, I0 =
1
s

. (7.86)

This is also what is called a difference equation. It is a first order difference
equation with an “initial condition", I0. There is a whole theory of difference
equations, which we will not get into here.

Our goal is to solve the above difference equation. It is easy to do by simple
iteration. Note that replacing n with n− 1, we have

In−1 =
n− 1

s
In−2.

So, repeating the process we find

In =
n
s

In−1

=
n
s

(
n− 1

s
In−2

)
=

n(n− 1)
s2 In−2. (7.87)

We can repeat this process until we get to I0, which we know. We have to
carefully count the number of iterations. We do this by iterating k times and
then figure out how many steps will get us to the known initial value. A list
of iterates is easily written out:

In =
n
s

In−1

=
n(n− 1)

s2 In−2

=
n(n− 1)(n− 2)

s3 In−3

= . . .

=
n(n− 1)(n− 2) . . . (n− k + 1)

sk In−k. (7.88)

Since we know I0 = 1
s , we choose to stop at k = n obtaining

In =
n(n− 1)(n− 2) . . . (2)(1)

sn I0 =
n!

sn+1 .

Therefore, we have shown that L[tn] = n!
sn+1 . [Such iterative techniques are

useful in obtaining a variety of of integrals, such as In =
∫ ∞
−∞ x2ne−x2

dx.
See Problem 10]
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As a final note, one can extend this result to cases when n is not an
integer. To do this, one introduces what is called the Gamma function,
which was discussed in Chapter 5. This function is defined as

Γ(x) =
∫ ∞

0
tx−1e−t dt. (7.89)

Note the similarity to the Laplace transform of tx−1 :

L[tx−1] =
∫ ∞

0
tx−1e−st dt.

For x− 1 an integer and s = 1, we have that

Γ(x) = (x− 1)!.

Thus, the Gamma function can be viewed as a generalization of the
factorial and we have shown that

L[tp] =
Γ(p + 1)

sp+1

for p > −1.
Now we are ready to introduce additional properties of the Laplace

transform. We will prove a few of the properties in Table 7.3.

Laplace Transform Properties
L[a f (t) + bg(t)] = aF(s) + bG(s)

L[t f (t)] = − d
ds

F(s)

L
[

d f
dt

]
= sF(s)− f (0)

L
[

d2 f
dt2

]
= s2F(s)− s f (0)− f ′(0)

L[eat f (t)] = F(s− a)
L[H(t− a) f (t− a)] = e−asF(s)

L[( f ∗ g)(t)] = L[
∫ t

0
f (t− u)g(u) du] = F(s)G(s)

Table 7.3: Table of selected Laplace
transform properties.

Example 7.18. L
[

d f
dt

]
We have to compute

L
[

d f
dt

]
=
∫ ∞

0

d f
dt

e−st dt.

We can move the derivative off of f by integrating by parts. This is similar
to what we had done when finding the Fourier transform of the derivative of
a function. Letting u = e−st and v = f (t), we have

L
[

d f
dt

]
=

∫ ∞

0

d f
dt

e−st dt

= f (t)e−st
∣∣∣∞
0
+ s

∫ ∞

0
f (t)e−st dt

= − f (0) + sF(s). (7.90)
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Here we have assumed that f (t)e−st vanishes for large t.
The final result is that

L
[

d f
dt

]
= sF(s)− f (0).

Example 6: L
[

d2 f
dt2

]
We can compute this Laplace transform using two integrations by parts,

or we could make use of the last result. Letting g(t) = d f (t)
dt , we have

L
[

d2 f
dt2

]
= L

[
dg
dt

]
= sG(s)− g(0) = sG(s)− f ′(0).

But,

G(s) = L
[

d f
dt

]
= sF(s)− f (0).

So,

L
[

d2 f
dt2

]
= sG(s)− f ′(0)

= s [sF(s)− f (0)]− f ′(0)

= s2F(s)− s f (0)− f ′(0). (7.91)

7.8 Further Uses of Laplace Transforms

Although the Laplace transform is a very useful transform, it is
often encountered only as a method for solving initial value problems
in introductory differential equations. In this section we will show how
to solve simple differential equations. Along the way we will introduce
step and impulse functions and show how the Convolution Theorem
plays a role in finding solutions. Also, we will show that there is an
inverse Laplace transform, called the Bromwich integral, named after
Thomas John l’Anson Bromwich (1875-1929) . This inverse transform
is not usually covered in differential equations courses because the
integration takes place in the complex plane.

However, we will first explore an unrelated application of Laplace
transforms. We will see that the Laplace transform is useful in finding
sums of infinite series. Generally, many of the topics in this section are
optional and not needed in the rest of the text.

7.8.1 Series Summation Using Laplace Transforms

We saw in Chapter 4 that Fourier series can be used to sum series.
For example, in Problem 4.13, one gets to prove that

∞

∑
n=1

1
n2 =

π2

6
.



354 mathematical physics

In this section we will show how Laplace transforms can be used to
sum series. [See Wheelon’s book6.] There is an interesting history of 6 Albert D. Wheelon, Tables of Summable

Series and Integrals Involving Bessel Func-
tions, Holden-Day, 1968.

using integral transforms to sum series. For example, Richard Feyn-
man7 (1918-1988) described how one can use the convolution theorem

7 R. P. Feynman, 1949, Phys. Rev. 76, p.
769for Laplace transforms to sum series with denominators that involved

products. We will describe this and simpler sums in this section.
We begin by considering the Laplace transform of a known function,

F(s) =
∫ ∞

0
f (t)e−st dt.

Inserting this expression into the sum ∑n F(n) and interchanging the
sum and integral, we find

∞

∑
n=0

F(n) =
∞

∑
n=0

∫ ∞

0
f (t)e−nt dt

=
∫ ∞

0
f (t)

∞

∑
n=0

(
e−t)n dt

=
∫ ∞

0
f (t)

1
1− e−t dt. (7.92)

The last step was obtained using the sum of a geometric series. The
key is being able to carry out the final integral as we show in the next
example.

Example 7.19. Evaluate the sum ∑∞
n=1

(−1)n+1

n .
Since, L[1] = 1/s, we have

∞

∑
n=1

(−1)n+1

n
=

∞

∑
n=1

∫ ∞

0
(−1)n+1e−nt dt

=
∫ ∞

0

e−t

1 + e−t dt

=
∫ 2

1

du
u

= ln 2. (7.93)

Example 7.20. Evaluate the sum ∑∞
n=1

1
n2 .

This is a special case of the Riemann zeta function 8 8 A translation of Riemann, Bernhard
(1859), "Über die Anzahl der Primzahlen
unter einer gegebenen Grösse" is in H.
M. Edwards (1974). Riemann’s Zeta
Function. Academic Press. Riemann
had shown that the Riemann zeta func-
tion can be obtained through contour in-
tegral representation, 2 sin(πs)Γζ(s) =

i
∮

C
(−x)s−1

ex−1 dx, for a specific contour C.

ζ(s) =
∞

∑
n=1

1
ns . (7.94)

This function is important in the study of prime numbers and more recently
has seen applications in the study of dynamical systems. The series in this
example is ζ(2). We have already seen in 4.13that

ζ(2) =
π2

6
.

Using Laplace transforms, we can provide an integral representation of ζ(2).
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The first step is to find the correct Laplace transform pair. The sum in-
volves the function F(n) = 1/n2. So, we look for a function f (t) whose
Laplace transform is F(s) = 1/s2. We know by now that the inverse Laplace
transform of F(s) = 1/s2 is f (t) = t. As before, we replace each term in the
series by a Laplace transform, exchange the summation and integration, and
sum the resulting geometric series:

∞

∑
n=1

1
n2 =

∞

∑
n=1

∫ ∞

0
te−nt dt

=
∫ ∞

0

t
et − 1

dt. (7.95)

So, we have that ∫ ∞

0

t
et − 1

dt =
∞

∑
n=1

1
n2 = ζ(2).

Integrals of this type occur often in statistical mechanics in the form of Bose-
Einstein integrals. These are of the form

Gn(z) =
∫ ∞

0

xn−1

z−1ex − 1
dx.

Note that Gn(1) = Γ(n)ζ(n).

In general the Riemann zeta function has to be tabulated through
other means. In some special cases, one can closed form expressions.
For example,

ζ(2n) =
22n−1π2n

(2n)!
Bn,

where the Bn’s are the Bernoulli numbers. Bernoulli numbers are de-
fined through the Maclaurin series expansion

x
ex − 1

=
∞

∑
n=0

Bn

n!
xn.

The first few Riemann zeta functions are

ζ(2) =
π2

6
, ζ(4) =

π4

90
, ζ(6) =

π6

945
.

We can extend this method of using Laplace transforms to summing
series whose terms take special general forms. For example, from
Feynman’s paper we note that

1
(a + bn)2 = − ∂

∂a

∫ ∞

0
e−s(a+bn) ds.

This identity can be shown easily by first noting

∫ ∞

0
e−s(a+bn) ds =

[
−e−s(a+bn)

a + bn

]∞

0

=
1

a + bn
.
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Now, differentiate the result with respect to a and the result follows.
The latter identity can be generalized further as

1
(a + bn)k+1 =

(−1)k

k!
∂k

∂ak

∫ ∞

0
e−s(a+bn) ds.

In Feynman’s 1949 paper, he develops methods for handling several
other general sums using the convolution theorem. Wheelon gives
more examples of these. We will just provide one such result and an
example. First, we note that

1
ab

=
∫ 1

0

du
[a(1− u) + bu]2

.

However,
1

[a(1− u) + bu]2
=
∫ ∞

0
te−t[a(1−u)+bu] dt.

So, we have
1
ab

=
∫ 1

0
du
∫ ∞

0
te−t[a(1−u)+bu] dt.

We see in the next example how this representation can be useful.

Example 7.21. Evaluate ∑∞
n=0

1
(2n+1)(2n+2) . We compute this as follows:

∞

∑
n=0

1
(2n + 1)(2n + 2)

=
∞

∑
n=0

∫ 1

0

du
[(2n + 1)(1− u) + (2n + 2)u]2

=
∞

∑
n=0

∫ 1

0
du
∫ ∞

0
te−t(2n+1+u) dt

=
∫ ∞

0

e−t

1− e−2t

∫ 1

0
e−tu du dt

=
∫ ∞

0

te−t

1− e−2t
1− e−t

t
dt

=
∫ ∞

0

e−t

1 + e−t dt

= − ln(1 + e−t)
∣∣∣∞
0
= ln 2. (7.96)

7.8.2 Solution of ODEs Using Laplace Transforms

One of the typical applications of Laplace transforms is the so-
lution of nonhomogeneous linear constant coefficient differential equa-
tions. In the following examples we will show how this works.

The general idea is that one transforms the equation for an un-
known function y(t) into an algebraic equation for its transform, Y(t).
Typically, the algebraic equation is easy to solve for Y(s) as a function
of s. Then one transforms back into t-space using Laplace transform
tables and the properties of Laplace transforms. The scheme is shown
in Figure 7.25.
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Figure 7.25: The scheme for solving
an ordinary differential equation using
Laplace transforms. One transforms the
initial value problem for y(t) and obtains
an algebraic equation for Y(s). Solve for
Y(s) and the inverse transform give the
solution to the initial value problem.

Example 7.22. Solve the initial value problem y′ + 3y = e2t, y(0) = 1.
The first step is to perform a Laplace transform of the initial value problem.

The transform of the left side of the equation is

L[y′ + 3y] = sY− y(0) + 3Y = (s + 3)Y− 1.

Transforming the right hand side, we have

L[e2t] =
1

s− 2
.

Combining these two results, we obtain

(s + 3)Y− 1 =
1

s− 2
.

The next step is to solve for Y(s) :

Y(s) =
1

s + 3
+

1
(s− 2)(s + 3)

.

Now, we need to find the inverse Laplace transform. Namely, we need to
figure out what function has a Laplace transform of the above form. It is easy
to do if we only had the first term. The inverse transform of the first term is
e−3t.

So far we have not seen anything that looks like the second form in the table
of transforms that we have compiled. However, we are not stuck. We know
that we can rewrite the second term by using a partial fraction decomposition.
Let’s recall how to do this. This is an example of carrying out a par-

tial fraction decomposition.The goal is to find constants, A and B, such that

1
(s− 2)(s + 3)

=
A

s− 2
+

B
s + 3

.

We picked this form because we know that recombining the two terms into
one term will have the same denominator. We just need to make sure the
numerators agree afterwards. So, adding the two terms, we have

1
(s− 2)(s + 3)

=
A(s + 3) + B(s− 2)

(s− 2)(s + 3)
.
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Equating numerators,

1 = A(s + 3) + B(s− 2).

This has to be true for all s. Rewriting the equation by gathering terms with
common powers of s, we have

(A + B)s + 3A− 2B = 1.

The only way that this can be true for all s is that the coefficients of the
different powers of s agree on both sides. This leads to two equations for A
and B:

A + B = 0

3A− 2B = 1. (7.97)

The first equation gives A = −B, so the second equation becomes −5B = 1.
The solution is then A = −B = 1

5 .
Returning to the problem, we have found that

Y(s) =
1

s + 3
+

1
5

(
1

s− 2
− 1

s + 3

)
.

[Of course, we could have tried to guess the form of the partial fraction de-
composition as we had done earlier when talking about Laurent series.]

Figure 7.26: A plot of the solution to Ex-
ample 7.22.

In order to finish the problem at hand, we find a function whose Laplace
transform is of this form. We easily see that

y(t) = e−3t +
1
5

(
e2t − e−3t

)
works. Simplifying, we have the solution of the initial value problem

y(t) =
1
5

e2t +
4
5

e−3t.

Example 7.23. Solve the initial value problem y′′ + 4y = 0, y(0) = 1,
y′(0) = 3.

We can probably solve this without Laplace transforms, but it is a simple
exercise. Transforming the equation, we have

0 = s2Y− sy(0)− y′(0) + 4Y

= (s2 + 4)Y− s− 3. (7.98)

Solving for Y, we have

Y(s) =
s + 3
s2 + 4

.

Figure 7.27: A plot of the solution to Ex-
ample 7.23.

We now ask if we recognize the transform pair needed. The denominator
looks like the type needed for the transform of a sine or cosine. We just need
to play with the numerator. Splitting the expression into two terms, we have

Y(s) =
s

s2 + 4
+

3
s2 + 4

.
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The first term is now recognizable as the transform of cos 2t. The second term
is not the transform of sin 2t. It would be if the numerator were a 2. This can
be corrected by multiplying and dividing by 2:

3
s2 + 4

=
3
2

(
2

s2 + 4

)
.

The solution is then found as

y(t) = L
[

s
s2 + 4

+
3
2

(
2

s2 + 4

)]
= cos 2t +

3
2

sin 2t.

7.8.3 Step and Impulse Functions

Often the initial value problems that one faces in differential
equations courses can be solved using either the Method of Undeter-
mined Coefficients or the Method of Variation of Parameters. How-
ever, using the latter can be messy and involves some skill with inte-
gration. Many circuit designs can be modeled with systems of differ-
ential equations using Kirchoff’s Rules. Such systems can get fairly
complicated. However, Laplace transforms can be used to solve such
systems and electrical engineers have long used such methods in cir-
cuit analysis.

In this section we add a couple of more transform pairs and trans-
form properties that are useful in accounting for things like turning on
a driving force, using periodic functions like a square wave, or intro-
ducing impulse forces.

We first recall the Heaviside step function, given by

H(t) =

{
0, t < 0,
1, t > 0.

(7.99)

Figure 7.28: A shifted Heaviside func-
tion, H(t− a).

A more general version of the step function is the horizontally
shifted step function, H(t− a). This function is shown in Figure 7.28.
The Laplace transform of this function is found for a > 0 as

L[H(t− a)] =
∫ ∞

0
H(t− a)e−st dt

=
∫ ∞

a
e−st dt

=
e−st

s

∣∣∣∞
a
=

e−as

s
. (7.100)

Just like the Fourier transform, the Laplace transform has two shift
theorems involving the multiplication of the function, f (t), or its trans-
form, F(s), by exponentials. The first and second shifting proper-
ties/theorems are given by

L[eat f (t)] = F(s− a) (7.101)

L[ f (t− a)H(t− a)] = e−asF(s). (7.102)
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We prove the First Shift Theorem and leave the other proof as an
exercise for the reader. Namely,

L[eat f (t)] =
∫ ∞

0
eat f (t)e−st dt

=
∫ ∞

0
f (t)e−(s−a)t dt = F(s− a). (7.103)

Example 7.24. Compute the Laplace transform of e−at sin ωt.
This function arises as the solution of the underdamped harmonic oscilla-

tor. We first note that the exponential multiplies a sine function. The shift
theorem tells us that we need the transform of the sine function. So,

F(s) =
ω

s2 + ω2 .

Using this transform, we can obtain the solution to this problem as

L[e−at sin ωt] = F(s + a) =
ω

(s + a)2 + ω2 .

More interesting examples can be found in piecewise functions. First we
consider the function H(t) − H(t − a). For t < 0 both terms are zero.
In the interval [0, a] the function H(t) = 1 and H(t − a) = 0. Therefore,
H(t)− H(t− a) = 1 for t ∈ [0, a]. Finally, for t > a, both functions are one
and therefore the difference is zero. This function is shown in Figure 7.29.

Figure 7.29: The box function, H(t) −
H(t− a).

We now consider the piecewise defined function

g(t) =

{
f (t), 0 ≤ t ≤ a,
0, t < 0, t > a.

This function can be rewritten in terms of step functions. We only need
to multiply f (t) by the above box function,

g(t) = f (t)[H(t)− H(t− a)].

We depict this in Figure 7.30.

Figure 7.30: Formation of a piecewise
function, f (t)[H(t)− H(t− a)].

Even more complicated functions can be written out in terms of
step functions. We only need to look at sums of functions of the form
f (t)[H(t− a)− H(t− b)] for b > a. This is just a box between a and
b of height f (t). An example of a square wave function is shown in
Figure 7.31. It can be represented as a sum of an infinite number of
boxes,

f (t) =
∞

∑
n=−∞

[H(t− 2na)− H(t− (2n + 1)a)].

Example 7.25. Laplace Transform of a square wave turned on at t = 0,

f (t) =
∞

∑
n=0

[H(t− 2na)− H(t− (2n + 1)a)].
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Figure 7.31: A square wave, f (t) =

∑∞
n=−∞[H(t− 2na)− H(t− (2n + 1)a)].

Using the properties of the Heaviside function, we have

L[ f (t)] =
∞

∑
n=0

[L[H(t− 2na)]−L[H(t− (2n + 1)a)]]

=
∞

∑
n=0

[
e−2nas

s
− e−(2n+1)as

s

]

=
1− e−as

s

∞

∑
n=0

(
e−2as

)n

=
1− e−as

s

(
1

1− e−2as

)
=

1− e−as

s(1− e−2as)
. (7.104)

Note that the third line in the derivation is a geometric series. We summed
this series to get the answer in a compact form.

Another interesting example is the delta function. The delta func-
tion represents a point impulse, or point driving force. For example,
while a mass on a spring is undergoing simple harmonic motion, one
could hit it for an instant at time t = a. In such a case, we could
represent the force as a multiple of δ(t− a). One would then need the
Laplace transform of the delta function to solve the associated initial
value problem.

We find that for a > 0

L[δ(t− a)] =
∫ ∞

0
δ(t− a)e−st dt

=
∫ ∞

−∞
δ(t− a)e−st dt

= e−as. (7.105)

The Dirac delta function can be used to represent a unit impulse.
Summing over a number of impulses, or point sources, we can describe
a general function. Such a sum of impulses located at points ai, i =
1, . . . , n with strengths f (ai) would be given by

f (x) =
n

∑
i=1

f (ai)δ(x− ai).
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A continuous sum could be written as

f (x) =
∫ ∞

−∞
f (ξ)δ(x− ξ) dξ.

This is simply an application of the sifting property of the delta func-
tion. In the next example we explore the application of a unit impulse
to a still harmonic oscillator.

Example 7.26. Solve the initial value problem y′′ + 4π2y = δ(t − 2),
y(0) = y′(0) = 0.

This initial value problem models a spring oscillation with an impulse
force. Without the forcing term, given by the delta function, this spring is
initially at rest and not stretched. The delta function models a unit impulse
at t = 2. Of course, we anticipate that at this time the spring will begin to
oscillate. We will solve this problem using Laplace transforms.

First, transform the differential equation:

s2Y− sy(0)− y′(0) + 4π2Y = e−2s.

Inserting the initial conditions, we have

(s2 + 4π2)Y = e−2s.

Solve for Y(s) :

Y(s) =
e−2s

s2 + 4π2 .

We now seek the function for which this is the Laplace transform. The form
of this function is an exponential times some Laplace transform, F(s). Thus,
we need the Second Shift Theorem.

Spring Oscillation Under an Impulse

–0.15

–0.1

–0.05

0

0.05

0.1

0.15

2 4 6 8

t

Figure 7.32: A plot of the solution to Ex-
ample 7.26 in which a spring at rest ex-
periences an impulse force at t = 2.

First we need to find the f (t) corresponding to

F(s) =
1

s2 + 4π2 .

The denominator suggests a sine or cosine. Since the numerator is constant,
we pick sine. From the tables of transforms, we have

L[sin 2πt] =
2π

s2 + 4π2 .

So, we write

F(s) =
1

2π

2π

s2 + 4π2 .

This gives f (t) = (2π)−1 sin 2πt.
We now apply the Second Shift Theorem, L[ f (t− a)H(t− a)] = e−asF(s).

y(t) = H(t− 2) f (t− 2)

=
1

2π
H(t− 2) sin 2π(t− 2). (7.106)

This solution tells us that the mass is at rest until t = 2 and then begins
to oscillate at its natural frequency. A plot of this solution is shown in Figure
7.32
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Example 7.27. Solve the initial value problem y′′ + y = f (t), y(0) = 0,
y′(0) = 0, where

f (t) =

{
cosπt, 0 ≤ t ≤ 2

0, otherwise.

We need the Laplace transform of f (t). This function can be written in
terms of a Heaviside function, f (t) = cos πtH(t − 2). In order to apply
the Second Shift Theorem, we need a shifted version of the cosine function.
However, cos π(t− 2) = cos πt. So, f (t) = cos π(t− 2)H(t− 2) and

F(s) = (1− e−2s)L[cos πt] = (1− e−2s)
s

s2 + π2 .

Now we can proceed to solve the initial value problem. Its Laplace trans-
form is

(s2 + 1)Y(s) = (1− e−2s)
s

s2 + π2 ,

or
Y(s) = (1− e−2s)

s
(s2 + π2)(s2 + 1)

.

We can retrieve the solution to the initial value problem using the Second
Shift Theorem again. A partial fraction decomposition gives

s
(s2 + π2)(s2 + 1)

=
1

π2 − 1

[
s

s2 + 1
− s

s2 + π2

]
.

Thus,

L
[

s
(s2 + π2)(s2 + 1)

]
=

1
π2 − 1

(cos t− cos πt) .

The final solution is then

y(t) =
1

π2 − 1
[cos t− cos πt− H(t− 2)(cos(t− 2)− cos πt)] .

A plot of this solution is shown in Figure 7.33

Figure 7.33: A plot of the solution to Ex-
ample 7.27 in which a spring at rest ex-
periences an piecewise defined force.7.8.4 The Convolution Theorem

Finally, we consider the convolution of two functions. Often we
are faced with having the product of two Laplace transforms that we
know and we seek the inverse transform of the product. For example,
let’s say you end up with Y(s) = 1

(s−1)(s−2) while trying to solve an
initial value problem. We know how to do this if we only have one
of the factors present in the denominator. Of course, we could do a
partial fraction decomposition. But, there is another way to find the
inverse transform, especially if we cannot perform a partial fraction
decomposition.
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We define the convolution of two functions defined on [0, ∞) much
the same way as we had done for the Fourier transform. The convolu-
tion f ∗ g is defined as

( f ∗ g)(t) =
∫ t

0
f (u)g(t− u) du. (7.107)

Note that the convolution integral has finite limits as opposed to the
Fourier transform case.

The convolution operation has two important properties:

1. The convolution is commutative: f ∗ g = g ∗ f

Proof. The key is to make a substitution y = t − u in the
integral. This makes f a simple function of the integration
variable.

(g ∗ f )(t) =
∫ t

0
g(u) f (t− u) du

= −
∫ 0

t
g(t− y) f (y) dy

=
∫ t

0
f (y)g(t− y) dy

= ( f ∗ g)(t). (7.108)

2. The Convolution Theorem: The Laplace transform of a con-
volution is the product of the Laplace transforms of the indi-
vidual functions:

L[ f ∗ g] = F(s)G(s)

Proof. Proving this theorem takes a bit more work. We will
make some assumptions that will work in many cases. First,
we assume that the functions are causal, f (t) = 0 and g(t) =
0 for t < 0. Secondly, we will assume that we can interchange
integrals, which needs more rigorous attention than will be
provided here. The first assumption will allow us to write
the finite integral as an infinite integral. Then a change of
variables will allow us to split the integral into the product of
two integrals that are recognized as a product of two Laplace
transforms.

L[ f ∗ g] =
∫ ∞

0

(∫ t

0
f (u)g(t− u) du

)
e−st dt

=
∫ ∞

0

(∫ ∞

0
f (u)g(t− u) du

)
e−st dt
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=
∫ ∞

0
f (u)

(∫ ∞

0
g(t− u)e−st dt

)
du

=
∫ ∞

0
f (u)

(∫ ∞

0
g(τ)e−s(τ+u) dτ

)
du

=
∫ ∞

0
f (u)e−su

(∫ ∞

0
g(τ)e−sτ dτ

)
du

=

(∫ ∞

0
f (u)e−su du

)(∫ ∞

0
g(τ)e−sτ dτ

)
= F(s)G(s). (7.109)

We make use of the Convolution Theorem to do the following ex-
ample.

Example 7.28. y(t) = L−1
[

1
(s−1)(s−2)

]
.

We note that this is a product of two functions

Y(s) =
1

(s− 1)(s− 2)
=

1
s− 1

1
s− 2

= F(s)G(s).

We know the inverse transforms of the factors: f (t) = et and g(t) = e2t.
Using the Convolution Theorem, we find y(t) = ( f ∗ g)(t). We compute

the convolution:

y(t) =
∫ t

0
f (u)g(t− u) du

=
∫ t

0
eue2(t−u) du

= e2t
∫ t

0
e−u du

= e2t[−et + 1] = e2t − et. (7.110)

One can also confirm this by carrying out a partial fraction decomposition.

Example 7.29. Consider the initial value problem, y′′ + 9y = 2 sin 3t,
y(0) = 1, y′(0) = 0.

The Laplace transform of this problem is given by

(s2 + 9)Y− s =
6

s2 + 9
.

Solving for Y(s), we obtain

Y(s) =
6

(s2 + 9)2 +
s

s2 + 9
.

The inverse Laplace transform of the second term is easily found as cos(3t);
however, the first term is more complicated.
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If we look at Table 7.2, we see that the Laplace transform pairs with the
denominator (s2 + ω2)2 are

L[t sin ωt] =
2ωs

(s2 + ω2)2 ,

and

L[t cos ωt] =
s2 −ω2

(s2 + ω2)2 .

So, we might consider rewriting a partial fraction decomposition as

6
(s2 + 9)2 =

A6s
(s2 + 9)2 +

B(s2 − 9)
(s2 + 9)2 +

Cs + D
s2 + 9

.

Combining the terms on the right over a common denominator, we find

6 = 6As + B(s2 − 9) + (Cs + D)(s2 + 9).

Collecting like powers of s, we have

Cs3 + (D + B)s2 + 6As + (D− B) = 6.

Therefore, C = 0, A = 0, D + B = 0, and D− B = 2
3 . Solving the last two

equations, we find D = −B = 1
3 .

Figure 7.34: Plot of the solution to Exam-
ple 7.29 showing a resonance.

Using these results, we find

Y(s) = −1
3
(s2 − 9)
(s2 + 9)2 +

1
3

1
s2 + 9

+
s

s2 + 9
.

Therefore, the solution to the initial value problem,

y(t) = −1
3

t cos 3t +
1
9

sin 3t + cos 3t.

Note that the amplitude of the solution will grow in time from the first term.
You can see this in Figure 7.34. This is known as a resonance.

Example 7.30. Find L−1[ 6
(s2+9)2 ] using the Convolution Theorem.

We can use the Convolution Theorem to find the Laplace transform in the
last example. We note that

6
(s2 + 9)2 =

2
3

3
(s2 + 9)

3
(s2 + 9)

is a product of two Laplace transforms (up to the constant factor). Thus,

L−1[
6

(s2 + 9)2 ] =
2
3
( f ∗ g)(t),

where f (t) = g(t) = sin3t. Evaluating this convolution product, we have

L−1[
6

(s2 + 9)2 ] =
2
3
( f ∗ g)(t)
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=
2
3

∫ t

0
sin 3u sin 3(t− u) du

=
1
3

∫ t

0
[cos 3(2u− t)− cos 3t] du

=
1
3

[
1
6

sin(6u− 3t)− u cos 3t
]t

0

=
1
9

sin 3t− 1
3

t cos 3t. (7.111)

This is the result we had obtained in the last example.

7.8.5 The Inverse Laplace Transform

Up until this point we have seen that the inverse Laplace transform
can be found by making use of Laplace transform tables and properties
of Laplace transforms. This is typically the way Laplace transforms are
taught and used. One can do the same for Fourier transforms. How-
ever, in that case we introduced an inverse transform in the form of an
integral. Does such an inverse exist for the Laplace transform? Yes, it
does! In this section we will introduce the inverse Laplace transform
integral and show how it is used.

We begin by considering a function f (t) which vanishes for t < 0
and define the function g(t) = f (t)e−ct. For g(t) absolutely integrable,∫ ∞

−∞
|g(t)| dt =

∫ ∞

0
| f (t)|e−ct dt < ∞,

we can write the Fourier transform,

ĝ(ω) =
∫ ∞

−∞
g(t)eiωtdt =

∫ ∞

0
f (t)eiωt−ctdt

and the inverse Fourier transform,

g(t) = f (t)e−ct =
1

2π

∫ ∞

−∞
ĝ(ω)e−iωt dω.

Multiplying by ect and inserting ĝ(ω) into the integral for g(t), we
find

f (t) =
1

2π

∫ ∞

−∞

∫ ∞

0
f (τ)e(iω−c)τdτe−(iω−c)t dω.

Letting s = c− iω (so dω = ids), we have

f (t) =
i

2π

∫ c−i∞

c+i∞

∫ ∞

0
f (τ)e−sτdτest ds.

Note that the inside integral is simply F(s). So, we have

f (t) =
1

2πi

∫ c+i∞

c−i∞
F(s)est ds. (7.112)
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The integral in the last equation is the inverse Laplace transform,
called the Bromwich integral. This integral is evaluated along a path
in the complex plane. The typical way to compute this integral is to
chose c so that all poles are to the left of the contour and to close the
contour with a semicircle enclosing the poles. One then relies on a
generalization of Jordan’s lemma to the second and third quadrants.

Figure 7.35: The contour used for ap-
plying the Bromwich integral to F(s) =

1
s(s+1) .

Example 7.31. Find the inverse Laplace transform of F(s) = 1
s(s+1) .

The integral we have to compute is

f (t) =
1

2πi

∫ c+i∞

c−i∞

est

s(s + 1)
ds.

This integral has poles at s = 0 and s = −1. The contour we will use is
shown in Figure 7.35. We enclose the contour with a semicircle to the left of
the path in the complex s-plane. One has to verify that the integral over the
semicircle vanishes as the radius goes to infinity. Assuming that we have done
this, then the result is simply obtained as 2πi times the sum of the residues.
The residues in this case are:

Res
[

ezt

z(z + 1)
; z = 0

]
= lim

z→0

ezt

(z + 1)
= 1

and

Res
[

ezt

z(z + 1)
; z = −1

]
= lim

z→−1

ezt

z
= −e−t.

Therefore, we have

f (t) = 2πi
[

1
2πi

(1) +
1

2πi
(−e−t)

]
= 1− e−t.

We can verify this result using the Convolution Theorem or using a partial
fraction decomposition. The decomposition is simplest:

1
s(s + 1)

=
1
s
− 1

s + 1
.

The first term leads to an inverse transform of 1 and the second term gives an
e−t. Thus, we have verified the result from doing contour integration.

Problems

1. In this problem you will show that the sequence of functions

fn(x) =
n
π

(
1

1 + n2x2

)
approaches δ(x) as n → ∞. Use the following to support your argu-
ment:

a. Show that limn→∞ fn(x) = 0 for x 6= 0.
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b. Show that the area under each function is one.

2. Evaluate the following integrals:

a.
∫ π

0 sin xδ
(

x− π
2
)

dx.

b.
∫ ∞
−∞ δ

( x−5
3 e2x) (3x2 − 7x + 2

)
dx.

c.
∫ π

0 x2δ
(

x + π
2
)

dx.

d.
∫ ∞

0 e−2xδ(x2 − 5x + 6) dx. [See Problem 3.]

e.
∫ ∞
−∞(x2 − 2x + 3)δ(x2 − 9) dx. [See Problem 3.]

3. For the case that a function has multiple roots, f (xi) = 0, i =

1, 2, . . . , it can be shown that

δ( f (x)) =
n

∑
i=1

δ(x− xi)

| f ′(xi)|
.

Use this result to evaluate
∫ ∞
−∞ δ(x2 − 5x + 6)(3x2 − 7x + 2) dx.

4. For a > 0, find the Fourier transform, f̂ (k), of f (x) = e−a|x|.

5. Prove the second shift property in the form

F
[
eiβx f (x)

]
= f̂ (k + β).

6. A damped harmonic oscillator is given by

f (t) =

{
Ae−αteiω0t, t ≥ 0,

0, t < 0.

.

a. Find f̂ (ω) and

b. the frequency distribution | f̂ (ω)|2.

c. Sketch the frequency distribution.

7. Show that the convolution operation is associative: ( f ∗ (g ∗ h))(t) =
(( f ∗ g) ∗ h)(t).

8. In this problem you will directly compute the convolution of two
Gaussian functions in two steps.

a. Use completing the square to evaluate∫ ∞

−∞
e−αt2+βt dt.

b. Use the result from part a to directly compute the convolu-
tion in example 7.11:

( f ∗ g)(x) = e−bx2
∫ ∞

−∞
e−(a+b)t2+2bxt dt.
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9. You will compute the (Fourier) convolution of two box functions of
the same width. Recall the box function is given by

fa(x) =

{
1, |x| ≤ a
0, |x| > a.

Consider ( fa ∗ fa)(x) for different intervals of x. A few preliminary
sketches would help. In Figure 7.36 the factors in the convolution
integrand are show for one value of x. The integrand is the product of
the first two functions. The convolution at x is the area of the overlap
in the third figure. Think about how these pictures change as you vary
x. Plot the resulting areas as a function of x. This is the graph of the
desired convolution.

Figure 7.36: Sketch used to compute the
convolution of the box function with it-
self. In the top figure is the box function.
The second figure shows the box shifted
by x. The last figure indicates the over-
lap of the functions.

10. Define the integrals In =
∫ ∞
−∞ x2ne−x2

dx. Noting that I0 =
√

π,

a. Find a recursive relation between In and In−1.

b. Use this relation to determine I1, I2 and I3.

c. Find an expression in terms of n for In.

11. Find the Laplace transform of the following functions.

a. f (t) = 9t2 − 7.

b. f (t) = e5t−3.

c. f (t) = cos 7t.

d. f (t) = e4t sin 2t.

e. f (t) = e2t(t + cosh t).

f. f (t) = t2H(t− 1).
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g. f (t) =

{
sin t, t < 4π,

sin t + cos t, t > 4π
.

h. f (t) =
∫ t

0 (t− u)2 sin u du.

12. Find the inverse Laplace transform of the following functions us-
ing the properties of Laplace transforms and the table of Laplace trans-
form pairs.

a. F(s) = 18
s3 + 7

s .

b. F(s) = 1
s−5 −

2
s2+4 .

c. F(s) = s+1
s2+1 .

d. F(s) = 3
s2+2s+2 .

e. F(s) = 1
(s−1)2 .

f. F(s) = e−3s

s2−1 .

13. Compute the convolution ( f ∗ g)(t) (in the Laplace transform
sense) and its corresponding Laplace transform L[ f ∗ g] for the fol-
lowing functions:

a. f (t) = t2, g(t) = t3.

b. f (t) = t2, g(t) = cos 2t.

c. f (t) = 3t2 − 2t + 1, g(t) = e−3t.

b. f (t) = δ
(
t− π

4
)

, g(t) = sin 5t.

14. Use the convolution theorem to compute the inverse transform of
the following:

a. F(s) = 2
s2(s2+1) .

b. F(s) = e−3s

s2 .

15. Find the inverse Laplace transform two different ways: i) Use
Tables. ii) Use the Bromwich Integral.

a. F(s) = 1
s3(s+4)2 .

b. F(s) = 1
s2−4s−5 .

c. F(s) = s+3
s2+8s+17 .

d. F(s) = s+1
(s−2)2(s+4) .

16. Use Laplace transforms to solve the following initial value prob-
lems. Where possible, describe the solution behavior in terms of oscil-
lation and decay.

a. y′′ − 5y′ + 6y = 0, y(0) = 2, y′(0) = 0.
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b. y′′ − y = te2t, y(0) = 0, y′(0) = 1.

c. y′′ + 4y = δ(t− 1), y(0) = 3, y′(0) = 0.

d. y′′ + 6y′ + 18y = 2H(π − t), y(0) = 0, y′(0) = 0.

17. Use Laplace transforms to sum the following series.

a. ∑∞
n=0

(−1)n

1+2n .

b. ∑∞
n=1

1
n(n+3) .

c. ∑∞
n=1

(−1)n

n(n+3) .

d. ∑∞
n=0

(−1)n

n2−a2 .

e. ∑∞
n=0

1
(2n+1)2−a2 .

f. ∑∞
n=1

1
n e−an.

18. Do the following.

a. Find the first four nonvanishing terms of the Maclaurin series
expansion of f (x) = x

ex−1 .

b. Use the result in part a. to determine the first four nonvan-
ishing Bernoulli numbers, Bn.

c. Use these results to compute ζ(2n) for n = 1, 2, 3, 4.

19. Given the following Laplace transforms, F(s), find the function
f (t). Note that in each case there are an infinite number of poles, re-
sulting in an infinite series representation.

a. F(s) = 1
cosh s .

b. F(s) = 1
s sinh s .

c. F(s) = sinh s
s2 cosh s .

d. F(s) = sinh(β
√

sx)
s sinh(β

√
sL) .
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