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Prologue

“All science is either physics or stamp collecting.” Ernest Rutherford (1871-1937)

0.1 Introduction

This is an introduction to topics in math-
ematical physics, introduced using the
physics of oscillations and waves. It is
based upon a one semester junior level
course in mathematics physics taught at
the University of North Carolina Wilm-
ington and originally set to book form in
2005. The notes were later modified and
used in 2006, 2011, and 2012.

This is a set of notes on mathematical physics for undergradu-
ate students who have completed a year long introductory course in
physics. The intent of the course is to introduce students to many of
the mathematical techniques useful in their undergraduate physics ed-
ucation long before they are exposed to more focused topics in physics.

Most texts on mathematical physics are encyclopedic works which
can never be covered in one semester and are often presented as a list
of the seemingly unrelated topics with some examples from physics
inserted to highlight the connection of the particular topic to the real
world. The point of these excursions is to introduce the student to a
variety of topics and not to delve into the rigor that one would find
in some mathematics courses. Most of these topics have equivalent
semester long courses which go into the details and proofs of the main
conjectures in that topic. Students may decide to later enroll in such
courses during their undergraduate, or graduate, study. Often the rel-
evance to physics must be found in more advanced courses in physics
when the particular methods are used for specialized applications.

So, why not teach the methods in the physics courses as they are
needed? Part of the reason is that going into the details can take away
from the global view of the course. Students often get lost in the math-
ematical details, as the proverbial tree can be lost in a forest of trees.
Many of the mathematical techniques used in one course can be found
in other courses. Collecting these techniques in one place, such as a
course in mathematical physics, can provide a uniform background
for students entering later courses in specialized topics in physics. Re-
peated exposure to standard methods also helps to ingrain these meth-
ods. Furthermore, in such a course as this, the student first sees both
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the physical and mathematical connections between different fields.
Instructors can use this course as an opportunity to show students
how the physics curriculum ties together what otherwise might ap-
pear to be a group of seemingly different courses.

The typical topics covered in a course on mathematical physics
are vector analysis, vector spaces, linear algebra, complex variables,
power series, ordinary and partial differential equations, Fourier se-
ries, Laplace and Fourier transforms, Sturm-Liouville theory, special
functions and possibly other more advanced topics, such as tensors,
group theory, the calculus of variations, or approximation techniques.
We will cover many of these topics, but will do so in the guise of ex-
ploring specific physical problems. In particular, we will introduce
these topics in the context of the physics of oscillations and waves.

0.2 What is Mathematical Physics?

What do you think when you hear the phrase “mathematical physics”?
If one does a search on Google, one finds in Wikipedia the following:

“Mathematical physics is an interdisciplinary field of academic study
in between mathematics and physics, aimed at studying and solving
problems inspired by physics within a mathematically rigorous frame-
work. Although mathematical physics and theoretical physics are re-
lated, these two notions are often distinguished. Mathematical physics
emphasizes the mathematical rigor of the same type as found in math-
ematics while theoretical physics emphasizes the links to actual obser-
vations and experimental physics which often requires the theoretical
physicists to use heuristic, intuitive, and approximate arguments. Ar-
guably, mathematical physics is closer to mathematics, and theoretical
physics is closer to physics.

Because of the required rigor, mathematical physicists often deal with
questions that theoretical physicists have considered to be solved for
decades. However, the mathematical physicists can sometimes (but nei-
ther commonly nor easily) show that the previous solution was incorrect.

Quantum mechanics cannot be understood without a good knowl-
edge of mathematics. It is not surprising, then, that its developed ver-
sion under the name of quantum field theory is one of the most ab-
stract, mathematically-based areas of physical sciences, being backward-
influential to mathematics. Other subjects researched by mathematical
physicists include operator algebras, geometric algebra, noncommuta-
tive geometry, string theory, group theory, statistical mechanics, random
fields etc.”

However, we will not adhere to the rigor suggested by this defini-
tion of mathematical physics, but will aim more towards the theoreti-
cal physics approach. Thus, this course could be called “A Course in
Mathematical Methods in Physics.” With this approach in mind, the

http://en.wikipedia.org/wiki/Mathematical_physics
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course will be designed as a study of physical topics leading to the
use of standard mathematical techniques. However, we should keep
in mind Freeman Dyson’s (b. 1923) words,

"For a physicist mathematics is not just a tool by means of which phe-
nomena can be calculated, it is the main source of concepts and princi-
ples by means of which new theories can be created." from Mathemat-
ics in the Physical Sciences Mathematics in the Physical Sciences, Scientific
American, 211(3), September 1964, pp. 129-146.

It has not always been the case that we had to think about the dif-
ferences between mathematics and physics. Until about a century ago
people did not view physics and mathematics as separate disciplines.
The Greeks did not separate the subjects, but developed an under-
standing of the natural sciences as part of their philosophical systems.
Later, many of the big name physicists and mathematicians actually
worked in both areas only to be placed in these categories through
historical hindsight. People like Newton and Maxwell made just as
many contributions to mathematics as they had to physics while trying
to investigate the workings of the physical universe. Mathematicians
such as Gauss, Leibniz and Euler had their share of contributions to
physics. Mathematics and physics are intimately

related.In the 1800’s the climate changed. The study of symmetry lead
to group theory, problems of convergence of the trigonometric se-
ries used by Fourier and others lead to the need for rigor in analysis,
the appearance of non-Euclidean geometries challenged the millennia
old Euclidean geometry, and the foundations of logic were challenged
shortly after the turn of the century. This lead to a whole population
of mathematicians interested in abstracting mathematics and putting
it on a firmer foundation without much attention to applications in the
real world. This split is summarized by Freeman Dyson:

"I am acutely aware of the fact that the marriage between mathematics
and physics, which was so enormously fruitful in past centuries, has
recently ended in divorce." from Missed Opportunities, 1972. (Gibbs
Lecture)

In the meantime, many mathematicians have been interested in ap-
plying and extending their methods to other fields, such as physics,
chemistry, biology and economics. These applied mathematicians have
helped to mediate the divorce. Likewise, over the past century a num-
ber physicists with a strong bent towards mathematics have emerged
as mathematical physicists. So, Dyson’s report of a divorce might be
premature.

Some of the most important fields at the forefront of physics are
steeped in mathematics. Einstein’s general theory of relativity, a theory
of gravitation, involves a good dose of differential geometry. String
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theory is also highly mathematical, delving well beyond the topics in
this book. While we will not get into these areas in this course, It is difficult to list all of the topics

needed to study a subject like string the-
ory. However, it is safe to say that a
good grasp of the topics in this and more
advance books on mathematical physics
would help. A solid background in
complex analysis, differential geometry,
Lie groups and algebras, and variational
principles should provide a good start.

I would hope that students reading this book at least get a feel for
the need to maintain the needed balance between mathematics and
physics.

0.3 An Overview of the Course

One of the problems with courses in mathematical physics and
some of the courses taught in mathematics departments is that stu-
dents do not always see the tie with physics. In this class we hope to
enable students to see the mathematical techniques needed to enhance
their future studies in physics. We will try not provide the mathemati-
cal topics devoid of physical motivation. We will instead introduce the
methods studied in this course while studying one underlying theme
from physics. We will tie the class mainly to the idea of oscillation
in physics. Even though this theme is not the only possible collection
of applications seen in physics, it is one of the most pervasive and
has proven to be at the center of the revolutions of twentieth century
physics.

In this section we provide an overview of the course in terms of the
theme of oscillations even though at this writing there might be other
topics introduced as the course is developed. There are many topics
that could/might be included in the class depending upon the time
that we have set aside. The current chapters/topics and their contents
are:

1. Introduction

In this chapter we review some of the key computational tools that
you have seen in your first two courses in calculus and recall some
of the basic formulae for elementary functions. Then we provide
a short overview of your basic physics background, which will be
useful in this course. It is meant to be a reference and additional
topics may be added as we get further into the course.

As the aim of this course is to introduce techniques useful in explor-
ing the basic physics concepts in more detail through computation,
we will also provide an overview of how one can use mathematical
tables and computer algebra systems to help with the tedious tasks
often encountered in solving physics problems.

We will end with an example of how simple estimates in physics
can lead to “back of the envelope” computations using dimensional
analysis. While such computations do not require (at face value) the
complex machinery seen in this course, it does use something that
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can be explained using the more abstract techniques of similarity
analysis.

(a) What Do I Need to Know From Calculus?

(b) What I Need From My Intro Physics Class?

(c) Using Technology and Tables

(d) Dimensional Analysis

2. Free Fall and Harmonic Oscillators

A major theme throughout this book is that of oscillations, start-
ing with simple vibrations and ending with the vibrations of mem-
branes, electromagnetic fields, and the electron wave function. We
will begin the first chapter by studying the simplest type of oscilla-
tion, simple harmonic motion. We will look at examples of a mass
on a spring, LRC circuits, and oscillating pendula. These examples
lead to constant coefficient differential equations, whose solutions
we study along the way. We further consider the effects of damping
and forcing in such systems, which are key ingredients to under-
standing the qualitative behavior of oscillating systems. Another
important topic in physics is that of a nonlinear system. We will
touch upon such systems in a few places in the text.

Even before introducing differential equations for solving problems
involving simple harmonic motion, we will first look at differential
equations for simpler examples, beginning with a discussion of free
fall and terminal velocity. As you have been exposed to simple
differential equations in your calculus class, we need only review
some of the basic methods needed to solve standard applications in
physics.

More complicated physical problems involve coupled systems. In
fact, the problems in this chapter can be formulated as linear sys-
tems of differential equations. Such systems can be posed using
matrices and the solutions are then obtained by solving eigenvalue
problems, which is treated in the next chapter.

Other techniques for studying such problems described by differ-
ential equations involve power series methods and Laplace and
other integral transforms. These ideas will be explored later in the
book when we move on to exploring partial differential equations
in higher dimensions. We will also touch on numerical solutions of
differential equations, as not all problems can be solved analytically.

(a) Free Fall and Terminal Velocity; First Order ODEs

(b) The Simple Harmonic Oscillator; Second Order ODEs

(c) LRC Circuits
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(d) Damped and Forced Oscillations; Nonhomogeneous ODEs

(e) Coupled Oscillators; Planar Systems

(f) The Nonlinear Pendulum

3. Linear Algebra

One of the most important mathematical topics in physics is linear
algebra. Nowadays, the linear algebra course in most mathemat-
ics departments has evolved into a hybrid course covering matrix
manipulations and some basics from vector spaces. However, it is
seldom the case that applications, especially from physics, are cov-
ered. In this chapter we will introduce vector spaces, linear transfor-
mations and view matrices as representations of linear transforma-
tions. The main theorem of linear algebra is the spectral theorem,
which means studying eigenvalue problems. Essentially, when can
a given operator (or, matrix representation) be diagonalized? As
operators act between vector spaces, it is useful to understand the
concepts of both finite and infinite dimensional vector spaces and
linear transformations on them.

The mathematical basis of much of physics relies on an understand-
ing of both finite and infinite dimensional vector spaces. Linear al-
gebra is important in the study of ordinary and partial differential
equations, Fourier analysis, quantum mechanics and general rela-
tivity. We will return to this idea throughout the text. In this chapter
we will introduce the concepts of vector spaces, linear transforma-
tions, and eigenvalue problems. We will also show how techniques
from linear algebra are useful in solving coupled linear systems of
differential equations. Later we shall see how much of what we
do in physics involves linear transformations on vector spaces and
eigenvalue problems.

(a) Finite Dimensional Vector Spaces

(b) Linear Transformations

(c) Matrices

(d) Eigenvalue Problems

(e) More Coupled Systems

(f) Diagonalization or The Spectral Theorem

4. The Harmonics of Vibrating Strings

The next type of oscillations which we will study are solutions of the
one dimensional wave equation. A key example is provided by the
finite length vibrating string. We will study traveling wave solutions
and look at techniques for solving the wave equation. The standard
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technique is to use separation of variables, turning the solution of
a partial differential equation into the solution of several ordinary
differential equations. The resulting general solution will be written
as an infinite series of sinusoidal functions, leading us to the study
of Fourier series, which in turn provides the basis for studying the
spectral content of complex signals.

In the meantime, we will also introduce the heat, or diffusion, equa-
tion as another example of a generic one dimensional partial differ-
ential equation exploiting the methods of this chapter. These prob-
lems begin our study of initial-boundary value problems, which
pervade upper level physics courses, especially in electromagnetic
theory and quantum mechanics.

(a) The Wave Equation in 1D

(b) Harmonics and Vibrations

(c) Fourier Trigonometric Series

(d) The Heat Equation in 1D

(e) Finite Length Strings

5. Special Functions and the Space in Which They Live

In our studies of systems in higher dimensions we encounter a va-
riety of new solutions of boundary value problems. These collec-
tively are referred to as Special Functions and have been known for
a long time. They appear later in the undergraduate curriculum
and we will cover several important examples. At the same time,
we will see that these special functions may provide bases for in-
finite dimensional function spaces. Understanding these functions
spaces goes a long way to understanding generalized Fourier the-
ory, differential equations, and applications in electrodynamics and
quantum theory.

In order to fully appreciate the special functions typically encoun-
tered in solving problem in higher dimensions, we will develop the
Sturm-Liouville theory with some further excursion into the theory
of infinite dimensional vector spaces.

(a) Infinite Dimensional Function Spaces

(b) Classical Orthogonal Polynomials

(c) Legendre Polynomials

(d) Gamma Function

(e) Bessel Functions

(f) Sturm-Liouville Eigenvalue Problems
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6. Complex Representations of The Real World

Another simple example, useful later for studying electromagnetic
waves, is the infinite one-dimensional string. We begin with the so-
lution of the finite length string, which consists of an infinite sum
over a discrete set of frequencies, or a Fourier series. Allowing for
the string length to get large will turn the infinite sum into a sum
over a continuous set of frequencies. Such a sum is now an integra-
tion and the resulting integrals are defined as Fourier Transforms.
Fourier transforms are useful in representing analog signals and lo-
calized waves in electromagnetism and quantum mechanics. Such
integral transforms will be explored in the next chapter. However,
useful results can only be obtained after first introducing complex
variable techniques.

So, we will spend some time exploring complex variable techniques
and introducing the calculus of complex functions. In particular,
we will become comfortable manipulating complex expressions and
learn how to use contour methods to aid in the computation of
integrals. We can apply these techniques to solving some special
problems. We will first introduce a problem in fluid flow in two
dimensions, which involve’s solving Laplace’s equation. We will
explore dispersion relations, relations between frequency and wave
number for wave propagation, and the computation of complicated
integrals such as those encountered in computing induced current
using Faraday’s Law.

(a) Complex Representations of Waves

(b) Complex Numbers

(c) Complex Functions and Their Derivatives

(d) Harmonic Functions and Laplace’s Equation

(e) Complex Series Representations

(f) Complex Integration

(g) Applications to 2D Fluid Flow and AC Circuits

7. Transforms of the Wave and Heat Equations

For problems defined on an infinite interval, solutions are no longer
given in terms of infinite series. They can be represented in terms
of integrals, which are associated with integral transforms. We will
explore Fourier and Laplace transform methods for solving both
ordinary and partial differential equations. By transforming our
equations, we are lead to simpler equations in transform space. We
will apply these methods to ordinary differential equations model-
ing forced oscillations and to the heat and wave equations.
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(a) Transform Theory

(b) Exponential Fourier Transform

(c) The Dirac Delta Function

(d) The Laplace Transform and Its Applications

(e) Solution of Initial Value Problems; Circuits Problems

(f) The Inverse Laplace Transform

(g) Green’s Functions and the Heat Equation

8. Electromagnetic Waves

One of the major theories is that of electromagnetism. In this chap-
ter we will recall Maxwell’s equations and use vector identities and
vector theorems to derive the wave equation for electromagnetic
waves. This will require us to recall some vector calculus from Cal-
culus III. In particular, we will review vector products, gradients,
divergence, curl, and standard vector identities useful in physics.
In the next chapter we will solve the resulting wave equation for
some physically interesting systems.

In preparation for solving problems in higher dimensions, we will
pause to look at generalized coordinate systems and the transfor-
mation of gradients and other differential operators in these new
systems. This will be useful in the next chapter for solving prob-
lems in other geometries.

(a) Maxwell’s Equations

(b) Vector Analysis

(c) Electromagnetic Waves

(d) Curvilinear Coordinates

9. Problems in Higher Dimensions

Having studied one dimensional oscillations, we will now be pre-
pared to move on to higher dimensional applications. These will
involve heat flow and vibrations in different geometries primarily
using the method of separation of variables. We will apply these
methods to the solution of the wave and heat equations in higher
dimensions.

Another major equation of interest that you will encounter in up-
per level physics is the Schrödinger equation. We will introduce
this equation and explore solution techniques obtaining the rele-
vant special functions involved in describing the wavefunction for a
hydrogenic electron.

(a) Vibrations of a Rectangular Membrane
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(b) Vibrations of a Kettle Drum

(c) Laplace’s Equation in 3D

(d) Heat Equation in 3D

(e) Spherical Harmonics

(f) The Hydrogen Atom

0.4 Tips for Students

Generally, some topics in the course might seem difficult the first
time through, especially not having had the upper level physics at the
time the topics are introduced. However, like all topics in physics, you
will understand many of the topics at deeper levels as you progress
through your studies. It will become clear that the more adept one be-
comes in the mathematical background, the better your understanding
of the physics.

You should read through this set of notes and then listen to the lec-
tures. As you read the notes, be prepared to fill in the gaps in deriva-
tions and calculations. This is not a spectator sport, but a participatory
adventure. Discuss the difficult points with others and your instructor.
Work on problems as soon as possible. These are not problems that
you can do the night before they are due. This is true of all physics
classes. Feel free to go back and reread your old calculus and physics
texts.
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