
R U S S E L L L . H E R M A N

A N I N T R O D U C T I O N T O
M AT H E M AT I C A L P H Y S I C S
V I A O S C I L L AT I O N S

R . L . H E R M A N - V E R S I O N D AT E : A P R I L 1 5 , 2 0 1 2



Copyright © 2005-2012 by Russell L. Herman

published by r. l. herman

This text has been reformatted from the original using a modification of the Tufte-book document class in
LATEX. See tufte-latex.googlecode.com.

an introduction to mathematical physics via oscillations by Russell Herman is licensed under
a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License. Versions of these
notes have been posted online since Fall 2005.
http://people.uncw.edu/hermanr/phy311/mathphysbook

Fourth printing, April 2012





Contents

0 Prologue 1

0.1 Introduction 1

0.2 What is Mathematical Physics? 2

0.3 An Overview of the Course 4

0.4 Tips for Students 10

0.5 Acknowledgments 10

1 Introduction 11

1.1 What Do I Need To Know From Calculus? 11

1.1.1 Introduction 11

1.1.2 Trigonometric Functions 13

1.1.3 Hyperbolic Functions 16

1.1.4 Derivatives 18

1.1.5 Integrals 19

1.1.6 Geometric Series 27

1.1.7 The Binomial Expansion 30

1.2 What I Need From My Intro Physics Class? 36

1.3 Technology and Tables 37

1.4 Appendix: Dimensional Analysis 38

Problems 43



iv

2 Free Fall and Harmonic Oscillators 45

2.1 Free Fall and Terminal Velocity 45

2.2 First Order Differential Equations 48

2.2.1 Separable Equations 49

2.2.2 Linear First Order Equations 50

2.2.3 Terminal Velocity 52

2.3 The Simple Harmonic Oscillator 54

2.3.1 Mass-Spring Systems 54

2.3.2 The Simple Pendulum 55

2.4 Second Order Linear Differential Equations 56

2.4.1 Constant Coefficient Equations 57

2.5 LRC Circuits 61

2.5.1 Special Cases 62

2.6 Damped Oscillations 66

2.7 Forced Systems 67

2.7.1 Method of Undetermined Coefficients 68

2.7.2 Forced Oscillations 71

2.7.3 Cauchy-Euler Equations 72

2.7.4 Method of Variation of Parameters 76

2.8 Numerical Solutions of ODEs 79

2.9 Linear Systems 85

2.9.1 Coupled Oscillators 85

2.9.2 Planar Systems 87

2.9.3 Equilibrium Solutions and Nearby Behaviors 89

2.9.4 Polar Representation of Spirals 100

2.10 Appendix: The Nonlinear Pendulum 102

Problems 106



v

3 Linear Algebra 111

3.1 Vector Spaces 111

3.2 Linear Transformations 117

3.3 Matrices 119

3.4 Eigenvalue Problems 130

3.4.1 An Introduction to Coupled Systems 130

3.4.2 Example of an Eigenvalue Problem 132

3.4.3 Eigenvalue Problems - A Summary 135

3.5 Matrix Formulation of Planar Systems 136

3.5.1 Solving Constant Coefficient Systems in 2D 137

3.5.2 Examples of the Matrix Method 140

3.5.3 Planar Systems - Summary 144

3.6 Applications 145

3.6.1 Circuits 145

3.6.2 Love Affairs 146

3.6.3 Predator Prey Models 147

3.6.4 Mixture Problems 147

3.6.5 Chemical Kinetics 149

3.6.6 Epidemics 150

3.7 Rotations of Conics 151

3.8 Appendix: Diagonalization and Linear Systems 155

Problems 160

4 The Harmonics of Vibrating Strings 165

4.1 Harmonics and Vibrations 165

4.2 Boundary Value Problems 167

4.3 Partial Differential Equations 169

4.4 The 1D Heat Equation 170

4.5 The 1D Wave Equation 174



vi

4.6 Introduction to Fourier Series 176

4.7 Fourier Trigonometric Series 180

4.8 Fourier Series Over Other Intervals 187

4.8.1 Fourier Series on [a, b] 192

4.9 Sine and Cosine Series 194

4.10 Solution of the Heat Equation 199

4.11 Finite Length Strings 201

4.12 Appendix: The Gibbs Phenomenon 203

Problems 208

5 Non-sinusoidal Harmonics and Special Functions 211

5.1 Function Spaces 212

5.2 Classical Orthogonal Polynomials 215

5.3 Fourier-Legendre Series 219

5.4 Gamma Function 230

5.5 Fourier-Bessel Series 232

5.6 Sturm-Liouville Eigenvalue Problems 237

5.6.1 Sturm-Liouville Operators 237

5.6.2 Properties of Sturm-Liouville Eigenvalue Problems 241

5.6.3 Adjoint Operators 243

5.6.4 Lagrange’s and Green’s Identities 245

5.6.5 Orthogonality and Reality 246

5.6.6 The Rayleigh Quotient - optional 247

5.6.7 The Eigenfunction Expansion Method - optional 249

5.7 Appendix: The Least Squares Approximation 251

5.8 Appendix: The Fredholm Alternative Theorem 254

Problems 257



vii

6 Complex Representations of Functions 265

6.1 Complex Representations of Waves 265

6.2 Complex Numbers 267

6.3 Complex Valued Functions 271

6.4 Complex Differentiation 277

6.5 Complex Integration 280

6.5.1 Complex Path Integrals 280

6.5.2 Cauchy’s Theorem 283

6.5.3 Analytic Functions and Cauchy’s Integral Formula 287

6.5.4 Laurent Series 291

6.5.5 Singularities and The Residue Theorem 294

6.5.6 Infinite Integrals 302

6.5.7 Integration Over Multivalued Functions 307

6.5.8 Appendix: Jordan’s Lemma 311

Problems 312

7 Transform Techniques in Physics 317

7.1 Introduction 317

7.1.1 Example 1 - The Linearized KdV Equation 317

7.1.2 Example 2 - The Free Particle Wave Function 320

7.1.3 Transform Schemes 322

7.2 Complex Exponential Fourier Series 323

7.3 Exponential Fourier Transform 326

7.4 The Dirac Delta Function 329

7.5 Properties of the Fourier Transform 332

7.5.1 Fourier Transform Examples 334

7.6 The Convolution Theorem 339

7.6.1 Application to Signal Analysis 343

7.6.2 Parseval’s Equality 345



viii

7.7 The Laplace Transform 346

7.8 Further Uses of Laplace Transforms 353

7.8.1 Series Summation Using Laplace Transforms 353

7.8.2 Solution of ODEs Using Laplace Transforms 356

7.8.3 Step and Impulse Functions 359

7.8.4 The Convolution Theorem 363

7.8.5 The Inverse Laplace Transform 367

Problems 368

8 Vector Analysis and EM Waves 373

8.1 Vector Analysis 374

8.1.1 A Review of Vector Products 374

8.1.2 Differentiation and Integration of Vectors 383

8.1.3 Div, Grad, Curl 387

8.1.4 The Integral Theorems 391

8.1.5 Vector Identities 395

8.2 Electromagnetic Waves 397

8.2.1 Maxwell’s Equations 397

8.2.2 Electromagnetic Wave Equation 400

8.2.3 Potential Functions and Helmholtz’s Theorem 401

8.3 Curvilinear Coordinates 404

Problems 411

9 Oscillations in Higher Dimensions 417

9.1 Vibrations of Rectangular Membranes 419

9.2 Vibrations of a Kettle Drum 424

9.3 Laplace’s Equation in 2D 433

9.4 Three Dimensional Cake Baking 441

9.5 Laplace’s Equation and Spherical Symmetry 448

9.6 Schrödinger Equation in Spherical Coordinates 458

Problems 463



ix

A Review of Sequences and Infinite Series 465

A.1 Sequences of Real Numbers 466

A.2 Convergence of Sequences 466

A.3 Limit Theorems 467

A.4 Infinite Series 469

A.5 Convergence Tests 470

A.6 Sequences of Functions 474

A.7 Infinite Series of Functions 477

A.8 Power Series 479

A.9 The Order of Sequences and Functions 492

Problems 495

Bibliography 499

Index 501





List of Figures

1.1 A photograph of the first atomic bomb test 41

2.1 Free fall on the Earth. 48

2.2 Family of exponential solutions 50

2.3 Family of circles. 50

2.4 Spring-Mass system. 55

2.5 A simple pendulum. 55

2.6 The pendulum forces. 55

2.7 Series LRC Circuit. 61

2.8 Parallel LRC Circuit. 62

2.9 Charge vs time for charging capacitor. 63

2.10 Charge vs time for charging capacitor. 64

2.11 Charge vs time for discharging capacitor. 65

2.12 A plot of underdamped oscillation. 67

2.13 The basics of Euler’s Method. 80

2.14 Comparison of Euler’s Method with the solution, N = 10. 83

2.15 Comparison of Euler’s Method to the solution, N = 100. 84

2.16 Spring-Mass system. 85

2.17 Spring-Mass system. 86

2.18 Solutions of Example 2.22 for several initial conditions. 90

2.19 Orbits for Example 2.22. 91

2.20 Sketch of tangent vectors for Example 2.22. 92

2.21 Direction field for Example 2.22. 93

2.22 Phase portrait for Example 2.22. 93

2.23 Solutions of Example 2.24 for several initial conditions. 94

2.24 Phase portrait for Example 2.24, a saddle. 94

2.25 Solutions of Example 2.25 for several initial conditions. 94

2.26 Phase portrait for Example 2.25, an unstable node or source. 95

2.27 Solutions of Example 2.26 for several initial conditions. 95

2.28 Phase portrait for Example 2.26, a center. 96

2.29 Solutions of Example 2.27 for several initial conditions. 96

2.30 Solutions of Example 2.27 for several initial conditions. 96

2.31 Phase portrait for Example 2.27 with α = 0.1. 98



xii

2.32 Phase portrait for Example 2.27 with α = −0.2. 98

2.33 Solutions of Example 2.28 for several initial conditions. 99

2.34 Plots of direction field of Example 2.29. 99

2.35 The relative error in approximating sin θ by θ. 103

2.36 Relative error for the nonlinear pendulum period. 106

3.1 Vector v in a standard coordinate system. 117

3.2 Vector v in a rotated coordinate system. 117

3.3 Comparison of the coordinate systems. 118

3.4 Rotation of vector v 118

3.5 A circuit with two loops. 145

3.6 Parallel circuit with the directions indicated. 145

3.7 A typical mixing problem. 148

3.8 The two tank problem. 148

3.9 Plot of the ellipse given by 13x2 − 10xy + 13y2 − 72 = 0. 152

3.10 Comparison of rotated ellipses. 153

3.11 Principal eigenvectors of an ellipse. 154

3.12 Plot of the hyperbola given by xy = 6. 155

3.13 Plot of the rotated hyperbola given by x2 − y2 = 12. 155

4.1 Plot of the second harmonic of a vibrating string. 166

4.2 Plot of an initial condition for a plucked string. 166

4.3 Plots of y(t) = A sin(2π f t). 177

4.4 Problems can occur while plotting. 178

4.5 Superposition of several sinusoids. 178

4.6 Functions y(t) = 2 sin(4πt) and y(t) = 2 sin(4πt + 7π/8). 179

4.7 Plot of a functions and its periodic extension. 180

4.8 Plot of discontinuous function in Example 4.3. 185

4.9 Transformation between intervals. 187

4.10 Areas under even and odd functions. 190

4.11 Partial sums of the Fourier series for f (x) = |x|. 191

4.12 Plot of the first 10 terms of the Fourier series for f (x) = |x| 191

4.13 Plot of the first 200 terms of the Fourier series for f (x) = x 191

4.14 A sketch of a function and its various extensions. 195

4.15 The periodic extension of f (x) = x2 on [0, 1]. 198

4.16 The even periodic extension of f (x) = x2 on [0, 1]. 198

4.17 The odd periodic extension of f (x) = x2 on [0, 1]. 199

4.18 The evolution of the initial condition f (x) = sin x. 200

4.19 The evolution of the initial condition f (x) = x(1− x). 201

4.20 Initial profile for a string plucked at x = 0.25. 203

4.21 Odd extension about the right end of a plucked string. 203

4.22 Summing the odd periodic extensions. 203

4.23 A plucked string at six successive times. 204

4.24 The Fourier representation of a step function, N = 10. 204



xiii

4.25 The Fourier representation of a step function, N = 10. 205

4.26 The Fourier representation of a step function, N = 20. 205

4.27 The Fourier representation of a step function, N = 100. 205

4.28 The Fourier representation of a step function, N = 500. 205

5.1 Basis vectors a1, a2, and a3. 216

5.2 Vectors e1, a2, and e2. 217

5.3 A plot of vectors for determining e3. 217

5.4 Plots of the Legendre polynomials 221

5.5 Earth-moon system. 223

5.6 Fourier-Legendre series expansion of Heaviside function. 230

5.7 Plot of the Gamma function. 231

5.8 Plots of the Bessel functions J0(x), J1(x), J2(x), and J3(x). 233

5.9 Plots of the Neumann functions, N0(x), . . . , N3(x). 234

5.10 Fourier-Bessel series expansion for f (x) = 1 on 0 < x < 1. 236

5.11 Plots of the eigenfunctions, y(x) =
√

2 sin(nπ ln x). 251

5.12 Plot of the solution in Example 5.16. 251

6.1 The Argand diagram for plotting complex numbers 267

6.2 Locating 1 + i in the complex z-plane. 268

6.3 Locating the cube roots of unity in the complex z-plane. 271

6.4 Defining a complex valued function on C 271

6.5 f (z) = z2 maps a grid in the z-plane into the w-plane. 272

6.6 f (z) = ez maps the z-plane into the w-plane. 273

6.7 Domain coloring of the complex z-plane 273

6.8 Domain coloring for f (z) = z2. 273

6.9 Domain coloring for f (z) = 1/z(1− z). 274

6.10 Domain coloring for f (z) = z. 274

6.11 Domain coloring for f (z) = z2. 274

6.12 Domain coloring for several functions. 275

6.13 Domain coloring for f (z) = z2 − 0.75− 0.2i. 275

6.14 Domain coloring for six iterations of f (z) = (1− i/2) sin x. 276

6.15 There are many paths that approach z as ∆z→ 0. 277

6.16 A path that approaches z with y = constant. 277

6.17 Integration of a complex function f (z) over the path Γ. 280

6.18 Examples of (a) a connected set and (b) a disconnected set. 280

6.19 Open disks inside and on the boundary of a region. 280

6.20 Contour for Example 6.10. 281

6.21 Contour for Example 6.11 with Γ = γ1 ∪ γ2. 282

6.22 Contour for Example 6.12. 282

6.23

∫
Γ1

f (z) dz =
∫

Γ2
f (z) dz for all paths from z1 to z2. 282

6.24 The integral
∮

C f (z) dz is zero if path independent. 283

6.25 The contours needed to prove
∮

C f (z) dz =
∮

C′ f (z) dz. 285

6.26 The contours used to compute
∮

R
dz
z . 285



xiv

6.27 The contours used to compute
∮

R
dz
z . 286

6.28 Regions of convergence for expansions of f (z) = 1
1+z . 289

6.29 Circular contour used for the Cauchy Integral Formula. 290

6.30 Circular contour used in computing
∮
|z|=4

cos z
z2−6z+5 dz. 291

6.31 Sketch of the annulus, R1 < |z− z0| < R2. 293

6.32 Contour for computing
∮
|z|=1

dz
sin z . 298

6.33 A depiction of how one cuts out poles. 299

6.34 Contour for computing
∮
|z|=2

dz
z2−1 . 299

6.35 Contour for computing
∮
|z|=3

z2+1
(z−1)2(z+2) dz. 299

6.36 Contour for computing
∫ 2π

0
dθ

2+cos θ . 301

6.37 Contours for computing P
∫ ∞
−∞ f (x) dx. 303

6.38 Contour for computing
∫ ∞
−∞

dx
1+x2 . 304

6.39 Contour for computing P
∫ ∞
−∞

sin x
x dx. 304

6.40 Contour for computing P
∫ ∞
−∞

e−ix

x dx. 305

6.41 Example with poles on contour. 306

6.42 Example using a rectangular contour. 306

6.43 Mapping points in UHP under f (z) = z1/2. 308

6.44 Mapping points in LHP under f (z) = z1/2. 308

6.45 Mapping points on unit circle under f (z) = z1/2. 308

6.46 Riemann surface for f (z) = z1/2. 309

6.47 An example of a contour which accounts for a branch cut. 309

6.48 Contour needed to compute
∮

C f (z) ln(a− z) dz. 310

6.49 Example using a rectangular contour. 316

7.1 Using Fourier transforms to solve a linear PDEs. 319

7.2 The scheme for solving the Schrödinger equation. 322

7.3 The scheme for solving linear systems. 323

7.4 A plot of the function DΩ(x) for Ω = 4. 327

7.5 A plot of the function DΩ(x) for Ω = 40. 328

7.6 A plot of the functions fn(x) for n = 2, 4, 8. 328

7.7 Simple horizontal contour. 335

7.8 A plot of the box function in Example 7.5. 336

7.9 A plot of the Fourier transform of the box function 336

7.10 Contours for inverting f̂ (k) = 1
a−ik . 338

7.11 A plot of the finite wave train. 339

7.12 A plot of the box function f (x). 339

7.13 A plot of the triangle function. 340

7.14 A plot of the reflected triangle function. 340

7.15 Reflected triangle function shifted by 2 units. 340

7.16 Plot of the box and triangle functions showing no overlap. 341

7.17 Another plot of the box and triangle functions. 341

7.18 Another plot of the box and triangle functions. 341

7.19 Another plot of the box and triangle functions. 341



xv

7.20 A plot of the convolution of the box and triangle functions. 341

7.21 Plot of a signal f (t) and its Fourier transform f̂ (ω). 343

7.22 Transform of filtered signals. 343

7.23 A plot of the finite wave train. 344

7.24 Schematic of Laplace transforms. 348

7.25 Scheme for solving ordinary differential equations. 357

7.26 A plot of the solution to Example 7.22. 358

7.27 A plot of the solution to Example 7.23. 358

7.28 A shifted Heaviside function, H(t− a). 359

7.29 The box function, H(t)− H(t− a). 360

7.30 Formation of a piecewise function, f (t)[H(t)− H(t− a)]. 360

7.31 The square wave function. 361

7.32 Spring experiencing an impulse force. 362

7.33 Spring experiencing a piecewise force. 363

7.34 Plot of the solution to Example 7.29 showing a resonance. 366

7.35 The contour used for applying the Bromwich integral. 368

7.36 Computing the convolution of the box function with itself. 370

8.1 v = rω. The Law of Cosines can be derived using vectors. 375

8.2 The cross product of two vectors. 376

8.3 The application of torque. 376

8.4 The depiction of rotation about an axis. 376

8.5 Area of parallelogram using vectors. 376

8.6 Cross product for basis vectors. 377

8.7 Diagram for permutation symbol. 378

8.8 Diagram for computing determinants. 380

8.9 Three non-coplanar vectors define a parallelepiped. 382

8.10 Position and velocity vectors of moving particle. 383

8.11 Particle on circular path. 384

9.1 The rectangular membrane of length L and width H. 419

9.2 The first modes of a vibrating rectangular membrane. 422

9.3 The vibrating rectangular membrane. 423

9.4 A circular membrane of radius a. 424

9.5 The first modes of the vibrating circular membrane. 430

9.6 Plots of the vibrating circular membrane. 431

9.7 An annular membrane with radii a and b. 432

9.8 Plots of the vibrating annular membrane. 433

9.9 Rectangular plate. 434

9.10 Rectangular plate with general boundary conditions. 436

9.11 General boundary value problem for a plate. 436

9.12 A circular plate of radius a. 439

9.13 Temperature evolution for a 13′′ × 9′′ × 2′′ cake. 445

9.14 Temperature evolution for a 9′′ diameter cake. 448



xvi

9.15 A sphere of radius r with the boundary condition. 449

9.16 Definition of spherical coordinates (ρ, θ, φ). 449

9.17 The first few spherical harmonics, |Y`m(θ, φ)|2 454

9.18 Spherical harmonic contours for |Y`m(θ, φ)|2. 454

9.19 The first few spherical harmonics, |Y`m(θ, φ)|2 455

9.20 In these figures we show the nodal curves of |Y`m(θ, φ)|2 455

9.21 Zonal harmonics, ` = 1, m = 0. 456

9.22 Zonal harmonics, ` = 2, m = 0. 456

9.23 Sectoral harmonics, ` = 2, m = 2. 456

9.24 Tesseral harmonics, ` = 3, m = 1. 456

9.25 Sectoral harmonics, ` = 3, m = 3. 456

9.26 Tesseral harmonics, ` = 4, m = 3. 456

A.1 Plot of an = n− 1 for n = 1 . . . 10. 466

A.2 Plot of an =
1
2n for n = 1 . . . 10. 466

A.3 Plot of an = (−1)n

2n for n = 1 . . . 10. 467

A.4 Plot of an = (−1)n

2n for n = 1 . . . 10 showing the tail. 467

A.5 Plot of an = (−1)n

2n for n = 1 . . . 10 showing the tail. 467

A.6 Plot of sn = ∑n
k=1

1
2k−1 for n = 1 . . . 10. 469

A.7 Plot of the partial sums, sk = ∑k
n=1

1
n . 471

A.8 Plot of f (x) = x and boxes of height 1
n and width 1. 472

A.9 For fn(x) = xn we see how N depends on x and ε. 476

A.10Plot defining uniform convergence. 476

A.11 fn(x) = xn does not converge uniformly. 477

A.12 fn(x) = cos(nx)/n2 converges uniformly. 477

A.13Comparison of 1
1−x to 1 + x. 480

A.14Comparison of 1
1−x to 1 + x + x2. 480

A.15Comparison of 1
1−x to 1 + x + x2 and 1 + x + x2 + x3. 480

A.16Comparison of 1
1−x to ∑20

n=0 xn. 481



List of Tables

1.1 Table of Trigonometric Values 13

1.2 Table of Derivatives (a is a constant.) 18

1.3 Table of Integrals 20

1.4 Tabular Method 23

1.5 Tabular Method - Non-terminating Example. 24

2.1 Euler’s Method numerical tabulation. 82

2.2 Euler’s Method numerical tabulation. 82

2.3 Euler’s Method numerical tabulation. 82

3.1 List of typical behaviors in planar systems. 144

3.2 Three examples of systems with a repeated root of λ = 2. 144

4.1 List of generic partial differential equations. 169

4.2 Fourier Series Representations on Different Intervals 189

4.3 Fourier Cosine and Sine Series Representations on [0, L] 196

4.4 Maple code for computing and plotting Fourier series. 198

5.1 Table of common classical orthogonal polynomials. 219

5.2 Tabular computation of the Legendre polynomials 221

5.3 The zeros of Bessel Functions 235

7.1 A table of common integral transforms. 347

7.2 Table of Laplace transform pairs. 348

7.3 Table of Laplace transform properties. 352

8.1 List of generic partial differential equations. 374

9.1 The zeros of Bessel Functions, Jm(jmn) = 0. 429

9.2 Table of Associated Legendre Functions. 451

9.3 Table of Associated Laguerre Functions. 462



xviii

Dedicated to those students who have endured

previous editions of an introduction

to mathematical physics via oscillations

and to those about to embark on the journey.



0
Prologue

“All science is either physics or stamp collecting.” Ernest Rutherford (1871-1937)

0.1 Introduction

This is an introduction to topics in math-
ematical physics, introduced using the
physics of oscillations and waves. It is
based upon a one semester junior level
course in mathematics physics taught at
the University of North Carolina Wilm-
ington and originally set to book form in
2005. The notes were later modified and
used in 2006, 2011, and 2012.

This is a set of notes on mathematical physics for undergradu-
ate students who have completed a year long introductory course in
physics. The intent of the course is to introduce students to many of
the mathematical techniques useful in their undergraduate physics ed-
ucation long before they are exposed to more focused topics in physics.

Most texts on mathematical physics are encyclopedic works which
can never be covered in one semester and are often presented as a list
of the seemingly unrelated topics with some examples from physics
inserted to highlight the connection of the particular topic to the real
world. The point of these excursions is to introduce the student to a
variety of topics and not to delve into the rigor that one would find
in some mathematics courses. Most of these topics have equivalent
semester long courses which go into the details and proofs of the main
conjectures in that topic. Students may decide to later enroll in such
courses during their undergraduate, or graduate, study. Often the rel-
evance to physics must be found in more advanced courses in physics
when the particular methods are used for specialized applications.

So, why not teach the methods in the physics courses as they are
needed? Part of the reason is that going into the details can take away
from the global view of the course. Students often get lost in the math-
ematical details, as the proverbial tree can be lost in a forest of trees.
Many of the mathematical techniques used in one course can be found
in other courses. Collecting these techniques in one place, such as a
course in mathematical physics, can provide a uniform background
for students entering later courses in specialized topics in physics. Re-
peated exposure to standard methods also helps to ingrain these meth-
ods. Furthermore, in such a course as this, the student first sees both



2 mathematical physics

the physical and mathematical connections between different fields.
Instructors can use this course as an opportunity to show students
how the physics curriculum ties together what otherwise might ap-
pear to be a group of seemingly different courses.

The typical topics covered in a course on mathematical physics
are vector analysis, vector spaces, linear algebra, complex variables,
power series, ordinary and partial differential equations, Fourier se-
ries, Laplace and Fourier transforms, Sturm-Liouville theory, special
functions and possibly other more advanced topics, such as tensors,
group theory, the calculus of variations, or approximation techniques.
We will cover many of these topics, but will do so in the guise of ex-
ploring specific physical problems. In particular, we will introduce
these topics in the context of the physics of oscillations and waves.

0.2 What is Mathematical Physics?

What do you think when you hear the phrase “mathematical physics”?
If one does a search on Google, one finds in Wikipedia the following:

“Mathematical physics is an interdisciplinary field of academic study
in between mathematics and physics, aimed at studying and solving
problems inspired by physics within a mathematically rigorous frame-
work. Although mathematical physics and theoretical physics are re-
lated, these two notions are often distinguished. Mathematical physics
emphasizes the mathematical rigor of the same type as found in math-
ematics while theoretical physics emphasizes the links to actual obser-
vations and experimental physics which often requires the theoretical
physicists to use heuristic, intuitive, and approximate arguments. Ar-
guably, mathematical physics is closer to mathematics, and theoretical
physics is closer to physics.

Because of the required rigor, mathematical physicists often deal with
questions that theoretical physicists have considered to be solved for
decades. However, the mathematical physicists can sometimes (but nei-
ther commonly nor easily) show that the previous solution was incorrect.

Quantum mechanics cannot be understood without a good knowl-
edge of mathematics. It is not surprising, then, that its developed ver-
sion under the name of quantum field theory is one of the most ab-
stract, mathematically-based areas of physical sciences, being backward-
influential to mathematics. Other subjects researched by mathematical
physicists include operator algebras, geometric algebra, noncommuta-
tive geometry, string theory, group theory, statistical mechanics, random
fields etc.”

However, we will not adhere to the rigor suggested by this defini-
tion of mathematical physics, but will aim more towards the theoreti-
cal physics approach. Thus, this course could be called “A Course in
Mathematical Methods in Physics.” With this approach in mind, the

http://en.wikipedia.org/wiki/Mathematical_physics
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course will be designed as a study of physical topics leading to the
use of standard mathematical techniques. However, we should keep
in mind Freeman Dyson’s (b. 1923) words,

"For a physicist mathematics is not just a tool by means of which phe-
nomena can be calculated, it is the main source of concepts and princi-
ples by means of which new theories can be created." from Mathemat-
ics in the Physical Sciences Mathematics in the Physical Sciences, Scientific
American, 211(3), September 1964, pp. 129-146.

It has not always been the case that we had to think about the dif-
ferences between mathematics and physics. Until about a century ago
people did not view physics and mathematics as separate disciplines.
The Greeks did not separate the subjects, but developed an under-
standing of the natural sciences as part of their philosophical systems.
Later, many of the big name physicists and mathematicians actually
worked in both areas only to be placed in these categories through
historical hindsight. People like Newton and Maxwell made just as
many contributions to mathematics as they had to physics while trying
to investigate the workings of the physical universe. Mathematicians
such as Gauss, Leibniz and Euler had their share of contributions to
physics. Mathematics and physics are intimately

related.In the 1800’s the climate changed. The study of symmetry lead
to group theory, problems of convergence of the trigonometric se-
ries used by Fourier and others lead to the need for rigor in analysis,
the appearance of non-Euclidean geometries challenged the millennia
old Euclidean geometry, and the foundations of logic were challenged
shortly after the turn of the century. This lead to a whole population
of mathematicians interested in abstracting mathematics and putting
it on a firmer foundation without much attention to applications in the
real world. This split is summarized by Freeman Dyson:

"I am acutely aware of the fact that the marriage between mathematics
and physics, which was so enormously fruitful in past centuries, has
recently ended in divorce." from Missed Opportunities, 1972. (Gibbs
Lecture)

In the meantime, many mathematicians have been interested in ap-
plying and extending their methods to other fields, such as physics,
chemistry, biology and economics. These applied mathematicians have
helped to mediate the divorce. Likewise, over the past century a num-
ber physicists with a strong bent towards mathematics have emerged
as mathematical physicists. So, Dyson’s report of a divorce might be
premature.

Some of the most important fields at the forefront of physics are
steeped in mathematics. Einstein’s general theory of relativity, a theory
of gravitation, involves a good dose of differential geometry. String
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theory is also highly mathematical, delving well beyond the topics in
this book. While we will not get into these areas in this course, It is difficult to list all of the topics

needed to study a subject like string the-
ory. However, it is safe to say that a
good grasp of the topics in this and more
advance books on mathematical physics
would help. A solid background in
complex analysis, differential geometry,
Lie groups and algebras, and variational
principles should provide a good start.

I would hope that students reading this book at least get a feel for
the need to maintain the needed balance between mathematics and
physics.

0.3 An Overview of the Course

One of the problems with courses in mathematical physics and
some of the courses taught in mathematics departments is that stu-
dents do not always see the tie with physics. In this class we hope to
enable students to see the mathematical techniques needed to enhance
their future studies in physics. We will try not provide the mathemati-
cal topics devoid of physical motivation. We will instead introduce the
methods studied in this course while studying one underlying theme
from physics. We will tie the class mainly to the idea of oscillation
in physics. Even though this theme is not the only possible collection
of applications seen in physics, it is one of the most pervasive and
has proven to be at the center of the revolutions of twentieth century
physics.

In this section we provide an overview of the course in terms of the
theme of oscillations even though at this writing there might be other
topics introduced as the course is developed. There are many topics
that could/might be included in the class depending upon the time
that we have set aside. The current chapters/topics and their contents
are:

1. Introduction

In this chapter we review some of the key computational tools that
you have seen in your first two courses in calculus and recall some
of the basic formulae for elementary functions. Then we provide
a short overview of your basic physics background, which will be
useful in this course. It is meant to be a reference and additional
topics may be added as we get further into the course.

As the aim of this course is to introduce techniques useful in explor-
ing the basic physics concepts in more detail through computation,
we will also provide an overview of how one can use mathematical
tables and computer algebra systems to help with the tedious tasks
often encountered in solving physics problems.

We will end with an example of how simple estimates in physics
can lead to “back of the envelope” computations using dimensional
analysis. While such computations do not require (at face value) the
complex machinery seen in this course, it does use something that
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can be explained using the more abstract techniques of similarity
analysis.

(a) What Do I Need to Know From Calculus?

(b) What I Need From My Intro Physics Class?

(c) Using Technology and Tables

(d) Dimensional Analysis

2. Free Fall and Harmonic Oscillators

A major theme throughout this book is that of oscillations, start-
ing with simple vibrations and ending with the vibrations of mem-
branes, electromagnetic fields, and the electron wave function. We
will begin the first chapter by studying the simplest type of oscilla-
tion, simple harmonic motion. We will look at examples of a mass
on a spring, LRC circuits, and oscillating pendula. These examples
lead to constant coefficient differential equations, whose solutions
we study along the way. We further consider the effects of damping
and forcing in such systems, which are key ingredients to under-
standing the qualitative behavior of oscillating systems. Another
important topic in physics is that of a nonlinear system. We will
touch upon such systems in a few places in the text.

Even before introducing differential equations for solving problems
involving simple harmonic motion, we will first look at differential
equations for simpler examples, beginning with a discussion of free
fall and terminal velocity. As you have been exposed to simple
differential equations in your calculus class, we need only review
some of the basic methods needed to solve standard applications in
physics.

More complicated physical problems involve coupled systems. In
fact, the problems in this chapter can be formulated as linear sys-
tems of differential equations. Such systems can be posed using
matrices and the solutions are then obtained by solving eigenvalue
problems, which is treated in the next chapter.

Other techniques for studying such problems described by differ-
ential equations involve power series methods and Laplace and
other integral transforms. These ideas will be explored later in the
book when we move on to exploring partial differential equations
in higher dimensions. We will also touch on numerical solutions of
differential equations, as not all problems can be solved analytically.

(a) Free Fall and Terminal Velocity; First Order ODEs

(b) The Simple Harmonic Oscillator; Second Order ODEs

(c) LRC Circuits
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(d) Damped and Forced Oscillations; Nonhomogeneous ODEs

(e) Coupled Oscillators; Planar Systems

(f) The Nonlinear Pendulum

3. Linear Algebra

One of the most important mathematical topics in physics is linear
algebra. Nowadays, the linear algebra course in most mathemat-
ics departments has evolved into a hybrid course covering matrix
manipulations and some basics from vector spaces. However, it is
seldom the case that applications, especially from physics, are cov-
ered. In this chapter we will introduce vector spaces, linear transfor-
mations and view matrices as representations of linear transforma-
tions. The main theorem of linear algebra is the spectral theorem,
which means studying eigenvalue problems. Essentially, when can
a given operator (or, matrix representation) be diagonalized? As
operators act between vector spaces, it is useful to understand the
concepts of both finite and infinite dimensional vector spaces and
linear transformations on them.

The mathematical basis of much of physics relies on an understand-
ing of both finite and infinite dimensional vector spaces. Linear al-
gebra is important in the study of ordinary and partial differential
equations, Fourier analysis, quantum mechanics and general rela-
tivity. We will return to this idea throughout the text. In this chapter
we will introduce the concepts of vector spaces, linear transforma-
tions, and eigenvalue problems. We will also show how techniques
from linear algebra are useful in solving coupled linear systems of
differential equations. Later we shall see how much of what we
do in physics involves linear transformations on vector spaces and
eigenvalue problems.

(a) Finite Dimensional Vector Spaces

(b) Linear Transformations

(c) Matrices

(d) Eigenvalue Problems

(e) More Coupled Systems

(f) Diagonalization or The Spectral Theorem

4. The Harmonics of Vibrating Strings

The next type of oscillations which we will study are solutions of the
one dimensional wave equation. A key example is provided by the
finite length vibrating string. We will study traveling wave solutions
and look at techniques for solving the wave equation. The standard
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technique is to use separation of variables, turning the solution of
a partial differential equation into the solution of several ordinary
differential equations. The resulting general solution will be written
as an infinite series of sinusoidal functions, leading us to the study
of Fourier series, which in turn provides the basis for studying the
spectral content of complex signals.

In the meantime, we will also introduce the heat, or diffusion, equa-
tion as another example of a generic one dimensional partial differ-
ential equation exploiting the methods of this chapter. These prob-
lems begin our study of initial-boundary value problems, which
pervade upper level physics courses, especially in electromagnetic
theory and quantum mechanics.

(a) The Wave Equation in 1D

(b) Harmonics and Vibrations

(c) Fourier Trigonometric Series

(d) The Heat Equation in 1D

(e) Finite Length Strings

5. Special Functions and the Space in Which They Live

In our studies of systems in higher dimensions we encounter a va-
riety of new solutions of boundary value problems. These collec-
tively are referred to as Special Functions and have been known for
a long time. They appear later in the undergraduate curriculum
and we will cover several important examples. At the same time,
we will see that these special functions may provide bases for in-
finite dimensional function spaces. Understanding these functions
spaces goes a long way to understanding generalized Fourier the-
ory, differential equations, and applications in electrodynamics and
quantum theory.

In order to fully appreciate the special functions typically encoun-
tered in solving problem in higher dimensions, we will develop the
Sturm-Liouville theory with some further excursion into the theory
of infinite dimensional vector spaces.

(a) Infinite Dimensional Function Spaces

(b) Classical Orthogonal Polynomials

(c) Legendre Polynomials

(d) Gamma Function

(e) Bessel Functions

(f) Sturm-Liouville Eigenvalue Problems
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6. Complex Representations of The Real World

Another simple example, useful later for studying electromagnetic
waves, is the infinite one-dimensional string. We begin with the so-
lution of the finite length string, which consists of an infinite sum
over a discrete set of frequencies, or a Fourier series. Allowing for
the string length to get large will turn the infinite sum into a sum
over a continuous set of frequencies. Such a sum is now an integra-
tion and the resulting integrals are defined as Fourier Transforms.
Fourier transforms are useful in representing analog signals and lo-
calized waves in electromagnetism and quantum mechanics. Such
integral transforms will be explored in the next chapter. However,
useful results can only be obtained after first introducing complex
variable techniques.

So, we will spend some time exploring complex variable techniques
and introducing the calculus of complex functions. In particular,
we will become comfortable manipulating complex expressions and
learn how to use contour methods to aid in the computation of
integrals. We can apply these techniques to solving some special
problems. We will first introduce a problem in fluid flow in two
dimensions, which involve’s solving Laplace’s equation. We will
explore dispersion relations, relations between frequency and wave
number for wave propagation, and the computation of complicated
integrals such as those encountered in computing induced current
using Faraday’s Law.

(a) Complex Representations of Waves

(b) Complex Numbers

(c) Complex Functions and Their Derivatives

(d) Harmonic Functions and Laplace’s Equation

(e) Complex Series Representations

(f) Complex Integration

(g) Applications to 2D Fluid Flow and AC Circuits

7. Transforms of the Wave and Heat Equations

For problems defined on an infinite interval, solutions are no longer
given in terms of infinite series. They can be represented in terms
of integrals, which are associated with integral transforms. We will
explore Fourier and Laplace transform methods for solving both
ordinary and partial differential equations. By transforming our
equations, we are lead to simpler equations in transform space. We
will apply these methods to ordinary differential equations model-
ing forced oscillations and to the heat and wave equations.
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(a) Transform Theory

(b) Exponential Fourier Transform

(c) The Dirac Delta Function

(d) The Laplace Transform and Its Applications

(e) Solution of Initial Value Problems; Circuits Problems

(f) The Inverse Laplace Transform

(g) Green’s Functions and the Heat Equation

8. Electromagnetic Waves

One of the major theories is that of electromagnetism. In this chap-
ter we will recall Maxwell’s equations and use vector identities and
vector theorems to derive the wave equation for electromagnetic
waves. This will require us to recall some vector calculus from Cal-
culus III. In particular, we will review vector products, gradients,
divergence, curl, and standard vector identities useful in physics.
In the next chapter we will solve the resulting wave equation for
some physically interesting systems.

In preparation for solving problems in higher dimensions, we will
pause to look at generalized coordinate systems and the transfor-
mation of gradients and other differential operators in these new
systems. This will be useful in the next chapter for solving prob-
lems in other geometries.

(a) Maxwell’s Equations

(b) Vector Analysis

(c) Electromagnetic Waves

(d) Curvilinear Coordinates

9. Problems in Higher Dimensions

Having studied one dimensional oscillations, we will now be pre-
pared to move on to higher dimensional applications. These will
involve heat flow and vibrations in different geometries primarily
using the method of separation of variables. We will apply these
methods to the solution of the wave and heat equations in higher
dimensions.

Another major equation of interest that you will encounter in up-
per level physics is the Schrödinger equation. We will introduce
this equation and explore solution techniques obtaining the rele-
vant special functions involved in describing the wavefunction for a
hydrogenic electron.

(a) Vibrations of a Rectangular Membrane
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(b) Vibrations of a Kettle Drum

(c) Laplace’s Equation in 3D

(d) Heat Equation in 3D

(e) Spherical Harmonics

(f) The Hydrogen Atom

0.4 Tips for Students

Generally, some topics in the course might seem difficult the first
time through, especially not having had the upper level physics at the
time the topics are introduced. However, like all topics in physics, you
will understand many of the topics at deeper levels as you progress
through your studies. It will become clear that the more adept one be-
comes in the mathematical background, the better your understanding
of the physics.

You should read through this set of notes and then listen to the lec-
tures. As you read the notes, be prepared to fill in the gaps in deriva-
tions and calculations. This is not a spectator sport, but a participatory
adventure. Discuss the difficult points with others and your instructor.
Work on problems as soon as possible. These are not problems that
you can do the night before they are due. This is true of all physics
classes. Feel free to go back and reread your old calculus and physics
texts.
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1
Introduction

“Ordinary language is totally unsuited for expressing what physics really asserts, since the words of everyday life are
not sufficiently abstract. Only mathematics and mathematical logic can say as little as the physicist means to say.”
Bertrand Russell (1872-1970)

Before we begin our study of mathematical physics, perhaps we
should review some things from your past classes. You definitely
need to know something before taking this class. It is assumed that
you have taken Calculus and are comfortable with differentiation and
integration. You should also have taken some introductory physics
class, preferably the calculus based course. Of course, you are not ex-
pected to know every detail from these courses. However, there are
some topics and methods that will come up and it would be useful to
have a handy reference to what it is you should know, especially when
it comes to exams.

Most importantly, you should still have your introductory physics
and calculus texts to which you can refer throughout the course. Look-
ing back on that old material, you will find that it appears easier than
when you first encountered the material. That is the nature of learning
mathematics and physics. Your understanding is continually evolving
as you explore topics more in depth. It does not always sink in the
first time you see it.

In this chapter we will give a quick review of these topics. We will
also mention a few new things that might be interesting. This review
is meant to make sure that everyone is at the same level.

1.1 What Do I Need To Know From Calculus?

1.1.1 Introduction

There are two main topics in calculus: derivatives and integrals .
You learned that derivatives are useful in providing rates of change in
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either time or space. Integrals provide areas under curves, but also are
useful in providing other types of sums over continuous bodies, such
as lengths, areas, volumes, moments of inertia, or flux integrals. In
physics, one can look at graphs of position versus time and the slope
(derivative) of such a function gives the velocity. By plotting velocity
versus time you can either look at the derivative to obtain acceleration,
or you could look at the area under the curve and get the displacement:

x =
∫ t

t0

v dt. (1.1)

Of course, you need to know how to differentiate and integrate
given functions. Even before getting into differentiation and integra-
tion, you need to have a bag of functions useful in physics. Common
functions are the polynomial and rational functions. You should be
fairly familiar with these. Polynomial functions take the general form

f (x) = anxn + an−1xn−1 + · · ·+ a1x + a0, (1.2)

where an 6= 0. This is the form of a polynomial of degree n. Rational
functions, f (x) = g(x)

h(x) , consist of ratios of polynomials. Their graphs
can exhibit vertical and horizontal asymptotes.

Next are the exponential and logarithmic functions. The most com-
mon are the natural exponential and the natural logarithm. The nat-
ural exponential is given by f (x) = ex, where e ≈ 2.718281828 . . . .
The natural logarithm is the inverse to the exponential, denoted by
ln x. (One needs to be careful, because some mathematics and physics
books use log to mean natural exponential, whereas many of us were
first trained to use it to mean the common logarithm, which is the ‘log
base 10’. Here we will use ln x for the natural logarithm.)

The properties of the exponential function follow from the basic
properties for exponents. Namely, we have: Exponential properties.

e0 = 1, (1.3)

e−a =
1
ea (1.4)

eaeb = ea+b, (1.5)

(ea)b = eab. (1.6)

The relation between the natural logarithm and natural exponential
is given by

y = ex ⇔ x = ln y. (1.7)

Some common logarithmic properties are Logarithmic properties.
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ln 1 = 0, (1.8)

ln
1
a

= − ln a, (1.9)

ln(ab) = ln a + ln b, (1.10)

ln
a
b

= ln a− ln b, (1.11)

ln
1
b

= − ln b. (1.12)

We will see further applications of these relations as we progress
through the course.

1.1.2 Trigonometric Functions

Another set of useful functions are the trigonometric functions.
These functions have probably plagued you since high school. They
have their origins as far back as the building of the pyramids. Typical
applications in your introductory math classes probably have included
finding the heights of trees, flag poles, or buildings. It was recognized
a long time ago that similar right triangles have fixed ratios of any pair
of sides of the two similar triangles. These ratios only change when
the non-right angles change.

Thus, the ratio of two sides of a right triangle only depends upon
the angle. Since there are six possible ratios (think about it!), then
there are six possible functions. These are designated as sine, cosine,
tangent and their reciprocals (cosecant, secant and cotangent). In your
introductory physics class, you really only needed the first three. You
also learned that they are represented as the ratios of the opposite
to hypotenuse, adjacent to hypotenuse, etc. Hopefully, you have this
down by now.

You should also know the exact values of these basic trigonometric
functions for the special angles θ = 0, π

6 , π
3 , π

4 , π
2 , and their correspond-

ing angles in the second, third and fourth quadrants. This becomes
internalized after much use, but we provide these values in Table 1.1
just in case you need a reminder.

θ cos θ sin θ tan θ

0 1 0 0

π
6

√
3

2
1
2

√
3

3
π
3

1
2

√
3

2

√
3

π
4

√
2

2

√
2

2 1

π
2 0 1 undefined

Table 1.1: Table of Trigonometric Values
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The problems students often have using trigonometric functions in
later courses stem from using, or recalling, identities. We will have
many an occasion to do so in this class as well. What is an identity? It
is a relation that holds true all of the time. For example, the most com-
mon identity for trigonometric functions is the Pythagorean identity

sin2 θ + cos2 θ = 1. (1.13)

This hold true for every angle θ! An even simpler identity is

tan θ =
sin θ

cos θ
. (1.14)

Other simple identities can be derived from the Pythagorean iden-
tity. Dividing the identity by cos2 θ, or sin2 θ, yields

tan2 θ + 1 = sec2 θ, (1.15)

1 + cot2 θ = csc2 θ. (1.16)

Several other useful identities stem from the use of the sine and
cosine of the sum and difference of two angles. Namely, we have that Sum and difference identities.

sin(A± B) = sin A cos B± sin B cos A, (1.17)

cos(A± B) = cos A cos B∓ sin A sin B. (1.18)

Note that the upper (lower) signs are taken together.
The double angle formulae are found by setting A = B :

Double angle formulae.

sin(2A) = 2 sin A cos B, (1.19)

cos(2A) = cos2 A− sin2 A. (1.20)

Using Equation (1.13), we can rewrite (1.20) as

cos(2A) = 2 cos2 A− 1, (1.21)

= 1− 2 sin2 A. (1.22)

These, in turn, lead to the half angle formulae. Solving for cos2 A and
sin2 A, we find that Half angle formulae.

sin2 A =
1− cos 2A

2
, (1.23)

cos2 A =
1 + cos 2A

2
. (1.24)

Finally, another useful set of identities are the product identities. Product Identities
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For example, if we add the identities for sin(A + B) and sin(A− B),
the second terms cancel and we have

sin(A + B) + sin(A− B) = 2 sin A cos B.

Thus, we have that

sin A cos B =
1
2
(sin(A + B) + sin(A− B)). (1.25)

Similarly, we have

cos A cos B =
1
2
(cos(A + B) + cos(A− B)). (1.26)

and

sin A sin B =
1
2
(cos(A− B)− cos(A + B)). (1.27)

Know the above boxed identities!
These boxed equations are the most common trigonometric identi-

ties. They appear often and should just roll off of your tongue.
We will also need to understand the behaviors of trigonometric

functions. In particular, we know that the sine and cosine functions
are periodic. They are not the only periodic functions, as we shall see.
[Just visualize the teeth on a carpenter’s saw.] However, they are the
most common periodic functions.

A periodic function f (x) satisfies the relation

f (x + p) = f (x), for all x

for some constant p. If p is the smallest such number, then p is called
the period. Both the sine and cosine functions have period 2π. This
means that the graph repeats its form every 2π units. Similarly, sin bx
and cos bx have the common period p = 2π

b . We will make use of this
fact in later chapters.

Related to these are the inverse trigonometric functions. For exam-
ple, f (x) = sin−1 x, or f (x) = arcsin x. Inverse functions give back In Feynman’s Surely You’re Joking Mr.

Feynman!, Richard Feynman (1918-1988)
talks about his invention of his own no-
tation for both trigonometric and inverse
trigonometric functions as the standard
notation did not make sense to him.

angles, so you should think

θ = sin−1 x ⇔ x = sin θ. (1.28)

Also, you should recall that y = sin−1 x = arcsin x is only a function
if −π

2 ≤ x ≤ π
2 . Similar relations exist for y = cos−1 x = arccos x and

tan−1 x = arctan x.
Once you think about these functions as providing angles, then

you can make sense out of more complicated looking expressions, like
tan(sin−1 x). Such expressions often pop up in evaluations of integrals.
We can untangle this in order to produce a simpler form by referring
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to expression (1.28). θ = sin−1 x is simple an angle whose sine is x.
Knowing the sine is the opposite side of a right triangle divided by its
hypotenuse, then one just draws a triangle in this proportion. Namely,
the side opposite the angle has length x and the hypotenuse has length
1. Using the Pythagorean Theorem, the missing side (adjacent to the
angle) is simply

√
1− x2. Having obtained the lengths for all three

sides, we can now produce the tangent of the angle as

tan(sin−1 x) =
x√

1− x2
.

1.1.3 Hyperbolic Functions

So, are there any other functions that are useful in physics? Actu-
ally, there are many more. However, you have probably not see many
of them to date. We will see by the end of the semester that there
are many important functions that arise as solutions of some fairly
generic, but important, physics problems. In your calculus classes you
have also seen that some relations are represented in parametric form.
However, there is at least one other set of elementary functions, which
you should already know about. These are the hyperbolic functions.
Such functions are useful in representing hanging cables, unbounded
orbits, and special traveling waves called solitons. They also play a
role in special and general relativity.

Solitons are special solutions to some
generic nonlinear wave equations. They
typically experience elastic collisions
and play special roles in a variety of
fields in physics, such as hydrodynam-
ics and optics. A simple soliton solution
is of the form u(x, t) = 2η2 sech 2η(x −
4η2t).

Hyperbolic functions are actually related to the trigonometric func-
tions, as we shall see after a little bit of complex function theory. For
now, we just want to recall a few definitions and an identity. Just as all
of the trigonometric functions can be built from the sine and the co-
sine, the hyperbolic functions can be defined in terms of the hyperbolic
sine and hyperbolic cosine: Hyperbolic functions; We will see later

the connection between the hyperbolic
and trigonometric functions.

sinh x =
ex − e−x

2
, (1.29)

cosh x =
ex + e−x

2
. (1.30)

There are four other hyperbolic functions. These are defined in
terms of the above functions similar to the relations between the trigono-
metric functions. We have Hyperbolic identities

tanh x =
sinh x
cosh x

=
ex − e−x

ex + e−x , (1.31)

sech x =
1

cosh x
=

2
ex + e−x , (1.32)

csch x =
1

sinh x
=

2
ex − e−x , (1.33)
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coth x =
1

tanh x
=

ex + e−x

ex − e−x . (1.34)

There are also a whole set of identities, similar to those for the
trigonometric functions. For example, the Pythagorean identity for
trigonometric functions, sin2 θ + cos2 θ = 1, is replaced by the identity

cosh2 x− sinh2 x = 1.

This is easily shown by simply using the definitions of these functions.
This identity is also useful for providing a parametric set of equations
describing hyperbolae. Letting x = a cosh t and y = b sinh t, one has

x2

a2 −
y2

b2 = cosh2 t− sinh2 t = 1.

A list of commonly needed hyperbolic function identities are given
by the following:

cosh2 x− sinh2 x = 1, (1.35)

tanh2 x + sech 2x = 1, (1.36)

cosh(A± B) = cosh A cosh B± sinh A sinh B, (1.37)

sinh(A± B) = sinh A cosh B± sinh B cosh A, (1.38)

cosh 2x = cosh2 x + sinh2 x, (1.39)

sinh 2x = 2 sinh x cosh x, (1.40)

cosh2 x =
1
2
(1 + cosh 2x) , (1.41)

sinh2 x =
1
2
(cosh 2x− 1) . (1.42)

Note the similarity with the trigonometric identities. Other identities
can be derived from these. Inverse Hyperbolic Functions:

sinh−1 x = ln
(

x +
√

1 + x2
)

cosh−1 x = ln
(

x +
√

x2 − 1
)

tanh−1 x =
1
2

ln
1 + x
1− x

There also exist inverse hyperbolic functions and these can be writ-
ten in terms of logarithms. As with the inverse trigonometric func-
tions, we begin with the definition

y = sinh−1 x ⇔ x = sinh y. (1.43)

The aim is to write y in terms of x without using the inverse function.
First, we note that

x =
1
2
(
ey − e−y) . (1.44)

Now, we solve for ey. This is done by noting that e−y = 1
ey and rewrit-

ing the previous equation as

0 = (ey)2 − 2xey − 1. (1.45)
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This equation is in quadratic form which we can solve as

ey = x +
√

1 + x2.

(There is only one root as we expect the exponential to be positive.)
The final step is to solve for y,

y = ln
(

x +
√

1 + x2
)

. (1.46)

1.1.4 Derivatives

Now that we know some elementary functions, we seek their deriva-
tives. We will not spend time exploring the appropriate limits in any
rigorous way. We are only interested in the results. We provide these
in Table 1.2. We expect that you know the meaning of the derivative
and all of the usual rules, such as the product and quotient rules.

Function Derivative
a 0

xn nxn−1

eax aeax

ln ax 1
x

sin ax a cos ax
cos ax −a sin ax
tan ax a sec2 ax
csc ax −a csc ax cot ax
sec ax a sec ax tan ax
cot ax −a csc2 ax

sinh ax a cosh ax
cosh ax a sinh ax
tanh ax a sech 2ax
csch ax −a csch ax coth ax
sech ax −a sech ax tanh ax
coth ax −a csch 2ax

Table 1.2: Table of Derivatives (a is a con-
stant.)

Also, you should be familiar with the Chain Rule. Recall that this
rule tells us that if we have a composition of functions, such as the
elementary functions above, then we can compute the derivative of
the composite function. Namely, if h(x) = f (g(x)), then

dh
dx

=
d

dx
( f (g(x))) =

d f
dg

∣∣∣
g(x)

dg
dx

= f ′(g(x))g′(x). (1.47)

For example, let H(x) = 5 cos
(
π tanh 2x2). This is a composition

of three functions, H(x) = f (g(h(x))), where f (x) = 5 cos x, g(x) =
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π tanh x, and h(x) = 2x2. Then the derivative becomes

H′(x) = 5
(
− sin

(
π tanh 2x2

)) d
dx

((
π tanh 2x2

))
= −5π sin

(
π tanh 2x2

)
sech 22x2 d

dx

(
2x2
)

= −20πx sin
(

π tanh 2x2
)

sech 22x2. (1.48)

1.1.5 Integrals

Integration is typically a bit harder. Imagine being given the last
result result in (1.48) and having to figure out what I differentiated in
order to get that function. As you may recall from the Fundamental
Theorem of Calculus, the integral is the inverse operation to differen-
tiation: ∫ d f

dx
dx = f (x) + C. (1.49)

It is not always easy to evaluate a given integral. In fact some in-
tegrals are not even doable! However, you learned in calculus that
there are some methods that could yield an answer. While you might
be happier using a computer algebra system, such as Maple or Wol-
framAlpha.com, or a fancy calculator, you should know a few basic
integrals and know how to use tables for some of the more compli-
cated ones. In fact, it can be exhilarating when you can do a given
integral without reference to a computer or a Table of Integrals. How-
ever, you should be prepared to do some integrals using what you
have been taught in calculus. We will review a few of these methods
and some of the standard integrals in this section.

First of all, there are some integrals you are expected to know with-
out doing any work. These integrals appear often and are just an
application of the Fundamental Theorem of Calculus to the previous
Table 1.2. The basic integrals that students should know off the top of
their heads are given in Table 1.3.

These are not the only integrals you should be able to do. However,
we can expand the list by recalling a few of the techniques that you
learned in calculus. There are just a few: The Method of Substitution,
Integration by Parts, Integration Using Partial Fraction Decomposition,
and Trigonometric Integrals.

Example 1.1. When confronted with an integral, you should first ask if a
simple substitution would reduce the integral to one you know how to do. So,
as an example, consider the following integral∫ x√

x2 + 1
dx.
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Function Indefinite Integral
a ax

xn xn+1

n+1
eax 1

a eax

1
x ln x

sin ax − 1
a cos ax

cos ax 1
a sin ax

sec2 ax 1
a tan ax

sinh ax 1
a cosh ax

cosh ax 1
a sinh ax

sech 2ax 1
a tanh ax

sec x ln | sec x + tan x|
1

a+bx
1
b ln(a + bx)

1
a2+x2

1
a tan−1 ax

1√
a2−x2

1
a sin−1 ax

1√
x2−a2

1
a sec−1 ax

Table 1.3: Table of Integrals

The ugly part of this integral is the x2 + 1 under the square root. So, we
let u = x2 + 1. Noting that when u = f (x), we have du = f ′(x) dx. For
our example, du = 2x dx. Looking at the integral, part of the integrand can
be written as x dx = 1

2 u du. Then, the integral becomes∫ x√
x2 + 1

dx =
1
2

∫ du√
u

.

The substitution has converted our integral into an integral over u. Also, this
integral is doable! It is one of the integrals we should know. Namely, we can
write it as

1
2

∫ du√
u
=

1
2

∫
u−1/2 du.

This is now easily finished after integrating and using our substitution vari-
able to give ∫ x√

x2 + 1
dx =

1
2

u1/2

1
2

+ C =
√

x2 + 1 + C.

Note that we have added the required integration constant and that the deriva-
tive of the result easily gives the original integrand (after employing the Chain
Rule).

Often we are faced with definite integrals, in which we integrate be-
tween two limits. There are several ways to use these limits. However,
students often forget that a change of variables generally means that
the limits have to change.

Example 1.2. Consider the above example with limits added.∫ 2

0

x√
x2 + 1

dx.
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We proceed as before. We let u = x2 + 1. As x goes from 0 to 2, u takes
values from 1 to 5. So, this substitution gives∫ 2

0

x√
x2 + 1

dx =
1
2

∫ 5

1

du√
u
=
√

u|51 =
√

5− 1.

When the Method of Substitution fails, there are other methods you
can try. One of the most used is the Method of Integration by Parts.
Recall the Integration by Parts Formula: Integration by Parts Formula.

∫
u dv = uv−

∫
v du. (1.50)

The idea is that you are given the integral on the left and you can relate
it to an integral on the right. Hopefully, the new integral is one you
can do, or at least it is an easier integral than the one you are trying to
evaluate.

However, you are not usually given the functions u and v. You have
to determine them. The integral form that you really have is a function
of another variable, say x. Another form of the formula can be given
as ∫

f (x)g′(x) dx = f (x)g(x)−
∫

g(x) f ′(x) dx. (1.51)

This form is a bit more complicated in appearance, though it is clearer Note: Often in physics one needs to
move a derivative between functions in-
side an integrand. The key - use inte-
gration by parts to move the derivative
from one function to the other under an
integral.

what is happening. The derivative has been moved from one function
to the other. Recall that this formula was derived by integrating the
product rule for differentiation.

The two formulae are related by using the differential relations

u = f (x) → du = f ′(x) dx,

v = g(x) → dv = g′(x) dx. (1.52)

This also gives a method for applying the Integration by Parts For-
mula.

Example 1.3. Consider the integral
∫

x sin 2x dx. We choose u = x and
dv = sin 2x dx. This gives the correct left side of the Integration by Parts
Formula. We next determine v and du:

du =
du
dx

dx = dx,

v =
∫

dv =
∫

sin 2x dx = −1
2

cos 2x.

We note that one usually does not need the integration constant. Inserting
these expressions into the Integration by Parts Formula, we have∫

x sin 2x dx = −1
2

x cos 2x +
1
2

∫
cos 2x dx.
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We see that the new integral is easier to do than the original integral. Had
we picked u = sin 2x and dv = x dx, then the formula still works, but the
resulting integral is not easier.

For completeness, we finish the integration. The result is∫
x sin 2x dx = −1

2
x cos 2x +

1
4

sin 2x + C.

As always, you can check your answer by differentiating the result, a step
students often forget to do. Namely,

d
dx

(
−1

2
x cos 2x +

1
4

sin 2x + C
)

= −1
2

cos 2x + x sin 2x +
1
4
(2 cos 2x)

= x sin 2x. (1.53)

So, we do get back the integrand in the original integral.

We can also perform integration by parts on definite integrals. The
general formula is written as Integration by Parts for Definite Inte-

grals.∫ b

a
f (x)g′(x) dx = f (x)g(x)

∣∣∣∣b
a
−
∫ b

a
g(x) f ′(x) dx. (1.54)

Example 1.4. Consider the integral∫ π

0
x2 cos x dx.

This will require two integrations by parts. First, we let u = x2 and dv =

cos x. Then,
du = 2x dx. v = sin x.

Inserting into the Integration by Parts Formula, we have∫ π

0
x2 cos x dx = x2 sin x

∣∣∣π
0
− 2

∫ π

0
x sin x dx

= −2
∫ π

0
x sin x dx. (1.55)

We note that the resulting integral is easier that the given integral, but we
still cannot do the integral off the top of our head (unless we look at Example
3!). So, we need to integrate by parts again. (Note: In your calculus class you
may recall that there is a tabular method for carrying out multiple applications
of the formula. We will show this method in the next example.)

We apply integration by parts by letting U = x and dV = sin x dx. This
gives dU = dx and V = − cos x. Therefore, we have∫ π

0
x sin x dx = −x cos x

∣∣∣π
0
+
∫ π

0
cos x dx

= π + sin x
∣∣∣π
0

= π. (1.56)
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The final result is ∫ π

0
x2 cos x dx = −2π.

There are other ways to compute integrals of this type. First of all,
there is the Tabular Method to perform integration by parts. A second
method is to use differentiation of parameters under the integral. We
will demonstrate this using examples.

Example 1.5. Compute the integral
∫ π

0 x2 cos x dx using the Tabular Method.
Using the Tabular Method.

First we identify the two functions under the integral, x2 and cos x. We
then write the two functions and list the derivatives and integrals of each,
respectively. This is shown in Table 1.5. Note that we stopped when we
reached 0 in the left column.

D I
x2 cos x

↘ +

2x sin x
↘ −

2 − cos x
↘ +

0 − sin x

Table 1.4: Tabular Method

Next, one draws diagonal arrows, as indicated, with alternating signs at-
tached, starting with +. The indefinite integral is then obtained by summing
the products of the functions at the ends of the arrows along with the signs on
each arrow: ∫

x2 cos x dx = x2 sin x + 2x cos x− 2 sin x + C.

To find the definite integral, one evaluates the antiderivative at the given
limits. ∫ π

0
x2 cos x dx =

[
x2 sin x + 2x cos x− 2 sin x

]π

0

= (π2 sin π + 2π cos π − 2 sin π)− 0

= −2π. (1.57)

Actually, the Tabular Method works even if a 0 does not appear on
the left side. One can go as far as possible, and if a 0 does not appear,
then one needs only integrate, if possible, the product of the functions
in the last row, adding the next sign in the alternating sign progression.
The next example shows how this works.

Example 1.6. Use the Tabular Method to compute
∫

e2x sin 3x dx.
As before, we first set up the table.
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D I
sin 3x e2x

↘ +

3 cos 3x 1
2 e2x

↘ −
−9 sin 3x 1

4 e2x

Table 1.5: Tabular Method - Non-
terminating Example.

Putting together the pieces, noting that the derivatives in the left column
will never vanish, we have∫

e2x sin 3x dx = (
1
2

sin 3x− 3
4

cos 3x)e2x +
∫

(−9 sin 3x)
(

1
4

e2x
)

dx.

The integral on the right is a multiple of the one on the left, so we can combine
them,

13
4

∫
e2x sin 3x dx = (

1
2

sin 3x− 3
4

cos 3x)e2x,

or ∫
e2x sin 3x dx = (

2
13

sin 3x− 3
13

cos 3x)e2x.

Another method that one can use to evaluate this integral is to dif-
ferentiate under the integral sign. This is mentioned in the Richard
Feynman’s memoir Surely You’re Joking, Mr. Feynman!. In the book Differentiation Under the Integral Sign

and Feynman’s trick.Feynman recounts using this “trick” to be able to do integrals that his
MIT classmates could not do. This is based on a theorem in Advanced
Calculus.

Theorem 1.1. Let the functions f (x, t) and ∂ f (x,t)
∂x be continuous in both t,

and x, in the region of the (t, x) plane which includes a(x) ≤ t ≤ b(x),
x0 ≤ x ≤ x1, where the functions a(x) and b(x) are continuous and have
continuous derivatives for x0 ≤ x ≤ x1. Defining

F(x) ≡
∫ b(x)

a(x)
f (x, t) dt,

then

dF(x)
dx

=

(
∂F
∂b

)
db
dx

+

(
∂F
∂a

)
da
dx

+
∫ b(x)

a(x)

∂

∂x
f (x, t) dt

= f (x, b(x)) b′(x)− f (x, a(x)) a′(x) +
∫ b(x)

a(x)

∂

∂x
f (x, t) dt.

(1.58)

for x0 ≤ x ≤ x1. This is a generalized version of the Fundamental Theorem
of Calculus.

In the next examples we show how we can use this theorem to
bypass integration by parts.
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Example 1.7. Use differentiation under the integral sign to evaluate
∫

xex dx.
First, consider the integral

I(x, a) =
∫

eax dx.

Then
∂I(x, a)

∂a
=
∫

xeax dx.

So, ∫
xeax dx =

∂I(x, a)
∂a

=
∂

∂a

(∫
eax dx

)
=

∂

∂a

(
eax

a

)
=

(
x
a
− 1

a2

)
eax (1.59)

Evaluating this result at a = 1, we have∫
xex dx = (x− 1)ex.

Example 1.8. We will do the integral
∫ π

0 x2 cos x dx once more. First, con-
sider the integral

I(a) ≡
∫ π

0
cos ax dx

=
sin ax

a

∣∣∣π
0

=
sin aπ

a
. (1.60)

Differentiating the integral with respect to a twice gives

d2 I(a)
da2 = −

∫ π

0
x2 cos ax dx. (1.61)

Evaluation of this result at a = 1 leads to the desired result. Thus,

∫ π

0
x2 cos x dx = −d2 I(a)

da2

∣∣∣
a=1

= − d2

da2

(
sin aπ

a

) ∣∣∣
a=1

= − d
da

(
aπ cos aπ − sin aπ

a2

) ∣∣∣
a=1

= −
(

a2π2 sin aπ + 2aπ cos aπ − 2 sin aπ

a3

) ∣∣∣
a=1

= −2π. (1.62)
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Other types of integrals that you will see often are trigonometric in-
tegrals. In particular, integrals involving powers of sines and cosines.
For odd powers, a simple substitution will turn the integrals into sim-
ple powers.

Integration of odd powers of sine and co-
sine.Example 1.9. For example, consider∫

cos3 x dx.

This can be rewritten as∫
cos3 x dx =

∫
cos2 x cos x dx.

Let u = sin x. Then du = cos x dx. Since cos2 x = 1− sin2 x, we have∫
cos3 x dx =

∫
cos2 x cos x dx

=
∫
(1− u2) du

= u− 1
3

u3 + C

= sin x− 1
3

sin3 x + C. (1.63)

A quick check confirms the answer:

d
dx

(
sin x− 1

3
sin3 x + C

)
= cos x− sin2 x cos x = cos x(1− sin2 x) = cos3 x.

Even powers of sines and cosines are a little more complicated, but
doable. In these cases we need the half angle formulae: Integration of even powers of sine and

cosine.

sin2 α =
1− cos 2α

2
, (1.64)

cos2 α =
1 + cos 2α

2
. (1.65)

Example 1.10. As an example, we will compute∫ 2π

0
cos2 x dx.

Substituting the half angle formula for cos2 x, we have∫ 2π

0
cos2 x dx =

1
2

∫ 2π

0
(1 + cos 2x) dx

=
1
2

(
x− 1

2
sin 2x

)2π

0
= π. (1.66)

We note that this result appears often in physics. When looking at
root mean square averages of sinusoidal waves, one needs the average
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of the square of sines and cosines. Recall that the average of a function
on interval [a, b] is given as

fave =
1

b− a

∫ b

a
f (x) dx. (1.67)

So, the average of cos2 x over one period is

1
2π

∫ 2π

0
cos2 x dx =

1
2

. (1.68)

The root mean square is then 1√
2

.

1.1.6 Geometric Series

Geometric series are fairly common and
will be used throughout the book. You
should learn to recognize them and
work with them.

Infinite series occur often in mathematics and physics. Two series
which occur often are the geometric series and the binomial series. we
will discuss these in the next two sections.

A geometric series is of the form
∞

∑
n=0

arn = a + ar + ar2 + . . . + arn + . . . . (1.69)

Here a is the first term and r is called the ratio. It is called the ratio
because the ratio of two consecutive terms in the sum is r.

Example 1.11. For example,

1 +
1
2
+

1
4
+

1
8
+ . . .

is an example of a geometric series. We can write this using summation
notation,

1 +
1
2
+

1
4
+

1
8
+ . . . =

∞

∑
n=0

1
(

1
2

)n
.

Thus, a = 1 is the first term and r = 1
2 is the common ratio of successive

terms. Next, we seek the sum of this infinite series, if it exists.

The sum of a geometric series, when it converges, can easily be
determined. We consider the nth partial sum:

sn = a + ar + . . . + arn−2 + arn−1. (1.70)

Now, multiply this equation by r.

rsn = ar + ar2 + . . . + arn−1 + arn. (1.71)

Subtracting these two equations, while noting the many cancelations,
we have

(1− r)sn = (a + ar + . . . + arn−2 + arn−1)

−(ar + ar2 + . . . + arn−1 + arn)

= a− arn

= a(1− rn). (1.72)
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Thus, the nth partial sums can be written in the compact form

sn =
a(1− rn)

1− r
. (1.73)

Recall that the sum, if it exists, is given by S = limn→∞ sn. Letting n get
large in the partial sum (1.73), we need only evaluate limn→∞ rn. From
our special limits we know that this limit is zero for |r| < 1. Thus, we
have

Geometric Series

The sum of the geometric series is given by

∞

∑
n=0

arn =
a

1− r
, |r| < 1. (1.74)

The reader should verify that the geometric series diverges for all
other values of r. Namely, consider what happens for the separate
cases |r| > 1, r = 1 and r = −1.

Next, we present a few typical examples of geometric series.

Example 1.12. ∑∞
n=0

1
2n

In this case we have that a = 1 and r = 1
2 . Therefore, this infinite series

converges and the sum is

S =
1

1− 1
2
= 2.

This agrees with the plot of the partial sums in Figure A.6.

Example 1.13. ∑∞
k=2

4
3k

In this example we note that the first term occurs for k = 2. So, a = 4
9 .

Also, r = 1
3 . So,

S =
4
9

1− 1
3
=

2
3

.

Example 1.14. ∑∞
n=1(

3
2n − 2

5n )

Finally, in this case we do not have a geometric series, but we do have the
difference of two geometric series. Of course, we need to be careful whenever
rearranging infinite series. In this case it is allowed 1. Thus, we have

1 A rearrangement of terms in an infinite
series is allowed when the series is abso-
lutely convergent.

∞

∑
n=1

(
3
2n −

2
5n

)
=

∞

∑
n=1

3
2n −

∞

∑
n=1

2
5n .

Now we can add both geometric series:

∞

∑
n=1

(
3
2n −

2
5n

)
=

3
2

1− 1
2
−

2
5

1− 1
5
= 3− 1

2
=

5
2

.
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Geometric series are important because they are easily recognized
and summed. Other series, which can be summed, are special cases of
Taylor series, as we will see later. Another type of series that can be
summed is a telescoping series as seen in the next example.

Example 1.15. ∑∞
n=1

1
n(n+1) The first few terms of this series are

∞

∑
n=1

1
n(n + 1)

=
1
2
+

1
6
+

1
12

+
1
20

+ . . . .

It does not appear that we can sum this infinite series. However, if we used
the partial fraction expansion

1
n(n + 1)

=
1
n
− 1

n + 1
,

then we find the partial sums can be written as

sk =
k

∑
n=1

1
n(n + 1)

=
k

∑
n=1

(
1
n
− 1

n + 1

)
=

(
1
1
− 1

2

)
+

(
1
2
− 1

3

)
+ · · ·+

(
1
k
− 1

k + 1

)
. (1.75)

We see that there are many cancelations of neighboring terms, leading to the
series collapsing (like a telescope) to something manageable:

sk = 1− 1
k + 1

.

Taking the limit as k→ ∞, we find ∑∞
n=1

1
n(n+1) = 1.

Example 1.16. The Partition Function
A common occurrence of geometric series is a series of exponentials. An

example of this occurs in statistical mechanics. Statistical mechanics is the
branch of physics which explores the thermodynamic behavior of systems con-
taining a large number of particles. An important tool is the partition func-
tion, Z. This function is the sum of terms, e−εn/kT , over all possible quantum
states of the system. Here εn is the energy of the nth state, T the tempera-
ture, and k is Boltzmann’s constant. Given Z, one can compute macroscopic
quantities, such as the average energy,

< E >= −∂ ln Z
∂β

,

where β = 1/kT.
For the case of the quantum harmonic oscillator, the energy states are given

by εn =
(

n + 1
2

)
h̄ω. The partition function is then

Z =
∞

∑
n=0

e−βεn
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=
∞

∑
n=0

e−β(n+ 1
2 )h̄ω

= e−βh̄ω/2
∞

∑
n=0

e−βnh̄ω. (1.76)

The terms in the last sum are really powers of an exponential,

e−βnh̄ω =
(

e−βh̄ω
)n

.

So,

Z = e−βh̄ω/2
∞

∑
n=0

(
e−βh̄ω

)n
.

This is a geometric series, which can be summed as long as e−βh̄ω < 1. Thus,

Z =
e−βh̄ω/2

1− e−βh̄ω
.

Multiplying the numerator and denominator by eβh̄ω/2, we have

Z =
1

eβh̄ω/2 − e−βh̄ω/2 = (2 sinh βh̄ω/2)−1.

1.1.7 The Binomial Expansion
The binomial expansion is a special se-
ries expansion used to approximate ex-
pressions of the form (a + b)p for b� a,
or (1 + x)p for |x| � 1.

One series expansion which occurs often in examples and appli-
cations is the binomial expansion. This is simply the expansion of
the expression (a + b)p in powers of a and b. We will investigate this
expansion first for nonnegative integer powers p and then derive the
expansion for other values of p. While the binomial expansion can
be obtained using Taylor series, we will provide a more interesting
derivation here to show that

(a + b)p =
∞

∑ Cr
pan−rbr, (1.77)

where the Cr
p are called the binomial coefficients.

One series expansion which occurs often in examples and applica-
tions is the binomial expansion. This is simply the expansion of the
expression (a+ b)p. We will investigate this expansion first for nonneg-
ative integer powers p and then derive the expansion for other values
of p.

Lets list some of the common expansions for nonnegative integer
powers.

(a + b)0 = 1

(a + b)1 = a + b

(a + b)2 = a2 + 2ab + b2
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(a + b)3 = a3 + 3a2b + 3ab2 + b3

(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4

· · · (1.78)

We now look at the patterns of the terms in the expansions. First, we
note that each term consists of a product of a power of a and a power
of b. The powers of a are decreasing from n to 0 in the expansion of
(a + b)n. Similarly, the powers of b increase from 0 to n. The sums of
the exponents in each term is n. So, we can write the (k + 1)st term
in the expansion as an−kbk. For example, in the expansion of (a + b)51

the 6th term is a51−5b5 = a46b5. However, we do not yet know the
numerical coefficient in the expansion.

Let’s list the coefficients for the above expansions.

n = 0 : 1
n = 1 : 1 1
n = 2 : 1 2 1
n = 3 : 1 3 3 1
n = 4 : 1 4 6 4 1

(1.79)

This pattern is the famous Pascal’s triangle.2 There are many interest-

2 Pascal’s triangle is named after Blaise
Pascal (1623-1662). While such configu-
rations of number were known earlier in
history, Pascal published them and ap-
plied them to probability theory.

Pascal’s triangle has many unusual
properties and a variety of uses:

• Horizontal rows add to powers of 2.

• The horizontal rows are powers of 11

(1, 11, 121, 1331, etc.).

• Adding any two successive numbers
in the diagonal 1-3-6-10-15-21-28...
results in a perfect square.

• When the first number to the right of
the 1 in any row is a prime number,
all numbers in that row are divisible
by that prime number.

• Sums along certain diagonals leads
to the Fibonacci sequence.

ing features of this triangle. But we will first ask how each row can be
generated.

We see that each row begins and ends with a one. The second
term and next to last term have a coefficient of n. Next we note that
consecutive pairs in each row can be added to obtain entries in the next
row. For example, we have for rows n = 2 and n = 3 that 1 + 2 = 3
and 2 + 1 = 3 :

n = 2 : 1 2 1
↘ ↙ ↘ ↙

n = 3 : 1 3 3 1
(1.80)

With this in mind, we can generate the next several rows of our
triangle.

n = 3 : 1 3 3 1
n = 4 : 1 4 6 4 1
n = 5 : 1 5 10 10 5 1
n = 6 : 1 6 15 20 15 6 1

(1.81)

So, we use the numbers in row n = 4 to generate entries in row n = 5 :
1 + 4 = 5, 4 + 6 = 10. We then use row n = 5 to get row n = 6, etc.

Of course, it would take a while to compute each row up to the
desired n. Fortunately, there is a simple expression for computing a
specific coefficient. Consider the kth term in the expansion of (a + b)n.
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Let r = k − 1. Then this term is of the form Cn
r an−rbr. We have seen

the the coefficients satisfy

Cn
r = Cn−1

r + Cn−1
r−1 .

Actually, the binomial coefficients have been found to take a simple
form,

Cn
r =

n!
(n− r)!r!

≡
(

n
r

)
.

This is nothing other than the combinatoric symbol for determining
how to choose n things r at a time. In our case, this makes sense. We
have to count the number of ways that we can arrange r products of b
with n− r products of a. There are n slots to place the b’s. For example,
the r = 2 case for n = 4 involves the six products: aabb, abab, abba,
baab, baba, and bbaa. Thus, it is natural to use this notation.

So, we have found that

(a + b)n =
n

∑
r=0

(
n
r

)
an−rbr. (1.82)

Now consider the geometric series 1 + x + x2 + . . . . We have seen
that such a series converges for |x| < 1, giving

1 + x + x2 + . . . =
1

1− x
.

But, 1
1−x = (1− x)−1.

This is again a binomial to a power, but the power is not an integer.
It turns out that the coefficients of such a binomial expansion can be
written similar to the form in Equation (A.35).

This example suggests that our sum may no longer be finite. So, for
p a real number, we write

(1 + x)p =
∞

∑
r=0

(
p
r

)
xr. (1.83)

However, we quickly run into problems with this form. Consider
the coefficient for r = 1 in an expansion of (1 + x)−1. This is given by(

−1
1

)
=

(−1)!
(−1− 1)!1!

=
(−1)!
(−2)!1!

.

But what is (−1)!? By definition, it is

(−1)! = (−1)(−2)(−3) · · · .

This product does not seem to exist! But with a little care, we note that

(−1)!
(−2)!

=
(−1)(−2)!

(−2)!
= −1.
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So, we need to be careful not to interpret the combinatorial coefficient
literally. There are better ways to write the general binomial expansion.
We can write the general coefficient as(

p
r

)
=

p!
(p− r)!r!

=
p(p− 1) · · · (p− r + 1)(p− r)!

(p− r)!r!

=
p(p− 1) · · · (p− r + 1)

r!
. (1.84)

With this in mind we now state the theorem:

General Binomial Expansion

The general binomial expansion for (1 + x)p is a simple gener-
alization of Equation (A.35). For p real, we have the following
binomial series:

(1 + x)p =
∞

∑
r=0

p(p− 1) · · · (p− r + 1)
r!

xr, |x| < 1. (1.85)

Often we need the first few terms for the case that x � 1 :

(1 + x)p = 1 + px +
p(p− 1)

2
x2 + O(x3). (1.86)

Example 1.17. Approximate 1√
1− v2

c2

for v� c. This can be rewritten as The factor γ =
(

1− v2

c2

)−1/2
is impor-

tant in special relativity. Namely, this
is the factor relating differences in time
and length measurements by observers
moving relative inertial frames. For ce-
lestial speeds, this is an appropriate ap-
proximation.

1√
1− v2

c2

=

[
1−

(v
c

)2
]−1/2

.

Using the binomial expansion for p = −1/2, we have

1√
1− v2

c2

≈ 1 +
(
−1

2

)(
−v2

c2

)
= 1 +

v2

2c2 .

Example 1.18. Small differences in large numbers.
As an example, we could compute f (R, h) =

√
R2 + h2 − R for R =

6378.164 km and h = 1.0 m. Inserting these values into a scientific calculator,
one finds that

f (6378164, 1) =
√

63781642 + 1− 6378164 = 1× 10−7 m.

In some calculators one might obtain 0, in other calculators, or computer
algebra systems like Maple, one might obtain other answers. What answer do
you get and how accurate is your answer?

The problem with this computation is that R� h. Therefore, the computa-
tion of f (R, h) depends on how many digits the computing device can handle.
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The best way to get an answer is to use the binomial approximation. Writing
x = h

R , we have

f (R, h) =
√

R2 + h2 − R

= R
√

1 + x2 − R

' R
[

1 +
1
2

x2
]
− R

=
1
2

Rx2

=
1
2

h
R2 = 7.83926× 10−8 m. (1.87)

Of course, you should verify how many digits should be kept in reporting the
result.

In the next examples, we show how computations taking a more
general form can be handled. Such general computations appear in
proofs involving general expansions without specific numerical values
given.

Example 1.19. Obtain an approximation to (a + b)p when a is much larger
than b, denoted by a� b.

If we neglect b then (a + b)p ' ap. How good of an approximation is
this? This is where it would be nice to know the order of the next term in the
expansion. Namely, what is the power of b/a of the first neglected term in
this expansion?

In order to do this we first divide out a as

(a + b)p = ap
(

1 +
b
a

)p
.

Now we have a small parameter, b
a . According to what we have seen earlier,

we can use the binomial expansion to write(
1 +

b
a

)n
=

∞

∑
r=0

(
p
r

)(
b
a

)r
. (1.88)

Thus, we have a sum of terms involving powers of b
a . Since a � b, most of

these terms can be neglected. So, we can write(
1 +

b
a

)p
= 1 + p

b
a
+ O

((
b
a

)2
)

.

Here we used O(), big-Oh notation, to indicate the size of the first neglected
term. (This notation is formally defined in another section.)

Summarizing, this then gives

(a + b)p = ap
(

1 +
b
a

)p
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= ap

(
1 + p

b
a
+ O

((
b
a

)2
))

= ap + pap b
a
+ apO

((
b
a

)2
)

. (1.89)

Therefore, we can approximate (a + b)p ' ap + pbap−1, with an error on
the order of b2ap−2. Note that the order of the error does not include the
constant factor from the expansion. We could also use the approximation that
(a + b)p ' ap, but it is not typically good enough in applications because the
error in this case is of the order bap−1.

Example 1.20. Approximate f (x) = (a + x)p − ap for x � a.
In an earlier example we computed f (R, h) =

√
R2 + h2 − R for R =

6378.164 km and h = 1.0 m. We can make use of the binomial expansion to
determine the behavior of similar functions in the form f (x) = (a+ x)p− ap.
Inserting the binomial expression into f (x), we have as x

a → 0 that

f (x) = (a + x)p − ap

= ap
[(

1 +
x
a

)p
− 1
]

= ap
[

px
a

+ O
(( x

a

)2
)]

= O
( x

a

)
as

x
a
→ 0. (1.90)

This result might not be the approximation that we desire. So, we could
back up one step in the derivation to write a better approximation as

(a + x)p − ap = ap−1 px + O
(( x

a

)2
)

as
x
a
→ 0.

We could use this approximation to answer the original question by letting
a = R2, x = 1 and p = 1

2 . Then, our approximation would be of order

O
(( x

a

)2
)
= O

((
1

63781642

)2
)
∼ 2.4× 10−14.

Thus, we have √
63781642 + 1− 6378164 ≈ ap−1 px

where
ap−1 px = (63781642)−1/2(0.5)1 = 7.83926× 10−8.

This is the same result we had obtained before.

So far, this is enough to get started in the course. We will recall other
topics as we need them. For example, we will discuss the method
of partial fraction decomposition when we discuss terminal velocity
in the next chapter and when we cover applications of the Laplace
transform later in the book.
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1.2 What I Need From My Intro Physics Class?

So, what do we need to know about physics? You should be com-
fortable with common terms from mechanics and electromagnetism.
In some cases, we will review specific topics. However, it would be
helpful to review some topics from your introductory and modern
physics texts.

As you may recall, your study of physics began with the simplest
systems. You first studied motion for point masses. You were then in-
troduced to the concepts of position, displacement, velocity and accel-
eration. You studied motion first in one dimension and even then can
only do problems in which the acceleration is constant, or piecewise
constant. You looked at horizontal motion and then vertical motion, in
terms of free fall. Finally, you moved into two dimensions and consid-
ered projectile motion. Some calculus was introduced and you learned
how to represent vector quantities.

You then asked, “What causes a change in the state of motion of a
body?” We are lead to a discussion of forces. The types of forces en-
countered are the weight, the normal force, tension, the force of grav-
ity and then centripetal forces. You might have also seen spring forces,
which we will see shortly, lead to oscillatory motion - the underlying
theme of this book.

Next, you found out that there are well known conservation prin-
ciples for energy and momentum. In these cases you were lead to
the concepts of work, kinetic energy and potential energy. You found
out that even when mechanical energy is not conserved, you could
account for the missing energy as the work done by nonconservative
forces. Momentum becomes important in collision problems or when
looking at impulses.

With these basic ideas under your belt, you proceeded to study
more complicated systems. Looking at extended bodies, most notably
rigid bodies, led to the study of rotational motion. you found out
that there are analogues to all of the previously discussed concepts for
point masses. For example, there are the natural analogues of rota-
tional velocity and acceleration. The cause of rotational acceleration is
the torque. The analogue to mass is the moment of inertia.

The next level of complication, which sometimes is not covered, are
bulk systems. One can study fluids, solids and gases. These can be
investigated by looking at things like mass density, pressure, volume
and temperature. This leads to the study of thermodynamics in which
one studies the transfer of energy between a system and its surround-
ings. This involves the relationship between the work done on the
system, the heat energy added to a systems and its change in internal
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energy.
Bulk systems can also suffer deformations when a force per area is

applied. This can lead to the idea that small deformations can lead to
the propagation of energy throughout the system in the form of waves.
We will later explore this wave motion in several systems.

The second course in physics is spent on electricity and magnetism,
leading to electromagnetic waves. You first learned about charges and
charge distributions, electric fields, electric potentials. Then you found
out that moving charges produce magnetic fields and are affected by
external magnetic fields. Furthermore, changing magnetic fields pro-
duce currents. This can all be summarized by Maxwell’s equations,
which we will recall later in the course. These equations, in turn, pre-
dict the existence of electromagnetic waves.

Depending how far you delved into the book, you may have seen
excursions into optics and the impact that trying to understand the
existence of electromagnetic waves has had on the development of
so-called "modern physics". For example, in trying to understand
what medium electromagnetic waves might propagate through, Ein-
stein proposed an answer that completely changed the way we under-
stand the nature of space and time. In trying to understand how ion-
ized gases radiate and interact with matter, Einstein and others were
lead down a path that has lead to quantum mechanics and further
challenges to our understanding of reality.

So, that is the introductory physics course in a nutshell. In fact, that
is most of physics. The rest is detail, which you will explore in your
other courses as you progress toward a degree in physics.

1.3 Technology and Tables

As we progress through the course, you will often have to compute
integrals and derivatives by hand. However, many of you know that
some of the tedium can be alleviated by using computers, or even
looking up what you need in tables. In some cases you might even
find applets online that can quickly give you the answers you seek.

However, you also need to be comfortable in doing many computa-
tions by hand. This is necessary, especially in your early studies, for
several reasons. For example, you should try to evaluate integrals by
hand when asked to do them. This reinforces the techniques, as out-
lined earlier. It exercises your brain in much the same way that you
might jog daily to exercise your body. Who knows, keeping your brain
active this way might even postpone Alzheimer’s. The more comfort-
able you are with derivations and evaluations, the easier it is to follow
future lectures without getting bogged down by the details, wonder-
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ing how your professor got from step A to step D. You can always use
a computer algebra system, or a Table of Integrals, to check on your
work.

Problems can arise when depending purely on the output of com-
puters, or other "black boxes". Once you have a firm grasp on the tech-
niques and a feeling as to what answers should look like, then you can
feel comfortable with what the computer gives you. Sometimes, Com-
puter Algebra Systems (CAS) like Maple can give you strange looking
answers, and sometimes even wrong answers. Also, these programs
cannot do every integral, or solve every differential equation, that you
ask them to do. Even some of the simplest looking expressions can
cause computer algebra systems problems. Other times you might
even provide wrong input, leading to erroneous results.

Another source of indefinite integrals, derivatives, series expan-
sions, etc, is a Table of Mathematical Formulae. There are several good
books that have been printed. Even some of these have typos in them,
so you need to be careful. However, it may be worth the investment
to have such a book in your personal library. Go to the library, or the
bookstore, and look at some of these tables to see how useful they
might be.

There are plenty of online resources as well. For example, there is
the Wolfram Integrator at http://integrals.wolfram.com/ as well as
the recent http://www.wolframalpha.com/. There is also a wealth of
information at the following sites: http://www.sosmath.com/,
http://www.math2.org/, http://mathworld.wolfram.com/, and
http://functions.wolfram.com/.

1.4 Appendix: Dimensional Analysis

In the first chapter in your introductory physics text you were
introduced to dimensional analysis. Dimensional analysis is useful for
recalling particular relationships between variables by looking at the
units involved, independent of the system of units employed. Though
most of the time you have used SI, or MKS, units in most of your
physics problems.

There are certain basic units - length, mass and time. By the second
course, you found out that you could add charge to the list. We can
represent these as [L], [M], [T] and [C]. Other quantities typically have
units that can be expressed in terms of the basic units. These are called
derived units. So, we have that the units of acceleration are [L]/[T]2

and units of mass density are [M]/[L]3. Slightly more complicated

http://integrals.wolfram.com/
http://www.wolframalpha.com/
http://www.sosmath.com/
http://www.math2.org/
http://mathworld.wolfram.com/
http://functions.wolfram.com/
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units arise for force. Since F = ma, the units of force are

[F] = [m][a] = [M]
[L]
[T]2

.

Similarly, units of magnetic field can be found, though with a little
more effort. Recall that F = qvB sin θ for a charge q moving with speed
v through a magnetic field B at an angle of θ. sin θ has no units. So,

[B] =
[F]
[q][v]

=

[M][L]
[T]2

[C] [L]
[T]

=
[M]

[C][T]
. (1.91)

Now, assume that you do not know how B depended on F, q and v,
but you knew the units of all of the quantities. Can you figure out the
relationship between them? We could write

[B] = [F]α[q]β[v]γ

and solve for the exponents by inserting the dimensions. Thus, we
have

[M][C]−1[T]−1 =
(
[M][L][T]−2

)α
[C]β

(
[L][T]−1

)γ
.

Right away we can see that α = 1 and β = −1 by looking at the powers
of [M] and [C], respectively. Thus,

[M][C]−1[T]−1 = [M][L][T]−2[C]−1
(
[L][T]−1

)γ
= [M][C]−1[L]1+γ[T]−2−γ.

We see that picking γ = −1 balances the exponents and gives the
correct relation

[B] = [F][q]−1[v]−1.

An important theorem at the heart of dimensional analysis is the The Buckingham Π Theorem.

Buckingham Π Theorem. In essence, this theorem tells us that physi-
cally meaningful equations in n variables can be written as an equation
involving n − m dimensionless quantities, where m is the number of
dimensions used. The importance of this theorem is that one can actu-
ally compute useful quantities without even knowing the exact form
of the equation!

The Buckingham Π Theorem was introduced by Edgar Buckingham
(1867-1940) in 1914. Let qi be n physical variables that are related by

f (q1, q2, . . . , qn) = 0. (1.92)

Assuming that m dimensions are involved, we let πi be k = n − m
dimensionless variables. Then the equation (1.92) can be rewritten as

http://en.wikipedia.org/wiki/Buckingham_Pi_theorem
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a function of these dimensionless variables as

F(π1, π2, . . . , πk) = 0, (1.93)

where the πi’s can be written in terms of the physical variables as

πi = qk1
1 qk2

2 · · · q
kn
n , i = 1, . . . , k. (1.94)

Well, this is our first really new concept (apart from some mathe-
matical tricks) and it is probably a mystery as to its importance. It
also seems a bit abstract. However, this is the basis for some of the
proverbial "back of the envelope calculations" which you might have
heard about. So, let’s see how it can be used.

Example 1.21. Using dimensional analysis to obtain the period of a simple
pendulum.

Let’s consider the period of a simple pendulum; e.g., a point mass hanging Formula for the period of a pendulum.

on a massless string. The period, T, of the pendulum’s swing could depend
upon the the string length, `, the mass of the “pendulum bob”, m, and gravity
in the form of the acceleration due to gravity, g. These are the qi’s in the
theorem. We have four physical variables. The only units involved are length,
mass and time. So, m = 3. This means that there are k = n − m = 1
dimensionless variables, call it π. So, there must be an equation of the form

F(π) = 0

in terms of the dimensionless variable

π = `k1 mk2 Tk3 gk4 .

We just need to find the ki’s. This could be done by inspection, or we could
write out the dimensions of each factor and determine how π can be dimen-
sionless. Thus,

[π] = [`]k1 [m]k2 [T]k3 [g]k4

= [L]k1 [M]k2 [T]k3

(
[L]
[T]2

)k4

= [L]k1+k4 [M]k2 [T]k3−2k4 . (1.95)

π will be dimensionless when

k1 + k4 = 0,

k2 = 0,

k3 − 2k4 = 0. (1.96)

This is a linear homogeneous system of three equations and four unknowns.
We can satisfy these equations by setting k1 = −k4, k2 = 0, and k3 = 2k4.
Therefore, we have

π = `−k4 T2k4 gk4 =
(
`−1T2g

)k4
.
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k4 is arbitrary, so we can pick the simplest value, k4 = 1. Then,

F
(

T2g
`

)
= 0.

Assuming that this equation has one zero, z, which has to be verified by
other means, we have that

gT2

`
= z = const.

Thus, we have determined that the period is independent of the mass and
proportional to the square root of the length. The constant can be determined
by experiment as z = 4π2. Thus,

T = 2π

√
`

g
.

Figure 1.1: A photograph of the first
atomic bomb test. This image was found
at http://www.atomicarchive.com.

Example 1.22. Estimating the energy of an atomic bomb.
A more interesting example was provided by Sir Geoffrey Taylor in 1941 Energy release in the first atomic bomb.

for determining the energy release of an atomic bomb. Let’s assume that the
energy is released in all directions from a single point. Possible physical vari-
ables are the time since the blast, t, the energy, E, the distance from the blast,
r, the atmospheric density ρ and the atmospheric pressure, p. We have five
physical variables and only three units. So, there should be two dimensionless
quantities. Let’s determine these.

We set
π = Ek1 tk2 rk3 pk4 ρk5 .

http://www.atomicarchive.com/Photos/Trinity/image7.shtml
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Inserting the respective units, we find that

[π] = [E]k1 [t]k2 [r]k3 [p]k4 [ρ]k5

=
(
[M][L]2[T]−2

)k1
[T]k2 [L]k3

(
[M][L]−1[T]−2

)k4
(
[M][L]−3

)k5

= [M]k1+k4+k5 [L]2k1+k3−k4−3k5 [T]−2k1+k2−2k4 . (1.97)

Note: You should verify the units used. For example, the units of force can
be found using F = ma and work (energy) is force times distance. Similarly,
you need to know that pressure is force per area.

For π to be dimensionless, we have to solve the system:

k1 + k4 + k5 = 0,

2k1 + k3 − k4 − 3k5 = 0,

−2k1 + k2 − 2k4 = 0. (1.98)

This is a set of three equations and five unknowns. The only way to solve this
system is to solve for three unknowns in term of the remaining two. (In linear
algebra one learns how to solve this using matrix methods.) Let’s solve for
k1, k2, and k5 in terms of k3 and k4. The system can be written as

k1 + k5 = −k4,

2k1 − 3k5 = k4 − k3,

2k1 − k2 = −2k4. (1.99)

These can be solved by solving for k1 and k4 using the first two equations and
then finding k2 from the last one. Solving this system yields:

k1 = −1
5
(2k4 + k3) k2 =

2
5
(3k4 − k3) k5 =

1
5
(k3 − 3k4).

We have the freedom to pick values for k3 and k4. Two independent sets
of simple values are obtained by picking one variable as zero and the other as
one. This will give the following two cases:

Case I. k3 = 1 and k4 = 0.

In this case we then have k1 = − 1
5 , k2 = − 2

5 , and k5 = 1
5 . This gives

π1 = E−1/5t−2/5rρ1/5 = r
( ρ

Et2

)1/5
.

Case II. k3 = 0 and k4 = 1.

In this case we then have k1 = − 2
5 , k2 = 6

5 , and k5 = − 3
5 .

π2 = E−2/5t6/5 pρ−3/5 = p
(

t6

ρ3E2

)1/5

.
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Thus, we have that the relation between the energy and the other variables
is of the form

F

(
r
( ρ

Et2

)1/5
, p
(

t6

ρ3E2

)1/5)
= 0.

Of course, this is not enough to determine the explicit equation. However,
Taylor was able to use this information to get an energy estimate.

Note that π1 is dimensionless. It can be represented as a function of the
dimensionless variable π2. So, assuming that π1 = h(π2), we have that

h(π2) = r
( ρ

Et2

)1/5
.

Note that for t = 1 second, the energy is expected to be huge, so π2 ≈ 0.
Thus,

r
( ρ

Et2

)1/5
≈ h(0).

Simple experiments suggest that h(0) is of order one, so

r ≈
(

Et2

ρ

)1/5

.

In 1947 Taylor applied his earlier analysis to movies of the first atomic
bomb test in 1945 and his results were close to the actual values. How can
one do this? You can find pictures of the first atomic bomb test with a super-
imposed length scale online.

We can rewrite the above result to get the energy estimate:

E ≈ r5ρ

t2 .

As an exercise, you can estimate the radius of the explosion at the given time
and determine the energy of the blast in so many tons of TNT.

Problems

1. Prove the following identities using only the definitions of the
trigonometric functions, the Pythagorean identity, or the identities for
sines and cosines of sums of angles.

a. cos 2x = 2 cos2 x− 1.

b. sin 3x = A sin3 x + B sin x, for what values of A and B?

2. Do the following.

a. Write (cosh x− sinh x)6 in terms of exponentials.

b. Prove cosh 2x = cosh2 x + sinh2 x.

c. If cosh x = 13
12 and x < 0, find sinh x and tanh x.

http://www.atomicarchive.com/Photos/Trinity/image7.shtml
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d. Find the exact value of sinh(arccosh 3)

3. Compute the following integrals

a.
∫

xe2x2
dx.

b.
∫ 3

0
5x√

x2+16
dx.

c.
∫

x3 sin 3x dx. (Do this using integration by parts, the Tabular
Method, and differentiation under the integral sign.)

d.
∫

cos4 3x dx.

e.
∫ π/2

0 sec3 x dx.

f.
∫ √

9− x2 dx

g.
∫ dx

(4−x2)2 , using the substitution x = 2 tanh u.

h.
∫ dx

(x+4)3/2 , using the substitutions

• x = 2 tan u and

• x = 2 sinh u.

4. Find the sum for each of the series:

a. ∑∞
n=0

(−1)n3
4n .

b. ∑∞
n=2

2
5n .

c. ∑∞
n=0

(
5

2n + 1
3n

)
.

d. ∑∞
n=1

3
n(n+3) .

5. Evaluate the following expressions at the given point. Use your cal-
culator or your computer (such as Maple). Then use series expansions
to find an approximation to the value of the expression to as many
places as you trust.

a. f (x) = 1√
1+2x2 − 1 + x2 at x = 5.00× 10−3.

b. f (R, h) = R−
√

R2 + h2 for R = 1.374× 103 km and h = 1.00
m.

c. f (x) = 1− 1√
1−x

for x = 2.5× 10−13.

6. Use dimensional analysis to derive a possible expression for the
drag force FD on a soccer ball of diameter D moving at speed v through
air of density ρ and viscosity µ. [Hint: Assuming viscosity has units
[M]
[L][T] , there are two possible dimensionless combinations: π1 = µDαρβvγ

and π2 = FDDαρβvγ. Determine α, β, and γ for each case and interpret
your results.]

7. Challenge: Read the section on dimensional analysis. In particular,
look at the results of Example 1.22. Using measurements in/on Figure
1.1, obtain an estimate of the energy of the blast in tons of TNT. Explain
your work. Does your answer make sense? Why?



2
Free Fall and Harmonic Oscillators

“Mathematics began to seem too much like puzzle solving. Physics is puzzle solving, too, but of puzzles created by
nature, not by the mind of man.” Maria Goeppert-Mayer (1906-1972)

2.1 Free Fall and Terminal Velocity

In this chapter we will study some common differential equations
that appear in physics. We will begin with the simplest types of equa-
tions and standard techniques for solving them We will end this part
of the discussion by returning to the problem of free fall with air re-
sistance. We will then turn to the study of oscillations, which are
modeled by second order differential equations.

Let us begin with a simple example from introductory physics. Free fall example.

Recall that free fall is the vertical motion of an object solely under
the force of gravity. It has been experimentally determined that an
object at near the surface of the Earth falls at a constant acceleration
in the absence of other forces, such as air resistance. This constant
acceleration is denoted by −g, where g is called the acceleration due
to gravity. The negative sign is an indication that we have chosen a
coordinate system in which up is positive.

We are interested in determining the position, y(t), of the falling
body as a function of time. From the definition of free fall, we have

ÿ(t) = −g. (2.1)

Note that we will occasionally use a dot to indicate time differenti- Differentiation with respect to time is of-
ten denoted by dots instead of primes.ation. This notation is standard in physics and we will begin to in-

troduce you to this notation, though at times we might use the more
familiar prime notation to indicate spatial differentiation, or general
differentiation.

In Equation (2.1) we know g. It is a constant. Near the Earth’s
surface it is about 9.81 m/s2 or 32.2 ft/s2. What we do not know
is y(t). This is our first differential equation. In fact it is natural to
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see differential equations appear in physics ofteh through Newton’s
Second Law, F = ma, as it plays an important role in classical physics.
We will return to this point later.

So, how does one solve the differential equation in (2.1)? We can
do so by using what we know about calculus. It might be easier to
see when we put in a particular number instead of g. You might still
be getting used to the fact that some letters are used to represent con-
stants. We will come back to the more general form after we see how
to solve the differential equation.

Consider
ÿ(t) = 5. (2.2)

Recalling that the second derivative is just the derivative of a deriva-
tive, we can rewrite this equation as

d
dt

(
dy
dt

)
= 5. (2.3)

This tells us that the derivative of dy/dt is 5. Can you think of a
function whose derivative is 5? (Do not forget that the independent
variable is t.) Yes, the derivative of 5t with respect to t is 5. Is this the
only function whose derivative is 5? No! You can also differentiate
5t + 1, 5t + π, 5t− 6, etc. In general, the derivative of 5t + C is 5.

So, the equation can be reduced to

dy
dt

= 5t + C. (2.4)

Now we ask if you know a function whose derivative is 5t + C. Well,
you might be able to do this one in your head, but we just need to
recall the Fundamental Theorem of Calculus, which relates integrals
and derivatives. Thus, we have

y(t) =
5
2

t2 + Ct + D,

where D is a second integration constant.
This is a solution to the original equation. That means the solution is

a function that when placed into the differential equation makes both
sides of the equal sign the same. You can always check your answer by
showing that the solution satisfies the equation. In this case we have

ÿ(t) =
d2

dt2

(
5
2

t2 + Ct + D
)
=

d
dt
(5t + C) = 5.

So, it is a solution.
We also see that there are two arbitrary constants, C and D. Picking

any values for these gives a whole family of solutions. As we will see,
the equation ÿ(t) = 5 is a linear second order ordinary differential
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equation. The general solution of such an equation always has two
arbitrary constants.

Let’s return to the free fall problem. We solve it the same way. The
only difference is that we can replace the constant 5 with the constant
−g. So, we find that

dy
dt

= −gt + C, (2.5)

and
y(t) = −1

2
gt2 + Ct + D. (2.6)

Once you get down the process, it only takes a line or two to solve.
There seems to be a problem. Imagine dropping a ball that then un-

dergoes free fall. We just determined that there are an infinite number
of solutions to where the ball is at any time! Well, that is not possible.
Experience tells us that if you drop a ball you expect it to behave the
same way every time. Or does it? Actually, you could drop the ball
from anywhere. You could also toss it up or throw it down. So, there
are many ways you can release the ball before it is in free fall. That is
where the constants come in. They have physical meanings.

If you set t = 0 in the equation, then you have that y(0) = D. Thus,
D gives the initial position of the ball. Typically, we denote initial
values with a subscript. So, we will write y(0) = y0. Thus, D = y0.

That leaves us to determine C. It appears at first in Equation (2.5).
Recall that dy

dt , the derivative of the position, is the vertical velocity,
v(t). It is positive when the ball moves upward. We will denote the
initial velocity v(0) = v0. Inserting t = 0 in Equation (2.5), we find that
ẏ(0) = C. This implies that C = v(0) = v0.

Putting this all together, we have the physical form of the solution
for free fall as

y(t) = −1
2

gt2 + v0t + y0. (2.7)

Doesn’t this equation look familiar? Now we see that the infinite fam-
ily of solutions consists of free fall resulting from initially dropping a
ball at position y0 with initial velocity v0. The conditions y(0) = y0 and
ẏ(0) = v0 are called the initial conditions. A solution of a differential
equation satisfying a set of initial conditions is often called a particular
solution.

So, we have solved the free fall equation. Along the way we have
begun to see some of the features that will appear in the solutions of
other problems that are modeled with differential equation. Through-
out the book we will see several applications of differential equations.
We will extend our analysis to higher dimensions, in which we case
will be faced with so-called partial differential equations, which in-
volve the partial derivatives of functions of more that one variable.

But are we done with free fall? Not at all! We can relax some of the
conditions that we have imposed. We can add air resistance. We will
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visit this problem later in this chapter after introducing some more
techniques.

Finally, we should also note that free fall at constant g only takes
place near the surface of the Earth. What if a tile falls off the shuttle
far from the surface? It will also fall to the Earth. Actually, it may
undergo projectile motion, which you may recall is a combination of
horizontal motion and free fall.

To look at this problem we need to go to the origins of the accel-
eration due to gravity. This comes out of Newton’s Law of Gravita-
tion. Consider a mass m at some distance h(t) from the surface of the
(spherical) Earth. Letting M and R be the Earth’s mass and radius,
respectively, Newton’s Law of Gravitation states that Newton’s Law of
Gravitation

ma = F

m
d2h(t)

dt2 = G
mM

(R + h(t))2 . (2.8)

Thus, we arrive at a differential equation

d2h(t)
dt2 =

GM
(R + h(t))2 . (2.9)

This equation is not as easy to solve. We will leave it as a homework
exercise for the reader.

Figure 2.1: Free fall far from the Earth
from a height h(t) from the surface.

2.2 First Order Differential Equations

Before moving on, we first define an n-th order ordinary differential
equation is an equation for an unknown function y(x) that expresses a
relationship between the unknown function and its first n derivatives.
One could write this generally as

F(y(n)(x), y(n−1)(x), . . . , y′(x), y(x), x) = 0. (2.10)
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Here y(n)(x) represents the nth derivative of y(x).
An initial value problem consists of the differential equation plus the

values of the first n − 1 derivatives at a particular value of the inde-
pendent variable, say x0:

y(n−1)(x0) = yn−1, y(n−2)(x0) = yn−2, . . . , y(x0) = y0. (2.11)

A linear nth order differential equation takes the form

an(x)y(n)(x)+ an−1(x)y(n−1)(x)+ . . .+ a1(x)y′(x)+ a0(x)y(x)) = f (x).
(2.12)

If f (x) ≡ 0, then the equation is said to be homogeneous, otherwise it is
nonhomogeneous.

Typically, the first differential equations encountered are first order
equations. A first order differential equation takes the form

F(y′, y, x) = 0. (2.13)

There are two general forms for which one can formally obtain a so-
lution. The first is the separable case and the second is a first order
equation. We indicate that we can formally obtain solutions, as one
can display the needed integration that leads to a solution. However,
the resulting integrals are not always reducible to elementary functions
nor does one obtain explicit solutions when the integrals are doable.

2.2.1 Separable Equations

A first order equation is separable if it can be written the form

dy
dx

= f (x)g(y). (2.14)

Special cases result when either f (x) = 1 or g(y) = 1. In the first case
the equation is said to be autonomous.

The general solution to equation (2.14) is obtained in terms of two
integrals: Separable equations.

∫ dy
g(y)

=
∫

f (x) dx + C, (2.15)

where C is an integration constant. This yields a 1-parameter family of
solutions to the differential equation corresponding to different values
of C. If one can solve (2.15) for y(x), then one obtains an explicit so-
lution. Otherwise, one has a family of implicit solutions. If an initial
condition is given as well, then one might be able to find a member of
the family that satisfies this condition, which is often called a particular
solution.
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Example 2.1. y′ = 2xy, y(0) = 2.
Applying (2.15), one has∫ dy

y
=
∫

2x dx + C.

Integrating yields
ln |y| = x2 + C.

Exponentiating, one obtains the general solution,

y(x) = ±ex2+C = Aex2
.

Here we have defined A = ±eC. Since C is an arbitrary constant, A is an
arbitrary constant. Several solutions in this 1-parameter family are shown in
Figure 2.2.

Next, one seeks a particular solution satisfying the initial condition. For
y(0) = 2, one finds that A = 2. So, the particular solution satisfying the
initial condition is y(x) = 2ex2

.

–10

–8

–6

–4

–2

0

2

4

6

8

10

–2 –1 1 2

x

Figure 2.2: Plots of solutions from the 1-
parameter family of solutions of Exam-
ple 2.1 for several initial conditions.

Example 2.2. yy′ = −x.
Following the same procedure as in the last example, one obtains:∫

y dy = −
∫

x dx + C ⇒ y2 = −x2 + A, where A = 2C.

Thus, we obtain an implicit solution. Writing the solution as x2 + y2 = A,
we see that this is a family of circles for A > 0 and the origin for A = 0.
Plots of some solutions in this family are shown in Figure 2.3.
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Figure 2.3: Plots of solutions of Example
2.2 for several initial conditions.

2.2.2 Linear First Order Equations

The second type of first order equation encountered is the lin-
ear first order differential equation in the standard form

Linear first order differential equations.

y′(x) + p(x)y(x) = q(x). (2.16)

In this case one seeks an integrating factor, µ(x), which is a function that
one can multiply through the equation making the left side a perfect
derivative. Thus, obtaining,

d
dx

[µ(x)y(x)] = µ(x)q(x). (2.17)

The integrating factor that works is µ(x) = exp(
∫ x p(ξ) dξ). One

can derive µ(x) by expanding the derivative in Equation (2.17),

µ(x)y′(x) + µ′(x)y(x) = µ(x)q(x), (2.18)
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and comparing this equation to the one obtained from multiplying
(2.16) by µ(x) :

µ(x)y′(x) + µ(x)p(x)y(x) = µ(x)q(x). (2.19)

Note that these last two equations would be the same if

dµ(x)
dx

= µ(x)p(x).

This is a separable first order equation whose solution is the above
given form for the integrating factor, Integrating factor.

µ(x) = exp
(∫ x

p(ξ) dξ

)
. (2.20)

Equation (2.17) is now easily integrated to obtain the solution

y(x) =
1

µ(x)

[∫ x
µ(ξ)q(ξ) dξ + C

]
. (2.21)

Example 2.3. xy′ + y = x, x > 0, y(1) = 0.
One first notes that this is a linear first order differential equation. Solving

for y′, one can see that the equation is not separable. Furthermore, it is not in
the standard form (2.16). So, we first rewrite the equation as

dy
dx

+
1
x

y = 1. (2.22)

Noting that p(x) = 1
x , we determine the integrating factor

µ(x) = exp
[∫ x dξ

ξ

]
= eln x = x.

Multiplying equation (2.22) by µ(x) = x, we actually get back the original
equation! In this case we have found that xy′ + y must have been the deriva-
tive of something to start. In fact, (xy)′ = xy′ + x. Therefore, the differential
equation becomes

(xy)′ = x.

Integrating, one obtains

xy =
1
2

x2 + C,

or
y(x) =

1
2

x +
C
x

.

Inserting the initial condition into this solution, we have 0 = 1
2 + C.

Therefore, C = − 1
2 . Thus, the solution of the initial value problem is

y(x) =
1
2
(x− 1

x
).
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Example 2.4. (sin x)y′ + (cos x)y = x2.
Actually, this problem is easy if you realize that

d
dx

((sin x)y) = (sin x)y′ + (cos x)y.

But, we will go through the process of finding the integrating factor for prac-
tice.

First, rewrite the original differential equation in standard form:

y′ + (cot x)y = x2 csc x.

Then, compute the integrating factor as

µ(x) = exp
(∫ x

cot ξ dξ

)
= eln(sin x) = sin x.

Using the integrating factor, the original equation becomes

d
dx

((sin x)y) = x2.

Integrating, we have

y sin x =
1
3

x3 + C.

So, the solution is

y =

(
1
3

x3 + C
)

csc x.

There are other first order equations that one can solve for closed
form solutions. However, many equations are not solvable, or one is
simply interested in the behavior of solutions. In such cases one turns
to direction fields. We will return to a discussion of the qualitative
behavior of differential equations later.

2.2.3 Terminal Velocity

Now let’s return to free fall. What if there is air resistance? We first
need to model the air resistance. As an object falls faster and faster,
the drag force becomes greater. So, this resistive force is a function of
the velocity. There are a couple of standard models that people use to
test this. The idea is to write F = ma in the form

mÿ = −mg + f (v), (2.23)

where f (v) gives the resistive force and mg is the weight. Recall that
this applies to free fall near the Earth’s surface. Also, for it to be
resistive, f (v) should oppose the motion. If the body is falling, then
f (v) should be positive. If it is rising, then f (v) would have to be
negative to indicate the opposition to the motion.
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One common determination derives from the drag force on an ob-
ject moving through a fluid. This force is given by

f (v) =
1
2

CAρv2, (2.24)

where C is the drag coefficient, A is the cross sectional area and ρ is
the fluid density. For laminar flow the drag coefficient is constant.

Unless you are into aerodynamics, you do not need to get into the
details of the constants. So, it is best to absorb all of the constants into
one to simplify the computation. So, we will write f (v) = bv2. The
differential equation including drag can then be rewritten as

v̇ = kv2 − g, (2.25)

where k = b/m. Note that this is a first order equation for v(t). It is
separable too!

Formally, we can separate the variables and integrate over time to
obtain

t + K =
∫ v dz

kz2 − g
. (2.26)

(Note: We used an integration constant of K since C is the drag co-
efficient in this problem.) If we can do the integral, then we have a
solution for v. In fact, we can do this integral. You need to recall This is the first use of Partial Fraction

Decomposition. We will explore this
method further in the section on Laplace
Transforms.

another common method of integration, which we have not reviewed
yet. Do you remember Partial Fraction Decomposition? It involves fac-
toring the denominator in the integral. Of course, this is ugly because
the constants are represented by letters and are not specific numbers.
Letting α2 = g/k, we can write the integrand as

1
kz2 − g

=
1
k

1
z2 − α2 =

1
2αk

[
1

z− α
− 1

z + α

]
. (2.27)

Now, the integrand can be easily integrated giving

t + K =
1

2αk
ln
∣∣∣∣v− α

v + α

∣∣∣∣ . (2.28)

Solving for v, we have

v(t) =
1− Be2αkt

1 + Be2αkt α, (2.29)

where B ≡ eK. B can be determined using the initial velocity.
There are other forms for the solution in terms of a tanh function,

which the reader can determine as an exercise. One important con-
clusion is that for large times, the ratio in the solution approaches −1.

Thus, v → −α = −
√

g
k . This means that the falling object will reach a

terminal velocity.
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As a simple computation, we can determine the terminal velocity.
We will take an 80 kg skydiver with a cross sectional area of about
0.093 m2. (The skydiver is falling head first.) Assume that the air
density is a constant 1.2 kg/m3 and the drag coefficient is C = 2.0. We
first note that

vterminal = −
√

g
k
= −

√
2mg
CAρ

.

So,

vterminal = −

√
2(70)(9.8)

(2.0)(0.093)(1.2)
= 78m/s.

This is about 175 mph, which is slightly higher than the actual terminal
velocity of a sky diver. One would need a more accurate determination
of C for a more realistic answer.

2.3 The Simple Harmonic Oscillator

The next physical problem of interest is that of simple harmonic
motion. Such motion comes up in many places in physics and provides
a generic first approximation to models of oscillatory motion. This is
the beginning of a major thread running throughout this course. You
have seen simple harmonic motion in your introductory physics class.
We will review SHM (or SHO in some texts) by looking at springs and
pendula (the plural of pendulum). We will use this as our jumping
board into second order differential equations and later see how such
oscillatory motion occurs in AC circuits.

2.3.1 Mass-Spring Systems

We begin with the case of a single block on a spring as shown in
Figure 2.4. The net force in this case is the restoring force of the spring
given by Hooke’s Law,

Fs = −kx,

where k > 0 is the spring constant. Here x is the elongation, or dis-
placement of the spring from equilibrium. When the displacement is
positive, the spring force is negative and when the displacement is
negative the spring force is positive. We have depicted a horizontal
system sitting on a frictionless surface. A similar model can be pro-
vided for vertically oriented springs. However, you need to account
for gravity to determine the location of equilibrium. Otherwise, the
oscillatory motion about equilibrium is modeled the same.
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From Newton’s Second Law, F = mẍ, we obtain the equation for
the motion of the mass on the spring:

mẍ + kx = 0.

m

k

x
Figure 2.4: Spring-Mass system.

We will later derive solutions of such equations in a methodical way.
For now we note that two solutions of this equation are given by

x(t) = A cos ωt,

x(t) = A sin ωt, (2.30)

where

ω =

√
k
m

is the angular frequency, measured in rad/s. It is related to the fre-
quency by

ω = 2π f ,

where f is measured in cycles per second, or Hertz. Furthermore, this
is related to the period of oscillation, the time it takes the mass to go
through one cycle:

T = 1/ f .

Finally, A is called the amplitude of the oscillation.

2.3.2 The Simple Pendulum

L

m

θ

Figure 2.5: A simple pendulum consists
of a point mass m attached to a string of
length L. It is released from an angle θ0.

The simple pendulum consists of a point mass m hanging on a string
of length L from some support. [See Figure 2.5.] One pulls the mass
back to some stating angle, θ0, and releases it. The goal is to find the
angular position as a function of time.

There are a couple of possible derivations. We could either use
Newton’s Second Law of Motion, F = ma, or its rotational analogue
in terms of torque, τ = Iα. We will use the former only to limit the
amount of physics background needed.

There are two forces acting on the point mass. The first is gravity.
This points downward and has a magnitude of mg, where g is the
standard symbol for the acceleration due to gravity. The other force
is the tension in the string. In Figure 2.6 these forces and their sum
are shown. The magnitude of the sum is easily found as F = mg sin θ

using the addition of these two vectors.

T

mg

θ

mg sin θ

Figure 2.6: There are two forces act-
ing on the mass, the weight mg and the
tension T. The net force is found to be
F = mg sin θ.

Now, Newton’s Second Law of Motion tells us that the net force is
the mass times the acceleration. So, we can write

mẍ = −mg sin θ.
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Next, we need to relate x and θ. x is the distance traveled, which is the
length of the arc traced out by the point mass. The arclength is related
to the angle, provided the angle is measure in radians. Namely, x = rθ

for r = L. Thus, we can write

mLθ̈ = −mg sin θ.

Canceling the masses, this then gives us the nonlinear pendulum equa-
tion Nonlinear pendulum equation.

Lθ̈ + g sin θ = 0. (2.31)

There are several variations of Equation (2.31) which will be used
in this text. The first one is the linear pendulum. This is obtained by
making a small angle approximation. For small angles we know that
sin θ ≈ θ. Under this approximation (2.31) becomes Linear pendulum equation.

Lθ̈ + gθ = 0. (2.32)
The equation for a compound pendu-
lum takes a similar form. We start
with the rotational form of Newton’s
second law τ = Iα. Noting that the
torque due to gravity acts at the center
of mass position `, the torque is given by
τ = −mg` sin θ. Since α = θ̈, we have
Iθ̈ = −mg` sin θ. Then, for small angles
θ̈ + ω2θ = 0, where ω = mg`

I . for a point
mass, ` = L and I = mL2, leading to the
result in the text.

We note that this equation is of the same form as the mass-spring
system. We define ω =

√
g/L and obtain the equation for simple

harmonic motion,
θ̈ + ω2θ = 0.

2.4 Second Order Linear Differential Equations

In the last section we saw how second order differential equations
naturally appear in the derivations for simple oscillating systems. In
this section we will look at more general second order linear differen-
tial equations.

Second order differential equations are typically harder than first
order. In most cases students are only exposed to second order linear
differential equations. A general form for a second order linear differen-
tial equation is given by

a(x)y′′(x) + b(x)y′(x) + c(x)y(x) = f (x). (2.33)

One can rewrite this equation using operator terminology. Namely,
one first defines the differential operator L = a(x)D2 + b(x)D + c(x),
where D = d

dx . Then equation (2.33) becomes

Ly = f . (2.34)

The solutions of linear differential equations are found by making
use of the linearity of L. Namely, we consider the vector space1 consist-

1 We assume that the reader has been in-
troduced to concepts in linear algebra.
Later in the text we will recall the def-
inition of a vector space and see that lin-
ear algebra is in the background of the
study of many concepts in the solution
of differential equations.

ing of real-valued functions over some domain. Let f and g be vectors
in this function space. L is a linear operator if for two vectors f and g
and scalar a, we have that
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a. L( f + g) = L f + Lg

b. L(a f ) = aL f .

One typically solves (2.33) by finding the general solution of the
homogeneous problem,

Lyh = 0

and a particular solution of the nonhomogeneous problem,

Lyp = f .

Then the general solution of (2.33) is simply given as y = yh + yp. This
is true because of the linearity of L. Namely,

Ly = L(yh + yp)

= Lyh + Lyp

= 0 + f = f . (2.35)

There are methods for finding a particular solution of a differential
equation. These range from pure guessing to the Method of Undeter-
mined Coefficients, or by making use of the Method of Variation of
Parameters. We will review some of these methods later.

Determining solutions to the homogeneous problem, Lyh = 0, is
not always easy. However, others have studied a variety of second
order linear equations and have saved us the trouble for some of the
differential equations that often appear in applications.

Again, linearity is useful in producing the general solution of a ho-
mogeneous linear differential equation. If y1 and y2 are solutions of
the homogeneous equation, then the linear combination y = c1y1 + c2y2

is also a solution of the homogeneous equation. In fact, if y1 and y2

are linearly independent,2 then y = c1y1 + c2y2 is the general solution of 2 Recall, a set of functions {yi(x)}n
i=1 is a

linearly independent set if and only if

c1y(1(x) + . . . + cnyn(x) = 0

implies ci = 0, for i = 1, . . . , n.

the homogeneous problem. As you may recall, linear independence is
established if the Wronskian of the solutions in not zero. In this case,
we have

W(y1, y2) = y1(x)y′2(x)− y′1(x)y2(x) 6= 0. (2.36)

2.4.1 Constant Coefficient Equations

The simplest and most seen second order differential equations
are those with constant coefficients. The general form for a homoge-
neous constant coefficient second order linear differential equation is
given as

ay′′(x) + by′(x) + cy(x) = 0, (2.37)

where a, b, and c are constants.
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Solutions to (2.37) are obtained by making a guess of y(x) = erx.
Inserting this guess into (2.37) leads to the characteristic equation The characteristic equation for ay′′ +

by′ + cy = 0 is ar2 + br + c = 0. Solu-
tions of this quadratic equation lead to
solutions of the differential equation.

ar2 + br + c = 0. (2.38)

Namely, we compute the derivatives of y(x) = erx, to get y(x) = rerx,
and y(x) = r2erx. Inserting into (2.37), we have

0 = ay′′(x) + by′(x) + cy(x) = (ar2 + br + c)erx.

Since the exponential is never zero, we find that ar2 + br + c = 0. Two real, distinct roots, r1 and r2, give
solutions of the form y(x) = c1er1x +
c2er2x .

The roots of this equation, r1, r2, in turn lead to three types of solu-
tion depending upon the nature of the roots. In general, we have two
linearly independent solutions, y1(x) = er1x and y2(x) = er2x, and the
general solution is given by a linear combination of these solutions,

y(x) = c1er1x + c2er2x.

For two real distinct roots, we are done. However, when the roots are
real, but equal, or complex conjugate roots, we need to do a little more
work to obtain usable solutions. Repeated roots, r1 = r2 = r, give solu-

tions of the form

y(x) = (c1 + c2x)erx .
In the case when there is a repeated real root, one has only one

independent solution, y1(x) = erx. The question is how does one
obtain the second solution? Since the solutions are independent, we
must have that the ratio y2(x)/y1(x) is not a constant. So, we guess
the form y2(x) = v(x)y1(x) = v(x)erx. For constant coefficient second
order equations, we can write the equation as

(D− r)2y = 0,

where D = d
dx .

We now insert y2(x) into this equation. First we compute

(D− r)verx = v′erx.

Then,
(D− r)2verx = (D− r)v′erx = v′′erx.

So, if y2(x) is to be a solution to the differential equation, (D− r)2y2 =

0, then v′′(x)erx = 0 for all x. So, v′′(x) = 0, which implies that

v(x) = ax + b.

So,
y2(x) = (ax + b)erx.

Without loss of generality, we can take b = 0 and a = 1 to obtain the
second linearly independent solution, y2(x) = xerx.

Complex roots, r = α± iβ, give solutions
of the form

y(x) = eαx(c1 cos βx + c2 sin βx).
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When one has complex roots in the solution of constant coefficient
equations, one needs to look at the solutions

y1,2(x) = e(α±iβ)x.

We make use of Euler’s formula

eiβx = cos βx + i sin βx. (2.39)

Then the linear combination of y1(x) and y2(x) becomes

Ae(α+iβ)x + Be(α−iβ)x = eαx
[

Aeiβx + Be−iβx
]

= eαx [(A + B) cos βx + i(A− B) sin βx]

≡ eαx(c1 cos βx + c2 sin βx). (2.40)

Thus, we see that we have a linear combination of two real, linearly
independent solutions, eαx cos βx and eαx sin βx.

The three cases are summarized below followed by several exam-
ples.

Classification of Roots of the Characteristic Equation
for Second Order Constant Coefficient ODEs

1. Real, distinct roots r1, r2. In this case the solutions correspond-
ing to each root are linearly independent. Therefore, the gen-
eral solution is simply y(x) = c1er1x + c2er2x.

2. Real, equal roots r1 = r2 = r. In this case the solutions corre-
sponding to each root are linearly dependent. To find a second
linearly independent solution, one uses the Method of Reduction
of Order. This gives the second solution as xerx. Therefore, the
general solution is found as y(x) = (c1 + c2x)erx. [This is cov-
ered in the appendix to this chapter.]

3. Complex conjugate roots r1, r2 = α ± iβ. In this case the so-
lutions corresponding to each root are linearly independent.
Making use of Euler’s identity, eiθ = cos(θ) + i sin(θ), these
complex exponentials can be rewritten in terms of trigonomet-
ric functions. Namely, one has that eαx cos(βx) and eαx sin(βx)
are two linearly independent solutions. Therefore, the general
solution becomes y(x) = eαx(c1 cos(βx) + c2 sin(βx)). [This is
covered in the appendix to this chapter.]

Example 2.5. y′′ − y′ − 6y = 0 y(0) = 2, y′(0) = 0.
The characteristic equation for this problem is r2 − r− 6 = 0. The roots of

this equation are found as r = −2, 3. Therefore, the general solution can be
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quickly written down:

y(x) = c1e−2x + c2e3x.

Note that there are two arbitrary constants in the general solution. There-
fore, one needs two pieces of information to find a particular solution. Of
course, we have the needed information in the form of the initial conditions.

One also needs to evaluate the first derivative

y′(x) = −2c1e−2x + 3c2e3x

in order to attempt to satisfy the initial conditions. Evaluating y and y′ at
x = 0 yields

2 = c1 + c2

0 = −2c1 + 3c2 (2.41)

These two equations in two unknowns can readily be solved to give c1 = 6/5
and c2 = 4/5. Therefore, the solution of the initial value problem is obtained
as y(x) = 6

5 e−2x + 4
5 e3x.

Example 2.6. y′′ + 6y′ + 9y = 0.
In this example we have r2 + 6r + 9 = 0. There is only one root, r = −3.

Again, the solution is easily obtained as y(x) = (c1 + c2x)e−3x.

Example 2.7. y′′ + 4y = 0.
The characteristic equation in this case is r2 + 4 = 0. The roots are pure

imaginary roots, r = ±2i and the general solution consists purely of sinu-
soidal functions: y(x) = c1 cos(2x) + c2 sin(2x).

Example 2.8. y′′ + 2y′ + 4y = 0.
The characteristic equation in this case is r2 + 2r + 4 = 0. The roots are

complex, r = −1±
√

3i and the general solution can be written as y(x) =[
c1 cos(

√
3x) + c2 sin(

√
3x)
]

e−x.

Example 2.9. y′′ + 4y = sin x.
This is an example of a nonhomogeneous problem. The homogeneous prob-

lem was actually solved in Example 2.7. According to the theory, we need
only seek a particular solution to the nonhomogeneous problem and add it to
the solution of the last example to get the general solution.

The particular solution can be obtained by purely guessing, making an
educated guess, or using the Method of Variation of Parameters. We will
not review all of these techniques at this time. Due to the simple form of
the driving term, we will make an intelligent guess of yp(x) = A sin x and
determine what A needs to be. Recall, this is the Method of Undetermined
Coefficients which we review in later in the chapter. Inserting our guess in the
equation gives (−A + 4A) sin x = sin x. So, we see that A = 1/3 works.
The general solution of the nonhomogeneous problem is therefore y(x) =

c1 cos(2x) + c2 sin(2x) + 1
3 sin x.



free fall and harmonic oscillators 61

As we have seen, one of the most important applications of such
equations is in the study of oscillations. Typical systems are a mass
on a spring, or a simple pendulum. For a mass m on a spring with
spring constant k > 0, one has from Hooke’s law that the position as a
function of time, x(t), satisfies the equation

mẍ + kx = 0.

This constant coefficient equation has pure imaginary roots (α = 0)
and the solutions are pure sines and cosines. This is called simple
harmonic motion. Adding a damping term and periodic forcing com-
plicates the dynamics, but is nonetheless solvable. We will return to
damped oscillations later and also investigate nonlinear oscillations.

2.5 LRC Circuits

Another typical problem often encountered in a first year physics
class is that of an LRC series circuit. This circuit is pictured in Figure
2.7. The resistor is a circuit element satisfying Ohm’s Law. The capac-
itor is a device that stores electrical energy and an inductor, or coil,
store magnetic energy.

The physics for this problem stems from Kirchoff’s Rules for cir-
cuits. Namely, the sum of the drops in electric potential are set equal
to the rises in electric potential. The potential drops across each circuit
element are given by

1. Resistor: V = IR.

2. Capacitor: V = q
C .

3. Inductor: V = L dI
dt .

R C L

V(t)

Figure 2.7: Series LRC Circuit.

Furthermore, we need to define the current as I = dq
dt . where q is the

charge in the circuit. Adding these potential drops, we set them equal
to the voltage supplied by the voltage source, V(t). Thus, we obtain

IR +
q
C
+ L

dI
dt

= V(t).

Since both q and I are unknown, we can replace the current by its
expression in terms of the charge to obtain

Lq̈ + Rq̇ +
1
C

q = V(t).

This is a second order equation for q(t).
More complicated circuits are possible by looking at parallel con-

nections, or other combinations, of resistors, capacitors and inductors.
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This will result in several equations for each loop in the circuit, lead-
ing to larger systems of differential equations. An example of another
circuit setup is shown in Figure 2.8. This is not a problem that can be
covered in the first year physics course. One can set up a system of
second order equations and proceed to solve them. We will see how
to solve such problems later in the text.

R

C LV(t)

R1 2

Figure 2.8: Parallel LRC Circuit.

2.5.1 Special Cases

In this section we will look at special cases that arise for the series
LRC circuit equation. These include RC circuits, solvable by first order
methods and LC circuits, leading to oscillatory behavior.

Case I. RC Circuits

We first consider the case of an RC circuit in which there is no
inductor. Also, we will consider what happens when one charges a
capacitor with a DC battery (V(t) = V0) and when one discharges a
charged capacitor (V(t) = 0).

For charging a capacitor, we have the initial value problem Charging a capacitor.

R
dq
dt

+
q
C

= V0, q(0) = 0. (2.42)

This equation is an example of a linear first order equation for q(t).
However, we can also rewrite it and solve it as a separable equa-
tion, since V0 is a constant. We will do the former only as another
example of finding the integrating factor.

We first write the equation in standard form:

dq
dt

+
q

RC
=

V0

R
. (2.43)

The integrating factor is then

µ(t) = e
∫ dt

RC = et/RC.

Thus,
d
dt

(
qet/RC

)
=

V0

R
et/RC. (2.44)

Integrating, we have

qet/RC =
V0

R

∫
et/RC dt = CV0et/RC + K. (2.45)

Note that we introduced the integration constant, K. Now divide
out the exponential to get the general solution:

q = CV0 + Ke−t/RC. (2.46)
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(If we had forgotten the K, we would not have gotten a correct so-
lution for the differential equation.)

Next, we use the initial condition to get the particular solution.
Namely, setting t = 0, we have that

0 = q(0) = CV0 + K.

So, K = −CV0. Inserting this into the solution, we have

q(t) = CV0(1− e−t/RC). (2.47)

Now we can study the behavior of this solution. For large times
the second term goes to zero. Thus, the capacitor charges up,
asymptotically, to the final value of q0 = CV0. This is what we ex-
pect, because the current is no longer flowing over R and this just
gives the relation between the potential difference across the capac-
itor plates when a charge of q0 is established on the plates.

Figure 2.9: The charge as a function of
time for a charging capacitor with R =
2.00 kΩ, C = 6.00 mF, and V0 = 12 V.

Let’s put in some values for the parameters. We let R = 2.00 kΩ,
C = 6.00 mF, and V0 = 12 V. A plot of the solution is given in Figure
2.9. We see that the charge builds up to the value of CV0 = 0.072 C.
If we use a smaller resistance, R = 200 Ω, we see in Figure 2.10 that
the capacitor charges to the same value, but much faster.

The rate at which a capacitor charges, or discharges, is governed
by the time constant, τ = RC. This is the constant factor in the
exponential. The larger it is, the slower the exponential term decays.
If we set t = τ, we find that

q(τ) = CV0(1− e−1) = (1− 0.3678794412 . . .)q0 ≈ 0.63q0.

Thus, at time t = τ, the capacitor has almost charged to two thirds
of its final value. For the first set of parameters, τ = 12s. For the
second set, τ = 1.2s.
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Figure 2.10: The charge as a function of
time for a charging capacitor with R =
200 Ω, C = 6.00 mF, and V0 = 12 V.

Now, let’s assume the capacitor is charged with charge ±q0 on Discharging a capacitor.

its plates. If we disconnect the battery and reconnect the wires to
complete the circuit, the charge will then move off the plates, dis-
charging the capacitor. The relevant form of the initial value prob-
lem becomes

R
dq
dt

+
q
C

= 0, q(0) = q0. (2.48)

This equation is simpler to solve. Rearranging, we have

dq
dt

= − q
RC

. (2.49)

This is a simple exponential decay problem, which you can solve
using separation of variables. However, by now you should know
how to immediately write down the solution to such problems of
the form y′ = ky. The solution is

q(t) = q0e−t/τ , τ = RC.

We see that the charge decays exponentially. In principle, the ca-
pacitor never fully discharges. That is why you are often instructed
to place a shunt across a discharged capacitor to fully discharge it.

In Figure 2.11 we show the discharging of the two previous RC
circuits. Once again, τ = RC determines the behavior. At t = τ we
have

q(τ) = q0e−1 = (0.3678794412 . . .)q0 ≈ 0.37q0.

So, at this time the capacitor only has about a third of its original
value.

Case II. LC Circuits
Another simple result comes from studying LC circuits. We will LC Oscillators.

now connect a charged capacitor to an inductor. In this case, we
consider the initial value problem

Lq̈ +
1
C

q = 0, q(0) = q0, q̇(0) = I(0) = 0. (2.50)
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Figure 2.11: The charge as a function
of time for a discharging capacitor with
R = 2.00 kΩ or R = 200 Ω, and C = 6.00
mF, and q0 = 0.072 C.

Dividing out the inductance, we have

q̈ +
1

LC
q = 0. (2.51)

This equation is a second order, constant coefficient equation. It
is of the same form as the ones for simple harmonic motion of a
mass on a spring or the linear pendulum. So, we expect oscillatory
behavior. The characteristic equation is

r2 +
1

LC
= 0.

The solutions are
r1,2 = ± i√

LC
.

Thus, the solution of (2.51) is of the form

q(t) = c1 cos(ωt) + c2 sin(ωt), ω = (LC)−1/2. (2.52)

Inserting the initial conditions yields

q(t) = q0 cos(ωt). (2.53)

The oscillations that result are understandable. As the charge
leaves the plates, the changing current induces a changing magnetic
field in the inductor. The stored electrical energy in the capacitor
changes to stored magnetic energy in the inductor. However, the
process continues until the plates are charged with opposite polarity
and then the process begins in reverse. The charged capacitor then
discharges and the capacitor eventually returns to its original state
and the whole system repeats this over and over.

The frequency of this simple harmonic motion is easily found. It
is given by

f =
ω

2π
=

1
2π

1√
LC

. (2.54)
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This is called the tuning frequency because of its role in tuning
circuits.

Of course, this is an ideal situation. There is always resistance
in the circuit, even if only a small amount from the wires. So, we
really need to account for resistance, or even add a resistor. This
leads to a slightly more complicated system in which damping will
be present.

2.6 Damped Oscillations

As we have indicated, simple harmonic motion is an ideal situa-
tion. In real systems we often have to contend with some energy loss
in the system. This leads to the damping of the oscillations. This en-
ergy loss could be in the spring, in the way a pendulum is attached to
its support, or in the resistance to the flow of current in an LC circuit.
The simplest models of resistance are the addition of a term in first
derivative of the dependent variable. Thus, our three main examples
with damping added look like:

mẍ + bẋ + kx = 0. (2.55)

Lθ̈ + bθ̇ + gθ = 0. (2.56)

Lq̈ + Rq̇ +
1
C

q = 0. (2.57)

These are all examples of the general constant coefficient equation

ay′′(x) + by′(x) + cy(x) = 0. (2.58)

We have seen that solutions are obtained by looking at the character-
istic equation ar2 + br + c = 0. This leads to three different behaviors
depending on the discriminant in the quadratic formula:

r =
−b±

√
b2 − 4ac

2a
. (2.59)

We will consider the example of the damped spring. Then we have

r =
−b±

√
b2 − 4mk

2m
. (2.60)

For b > 0, there are three types of damping. Damped oscillator cases.

I. Overdamped, b2 > 4mk
In this case we obtain two real root. Since this is Case I for con-

stant coefficient equations, we have that

x(t) = c1er1t + c2er2t.
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We note that b2 − 4mk < b2. Thus, the roots are both negative. So,
both terms in the solution exponentially decay. The damping is so
strong that there is no oscillation in the system.

II. Critically Damped, b2 = 4mk
In this case we obtain one real root. This is Case II for constant

coefficient equations and the solution is given by

x(t) = (c1 + c2t)ert,

where r = −b/2m. Once again, the solution decays exponentially.
The damping is just strong enough to hinder any oscillation. If it
were any weaker the discriminant would be negative and we would
need the third case.

Underdamped Oscillation

–2

–1

0

1

2

x

2 4 6 8 10 12 14 16 18 20

t

Figure 2.12: A plot of underdamped os-
cillation given by x(t) = 2e0.1t cos 3t. The
dashed lines are given by x(t) = ±2e0.1t,
indicating the bounds on the amplitude
of the motion.

III. Underdamped, b2 < 4mk
In this case we have complex conjugate roots. We can write α =

−b/2m and β =
√

4mk− b2/2m. Then the solution is

x(t) = eαt(c1 cos βt + c2 sin βt).

These solutions exhibit oscillations due to the trigonometric func-
tions, but we see that the amplitude may decay in time due the the
overall factor of eαt when α < 0. Consider the case that the initial
conditions give c1 = A and c2 = 0. (When is this?) Then, the
solution, x(t) = Aeαt cos βt, looks like the plot in Figure 2.12.

2.7 Forced Systems

All of the systems presented at the beginning of the last section ex-
hibit the same general behavior when a damping term is present. An
additional term can be added that can cause even more complicated
behavior. In the case of LRC circuits, we have seen that the voltage
source makes the system nonhomogeneous. It provides what is called
a source term. Such terms can also arise in the mass-spring and pendu-
lum systems. One can drive such systems by periodically pushing the
mass, or having the entire system moved, or impacted by an outside
force. Such systems are called forced, or driven.

Typical systems in physics can be modeled by nonhomogenous sec-
ond order equations. Thus, we want to find solutions of equations of
the form

Ly(x) = a(x)y′′(x) + b(x)y′(x) + c(x)y(x) = f (x). (2.61)

Recall, that one solves this equation by finding the general solution of
the homogeneous problem,

Lyh = 0
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and a particular solution of the nonhomogeneous problem,

Lyp = f .

Then the general solution of (2.33) is simply given as y = yh + yp.
To date, we only know how to solve constant coefficient, homoge-

neous equations. So, by adding a nonhomogeneous to such equations
we need to figure out what to do with the extra term. In other words,
how does one find the particular solution?

You could guess a solution, but that is not usually possible without
a little bit of experience. So we need some other methods. There are
two main methods. In the first case, the Method of Undetermined
Coefficients, one makes an intelligent guess based on the form of f (x).
In the second method, one can systematically developed the particular
solution. We will come back to this method the Method of Variation
of Parameters, later in this section.

2.7.1 Method of Undetermined Coefficients

Let’s solve a simple differential equation highlighting how we can
handle nonhomogeneous equations.

Example 2.10. Consider the equation

y′′ + 2y′ − 3y = 4. (2.62)

The first step is to determine the solution of the homogeneous equation.
Thus, we solve

y′′h + 2y′h − 3yh = 0. (2.63)

The characteristic equation is r2 + 2r− 3 = 0. The roots are r = 1,−3. So,
we can immediately write the solution

yh(x) = c1ex + c2e−3x.

The second step is to find a particular solution of (2.62). What possible
function can we insert into this equation such that only a 4 remains? If we
try something proportional to x, then we are left with a linear function after
inserting x and its derivatives. Perhaps a constant function you might think.
y = 4 does not work. But, we could try an arbitrary constant, y = A.

Let’s see. Inserting y = A into (2.62), we obtain

−3A = 4.

Ah ha! We see that we can choose A = − 4
3 and this works. So, we have a

particular solution, yp(x) = − 4
3 . This step is done.
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Combining the two solutions, we have the general solution to the original
nonhomogeneous equation (2.62). Namely,

y(x) = yh(x) + yp(x) = c1ex + c2e−3x − 4
3

.

Insert this solution into the equation and verify that it is indeed a solution. If
we had been given initial conditions, we could now use them to determine the
arbitrary constants.

Example 2.11. What if we had a different source term? Consider the equation

y′′ + 2y′ − 3y = 4x. (2.64)

The only thing that would change is the particular solution. So, we need a
guess.

We know a constant function does not work by the last example. So, let’s
try yp = Ax. Inserting this function into Equation (2.64), we obtain

2A− 3Ax = 4x.

Picking A = −4/3 would get rid of the x terms, but will not cancel every-
thing. We still have a constant left. So, we need something more general.

Let’s try a linear function, yp(x) = Ax+ B. Then we get after substitution
into (2.64)

2A− 3(Ax + B) = 4x.

Equating the coefficients of the different powers of x on both sides, we find a
system of equations for the undetermined coefficients:

2A− 3B = 0

−3A = 4. (2.65)

These are easily solved to obtain

A = −4
3

B =
2
3

A = −8
9

. (2.66)

So, the particular solution is

yp(x) = −4
3

x− 8
9

.

This gives the general solution to the nonhomogeneous problem as

y(x) = yh(x) + yp(x) = c1ex + c2e−3x − 4
3

x− 8
9

.

There are general forms that you can guess based upon the form
of the driving term, f (x). Some examples are given in Table 2.7.1.
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More general applications are covered in a standard text on differ-
ential equations. However, the procedure is simple. Given f (x) in a
particular form, you make an appropriate guess up to some unknown
parameters, or coefficients. Inserting the guess leads to a system of
equations for the unknown coefficients. Solve the system and you
have the solution. This solution is then added to the general solution
of the homogeneous differential equation.

f (x) Guess
anxn + an−1xn−1 + · · ·+ a1x + a0 Anxn + An−1xn−1 + · · ·+ A1x + A0

aebx Aebx

a cos ωx + b sin ωx A cos ωx + B sin ωx

Example 2.12. As a final example, let’s consider the equation

y′′ + 2y′ − 3y = 2e−3x. (2.67)

According to the above, we would guess a solution of the form yp = Ae−3x.
Inserting our guess, we find

0 = 2e−3x.

Oops! The coefficient, A, disappeared! We cannot solve for it. What went
wrong?

The answer lies in the general solution of the homogeneous problem. Note
that ex and e−3x are solutions to the homogeneous problem. So, a multiple
of e−3x will not get us anywhere. It turns out that there is one further mod-
ification of the method. If the driving term contains terms that are solutions
of the homogeneous problem, then we need to make a guess consisting of the
smallest possible power of x times the function which is no longer a solution of
the homogeneous problem. Namely, we guess yp(x) = Axe−3x. We compute
the derivative of our guess, y′p = A(1− 3x)e−3x and y′′p = A(9x− 6)e−3x.
Inserting these into the equation, we obtain

[(9x− 6) + 2(1− 3x)− 3x]Ae−3x = 2e−3x,

or
−4A = 2.

So, A = −1/2 and yp(x) = − 1
2 xe−3x.

Modified Method of Undetermined Coefficients

In general, if any term in the guess yp(x) is a solution of the
homogeneous equation, then multiply the guess by xk, where k
is the smallest positive integer such that no term in xkyp(x) is a
solution of the homogeneous problem.
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2.7.2 Forced Oscillations

As an example of a simple forced system, we can consider forced linear
oscillations. For example one can force the mass-spring system. In
general, such as system would satisfy the equation

mẍ + b(̇x) + kx = F(t), (2.68)

where m is the mass, b is the damping constant, k is the spring con-
stant, and F(t) is the driving force. If F(t) is of simple form, then we
can employ the Method of Undetermined Coefficients. As the damp-
ing term only complicates the solution we will assume that b = 0.
Furthermore, we will introduce a sinusoidal driving force, F(t) =

F0 cos ωt. Then, the simple driven system becomes

mẍ + kx = F0 cos ωt. (2.69)

As we have seen, one first determines the solution to the homoge-
neous problem,

xh = c1 cos ω0t + c2 sin ω0t,

where ω0 =
√

k
m . In order to apply the Method of Undetermined

Coefficients, one has to make a guess which is not a solution of the
homogeneous solution. The first guess would be to use xp = A cos ωt.
This is fine if ω 6= ω0. Otherwise, one would need to use the Modified
Method of Undetermined Coefficients as described in the last section.
The details will be left to the reader.

The general solution to the problem is thus

x(t) = c1 cos ω0t + c2 sin ω0t +

{ F0
m(ω2

0−ω2)
cos ωt, ω 6= ω0,

F0
2mω0

t sin ω0t, ω = ω0.
(2.70)

The case of resonance.
Special cases of these solutions provide interesting physics, which

can be explored by the reader in the homework. In the case that ω =

ω0, we see that the solution tends to grow as t gets large. This is
what is called a resonance. Essentially, one is driving the system at its
natural frequency. As the system is moving to the left, one pushes it
to the left. If it is moving to the right, one is adding energy in that
direction. This forces the amplitude of oscillation to continue to grow
until the system breaks.

In the case that ω 6= ω0, one can rewrite the solution in a simple
form. Let’s choose the initial conditions as x(0) = 0, ẋ(0) = 0. Then
one has (see Problem 13)

x(t) =
2F0

m(ω2
0 −ω2)

sin
(ω0 −ω)t

2
sin

(ω0 + ω)t
2

. (2.71)



72 mathematical physics

For values of ω near ω0, one finds the solution consists of a rapid
oscillation, due to the sin (ω0+ω)t

2 factor, with a slowly varying am-

plitude, 2F0
m(ω2

0−ω2)
sin (ω0−ω)t

2 . The reader can investigate this solution.

This leads to what are called beats.

2.7.3 Cauchy-Euler Equations

Another class of solvable linear differential equations that is of
interest are the Cauchy-Euler type of equations. These are given by

ax2y′′(x) + bxy′(x) + cy(x) = 0. (2.72)

Note that in such equations the power of x in each of the coefficients
matches the order of the derivative in that term. These equations are
solved in a manner similar to the constant coefficient equations. The solutions of Cauchy-Euler equations

can be found using the characteristic
equation ar(r− 1) + br + c = 0.

One begins by making the guess y(x) = xr. Inserting this function
and its derivatives,

y′(x) = rxr−1, y′′(x) = r(r− 1)xr−2,

into Equation (2.72), we have

[ar(r− 1) + br + c] xr = 0.

Since this has to be true for all x in the problem domain, we obtain the
characteristic equation

ar(r− 1) + br + c = 0. (2.73)
For two real, distinct roots, the general
solution takes the form

y(x) = c1xr1 + c2xr2 .

Just like the constant coefficient differential equation, we have a
quadratic equation and the nature of the roots again leads to three
classes of solutions. If there are two real, distinct roots, then the gen-
eral solution takes the form y(x) = c1xr1 + c2xr2 . For one root, r1 = r2 = r, the general

solution is of the form

y(x) = (c1 + c2 ln |x|)xr .
Deriving the solution for Case 2 for the Cauchy-Euler equations

works in the same way as the second for constant coefficient equations,
but it is a bit messier. First note that for the real root, r = r1, the
characteristic equation has to factor as (r − r1)

2 = 0. Expanding, we
have

r2 − 2r1r + r2
1 = 0.

The general characteristic equation is

ar(r− 1) + br + c = 0.

Rewriting this, we have

r2 + (
b
a
− 1)r +

c
a
= 0.
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Comparing equations, we find

b
a
= 1− 2r1,

c
a
= r2

1.

So, the general Cauchy-Euler equation in this case takes the form

x2y′′ + (1− 2r1)xy′ + r2
1y = 0.

Now we seek the second linearly independent solution in the form
y2(x) = v(x)xr1 . We first list this function and its derivatives,

y2(x) = vxr1 ,

y′2(x) = (xv′ + r1v)xr1−1,

y′′2 (x) = (x2v′′ + 2r1xv′ + r1(r1 − 1)v)xr1−2.

(2.74)

Inserting these forms into the differential equation, we have

0 = x2y′′ + (1− 2r1)xy′ + r2
1y

= (xv′′ + v′)xr1+1. (2.75)

Thus, we need to solve the equation

xv′′ + v′ = 0,

or
v′′

v′
= − 1

x
.

Integrating, we have

ln |v′| = − ln |x|+ C.

Exponentiating, we have one last differential equation to solve,

v′ =
A
x

.

Thus,
v(x) = A ln |x|+ k.

So, we have found that the second linearly independent equation can
be written as

y2(x) = xr1 ln |x|.
For complex conjugate roots, r = α± iβ,
the general solution takes the form

y(x) = xα(c1 cos(β ln |x|)+ c2 sin(β ln |x|)).

We now turn to the case of complex conjugate roots, r = α ± iβ.
When dealing with the Cauchy-Euler equations, we have solutions of
the form y(x) = xα+iβ. The key to obtaining real solutions is to first
recall that

xy = eln xy
= ey ln x.
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Thus, a power can be written as an exponential and the solution can
be written as

y(x) = xα+iβ = xαeiβ ln x, x > 0.

We can now find two real, linearly independent solutions, xα cos(β ln |x|)
and xα sin(β ln |x|) following the same steps as earlier for the constant
coefficient case.

The results are summarized in the table below followed by exam-
ples.

Classification of Roots of the Characteristic Equation
for Cauchy-Euler Differential Equations

1. Real, distinct roots r1, r2. In this case the solutions correspond-
ing to each root are linearly independent. Therefore, the gen-
eral solution is simply y(x) = c1xr1 + c2xr2 .

2. Real, equal roots r1 = r2 = r. In this case the solutions corre-
sponding to each root are linearly dependent. To find a second
linearly independent solution, one uses the Method of Reduc-
tion of Order. This gives the second solution as xr ln |x|. There-
fore, the general solution is found as y(x) = (c1 + c2 ln |x|)xr.

3. Complex conjugate roots r1, r2 = α ± iβ. In this case the
solutions corresponding to each root are linearly indepen-
dent. These complex exponentials can be rewritten in
terms of trigonometric functions. Namely, one has that
xα cos(β ln |x|) and xα sin(β ln |x|) are two linearly indepen-
dent solutions. Therefore, the general solution becomes y(x) =
xα(c1 cos(β ln |x|) + c2 sin(β ln |x|)).

Example 2.13. x2y′′ + 5xy′ + 12y = 0
As with the constant coefficient equations, we begin by writing down the

characteristic equation. Doing a simple computation,

0 = r(r− 1) + 5r + 12

= r2 + 4r + 12

= (r + 2)2 + 8,

−8 = (r + 2)2, (2.76)

one determines the roots are r = −2± 2
√

2i. Therefore, the general solution
is y(x) =

[
c1 cos(2

√
2 ln |x|) + c2 sin(2

√
2 ln |x|)

]
x−2

Example 2.14. t2y′′ + 3ty′ + y = 0, y(1) = 0, y′(1) = 1.
For this example the characteristic equation takes the form

r(r− 1) + 3r + 1 = 0,
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or
r2 + 2r + 1 = 0.

There is only one real root, r = −1. Therefore, the general solution is

y(t) = (c1 + c2 ln |t|)t−1.

However, this problem is an initial value problem. At t = 1 we know the
values of y and y′. Using the general solution, we first have that

0 = y(1) = c1.

Thus, we have so far that y(t) = c2 ln |t|t−1. Now, using the second condition
and

y′(t) = c2(1− ln |t|)t−2,

we have
1 = y(1) = c2.

Therefore, the solution of the initial value problem is y(t) = ln |t|t−1.

Nonhomogeneous Cauchy-Euler Equations We can also solve some
nonhomogeneous Cauchy-Euler equations using the Method of Un-
determined Coefficients. We will demonstrate this with a couple of
examples.

Example 2.15. Find the solution of x2y′′ − xy′ − 3y = 2x2.
First we find the solution of the homogeneous equation. The characteristic

equation is r2 − 2r− 3 = 0. So, the roots are r = −1, 3 and the solution is
yh(x) = c1x−1 + c2x3.

We next need a particular solution. Let’s guess yp(x) = Ax2. Inserting
the guess into the nonhomogeneous differential equation, we have

2x2 = x2y′′ − xy′ − 3y = 2x2

= 2Ax2 − 2Ax2 − 3Ax2

= −3Ax2. (2.77)

So, A = −2/3. Therefore, the general solution of the problem is

y(x) = c1x−1 + c2x3 − 2
3

x2.

Example 2.16. Find the solution of x2y′′ − xy′ − 3y = 2x3.
In this case the nonhomogeneous term is a solution of the homogeneous

problem, which we solved in the last example. So, we will need a modification
of the method. We have a problem of the form

ax2y′′ + bxy′ + cy = dxr,

where r is a solution of ar(r− 1) + br + c = 0. Let’s guess a solution of the
form y = Axr ln x. Then one finds that the differential equation reduces to
Axr(2ar− a + b) = dxr. [You should verify this for yourself.]
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With this in mind, we can now solve the problem at hand. Let yp =

Ax3 ln x. Inserting into the equation, we obtain 4Ax3 = 2x3, or A = 1/2.
The general solution of the problem can now be written as

y(x) = c1x−1 + c2x3 +
1
2

x3 ln x.

2.7.4 Method of Variation of Parameters

A more systematic way to find particular solutions is through the
use of the Method of Variation of Parameters. The derivation is a little
detailed and the solution is sometimes messy, but the application of
the method is straight forward if you can do the required integrals.
We will first derive the needed equations and then do some examples.

We begin with the nonhomogeneous equation. Let’s assume it is of
the standard form

a(x)y′′(x) + b(x)y′(x) + c(x)y(x) = f (x). (2.78)

We know that the solution of the homogeneous equation can be writ-
ten in terms of two linearly independent solutions, which we will call
y1(x) and y2(x) :

yh(x) = c1y1(x) + c2y2(x).

Replacing the constants with functions, then we now longer have
a solution to the homogeneous equation. Is it possible that we could
stumble across the right functions with which to replace the constants
and somehow end up with f (x) when inserted into the left side of the
differential equation? It turns out that we can.

So, let’s assume that the constants are replaced with two unknown
functions, which we will call c1(x) and c2(x). This change of the pa-
rameters is where the name of the method derives. Thus, we are as-
suming that a particular solution takes the form We assume the nonhomogeneous equa-

tion has a particular solution of the form

yp(x) = c1(x)y1(x) + c2(x)y2(x).yp(x) = c1(x)y1(x) + c2(x)y2(x). (2.79)

If this is to be a solution, then insertion into the differential equation
should make it true. To do this we will first need to compute some
derivatives.

The first derivative is given by

y′p(x) = c1(x)y′1(x) + c2(x)y′2(x) + c′1(x)y1(x) + c′2(x)y2(x). (2.80)

Next we will need the second derivative. But, this will give use eight
terms. So, we will first make an assumption. Let’s assume that the last
two terms add to zero:

c′1(x)y1(x) + c′2(x)y2(x) = 0. (2.81)
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It turns out that we will get the same results in the end if we did not
assume this. The important thing is that it works!

So, we now have the first derivative as

y′p(x) = c1(x)y′1(x) + c2(x)y′2(x). (2.82)

The second derivative is then only four terms:

y′p(x) = c1(x)y′′1 (x) + c2(x)y′′2 (x) + c′1(x)y′1(x) + c′2(x)y′2(x). (2.83)

Now that we have the derivatives, we can insert the guess into the
differential equation. Thus, we have

f (x) = a(x)(c1(x)y′′1 (x) + c2(x)y′′2 (x) + c′1(x)y′1(x) + c′2(x)y′2(x))

+b(x)(c1(x)y′1(x) + c2(x)y′2(x))

+c(x)(c1(x)y1(x) + c2(x)y2(x)). (2.84)

Regrouping the terms, we obtain

f (x) = c1(x)(a(x)y′′1 (x) + b(x)y′1(x) + c(x)y1(x))

c2(x)(a(x)y′′2 (x) + b(x)y′2(x) + c(x)y2(x))

+a(x)(c′1(x)y′1(x) + c′2(x)y′2(x)). (2.85)

Note that the first two rows vanish since y1 and y2 are solutions of the
homogeneous problem. This leaves the equation

c′1(x)y′1(x) + c′2(x)y′2(x) =
f (x)
a(x)

. (2.86)

In summary, we have assumed a particular solution of the form

yp(x) = c1(x)y1(x) + c2(x)y2(x).

This is only possible if the unknown functions c1(x) and c2(x) satisfy
the system of equations To solve the differential equation Ly =

f , we assume yp(x) = c1(x)y1(x) +
c2(x)y2(x), for Ly1,2 = 0. Then, one need
only solve a simple system of equations.

c′1(x)y1(x) + c′2(x)y2(x) = 0

c′1(x)y′1(x) + c′2(x)y′2(x) =
f (x)
a(x)

. (2.87)

System (2.87) can be solved as

c′1(x) = − f y2

aW(y1, y2)
,

c′1(x) =
f y1

aW(y1, y2)
,

where W(y1, y2) = y1y′2 − y′1y2 is the
Wronskian.

It is standard to solve this system for the derivatives of the unknown
functions and then present the integrated forms. However, one could
just start from here.

Example 2.17. Consider the problem: y′′ − y = e2x. We want the general
solution of this nonhomogeneous problem.
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The general solution to the homogeneous problem y′′h − yh = 0 is

yh(x) = c1ex + c2e−x.

In order to use the Method of Variation of Parameters, we seek a solution
of the form

yp(x) = c1(x)ex + c2(x)e−x.

We find the unknown functions by solving the system in (2.87), which in this
case becomes

c′1(x)ex + c′2(x)e−x = 0

c′1(x)ex − c′2(x)e−x = e2x. (2.88)

Adding these equations we find that

2c′1ex = e2x → c′1 =
1
2

ex.

Solving for c1(x) we find

c1(x) =
1
2

∫
ex dx =

1
2

ex.

Subtracting the equations in the system yields

2c′2e−x = −e2x → c′2 = −1
2

e3x.

Thus,

c2(x) = −1
2

∫
e3x dx = −1

6
e3x.

The particular solution is found by inserting these results into yp:

yp(x) = c1(x)y1(x) + c2(x)y2(x)

= (
1
2

ex)ex + (−1
6

e3x)e−x

=
1
3

e2x. (2.89)

Thus, we have the general solution of the nonhomogeneous problem as

y(x) = c1ex + c2e−x +
1
3

e2x.

Example 2.18. Now consider the problem: y′′ + 4y = sin x.
The solution to the homogeneous problem is

yh(x) = c1 cos 2x + c2 sin 2x. (2.90)

We now seek a particular solution of the form

yh(x) = c1(x) cos 2x + c2(x) sin 2x.
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We let y1(x) = cos 2x and y2(x) = sin 2x, a(x) = 1, f (x) = sin x in
system (2.87):

c′1(x) cos 2x + c′2(x) sin 2x = 0

−2c′1(x) sin 2x + 2c′2(x) cos 2x = sin x. (2.91)

Now, use your favorite method for solving a system of two equations and
two unknowns. In this case, we can multiply the first equation by 2 sin 2x and
the second equation by cos 2x. Adding the resulting equations will eliminate
the c′1 terms. Thus, we have

c′2(x) =
1
2

sin x cos 2x =
1
2
(2 cos2 x− 1) sin x.

Inserting this into the first equation of the system, we have

c′1(x) = −c′2(x)
sin 2x
cos 2x

= −1
2

sin x sin 2x = − sin2 x cos x.

These can easily be solved:

c2(x) =
1
2

∫
(2 cos2 x− 1) sin x dx =

1
2
(cos x− 2

3
cos3 x).

c1(x) = −
∫

sinx cos x dx = −1
3

sin3 x.

The final step in getting the particular solution is to insert these functions
into yp(x). This gives

yp(x) = c1(x)y1(x) + c2(x)y2(x)

= (−1
3

sin3 x) cos 2x + (
1
2

cos x− 1
3

cos3 x) sin x

=
1
3

sin x. (2.92)

So, the general solution is

y(x) = c1 cos 2x + c2 sin 2x +
1
3

sin x. (2.93)

2.8 Numerical Solutions of ODEs

So far we have seen some of the standard methods for solving first
and second order differential equations. However, we have had to
restrict ourselves to very special cases in order to get nice analytical
solutions to our initial value problems. While these are not the only
equations for which we can get exact results (see Section 2.7.3 for an-
other common class of second order differential equations), there are
many cases in which exact solutions are not possible. In such cases
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we have to rely on approximation techniques, including the numerical
solution of the equation at hand.

The use of numerical methods to obtain approximate solutions of
differential equations and systems of differential equations has been
known for some time. However, with the advent of powerful comput-
ers and desktop computers, we can now solve many of these problems
with relative ease. The simple ideas used to solve first order differen-
tial equations can be extended to the solutions of more complicated
systems of partial differential equations, such as the large scale prob-
lems of modeling ocean dynamics, weather systems and even cosmo-
logical problems stemming from general relativity.

In this section we will look at the simplest method for solving first
order equations, Euler’s Method. While it is not the most efficient
method, it does provide us with a picture of how one proceeds and
can be improved by introducing better techniques, which are typically
covered in a numerical analysis text.

Let’s consider the class of first order initial value problems of the
form

dy
dx

= f (x, y), y(x0) = y0. (2.94)

We are interested in finding the solution y(x) of this equation which
passes through the initial point (x0, y0) in the xy-plane for values of x
in the interval [a, b], where a = x0. We will seek approximations of the
solution at N points, labeled xn for n = 1, . . . , N. For equally spaced
points we have ∆x = x1 − x0 = x2 − x1, etc. Then, xn = x0 + n∆x. In
Figure 2.13 we show three such points on the x-axis.

Figure 2.13: The basics of Euler’s
Method are shown. An interval of the
x axis is broken into N subintervals.
The approximations to the solutions are
found using the slope of the tangent to
the solution, given by f (x, y). Knowing
previous approximations at (xn−1, yn−1),
one can determine the next approxima-
tion, yn.

We will develop a simple numerical method, called Euler’s Method.
We rely on Figure 2.13 to do this. As already noted, we first break
the interval of interest into N subintervals with N + 1 points xn. We
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already know a point on the solution (x0, y(x0)) = (x0, y0). How do
we find the solution for other x values?

We first note that the differential equation gives us the slope of the
tangent line at (x, y(x)) of the solution y(x). The slope is f (x, y(x)).
Referring to Figure 2.13, we see the tangent line drawn at (x0, y0). We
look now at x = x1. A vertical line intersects both the solution curve
and the tangent line. While we do not know the solution, we can
determine the tangent line and find the intersection point. As seen in
the figure, this intersection point is in theory close to the point on the
solution curve. So, we will designate y1 as the approximation of the
solution y(x1). We just need to determine y1.

The idea is simple. We approximate the derivative in the differential
equation by its difference quotient:

dy
dx
≈ y1 − y0

x1 − x0
=

y1 − y0

∆x
. (2.95)

But, we have by the differential equation that the slope of the tangent
to the curve at (x0, y0) is

y′(x0) = f (x0, y0).

Thus,
y1 − y0

∆x
≈ f (x0, y0). (2.96)

So, we can solve this equation for y1 to obtain

y1 = y0 + ∆x f (x0, y0). (2.97)

This give y1 in terms of quantities that we know.
We now proceed to approximate y(x2). Referring to Figure 2.13,

we see that this can be done by using the slope of the solution curve
at (x1, y1). The corresponding tangent line is shown passing though
(x1, y1) and we can then get the value of y2. Following the previous
argument, we find that

y2 = y1 + ∆x f (x1, y1). (2.98)

Continuing this procedure for all xn, we arrive at the following nu-
merical scheme for determining a numerical solution to Euler’s equa-
tion:

y0 = y(x0),

yn = yn−1 + ∆x f (xn−1, yn−1), n = 1, . . . , N. (2.99)

Example 2.19. We will consider a standard example for which we know the
exact solution. This way we can compare our results. The problem is given
that

dy
dx

= x + y, y(0) = 1, (2.100)



82 mathematical physics

find an approximation for y(1).
First, we will do this by hand. We will break up the interval [0, 1], since we

want the solution at x = 1 and the initial value is at x = 0. Let ∆x = 0.50.
Then, x0 = 0, x1 = 0.5 and x2 = 1.0. Note that N = b−a

∆x = 2.
We can carry out Euler’s Method systematically. We set up a table for the

needed values. Such a table is shown in Table 2.1.

n xn yn = yn−1 + ∆x f (xn−1, yn−1 = 0.5xn−1 + 1.5yn−1

0 0 1

1 0.5 0.5(0) + 1.5(1.0) = 1.5
2 1.0 0.5(0.5) + 1.5(1.5) = 2.5

Table 2.1: Application of Euler’s Method
for y′ = x + y, y(0) = 1 and ∆x = 0.5.

Note how the table is set up. There is a column for each xn and yn. The
first row is the initial condition. We also made use of the function f (x, y)
in computing the yn’s. This sometimes makes the computation easier. As a
result, we find that the desired approximation is given as y2 = 2.5.

Is this a good result? Well, we could make the spatial increments
smaller. Let’s repeat the procedure for ∆x = 0.2, or N = 5. The results
are in Table 2.2.

n xn yn = 0.2xn−1 + 1.2yn−1

0 0 1

1 0.2 0.2(0) + 1.2(1.0) = 1.2
2 0.4 0.2(0.2) + 1.2(1.2) = 1.48
3 0.6 0.2(0.4) + 1.2(1.48) = 1.856
4 0.8 0.2(0.6) + 1.2(1.856) = 2.3472
5 1.0 0.2(0.8) + 1.2(2.3472) = 2.97664

Table 2.2: Application of Euler’s Method
for y′ = x + y, y(0) = 1 and ∆x = 0.2.

Now we see that our approximation is y1 = 2.97664. So, it looks
like the value is near 3, but we cannot say much more. Decreasing ∆x
more shows that we are beginning to converge to a solution. We see
this in Table 2.3.

∆x yN ≈ y(1)
0.5 2.5
0.2 2.97664

0.1 3.187484920

0.01 3.409627659

0.001 3.433847864

0.0001 3.436291854

Table 2.3: Results of Euler’s Method for
y′ = x + y, y(0) = 1 and varying ∆x

Of course, these values were not done by hand. The last computa-
tion would have taken 1000 lines in the table, or at least 40 pages! One
could use a computer to do this. A simple code in Maple would look
like the following:
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> restart:

> f:=(x,y)->y+x;

> a:=0: b:=1: N:=100: h:=(b-a)/N;

> x[0]:=0: y[0]:=1:

for i from 1 to N do

y[i]:=y[i-1]+h*f(x[i-1],y[i-1]):

x[i]:=x[0]+h*(i):

od:

evalf(y[N]);

In this case we could simply use the exact solution. The exact solu-
tion is easily found as

y(x) = 2ex − x− 1.

(The reader can verify this.) So, the value we are seeking is

y(1) = 2e− 2 = 3.4365636 . . . .

Thus, even the last numerical solution was off by about 0.00027.

Sol
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0.750.25 1.00.50.0

Figure 2.14: A comparison of the results
Euler’s Method to the exact solution for
y′ = x + y, y(0) = 1 and N = 10.

Adding a few extra lines for plotting, we can visually see how well
the approximations compare to the exact solution. The Maple code for
doing such a plot is given below.

> with(plots):

> Data:=[seq([x[i],y[i]],i=0..N)]:

> P1:=pointplot(Data,symbol=DIAMOND):

> Sol:=t->-t-1+2*exp(t);

> P2:=plot(Sol(t),t=a..b,Sol=0..Sol(b)):

> display({P1,P2});



84 mathematical physics

We show in Figures 2.14-2.15 the results for N = 10 and N = 100.
In Figure 2.14 we can see how quickly the numerical solution diverges
from the exact solution. In Figure 2.15 we can see that visually the
solutions agree, but we note that from Table 2.3 that for ∆x = 0.01, the
solution is still off in the second decimal place with a relative error of
about 0.8%.
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0.75

Figure 2.15: A comparison of the results
Euler’s Method to the exact solution for
y′ = x + y, y(0) = 1 and N = 100.

Why would we use a numerical method when we have the exact so-
lution? Exact solutions can serve as test cases for our methods. We can
make sure our code works before applying them to problems whose
solution is not known.

There are many other methods for solving first order equations.
One commonly used method is the fourth order Runge-Kutta method.
This method has smaller errors at each step as compared to Euler’s
Method. It is well suited for programming and comes built-in in many
packages like Maple and MATLAB. Typically, it is set up to handle
systems of first order equations.

In fact, it is well known that nth order equations can be written as
a system of n first order equations. Consider the simple second order
equation

y′′ = f (x, y).

This is a larger class of equations than the second order constant co-
efficient equation. We can turn this into a system of two first or-
der differential equations by letting u = y and v = y′ = u′. Then,
v′ = y′′ = f (x, u). So, we have the first order system

u′ = v,

v′ = f (x, u). (2.101)

We will not go further into the Runge-Kutta Method here. You can
find more about it in a numerical analysis text. However, we will
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see that systems of differential equations do arise naturally in physics.
Such systems are often coupled equations and lead to interesting be-
haviors.

2.9 Linear Systems

2.9.1 Coupled Oscillators

In the last section we saw that the numerical solution of second
order equations, or higher, can be cast into systems of first order equa-
tions. Such systems are typically coupled in the sense that the solution
of at least one of the equations in the system depends on knowing one
of the other solutions in the system. In many physical systems this
coupling takes place naturally. We will introduce a simple model in
this section to illustrate the coupling of simple oscillators. However,
we will reserve solving the coupled system of oscillators until the next
chapter after exploring the needed mathematics.

There are many problems in physics that result in systems of equa-
tions. This is because the most basic law of physics is given by New-
ton’s Second Law, which states that if a body experiences a net force,
it will accelerate. Thus,

∑ F = ma.

Since a = ẍ we have a system of second order differential equations in
general for three dimensional problems, or one second order differen-
tial equation for one dimensional problems.

We have already seen the simple problem of a mass on a spring
as shown in Figure 2.4. Recall that the net force in this case is the
restoring force of the spring given by Hooke’s Law,

Fs = −kx,

where k > 0 is the spring constant and x is the elongation of the spring.
When it is positive, the spring force is negative and when it is negative
the spring force is positive. The equation for simple harmonic motion
for the mass-spring system was found to be given by

mẍ + kx = 0.
m

k

x
Figure 2.16: Spring-Mass system.

This second order equation can be written as a system of two first
order equations in terms of the unknown position and velocity. We
first set y = ẋ and then rewrite the second order equation in terms of
x and y. Thus, we have

ẋ = y

ẏ = − k
m

x. (2.102)
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The coefficient matrix for this system is

(
0 1
−ω2 0

)
, where ω2 = k

m .

One can look at more complicated spring-mass systems. Consider
two blocks attached with two springs as in Figure 2.17. In this case
we apply Newton’s second law for each block. We will designate the
elongations of each spring from equilibrium as x1 and x2. These are
shown in Figure 2.17.

m

k

x

m

k

1 2

21

1 x2

Figure 2.17: Spring-Mass system.

For mass m1, the forces acting on it are due to each spring. The
first spring with spring constant k1 provides a force on m1 of −k1x1.
The second spring is stretched, or compressed, based upon the relative
locations of the two masses. So, it will exert a force on m1 of k2(x2 −
x1).

Similarly, the only force acting directly on mass m2 is provided by
the restoring force from spring 2. So, that force is given by −k2(x2 −
x1). The reader should think about the signs in each case.

Putting this all together, we apply Newton’s Second Law to both
masses. We obtain the two equations

m1 ẍ1 = −k1x1 + k2(x2 − x1)

m2 ẍ2 = −k2(x2 − x1). (2.103)

Thus, we see that we have a coupled system of two second order dif-
ferential equations.

One can rewrite this system of two second order equations as a
system of four first order equations by letting x3 = ẋ1 and x4 = ẋ2.
This leads to the system

ẋ1 = x3

ẋ2 = x4

ẋ3 = − k1

m1
x1 +

k2

m1
(x2 − x1)

ẋ4 = − k2

m2
(x2 − x1). (2.104)

As we will see, this system can be written more compactly in matrix
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form:

d
dt


x1

x2

x3

x4

 =


0 0 1 0
0 0 0 1

− k1+k2
m1

k2
m1

0 0
k2
m2

− k2
m2

0 0




x1

x2

x3

x4

 (2.105)

However, before we can solve this system of first order equations, we
need to recall a few things from linear algebra. This will be done in the
next chapter. For now, we will return to simpler systems and explore
the behavior of typical solutions in these planar systems.

2.9.2 Planar Systems

We now consider examples of solving a coupled system of first or-
der differential equations in the plane. We will focus on the theory of
linear systems with constant coefficients. Understanding these simple
systems helps in future studies of nonlinear systems, which contain
much more interesting behaviors, such as the onset of chaos. In the
next chapter we will return to these systems and describe a matrix
approach to obtaining the solutions.

A general form for first order systems in the plane is given by a
system of two equations for unknowns x(t) and y(t) :

x′(t) = P(x, y, t)

y′(t) = Q(x, y, t). (2.106)

An autonomous system is one in which there is no explicit time depen-
dence:

x′(t) = P(x, y)

y′(t) = Q(x, y). (2.107)

Otherwise the system is called nonautonomous.
A linear system takes the form

x′ = a(t)x + b(t)y + e(t)

y′ = c(t)x + d(t)y + f (t). (2.108)

A homogeneous linear system results when e(t) = 0 and f (t) = 0.
A linear, constant coefficient system of first order differential equations

is given by

x′ = ax + by + e

y′ = cx + dy + f . (2.109)

We will focus on linear, homogeneous systems of constant coeffi-
cient first order differential equations:
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x′ = ax + by

y′ = cx + dy. (2.110)

As we will see later, such systems can result by a simple translation
of the unknown functions. These equations are said to be coupled if
either b 6= 0 or c 6= 0.

We begin by noting that the system (2.110) can be rewritten as a
second order constant coefficient linear differential equation, which
we already know how to solve. We differentiate the first equation in
system system (2.110) and systematically replace occurrences of y and
y′, since we also know from the first equation that y = 1

b (x′ − ax).
Thus, we have

x′′ = ax′ + by′

= ax′ + b(cx + dy)

= ax′ + bcx + d(x′ − ax). (2.111)

Rewriting the last line, we have

x′′ − (a + d)x′ + (ad− bc)x = 0. (2.112)

This is a linear, homogeneous, constant coefficient ordinary differ-
ential equation. We know that we can solve this by first looking at the
roots of the characteristic equation

r2 − (a + d)r + ad− bc = 0 (2.113)

and writing down the appropriate general solution for x(t). Then we
can find y(t) using Equation (2.110):

y =
1
b
(x′ − ax).

We now demonstrate this for a specific example.

Example 2.20. Consider the system of differential equations

x′ = −x + 6y

y′ = x− 2y. (2.114)

Carrying out the above outlined steps, we have that x′′ + 3x′ − 4x = 0. This
can be shown as follows:

x′′ = −x′ + 6y′

= −x′ + 6(x− 2y)

= −x′ + 6x− 12
(

x′ + x
6

)
= −3x′ + 4x (2.115)
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The resulting differential equation has a characteristic equation of r2 +

3r − 4 = 0. The roots of this equation are r = 1,−4. Therefore, x(t) =

c1et + c2e−4t. But, we still need y(t). From the first equation of the system
we have

y(t) =
1
6
(x′ + x) =

1
6
(2c1et − 3c2e−4t).

Thus, the solution to the system is

x(t) = c1et + c2e−4t,

y(t) = 1
3 c1et − 1

2 c2e−4t. (2.116)

Sometimes one needs initial conditions. For these systems we would
specify conditions like x(0) = x0 and y(0) = y0. These would allow
the determination of the arbitrary constants as before.

Example 2.21. Solve

x′ = −x + 6y

y′ = x− 2y. (2.117)

given x(0) = 2, y(0) = 0.
We already have the general solution of this system in (2.116). Inserting

the initial conditions, we have

2 = c1 + c2,

0 = 1
3 c1 − 1

2 c2. (2.118)

Solving for c1 and c2 gives c1 = 6/5 and c2 = 4/5. Therefore, the solution
of the initial value problem is

x(t) = 2
5
(
3et + 2e−4t) ,

y(t) = 2
5
(
et − e−4t) . (2.119)

2.9.3 Equilibrium Solutions and Nearby Behaviors

In studying systems of differential equations, it is often useful to
study the behavior of solutions without obtaining an algebraic form
for the solution. This is done by exploring equilibrium solutions and
solutions nearby equilibrium solutions. Such techniques will be seen
to be useful later in studying nonlinear systems.

We begin this section by studying equilibrium solutions of system
(2.109). For equilibrium solutions the system does not change in time.
Therefore, equilibrium solutions satisfy the equations x′ = 0 and y′ =
0. Of course, this can only happen for constant solutions. Let x0 and y0
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be the (constant) equilibrium solutions. Then, x0 and y0 must satisfy
the system

0 = ax0 + by0 + e,

0 = cx0 + dy0 + f . (2.120)

This is a linear system of nonhomogeneous algebraic equations.
One only has a unique solution when the determinant of the system
is not zero, i.e., ad − bc 6= 0. Using Cramer’s (determinant) Rule for
solving such systems, we have

x0 = −

∣∣∣∣∣ e b
f d

∣∣∣∣∣∣∣∣∣∣ a b
c d

∣∣∣∣∣
, y0 = −

∣∣∣∣∣ a e
c f

∣∣∣∣∣∣∣∣∣∣ a b
c d

∣∣∣∣∣
. (2.121)

If the system is homogeneous, e = f = 0, then we have that the
origin is the equilibrium solution; i.e., (x0, y0) = (0, 0). Often we will
have this case since one can always make a change of coordinates from
(x, y) to (u, v) by u = x− x0 and v = y− y0. Then, u0 = v0 = 0.

Next we are interested in the behavior of solutions near the equilib-
rium solutions. Later this behavior will be useful in analyzing more
complicated nonlinear systems. We will look at some simple systems
that are readily solved.

Example 2.22. Stable Node (sink)
Consider the system

x′ = −2x

y′ = −y. (2.122)

This is a simple uncoupled system. Each equation is simply solved to give

x(t) = c1e−2t and y(t) = c2e−t.

In this case we see that all solutions tend towards the equilibrium point, (0, 0).
This will be called a stable node, or a sink.

Before looking at other types of solutions, we will explore the stable
node in the above example. There are several methods of looking at the
behavior of solutions. We can look at solution plots of the dependent
versus the independent variables, or we can look in the xy-plane at the
parametric curves (x(t), y(t)).
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Figure 2.18: Plots of solutions of Exam-
ple 2.22 for several initial conditions.

Solution Plots: One can plot each solution as a function of t given
a set of initial conditions. Examples are are shown in Figure 2.18 for
several initial conditions. Note that the solutions decay for large t.
Special cases result for various initial conditions. Note that for t = 0,
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x(0) = c1 and y(0) = c2. (Of course, one can provide initial conditions
at any t = t0. It is generally easier to pick t = 0 in our general expla-
nations.) If we pick an initial condition with c1=0, then x(t) = 0 for all
t. One obtains similar results when setting y(0) = 0.

Phase Portrait: There are other types of plots which can provide
additional information about the solutions even if we cannot find the
exact solutions as we can for these simple examples. In particular,
one can consider the solutions x(t) and y(t) as the coordinates along
a parameterized path, or curve, in the plane: r = (x(t), y(t)) Such
curves are called trajectories or orbits. The xy-plane is called the phase
plane and a collection of such orbits gives a phase portrait for the family
of solutions of the given system.

One method for determining the equations of the orbits in the phase
plane is to eliminate the parameter t between the known solutions to
get a relationship between x and y. In the above example we can do
this, since the solutions are known. In particular, we have

x = c1e−2t = c1

(
y
c2

)2
≡ Ay2.

Another way to obtain information about the orbits comes from
noting that the slopes of the orbits in the xy-plane are given by dy/dx.
For autonomous systems, we can write this slope just in terms of x and
y. This leads to a first order differential equation, which possibly could
be solved analytically, solved numerically, or just used to produce a
direction field. We will see that direction fields are useful in determining
qualitative behaviors of the solutions without actually finding explicit
solutions.
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Figure 2.19: Orbits for Example 2.22.

First we will obtain the orbits for Example 2.22 by solving the cor-
responding slope equation. First, recall that for trajectories defined
parametrically by x = x(t) and y = y(t), we have from the Chain Rule
for y = y(x(t)) that

dy
dt

=
dy
dx

dx
dt

.

Therefore,

dy
dx

=
dy
dt
dx
dt

. (2.123)

For the system in (2.122) we use Equation (2.123) to obtain the equation
for the slope at a point on the orbit:

dy
dx

=
y

2x
.

The general solution of this first order differential equation is found
using separation of variables as x = Ay2 for A an arbitrary constant.
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Plots of these solutions in the phase plane are given in Figure 2.19.
[Note that this is the same form for the orbits that we had obtained
above by eliminating t from the solution of the system.]

Once one has solutions to differential equations, we often are inter-
ested in the long time behavior of the solutions. Given a particular ini-
tial condition (x0, y0), how does the solution behave as time increases?
For orbits near an equilibrium solution, do the solutions tend towards,
or away from, the equilibrium point? The answer is obvious when one
has the exact solutions x(t) and y(t). However, this is not always the
case.

Let’s consider the above example for initial conditions in the first
quadrant of the phase plane. For a point in the first quadrant we have
that

dx/dt = −2x < 0,

meaning that as t→ ∞, x(t) get more negative. Similarly,

dy/dt = −y < 0,

indicates that y(t) is also getting smaller for this problem. Thus, these
orbits tend towards the origin as t → ∞. This qualitative information
was obtained without relying on the known solutions to the problem.

Direction Fields: Another way to determine the behavior of our
system is to draw the direction field. Recall that a direction field is
a vector field in which one plots arrows in the direction of tangents
to the orbits. This is done because the slopes of the tangent lines are
given by dy/dx. For the system (2.110), the slope is

dy
dx

=
cx + dy
ax + by

.

In general, for nonautonomous systems, we obtain a first order differ-
ential equation of the form

dy
dx

= F(x, y).

This particular equation can be solved by the reader.

Figure 2.20: Sketch of tangent vectors for
Example 2.22.

Example 2.23. Draw the direction field for Example 2.22.
We can use software to draw direction fields. However, one can sketch these

fields by hand. we have that the slope of the tangent at this point is given by

dy
dx

=
−y
−2x

=
y

2x
.

For each point in the plane one draws a piece of tangent line with this slope. In
Figure 2.20 we show a few of these. For (x, y) = (1, 1) the slope is dy/dx =

1/2. So, we draw an arrow with slope 1/2 at this point. From system (2.122),
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we have that x′ and y′ are both negative at this point. Therefore, the vector
points down and to the left.

We can do this for several points, as shown in Figure 2.20. Sometimes one
can quickly sketch vectors with the same slope. For this example, when y = 0,
the slope is zero and when x = 0 the slope is infinite. So, several vectors can
be provided. Such vectors are tangent to curves known as isoclines in which
dy
dx =constant.

It is often difficult to provide an accurate sketch of a direction field. Com-
puter software can be used to provide a better rendition. For Example 2.22
the direction field is shown in Figure 2.21. Looking at this direction field, one
can begin to “see” the orbits by following the tangent vectors.
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Direction Field Figure 2.21: Direction field for Example
2.22.

Of course, one can superimpose the orbits on the direction field. This is
shown in Figure 2.22. Are these the patterns you saw in Figure 2.21?

In this example we see all orbits “flow” towards the origin, or equilibrium
point. Again, this is an example of what is called a stable node or a sink.
(Imagine what happens to the water in a sink when the drain is unplugged.)
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Figure 2.22: Phase portrait for Example
2.22.
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Example 2.24. Saddle
Consider the system

x′ = −x

y′ = y. (2.124)
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Figure 2.23: Plots of solutions of Exam-
ple 2.24 for several initial conditions.

This is another uncoupled system. The solutions are again simply gotten
by integration. We have that x(t) = c1e−t and y(t) = c2et. Here we have
that x decays as t gets large and y increases as t gets large. In particular, if
one picks initial conditions with c2 = 0, then orbits follow the x-axis towards
the origin. For initial points with c1 = 0, orbits originating on the y-axis
will flow away from the origin. Of course, in these cases the origin is an
equilibrium point and once at equilibrium, one remains there.

In fact, there is only one line on which to pick initial conditions such that
the orbit leads towards the equilibrium point. No matter how small c2 is,
sooner, or later, the exponential growth term will dominate the solution. One
can see this behavior in Figure 2.23.
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Figure 2.24: Phase portrait for Example
2.24, a saddle.
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Figure 2.25: Plots of solutions of Exam-
ple 2.25 for several initial conditions.

Similar to the first example, we can look at a variety of plots. These
are given by Figures 2.23-2.24. The orbits can be obtained from the
system as

dy
dx

=
dy/dt
dx/dt

= − y
x

.

The solution is y = A
x . For different values of A 6= 0 we obtain a family

of hyperbolae. These are the same curves one might obtain for the level
curves of a surface known as a saddle surface, z = xy. Thus, this type
of equilibrium point is classified as a saddle point. From the phase
portrait we can verify that there are many orbits that lead away from
the origin (equilibrium point), but there is one line of initial conditions
that leads to the origin and that is the x-axis. In this case, the line of
initial conditions is given by the x-axis.
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Example 2.25. Unstable Node (source)

x′ = 2x

y′ = y. (2.125)

This example is similar to Example 2.22. The solutions are obtained by
replacing t with −t. The solutions, orbits and direction fields can be seen in
Figures 2.25-2.26. This is once again a node, but all orbits lead away from
the equilibrium point. It is called an unstable node or a source.
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Figure 2.26: Phase portrait for Example
2.25, an unstable node or source.

Example 2.26. Center

x′ = y

y′ = −x. (2.126)

This system is a simple, coupled system. Neither equation can
be solved without some information about the other unknown func-
tion. However, we can differentiate the first equation and use the
second equation to obtain

x′′ + x = 0.

We recognize this equation from the last chapter as one that appears
in the study of simple harmonic motion. The solutions are pure
sinusoidal oscillations:

x(t) = c1 cos t + c2 sin t, y(t) = −c1 sin t + c2 cos t.
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Figure 2.27: Plots of solutions of Exam-
ple 2.26 for several initial conditions.

In the phase plane the trajectories can be determined either by
looking at the direction field, or solving the first order equation

dy
dx

= − x
y

.
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Performing a separation of variables and integrating, we find that

x2 + y2 = C.

Thus, we have a family of circles for C > 0. (Can you prove this
using the general solution?) Looking at the results graphically in
Figures 2.27-2.28 confirms this result. This type of point is called a
center.
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Figure 2.28: Phase portrait for Example
2.26, a center.

Example 2.27. Focus (spiral)

x′ = αx + y

y′ = −x. (2.127)
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Figure 2.29: Plots of solutions of Ex-
ample 2.27 for several initial conditions,
α = −0.2.

In this example, we will see an additional set of behaviors of
equilibrium points in planar systems. We have added one term,
αx, to the system in Example 2.26. We will consider the effects for
two specific values of the parameter: α = 0.1,−0.2. The resulting
behaviors are shown in the remaining graphs. We see orbits that
look like spirals. These orbits are stable and unstable spirals (or foci,
the plural of focus.)

We can understand these behaviors by once again relating the sys-
tem of first order differential equations to a second order differen-
tial equation. Using the usual method for obtaining a second order
equation form a system, we find that x(t) satisfies the differential
equation

x′′ − αx′ + x = 0.

We recall from our first course that this is a form of damped simple
harmonic motion. We will explore the different types of solutions that
will result for various α’s.
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Figure 2.30: Plots of solutions of Ex-
ample 2.27 for several initial conditions,
α = 0.1.



free fall and harmonic oscillators 97

The characteristic equation is r2 − αr + 1 = 0. The solution of this
quadratic equation is

r =
α±
√

α2 − 4
2

.

There are five special cases to consider as shown below.

Classification of Solutions of x′′ − αx′ + x = 0

1. α = −2. There is one real solution. This case is called critical
damping since the solution r = −1 leads to exponential decay.
The solution is x(t) = (c1 + c2t)e−t.

2. α < −2. There are two real, negative solutions, r = −µ,−ν,
µ, ν > 0. The solution is x(t) = c1e−µt + c2e−νt. In this case
we have what is called overdamped motion. There are no os-
cillations

3. −2 < α < 0. There are two complex conjugate solutions
r = α/2± iβ with real part less than zero and β =

√
4−α2

2 . The
solution is x(t) = (c1 cos βt + c2 sin βt)eαt/2. Since α < 0, this
consists of a decaying exponential times oscillations. This is
often called an underdamped oscillation.

4. α = 0. This leads to simple harmonic motion.

5. 0 < α < 2. This is similar to the underdamped case, except
α > 0. The solutions are growing oscillations.

6. α = 2. There is one real solution. The solution is x(t) =

(c1 + c2t)et. It leads to unbounded growth in time.

7. For α > 2. There are two real, positive solutions r = µ, ν > 0.
The solution is x(t) = c1eµt + c2eνt, which grows in time.

For α < 0 the solutions are losing energy, so the solutions can
oscillate with a diminishing amplitude. (See Figure 2.29.) For α > 0,
there is a growth in the amplitude, which is not typical. (See Figure
2.30.) Of course, there can be overdamped motion if the magnitude
of α is too large.

Example 2.28. Degenerate Node For this example, we will write out the
solutions. It is a coupled system for which only the second equation is coupled.

x′ = −x

y′ = −2x− y. (2.128)

There are two possible approaches:
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α=0.1 Figure 2.31: Phase portrait for Example
2.27 with α = 0.1. This is an unstable
focus, or spiral.
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α=−0.2 Figure 2.32: Phase portrait for Example
2.27 with α = −0.2. This is a stable fo-
cus, or spiral.

a. We could solve the first equation to find x(t) = c1e−t. Inserting this
solution into the second equation, we have

y′ + y = −2c1e−t.

This is a relatively simple linear first order equation for y = y(t). The inte-
grating factor is µ = et. The solution is found as y(t) = (c2 − 2c1t)e−t.

b. Another method would be to proceed to rewrite this as a second order
equation. Computing x′′ does not get us very far. So, we look at

y′′ = −2x′ − y′

= 2x− y′

= −2y′ − y. (2.129)

Therefore, y satisfies
y′′ + 2y′ + y = 0.

The characteristic equation has one real root, r = −1. So, we write

y(t) = (k1 + k2t)e−t.
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This is a stable degenerate node. Combining this with the solution x(t) =

c1e−t, we can show that y(t) = (c2 − 2c1t)e−t as before.
In Figure 2.33 we see several orbits in this system. It differs from the stable

node show in Figure 2.19 in that there is only one direction along which the
orbits approach the origin instead of two. If one picks c1 = 0, then x(t) = 0
and y(t) = c2e−t. This leads to orbits running along the y-axis as seen in the
figure. x

K0.10 K0.05 0 0.05 0.10

y

K0.10

K0.05

0.05

0.10

Figure 2.33: Plots of solutions of Exam-
ple 2.28 for several initial conditions.

Example 2.29. A Line of Equilibria, Zero Root

x′ = 2x− y

y′ = −2x + y. (2.130)

In this last example, we have a coupled set of equations. We rewrite it as a
second order differential equation:

x′′ = 2x′ − y′

= 2x′ − (−2x + y)

= 2x′ + 2x + (x′ − 2x) = 3x′. (2.131)

So, the second order equation is

x′′ − 3x′ = 0

and the characteristic equation is 0 = r(r− 3). This gives the general solution
as

x(t) = c1 + c2e3t

and thus

y = 2x− x′ = 2(c1 + c3
2t)− (3c2e3t) = 2c1 − c2e3t.

In Figure 2.34 we show the direction field. The constant slope field seen in
this example is confirmed by a simple computation:

dy
dx

=
−2x + y
2x− y

= −1.

Furthermore, looking at initial conditions with y = 2x, we have at t = 0,

2c1 − c2 = 2(c1 + c2) ⇒ c2 = 0.

Therefore, points on this line remain on this line forever, (x, y) = (c1, 2c1).
This line of fixed points is called a line of equilibria.

x
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K2

K1

1

2

3

Figure 2.34: Plots of direction field of Ex-
ample 2.29.
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2.9.4 Polar Representation of Spirals

In the examples with a center or a spiral, one might be able to write
the solutions in polar coordinates. Recall that a point in the plane
can be described by either Cartesian (x, y) or polar (r, θ) coordinates.
Given the polar form, one can find the Cartesian components using

x = r cos θ and y = r sin θ.

Given the Cartesian coordinates, one can find the polar coordinates
using

r2 = x2 + y2 and tan θ =
y
x

. (2.132)

Since x and y are functions of t, then naturally we can think of r
and θ as functions of t. The equations that they satisfy are obtained by
differentiating the above relations with respect to t.

Differentiating the first equation in (2.132) gives

rr′ = xx′ + yy′.

Inserting the expressions for x′ and y′ from system 2.110, we have

rr′ = x(ax + by) + y(cx + dy).

In some cases this may be written entirely in terms of r’s. Similarly,
we have that

θ′ =
xy′ − yx′

r2 ,

which the reader can prove for homework.
In summary, when converting first order equations from rectangular

to polar form, one needs the relations below.

Time Derivatives of Polar Variables

r′ =
xx′ + yy′

r
,

θ′ =
xy′ − yx′

r2 . (2.133)

Example 2.30. Rewrite the following system in polar form and solve the
resulting system.

x′ = ax + by

y′ = −bx + ay. (2.134)

We first compute r′ and θ′:

rr′ = xx′ + yy′ = x(ax + by) + y(−bx + ay) = ar2.
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r2θ′ = xy′ − yx′ = x(−bx + ay)− y(ax + by) = −br2.

This leads to simpler system

r′ = ar

θ′ = −b. (2.135)

This system is uncoupled. The second equation in this system indicates that
we traverse the orbit at a constant rate in the clockwise direction. Solving
these equations, we have that r(t) = r0eat, θ(t) = θ0 − bt. Eliminating t
between these solutions, we finally find the polar equation of the orbits:

r = r0e−a(θ−θ0)t/b.

If you graph this for a 6= 0, you will get stable or unstable spirals.

Example 2.31. Consider the specific system

x′ = −y + x

y′ = x + y. (2.136)

In order to convert this system into polar form, we compute

rr′ = xx′ + yy′ = x(−y + x) + y(x + y) = r2.

r2θ′ = xy′ − yx′ = x(x + y)− y(−y + x) = r2.

This leads to simpler system

r′ = r

θ′ = 1. (2.137)

Solving these equations yields

r(t) = r0et, θ(t) = t + θ0.

Eliminating t from this solution gives the orbits in the phase plane, r(θ) =

r0eθ−θ0 .

A more complicated example arises for a nonlinear system of dif-
ferential equations. Consider the following example.

Example 2.32.

x′ = −y + x(1− x2 − y2)

y′ = x + y(1− x2 − y2). (2.138)

Transforming to polar coordinates, one can show that in order to
convert this system into polar form, we compute

r′ = r(1− r2), θ′ = 1.

This uncoupled system can be solved and this is left to the reader.
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2.10 Appendix: The Nonlinear Pendulum

We can also make the simple pendulum more realistic by adding
damping. This could be due to energy loss in the way the string is
attached to the support or due to the drag on the mass, etc. Assum-
ing that the damping is proportional to the angular velocity, we have
equations for the damped nonlinear and damped linear pendula:

Lθ̈ + bθ̇ + g sin θ = 0. (2.139)

Lθ̈ + bθ̇ + gθ = 0. (2.140)

Finally, we can add forcing. Imagine that the support is attached to
a device to make the system oscillate horizontally at some frequency.
Then we could have equations such as

Lθ̈ + bθ̇ + g sin θ = F cos ωt. (2.141)

We will look at these and other oscillation problems later in our dis-
cussion.

Before returning to studying the equilibrium solutions of the non-
linear pendulum, we will look at how far we can get at obtaining ana-
lytical solutions. First, we investigate the simple linear pendulum.

The linear pendulum equation (2.32) is a constant coefficient sec-
ond order linear differential equation. The roots of the characteristic

equations are r = ±
√

g
L i. Thus, the general solution takes the form

θ(t) = c1 cos(
√

g
L

t) + c2 sin(
√

g
L

t). (2.142)

We note that this is usually simplified by introducing the angular fre-
quency

ω ≡
√

g
L

. (2.143)

One consequence of this solution, which is used often in introduc-
tory physics, is an expression for the period of oscillation of a simple
pendulum. The period is found to be

T =
2π

ω
= 2π

√
g
L

. (2.144)

As we have seen, this value for the period of a simple pendulum
was derived assuming a small angle approximation. How good is this
approximation? What is meant by a small angle? We could recall from
calculus that the Taylor series approximation of sin θ about θ = 0 :

sin θ = θ − θ3

3!
+

θ5

5!
+ . . . . (2.145)
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One can obtain a bound on the error when truncating this series to one
term after taking a numerical analysis course. But we can just simply
plot the relative error, which is defined as

Relative Error =
sin θ − θ

sin θ
.

A plot of the relative error is given in Figure 2.35. Thus for θ ≈ 0.4
radians (or, degrees) we have that the relative error is about 4%.

Relative Error
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Relative Error (%)
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Figure 2.35: The relative error in percent
when approximating sin θ by θ.

We would like to do better than this. So, we now turn to the non-
linear pendulum. We first rewrite Equation (2.141) is the simpler form

θ̈ + ω2θ = 0. (2.146)

We next employ a technique that is useful for equations of the form

θ̈ + F(θ) = 0

when it is easy to integrate the function F(θ). Namely, we note that

d
dt

[
1
2

θ̇2 +
∫ θ(t)

F(φ) dφ

]
= (θ̈ + F(θ))θ̇.

For our problem, we multiply Equation (2.146) by θ̇,

θ̈θ̇ + ω2θθ̇ = 0

and note that the left side of this equation is a perfect derivative. Thus,

d
dt

[
1
2

θ̇2 −ω2 cos θ

]
= 0.

Therefore, the quantity in the brackets is a constant. So, we can write

1
2

θ̇2 −ω2 cos θ = c. (2.147)

Solving for θ̇, we obtain

dθ

dt
=
√

2(c + ω2 cos θ).

This equation is a separable first order equation and we can rearrange
and integrate the terms to find that

t =
∫

dt =
∫ dθ√

2(c + ω2 cos θ)
.

Of course, one needs to be able to do the integral. When one gets
a solution in this implicit form, one says that the problem has been
solved by quadratures. Namely, the solution is given in terms of some
integral.
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In fact, the above integral can be transformed into what is know
as an elliptic integral of the first kind. We will rewrite our result and
then use it to obtain an approximation to the period of oscillation of the
nonlinear pendulum, leading to corrections to the linear result found
earlier.

We will first rewrite the constant found in (2.147). This requires a
little physics. The swinging of a mass on a string, assuming no energy
loss at the pivot point, is a conservative process. Namely, the total
mechanical energy is conserved. Thus, the total of the kinetic and
gravitational potential energies is a constant. The kinetic energy of the
masses on the string is given as

T =
1
2

mv2 =
1
2

mL2θ̇2.

The potential energy is the gravitational potential energy. If we set the
potential energy to zero at the bottom of the swing, then the potential
energy is U = mgh, where h is the height that the mass is from the
bottom of the swing. A little trigonometry gives that h = L(1− cos θ).
So,

U = mgL(1− cos θ).

So, the total mechanical energy is

E =
1
2

mL2θ̇2 + mgL(1− cos θ). (2.148)

We note that a little rearranging shows that we can relate this to Equa-
tion (2.147):

1
2

θ̇2 −ω2 cos θ =
1

mL2 E−ω2 = c.

We can use Equation (2.148) to get a value for the total energy. At
the top of the swing the mass is not moving, if only for a moment.
Thus, the kinetic energy is zero and the total energy is pure potential
energy. Letting θ0 denote the angle at the highest position, we have
that

E = mgL(1− cos θ0) = mL2ω2(1− cos θ0).

Therefore, we have found that

1
2

θ̇2 −ω2 cos θ = ω2(1− cos θ0). (2.149)

Using the half angle formula,

sin2 θ

2
=

1
2
(1− cos θ),

we can rewrite Equation (2.149) as

1
2

θ̇2 = 2ω2
[

sin2 θ0

2
− sin2 θ

2

]
. (2.150)
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Solving for θ′, we have

dθ

dt
= 2ω

[
sin2 θ0

2
− sin2 θ

2

]1/2
. (2.151)

One can now apply separation of variables and obtain an integral
similar to the solution we had obtained previously. Noting that a mo-
tion from θ = 0 to θ = θ0 is a quarter of a cycle, we have that

T =
2
ω

∫ θ0

0

dφ√
sin2 θ0

2 − sin2 θ
2

. (2.152)

This result is not much different than our previous result, but we
can now easily transform the integral into an elliptic integral. 3 We 3 Elliptic integrals were first studied by

Leonhard Euler and Giulio Carlo de’
Toschi di Fagnano (1682-1766) , who
studied the lengths of curves such as the
ellipse and the lemniscate, (x2 + y2)2 =
x2 − y2.

define

z =
sin θ

2

sin θ0
2

and
k = sin

θ0

2
.

Then Equation (2.152) becomes

T =
4
ω

∫ 1

0

dz√
(1− z2)(1− k2z2)

. (2.153)

This is done by noting that dz = 1
2k cos θ

2 dθ = 1
2k (1− k2z2)1/2 dθ and

that sin2 θ0
2 − sin2 θ

2 = k2(1− z2). The integral in this result is an elliptic
integral of the first kind. In particular, the elliptic integral of the first
kind is defined as

F(φ, k) ≡
∫ φ

0

dθ√
1− k2 sin2 θ

=
∫ sin φ

0

dz√
(1− z2)(1− k2z2)

.

In some contexts, this is known as the incomplete elliptic integral of
the first kind and K(k) = F(π

2 , k) is called the complete integral of the
first kind.

There are table of values for elliptic integrals and now one can use
a computer algebra system to compute values of such integrals. For
small angles, we have that k is small. So, we can develop a series
expansion for the period, T, for small k. This is simply done by first
expanding

(1− k2z2)−1/2 = 1 +
1
2

k2z2 +
3
8

k2z4 + O((kz)6)

using the binomial expansion which we review later in the text. In-
serting the expansion in the integrand and integrating term by term,
one finds that

T = 2π

√
L
g

[
1 +

1
4

k2 +
9

64
k4 + . . .

]
. (2.154)



106 mathematical physics

This expression gives further corrections to the linear result, which
only provides the first term. In Figure 2.36 we show the relative errors
incurred when keeping the k2 and k4 terms versus not keeping them.
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Figure 2.36: The relative error in percent
when approximating the exact period of
a nonlinear pendulum with one, two, or
three terms in Equation (2.154).

Problems

1. Find all of the solutions of the first order differential equations.
When an initial condition is given, find the particular solution satisfy-
ing that condition.

a. dy
dx = ex

2y .

b. dy
dt = y2(1 + t2), y(0) = 1.

c. dy
dx =

√
1−y2

x .

d. xy′ = y(1− 2y), y(1) = 2.

e. y′ − (sin x)y = sin x.

f. xy′ − 2y = x2, y(1) = 1.

g. ds
dt + 2s = st2, , s(0) = 1.

h. x′ − 2x = te2t.

i. dy
dx + y = sin x, y(0) = 0.

j. dy
dx −

3
x y = x3, y(1) = 4.

2. Find all of the solutions of the second order differential equations.
When an initial condition is given, find the particular solution satisfy-
ing that condition.

a. y′′ − 9y′ + 20y = 0.
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b. y′′ − 3y′ + 4y = 0, y(0) = 0, y′(0) = 1.

c. x2y′′ + 5xy′ + 4y = 0, x > 0.

d. x2y′′ − 2xy′ + 3y = 0, x > 0.

3. Consider the differential equation

dy
dx

=
x
y
− x

1 + y
.

a. Find the 1-parameter family of solutions (general solution) of
this equation.

b. Find the solution of this equation satisfying the initial condi-
tion y(0) = 1. Is this a member of the 1-parameter family?

4. The initial value problem

dy
dx

=
y2 + xy

x2 , y(1) = 1

does not fall into the class of problems considered in our review. How-
ever, if one substitutes y(x) = xz(x) into the differential equation, one
obtains an equation for z(x) which can be solved. Use this substitution
to solve the initial value problem for y(x).

5. Consider the nonhomogeneous differential equation x′′ − 3x′ +
2x = 6e3t.

a. Find the general solution of the homogenous equation.

b. Find a particular solution using the Method of Undetermined
Coefficients by guessing xp(t) = Ae3t.

c. Use your answers in the previous parts to write down the
general solution for this problem.

6. Find the general solution of the given equation by the method
given.

a. y′′ − 3y′ + 2y = 10. Method of Undetermined Coefficients.

b. y′′ + y′ = 3x2. Variation of Parameters.

7. Find the general solution of each differential equation. When an
initial condition is given, find the particular solution satisfying that
condition.

a. y′′ − 3y′ + 2y = 20e−2x, y(0) = 0, y′(0) = 6.

b. y′′ + y = 2 sin 3x.

c. y′′ + y = 1 + 2 cos x.

d. x2y′′ − 2xy′ + 2y = 3x2 − x, x > 0.
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8. Verify that the given function is a solution and use Reduction of
Order to find a second linearly independent solution.

a. x2y′′ − 2xy′ − 4y = 0, y1(x) = x4.

b. xy′′ − y′ + 4x3y = 0, y1(x) = sin(x2).

9. A ball is thrown upward with an initial velocity of 49 m/s from 539

m high. How high does the ball get and how long does in take before
it hits the ground? [Use results from first problem done in class, free
fall, y′′ = −g.]

10. Consider the solution of a simple growth and decay problem,y(t) =
y0ekt , to solve this typical radioactive decay problem: Forty percent of
a radioactive substance disappears in 100 years.

a. What is the half-life of the substance?

b. After how many years will 90% be gone?

11. A spring fixed at its upper end is stretched six inches by a 10-
pound weight attached at its lower end. The spring-mass system is
suspended in a viscous medium so that the system is subjected to a
damping force of 5 dx

dt lbs. Describe the motion of the system if the
weight is drawn down an additional 4 inches and released. What
would happen if you changed the coefficient “5” to “4”? [You may
need to consult your introductory physics text.]

12. Consider an LRC circuit with L = 1.00 H, R = 1.00 × 102 Ω,
C = 1.00× 10−4 f, and V = 1.00× 103 V. Suppose that no charge is
present and no current is flowing at time t = 0 when a battery of
voltage V is inserted. Find the current and the charge on the capacitor
as functions of time. Describe how the system behaves over time.

13. Consider the problem of forced oscillations as described in section
2.7.2.

a. Derive the general solution in Equation (2.70).

b. Use a CAS to plot the general solution in Equation (2.70) for
the following cases:

c. Derive the form in Equation (2.71).

d. Use a CAS to plot the solution in Equation (2.71) for the
following cases:

14. A certain model of the motion of a tossed whiffle ball is given by

mx′′ + cx′ + mg = 0, x(0) = 0, x′(0) = v0.

Here m is the mass of the ball, g=9.8 m/s2 is the acceleration due to
gravity and c is a measure of the damping. Since there is no x term,
we can write this as a first order equation for the velocity v(t) = x′(t) :

mv′ + cv + mg = 0.
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a. Find the general solution for the velocity v(t) of the linear
first order differential equation above.

b. Use the solution of part a to find the general solution for the
position x(t).

c. Find an expression to determine how long it takes for the ball
to reach it’s maximum height?

d. Assume that c/m = 10 s−1. For v0 = 5, 10, 15, 20 m/s, plot
the solution, x(t), versus the time.

e. From your plots and the expression in part c, determine the
rise time. Do these answers agree?

f. What can you say about the time it takes for the ball to fall as
compared to the rise time?

15. Consider the system

x′ = −4x− y

y′ = x− 2y.

a. Determine the second order differential equation satisfied by
x(t).

b. Solve the differential equation for x(t).

c. Using this solution, find y(t).

d. Verify your solutions for x(t) and y(t).

e. Find a particular solution to the system given the initial con-
ditions x(0) = 1 and y(0) = 0.

16. Use the transformations relating polar and Cartesian coordinates
to prove that

dθ

dt
=

1
r2

[
x

dy
dt
− y

dx
dt

]
.

17. Consider the following systems. Determine the families of or-
bits for each system and sketch several orbits in the phase plane and
classify them by their type (stable node, etc.)

a.

x′ = 3x

y′ = −2y.

b.

x′ = −y

y′ = −5x.
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c.

x′ = 2y

y′ = −3x.

d.

x′ = x− y

y′ = y.

e.

x′ = 2x + 3y

y′ = −3x + 2y.

18. In example 2.32 a conversion to polar coordinates lead to the equa-
tion r′ = r(1 − r2). Solve this equation for initial values of r(0) =

0, 0.5, 1.0, 2.0. Based upon these solutions, describe the behavior of all
solutions to the original system in Cartesian coordinates.



3
Linear Algebra

"Physics is much too hard for physicists." David Hilbert (1862-1943)

Linear algebra is the backbone of most
of applied mathematics and underlies
many areas of physics, such as quantum
mechanics.

As the reader is aware by now, calculus has its roots in physics
and has become a very useful tool for modeling the physical world.
Another very important area of mathematics is linear algebra. Physics
students who have taken a course in linear algebra in a mathematics
department might not come away with this perception. It is not un-
til students take more advanced classes in physics that they begin to
realize that a good grounding in linear algebra can lead to a better
understanding of the behavior of physical systems.

In this chapter we will introduce some of the basics of linear alge-
bra for finite dimensional vector spaces and we will reinforce these
concepts through generalizations in later chapters to infinite dimen-
sional vector spaces. In keeping with the theme of our text, we will
apply some of these ideas to the coupled systems introduced in the
last chapter. Such systems lead to linear and nonlinear oscillations in
dynamical systems.

3.1 Vector Spaces

Much of the discussion and terminology that we will use comes
from the theory of vector spaces . Up until now you may only have
dealt with finite dimensional vector spaces. Even then, you might
only be comfortable with two and three dimensions. We will review a
little of what we know about finite dimensional spaces so that we can
introduce more general function spaces.

The notion of a vector space is a generalization of three dimensional
vectors and operations on them. In three dimensions, we have things
called vectors1 , which are arrows of a specific length and pointing in 1 In introductory physics one defines a

vector as any quantity that has both
magnitude and direction.

a given direction. To each vector, we can associate a point in a three
dimensional Cartesian system. We just attach the tail of the vector v to
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the origin and the head lands at (x, y, z).2 We then use unit vectors i, j 2 In multivariate calculus one concen-
trates on the component form of vectors.
These representations are easily general-
ized as we will see.

and k along the coordinate axes to write

v = xi + yj + zk.

Having defined vectors, we then learned how to add vectors and
multiply vectors by numbers, or scalars. Under these operations, we
expected to get back new vectors. Then we learned that there were
two types of multiplication of vectors. We could multiply them to get
a scalar or a vector. This leads to dot products and cross products,
respectively. The dot product is useful for determining the length of a
vector, the angle between two vectors, or if the vectors were orthogo-
nal. The cross product is used to produce orthogonal vectors, areas of
parallelograms, and volumes of parallelepipeds.

In physics you first learned about vector products when you defined
work, W = F · r. Cross products were useful in describing things like
torque, τ = r× F, or the force on a moving charge in a magnetic field,
F = qv× B. We will return to these more complicated vector opera-
tions later when reviewing Maxwell’s equations of electrodynamics.

These notions are then generalized to spaces of more than three
dimensions in linear algebra courses. The properties outlined roughly
above need to be preserved. So, we have to start with a space of vectors
and the operations between them. We also need a set of scalars, which
generally come from some field . However, in our applications the field
will either be the set of real numbers or the set of complex numbers.3 3 A field is a set together with two oper-

ations, usually addition and multiplica-
tion, such that we have

• Closure under addition and multipli-
cation

• Associativity of addition and multi-
plication

• Commutativity of addition and mul-
tiplication

• Additive and multiplicative identity

• Additive and multiplicative inverses

• Distributivity of multiplication over
addition

A vector space V over a field F is a set that is closed under addition
and scalar multiplication and satisfies the following conditions: For
any u, v, w ∈ V and a, b ∈ F

1. u + v = v + u.

2. (u + v) + w = u + (v + w).

3. There exists a 0 such that 0 + v= v.

4. There exists an additive inverse, −v, such that v + (−v) = 0.

There are several distributive properties:

5. a(bv) = (ab)v.

6. (a + b)v = av + bv.

7. a(u + v) = au + av.

8. There exists a multiplicative identity, 1, such that 1(v) = v.

For now, we will restrict our examples to two and three dimensions
and the field will consist of the real numbers.

In three dimensions the unit vectors i, j, and k play an important
role. Any vector in the three dimensional space can be written as a
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linear combination of these vectors,

v = xi + yj + zk.

In fact, given any three non-coplanar vectors, {a1, a2, a3}, all vectors
can be written as a linear combination of those vectors,

v = c1a1 + c2a2 + c3a3.

Such vectors are said to span the space and are called a basis for the
space.

We can generalize these ideas. In an n-dimensional vector space
any vector in the space can be represented as the sum over n linearly
independent vectors (the equivalent of non-coplanar vectors). Such a
linearly independent set of vectors {vj}n

j=1 satisfies the condition

n

∑
j=1

cjvj = 0 ⇔ cj = 0.

Note that we will often use summation notation instead of writing out
all of the terms in the sum.

This leads to the idea of a basis set. The standard basis in an n- The standard basis vectors, ek are a nat-
ural generalization of i, j and k.dimensional vector space is a generalization of the standard basis in

three dimensions (i, j and k). We define

ek = (0, . . . , 0, 1︸︷︷︸
kth space

, 0, . . . , 0), k = 1, . . . , n. (3.1)

Then, we can expand any v ∈ V as

v =
n

∑
k=1

vkek, (3.2)

where the vk’s are called the components of the vector in this basis.
Sometimes we will write v as an n-tuple (v1, v2, . . . , vn). This is similar
to the ambiguous use of (x, y, z) to denote both vectors and points in
the three dimensional space.

The only other thing we will need at this point is to generalize the
dot product. Recall that there are two forms for the dot product in For more general vector spaces the term

inner product is used to generalize the
notions of dot and scalar products as we
will see below.

three dimensions. First, one has that

u · v = uv cos θ, (3.3)

where u and v denote the length of the vectors. The other form is the
component form:

u · v = u1v1 + u2v2 + u3v3 =
3

∑
k=1

ukvk. (3.4)
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Of course, this form is easier to generalize. So, we define the scalar
product between two n-dimensional vectors as

< u, v >=
n

∑
k=1

ukvk. (3.5)

Actually, there are a number of notations that are used in other texts.
One can write the scalar product as (u, v) or even in the Dirac bra-ket
notation4 < u|v > . 4 The bra-ket notation was introduced by

Paul Adrien Maurice Dirac (1902-1984)
in order to facilitate computations of in-
ner products in quantum mechanics. In
the notation < u|v >, < u| is the bra
and |v > is the ket. The kets live in
a vector space and represented by col-
umn vectors with respect to a given ba-
sis. The bras live in the dual vector space
and are represented by row vectors. The
correspondence between bra and kets is
|v >= |v >T . One can operate on kets,
A|v >, and make sense out of operations
like< u|A|v >, which are used to ob-
tain expectation values associated with
the operator. Finally, the outer product,
|v >< v| is used to perform vector space
projections.

We note that the (real) scalar product satisfies some simple proper-
ties. For vectors v, w and real scalar α we have

1. < v, v >≥ 0 and < v, v >= 0 if and only if v = 0.

2. < v, w >=< w, v >.

3. < αv, w >= α < v, w > .

While it does not always make sense to talk about angles between
general vectors in higher dimensional vector spaces, there is one con-
cept that is useful. It is that of orthogonality, which in three dimen-
sions is another way of saying the vectors are perpendicular to each
other. So, we also say that vectors u and v are orthogonal if and only if
< u, v >= 0. If {ak}n

k=1, is a set of basis vectors such that

< aj, ak >= 0, k 6= j,

then it is called an orthogonal basis. Orthogonal basis vectors.

If in addition each basis vector is a unit vector, then one has an
orthonormal basis. This generalization of the unit basis can be expressed
more compactly. We will denote such a basis of unit vectors by ej for
j = 1 . . . n. Then,

< ej, ek >= δjk, (3.6)

where we have introduced the Kronecker delta (named after Leopold
Kronecker (1823-1891))

δjk ≡
{

0, j 6= k
1, j = k

(3.7)

The process of making vectors have unit length is called normaliza- Normalization of vectors.

tion. This is simply done by dividing by the length of the vector. Recall
that the length of a vector, v, is obtained as v =

√
v · v. So, if we want

to find a unit vector in the direction of v, then we simply normalize it
as

v̂ =
v
v

.

Notice that we used a hat to indicate that we have a unit vector. Fur-
thermore, if {aj}n

j=1, is a set of orthogonal basis vectors, then

âj =
ai√

< aj, aj >
, j = 1 . . . n.
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Example 3.1. Find the angle between the vectors u = (−2, 1, 3) and v =

(1, 0, 2). we need the lengths of each vector,

u =
√
(−2)2 + 12 + 32 =

√
14,

v =
√

12 + 02 + 22 =
√

5.

We also need the scalar product of these vectors,

u · v = −2 + 6 = 4.

This gives

cos θ =
u · v
uv

=
4√

5
√

14
.

So, θ = 61.4◦.

Example 3.2. Normalize the vector v = 2i + j− 2k.
The length of the vector is v =

√
22 + 12 + (−2)2 =

√
9 = 3. So, the

unit vector in the direction of v is v̂ = 2
3 i + 1

3 j− 2
3 k.

Let {ak}n
k=1, be a set of orthogonal basis vectors for vector space

V. We know that any vector v can be represented in terms of this
basis, v = ∑n

k=1 vkak. If we know the basis and vector, can we find the
components, vk? The answer is yes. We can use the scalar product of v
with each basis element aj. Using the properties of the scalar product,
we have for j = 1, . . . , n

< aj, v > = < aj,
n

∑
k=1

vkak >

=
n

∑
k=1

vk < aj, ak > . (3.8)

Since we know the basis elements, we can easily compute the num-
bers

Ajk ≡< aj, ak >

and
bj ≡< aj, v > .

Therefore, the system (3.8) for the vk’s is a linear algebraic system,
which takes the form

bj =
n

∑
k=1

Ajkvk. (3.9)

We can write this set of equations in a more compact form. The
set of numbers Ajk, j, k = 1, . . . n are the elements of an n× n matrix
A with Ajk being an element in the jth row and kth column. Also, vj

and bj can be written as column vectors, v and b, respectively. Thus,
system (3.8) can be written in matrix form as

Av = b.
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However, if the basis is orthogonal, then the matrix Ajk ≡< aj, ak >

is diagonal and the system is easily solvable. Recall that two vectors
are orthogonal if and only if

< ai, aj >= 0, i 6= j. (3.10)

Thus, in this case we have that

< aj, v >= vj < aj, aj >, j = 1, . . . , n. (3.11)

or
vj =

< aj, v >

< aj, aj >
. (3.12)

In fact, if the basis is orthonormal, i.e., the basis consists of an orthog-
onal set of unit vectors, then A is the identity matrix and the solution
takes on a simpler form:

vj =< aj, v > . (3.13)

Example 3.3. Consider the set of vectors a1 = i + j and a2 = i− 2j.

1. Determine the matrix elements Ajk =< aj, ak > .

2. Is this an orthogonal basis?

3. Expand the vector v = 2i + 3j in the basis {a1, a2}.

First, we compute the matrix elements of A:

A11 = < a1, a1 >= 2

A12 = < a1, a2 >= −1

A21 = < a2, a1 >= −1

A22 = < a2, a2 >= 5 (3.14)

So,

A =

(
2 −1
−1 5

)
.

Since A12 = A21 6= 0, the vectors are not orthogonal. However, they are
linearly independent. Obviously, if c1 = c2 = 0, then the linear combination
c1a1 + c2a2 = 0. Conversely, we assume that c1a1 + c2a2 = 0 and solve for
the coefficients. Inserting the given vectors, we have

0 = c1(i + j) + c2(i− 2j)

= (c1 + c2)i + (c1 − 2c2)j. (3.15)

This implies that

c1 + c2 = 0

c1 − 2c2 = 0. (3.16)
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Solving this system, one has c1 = 0, c2 = 0. Therefore, the two vectors are
linearly independent.

In order to determine the components of v with respect to the new basis,
we need to set up the system (3.8) and solve for the vk’s. We have first,

b =

(
< a1, v >

< a2, v >

)

=

(
< i + j, 2i + 3j >
< i− 2j, 2i + 3j >

)

=

(
5
−4

)
. (3.17)

So, now we have to solve the system Av = b for v :(
2 −1
−1 5

)(
v1

v2

)
=

(
5
−4

)
. (3.18)

We can solve this with matrix methods, v = A−1b, or rewrite it as a system
of two equations and two unknowns. The result is v1 = 7

3 , v2 = − 1
3 . Thus,

v = 7
3 a1 − 1

3 a2.

3.2 Linear Transformations

Figure 3.1: Vector v in a standard coor-
dinate system.

A main theme in linear algebra is to study linear transformations
between vector spaces. These come in many forms and there are an
abundance of applications in physics. For example, the transforma-
tion between the spacetime coordinates of observers moving in inertial
frames in the theory of special relativity constitute such a transforma-
tion.

A simple example often encountered in physics courses is the rota-
tion by a fixed angle. This is the description of points in space using
two different coordinate bases, one just a rotation of the other by some
angle. We begin with a vector v as described by a set of axes in the
standard orientation, as shown in Figure 3.1. Also displayed in this
figure are the unit vectors. To find the coordinates (x, y), one needs
only draw perpendiculars to the axes and read the coordinates off the
axes.

Figure 3.2: Vector v in a rotated coordi-
nate system.

In order to derive the needed transformation we will make use of
polar coordinates. In Figure 3.1 we see that the vector makes an angle
of φ with respect to the positive x-axis. The components (x, y) of the
vector can be determined from this angle and the magnitude of v as

x = v cos φ

y = v sin φ. (3.19)
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We now consider another set of axes at an angle of θ to the old.
Such a system is shown in Figure 3.2. We will designate these axes
as x′ and y′. Note that the basis vectors are different in this system.
Projections to the axes are shown. Comparing the coordinates in both
systems shown in Figures 3.1-3.2, we see that the primed coordinates
are not the same as the unprimed ones.

Figure 3.3: Comparison of the coordi-
nate systems.

In Figure 3.3 the two systems are superimposed on each other. The
polar form for the primed system is given by

x′ = v cos(φ− θ)

y′ = v sin(φ− θ). (3.20)

We can use this form to find a relationship between the two systems.
Namely, we use the addition formula for trigonometric functions to
obtain

x′ = v cos φ cos θ + v sin φ sin θ

y′ = v sin φ cos θ − v cos φ sin θ. (3.21)

Noting that these expressions involve products of v with cos φ and Passive rotation.

sin φ, we can use the polar form for x and y to find the desired form:

x′ = x cos θ + y sin θ

y′ = −x sin θ + y cos θ. (3.22)

This is an example of a transformation between two coordinate sys-
tems. It is called a rotation by θ. We can designate it generally by

(x′, y′) = R̂θ(x, y).

It is referred to as a passive transformation, because it does not affect
the vector. [Note: We will use the hat for the passive rotation.]

An active rotation is one in which one rotates the vector, such as Active rotation.

shown in Figure 3.4. One can derive a similar transformation for how
the coordinate of the vector change under such a transformation. De-
noting the new vector as v′ with new coordinates (x′′, y′′), we have

Figure 3.4: Rotation of vector v

x′′ = x cos θ − y sin θ

y′′ = x sin θ + y cos θ. (3.23)

We can designate this transformation by

(x′′, y′′) = Rθ(x, y)

and see that the active and passive rotations are related,

Rθ(x, y) = R̂−θ(x, y).
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3.3 Matrices

Linear transformations such as the rotation in the last section can
be represented by matrices. Such matrix representations often become
the core of a linear algebra class to the extent that one loses sight of
their meaning. We will review matrix representations and show how
they are useful in solving coupled systems of differential equations
later in the chapter.

We begin with the rotation transformation as applied to the axes in
Equation (3.22). We write vectors like v as a column matrix

v =

(
x
y

)
.

We can also write the trigonometric functions in a 2× 2 matrix form
as

R̂θ =

(
cos θ sin θ

− sin θ cos θ

)
.

Then, the transformation takes the form(
x′

y′

)
=

(
cos θ sin θ

− sin θ cos θ

)(
x
y

)
. (3.24)

This can be written in the more compact form

v′ = R̂θv.

In using the matrix form of the transformation, we have employed
the definition of matrix multiplication. Namely, we have multiplied
a 2× 2 matrix times a 2× 1 matrix. (Note that an n × m matrix has
n rows and m columns.) The multiplication proceeds by selecting the
ith row of the first matrix and the jth column of the second matrix.
Multiply corresponding elements of each and add them. Then, place
the result into the ijth entry of the product matrix. This operation can
only be performed if the number of columns of the first matrix is the
same as the number of columns of the second matrix.

Example 3.4. As an example, we multiply a 3 × 2 matrix times a 2 × 2
matrix to obtain a 3× 2 matrix: 1 2

5 −1
3 2

( 3 2
1 4

)
=

 1(3) + 2(1) 1(2) + 2(4)
5(3) + (−1)(1) 5(2) + (−1)(4)

3(3) + 2(1) 3(2) + 2(4)


=

 5 10
14 6
11 14

 (3.25)
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In Equation (3.24), we have the row (cos θ, sin θ) and column (x, y)T .
Combining these we obtain x cos θ + y sin θ. This is x′. We perform the
same operation for the second row:(

x′

y′

)
=

(
cos θ sin θ

− sin θ cos θ

)(
x
y

)
=

(
x cos θ + y sin θ

−x sin θ + y cos θ

)
.

(3.26)
In the last section we also introduced active rotations. These were

rotations of vectors keeping the coordinate system fixed. Thus, we
start with a vector v and rotate it by θ to get a new vector u. That
transformation can be written as

u = Rθv, (3.27)

where

Rθ =

(
cos θ − sin θ

sin θ cos θ

)
.

Now consider a rotation by −θ. Due to the symmetry properties of
the sines and cosines, we have

R−θ =

(
cos θ sin θ

− sin θ cos θ

)
.

We see that if the 12 and 21 elements of this matrix are interchanged
we recover Rθ . This is an example of what is called the transpose of Rθ .
Given a matrix, A, its transpose AT is the matrix obtained by inter-
changing the rows and columns of A. Formally, let Aij be the elements
of A. Then

AT
ij = Aji.

Matrix transpose.

It is also the case that these matrices are inverses of each other. We
can understand this in terms of the nature of rotations. We first rotate
the vector by θ as u = Rθv and then rotate u by −θ obtaining w =

R−θu. Thus, the “composition” of these two transformations leads to

w = R−θu = R−θ(Rθv). (3.28)

We can view this as a net transformation from v to w given by

w = (R−θ Rθ)v,

where the transformation matrix for the composition is given by R−θ Rθ .
Actually, if you think about it, we should end up with the original vec-
tor. We can compute the resulting matrix by carrying out the multipli-
cation. We obtain

R−θ Rθ =

(
cos θ sin θ

− sin θ cos θ

)(
cos θ − sin θ

sin θ cos θ

)
=

(
1 0
0 1

)
.

(3.29)
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This is the 2× 2 identity matrix. We note that the product of these two
matrices yields the identity. This is like the multiplication of numbers.
If ab = 1, then a and b are multiplicative inverses of each other. So, we
see here that Rθ and R−θ are inverses of each other as well. In fact, we
have determined that

R−θ = R−1
θ = RT

θ , (3.30)

where the T designates the transpose. We note that matrices satisfying
the relation AT = A−1 are called orthogonal matrices. Orthogonal matrices.

We can easily extend this discussion to three dimensions. Such ro-
tations in the xy-plane can be viewed as rotations about the z-axis. Ro-
tating a vector about the z-axis by angle α will leave the z-component
fixed. This can be represented by the rotation matrix

Rz(α) =

 cos α − sin α 0
sin α cos α 0

0 0 1

 . (3.31)

We can also rotate vectors about the other axes, so that we would have
two other rotation matrices:

Ry(β) =

 cos β 0 − sin β

0 1 0
sin β 0 cos β

 . (3.32)

Rx(γ) =

 1 0 0
0 cos γ sin γ

0 − sin γ cos γ

 . (3.33)

As before, passive rotations of the coordinate axes are obtained by
replacing the angles above by their negatives; e.g., R̂x(γ) = Rx(−γ).5 5 In classical dynamics one describes a

general rotation in terms of the so-called
Euler angles. These are the angles
(φ, θ, ψ) such that the combined rotation
R̂z(ψ)R̂x(θ)R̂z(φ) rotates the initial coor-
dinate system into a new one.

We can generalize what we have seen with the simple example of
rotation to other linear transformations. We begin with a vector v in
an n-dimensional vector space. We can consider a transformation L
that takes v into a new vector u as

u = L(v).

We will restrict ourselves to linear transformations between two n-
dimensional vector spaces. A linear transformation satisfies the follow-
ing condition:

L(αa + βb) = αL(a) + βL(b) (3.34)

for any vectors a and b and scalars α and β.6 6 In section we define a linear operator
using two conditions, L(a + b) = L(a) +
L(b) and L(αa) = αL(a). The reader can
show that this is equivalent to the con-
dition presented here. Furthermore, all
linear transformations take the origin to
the origin, L(0) = 0.

Such linear transformations can be represented by matrices. Take
any vector v. It can be represented in terms of a basis. Let’s use the
standard basis {ei}, i = 1, . . . n. Then we have

v =
n

∑
i=1

viei.
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Now consider the effect of the transformation L on v, using the linear-
ity property:

L(v) = L

(
n

∑
i=1

viei

)
=

n

∑
i=1

viL(ei). (3.35)

Thus, we see that determining how L acts on v requires that we
know how L acts on the basis vectors. Namely, we need L(ei). Since ei

is a vector, this produces another vector in the space. But the resulting
vector can be expanded in the basis. Let’s assume that the resulting
vector takes the form

L(ei) =
n

∑
j=1

Ljiej, (3.36)

where Lji is the jth component of L(ei) for each i = 1, . . . , n. The
matrix of Lji’s is called the matrix representation of the operator L.

Typically, in a linear algebra class you start with matrices and do not
see this connection to linear operators. However, there will be times
that you will need this connection to understand why matrices are
involved. Furthermore, the matrix representation depends on the basis
used. We used the standard basis above. However, you could have
started with a different basis, such as dictated by another coordinate
system. We will not go further into this point at this time and just stick
with the standard basis.

Example 3.5. Consider the linear transformation of u = (u, v) into x =

(x, y) by

L(u, v) = (3u− v, v + u) = (x, y).

The matrix representation for this transformation is found by considering how
L acts on the basis vectors. We have L(1, 0) = (3, 1) and L(0, 1) = (−1, 1).
Thus, the representation is given as

L =

(
3 −1
1 1

)
.

Now that we know how L acts on basis vectors, what does this have
to say about how L acts on any other vector in the space? We insert
expression (3.36) into Equation (3.35). Then we find

L(v) =
n

∑
i=1

viL(ei)

=
n

∑
i=1

vi

(
n

∑
j=1

Ljiej

)

=
n

∑
j=1

(
n

∑
i=1

viLji

)
ej. (3.37)
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Since L(v) = u, we see that the jth component of u can be written as

uj =
n

∑
i=1

Ljivi, j = 1 . . . n. (3.38)

This equation can be written in matrix form as

u = Lv,

where L now takes the role of a matrix. It is similar to the multiplica-
tion of the rotation matrix times a vector as seen in the last section. We
will just work with matrix representations from here on.

Example 3.6. For the transformation L(u, v) = (3u − v, v + u) = (x, y)
in the last example, what does v = 5i + 3j get mapped into? We know the
matrix representation from the previous example, so we have

u =

(
3 −1
1 1

)(
5
3

)
=

(
12
2

)
.

Next, we can compose transformations like we had done with the
two rotation matrices. Let u = A(v) and w = B(u) for two transfor-
mations A and B. (Thus, v → u → w.) Then a composition of these
transformations is given by

w = B(u) = B(Av).

This can be viewed as a transformation from v to w as

w = BA(v),

where the matrix representation of BA is given by the product of the
matrix representations of A and B.

To see this, we look at the ijth element of the matrix representation
of BA. We first note that the transformation from v to w is given by

wi =
n

∑
j=1

(BA)ijvj. (3.39)

However, if we use the successive transformations, we have

wi =
n

∑
k=1

Bikuk

=
n

∑
k=1

Bik

(
n

∑
j=1

Akjvj

)

=
n

∑
j=1

(
n

∑
k=1

Bik Akj

)
vj. (3.40)
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We have two expressions for wi as sums over vj. So, the coefficients
must be equal. This leads to our result:

(BA)ij =
n

∑
k=1

Bik Akj. (3.41)

Thus, we have found the component form of matrix multiplication,
which resulted from the composition of two linear transformations.
This agrees with our earlier example of matrix multiplication: The ij-
th component of the product is obtained by multiplying elements in
the ith row of B and the jth column of A and summing.

Example 3.7. Consider the rotation in two dimensions of the axes by an
angle θ. Now apply the scaling transformation7 7 This scaling transformation will rescale

x-components by a and y-components
by b. If either is negative, it will also
provide an additional reflection.Ls =

(
a 0
0 b

)
.

what is the matrix representation of this combination of transformations?
The result is a simple product of the matrix representations (in reverse order
of application):

LsR̂ =

(
a 0
0 b

)(
cos θ sin θ

− sin θ cos θ

)
=

(
a cos θ a sin θ

−b sin θ b cos θ

)
.

There are many other properties of matrices and types of matrices
that one may encounter. We will list a few.

First of all, there is the n× n identity matrix, I. The identity is defined Identity matrix.

as that matrix satisfying

IA = AI = A (3.42)

for any n× n matrix A. The n× n identity matrix takes the form

I =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...

0 0
... 1

 (3.43)

A component form is given by the Kronecker delta. Namely, we have Kronecker delta, δij.

that

Iij = δij ≡
{

0, i 6= j
1, i = j

(3.44)

The inverse of matrix A is that matrix A−1 such that

AA−1 = A−1 A = I. (3.45)
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There is a systematic method for determining the inverse in terms of
cofactors, which we describe a little later. However, the inverse of a
2× 2 matrix is easily obtained without learning about cofactors. Let

A =

(
a b
c d

)
.

Now consider the matrix

B =

(
d −b
−c a

)
.

Multiplying these matrices, we find that

AB =

(
a b
c d

)(
d −b
−c a

)
=

(
ad− bc 0

0 ad− bc

)
.

This is not quite the identity, but it is a multiple of the identity. We just
need to divide by ad− bc. So, we have found the inverse matrix: Inverse of a 2× 2 matrix.

A−1 =
1

ad− bc

(
d −b
−c a

)
.

We leave it to the reader to show that A−1 A = I.
The factor ad− bc is the difference in the products of the diagonal

and off-diagonal elements of matrix A. This factor is called the deter-
minant of A. It is denoted as det(A), det A or |A|. Thus, we define

det(A) =

∣∣∣∣∣ a b
c d

∣∣∣∣∣ = ad− bc. (3.46)

For higher dimensional matrices one can write the definition of the
determinant. We will for now just indicate the process for 3× 3 matri-
ces. We write matrix A as Detemrinant of a 3× 3 matrix.

A =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 . (3.47)

The determinant of A can be computed in terms of simpler 2× 2 de-
terminants. We define

det A =

∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣
= a11

∣∣∣∣∣ a22 a23

a32 a33

∣∣∣∣∣− a12

∣∣∣∣∣ a21 a23

a31 a33

∣∣∣∣∣+ a13

∣∣∣∣∣ a21 a22

a31 a32

∣∣∣∣∣ .

(3.48)
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There are many other properties of determinants. For example, if
two rows, or columns, of a matrix are multiples of each other, then
det A = 0. If one multiplies one row, or column, of a matrix by a
constant, k, then the determinant of the matrix is multiplies by k.

If det A = 0, A is called a singular matrix. Otherwise, it is called
nonsingular. If a matrix is nonsingular, then the inverse exists. From
our example for a general 2× 2 system, the inverse exists if ad− bc 6= 0.

Computing the inverse of a larger matrix is a little more compli-
cated. One first constructs the matrix of cofactors. The ij-th cofactor is
obtained by computing the determinant of the matrix resulting from
eliminating the ith row and jth column of A and multiplying by either
+1 or −1. Thus, The matrix of cofactors.

Cij = (−1)i+jdet (αij).

Then, the inverse matrix is obtained by dividing the transpose of the
matrix of cofactors by the determinant of A. Thus,(

A−1
)

ij
=

Cji

det A
.

This is best shown by example.

Example 3.8. Find the inverse of the matrix

A =

 1 2 −1
0 3 2
1 −2 1

 .

The determinant of this matrix is easily found as

det A =

∣∣∣∣∣∣∣
1 2 −1
0 3 2
1 −2 1

∣∣∣∣∣∣∣ = 1

∣∣∣∣∣ 3 2
−2 1

∣∣∣∣∣+ 1

∣∣∣∣∣ 2 −1
3 2

∣∣∣∣∣ = 14.

Next, we construct the matrix of cofactors:

Cij =



+

∣∣∣∣∣ 3 2
−2 1

∣∣∣∣∣ −
∣∣∣∣∣ 0 2

1 1

∣∣∣∣∣ +

∣∣∣∣∣ 0 3
1 −2

∣∣∣∣∣
−
∣∣∣∣∣ 2 −1
−2 1

∣∣∣∣∣ +

∣∣∣∣∣ 1 −1
1 1

∣∣∣∣∣ −
∣∣∣∣∣ 1 2

1 −2

∣∣∣∣∣
+

∣∣∣∣∣ 2 −1
3 2

∣∣∣∣∣ −
∣∣∣∣∣ 1 −1

0 2

∣∣∣∣∣ +

∣∣∣∣∣ 1 2
0 3

∣∣∣∣∣


.

Computing the 2× 2 determinants, we obtain

Cij =

 7 −2 −3
0 2 4
7 −2 3

 .
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Finally, we compute the inverse as

A−1 =
1
14

 7 −2 −3
0 2 4
7 −2 3


T

=
1
14

 7 0 7
−2 2 −2
−3 4 3


=

 1
2 0 1

2
− 1

7
1
7 − 1

7
− 3

14
2
7

3
14

 . (3.49)

Another operation that we have seen earlier is the transpose of a Matrix transpose.

matrix. The transpose of a matrix is a new matrix in which the rows
and columns are interchanged. If write an n×m matrix A in standard
form as

A =


a11 a12 . . . a1m

a21 a22 . . . a2m
...

...
. . .

...
an1 an2 . . . anm

 , (3.50)

then the transpose is defined as

AT =


a11 a21 . . . a1n

a12 a22 . . . a2n
...

...
. . .

...
a1m a2m . . . amn

 . (3.51)

In index form, we have

(AT)ij = Aji, i, j = 1, . . . , n.

As we had seen in the last section, a matrix satisfying

AT = A−1, or AAT = AT A = I,

is called an orthogonal matrix. One also can show that

(AB)T = BT AT .

Finally, the trace of a square matrix is the sum of its diagonal ele- Trace of a matrix.

ments:

Tr(A) = a11 + a22 + . . . + ann =
n

∑
i=1

aii.

We can show that for two square matrices

Tr(AB) = Tr(BA).
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A standard application of determinants is the solution of a system Cramer’s Rule for solving algebraic sys-
tems of equations.of linear algebraic equations using Cramer’s Rule. As an example, we

consider a simple system of two equations and two unknowns. Let’s
consider this system of two equations and two unknowns, x and y, in
the form

ax + by = e,

cx + dy = f . (3.52)

The standard way to solve this is to eliminate one of the variables.
(Just imagine dealing with a bigger system!). So, we can eliminate the
x’s. Multiply the first equation by c and the second equation by a and
subtract. We then get

(bc− ad)y = (ec− f a).

If bc− ad 6= 0, then we can solve to y, getting

y =
ec− f a
bc− ad

. Similarly, we find

x =
ed− b f
ad− bc

.

We note the the denominators can be replaced with the determinant
of the matrix of coefficients, (

a b
c d

)
.

In fact, we can also replace each numerator with a determinant. Thus,
our solutions may be written as

x =

∣∣∣∣∣ e b
f d

∣∣∣∣∣∣∣∣∣∣ a b
c d

∣∣∣∣∣
y =

∣∣∣∣∣ a e
c f

∣∣∣∣∣∣∣∣∣∣ a b
c d

∣∣∣∣∣
. (3.53)

This is Cramer’s Rule for writing out solutions of systems of equa-
tions. Note that each variable is determined by placing a determinant
with e and f placed in the column of the coefficient matrix correspond-
ing to the order of the variable in the equation. The denominator is
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the determinant of the coefficient matrix. This construction is easily
extended to larger systems of equations.

Cramer’s Rule can be extended to higher dimensional systems. As
an example, we now solve a system of three equations and three un-
knowns.

Example 3.9. Solve the system of equations

x + 2y− z = 1,

3y + 2z = 2

x− 2y + z = 0. (3.54)

First, one writes the system in the form Lx = b, where L is the coefficient
matrix

L =

 1 2 −1
0 3 2
1 −2 1


and

b =

 1
2
0

 .

The solution is generally, x = L−1b if L−1 exists. So, we check that det L =

14 6= 0. Thus, L is nonsingular and its inverse exists.
So, the solution of this system of three equations and three unknowns can

now be found using Cramer’s rule. Thus, we have

x =

∣∣∣∣∣∣∣
1 2 −1
2 3 2
0 −2 1

∣∣∣∣∣∣∣
det L

=
7

14
=

1
2

,

y =

∣∣∣∣∣∣∣
1 1 −1
0 2 2
1 0 1

∣∣∣∣∣∣∣
det L

=
6
14

=
3
7

,

z =

∣∣∣∣∣∣∣
1 2 1
0 3 2
1 −2 0

∣∣∣∣∣∣∣
det L

=
5
14

. (3.55)

We end this section by summarizing the rule for the existence of
solutions of systems of algebraic equations, Lx = b.

1. If det L 6= 0, then there exists a unique solution, x = L−1b.
In particular, if b = 0, the system is homogeneous and only
has the trivial solution, x = 0.
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2. If det L = 0, then the system does not have a unique solution.
Either there is no solution, or an infinite number of solutions.
For example, the system

2x + y = 5,

4x + 2y = 2, (3.56)

has no solutions, while

2x + y = 0,

4x + 2y = 0, (3.57)

has an infinite number of solutions (y = −2x).

3.4 Eigenvalue Problems

3.4.1 An Introduction to Coupled Systems

Recall that one of the reasons we have seemingly digressed into
topics in linear algebra and matrices is to solve a coupled system of
differential equations. The simplest example is a system of linear dif-
ferential equations of the form

dx
dt

= ax + by

dy
dt

= cx + dy. (3.58)

We note that this system is coupled. We cannot solve either equation
without knowing either x(t) or y(t). A much easier problem would be
to solve an uncoupled system like Uncoupled system.

dx
dt

= λ1x

dy
dt

= λ2y. (3.59)

The solutions are quickly found to be

x(t) = c1eλ1t,

y(t) = c2eλ2t. (3.60)

Here c1 and c2 are two arbitrary constants.
We can determine particular solutions of the system by specifying

x(t0) = x0 and y(t0) = y0 at some time t0. Thus,

x(t) = x0eλ1t,

y(t) = y0eλ2t. (3.61)
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Wouldn’t it be nice if we could transform the more general system
into one that is not coupled? Let’s write these systems in more general
form. We write the coupled system as

d
dt

x = Ax

and the uncoupled system as

d
dt

y = Λy,

where

Λ =

(
λ1 0
0 λ2

)
.

We note that Λ is a diagonal matrix.
Now, we seek a transformation between x and y that will transform

the coupled system into the uncoupled system. Thus, we define the
transformation

x = Sy. (3.62)

Inserting this transformation into the coupled system we have

d
dt

x = Ax ⇒

d
dt

Sy = ASy ⇒

S
d
dt

y = ASy. (3.63)

Multiply both sides by S−1. [We can do this if we are dealing with
an invertible transformation; i.e., a transformation in which we can get
y from x as y = S−1x.] We obtain

d
dt

y = S−1 ASy.

Noting that
d
dt

y = Λy,

we have
Λ = S−1 AS. (3.64)

The expression S−1 AS is called a similarity transformation of matrix
A. So, in order to uncouple the system, we seek a similarity trans-
formation that results in a diagonal matrix. This process is called the
diagonalization of matrix A. We do not know S, nor do we know Λ. We
can rewrite this equation as

AS = SΛ.
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We can solve this equation if S is real symmetric, i.e, ST = S. [In the
case of complex matrices, we need the matrix to be Hermitian, S̄T = S
where the bar denotes complex conjugation. Further discussion of
diagonalization is left for the end of the chapter.]

We first show that SΛ = ΛS. We look at the ijth component of SΛ
and rearrange the terms in the matrix product.

(SΛ)ij =
n

∑
k=1

SikΛkj

=
n

∑
k=1

Sikλj Ikj

=
n

∑
k=1

λj IjkST
ki

=
n

∑
k=1

ΛjkSki

= (ΛS)ij (3.65)

This result leads us to the fact that S satisfies the equation

AS = ΛS.

Therefore, one has that the columns of S (denoted v) satisfy an equa-
tion of the form

Av = λv. (3.66)

This is an equation for vectors v and numbers λ given matrix A. It
is called an eigenvalue problem. The vectors are called eigenvectors and
the numbers, λ, are called eigenvalues. In principle, we can solve the
eigenvalue problem and this will lead us to solutions of the uncoupled
system of differential equations.

3.4.2 Example of an Eigenvalue Problem

We will determine the eigenvalues and eigenvectors for

A =

(
1 −2
−3 2

)
In order to find the eigenvalues and eigenvectors of this equation,

we need to solve
Av = λv. (3.67)

Let v =

(
v1

v2

)
. Then the eigenvalue problem can be written out.

We have that

Av = λv
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(
1 −2
−3 2

)(
v1

v2

)
= λ

(
v1

v2

)
(

v1 − 2v2

−3v1 + 2v2

)
=

(
λv1

λv2

)
. (3.68)

So, we see that the system becomes

v1 − 2v2 = λv1,

−3v1 + 2v2 = λv2. (3.69)

This can be rewritten as

(1− λ)v1 − 2v2 = 0,

−3v1 + (2− λ)v2 = 0. (3.70)

This is a homogeneous system. We can try to solve it using elim-
ination, as we had done earlier when deriving Cramer’s Rule. We
find that multiplying the first equation by 2− λ, the second by 2 and
adding, we get

[(1− λ)(2− λ)− 6]v1 = 0.

If the factor in the brackets is not zero, we obtain v1 = 0. Inserting this
into the system gives v2 = 0 as well. Thus, we find v is the zero vec-
tor. However, this does not get us anywhere. We could have guessed
this solution. This simple solution is the solution of all eigenvalue
problems and is called the trivial solution. When solving eigenvalue
problems, we only look for nontrivial solutions!

So, we have to stipulate that the factor in the brackets is zero. This
means that v1 is still unknown. This situation will always occur for
eigenvalue problems. The general eigenvalue problem can be written
as

Av− λv = 0,

or by inserting the identity matrix,

Av− λIv = 0.

Finally, we see that we always get a homogeneous system,

(A− λI)v = 0.

The factor that has to be zero can be seen now as the determinant of
this system. Thus, we require

det(A− λI) = 0. (3.71)

We write out this condition for the example at hand. We have that∣∣∣∣∣ 1− λ −2
−3 2− λ

∣∣∣∣∣ = 0.
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This will always be the starting point in solving eigenvalue problems.
Note that the matrix is A with λ’s subtracted from the diagonal ele-
ments.

Computing the determinant, we have

(1− λ)(2− λ)− 6 = 0,

or

λ2 − 3λ− 4 = 0.

We therefore have obtained a condition on the eigenvalues! It is a
quadratic and we can factor it:

(λ− 4)(λ + 1) = 0.

So, our eigenvalues are λ = 4,−1.
The second step is to find the eigenvectors. We have to do this for

each eigenvalue. We first insert λ = 4 into our system:

− 3v1 − 2v2 = 0,

−3v1 − 2v2 = 0. (3.72)

Note that these equations are the same. So, we have one equation in
two unknowns. We will not get a unique solution. This is typical of
eigenvalue problems. We can pick anything we want for v2 and then
determine v1. For example, v2 − 1 gives v1 = −2/3. A nicer solution
would be v2 = 3 and v1 = −2. These vectors are different, but they
point in the same direction in the v1v2 plane.

For λ = −1, the system becomes

2v1 − 2v2 = 0,

−3v1 + 3v2 = 0. (3.73)

While these equations do not at first look the same, we can divide out
the constants and see that once again we get the same equation,

v1 = v2.

Picking v2 = 1, we get v1 = 1.
In summary, the solution to our eigenvalue problem is

λ = 4, v =

(
−2
3

)

λ = −1, v =

(
1
1

)
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3.4.3 Eigenvalue Problems - A Summary

In the last subsection we were introduced to eigenvalue problems
as a way to obtain a solution to a coupled system of linear differential
equations. Eigenvalue problems appear in many contexts in physical
applications. In this section we will summarize the method of solution
of eigenvalue problems based upon our discussion in the last section.
In the next subsection we will look at another problem that is a bit
more geometric and will give us more insight into the process of di-
agonalization. We will return to our coupled system in a later section
and provide more examples of solving eigenvalue problems.

We seek nontrivial solutions to the eigenvalue problem

Av = λv. (3.74)

We note that v = 0 is an obvious solution. Furthermore, it does not
lead to anything useful. So, it is a trivial solution. Typically, we are
given the matrix A and have to determine the eigenvalues, λ, and the
associated eigenvectors, v, satisfying the above eigenvalue problem.
Later in the course we will explore other types of eigenvalue problems.

For now we begin to solve the eigenvalue problem for v =

(
v1

v2

)
.

Inserting this into Equation (3.74), we obtain the homogeneous alge-
braic system

(a− λ)v1 + bv2 = 0,

cv1 + (d− λ)v2 = 0. (3.75)

The solution of such a system would be unique if the determinant of
the system is not zero. However, this would give the trivial solution
v1 = 0, v2 = 0. To get a nontrivial solution, we need to force the
determinant to be zero. This yields the eigenvalue equation

0 =

∣∣∣∣∣ a− λ b
c d− λ

∣∣∣∣∣ = (a− λ)(d− λ)− bc.

This is a quadratic equation for the eigenvalues that would lead to
nontrivial solutions. If we expand the right side of the equation, we
find that

λ2 − (a + d)λ + ad− bc = 0.

This is the same equation as the characteristic equation for the general
constant coefficient differential equation considered in the last chapter
as we will later show in Equation (2.113). Thus, the eigenvalues corre-
spond to the solutions of the characteristic polynomial for the system.
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Once we find the eigenvalues, then there are possibly an infinite
number solutions to the algebraic system. We will see this in the ex-
amples.

The method for solving eigenvalue problems, as you have seen, con-
sists of just a few simple steps. We list these steps as follows:

Solving Eigenvalue Problems

a) Write the coefficient matrix;

b) Find the eigenvalues from the equation det(A− λI) =
0; and,

c) Solve the linear system (A− λI)v = 0 for each λ.

3.5 Matrix Formulation of Planar Systems

We have investigated several linear systems in the plane in the
last chapter. However, we need a deeper insight into the solutions of
planar systems. So, in this section we will recast the first order linear
systems into matrix form. This will lead to a better understanding of
first order systems and allow for extensions to higher dimensions and
the solution of nonhomogeneous equations. In particular, we can see
that the solutions obtained for planar systems in the last chapters are
intimately connected to the underlying eigenvalue problems.

We start with the usual homogeneous system in Equation (2.110).
Let the unknowns be represented by the vector

x(t) =

(
x(t)
y(t)

)
.

Then we have that

x′ =

(
x′

y′

)
=

(
ax + by
cx + dy

)
=

(
a b
c d

)(
x
y

)
≡ Ax.

Here we have introduced the coefficient matrix A. This is a first order
vector differential equation,

x′ = Ax.

Formerly, we can write the solution as8

8 The exponential of a matrix is defined us-
ing the Maclaurin series expansion

ex =
∞

∑
k=0

= 1 + x +
x2

2!
+

x3

3!
+ · · · .

So, we define

eA =
∞

∑
k=0

= I + A +
A2

2!
+

A3

3!
+ · · · .

(3.76)
In general, it is difficult computing eA

unless A is diagonal.

x = x0eAt.

We would like to investigate the solution of our system. Our inves-
tigations will lead to new techniques for solving linear systems using
matrix methods.
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We begin by recalling the solution to the specific problem (2.117).
We obtained the solution to this system as

x(t) = c1et + c2e−4t,

y(t) =
1
3

c1et − 1
2

c2e−4t. (3.77)

This can be rewritten using matrix operations. Namely, we first write
the solution in vector form.

x =

(
x(t)
y(t)

)

=

(
c1et + c2e−4t

1
3 c1et − 1

2 c2e−4t

)

=

(
c1et

1
3 c1et

)
+

(
c2e−4t

− 1
2 c2e−4t

)

= c1

(
1
1
3

)
et + c2

(
1
− 1

2

)
e−4t. (3.78)

We see that our solution is in the form of a linear combination of
vectors of the form

x = veλt

with v a constant vector and λ a constant number. This is similar to
how we began to find solutions to second order constant coefficient
equations. So, for the general problem (3.5) we insert this guess. Thus,

x′ = Ax⇒
λveλt = Aveλt. (3.79)

For this to be true for all t, we have that

Av = λv. (3.80)

This is an eigenvalue problem. A is a 2× 2 matrix for our problem,
but could easily be generalized to a system of n first order differential
equations. We will confine our remarks for now to planar systems.
However, we need to recall how to solve eigenvalue problems and
then see how solutions of eigenvalue problems can be used to obtain
solutions to our systems of differential equations.

3.5.1 Solving Constant Coefficient Systems in 2D

Before proceeding to examples, we first indicate the types of so-
lutions that could result from the solution of a homogeneous, constant
coefficient system of first order differential equations.
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We begin with the linear system of differential equations in matrix
form.

dx
dt

=

(
a b
c d

)
x = Ax. (3.81)

The type of behavior depends upon the eigenvalues of matrix A. The
procedure is to determine the eigenvalues and eigenvectors and use
them to construct the general solution.

If we have an initial condition, x(t0) = x0, we can determine the two
arbitrary constants in the general solution in order to obtain the par-
ticular solution. Thus, if x1(t) and x2(t) are two linearly independent
solutionspt-4, then the general solution is given as -4 Recall that linear independence means

c1x1(t) + c2x2(t) = 0 if and only if
c1, c2 = 0. The reader should derive the
condition on the xi for linear indepen-
dence.

x(t) = c1x1(t) + c2x2(t).

Then, setting t = 0, we get two linear equations for c1 and c2:

c1x1(0) + c2x2(0) = x0.

The major work is in finding the linearly independent solutions.
This depends upon the different types of eigenvalues that one obtains
from solving the eigenvalue equation, det(A− λI) = 0. The nature of
these roots indicate the form of the general solution. On the next page
we summarize the classification of solutions in terms of the eigenval-
ues of the coefficient matrix. We first make some general remarks
about the plausibility of these solutions and then provide examples in
the following section to clarify the matrix methods for our two dimen-
sional systems.

The construction of the general solution in Case I is straight for-
ward. However, the other two cases need a little explanation.
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Classification of the Solutions for Two
Linear First Order Differential Equations

1. Case I: Two real, distinct roots.

Solve the eigenvalue problem Av = λv for each eigenvalue obtaining
two eigenvectors v1, v2. Then write the general solution as a linear
combination x(t) = c1eλ1tv1 + c2eλ2tv2

2. Case II: One Repeated Root

Solve the eigenvalue problem Av = λv for one eigenvalue λ, obtaining
the first eigenvector v1. One then needs a second linearly independent
solution. This is obtained by solving the nonhomogeneous problem
Av2 − λv2 = v1 for v2.

The general solution is then given by x(t) = c1eλtv1 + c2eλt(v2 + tv1).

3. Case III: Two complex conjugate roots.

Solve the eigenvalue problem Ax = λx for one eigenvalue, λ = α +

iβ, obtaining one eigenvector v. Note that this eigenvector may have
complex entries. Thus, one can write the vector

y(t) = eλtv = eαt(cos βt + i sin βt)v.

Now, construct two linearly independent solutions to the problem us-
ing the real and imaginary parts of y(t) :

y1(t) = Re(y(t)) and y2(t) = Im(y(t)).

Then the general solution can be written as x(t) = c1y1(t) + c2y2(t).

Let’s consider Case III. Note that since the original system of equa-
tions does not have any i’s, then we would expect real solutions. So,
we look at the real and imaginary parts of the complex solution. We
have that the complex solution satisfies the equation

d
dt

[Re(y(t)) + iIm(y(t))] = A[Re(y(t)) + iIm(y(t))].

Differentiating the sum and splitting the real and imaginary parts of
the equation, gives

d
dt

Re(y(t)) + i
d
dt

Im(y(t)) = A[Re(y(t))] + iA[Im(y(t))].

Setting the real and imaginary parts equal, we have

d
dt

Re(y(t)) = A[Re(y(t))],

and
d
dt

Im(y(t)) = A[Im(y(t))].



140 mathematical physics

Therefore, the real and imaginary parts each are linearly independent
solutions of the system and the general solution can be written as a
linear combination of these expressions.

We now turn to Case II. Writing the system of first order equations
as a second order equation for x(t) with the sole solution of the char-
acteristic equation, λ = 1

2 (a + d), we have that the general solution
takes the form

x(t) = (c1 + c2t)eλt.

This suggests that the second linearly independent solution involves a
term of the form vteλt. It turns out that the guess that works is

x = teλtv1 + eλtv2.

Inserting this guess into the system x′ = Ax yields

(teλtv1 + eλtv2)
′ = A

[
teλtv1 + eλtv2

]
.

eλtv1 + λteλtv1 + λeλtv2 = λteλtv1 + eλt Av2.

eλt (v1 + λv2) = eλt Av2. (3.82)

Noting this is true for all t, we find that

v1 + λv2 = Av2. (3.83)

Therefore,
(A− λI)v2 = v1.

We know everything except for v2. So, we just solve for it and obtain
the second linearly independent solution.

3.5.2 Examples of the Matrix Method

Here we will give some examples for typical systems for the three
cases mentioned in the last section.

Example 3.10. A =

(
4 2
3 3

)
.

Eigenvalues: We first determine the eigenvalues.

0 =

∣∣∣∣∣ 4− λ 2
3 3− λ

∣∣∣∣∣ (3.84)

Therefore,

0 = (4− λ)(3− λ)− 6

0 = λ2 − 7λ + 6

0 = (λ− 1)(λ− 6) (3.85)
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The eigenvalues are then λ = 1, 6. This is an example of Case I.
Eigenvectors: Next we determine the eigenvectors associated with each of

these eigenvalues. We have to solve the system Av = λv in each case.

Case λ = 1. (
4 2
3 3

)(
v1

v2

)
=

(
v1

v2

)
(3.86)(

3 2
3 2

)(
v1

v2

)
=

(
0
0

)
(3.87)

This gives 3v1 + 2v2 = 0. One possible solution yields an eigenvector of(
v1

v2

)
=

(
2
−3

)
.

Case λ = 6.

(
4 2
3 3

)(
v1

v2

)
= 6

(
v1

v2

)
(3.88)(

−2 2
3 −3

)(
v1

v2

)
=

(
0
0

)
(3.89)

For this case we need to solve −2v1 + 2v2 = 0. This yields(
v1

v2

)
=

(
1
1

)
.

General Solution: We can now construct the general solution.

x(t) = c1eλ1tv1 + c2eλ2tv2

= c1et

(
2
−3

)
+ c2e6t

(
1
1

)

=

(
2c1et + c2e6t

−3c1et + c2e6t

)
. (3.90)

Example 3.11. A =

(
3 −5
1 −1

)
.

Eigenvalues: Again, one solves the eigenvalue equation.

0 =

∣∣∣∣∣ 3− λ −5
1 −1− λ

∣∣∣∣∣ (3.91)

Therefore,
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0 = (3− λ)(−1− λ) + 5

0 = λ2 − 2λ + 2

λ =
−(−2)±

√
4− 4(1)(2)

2
= 1± i. (3.92)

The eigenvalues are then λ = 1 + i, 1− i. This is an example of Case III.
Eigenvectors: In order to find the general solution, we need only find the

eigenvector associated with 1 + i.(
3 −5
1 −1

)(
v1

v2

)
= (1 + i)

(
v1

v2

)
(

2− i −5
1 −2− i

)(
v1

v2

)
=

(
0
0

)
. (3.93)

We need to solve (2− i)v1 − 5v2 = 0. Thus,(
v1

v2

)
=

(
2 + i

1

)
. (3.94)

Complex Solution: In order to get the two real linearly independent so-
lutions, we need to compute the real and imaginary parts of veλt.

eλt

(
2 + i

1

)
= e(1+i)t

(
2 + i

1

)

= et(cos t + i sin t)

(
2 + i

1

)

= et

(
(2 + i)(cos t + i sin t)

cos t + i sin t

)

= et

(
(2 cos t− sin t) + i(cos t + 2 sin t)

cos t + i sin t

)

= et

(
2 cos t− sin t

cos t

)
+ iet

(
cos t + 2 sin t

sin t

)
.

General Solution: Now we can construct the general solution.

x(t) = c1et

(
2 cos t− sin t
cos t

)
+ c2et

(
cos t + 2 sin t

sin t

)

= et

(
c1(2 cos t− sin t) + c2(cos t + 2 sin t)

c1 cos t + c2 sin t

)
. (3.95)

Note: This can be rewritten as

x(t) = et cos t

(
2c1 + c2

c1

)
+ et sin t

(
2c2 − c1

c2

)
.
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Example 3.12. A =

(
7 −1
9 1

)
.

Eigenvalues:

0 =

∣∣∣∣∣ 7− λ −1
9 1− λ

∣∣∣∣∣ (3.96)

Therefore,

0 = (7− λ)(1− λ) + 9

0 = λ2 − 8λ + 16

0 = (λ− 4)2. (3.97)

There is only one real eigenvalue, λ = 4. This is an example of Case II.
Eigenvectors: In this case we first solve for v1 and then get the second

linearly independent vector.(
7 −1
9 1

)(
v1

v2

)
= 4

(
v1

v2

)
(

3 −1
9 −3

)(
v1

v2

)
=

(
0
0

)
. (3.98)

Therefore, we have

3v1 − v2 = 0, ⇒
(

v1

v2

)
=

(
1
3

)
.

Second Linearly Independent Solution:
Now we need to solve Av2 − λv2 = v1.

(
7 −1
9 1

)(
u1

u2

)
− 4

(
u1

u2

)
=

(
1
3

)
(

3 −1
9 −3

)(
u1

u2

)
=

(
1
3

)
. (3.99)

Expanding the matrix product, we obtain the system of equations

3u1 − u2 = 1

9u1 − 3u2 = 3. (3.100)

The solution of this system is

(
u1

u2

)
=

(
1
2

)
.

General Solution: We construct the general solution as

y(t) = c1eλtv1 + c2eλt(v2 + tv1).
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= c1e4t

(
1
3

)
+ c2e4t

[(
1
2

)
+ t

(
1
3

)]

= e4t

(
c1 + c2(1 + t)

3c1 + c2(2 + 3t)

)
. (3.101)

3.5.3 Planar Systems - Summary

The reader should have noted by now that there is a connection
between the behavior of the solutions of planar systems obtained in
Chapter 2 and the eigenvalues found from the coefficient matrices in
the previous examples. Here we summarize some of these cases.

Type Eigenvalues Stability
Node Real λ, same signs λ > 0, stable

Saddle Real λ opposite signs Mostly Unstable
Center λ pure imaginary —

Focus/Spiral Complex λ, Re(λ) 6= 0 Re(λ > 0), stable
Degenerate Node Repeated roots λ > 0, stable
Line of Equilibria One zero eigenvalue λ > 0, stable

Table 3.1: List of typical behaviors in pla-
nar systems.

The connection, as we have seen, is that the characteristic equation
for the associated second order differential equation is the same as
the eigenvalue equation of the coefficient matrix for the linear system.
However, one should be a little careful in cases in which the coeffi-
cient matrix in not diagonalizable. In Table 3.2 are three examples of
systems with repeated roots. The reader should look at these systems
and look at the commonalities and differences in these systems and
their solutions. In these cases one has unstable nodes, though they are
degenerate in that there is only one accessible eigenvector.

System 1 System 2 System 3

x
K3 K2 K1 0 1 2 3

y

K3

K2

K1

1

2

3
a = 2, b = 0, c = 0, d = 2

x
K3 K2 K1 0 1 2 3

y

K3

K2

K1

1

2

3
a = 0, b = 1, c = -4, d = 4

x
K3 K2 K1 0 1 2 3

y

K3

K2

K1

1

2

3
a = 2, b = 1, c = 0, d = 2

x′ =

(
2 0
0 2

)
x x′ =

(
0 1
−4 4

)
x x′ =

(
2 1
0 2

)
x

Table 3.2: Three examples of systems
with a repeated root of λ = 2.
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3.6 Applications

In this section we will describe some simple applications leading to
systems of differential equations which can be solved using the meth-
ods in this chapter. These systems are left for homework problems and
the as the start of further explorations for student projects.

3.6.1 Circuits

In the last chapter we investigated simple series LRC circuits. More
complicated circuits are possible by looking at parallel connections, or
other combinations, of resistors, capacitors and inductors. This will
result in several equations for each loop in the circuit, leading to larger
systems of differential equations. an example of another circuit setup
is shown in Figure 3.5. This is not a problem that can be covered in
the first year physics course.

R

C LV(t)

R1 2

Figure 3.5: A circuit with two loops con-
taining several different circuit elements.

There are two loops, indicated in Figure 3.6 as traversed clockwise.
For each loop we need to apply Kirchoff’s Loop Rule. There are three
oriented currents, labeled Ii, i = 1, 2, 3. Corresponding to each current
is a changing charge, qi such that

Figure 3.6: The previous parallel circuit
with the directions indicated for travers-
ing the loops in Kirchoff’s Laws.

Ii =
dqi
dt

, i = 1, 2, 3.

For loop one we have

I1R1 +
q2

C
= V(t). (3.102)

For loop two

I3R2 + L
dI3

dt
=

q2

C
. (3.103)

We have three unknown functions for the charge. Once we know
the charge functions, differentiation will yield the currents. However,
we only have two equations. We need a third equation. This is found
from Kirchoff’s Point (Junction) Rule. Consider the points A and B in
Figure 3.6. Any charge (current) entering these junctions must be the
same as the total charge (current) leaving the junctions. For point A
we have

I1 = I2 + I3, (3.104)

or
q̇1 = q̇2 + q̇3. (3.105)

Equations (3.102), (3.103), and (3.105) form a coupled system of dif-
ferential equations for this problem. There are both first and second
order derivatives involved. We can write the whole system in terms of
charges as

R1q̇1 +
q2

C
= V(t)
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R2q̇3 + Lq̈3 =
q2

C
q̇1 = q̇2 + q̇3. (3.106)

The question is whether, or not, we can write this as a system of
first order differential equations. Since there is only one second or-
der derivative, we can introduce the new variable q4 = q̇3. The first
equation can be solved for q̇1. The third equation can be solved for q̇2

with appropriate substitutions for the other terms. q̇3 is gotten from
the definition of q4 and the second equation can be solved for q̈3 and
substitutions made to obtain the system

q̇1 =
V
R1
− q2

R1C

q̇2 =
V
R1
− q2

R1C
− q4

q̇3 = q4

q̇4 =
q2

LC
− R2

L
q4.

So, we have a nonhomogeneous first order system of differential
equations. In the last section we learned how to solve such systems.

3.6.2 Love Affairs

The next application is one that has been studied by several authors
as a cute system involving relationships. One considers what happens
to the affections that two people have for each other over time. Let R
denote the affection that Romeo has for Juliet and J be the affection
that Juliet has for Romeo. positive values indicate love and negative
values indicate dislike.

One possible model is given by

dR
dt

= bJ

dJ
dt

= cR (3.107)

with b > 0 and c < 0. In this case Romeo loves Juliet the more she likes
him. But Juliet backs away when she finds his love for her increasing.

A typical system relating the combined changes in affection can be
modeled as

dR
dt

= aR + bJ

dJ
dt

= cR + dJ. (3.108)

Several scenarios are possible for various choices of the constants.
For example, if a > 0 and b > 0, Romeo gets more and more excited by
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Juliet’s love for him. If c > 0 and d < 0, Juliet is being cautious about
her relationship with Romeo. For specific values of the parameters
and initial conditions, one can explore this match of an overly zealous
lover with a cautious lover.

3.6.3 Predator Prey Models

Another common model studied is that of competing species. For
example, we could consider a population of rabbits and foxes. Left to
themselves, rabbits would tend to multiply, thus

dR
dt

= aR,

with a > 0. In such a model the rabbit population would grow ex-
ponentially. Similarly, a population of foxes would decay without the
rabbits to feed on. So, we have that

dF
dt

= −bF

for b > 0.
Now, if we put these populations together on a deserted island, they

would interact. The more foxes, the rabbit population would decrease.
However, the more rabbits, the foxes would have plenty to eat and
the population would thrive. Thus, we could model the competing
populations as

dR
dt

= aR− cF,

dF
dt

= −bF + dR, (3.109)

where all of the constants are positive numbers. Studying this coupled
system would lead to as study of the dynamics of these populations.
We will discuss other (nonlinear) systems in the next chapter.

3.6.4 Mixture Problems

There are many types of mixture problems. Such problems are stan-
dard in a first course on differential equations as examples of first
order differential equations. Typically these examples consist of a tank
of brine, water containing a specific amount of salt with pure water
entering and the mixture leaving, or the flow of a pollutant into, or
out of, a lake.

In general one has a rate of flow of some concentration of mixture
entering a region and a mixture leaving the region. The goal is to
determine how much stuff is in the region at a given time. This is
governed by the equation
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Rate of change of substance = Rate In − Rate Out.

This can be generalized to the case of two interconnected tanks. We
provide some examples.

Example 3.13. Single Tank Problem
A 50 gallon tank of pure water has a brine mixture with concentration of

2 pounds per gallon entering at the rate of 5 gallons per minute. [See Figure
3.7.] At the same time the well-mixed contents drain out at the rate of 5
gallons per minute. Find the amount of salt in the tank at time t. In all such
problems one assumes that the solution is well mixed at each instant of time.

Figure 3.7: A typical mixing problem.

Let x(t) be the amount of salt at time t. Then the rate at which the salt
in the tank increases is due to the amount of salt entering the tank less that
leaving the tank. To figure out these rates, one notes that dx/dt has units of
pounds per minute. The amount of salt entering per minute is given by the
product of the entering concentration times the rate at which the brine enters.
This gives the correct units:(

2
pounds

gal

)(
5

gal
min

)
= 10

pounds
min

.

Similarly, one can determine the rate out as(
x pounds

50 gal

)(
5

gal
min

)
=

x
10

pounds
min

.

Thus, we have
dx
dt

= 10− x
10

.

This equation is easily solved using the methods for first order equations.

Example 3.14. Double Tank Problem
One has two tanks connected together, labeled tank X and tank Y, as shown

in Figure 3.8.

Figure 3.8: The two tank problem.

Let tank X initially have 100 gallons of brine made with 100 pounds of salt.
Tank Y initially has 100 gallons of pure water. Now pure water is pumped
into tank X at a rate of 2.0 gallons per minute. Some of the mixture of brine
and pure water flows into tank Y at 3 gallons per minute. To keep the tank
levels the same, one gallon of the Y mixture flows back into tank X at a rate
of one gallon per minute and 2.0 gallons per minute drains out. Find the
amount of salt at any given time in the tanks. What happens over a long
period of time?

In this problem we set up two equations. Let x(t) be the amount of salt
in tank X and y(t) the amount of salt in tank Y. Again, we carefully look at
the rates into and out of each tank in order to set up the system of differential
equations. We obtain the system

dx
dt

=
y

100
− 3x

100
dy
dt

=
3x
100
− 3y

100
. (3.110)
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This is a linear, homogenous constant coefficient system of two first order
equations, which we know how to solve.

3.6.5 Chemical Kinetics

There are many problems that come from studying chemical reactions.
The simplest reaction is when a chemical A turns into chemical B.
This happens at a certain rate, k > 0. This can be represented by the
chemical formula

A
k

// B.

In this case we have that the rates of change of the concentrations of
A, [A], and B, [B], are given by

d[A]

dt
= −k[A]

d[B]
dt

= k[A] (3.111)

Think about this as it is a key to understanding the next reactions.
A more complicated reaction is given by

A
k1

// B
k2

// C.

In this case we can add to the above equation the rates of change of
concentrations [B] and [C]. The resulting system of equations is

d[A]

dt
= −k1[A],

d[B]
dt

= k1[A]− k2[B],

d[C]
dt

= k2[B]. (3.112)

One can further consider reactions in which a reverse reaction is
possible. Thus, a further generalization occurs for the reaction

A
k1

// B
k3oo

k2

// C.

The resulting system of equations is

d[A]

dt
= −k1[A] + k3[B],

d[B]
dt

= k1[A]− k2[B]− k3[B],

d[C]
dt

= k2[B]. (3.113)

More complicated chemical reactions will be discussed at a later time.
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3.6.6 Epidemics

Another interesting area of application of differential equation is in
predicting the spread of disease. Typically, one has a population of
susceptible people or animals. Several infected individuals are intro-
duced into the population and one is interested in how the infection
spreads and if the number of infected people drastically increases or
dies off. Such models are typically nonlinear and we will look at what
is called the SIR model in the next chapter. In this section we will
model a simple linear model.

Let break the population into three classes. First, S(t) are the healthy
people, who are susceptible to infection. Let I(t) be the number of in-
fected people. Of these infected people, some will die from the infec-
tion and others recover. Let’s assume that initially there in one infected
person and the rest, say N, are obviously healthy. Can we predict how
many deaths have occurred by time t?

Let’s try and model this problem using the compartmental analysis
we had seen in the mixing problems. The total rate of change of any
population would be due to those entering the group less those leaving
the group. For example, the number of healthy people decreases due
infection and can increase when some of the infected group recovers.
Let’s assume that the rate of infection is proportional to the number
of healthy people,aS. Also, we assume that the number who recover is
proportional to the number of infected, rI. Thus, the rate of change of
the healthy people is found as

dS
dt

= −aS + rI.

Let the number of deaths be D(t). Then, the death rate could be taken
to be proportional to the number of infected people. So,

dD
dt

= dI

Finally, the rate of change of infectives is due to healthy people get-
ting infected and the infectives who either recover or die. Using the
corresponding terms in the other equations, we can write

dI
dt

= aS− rI − dI.

This linear system can be written in matrix form.

d
dt

 S
I
D

 =

 −a r 0
a −d− r 0
0 d 0


 S

I
D

 . (3.114)

The eigenvalue equation for this system is

λ
[
λ2 + (a + r + d)λ + ad

]
= 0.
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The reader can find the solutions of this system and determine if this
is a realistic model.

3.7 Rotations of Conics

Eigenvalue problems show up in applications other than the solu-
tion of differential equations. We will see applications of this later in
the text. For now, we are content to deal with problems which can be
cast into matrix form. One example is the transformation of a simple
system through rotation into a more complicated appearing system
simply do to the choice of coordinate system. In this section we will
explore this through the study of the rotation of conics.

You may have seen the general form for the equation of a conic in
Cartesian coordinates in your calculus class. It is given by

Ax2 + 2Bxy + Cy2 + Ex + Fy = D. (3.115)

This equation can describe a variety of conics (ellipses, hyperbolae and
parabolae) depending on the constants. The E and F terms result from
a translation9 of the origin and the B term is the result of a rotation of 9 It is easy to see how such terms corre-

spond to translations of conics. Consider
the simple example x2 + y2 + 2x− 6y =
0. By completing the squares in both x
and y, this equation can be written as
(x + 1)2 + (y − 3)2 = 10. Now you rec-
ognize that this is a circle whose center
has been translated from the origin to
(−1, 3).

the coordinate system. We leave it to the reader to show that coordi-
nate translations can be made to eliminate the linear terms. So, we will
set E = F = 0 in our discussion and only consider quadratic equations
of the form

Ax2 + 2Bxy + Cy2 = D.

If B = 0, then the resulting equation could be an equation for the
standard ellipse or hyperbola with center at the origin. In the case of
an ellipse, the semimajor and semiminor axes lie along the coordinate
axes. However, you could rotate the ellipse and that would introduce
a B term, as we will see.

This conic equation can be written in matrix form. We note that

(
x y

)( A B
B C

)(
x
y

)
= Ax2 + 2Bxy + Cy2.

In short hand matrix form, we thus have for our equation

xTQx = D,

where Q is the matrix of coefficients A, B, and C.
We want to determine the transformation that puts this conic into a

coordinate system in which there is no B term. Our goal is to obtain
an equation of the form

A′x′2 + C′y′2 = D′
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in the new coordinates yT = (x′, y′). The matrix form of this equation
is given as

yT

(
A′ 0
0 C′

)
y = D′.

We will denote the diagonal matrix by Λ.
So, we let

x = Ry,

where R is a rotation matrix. Inserting this transformation into our
equation we find that

xTQx = (Ry)TQRy

= yT(RTQR)y. (3.116)

Comparing this result to to desired form, we have

Λ = RTQR. (3.117)

Recalling that the rotation matrix is an orthogonal matrix, RT = R−1,
we have

Λ = R−1QR. (3.118)

Thus, the problem reduces to that of trying to diagonalize the matrix
Q. The eigenvalues of Q will lead to the constants in the rotated equa-
tion and the eigenvectors, as we will see, will give the directions of the
principal axes (the semimajor and semiminor axes). We will first show
this in an example.

Example 3.15. Determine the principle axes of the ellipse given by

13x2 − 10xy + 13y2 − 72 = 0.

A plot of this conic in Figure 3.9 shows that it is an ellipse. However, we
might not know this without plotting it. (Actually, there are some conditions
on the coefficients that do allow us to determine the conic. But you may not
know this yet.) If the equation were in standard form, we could identify its
general shape. So, we will use the method outlined above to find a coordinate
system in which the ellipse appears in standard form.

The coefficient matrix for this equation is given by

Q =

(
13 −5
−5 13

)
. (3.119)

Rotated Ellipse

–2

–1

0

1

2

y

–2 –1 1 2

x

Figure 3.9: Plot of the ellipse given by
13x2 − 10xy + 13y2 − 72 = 0.

We seek a solution to the eigenvalue problem: Qv = λv. Recall, the first
step is to get the eigenvalue equation from det(Q− λI) = 0. For this problem
we have ∣∣∣∣∣ 13− λ −5

−5 13− λ

∣∣∣∣∣ = 0. (3.120)



linear algebra 153

So, we have to solve
(13− λ)2 − 25 = 0.

This is easily solved by taking square roots to get

λ− 13 = ±5,

or
λ = 13± 5 = 18, 8.

Thus, the equation in the new system is

8x′2 + 18y′2 = 72.

Dividing out the 72 puts this into the standard form

x′2

9
+

y′2

4
= 1.

Now we can identify the ellipse in the new system. We show the two ellipses
in Figure 3.10. We note that the given ellipse is the new one rotated by some
angle, which we still need to determine. –2

–1

0

1

2

y

–3 –2 –1 1 2 3

x

Figure 3.10: Plot of the ellipse given by
13x2 − 10xy + 13y2 − 72 = 0 and the el-

lipse x′2
9 + y′2

4 = 1 showing that the first
ellipse is a rotated version of the second
ellipse.

Next, we seek the eigenvectors corresponding to each eigenvalue.
Eigenvalue 1: λ = 8
We insert the eigenvalue into the equation (Q− λI)v = 0. The system for

the unknown eigenvector is(
13− 8 −5
−5 13− 8

)(
v1

v2

)
= 0. (3.121)

The first equation is
5v1 − 5v2 = 0, (3.122)

or v1 = v2. Thus, we can choose our eigenvector to be(
v1

v2

)
=

(
1
1

)
.

Eigenvalue 2: λ = 18
In the same way, we insert the eigenvalue into the equation (Q−λI)v = 0

and obtain (
13− 18 −5
−5 13− 18

)(
v1

v2

)
= 0. (3.123)

The first equation is
− 5v1 − 5v2 = 0, (3.124)

or v1 = −v2. Thus, we can choose our eigenvector to be(
v1

v2

)
=

(
−1
1

)
.
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In Figure 3.11 we superimpose the eigenvectors on our original ellipse. We
see that the eigenvectors point in directions along the semimajor and semimi-
nor axes and indicate the angle of rotation. Eigenvector one is at a 45o angle.
Thus, our ellipse is a rotated version of one in standard position. Or, we could
define new axes that are at 45o to the standard axes and then the ellipse would
take the standard form in the new coordinate system.

Standard Ellipse and its Rotation
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Figure 3.11: Plot of the ellipse given by
13x2 − 10xy + 13y2 − 72 = 0 and the
eigenvectors. Note that they are along
the semimajor and semiminor axes and
indicate the angle of rotation.

A general rotation of any conic can be performed. Consider the
general equation:

Ax2 + 2Bxy + Cy2 + Ex + Fy = D. (3.125)

We would like to find a rotation that puts it in the form

λ1x′2 + λ2y′2 + E′x′ + F′y′ = D. (3.126)

We use the rotation matrix

R̂θ =

(
cos θ − sin θ

sin θ cos θ

)

and define x′ = R̂T
θ x, or x = Rθx′.

The general equation can be written in matrix form:

xTQx + fx = D, (3.127)

where Q is the usual matrix of coefficients A, B, and C and f = (E, F).
Transforming this equation gives

x′T R−1
θ QRθx′ + fRθx′ = D. (3.128)

The resulting equation is of the form

A′x′2 + 2B′x′y′ + C′y′2 + E′x′ + F′y′ = D, (3.129)

where
B′ = 2(C− A) sin θ cos θ + 2B(2 cos θ2 − 1). (3.130)

(We only need B′ for this discussion). If we want the nonrotated form,
then we seek an angle θ such that B′ = 0. Noting that 2 sin θ cos θ =

sin 2θ and 2 cos θ2 − 1 = cos 2θ, this gives

tan(2θ) =
A− C

B
. (3.131)

Example 3.16. So, in our previous example, with A = C = 13 and B = −5,
we have tan(2θ) = ∞. Thus, 2θ = π/2, or θ = π/4.

Finally, we had noted that knowing the coefficients in the general
quadratic is enough to determine the type of conic represented without
doing any plotting. This is based on the fact that the determinant of
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the coefficient matrix is invariant under rotation. We see this from the
equation for diagonalization

det(Λ) = det(R−1
θ QRθ)

= det(R−1
θ )det(Q)det(Rθ)

= det(R−1
θ Rθ)det(Q)

= det(Q). (3.132)

Therefore, we have
λ1λ2 = AC− B2.

Looking at Equation (3.126), we have three cases:

1. Ellipse λ1λ2 > 0 or B2 − AC < 0.

2. Hyperbola λ1λ2 < 0 or B2 − AC > 0.

3. Parabola λ1λ2 = 0 or B2 − AC = 0. and one eigenvalue is nonzero.
Otherwise the equation degenerates to a linear equation.

Example 3.17. Consider the hyperbola xy = 6. We can see that this is a
rotated hyperbola by plotting y = 6/x. A plot is shown in Figure 3.12.
Determine the rotation need to put transform the hyperbola to new coordinates
so that its equation will be in standard form.

Rotated Hyperbola
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Figure 3.12: Plot of the hyperbola given
by xy = 6.

The coefficient matrix for this equation is given by

A =

(
0 −0.5

0.5 0

)
. (3.133)

The eigenvalue equation is ∣∣∣∣∣ −λ −0.5
−0.5 −λ

∣∣∣∣∣ = 0. (3.134)

Thus,
λ2 − 0.25 = 0,

or λ = ±0.5.
Once again, tan(2θ) = ∞, so the new system is at 45o to the old. The

equation in new coordinates is 0.5x2 + (−0.5)y2 = 6, or x2 − y2 = 12. A
plot is shown in Figure 3.13.
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Figure 3.13: Plot of the rotated hyper-
bola given by x2 − y2 = 12.

3.8 Appendix: Diagonalization and Linear Systems

As we have seen, the matrix formulation for linear systems can be
powerful, especially for n differential equations involving n unknown
functions. Our ability to proceed towards solutions depended upon
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the solution of eigenvalue problems. However, in the case of repeated
eigenvalues we saw some additional complications. This all depends
deeply on the background linear algebra. Namely, we relied on being
able to diagonalize the given coefficient matrix. In this section we
will discuss the limitations of diagonalization and introduce the Jordan
canonical form.

We begin with the notion of similarity. Matrix A is similar to matrix
B if and only if there exists a nonsingular matrix P such that

B = P−1 AP. (3.135)

Recall that a nonsingular matrix has a nonzero determinant and is
invertible.

We note that the similarity relation is an equivalence relation. Namely,
it satisfies the following

1. A is similar to itself.

2. If A is similar to B, then B is similar to A.

3. If A is similar to B and B is similar to C, the A is similar to
C.

Also, if A is similar to B, then they have the same eigenvalues.
This follows from a simple computation of the eigenvalue equation.
Namely,

0 = det(B− λI)

= det(P−1 AP− λP−1 IP)

= det(P)−1 det(A− λI)det(P)

= det(A− λI). (3.136)

Therefore, det(A− λI) = 0 and λ is an eigenvalue of both A and B.
An n × n matrix A is diagonalizable if and only if A is similar to a

diagonal matrix D; i.e., there exists a nonsingular matrix P such that

D = P−1 AP. (3.137)

One of the most important theorems in linear algebra is the Spectral
Theorem. This theorem tells us when a matrix can be diagonalized. In
fact, it goes beyond matrices to the diagonalization of linear operators.
We learn in linear algebra that linear operators can be represented by
matrices once we pick a particular representation basis. Diagonaliza-
tion is simplest for finite dimensional vector spaces and requires some
generalization for infinite dimensional vectors spaces. Examples of op-
erators to which the spectral theorem applies are self-adjoint operators
(more generally normal operators on Hilbert spaces). We will explore
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some of these ideas later in the course. The spectral theorem pro-
vides a canonical decomposition, called the spectral decomposition, or
eigendecomposition, of the underlying vector space on which it acts.

The next theorem tells us how to diagonalize a matrix:

Theorem 3.1. Let A be an n× n matrix. Then A is diagonalizable if and
only if A has n linearly independent eigenvectors. If so, then

D = P−1 AP.

If {v1, . . . , vn} are the eigenvectors of A and {λ1, . . . , λn} are the correspond-
ing eigenvalues, then vj is the jth column of P and Djj = λj.

A simpler determination results by noting

Theorem 3.2. Let A be an n× n matrix with n real and distinct eigenvalues.
Then A is diagonalizable.

Therefore, we need only look at the eigenvalues and determine di-
agonalizability. In fact, one also has from linear algebra the following
result.

Theorem 3.3. Let A be an n× n real symmetric matrix. Then A is diago-
nalizable.

Recall that a symmetric matrix is one whose transpose is the same
as the matrix, or Aij = Aji.

Example 3.18. Consider the matrix

A =

 1 2 2
2 3 0
2 0 3


This is a real symmetric matrix. The characteristic polynomial is found to be

det(A− λI) = −(λ− 5)(λ− 3)(λ + 1) = 0.

As before, we can determine the corresponding eigenvectors (for λ = −1, 3, 5,
respectively) as  −2

1
1

 ,

 0
−1
1

 ,

 1
1
1

 .

We can use these to construct the diagonalizing matrix P. Namely, we have

P−1 AP =

 −2 0 1
1 −1 1
1 1 1


−1 1 2 2

2 3 0
2 0 3


 −2 0 1

1 −1 1
1 1 1


=

 −1 0 0
0 3 0
0 0 5

 . (3.138)
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Now diagonalization is an important idea in solving linear systems
of first order equations, as we have seen for simple systems. If our
system is originally diagonal, that means our equations are completely
uncoupled. Let our system take the form

dy
dt

= Dy, (3.139)

where D is diagonal with entries λi, i = 1, . . . , n. The system of equa-
tions, y′i = λiyi, has solutions

yi(t) = cceλit.

Thus, it is easy to solve a diagonal system.
Let A be similar to this diagonal matrix. Then

dy
dt

= P−1 APy. (3.140)

This can be rewritten as
dPy
dt

= APy.

Defining x = Py, we have
dx
dt

= Ax. (3.141)

This simple derivation shows that if A is diagonalizable, then a
transformation of the original system in x to new coordinates, or a new
basis, results in a simpler system in y.

However, it is not always possible to diagonalize a given square
matrix. This is because some matrices do not have enough linearly
independent vectors, or we have repeated eigenvalues. However, we
have the following theorem:

Theorem 3.4. Every n× n matrix A is similar to a matrix of the form

J = diag[J1, J2, . . . , Jn],

where

Ji =


λi 1 0 · · · 0
0 λi 1 · · · 0
...

. . . . . . . . .
...

0 · · · 0 λi 1
0 0 · · · 0 λi

 (3.142)

We will not go into the details of how one finds this Jordan Canon-
ical Form or proving the theorem. In practice you can use a computer
algebra system to determine this and the similarity matrix. However,
we would still need to know how to use it to solve our system of dif-
ferential equations.
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Example 3.19. Let’s consider a simple system with the 3× 3 Jordan block

A =

 2 1 0
0 2 1
0 0 2

 .

The corresponding system of coupled first order differential equations takes
the form

dx1

dt
= 2x1 + x2,

dx2

dt
= 2x2 + x3,

dx3

dt
= 2x3. (3.143)

The last equation is simple to solve, giving x3(t) = c3e2t. Inserting into
the second equation, you have a

dx2

dt
= 2x2 + c3e2t.

Using the integrating factor, e−2t, one can solve this equation to get x2(t) =
(c2 + c3t)e2t. Similarly, one can solve the first equation to obtain x1(t) =

(c1 + c2t + 1
2 c3t2)e2t.

This should remind you of a problem we had solved earlier leading to the
generalized eigenvalue problem in (3.83). This suggests that there is a more
general theory when there are multiple eigenvalues and relating to Jordan
canonical forms.

Let’s write the solution we just obtained in vector form. We have

x(t) =

c1

 1
0
0

+ c2

 t
1
0

+ c3

 1
2 t2

t
1


 e2t. (3.144)

It looks like this solution is a linear combination of three linearly indepen-
dent solutions,

x = v1e2λt

x = (tv1 + v2)eλt

x = (
1
2

t2v1 + tv2 + v3)eλt, (3.145)

where λ = 2 and the vectors satisfy the equations

(A− λI)v1 = 0,

(A− λI)v2 = v1,

(A− λI)v3 = v2, (3.146)
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and

(A− λI)v1 = 0,

(A− λI)2v2 = 0,

(A− λI)3v3 = 0. (3.147)

It is easy to generalize this result to build linearly independent solutions
corresponding to multiple roots (eigenvalues) of the characteristic equation.

Problems

1. Express the vector v = (1, 2, 3) as a linear combination of the vectors
a1 = (1, 1, 1), a2 = (1, 0,−1), and a3 = (2, 1, 0).

2. A symmetric matrix is one for which the transpose of the matrix is
the same as the original matrix, AT = A. An antisymmetric matrix is
one which satisfies AT = −A.

a. Show that the diagonal elements of an n× n antisymmetric
matrix are all zero.

b. Show that a general 3 × 3 antisymmetric matrix has three
independent off-diagonal elements.

c. How many independent elements does a general 3× 3 sym-
metric matrix have?

d. How many independent elements does a general n× n sym-
metric matrix have?

e. How many independent elements does a general n× n anti-
symmetric matrix have?

3. Consider the matrix representations for two dimensional rotations
of vectors by angles α and β, denoted by Rα and Rβ, respectively.

a. Find R−1
α and RT

α . How do they relate?

b. Prove that Rα+β = RαRβ = RβRα.

4. The Pauli spin matrices in quantum mechanics are given by the

matrices: σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, and σ3 =

(
1 0
0 −1

)
.

Show that

a. σ2
1 = σ2

2 = σ2
3 = I.

b. {σi, σj} ≡ σiσj + σjσi = 2δij I, for i, j = 1, 2, 3 and I the 2× 2
identity matrix. {, } is the anti-commutation operation.

c. [σ1, σ2] ≡ σ1σ2− σ2σ1 = 2iσ3, and similarly for the other pairs.
[, ] is the commutation operation.
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d. Show that an arbitrary 2× 2 matrix M can be written as a
linear combination of Pauli matrices, M = a0 I + ∑3

j=1 ajσj,
where the aj’s are complex numbers.

5. Use Cramer’s Rule to solve the system:

2x− 5z = 7

x− 2y = 1

3x− 5y− z = 4. (3.148)

6. Find the eigenvalue(s) and eigenvector(s) for the following:

a.

(
4 2
3 3

)

b.

(
3 −5
1 −1

)

c.

(
4 1
0 4

)

d.

 1 −1 4
3 2 −1
2 1 −1


7. For the matrices in the last problem, compute the determinants and
find the inverses, if they exist.

8. Consider the conic 5x2 − 4xy + 2y2 = 30.

a. Write the left side in matrix form.

b. Diagonalize the coefficient matrix, finding the eigenvalues
and eigenvectors.

c. Construct the rotation matrix from the information in part b.
What is the angle of rotation needed to bring the conic into
standard form?

d. What is the conic?

9. In Equation (3.76) the exponential of a matrix was defined.

a. Let

A =

(
2 0
0 0

)
.

Compute eA.

b. Give a definition of cos A and compute cos

(
1 0
0 2

)
in sim-

plest form.
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c. Using the definition of eA, prove ePAP−1
= PeAP−1 for general

A.

10. Consider the following systems. For each system determine the
coefficient matrix. When possible, solve the eigenvalue problem for
each matrix and use the eigenvalues and eigenfunctions to provide
solutions to the given systems. Finally, in the common cases which
you investigated in Problem 17, make comparisons with your previous
answers, such as what type of eigenvalues correspond to stable nodes.

a.

x′ = 3x− y

y′ = 2x− 2y.

b.

x′ = −y

y′ = −5x.

c.

x′ = x− y

y′ = y.

d.

x′ = 2x + 3y

y′ = −3x + 2y.

e.

x′ = −4x− y

y′ = x− 2y.

f.

x′ = x− y

y′ = x + y.

11. Add a third spring connected to mass two in the coupled system
shown in Figure 2.17 to a wall on the far right. Assume that the masses
are the same and the springs are the same.

a. Model this system with a set of first order differential equa-
tions.

b. If the masses are all 2.0 kg and the spring constants are all
10.0 N/m, then find the general solution for the system.
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c. Move mass one to the left (of equilibrium) 10.0 cm and mass
two to the right 5.0 cm. Let them go. find the solution and
plot it as a function of time. Where is each mass at 5.0 sec-
onds?

12. Consider the series circuit in Figure 2.7 with L = 1.00 H, R =

1.00× 102 Ω, C = 1.00× 10−4 F, and V0 = 1.00× 103 V.

a. Set up the problem as a system of two first order differential
equations for the charge and the current.

b. Suppose that no charge is present and no current is flowing
at time t = 0 when V0 is applied. Find the current and the
charge on the capacitor as functions of time.

c. Plot your solutions and describe how the system behaves over
time.

13. Consider the series circuit in Figure 3.5 with L = 1.00 H, R1 =

R2 = 1.00× 102 Ω, C = 1.00× 10−4 F, and V0 = 1.00× 103 V.

a. Set up the problem as a system of first order differential
equations for the charges and the currents in each loop.

b. Suppose that no charge is present and no current is flowing
at time t = 0 when V0 is applied. Find the current and the
charge on the capacitor as functions of time.

c. Plot your solutions and describe how the system behaves over
time.

14. Initially a 200 gallon tank is filled with pure water. At time t =

0 a salt concentration with 3 pounds of salt per gallon is added to
the container at the rate of 4 gallons per minute, and the well-stirred
mixture is drained from the container at the same rate.

a. Find the number of pounds of salt in the container as a func-
tion of time.

b. How many minutes does it take for the concentration to
reach 2 pounds per gallon?

c. What does the concentration in the container approach for
large values of time? Does this agree with your intuition?

d. Assuming that the tank holds much more than 200 gallons,
and everything is the same except that the mixture is drained
at 3 gallons per minute, what would the answers to parts a
and b become?

15. You make two gallons of chili for a party. The recipe calls for
two teaspoons of hot sauce per gallon, but you had accidentally put
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in two tablespoons per gallon. You decide to feed your guests the
chili anyway. Assume that the guests take 1 cup/min of chili and
you replace what was taken with beans and tomatoes without any hot
sauce. [1 gal = 16 cups and 1 Tb = 3 tsp.]

a. Write down the differential equation and initial condition for
the amount of hot sauce as a function of time in this mixture-
type problem.

b. Solve this initial value problem.

c. How long will it take to get the chili back to the recipe’s
suggested concentration?

16. Consider the chemical reaction leading to the system in (3.113).
Let the rate constants be k1 = 0.20 ms−1, k2 = 0.05 ms−1, and k3 = 0.10
ms−1. What do the eigenvalues of the coefficient matrix say about the
behavior of the system? Find the solution of the system assuming
[A](0) = A0 = 1.0 µmol, [B](0) = 0, and [C](0) = 0. Plot the solutions
for t = 0.0 to 50.0 ms and describe what is happening over this time.

17. Consider the epidemic model leading to the system in (3.114).
Choose the constants as a = 2.0 days−1, d = 3.0 days−1, and r = 1.0
days−1. What are the eigenvalues of the coefficient matrix? Find the
solution of the system assuming an initial population of 1, 000 and
one infected individual. Plot the solutions for t = 0.0 to 5.0 days and
describe what is happening over this time. Is this model realistic?



4
The Harmonics of Vibrating Strings

4.1 Harmonics and Vibrations

“What I am going to tell you about is what we teach our physics students in the third or fourth year of graduate school
. . . It is my task to convince you not to turn away because you don’t understand it. You see my physics students don’t
understand it . . . That is because I don’t understand it. Nobody does.” Richard Feynman (1918-1988)

Until now we have studied oscillations in several physical sys-
tems. These lead to ordinary differential equations describing the time
evolution of the systems and required the solution of initial value prob-
lems. In this chapter we will extend our study include oscillations in
space. The typical example is the vibrating string.

When one plucks a violin, or guitar, string, the string vibrates ex-
hibiting a variety of sounds. These are enhanced by the violin case,
but we will only focus on the simpler vibrations of the string. We will
consider the one dimensional wave motion in the string. Physically,
the speed of these waves depends on the tension in the string and its
mass density. The frequencies we hear are then related to the string
shape, or the allowed wavelengths across the string. We will be inter-
ested the harmonics, or pure sinusoidal waves, of the vibrating string
and how a general wave on a string can be represented as a sum over
such harmonics. This will take us into the field of spectral, or Fourier,
analysis.

Such systems are governed by partial differential equations. The
vibrations of a string are governed by the one dimensional wave equa-
tion. Another simple partial differential equation is that of the heat, or
diffusion, equation. This equation governs heat flow. We will consider
the flow of heat through a one dimensional rod. The solution of the
heat equation also involves the use of Fourier analysis. However, in
this case there are no oscillations in time.

There are many applications that are studied using spectral analy-
sis. At the root of these studies is the belief that continuous waveforms
are comprised of a number of harmonics. Such ideas stretch back to
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the Pythagoreans study of the vibrations of strings, which led to their
program of a world of harmony. This idea was carried further by Jo-
hannes Kepler (1571-1630) in his harmony of the spheres approach to
planetary orbits. In the 1700’s others worked on the superposition the-
ory for vibrating waves on a stretched spring, starting with the wave
equation and leading to the superposition of right and left traveling
waves. This work was carried out by people such as John Wallis (1616-
1703), Brook Taylor (1685-1731) and Jean le Rond d’Alembert (1717-
1783).

y

x

Figure 4.1: Plot of the second harmonic
of a vibrating string at different times.

In 1742 d’Alembert solved the wave equation

c2 ∂2y
∂x2 −

∂2y
∂t2 = 0,

where y is the string height and c is the wave speed. However, this
solution led himself and others, like Leonhard Euler (1707-1783) and
Daniel Bernoulli (1700-1782), to investigate what "functions" could be
the solutions of this equation. In fact, this led to a more rigorous
approach to the study of analysis by first coming to grips with the
concept of a function. For example, in 1749 Euler sought the solution
for a plucked string in which case the initial condition y(x, 0) = h(x)
has a discontinuous derivative! (We will see how this led to important
questions in analysis.) Solutions of the wave equation, such

as the one shown, are solved using the
Method of Separation of Variables. Such
solutions are studies in courses in partial
differential equations and mathematical
physics.

In 1753 Daniel Bernoulli viewed the solutions as a superposition
of simple vibrations, or harmonics. Such superpositions amounted to
looking at solutions of the form

y(x, t) = ∑
k

ak sin
kπx

L
cos

kπct
L

,

where the string extend over the interval [0, L] with fixed ends at x = 0
and x = L.
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Figure 4.2: Plot of an initial condition for
a plucked string.

However, the initial conditions for such superpositions are

y(x, 0) = ∑
k

ak sin
kπx

L
.

It was determined that many functions could not be represented by a
finite number of harmonics, even for the simply plucked string given
by an initial condition of the form

y(x, 0) =

{
Ax, 0 ≤ x ≤ L/2

A(L− x), L/2 ≤ x ≤ L

Thus, the solution consists generally of an infinite series of trigono-
metric functions.

Such series expansions were also of importance in Joseph Fourier’s
(1768-1830) solution of the heat equation. The use of Fourier expan-
sions has become an important tool in the solution of linear partial dif-
ferential equations, such as the wave equation and the heat equation.
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More generally, using a technique called the Method of Separation of
Variables, allowed higher dimensional problems to be reduced to one
dimensional boundary value problems. However, these studies led to
very important questions, which in turn opened the doors to whole
fields of analysis. Some of the problems raised were The one dimensional version of the heat

equation is a partial differential equation
for u(x, t) of the form

∂u
∂t

= k
∂2u
∂x2 .

Solutions satisfying boundary condi-
tions u(0, t) = 0 and u(L, t) = 0, are of
the form

u(x, t) =
∞

∑
n=0

bn sin
nπx

L
e−n2π2t/L2

.

In this case, setting u(x, 0) = f (x), one
has to satisfy the condition

f (x) =
∞

∑
n=0

bn sin
nπx

L
.

This is similar to where we left off with
the wave equation example.

1. What functions can be represented as the sum of trigonomet-
ric functions?

2. How can a function with discontinuous derivatives be repre-
sented by a sum of smooth functions, such as the above sums
of trigonometric functions?

3. Do such infinite sums of trigonometric functions actually
converge to the functions they represent?

There are many other systems in which it makes sense to interpret
the solutions as sums of sinusoids of particular frequencies. For ex-
ample, we can consider ocean waves. Ocean waves are affected by the
gravitational pull of the moon and the sun and other numerous forces.
These lead to the tides, which in turn have their own periods of mo-
tion. In an analysis of wave heights, one can separate out the tidal
components by making use of Fourier analysis.

4.2 Boundary Value Problems

Until this point we have solved initial value problems. For an
initial value problem one has to solve a differential equation subject to
conditions on the unknown function and its derivatives at one value
of the independent variable. For example, for x = x(t) we could have
the initial value problem

x′′ + x = 2, x(0) = 1, x′(0) = 0. (4.1)

In the next chapters we will study boundary value problems and
various tools for solving such problems. In this chapter we will moti-
vate our interest in boundary value problems by looking into solving
the one-dimensional heat equation, which is a partial differential equa-
tion. for the rest of the section, we will use this solution to show that
in the background of our solution of boundary value problems is a
structure based upon linear algebra and analysis leading to the study
of inner product spaces. Though technically, we should be lead to
Hilbert spaces, which are complete inner product spaces.

For an initial value problem one has to solve a differential equation
subject to conditions on the unknown function or its derivatives at
more than one value of the independent variable. As an example, we
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have a slight modification of the above problem: Find the solution
x = x(t) for 0 ≤ t ≤ 1 that satisfies the problem

x′′ + x = 2, x(0) = 1, x(1) = 0. (4.2)

Typically, initial value problems involve time dependent functions
and boundary value problems are spatial. So, with an initial value
problem one knows how a system evolves in terms of the differential
equation and the state of the system at some fixed time. Then one
seeks to determine the state of the system at a later time.

For boundary values problems, one knows how each point responds
to its neighbors, but there are conditions that have to be satisfied at
the endpoints. An example would be a horizontal beam supported at
the ends, like a bridge. The shape of the beam under the influence
of gravity, or other forces, would lead to a differential equation and
the boundary conditions at the beam ends would affect the solution
of the problem. There are also a variety of other types of boundary
conditions. In the case of a beam, one end could be fixed and the other
end could be free to move. We will explore the effects of different
boundary value conditions in our discussions and exercises.

Let’s solve the above boundary value problem. As with initial value
problems, we need to find the general solution and then apply any
conditions that we may have. This is a nonhomogeneous differential
equation, so we have that the solution is a sum of a solution of the
homogeneous equation and a particular solution of the nonhomoge-
neous equation, x(t) = xh(t) + xp(t). The solution of x′′ + x = 0 is
easily found as

xh(t) = c1 cos t + c2 sin t.

The particular solution is found using the Method of Undetermined
Coefficients,

xp(t) = 2.

Thus, the general solution is

x(t) = 2 + c1 cos t + c2 sin t.

We now apply the boundary conditions and see if there are values
of c1 and c2 that yield a solution to our problem. The first condition,
x(0) = 0, gives

0 = 2 + c1.

Thus, c1 = −2. Using this value for c1, the second condition, x(1) = 1,
gives

0 = 2− 2 cos 1 + c2 sin 1.

This yields

c2 =
2(cos 1− 1)

sin 1
.
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We have found that there is a solution to the boundary value prob-
lem and it is given by

x(t) = 2
(

1− cos t
(cos 1− 1)

sin 1
sin t

)
.

Boundary value problems arise in many physical systems, just as
the initial value problems we have seen earlier. We will see in the
next sections that boundary value problems for ordinary differential
equations often appear in the solutions of partial differential equations.
However, there is no guarantee that we will have unique solutions of
our boundary value problems as we had found in the example above.

4.3 Partial Differential Equations

In this section we will introduce several generic partial differential
equations and see how the discussion of such equations leads natu-
rally to the study of boundary value problems for ordinary differential
equations. However, we will not derive the particular equations at this
time, leaving that for your other courses to cover.

For ordinary differential equations, the unknown functions are func-
tions of a single variable, e.g., y = y(x). Partial differential equations
are equations involving an unknown function of several variables, such
as u = u(x, y), u = u(x, y), u = u(x, y, z, t), and its (partial) derivatives.
Therefore, the derivatives are partial derivatives. We will use the stan-
dard notations ux = ∂u

∂x , uxx = ∂2u
∂x2 , etc.

There are a few standard equations that one encounters. These can
be studied in one to three dimensions and are all linear differential
equations. A list is provided in Table 4.1. Here we have introduced the
Laplacian operator, ∇2u = uxx + uyy + uzz. Depending on the types
of boundary conditions imposed and on the geometry of the system
(rectangular, cylindrical, spherical, etc.), one encounters many inter-
esting boundary value problems for ordinary differential equations.

Name 2 Vars 3 D
Heat Equation ut = kuxx ut = k∇2u
Wave Equation utt = c2uxx utt = c2∇2u

Laplace’s Equation uxx + uyy = 0 ∇2u = 0
Poisson’s Equation uxx + uyy = F(x, y) ∇2u = F(x, y, z)

Schrödinger’s Equation iut = uxx + F(x, t)u iut = ∇2u + F(x, y, z, t)u

Table 4.1: List of generic partial differen-
tial equations.

Let’s look at the heat equation in one dimension. This could de-
scribe the heat conduction in a thin insulated rod of length L. It could
also describe the diffusion of pollutant in a long narrow stream, or the
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flow of traffic down a road. In problems involving diffusion processes,
one instead calls this equation the diffusion equation.

A typical initial-boundary value problem for the heat equation would
be that initially one has a temperature distribution u(x, 0) = f (x). Plac-
ing the bar in an ice bath and assuming the heat flow is only through
the ends of the bar, one has the boundary conditions u(0, t) = 0 and
u(L, t) = 0. Of course, we are dealing with Celsius temperatures and
we assume there is plenty of ice to keep that temperature fixed at each
end for all time. So, the problem one would need to solve is given as

1D Heat Equation

PDE ut = kuxx 0 < t, 0 ≤ x ≤ L
IC u(x, 0) = f (x) 0 < x < L
BC u(0, t) = 0 t > 0

u(L, t) = 0 t > 0

(4.3)

Here, k is the heat conduction constant and is determined using
properties of the bar.

Another problem that will come up in later discussions is that of the
vibrating string. A string of length L is stretched out horizontally with
both ends fixed. Think of a violin string or a guitar string. Then the
string is plucked, giving the string an initial profile. Let u(x, t) be the
vertical displacement of the string at position x and time t. The motion
of the string is governed by the one dimensional wave equation. The
initial-boundary value problem for this problem is given as

1D Wave Equation

PDE utt = c2uxx 0 < t, 0 ≤ x ≤ L
IC u(x, 0) = f (x) 0 < x < L
BC u(0, t) = 0 t > 0

u(L, t) = 0 t > 0

(4.4)

In this problem c is the wave speed in the string. It depends on
the mass per unit length of the string and the tension placed on
the string.

4.4 The 1D Heat Equation

We would like to see how the solution of such problems involving
partial differential equations will lead naturally to studying boundary
value problems for ordinary differential equations. We will see this
as we attempt the solution of the heat equation problem as shown
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in (4.3). We will employ a method typically used in studying linear
partial differential equations, called the method of separation of variables.

We assume that u can be written as a product of single variable Solution of the 1D heat equation using
the method of separation of variables.functions of each independent variable,

u(x, t) = X(x)T(t).

Substituting this guess into the heat equation, we find that

XT′ = kX′′T.

Dividing both sides by k and u = XT, we then get

1
k

T′

T
=

X′′

X
.

We have separated the functions of time on one side and space on the
other side. The only way that a function of t equals a function of x is
if the functions are constant functions. Therefore, we set each function
equal to a constant, λ :

1
k

T′

T︸︷︷︸
function of t

=
X′′

X︸︷︷︸
function of x

= λ︸︷︷︸
constant

.

This leads to two equations:

T′ = kλT, (4.5)

X′′ = λX. (4.6)

These are ordinary differential equations. The general solutions to
these equations are readily found as

T(t) = Aekλt, (4.7)

X(x) = c1e
√

λx + c2e
√
−λx. (4.8)

We need to be a little careful at this point. The aim is to force our
product solutions to satisfy both the boundary conditions and initial
conditions. Also, we should note that λ is arbitrary and may be pos-
itive, zero, or negative. We first look at how the boundary conditions
on u lead to conditions on X.

The first condition is u(0, t) = 0. This implies that

X(0)T(t) = 0

for all t. The only way that this is true is if X(0) = 0. Similarly,
u(L, t) = 0 implies that X(L) = 0. So, we have to solve the bound-
ary value problem

X′′ − λX = 0, X(0) = 0 = X(L). (4.9)
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We are seeking nonzero solutions, as X ≡ 0 is an obvious and uninter-
esting solution. We call such solutions trivial solutions.

There are three cases to consider, depending on the sign of λ.

Case I. λ > 0
In this case we have the exponential solutions

X(x) = c1e
√

λx + c2e
√
−λx. (4.10)

For X(0) = 0, we have

0 = c1 + c2.

We will take c2 = −c1. Then, X(x) = c1(e
√

λx − e
√
−λx) =

2c1 sinh
√

λx. Applying the second condition, X(L) = 0 yields

c1 sinh
√

λL = 0.

This will be true only if c1 = 0, since λ > 0. Thus, the only so-
lution in this case is X(x) = 0. This leads to a trivial solution,
u(x, t) = 0.

Case II. λ = 0
For this case it is easier to set λ to zero in the differential
equation. So, X′′ = 0. Integrating twice, one finds

X(x) = c1x + c2.

Setting x = 0, we have c2 = 0, leaving X(x) = c1x. Setting
x = L, we find c1L = 0. So, c1 = 0 and we are once again left
with a trivial solution.

Case III. λ < 0
In this case is would be simpler to write λ = −µ2. Then the
differential equation is

X′′ + µ2X = 0.

The general solution is

X(x) = c1 cos µx + c2 sin µx.

At x = 0 we get 0 = c1. This leaves X(x) = c2 sin µx. At
x = L, we find

0 = c2 sin µL.

So, either c2 = 0 or sin µL = 0. c2 = 0 leads to a trivial
solution again. But, there are cases when the sine is zero.
Namely,

µL = nπ, n = 1, 2, . . . .

Note that n = 0 is not included since this leads to a trivial
solution. Also, negative values of n are redundant, since the
sine function is an odd function.
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In summary, we can find solutions to the boundary value problem
(4.9) for particular values of λ. The solutions are

Xn(x) = sin
nπx

L
, n = 1, 2, 3, . . .

for
λn = −µ2

n = −
(nπ

L

)2
, n = 1, 2, 3, . . . .

Product solutions of the heat equation (4.3) satisfying the boundary Product solutions.

conditions are therefore

un(x, t) = bnekλnt sin
nπx

L
, n = 1, 2, 3, . . . , (4.11)

where bn is an arbitrary constant. However, these do not necessarily
satisfy the initial condition u(x, 0) = f (x). What we do get is

un(x, 0) = sin
nπx

L
, n = 1, 2, 3, . . . .

So, if our initial condition is in one of these forms, we can pick out the
right n and we are done.

For other initial conditions, we have to do more work. Note, since
the heat equation is linear, we can write a linear combination of our General solution.

product solutions and obtain the general solution satisfying the given
boundary conditions as

u(x, t) =
∞

∑
n=1

bnekλnt sin
nπx

L
. (4.12)

The only thing to impose is the initial condition:

f (x) = u(x, 0) =
∞

∑
n=1

bn sin
nπx

L
.

So, if we are given f (x), can we find the constants bn? If we can, then
we will have the solution to the full initial-boundary value problem.
This will be the subject of the next chapter. However, first we will look
at the general form of our boundary value problem and relate what
we have done to the theory of infinite dimensional vector spaces.

Before moving on to the wave equation, we should note that (4.9) is
an eigenvalue problem. We can recast the differential equation as

LX = λX,

where

L = D2 =
d2

dx2

is a linear differential operator. The solutions, Xn(x), are called eigen-
functions and the λn’s are the eigenvalues. We will elaborate more on
this characterization later in the book.
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4.5 The 1D Wave Equation

In this section we will apply the method of separation of variables Solution of the 1D wave equation using
the method of separation of variables.to the one dimensional wave equation, given by

∂2u
∂2t

= c2 ∂2u
∂2x

(4.13)

and subject to the conditions

u(x, 0) = f (x),

ut(x, 0) = g(x),

u(0, t) = 0,

u(L, t) = 0. (4.14)

This problem applies to the propagation of waves on a string of
length L with both ends fixed so that they do not move. u(x, t) repre-
sents the vertical displacement of the string over time. The derivation
of the wave equation assumes that the vertical displacement is small
and the string is uniform. The constant c is the wave speed, given by

c =

√
T
µ

,

where T is the tension in the string and µ is the mass per unit length.
We can understand this in terms of string instruments. The tension can
be adjusted to produce different tones and the makeup of the string
(nylon or steel, thick or thin) also has an effect. In some cases the mass
density is changed simply by using thicker strings. Thus, the thicker
strings in a piano produce lower frequency notes.

The utt term gives the acceleration of a piece of the string. The uxx

is the concavity of the string. Thus, for a positive concavity the string
is curved upward near the point of interest. Thus, neighboring points
tend to pull upward towards the equilibrium position. If the concavity
is negative, it would cause a negative acceleration.

The solution of this problem is easily found using separation of
variables. We let u(x, t) = X(x)T(t). Then we find

XT′′ = c2X′′T,

which can be rewritten as

1
c2

T′′

T
=

X′′

X
.

Again, we have separated the functions of time on one side and space
on the other side. Therefore, we set each function equal to a constant.
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λ :
1
c2

T′′

T︸ ︷︷ ︸
function of t

=
X′′

X︸︷︷︸
function of x

= λ︸︷︷︸
constant

.

This leads to two equations:

T′′ = c2λT, (4.15)

X′′ = λX. (4.16)

As before, we have the boundary conditions on X(x):

X(0) = 0, and X(L) = 0.

Again, this gives us that

Xn(x) = sin
nπx

L
, λn = −

(nπ

L

)2
.

The main difference from the solution of the heat equation is the
form of the time function. Namely, from Equation (4.15) we have to
solve

T′′ +
(nπc

L

)2
T = 0. (4.17)

This equation takes a familiar form. We let

ωn =
nπc

L
,

then we have
T′′ + ω2

nT = 0.

The solutions are easily found as

T(t) = An cos ωnt + Bn sin ωnt. (4.18)

Therefore, we have found that the product solutions of the wave
equation take the forms sin nπx

L cos ωnt and sin nπx
L sin ωnt. The gen-

eral solution, a superposition of all product solutions, is given by General solution.

u(x, t) =
∞

∑
n=1

[
An cos

nπct
L

+ Bn sin
nπct

L

]
sin

nπx
L

. (4.19)

This solution satisfies the wave equation and the boundary condi-
tions. We still need to satisfy the initial conditions. Note that there are
two initial conditions, since the wave equation is second order in time.

First, we have u(x, 0) = f (x). Thus,

f (x) = u(x, 0) =
∞

∑
n=1

An sin
nπx

L
. (4.20)
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In order to obtain the condition on the initial velocity, ut(x, 0) =

g(x), we need to differentiate the general solution with respect to t:

ut(x, t) =
∞

∑
n=1

nπc
L

[
−An sin

nπct
L

+ Bn cos
nπct

L

]
sin

nπx
L

. (4.21)

Then, we have

g(x) = ut(x, 0) =
∞

∑
n=1

nπc
L

Bn sin
nπx

L
. (4.22)

In both cases we have that the given functions, f (x) and g(x), are
represented as Fourier sine series. In order to complete the problem
we need to determine the constants An and Bn for n = 1, 2, 3, . . .. Once
we have these, we have the complete solution to the wave equation.

We had seen similar results for the heat equation. In the next section
we will find out how to determine the Fourier coefficients for such
series of sinusoidal functions.

4.6 Introduction to Fourier Series

In this chapter we will look at trigonometric series. In your calculus
courses you have probably seen that many functions could have series
representations as expansions in powers of x, or x − a. This led to
MacLaurin or Taylor series. When dealing with Taylor series, you often
had to determine the expansion coefficients. For example, given an
expansion of f (x) about x = a, you learned that the Taylor series was
given by

f (x) =
∞

∑
n=0

cn(x− a)n,

where the expansion coefficients are determined as

cn =
f (n)(a)

n!
.

Then you found that the Taylor series converged for a certain range
of x values. (We review Taylor series in the book appendix and later
when we study series representations of complex valued functions.)

In a similar way, we will investigate the Fourier trigonometric series
expansion

f (x) =
a0

2
+

∞

∑
n=1

an cos
nπx

L
+ bn sin

nπx
L

.

We will find expressions useful for determining the Fourier coefficients
{an, bn} given a function f (x) defined on [−L, L]. We will also see if



the harmonics of vibrating strings 177

the resulting infinite series reproduces f (x). However, we first begin
with some basic ideas involving simple sums of sinusoidal functions.

The natural appearance of such sums over sinusoidal functions is in
music, or sound. A pure note can be represented as

y(t) = A sin(2π f t),

where A is the amplitude, f is the frequency in hertz (Hz), and t is
time in seconds. The amplitude is related to the volume of the sound.
The larger the amplitude, the louder the sound. In Figure 4.3 we show
plots of two such tones with f = 2 Hz in the top plot and f = 5 Hz in
the bottom one.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−4

−2

0
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4
y(t)=2 sin(4 π t)

Time

y(
t)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−4

−2

0

2

4
y(t)=sin(10 π t)

Time

y(
t)

Figure 4.3: Plots of y(t) = A sin(2π f t)
on [0, 5] for f = 2 Hz and f = 5 Hz.

In these plots you should notice the difference due to the amplitudes
and the frequencies. You can easily reproduce these plots and others
in your favorite plotting utility.

As an aside, you should be cautious when plotting functions, or
sampling data. The plots you get might not be what you expect, even
for a simple sine function. In Figure 4.4 we show four plots of the
function y(t) = 2 sin(4πt). In the top left you see a proper rendering
of this function. However, if you use a different number of points
to plot this function, the results may be surprising. In this example
we show what happens if you use N = 200, 100, 101 points instead
of the 201 points used in the first plot. Such disparities are not only
possible when plotting functions, but are also present when collecting
data. Typically, when you sample a set of data, you only gather a finite
amount of information at a fixed rate. This could happen when getting
data on ocean wave heights, digitizing music and other audio to put
on your computer, or any other process when you attempt to analyze
a continuous signal.

Next, we consider what happens when we add several pure tones.
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Figure 4.4: Problems can occur while
plotting. Here we plot the func-
tion y(t) = 2 sin 4πt using N =
201, 200, 100, 101 points.

After all, most of the sounds that we hear are in fact a combination of
pure tones with different amplitudes and frequencies. In Figure 4.5 we
see what happens when we add several sinusoids. Note that as one
adds more and more tones with different characteristics, the resulting
signal gets more complicated. However, we still have a function of
time. In this chapter we will ask, “Given a function f (t), can we find a
set of sinusoidal functions whose sum converges to f (t)?”

Looking at the superpositions in Figure 4.5, we see that the sums
yield functions that appear to be periodic. This is not to be unexpected.
We recall that a periodic function is one in which the function values
repeat over the domain of the function. The length of the smallest part
of the domain which repeats is called the period. We can define this
more precisely.

Definition 4.1. A function is said to be periodic with period T if f (t +
T) = f (t) for all t and the smallest such positive number T is called
the period.
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Figure 4.5: Superposition of several si-
nusoids. Top: Sum of signals with f = 2
Hz and f = 5 Hz. Bottom: Sum of sig-
nals with f = 2 Hz, f = 5 Hz, and and
f = 8 Hz.

For example, we consider the functions used in Figure 4.5. We be-
gan with y(t) = 2 sin(4πt). Recall from your first studies of trigono-
metric functions that one can determine the period by dividing the
coefficient of t into 2π to get the period. In this case we have

T =
2π

4π
=

1
2

.

Looking at the top plot in Figure 4.3 we can verify this result. (You can
count the full number of cycles in the graph and divide this into the
total time to get a more accurate value of the period.)

In general, if y(t) = A sin(2π f t), the period is found as

T =
2π

2π f
=

1
f

.
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Of course, this result makes sense, as the unit of frequency, the hertz,
is also defined as s−1, or cycles per second.

Returning to Figure 4.5, the functions y(t) = 2 sin(4πt), y(t) =

sin(10πt), and y(t) = 0.5 sin(16πt) have periods of 0.5s, 0.2s, and
0.125s, respectively. Each superposition in Figure 4.5 retains a period
that is the least common multiple of the periods of the signals added.
For both plots, this is 1.0s = 2(0.5)s = 5(.2)s = 8(.125)s.
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Figure 4.6: Plot of the functions y(t) =
2 sin(4πt) and y(t) = 2 sin(4πt + 7π/8)
and their sum.

Our goal will be to start with a function and then determine the
amplitudes of the simple sinusoids needed to sum to that function.
We will see that this might involve an infinite number of such terms.
T hus, we will be studying an infinite series of sinusoidal functions.

Secondly, we will find that using just sine functions will not be
enough either. This is because we can add sinusoidal functions that
do not necessarily peak at the same time. We will consider two signals
that originate at different times. This is similar to when your music
teacher would make sections of the class sing a song like “Row, Row,
Row your Boat” starting at slightly different times. We should note that the form in the

lower plot of Figure 4.6 looks like a sim-
ple sinusoidal function for a reason. Let

y1(t) = 2 sin(4πt),

y2(t) = 2 sin(4πt + 7π/8).

Then,

y1 + y2 = 2 sin(4πt + 7π/8) + 2 sin(4πt)

= 2[sin(4πt + 7π/8) + sin(4πt)]

= 4 cos
7π

16
sin
(

4πt +
7π

16

)
.

This can be confirmed using the identity

2 sin x cos y = sin(x + y) + sin(x− y).

We can easily add shifted sine functions. In Figure 4.6 we show the
functions y(t) = 2 sin(4πt) and y(t) = 2 sin(4πt + 7π/8) and their
sum. Note that this shifted sine function can be written as y(t) =

2 sin(4π(t + 7/32)). Thus, this corresponds to a time shift of −7/32.
So, we should account for shifted sine functions in our general sum.

Of course, we would then need to determine the unknown time shift
as well as the amplitudes of the sinusoidal functions that make up our
signal, f (t). While this is one approach that some researchers use to
analyze signals, there is a more common approach. This results from
another reworking of the shifted function.

Consider the general shifted function

y(t) = A sin(2π f t + φ). (4.23)

Note that 2π f t + φ is called the phase of the sine function and φ is
called the phase shift. We can use the trigonometric identity for the sine
of the sum of two angles1 to obtain 1 Recall the identities (4.30)-(4.31)

sin(x + y) = sin x cos y + sin y cos x,

cos(x + y) = cos x cos y− sin x sin y.
y(t) = A sin(2π f t + φ) = A sin(φ) cos(2π f t) + A cos(φ) sin(2π f t).

Defining a = A sin(φ) and b = A cos(φ), we can rewrite this as

y(t) = a cos(2π f t) + b sin(2π f t).

Thus, we see that the signal in Equation (4.23) is a sum of sine and
cosine functions with the same frequency and different amplitudes. If
we can find a and b, then we can easily determine A and φ:

A =
√

a2 + b2, tan φ =
b
a

.

We are now in a position to state our goal in this chapter.
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Goal

Given a signal f (t), we would like to determine its frequency
content by finding out what combinations of sines and cosines of
varying frequencies and amplitudes will sum to the given func-
tion. This is called Fourier Analysis.

4.7 Fourier Trigonometric Series

As we have seen in the last section, we are interested in finding
representations of functions in terms of sines and cosines. Given a
function f (x) we seek a representation in the form

f (x) ∼ a0

2
+

∞

∑
n=1

[an cos nx + bn sin nx] . (4.24)

Notice that we have opted to drop the references to the time-frequency
form of the phase. This will lead to a simpler discussion for now and
one can always make the transformation nx = 2π fnt when applying
these ideas to applications.

The series representation in Equation (4.24) is called a Fourier trigono-
metric series. We will simply refer to this as a Fourier series for now. The
set of constants a0, an, bn, n = 1, 2, . . . are called the Fourier coefficients.
The constant term is chosen in this form to make later computations
simpler, though some other authors choose to write the constant term
as a0. Our goal is to find the Fourier series representation given f (x).
Having found the Fourier series representation, we will be interested
in determining when the Fourier series converges and to what function
it converges.

From our discussion in the last section, we see that The Fourier se-
ries is periodic. The periods of cos nx and sin nx are 2π

n . Thus, the
largest period, T = 2π., comes from the n = 1 terms and the Fourier
series has period 2π. This means that the series should be able to rep-
resent functions that are periodic of period 2π.
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1.5

2
f(x) on [0,2 π]

x

f(
x)

−5 0 5 10 15
0

0.5

1

1.5

2
Periodic Extension of f(x)

x

f(
x)

Figure 4.7: Plot of the functions f (t) de-
fined on [0, 2π] and its periodic exten-
sion.

While this appears restrictive, we could also consider functions that
are defined over one period. In Figure 4.7 we show a function defined
on [0, 2π]. In the same figure, we show its periodic extension. These
are just copies of the original function shifted by the period and glued
together. The extension can now be represented by a Fourier series
and restricting the Fourier series to [0, 2π] will give a representation of
the original function. Therefore, we will first consider Fourier series
representations of functions defined on this interval. Note that we
could just as easily considered functions defined on [−π, π] or any
interval of length 2π.
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Fourier Coefficients

Theorem 4.1. The Fourier series representation of f (x) defined on
[0, 2π], when it exists, is given by (4.24) with Fourier coefficients

an =
1
π

∫ 2π

0
f (x) cos nx dx, n = 0, 1, 2, . . . ,

bn =
1
π

∫ 2π

0
f (x) sin nx dx, n = 1, 2, . . . . (4.25)

These expressions for the Fourier coefficients are obtained by con-
sidering special integrations of the Fourier series. We will look at the
derivations of the an’s. First we obtain a0.

We begin by integrating the Fourier series term by term in Equation
(4.24).

∫ 2π

0
f (x) dx =

∫ 2π

0

a0

2
dx +

∫ 2π

0

∞

∑
n=1

[an cos nx + bn sin nx] dx. (4.26)

We assume that we can integrate the infinite sum term by term. Then
we need to compute∫ 2π

0

a0

2
dx =

a0

2
(2π) = πa0,∫ 2π

0
cos nx dx =

[
sin nx

n

]2π

0
= 0,

∫ 2π

0
sin nx dx =

[
− cos nx

n

]2π

0
= 0. (4.27)

From these results we see that only one term in the integrated sum
does not vanish leaving

∫ 2π

0
f (x) dx = πa0.

This confirms the value for a0.2

2 Note that a0
2 is the average of f (x) over

the interval [0, 2π]. Recall from the first
semester of calculus, that the average of
a function defined on [a, b] is given by

fave =
1

b− a

∫ b

a
f (x) dx.

For f (x) defined on [0, 2π], we have

fave =
1

2π

∫ 2π

0
f (x) dx =

a0

2
.

Next, we need to find an. We will multiply the Fourier series (4.24)
by cos mx for some positive integer m. This is like multiplying by
cos 2x, cos 5x, etc. We are multiplying by all possible cos mx functions
for different integers m all at the same time. We will see that this will
allow us to solve for the an’s.

We find the integrated sum of the series times cos mx is given by

∫ 2π

0
f (x) cos mx dx =

∫ 2π

0

a0

2
cos mx dx

+
∫ 2π

0

∞

∑
n=1

[an cos nx + bn sin nx] cos mx dx.

(4.28)
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Integrating term by term, the right side becomes∫ 2π

0
f (x) cos mx dx =

a0

2

∫ 2π

0
cos mx dx

+
∞

∑
n=1

[
an

∫ 2π

0
cos nx cos mx dx + bn

∫ 2π

0
sin nx cos mx dx

]
.

(4.29)

We have already established that
∫ 2π

0 cos mx dx = 0, which implies
that the first term vanishes.

Next we need to compute integrals of products of sines and cosines.
This requires that we make use of some trigonometric identities. While
you have seen such integrals before in your calculus class, we will
review how to carry out such integrals. For future reference, we list
several useful identities, some of which we will prove along the way.

Useful Trigonometric Identities

sin(x± y) = sin x cos y± sin y cos x (4.30)

cos(x± y) = cos x cos y∓ sin x sin y (4.31)

sin2 x =
1
2
(1− cos 2x) (4.32)

cos2 x =
1
2
(1 + cos 2x) (4.33)

sin x sin y =
1
2
(cos(x− y)− cos(x + y)) (4.34)

cos x cos y =
1
2
(cos(x + y) + cos(x− y)) (4.35)

sin x cos y =
1
2
(sin(x + y) + sin(x− y)) (4.36)

We first want to evaluate
∫ 2π

0 cos nx cos mx dx. We do this by using
the product identity (4.35). In case you forgot how to derive this iden-
tity, we will first review the proof. Recall the addition formulae for
cosines:

cos(A + B) = cos A cos B− sin A sin B,

cos(A− B) = cos A cos B + sin A sin B.

Adding these equations gives

2 cos A cos B = cos(A + B) + cos(A− B).

We can use this identity with A = mx and B = nx to complete the
integration. We have∫ 2π

0
cos nx cos mx dx =

1
2

∫ 2π

0
[cos(m + n)x + cos(m− n)x] dx
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=
1
2

[
sin(m + n)x

m + n
+

sin(m− n)x
m− n

]2π

0
= 0. (4.37)

There is one caveat when doing such integrals. What if one of the
denominators m± n vanishes? For our problem m + n 6= 0, since both
m and n are positive integers. However, it is possible for m = n. This
means that the vanishing of the integral can only happen when m 6= n.
So, what can we do about the m = n case? One way is to start from
scratch with our integration. (Another way is to compute the limit as
n approaches m in our result and use L’Hopital’s Rule. Try it!)

For n = m we have to compute
∫ 2π

0 cos2 mx dx. This can also be
handled using a trigonometric identity. Recall identity (4.33):

cos2 θ =
1
2
(1 + cos 2θ).

Letting θ = mx and inserting the identity into the integral, we find∫ 2π

0
cos2 mx dx =

1
2

∫ 2π

0
(1 + cos 2mx) dx

=
1
2

[
x +

1
2m

sin 2mx
]2π

0

=
1
2
(2π) = π. (4.38)

To summarize, we have shown that

∫ 2π

0
cos nx cos mx dx =

{
0, m 6= n
π, m = n.

(4.39)

This holds true for m, n = 0, 1, . . . . [Why did we include m, n = 0?]
When we have such a set of functions, they are said to be an orthogonal
set over the integration interval.

Definition 4.2. 3 A set of (real) functions {φn(x)} is said to be orthog- 3 Definition of an orthogonal set of func-
tions and orthonormal functions.onal on [a, b] if

∫ b
a φn(x)φm(x) dx = 0 when n 6= m. Furthermore, if we

also have that
∫ b

a φ2
n(x) dx = 1, these functions are called orthonormal.

The set of functions {cos nx}∞
n=0 are orthogonal on [0, 2π]. Actually,

they are orthogonal on any interval of length 2π. We can make them
orthonormal by dividing each function by

√
π as indicated by Equa-

tion (4.38). This is sometimes referred to normalization of the set of
functions.

The notion of orthogonality is actually a generalization of the or-
thogonality of vectors in finite dimensional vector spaces. The integral∫ b

a f (x) f (x) dx is the generalization of the dot product, and is called
the scalar product of f (x) and g(x), which are thought of as vectors
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in an infinite dimensional vector space spanned by a set of orthogonal
functions. But that is another topic for later.

Returning to the evaluation of the integrals in equation (4.29), we
still have to evaluate

∫ 2π
0 sin nx cos mx dx. This can also be evaluated

using trigonometric identities. In this case, we need an identity involv-
ing products of sines and cosines, (4.36). Such products occur in the
addition formulae for sine functions, using (4.30):

sin(A + B) = sin A cos B + sin B cos A,

sin(A− B) = sin A cos B− sin B cos A.

Adding these equations, we find that

sin(A + B) + sin(A− B) = 2 sin A cos B.

Setting A = nx and B = mx, we find that∫ 2π

0
sin nx cos mx dx =

1
2

∫ 2π

0
[sin(n + m)x + sin(n−m)x] dx

=
1
2

[
− cos(n + m)x

n + m
+
− cos(n−m)x

n−m

]2π

0

= (−1 + 1) + (−1 + 1) = 0. (4.40)

So,

∫ 2π

0
sin nx cos mx dx = 0. (4.41)

For these integrals we also should be careful about setting n = m. In
this special case, we have the integrals

∫ 2π

0
sin mx cos mx dx =

1
2

∫ 2π

0
sin 2mx dx =

1
2

[
− cos 2mx

2m

]2π

0
= 0.

Finally, we can finish our evaluation of (4.29). We have determined
that all but one integral vanishes. In that case, n = m. This leaves us
with ∫ 2π

0
f (x) cos mx dx = amπ.

Solving for am gives

am =
1
π

∫ 2π

0
f (x) cos mx dx.

Since this is true for all m = 1, 2, . . . , we have proven this part of the
theorem. The only part left is finding the bn’s This will be left as an
exercise for the reader.

We now consider examples of finding Fourier coefficients for given
functions. In all of these cases we define f (x) on [0, 2π].
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Example 4.1. f (x) = 3 cos 2x, x ∈ [0, 2π].
We first compute the integrals for the Fourier coefficients.

a0 =
1
π

∫ 2π

0
3 cos 2x dx = 0.

an =
1
π

∫ 2π

0
3 cos 2x cos nx dx = 0, n 6= 2.

a2 =
1
π

∫ 2π

0
3 cos2 2x dx = 3,

bn =
1
π

∫ 2π

0
3 cos 2x sin nx dx = 0, ∀n.

(4.42)

The integrals for a0, an, n 6= 2, and bn are the result of orthogonality. For a2,
the integral evaluation can be done as follows:

a2 =
1
π

∫ 2π

0
3 cos2 2x dx

=
3

2π

∫ 2π

0
[1 + cos 4x] dx

=
3

2π

x +
1
4

sin 4x︸ ︷︷ ︸
This term vanishes!


2π

0

= 3. (4.43)

Therefore, we have that the only nonvanishing coefficient is a2 = 3. So
there is one term and f (x) = 3 cos 2x. Well, we should have known this
before doing all of these integrals. So, if we have a function expressed simply
in terms of sums of simple sines and cosines, then it should be easy to write
down the Fourier coefficients without much work.

Example 4.2. f (x) = sin2 x, x ∈ [0, 2π].
We could determine the Fourier coefficients by integrating as in the last

example. However, it is easier to use trigonometric identities. We know that

sin2 x =
1
2
(1− cos 2x) =

1
2
− 1

2
cos 2x.

There are no sine terms, so bn = 0, n = 1, 2, . . . . There is a constant term,
implying a0/2 = 1/2. So, a0 = 1. There is a cos 2x term, corresponding to
n = 2, so a2 = − 1

2 . That leaves an = 0 for n 6= 0, 2. So, a0 = 1, a2 = − 1
2 ,

and all other Fourier coefficients vanish.

Example 4.3. f (x) =

{
1, 0 < x < π,
−1, π < x < 2π,

.

π 2π

−2

−1

0

1

2

x

Plot of f (x) =
{

1, 0 < x < π,
−1, π < x < 2π.

Figure 4.8: Plot of discontinuous func-
tion in Example 4.3.This example will take a little more work. We cannot bypass evaluating

any integrals at this time. This function is discontinuous, so we will have to
compute each integral by breaking up the integration into two integrals, one
over [0, π] and the other over [π, 2π].



186 mathematical physics

a0 =
1
π

∫ 2π

0
f (x) dx

=
1
π

∫ π

0
dx +

1
π

∫ 2π

π
(−1) dx

=
1
π
(π) +

1
π
(−2π + π) = 0. (4.44)

an =
1
π

∫ 2π

0
f (x) cos nx dx

=
1
π

[∫ π

0
cos nx dx−

∫ 2π

π
cos nx dx

]
=

1
π

[(
1
n

sin nx
)π

0
−
(

1
n

sin nx
)2π

π

]
= 0. (4.45)

bn =
1
π

∫ 2π

0
f (x) sin nx dx

=
1
π

[∫ π

0
sin nx dx−

∫ 2π

π
sin nx dx

]
=

1
π

[(
− 1

n
cos nx

)π

0
+

(
1
n

cos nx
)2π

π

]

=
1
π

[
− 1

n
cos nπ +

1
n
+

1
n
− 1

n
cos nπ

]
=

2
nπ

(1− cos nπ). (4.46)

We have found the Fourier coefficients for this function. Before inserting
them into the Fourier series (4.24), we note that cos nπ = (−1)n. Therefore, Often we see expressions involving

cos nπ = (−1)n and 1 ± cos nπ = 1 ±
(−1)n. This is an example showing how
to re-index series containing such a fac-
tor.

1− cos nπ =

{
0, n even
2, n odd.

(4.47)

So, half of the bn’s are zero. While we could write the Fourier series represen-
tation as

f (x) ∼ 4
π

∞

∑
n=1, odd

1
n

sin nx,

we could let n = 2k− 1 and write

f (x) =
4
π

∞

∑
k=1

sin(2k− 1)x
2k− 1

,

But does this series converge? Does it converge to f (x)? We will discuss
this question later in the chapter.
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4.8 Fourier Series Over Other Intervals

In many applications we are interested in determining Fourier se-
ries representations of functions defined on intervals other than [0, 2π].
In this section we will determine the form of the series expansion and
the Fourier coefficients in these cases.

The most general type of interval is given as [a, b]. However, this
often is too general. More common intervals are of the form [−π, π],
[0, L], or [−L/2, L/2]. The simplest generalization is to the interval
[0, L]. Such intervals arise often in applications. For example, one can
study vibrations of a one dimensional string of length L and set up the
axes with the left end at x = 0 and the right end at x = L. Another
problem would be to study the temperature distribution along a one
dimensional rod of length L. Such problems lead to the original studies
of Fourier series. As we will see later, symmetric intervals, [−a, a], are
also useful.

Given an interval [0, L], we could apply a transformation to an in-
terval of length 2π by simply rescaling our interval. Then we could
apply this transformation to the Fourier series representation to ob-
tain an equivalent one useful for functions defined on [0, L].

We define x ∈ [0, 2π] and t ∈ [0, L]. A linear transformation relating
these intervals is simply x = 2πt

L as shown in Figure 5.12. So, t = 0
maps to x = 0 and t = L maps to x = 2π. Furthermore, this transfor-
mation maps f (x) to a new function g(t) = f (x(t)), which is defined
on [0, L]. We will determine the Fourier series representation of this
function using the representation for f (x).

Figure 4.9: A sketch of the transforma-
tion between intervals x ∈ [0, 2π] and
t ∈ [0, L].

Recall the form of the Fourier representation for f (x) in Equation
(4.24):

f (x) ∼ a0

2
+

∞

∑
n=1

[an cos nx + bn sin nx] . (4.48)

Inserting the transformation relating x and t, we have

g(t) ∼ a0

2
+

∞

∑
n=1

[
an cos

2nπt
L

+ bn sin
2nπt

L

]
. (4.49)

This gives the form of the series expansion for g(t) with t ∈ [0, L]. But,
we still need to determine the Fourier coefficients.

Recall, that

an =
1
π

∫ 2π

0
f (x) cos nx dx.

We need to make a substitution in the integral of x = 2πt
L . We also will

need to transform the differential, dx = 2π
L dt. Thus, the resulting form
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for the Fourier coefficients is

an =
2
L

∫ L

0
g(t) cos

2nπt
L

dt. (4.50)

Similarly, we find that

bn =
2
L

∫ L

0
g(t) sin

2nπt
L

dt. (4.51)

We note first that when L = 2π we get back the series representation
that we first studied. Also, the period of cos 2nπt

L is L/n, which means
that the representation for g(t) has a period of L.

At the end of this section we present the derivation of the Fourier
series representation for a general interval for the interested reader. In
Table 4.2 we summarize some commonly used Fourier series represen-
tations.

We will end our discussion for now with some special cases and an
example for a function defined on [−π, π].

At this point we need to remind the reader about the integration of
even and odd functions.

1. Even Functions: In this evaluation we made use of the fact
that the integrand is an even function. Recall that f (x) is an
even function if f (−x) = f (x) for all x. One can recognize
even functions as they are symmetric with respect to the y-
axis as shown in Figure 4.10(A). If one integrates an even
function over a symmetric interval, then one has that∫ a

−a
f (x) dx = 2

∫ a

0
f (x) dx. (4.58)

One can prove this by splitting off the integration over nega-
tive values of x, using the substitution x = −y, and employ-
ing the evenness of f (x). Thus,∫ a

−a
f (x) dx =

∫ 0

−a
f (x) dx +

∫ a

0
f (x) dx

= −
∫ 0

a
f (−y) dy +

∫ a

0
f (x) dx

=
∫ a

0
f (y) dy +

∫ a

0
f (x) dx

= 2
∫ a

0
f (x) dx. (4.59)

This can be visually verified by looking at Figure 4.10(A).

2. Odd Functions: A similar computation could be done for
odd functions. f (x) is an odd function if f (−x) = − f (x) for all
x. The graphs of such functions are symmetric with respect
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Fourier Series on [0, L]

f (x) ∼ a0

2
+

∞

∑
n=1

[
an cos

2nπx
L

+ bn sin
2nπx

L

]
. (4.52)

an =
2
L

∫ L

0
f (x) cos

2nπx
L

dx. n = 0, 1, 2, . . . ,

bn =
2
L

∫ L

0
f (x) sin

2nπx
L

dx. n = 1, 2, . . . . (4.53)

Fourier Series on [− L
2 , L

2 ]

f (x) ∼ a0

2
+

∞

∑
n=1

[
an cos

2nπx
L

+ bn sin
2nπx

L

]
. (4.54)

an =
2
L

∫ L
2

− L
2

f (x) cos
2nπx

L
dx. n = 0, 1, 2, . . . ,

bn =
2
L

∫ L
2

− L
2

f (x) sin
2nπx

L
dx. n = 1, 2, . . . . (4.55)

Fourier Series on [−π, π]

f (x) ∼ a0

2
+

∞

∑
n=1

[an cos nx + bn sin nx] . (4.56)

an =
1
π

∫ π

−π
f (x) cos nx dx. n = 0, 1, 2, . . . ,

bn =
1
π

∫ π

−π
f (x) sin nx dx. n = 1, 2, . . . . (4.57)

Table 4.2: Special Fourier Series Repre-
sentations on Different Intervals
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to the origin as shown in Figure 4.10(B). If one integrates an
odd function over a symmetric interval, then one has that∫ a

−a
f (x) dx = 0. (4.60)

Figure 4.10: Examples of the areas under
(A) even and (B) odd functions on sym-
metric intervals, [−a, a].

Example 4.4. Let f (x) = |x| on [−π, π] We compute the coefficients, be-
ginning as usual with a0. We have, using the fact that |x| is an even function,

a0 =
1
π

∫ π

−π
|x| dx

=
2
π

∫ π

0
x dx = π (4.61)

We continue with the computation of the general Fourier coefficients for
f (x) = |x| on [−π, π]. We have

an =
1
π

∫ π

−π
|x| cos nx dx =

2
π

∫ π

0
x cos nx dx. (4.62)

Here we have made use of the fact that |x| cos nx is an even function. In order
to compute the resulting integral, we need to use integration by parts ,∫ b

a
u dv = uv

∣∣∣b
a
−
∫ b

a
v du,

by letting u = x and dv = cos nx dx. Thus, du = dx and v =
∫

dv =
1
n sin nx. Continuing with the computation, we have

an =
2
π

∫ π

0
x cos nx dx.

=
2
π

[
1
n

x sin nx
∣∣∣π
0
− 1

n

∫ π

0
sin nx dx

]
= − 2

nπ

[
− 1

n
cos nx

]π

0

= − 2
πn2 (1− (−1)n). (4.63)

Here we have used the fact that cos nπ = (−1)n for any integer n. This leads
to a factor (1− (−1)n). This factor can be simplified as

1− (−1)n =

{
2, n odd
0, n even

. (4.64)

So, an = 0 for n even and an = − 4
πn2 for n odd.

Computing the bn’s is simpler. We note that we have to integrate |x| sin nx
from x = −π to π. The integrand is an odd function and this is a symmetric
interval. So, the result is that bn = 0 for all n.

Putting this all together, the Fourier series representation of f (x) = |x|
on [−π, π] is given as

f (x) ∼ π

2
− 4

π

∞

∑
n=1, odd

cos nx
n2 . (4.65)
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While this is correct, we can rewrite the sum over only odd n by reindexing.
We let n = 2k− 1 for k = 1, 2, 3, . . . . Then we only get the odd integers. The
series can then be written as

f (x) ∼ π

2
− 4

π

∞

∑
k=1

cos(2k− 1)x
(2k− 1)2 . (4.66)
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Figure 4.11: Plot of the first partial sums
of the Fourier series representation for
f (x) = |x|.

Throughout our discussion we have referred to such results as Fourier
representations. We have not looked at the convergence of these series.
Here is an example of an infinite series of functions. What does this
series sum to? We show in Figure 4.11 the first few partial sums. They
appear to be converging to f (x) = |x| fairly quickly.

Even though f (x) was defined on [−π, π] we can still evaluate the
Fourier series at values of x outside this interval. In Figure 4.12, we
see that the representation agrees with f (x) on the interval [−π, π].
Outside this interval we have a periodic extension of f (x) with period
2π.
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Figure 4.12: Plot of the first 10 terms
of the Fourier series representation for
f (x) = |x| on the interval [−2π, 4π].

Another example is the Fourier series representation of f (x) = x on
[−π, π] as left for Problem 7. This is determined to be

f (x) ∼ 2
∞

∑
n=1

(−1)n+1

n
sin nx. (4.67)

As seen in Figure 4.13 we again obtain the periodic extension of our
function. In this case we needed many more terms. Also, the vertical
parts of the first plot are nonexistent. In the second plot we only plot
the points and not the typical connected points that most software
packages plot as the default style.
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Figure 4.13: Plot of the first 10 terms
and 200 terms of the Fourier series rep-
resentation for f (x) = x on the interval
[−2π, 4π].
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Example 4.5. It is interesting to note that one can use Fourier series to obtain
sums of some infinite series. For example, in the last example we found that

x ∼ 2
∞

∑
n=1

(−1)n+1

n
sin nx.

Now, what if we chose x = π
2 ? Then, we have

π

2
= 2

∞

∑
n=1

(−1)n+1

n
sin

nπ

2
= 2

[
1− 1

3
+

1
5
− 1

7
+ . . .

]
.

This gives a well known expression for π:

π = 4
[

1− 1
3
+

1
5
− 1

7
+ . . .

]
.

4.8.1 Fourier Series on [a, b]
This section can be skipped on first read-
ing. It is here for completeness and the
end result, Theorem 4.2 provides the re-
sult of the section.

A Fourier series representation is also possible for a general
interval, t ∈ [a, b]. As before, we just need to transform this interval to
[0, 2π]. Let

x = 2π
t− a
b− a

.

Inserting this into the Fourier series (4.24) representation for f (x) we
obtain

g(t) ∼ a0

2
+

∞

∑
n=1

[
an cos

2nπ(t− a)
b− a

+ bn sin
2nπ(t− a)

b− a

]
. (4.68)

Well, this expansion is ugly. It is not like the last example, where the
transformation was straightforward. If one were to apply the theory to
applications, it might seem to make sense to just shift the data so that
a = 0 and be done with any complicated expressions. However, math-
ematics students enjoy the challenge of developing such generalized
expressions. So, let’s see what is involved.

First, we apply the addition identities for trigonometric functions
and rearrange the terms.

g(t) ∼ a0

2
+

∞

∑
n=1

[
an cos

2nπ(t− a)
b− a

+ bn sin
2nπ(t− a)

b− a

]
=

a0

2
+

∞

∑
n=1

[
an

(
cos

2nπt
b− a

cos
2nπa
b− a

+ sin
2nπt
b− a

sin
2nπa
b− a

)
+ bn

(
sin

2nπt
b− a

cos
2nπa
b− a

− cos
2nπt
b− a

sin
2nπa
b− a

)]
=

a0

2
+

∞

∑
n=1

[
cos

2nπt
b− a

(
an cos

2nπa
b− a

− bn sin
2nπa
b− a

)
+ sin

2nπt
b− a

(
an sin

2nπa
b− a

+ bn cos
2nπa
b− a

)]
. (4.69)
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Defining A0 = a0 and

An ≡ an cos
2nπa
b− a

− bn sin
2nπa
b− a

Bn ≡ an sin
2nπa
b− a

+ bn cos
2nπa
b− a

, (4.70)

we arrive at the more desirable form for the Fourier series representa-
tion of a function defined on the interval [a, b].

g(t) ∼ A0

2
+

∞

∑
n=1

[
An cos

2nπt
b− a

+ Bn sin
2nπt
b− a

]
. (4.71)

We next need to find expressions for the Fourier coefficients. We
insert the known expressions for an and bn and rearrange. First, we
note that under the transformation x = 2π t−a

b−a we have

an =
1
π

∫ 2π

0
f (x) cos nx dx

=
2

b− a

∫ b

a
g(t) cos

2nπ(t− a)
b− a

dt, (4.72)

and

bn =
1
π

∫ 2π

0
f (x) cos nx dx

=
2

b− a

∫ b

a
g(t) sin

2nπ(t− a)
b− a

dt. (4.73)

Then, inserting these integrals in An, combining integrals and making
use of the addition formula for the cosine of the sum of two angles,
we obtain

An ≡ an cos
2nπa
b− a

− bn sin
2nπa
b− a

=
2

b− a

∫ b

a
g(t)

[
cos

2nπ(t− a)
b− a

cos
2nπa
b− a

− sin
2nπ(t− a)

b− a
sin

2nπa
b− a

]
dt

=
2

b− a

∫ b

a
g(t) cos

2nπt
b− a

dt. (4.74)

A similar computation gives

Bn =
2

b− a

∫ b

a
g(t) sin

2nπt
b− a

dt. (4.75)

Summarizing, we have shown that:
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Theorem 4.2. The Fourier series representation of f (x) defined on
[a, b] when it exists, is given by

f (x) ∼ a0

2
+

∞

∑
n=1

[
an cos

2nπx
b− a

+ bn sin
2nπx
b− a

]
. (4.76)

with Fourier coefficients

an =
2

b− a

∫ b

a
f (x) cos

2nπx
b− a

dx. n = 0, 1, 2, . . . ,

bn =
2

b− a

∫ b

a
f (x) sin

2nπx
b− a

dx. n = 1, 2, . . . . (4.77)

4.9 Sine and Cosine Series

In the last two examples ( f (x) = |x| and f (x) = x on [−π, π]) we
have seen Fourier series representations that contain only sine or co-
sine terms. As we know, the sine functions are odd functions and thus
sum to odd functions. Similarly, cosine functions sum to even func-
tions. Such occurrences happen often in practice. Fourier representa-
tions involving just sines are called sine series and those involving just
cosines (and the constant term) are called cosine series.

Another interesting result, based upon these examples, is that the
original functions, |x| and x agree on the interval [0, π]. Note from Fig-
ures 4.11-4.13 that their Fourier series representations do as well. Thus,
more than one series can be used to represent functions defined on fi-
nite intervals. All they need to do is to agree with the function over
that particular interval. Sometimes one of these series is more useful
because it has additional properties needed in the given application.

We have made the following observations from the previous exam-
ples:

1. There are several trigonometric series representations for a
function defined on a finite interval.

2. Odd functions on a symmetric interval are represented by
sine series and even functions on a symmetric interval are
represented by cosine series.

These two observations are related and are the subject of this sec-
tion. We begin by defining a function f (x) on interval [0, L]. We have
seen that the Fourier series representation of this function appears to
converge to a periodic extension of the function.

In Figure 4.14 we show a function defined on [0, 1]. To the right is
its periodic extension to the whole real axis. This representation has
a period of L = 1. The bottom left plot is obtained by first reflecting
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f about the y-axis to make it an even function and then graphing the
periodic extension of this new function. Its period will be 2L = 2.
Finally, in the last plot we flip the function about each axis and graph
the periodic extension of the new odd function. It will also have a
period of 2L = 2.
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Figure 4.14: This is a sketch of a func-
tion and its various extensions. The orig-
inal function f (x) is defined on [0, 1] and
graphed in the upper left corner. To its
right is the periodic extension, obtained
by adding replicas. The two lower plots
are obtained by first making the original
function even or odd and then creating
the periodic extensions of the new func-
tion.

In general, we obtain three different periodic representations. In
order to distinguish these we will refer to them simply as the periodic,
even and odd extensions. Now, starting with f (x) defined on [0, L],
we would like to determine the Fourier series representations leading
to these extensions. [For easy reference, the results are summarized in
Table 4.3]

We have already seen from Table (4.2) that the periodic extension of
f (x), defined on [0, L], is obtained through the Fourier series represen-
tation

f (x) ∼ a0

2
+

∞

∑
n=1

[
an cos

2nπx
L

+ bn sin
2nπx

L

]
, (4.84)

where

an =
2
L

∫ L

0
f (x) cos

2nπx
L

dx. n = 0, 1, 2, . . . ,

bn =
2
L

∫ L

0
f (x) sin

2nπx
L

dx. n = 1, 2, . . . . (4.85)

Given f (x) defined on [0, L], the even periodic extension is obtained
by simply computing the Fourier series representation for the even
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Fourier Series on [0, L]

f (x) ∼ a0

2
+

∞

∑
n=1

[
an cos

2nπx
L

+ bn sin
2nπx

L

]
. (4.78)

an =
2
L

∫ L

0
f (x) cos

2nπx
L

dx. n = 0, 1, 2, . . . ,

bn =
2
L

∫ L

0
f (x) sin

2nπx
L

dx. n = 1, 2, . . . . (4.79)

Fourier Cosine Series on [0, L]

f (x) ∼ a0/2 +
∞

∑
n=1

an cos
nπx

L
. (4.80)

where

an =
2
L

∫ L

0
f (x) cos

nπx
L

dx. n = 0, 1, 2, . . . . (4.81)

Fourier Sine Series on [0, L]

f (x) ∼
∞

∑
n=1

bn sin
nπx

L
. (4.82)

where

bn =
2
L

∫ L

0
f (x) sin

nπx
L

dx. n = 1, 2, . . . . (4.83)

Table 4.3: Fourier Cosine and Sine Series
Representations on [0, L]
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function

fe(x) ≡
{

f (x), 0 < x < L,
f (−x) −L < x < 0.

(4.86)

Since fe(x) is an even function on a symmetric interval [−L, L], we
expect that the resulting Fourier series will not contain sine terms.
Therefore, the series expansion will be given by [Use the general case
in (4.76) with a = −L and b = L.]:

fe(x) ∼ a0

2
+

∞

∑
n=1

an cos
nπx

L
. (4.87)

with Fourier coefficients

an =
1
L

∫ L

−L
fe(x) cos

nπx
L

dx. n = 0, 1, 2, . . . . (4.88)

However, we can simplify this by noting that the integrand is even
and the interval of integration can be replaced by [0, L]. On this inter-
val fe(x) = f (x). So, we have the Cosine Series Representation of f (x)
for x ∈ [0, L] is given as

f (x) ∼ a0

2
+

∞

∑
n=1

an cos
nπx

L
. (4.89)

where

an =
2
L

∫ L

0
f (x) cos

nπx
L

dx. n = 0, 1, 2, . . . . (4.90)

Similarly, given f (x) defined on [0, L], the odd periodic extension is
obtained by simply computing the Fourier series representation for
the odd function

fo(x) ≡
{

f (x), 0 < x < L,
− f (−x) −L < x < 0.

(4.91)

The resulting series expansion leads to defining the Sine Series Repre-
sentation of f (x) for x ∈ [0, L] as

f (x) ∼
∞

∑
n=1

bn sin
nπx

L
. (4.92)

where

bn =
2
L

∫ L

0
f (x) sin

nπx
L

dx. n = 1, 2, . . . . (4.93)

Example 4.6. In Figure 4.14 we actually provided plots of the various exten-
sions of the function f (x) = x2 for x ∈ [0, 1]. Let’s determine the representa-
tions of the periodic, even and odd extensions of this function.

For a change, we will use a CAS (Computer Algebra System) package to
do the integrals. In this case we can use Maple. A general code for doing this
for the periodic extension is shown in Table 4.4.
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Periodic Extension

0

0.2

0.4

0.6

0.8

1

–1 1 2 3

x

Figure 4.15: The periodic extension of
f (x) = x2 on [0, 1].

Example 4.7. Periodic Extension - Trigonometric Fourier Series Using
the code in Table 4.4, we have that a0 = 2

3 an = 1
n2π2 and bn = − 1

nπ . Thus,
the resulting series is given as

f (x) ∼ 1
3
+

∞

∑
n=1

[
1

n2π2 cos 2nπx− 1
nπ

sin 2nπx
]

.

In Figure 4.15 we see the sum of the first 50 terms of this series. Generally,
we see that the series seems to be converging to the periodic extension of f .
There appear to be some problems with the convergence around integer values
of x. We will later see that this is because of the discontinuities in the periodic
extension and the resulting overshoot is referred to as the Gibbs phenomenon
which is discussed in the appendix to this chapter.

Example 4.8. Even Periodic Extension - Cosine Series
In this case we compute a0 = 2

3 and an = 4(−1)n

n2π2 . Therefore, we have

f (x) ∼ 1
3
+

4
π2

∞

∑
n=1

(−1)n

n2 cos nπx.

Even Periodic Extension
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Figure 4.16: The even periodic extension
of f (x) = x2 on [0, 1].

In Figure 4.16 we see the sum of the first 50 terms of this series. In this
case the convergence seems to be much better than in the periodic extension
case. We also see that it is converging to the even extension.

> restart:

> L:=1:

> f:=x^2:

> assume(n,integer):

> a0:=2/L*int(f,x=0..L);

a0 := 2/3

> an:=2/L*int(f*cos(2*n*Pi*x/L),x=0..L);

1

an := -------

2 2

n~ Pi

> bn:=2/L*int(f*sin(2*n*Pi*x/L),x=0..L);

1

bn := - -----

n~ Pi

> F:=a0/2+sum((1/(k*Pi)^2)*cos(2*k*Pi*x/L)

-1/(k*Pi)*sin(2*k*Pi*x/L),k=1..50):

> plot(F,x=-1..3,title=‘Periodic Extension‘,

titlefont=[TIMES,ROMAN,14],font=[TIMES,ROMAN,14]);

Table 4.4: Maple code for computing
Fourier coefficients and plotting partial
sums of the Fourier series.
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Example 4.9. Odd Periodic Extension - Sine Series
Finally, we look at the sine series for this function. We find that bn =

− 2
n3π3 (n2π2(−1)n − 2(−1)n + 2). Therefore,

f (x) ∼ − 2
π3

∞

∑
n=1

1
n3 (n

2π2(−1)n − 2(−1)n + 2) sin nπx.

Once again we see discontinuities in the extension as seen in Figure 4.17.
However, we have verified that our sine series appears to be converging to the
odd extension as we first sketched in Figure 4.14.

Odd Periodic Extension
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Figure 4.17: The odd periodic extension
of f (x) = x2 on [0, 1].

4.10 Solution of the Heat Equation

We started out the chapter seeking the solution of an initial-
boundary value problem involving the heat equation and the wave
equation. In particular, we found the general solution for the problem
of heat flow in a one dimensional rod of length L with fixed zero
temperature ends. The problem was given by

PDE ut = kuxx 0 < t, 0 ≤ x ≤ L
IC u(x, 0) = f (x) 0 < x < L
BC u(0, t) = 0 t > 0

u(L, t) = 0 t > 0.

(4.94)

We found the solution using separation of variables. This resulted
in a sum over various product solutions:

u(x, t) =
∞

∑
n=1

bnekλnt sin
nπx

L
,

where
λn = −

(nπ

L

)2
.

This equation satisfies the boundary conditions. However, we had only
gotten to state initial condition using this solution. Namely,

f (x) = u(x, 0) =
∞

∑
n=1

bn sin
nπx

L
.

We were left with having to determine the constants bn. Once we know
them, we have the solution.

Now we can get the Fourier coefficients when we are given the ini-
tial condition, f (x). They are given by

bn =
2
L

∫ L

0
f (x) sin

nπx
L

dx.

We consider a couple of examples with different initial conditions.
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Example 1 f (x) = sin x for L = π.
In this case the solution takes the form

u(x, t) =
∞

∑
n=1

bnekλnt sin nx,

where
bn =

2
π

∫ π

0
f (x) sin nx dx.

However, the initial condition takes the form of the first term in the
expansion; i.e., the n = 1 term. So, we need not carry out the integral
because we can immediately write b1 = 1 and bn = 0, n = 2, 3, . . ..
Therefore, the solution consists of just one term,

u(x, t) = e−kt sin x.

In Figure 4.18 we see that how this solution behaves for k = 1 and
t ∈ [0, 1].

Figure 4.18: The evolution of the initial
condition f (x) = sin x for L = π and
k = 1.

Example 2 f (x) = x(1− x) for L = 1.
This example requires a bit more work. The solution takes the form

u(x, t) =
∞

∑
n=1

bne−n2π2kt sin nπx,

where

bn = 2
∫ 1

0
f (x) sin nπx dx.

This integral is easily computed using integration by parts

bn = 2
∫ 1

0
x(1− x) sin nπx dx

=

[
2x(1− x)

(
− 1

nπ
cos nπx

)]1

0
+

2
nπ

∫ 1

0
(1− 2x) cos nπx dx
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= − 2
n2π2

{
[(1− 2x) sin nπx]10 + 2

∫ 1

0
sin nπx dx

}
=

4
n3π3 [cos nπx]10

=
4

n3π3 (cos nπ − 1)

=

{
0, n even

− 8
n3π3 , n odd

. (4.95)

So, we have that the solution can be written as

u(x, t) =
8

π3

∞

∑
`=1

1
(2`− 1)3 e−(2`−1)2π2kt sin(2`− 1)πx.

In Figure 4.18 we see that how this solution behaves for k = 1 and
t ∈ [0, 1]. Twenty terms were used. We see that this solution diffuses
much faster that the last example. Most of the terms damp out quickly
as the solution asymptotically approaches the first term.

Figure 4.19: The evolution of the initial
condition f (x) = x(1− x) for L = 1 and
k = 1.

4.11 Finite Length Strings

We now return to the physical example of wave propagation in a
string. We have found that the general solution can be represented as
a sum over product solutions. We will restrict our discussion to the
special case that the initial velocity is zero and the original profile is
given by u(x, 0) = f (x). The solution is then

u(x, t) =
∞

∑
n=1

An sin
nπx

L
cos

nπct
L

(4.96)
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satisfying

f (x) =
∞

∑
n=1

An sin
nπx

L
. (4.97)

We have learned that the Fourier sine series coefficients are given by

An =
2
L

∫ L

0
f (x) sin

nπx
L

dx. (4.98)

Note that we are using An’s only because of the development of the
solution.

We can rewrite this solution in a more compact form. First, we
define the wave numbers,

kn =
nπ

L
, n = 1, 2, . . . ,

and the angular frequencies,

ωn = ckn =
nπc

L
.

Then the product solutions take the form

sin knx cos ωnt.

Using trigonometric identities, these products can be written as

sin knx cos ωnt =
1
2
[sin(knx + ωnt) + sin(knx−ωnt)] .

Inserting this expression in our solution, we have

u(x, t) =
1
2

∞

∑
n=1

An [sin(knx + ωnt) + sin(knx−ωnt)] . (4.99)

Since ωn = ckn, we can put this into a more suggestive form:

u(x, t) =
1
2

[
∞

∑
n=1

An sin kn(x + ct) +
∞

∑
n=1

An sin kn(x− ct)

]
. (4.100)

We see that each sum is simply the sine series for f (x) but evaluated
at either x + ct or x− ct. Thus, the solution takes the form

u(x, t) =
1
2
[ f (x + ct) + f (x− ct)] . (4.101)

If t = 0, then we have u(x, 0) = 1
2 [ f (x) + f (x)] = f (x). So, the solution

satisfies the initial condition. At t = 1, the sum has a term f (x −
c). Recall from your mathematics classes that this is simply a shifted
version of f (x). Namely, it is shifted to the right. For general times,
the function is shifted by ct to the right. For larger values of t, this
shift is further to the right. The function (wave) shifts to the right
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with velocity c. Similarly, f (x + ct) is a wave traveling to the left with
velocity −c.

Initial Profile u(x,0)
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Figure 4.20: The initial profile for a
string of length one plucked at x = 0.25.

Thus, the waves on the string consist of waves traveling to the right
and to the left. However, the story does not stop here. We have a prob-
lem when needing to shift f (x) across the boundaries. The original
problem only defines f (x) on [0, L]. If we are not careful, we would
think that the function leaves the interval leaving nothing left inside.
However, we have to recall that our sine series representation for f (x)
has a period of 2L. So, before we apply this shifting, we need to ac-
count for its periodicity. In fact, being a sine series, we really have the
odd periodic of f (x) being shifted. The details of such analysis would
take us too far from our current goal. However, we can illustrate this
with a few figures.

Extension to [0,2L]
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Figure 4.21: Odd extension about the
right end of a plucked string.

We begin by plucking a string of length L. This can be represented
by the function

f (x) =

{
x
a 0 ≤ x ≤ a

L−x
L−a a ≤ x ≤ L

(4.102)

where the string is pulled up one unit at x = a. This is shown in Figure
4.20.

Next, we create an odd function by extending the function to a pe-
riod of 2L. This is shown in Figure 4.21.
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Figure 4.22: Summing the odd periodic
extensions. The lower plot shows copies
of the periodic extension, one moving to
the right and the other moving to the
left. The upper plot is the sum.

Finally, we construct the periodic extension of this to the entire line.
In Figure 4.22 we show in the lower part of the figure copies of the
periodic extension, one moving to the right and the other moving to
the left. (Actually, the copies are 1

2 f (x ± ct).) The top plot is the sum
of these solutions. The physical string lies in the interval [0,1].

The time evolution for this plucked string is shown for several times
in Figure 4.23. This results in a wave that appears to reflect from the
ends as time increases.

The relation between the angular frequency and the wave number,
ω = ck, is called a dispersion relation. In this case ω depends on k
linearly. If one knows the dispersion relation, then one can find the
wave speed as c = ω

k . In this case, all of the harmonics travel at the
same speed. In cases where they do not, we have nonlinear dispersion,
which we will discuss later.

4.12 Appendix: The Gibbs Phenomenon

We have seen the Gibbs phenomenon when there is a jump discon-
tinuity in the periodic extension of a function, whether the function
originally had a discontinuity or developed one due to a mismatch
in the values of the endpoints. This can be seen in Figures 4.13, 4.15

and 4.17. The Fourier series has a difficult time converging at the
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Figure 4.23: This Figure shows the
plucked string at six successive times
from (a) to (f).

point of discontinuity and these graphs of the Fourier series show a
distinct overshoot which does not go away. This is called the Gibbs
phenomenon4 and the amount of overshoot can be computed.

4 The Gibbs phenomenon was named af-
ter Josiah Willard Gibbs (1839-1903) even
though it was discovered earlier by the
Englishman Henry Wilbraham (1825-
1883). Wilbraham published a soon for-
gotten paper about the effect in 1848. In
1889 Albert Abraham Michelson (1852-
1931), an American physicist,observed
an overshoot in his mechanical graphing
machine. Shortly afterwards J. Willard
Gibbs published papers describing this
phenomenon, which was later to be
called the Gibbs phenomena. Gibbs was
a mathematical physicist and chemist
and is considered the father of physical
chemistry.

In one of our first examples, Example 4.3, we found the Fourier
series representation of the piecewise defined function

f (x) =

{
1, 0 < x < π,
−1, π < x < 2π,

to be

f (x) ∼ 4
π

∞

∑
k=1

sin(2k− 1)x
2k− 1

.

Gibbs Phenomenon N=10
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Figure 4.24: The Fourier series represen-
tation of a step function on [−π, π] for
N = 10.

In Figure 4.24 we display the sum of the first ten terms. Note the
wiggles, overshoots and under shoots. These are seen more when we
plot the representation for x ∈ [−3π, 3π], as shown in Figure 4.25.

We note that the overshoots and undershoots occur at discontinu-
ities in the periodic extension of f (x). These occur whenever f (x) has
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a discontinuity or if the values of f (x) at the endpoints of the domain
do not agree.

Gibbs Phenomenon N=10
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Figure 4.25: The Fourier series represen-
tation of a step function on [−π, π] for
N = 10 plotted on [−3π, 3π] displaying
the periodicity.

One might expect that we only need to add more terms. In Figure
4.26 we show the sum for twenty terms. Note the sum appears to
converge better for points far from the discontinuities. But, the over-
shoots and undershoots are still present. In Figures 4.27 and 4.28 show
magnified plots of the overshoot at x = 0 for N = 100 and N = 500, re-
spectively. We see that the overshoot persists. The peak is at about the
same height, but its location seems to be getting closer to the origin.
We will show how one can estimate the size of the overshoot.

Gibbs Phenomenon N=20
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Figure 4.26: The Fourier series represen-
tation of a step function on [−π, π] for
N = 20.
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Figure 4.27: The Fourier series represen-
tation of a step function on [−π, π] for
N = 100.

Gibbs Phenomenon N=500
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Figure 4.28: The Fourier series represen-
tation of a step function on [−π, π] for
N = 500.

We can study the Gibbs phenomenon by looking at the partial sums
of general Fourier trigonometric series for functions f (x) defined on
the interval [−L, L]. Some of this is done discussed in the options
section ?? where we talk more about the convergence.

Writing out the partial sums, inserting the Fourier coefficients and
rearranging, we have

SN(x) = a0 +
N

∑
n=1

[
an cos

nπx
L

+ bn sin
nπx

L

]
=

1
2L

∫ L

−L
f (y) dy +

N

∑
n=1

[(
1
L

∫ L

−L
f (y) cos

nπy
L

dy
)

cos
nπx

L

+

(
1
L

∫ L

−L
f (y) sin

nπy
L

dy.
)

sin
nπx

L

]

=
1
L

L∫
−L

{
1
2
+

N

∑
n=1

(
cos

nπy
L

cos
nπx

L
+ sin

nπy
L

sin
nπx

L

)}
f (y) dy

=
1
L

L∫
−L

{
1
2
+

N

∑
n=1

cos
nπ(y− x)

L

}
f (y) dy

≡ 1
L

L∫
−L

DN(y− x) f (y) dy

We have defined

DN(x) =
1
2
+

N

∑
n=1

cos
nπx

L
,

which is called the N-th Dirichlet Kernel . We now prove

Lemma 4.1.

DN(x) =


sin((N+ 1

2 )
πx
L )

2 sin πx
2L

, sin πx
2L 6= 0,

N + 1
2 , sin πx

2L = 0.

Proof. Let θ = πx
L and multiply DN(x)by 2 sin θ

2 to obtain:
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2 sin
θ

2
DN(x) = 2 sin

θ

2

[
1
2
+ cos θ + · · ·+ cos Nθ

]
= sin

θ

2
+ 2 cos θ sin

θ

2
+ 2 cos 2θ sin

θ

2
+ · · ·+ 2 cos Nθ sin

θ

2

= sin
θ

2
+

(
sin

3θ

2
− sin

θ

2

)
+

(
sin

5θ

2
− sin

3θ

2

)
+ · · ·

+

[
sin
(

N +
1
2

)
θ − sin

(
N − 1

2

)
θ

]
= sin

(
N +

1
2

)
θ. (4.103)

Thus,

2 sin
θ

2
DN(x) = sin

(
N +

1
2

)
θ,

or if sin θ
2 6= 0,

DN(x) =
sin
(

N + 1
2

)
θ

2 sin θ
2

, θ =
πx
L

.

If sin θ
2 = 0, then one needs to apply L’Hospital’s Rule as θ → 2mπ:

lim
θ→2mπ

sin
(

N + 1
2

)
θ

2 sin θ
2

= lim
θ→2mπ

(N + 1
2 ) cos

(
N + 1

2

)
θ

cos θ
2

=
(N + 1

2 ) cos (2mπN + mπ)

cos mπ

=
(N + 1

2 )(cos 2mπN cos mπ − sin 2mπN sin mπ)

cos mπ

= N +
1
2

. (4.104)

We further note that DN(x) is periodic with period 2L and is an
even function.

So far, we have found that

SN(x) =
1
L

L∫
−L

DN(y− x) f (y) dy. (4.105)

Now, make the substitution ξ = y− x. Then,

SN(x) =
1
L

∫ L−x

−L−x
DN(ξ) f (ξ + x) dξ

=
1
L

∫ L

−L
DN(ξ) f (ξ + x) dξ. (4.106)
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In the second integral we have made use of the fact that f (x) and
DN(x) are periodic with period 2L and shifted the interval back to
[−L, L].

Now split the integration and use the fact that DN(x) is an even
function. Then,

SN(x) =
1
L

∫ 0

−L
DN(ξ) f (ξ + x) dξ +

1
L

∫ L

0
DN(ξ) f (ξ + x) dξ

=
1
L

∫ L

0
[ f (x− ξ) + f (ξ + x)] DN(ξ) dξ. (4.107)

We can use this result to study the Gibbs phenomenon whenever it
occurs. In particular, we will only concentrate on our earlier example.
For this case, we have

SN(x) =
1
π

∫ π

0
[ f (x− ξ) + f (ξ + x)] DN(ξ) dξ (4.108)

for

DN(x) =
1
2
+

N

∑
n=1

cos nx.

Also, one can show that

f (x− ξ) + f (ξ + x) =


2, 0 ≤ ξ < x,
0, x ≤ ξ < π − x,
−2, π − x ≤ ξ < π.

Thus, we have

SN(x) =
2
π

∫ x

0
DN(ξ) dξ − 2

π

∫ π

π−x
DN(ξ) dξ

=
2
π

∫ x

0
DN(z) dz +

2
π

∫ x

0
DN(π − z) dz. (4.109)

Here we made the substitution z = π − ξ in the second integral. The
Dirichlet kernel for L = π is given by

DN(x) =
sin(N + 1

2 )x
2 sin x

2
.

For N large, we have N + 1
2 ≈ N, and for small x, we have sin x

2 ≈
x
2 .

So, under these assumptions,

DN(x) ≈ sin Nx
x

.

Therefore,

SN(x)→ 2
π

∫ x

0

sin Nξ

ξ
dξ for large N, and small x.
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If we want to determine the locations of the minima and maxima,
where the undershoot and overshoot occur, then we apply the first
derivative test for extrema to SN(x). Thus,

d
dx

SN(x) =
2
π

sin Nx
x

= 0.

The extrema occur for Nx = mπ, m = ±1,±2, . . . . One can show that
there is a maximum at x = π/N and a minimum for x = 2π/N. The
value for the overshoot can be computed as

SN(π/N) =
2
π

∫ π/N

0

sin Nξ

ξ
dξ

=
2
π

∫ π

0

sin t
t

dt

=
2
π

Si(π)

= 1.178979744 . . . . (4.110)

Note that this value is independent of N and is given in terms of the
sine integral,

Si(x) ≡
∫ x

0

sin t
t

dt.

Problems

1. Solve the following boundary value problem:

x′′ + x = 2, x(0) = 0, x′(1) = 0.

2. Find product solutions, u(x, t) = b(t)φ(x), to the heat equation
satisfying the boundary conditions ux(0, t) = 0 and u(L, t) = 0. Use
these solutions to find a general solution of the heat equation satisfying
these boundary conditions.

3. Consider the following boundary value problems. Determine the
eigenvalues, λ, and eigenfunctions, y(x) for each problem.5 5 In problem d you will not get exact

eigenvalues. Show that you obtain a
transcendental equation for the eigenval-
ues in the form tan z = 2z. Find the first
three eigenvalues numerically.

a. y′′ + λy = 0, y(0) = 0, y′(1) = 0.

b. y′′ − λy = 0, y(−π) = 0, y′(π) = 0.

c. x2y′′ + xy′ + λy = 0, y(1) = 0, y(2) = 0.

d. (x2y′)′ + λy = 0, y(1) = 0, y′(e) = 0.

4. Consider the boundary value problem for the deflection of a hori-
zontal beam fixed at one end,

d4y
dx4 = C, y(0) = 0, y′(0) = 0, y′′(L) = 0, y′′′(L) = 0.

Solve this problem assuming that C is a constant.
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5. Write y(t) = 3 cos 2t− 4 sin 2t in the form y(t) = A cos(2π f t + φ).

6. Derive the coefficients bn in Equation(4.25).

7. For the following sets of functions: i) show that each is orthogonal
on the given interval, and ii) determine the corresponding orthonor-
mal set. [See page 183]

a. {sin 2nx}, n = 1, 2, 3, . . . , 0 ≤ x ≤ π.

b. {cos nπx}, n = 0, 1, 2, . . . , 0 ≤ x ≤ 2.

c. {sin nπx
L }, n = 1, 2, 3, . . . , x ∈ [−L, L].

8. Consider f (x) = 4 sin3 2x.

a. Derive the trigonometric identity giving sin3 θ in terms of
sin θ and sin 3θ using DeMoivre’s Formula.

b. Find the Fourier series of f (x) = 4 sin3 2x on [0, 2π] without
computing any integrals.

9. Find the Fourier series of the following:

a. f (x) = x, x ∈ [0, 2π].

b. f (x) = x2

4 , |x| < π.

c. f (x) =

{
π
2 , 0 < x < π,
−π

2 , π < x < 2π.

10. Find the Fourier Series of each function f (x) of period 2π. For
each series, plot the Nth partial sum,

SN =
a0

2
+

N

∑
n=1

[an cos nx + bn sin nx] ,

for N = 5, 10, 50 and describe the convergence (is it fast? what is it
converging to, etc.) [Some simple Maple code for computing partial
sums is shown in the notes.]

a. f (x) = x, |x| < π.

b. f (x) = |x|, |x| < π.

c. f (x) =

{
0, −π < x < 0,
1, 0 < x < π.

11. Find the Fourier series of f (x) = x on the given interval. Plot the
Nth partial sums and describe what you see.

a. 0 < x < 2.

b. −2 < x < 2.

c. 1 < x < 2.
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12. The result in problem 9b above gives a Fourier series representa-
tion of x2

4 . By picking the right value for x and a little arrangement of
the series, show that [See Example 4.5.]

a.
π2

6
= 1 +

1
22 +

1
32 +

1
42 + · · · .

b.
π2

8
= 1 +

1
32 +

1
52 +

1
72 + · · · .

Hint: Consider how the series in part a. can be used to do
this.

13. Sketch (by hand) the graphs of each of the following functions
over four periods. Then sketch the extensions each of the functions as
both an even and odd periodic function. Determine the corresponding
Fourier sine and cosine series and verify the convergence to the desired
function using Maple.

a. f (x) = x2, 0 < x < 1.

b. f (x) = x(2− x), 0 < x < 2.

c. f (x) =

{
0, 0 < x < 1,
1, 1 < x < 2.

d. f (x) =

{
π, 0 < x < π,

2π − x, π < x < 2π.



5
Non-sinusoidal Harmonics and Special Functions

“To the pure geometer the radius of curvature is an incidental characteristic - like the grin of the Cheshire cat. To the
physicist it is an indispensable characteristic. It would be going too far to say that to the physicist the cat is merely
incidental to the grin. Physics is concerned with interrelatedness such as the interrelatedness of cats and grins. In this
case the "cat without a grin" and the "grin without a cat" are equally set aside as purely mathematical phantasies.”
Sir Arthur Stanley Eddington (1882-1944)

In this chapter we provide a glimpse into generalized Fourier series
in which the normal modes of oscillation are not sinusoidal. In particu-
lar, we will explore Legendre polynomials and Bessel functions which
will later arise in problems having cylindrical or spherical symmetry.
For vibrating strings, we saw that the harmonics were sinusoidal basis
functions for a large, infinite dimensional, function space. Now, we
will extend these ideas to non-sinusoidal harmonics and explore the
underlying structure behind these ideas.

The background for the study of generalized Fourier series is that of
function spaces. We begin by exploring the general context in which
one finds oneself when discussing Fourier series and (later) Fourier
transforms. We can view the sine and cosine functions in the Fourier
trigonometric series representations as basis vectors in an infinite di-
mensional function space. A given function in that space may then be
represented as a linear combination over this infinite basis. With this
in mind, we might wonder

• Do we have enough basis vectors for the function space?

• Are the infinite series expansions convergent?

• For other other bases, what functions can be represented by
such expansions?

In the context of the boundary value problems which typically ap-
pear in physics, one is led to the study of boundary value problems
in the form of Sturm-Liouville eigenvalue problems. These lead to
an appropriate set of basis vectors for the function space under con-
sideration. We will touch a little on these ideas, leaving some of the
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deeper results for more advanced courses in mathematics. For now,
we will turn to the ideas of functions spaces and explore some typ-
ical basis functions who origins lie deep in physical problems. The
common basis functions are often referred to as special functions in
physics. Examples are the classical orthogonal polynomials (Legen-
dre, Hermite, Laguerre, Tchebychef) and Bessel functions. But first we
will introduce function spaces.

5.1 Function Spaces

Earlier we studied finite dimensional vector spaces. Given a set
of basis vectors, {ak}n

k=1, in vector space V, we showed that we can
expand any vector v ∈ V in terms of this basis, v = ∑n

k=1 vkak. We
then spent some time looking at the simple case of extracting the com-
ponents vk of the vector. The keys to doing this simply were to have
a scalar product and an orthogonal basis set. These are also the key
ingredients that we will need in the infinite dimensional case. In fact,
we had already done this when we studied Fourier series.

Recall when we found Fourier trigonometric series representations
of functions, we started with a function (vector?) that we wanted to
expand in a set of trigonometric functions (basis?) and we sought the
Fourier coefficients (components?). In this section we will extend our We note that the above determination

of vector components for finite dimen-
sional spaces is precisely what we had
done to compute the Fourier coefficients
using trigonometric bases. Reading fur-
ther, you will see how this works.

notions from finite dimensional spaces to infinite dimensional spaces
and we will develop the needed background in which to think about
more general Fourier series expansions. This conceptual framework is
very important in other areas in mathematics (such as ordinary and
partial differential equations) and physics (such as quantum mechan-
ics and electrodynamics).

We will consider various infinite dimensional function spaces. Func-
tions in these spaces would differ by what properties they satisfy. For
example, we could consider the space of continuous functions on [0,1],
the space of differentiably continuous functions, or the set of functions
integrable from a to b. As you can see that there are many types of
function spaces . In order to view these spaces as vector spaces, we
will need to be able to add functions and multiply them by scalars in
such as way that they satisfy the definition of a vector space as defined
in Chapter 3.

We will also need a scalar product defined on this space of func-
tions. There are several types of scalar products, or inner products,
that we can define. For a real vector space, we define

Definition 5.1. An inner product <,> on a real vector space V is a
mapping from V × V into R such that for u, v, w ∈ V and α ∈ R one
has
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1. < v, v >≥ 0 and < v, v >= 0 iff v = 0.

2. < v, w >=< w, v > .

3. < αv, w >= α < v, w > .

4. < u + v, w >=< u, w > + < v, w > .

A real vector space equipped with the above inner product leads to
what is called a real inner product space. A more general definition
with the third property replaced with < v, w >= < w, v > is needed
for complex inner product spaces.

For the time being, we will only deal with real valued functions
and, thus, we will need an inner product appropriate for such spaces.
One such definition is the following. Let f (x) and g(x) be functions
defined on [a, b] and introduce the weight function σ(x) > 0. Then, we
define the inner product, if the integral exists, as

< f , g >=
∫ b

a
f (x)g(x)σ(x) dx. (5.1)

Spaces in which < f , f >< ∞ under this inner product are called The space of square integrable functions.

the space of square integrable functions on (a, b) under weight σ and
denoted as L2

σ(a, b). In what follows, we will assume for simplicity that
σ(x) = 1. This is possible to do by using a change of variables.

Now that we have functions spaces equipped with an inner product,
we seek a basis for the space? For an n-dimensional space we need n
basis vectors. For an infinite dimensional space, how many will we
need? How do we know when we have enough? We will provide
some answers to these questions later.

Let’s assume that we have a basis of functions {φn(x)}∞
n=1. Given a

function f (x), how can we go about finding the components of f in
this basis? In other words, let

f (x) =
∞

∑
n=1

cnφn(x).

How do we find the cn’s? Does this remind you of the problem we
had earlier for finite dimensional spaces? [You may want to review the
discussion at the end of Section 3.1 as you read the next derivation.]

Formally, we take the inner product of f with each φj and use the
properties of the inner product to find

< φj, f > = < φj,
∞

∑
n=1

cnφn >

=
∞

∑
n=1

cn < φj, φn > . (5.2)

If the basis is an orthogonal basis, then we have

< φj, φn >= Njδjn, (5.3)
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where δjn is the Kronecker delta. Recall from Chapter 3 that the Kro-
necker delta is defined as

δij =

{
0, i 6= j
1, i = j.

(5.4)

Continuing with the derivation, we have For the generalized Fourier series expan-
sion f (x) = ∑∞

n=1 cnφn(x), we have de-
termined the generalized Fourier coeffi-

cients to be cj =
<φj , f>
<φj ,φj>

.
< φj, f > =

∞

∑
n=1

cn < φj, φn >

=
∞

∑
n=1

cnNjδjn

= c1Njδj1 + c2Njδj2 + . . . + cjNjδjj + . . .

= cjNj. (5.5)

So, the expansion coefficients are

cj =
< φj, f >

Nj
=

< φj, f >

< φj, φj >
j = 1, 2, . . . .

We summarize this important result:

Generalized Basis Expansion

Let f (x) be represented by an expansion over a basis of orthogo-
nal functions, {φn(x)}∞

n=1,

f (x) =
∞

∑
n=1

cnφn(x).

Then, the expansion coefficients are formally determined as

cn =
< φn, f >

< φn, φn >
.

This will be referred to as the general Fourier series expansion
and the cj’s are called the Fourier coefficients. Technically, equal-
ity only holds when the infinite series converges to the given
function on the interval of interest.

Example 5.1. Find the coefficients of the Fourier sine series expansion of
f (x), given by

f (x) =
∞

∑
n=1

bn sin nx, x ∈ [−π, π].

In the last chapter we already established that the set of functions φn(x) =
sin nx for n = 1, 2, . . . is orthogonal on the interval [−π, π]. Recall that
using trigonometric identities, we have for n 6= m

< φn, φm > =
∫ π

−π
sin nx sin mx dx
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=
1
2

∫ π

−π
[cos(n−m)x− cos(n + m)x] dx

=
1
2

[
sin(n−m)x

n−m
− sin(n + m)x

n + m

]π

−π

= 0. (5.6)

1 So, we have determined that the set φn(x) = sin nx for n = 1, 2, . . . is 1 There are many types of norms. The
norm defined here is the natural, or in-
duced, norm on the inner product space.
Norms are a generalization of the con-
cept of lengths of vectors. Denoting ‖v‖
the norm of v, it needs to satisfy the
properties

1. ‖v‖ ≥ 0. ‖v‖ = 0 if and only if v = 0.

2. ‖αv‖ = |α|‖v‖.
3. ‖u + v‖ ≤ ‖u‖+ ‖v‖.
Examples of common norms are

1. Euclidean norm: ‖v‖ =√
v2

1 + · · ·+ v2
n.

2. Taxicab norm: ‖v‖ = |v1| + · · · +
|vn|.

3. Lp norm: ‖ f ‖ =
(∫

[ f (x)]p dx
) 1

p .

an orthogonal set of functions on the interval [−π, π]. Just as with vectors
in three dimensions, we can normalize these basis functions to arrive at an
orthonormal basis. This is simply done by dividing by the length of the vector.
Recall that the length of a vector is obtained as v =

√
v · v. In the same way,

we define the norm of a function by

‖ f ‖ =
√
< f , f >.

Note, there are many types of norms, but this induced norm will be sufficient
for us.

For the above basis of sine functions, we want to first compute the norm of
each function. Then we find a new basis from the original basis such that each
new basis function has unit length. Of course, this is just an orthonormal
basis. We first compute

‖φn‖2 =
∫ π

−π
sin2 nx dx

=
1
2

∫ π

−π
[1− cos 2nx] dx

=
1
2

[
x− sin 2nx

2n

]π

−π

= π. (5.7)

We have found for our example that

< φj, φn >= πδjn (5.8)

and that ‖φn‖ =
√

π. Defining ψn(x) = 1√
π

φn(x), we have normalized the
φn’s and have obtained an orthonomal basis of functions on [−π, π].

Now, we can determine the expansion coefficients using

bn =
< φn, f >

Nn
=

< φn, f >

< φn, φn >
=

1
π

∫ π

−π
f (x) sin nx dx.

Does this result look familiar?

5.2 Classical Orthogonal Polynomials

For completeness, we will next discuss series representations of
functions using different bases. In this section we introduce the clas-
sical orthogonal polynomials. We begin by noting that the sequence
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of functions {1, x, x2, . . .} is a basis of linearly independent functions.
In fact, by the Stone-Weierstraß Approximation Theorem2 this set is 2 Stone-Weierstraß Approximation The-

orem Suppose f is a continuous function
defined on the interval [a, b]. For every
ε > 0, there exists a polynomial func-
tion P(x) such that for all x ∈ [a, b], we
have | f (x)− P(x)| < ε. Therefore, every
continuous function defined on [a, b] can
be uniformly approximated as closely as
we wish by a polynomial function.

a basis of L2
σ(a, b), the space of square integrable functions over the

interval [a, b] relative to weight σ(x). However, we will show that the
sequence of functions {1, x, x2, . . .} does not provide an orthogonal
basis for these spaces. We will then proceed to find an appropriate
orthogonal basis of functions.

We are familiar with being able to expand functions over the basis
{1, x, x2, . . .}, since these expansions are just power series representa-
tion of the functions,3 3 The reader may recognize this series

expansion as a Maclaurin series expan-
sion, or Taylor series expansion about
x = 0. For a review of Taylor series, see
the Appendix.

f (x) ∼
∞

∑
n=0

cnxn.

However, this basis is not an orthogonal set of basis functions. One
can easily see this by integrating the product of two even, or two odd,
basis functions with σ(x) = 1 and (a, b)=(−1, 1). For example,∫ 1

−1
x0x2 dx =

2
3

.

Since we have found that orthogonal bases have been useful in deter-
mining the coefficients for expansions of given functions, we might ask
if it is possible to obtain an orthogonal basis involving powers of x. Of
course, finite combinations of these basis elements are just polynomi-
als!

OK, we will ask. “Given a set of linearly independent basis vectors,
can one find an orthogonal basis of the given space?" The answer is
yes. We recall from introductory linear algebra, which mostly covers
finite dimensional vector spaces, that there is a method for carrying
this out called the Gram-Schmidt Orthogonalization Process. We will
review this process for finite dimensional vectors and then generalize
to function spaces.

Figure 5.1: The basis a1, a2, and a3, of
R3.

Let’s assume that we have three vectors that span R3, given by a1,
a2, and a3 and shown in Figure 5.1. We seek an orthogonal basis e1,
e2, and e3, beginning one vector at a time.

First we take one of the original basis vectors, say a1, and define

e1 = a1.

It is sometimes useful to normalize these basis vectors, denoting such
a normalized vector with a ’hat’:

ê1 =
e1

e1
,

where e1 =
√

e1 · e1.
Next, we want to determine an e2 that is orthogonal to e1. We take

another element of the original basis, a2. In Figure 5.2 we show the
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orientation of the vectors. Note that the desired orthogonal vector is
e2. We can now write a2 as the sum of e2 and the projection of a2 on
e1. Denoting this projection by pr1a2, we then have

e2 = a2 − pr1a2. (5.9)

Recall the projection of one vector onto another from your vector
calculus class.

pr1a2 =
a2 · e1

e2
1

e1. (5.10)

This is easily proven by writing the projection as a vector of length
a2 cos θ in direction ê1, where θ is the angle between e1 and a2. Us-
ing the definition of the dot product, a · b = ab cos θ, the projection
formula follows.

Figure 5.2: A plot of the vectors e1, a2,
and e2 needed to find the projection of
a2, on e1.

Combining Equations (5.9)-(5.10), we find that

e2 = a2 −
a2 · e1

e2
1

e1. (5.11)

It is a simple matter to verify that e2 is orthogonal to e1:

e2 · e1 = a2 · e1 −
a2 · e1

e2
1

e1 · e1

= a2 · e1 − a2 · e1 = 0. (5.12)

Next, we seek a third vector e3 that is orthogonal to both e1 and
e2. Pictorially, we can write the given vector a3 as a combination of
vector projections along e1 and e2 with the new vector. This is shown
in Figure 5.3. Thus, we can see that

e3 = a3 −
a3 · e1

e2
1

e1 −
a3 · e2

e2
2

e2. (5.13)

Again, it is a simple matter to compute the scalar products with e1 and
e2 to verify orthogonality.

Figure 5.3: A plot of vectors for deter-
mining e3.

We can easily generalize this procedure to the N-dimensional case.
Let an, n = 1, ..., N be a set of linearly independent vectors in RN .
Then, an orthogonal basis can be found by setting e1 = a1 and for
n > 1,

en = an −
n−1

∑
j=1

an · ej

e2
j

ej. (5.14)

Now, we can generalize this idea to (real) function spaces. Let fn(x),
n ∈ N0 = {0, 1, 2, . . .}, be a linearly independent sequence of contin-
uous functions defined for x ∈ [a, b]. Then, an orthogonal basis of
functions, φn(x), n ∈ N0 can be found and is given by

φ0(x) = f0(x)

and
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φn(x) = fn(x)−
n−1

∑
j=0

< fn, φj >

‖φj‖2 φj(x), n = 1, 2, . . . . (5.15)

Here we are using inner products relative to weight σ(x),

< f , g >=
∫ b

a
f (x)g(x)σ(x) dx. (5.16)

Note the similarity between the orthogonal basis in (5.15) and the ex-
pression for the finite dimensional case in Equation (5.14).

Example 5.2. Apply the Gram-Schmidt Orthogonalization process to the set
fn(x) = xn, n ∈ N0, when x ∈ (−1, 1) and σ(x) = 1.

First, we have φ0(x) = f0(x) = 1. Note that∫ 1

−1
φ2

0(x) dx = 2.

We could use this result to fix the normalization of our new basis, but we will
hold off on doing that for now.

Now, we compute the second basis element:

φ1(x) = f1(x)− < f1, φ0 >

‖φ0‖2 φ0(x)

= x− < x, 1 >

‖1‖2 1 = x, (5.17)

since < x, 1 > is the integral of an odd function over a symmetric interval.
For φ2(x), we have

φ2(x) = f2(x)− < f2, φ0 >

‖φ0‖2 φ0(x)− < f2, φ1 >

‖φ1‖2 φ1(x)

= x2 − < x2, 1 >

‖1‖2 1− < x2, x >

‖x‖2 x

= x2 −
∫ 1
−1 x2 dx∫ 1
−1 dx

= x2 − 1
3

. (5.18)

So far, we have the orthogonal set {1, x, x2 − 1
3}. If one chooses to nor-

malize these by forcing φn(1) = 1, then one obtains the classical Legendre4

4 Adrien-Marie Legendre (1752-1833)
was a French mathematician who made
many contributions to analysis and
algebra.

polynomials, Pn(x). Thus,

P2(x) =
1
2
(3x2 − 1).

Note that this normalization is different than the usual one. In fact, we see
the P2(x) does not have a unit norm,

‖P2‖2 =
∫ 1

−1
P2

2 (x) dx =
2
5

.



non-sinusoidal harmonics and special functions 219

The set of Legendre polynomials is just one set of classical orthogo-
nal polynomials that can be obtained in this way. Many of these special
functions had originally appeared as solutions of important boundary
value problems in physics. They all have similar properties and we
will just elaborate some of these for the Legendre functions in the next
section. Others in this group are shown in Table 5.1.

Polynomial Symbol Interval σ(x)
Hermite Hn(x) (−∞, ∞) e−x2

Laguerre Lα
n(x) [0, ∞) e−x

Legendre Pn(x) (-1,1) 1

Gegenbauer Cλ
n (x) (-1,1) (1− x2)λ−1/2

Tchebychef of the 1st kind Tn(x) (-1,1) (1− x2)−1/2

Tchebychef of the 2nd kind Un(x) (-1,1) (1− x2)−1/2

Jacobi P(ν,µ)
n (x) (-1,1) (1− x)ν(1− x)µ

Table 5.1: Common classical orthogo-
nal polynomials with the interval and
weight function used to define them.

5.3 Fourier-Legendre Series

In the last chapter we saw how useful Fourier series expansions
were for solving the heat and wave equations. In Chapter 9 we will
investigate partial differential equations in higher dimensions and find
that problems with spherical symmetry may lead to the series repre-
sentations in terms of a basis of Legendre polynomials. For example,
we could consider the steady state temperature distribution inside a
hemispherical igloo, which takes the form

φ(r, θ) =
∞

∑
n=0

AnrnPn(cos θ)

in spherical coordinates. Evaluating this function at the surface r =

a as φ(a, θ) = f (θ), leads to a Fourier-Legendre series expansion of
function f :

f (θ) =
∞

∑
n=0

cnPn(cos θ),

where cn = Anan

In this section we would like to explore Fourier-Legendre series ex-
pansions of functions f (x) defined on (−1, 1):

f (x) ∼
∞

∑
n=0

cnPn(x). (5.19)
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As with Fourier trigonometric series, we can determine the expansion
coefficients by multiplying both sides of Equation (5.19) by Pm(x) and
integrating for x ∈ [−1, 1]. Orthogonality gives the usual form for the
generalized Fourier coefficients,

cn =
< f , Pn >

‖Pn‖2 , n = 0, 1, . . . .

We will later show that

‖Pn‖2 =
2

2n + 1
.

Therefore, the Fourier-Legendre coefficients are

cn =
2n + 1

2

∫ 1

−1
f (x)Pn(x) dx. (5.20)

Rodrigues Formula
We can do examples of Fourier-Legendre expansions given just a

few facts about Legendre polynomials. The first property that the Leg-
endre polynomials have is the Rodrigues formula:

Pn(x) =
1

2nn!
dn

dxn (x2 − 1)n, n ∈ N0. (5.21)

From the Rodrigues formula, one can show that Pn(x) is an nth degree
polynomial. Also, for n odd, the polynomial is an odd function and
for n even, the polynomial is an even function.

Example 5.3. Determine P2(x) from Rodrigues formula:

P2(x) =
1

222!
d2

dx2 (x2 − 1)2

=
1
8

d2

dx2 (x4 − 2x2 + 1)

=
1
8

d
dx

(4x3 − 4x)

=
1
8
(12x2 − 4)

=
1
2
(3x2 − 1). (5.22)

Note that we get the same result as we found in the last section using orthog-
onalization.

The first several Legendre polynomials are given in Table 5.2. In
Figure 5.4 we show plots of these Legendre polynomials.

Three Term Recursion Formula
All of the classical orthogonal polynomials satisfy a three term re-

cursion formula (or, recurrence relation or formula). In the case of the
Legendre polynomials, we have

(n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x), n = 1, 2, . . . . (5.23)
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n (x2 − 1)n dn

dxn (x2 − 1)n 1
2nn! Pn(x)

0 1 1 1 1

1 x2 − 1 2x 1
2 x

2 x4 − 2x2 + 1 12x2 − 4 1
8

1
2 (3x2 − 1)

3 x6 − 3x4 + 3x2 − 1 120x3 − 72x 1
48

1
2 (5x3 − 3x)

Table 5.2: Tabular computation of the
Legendre polynomials using the Ro-
drigues formula.

–1

–0.5

0.5

1

–1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1

x

Figure 5.4: Plots of the Legendre poly-
nomials P2(x), P3(x), P4(x), and P5(x).

This can also be rewritten by replacing n with n− 1 as

(2n− 1)xPn−1(x) = nPn(x) + (n− 1)Pn−2(x), n = 1, 2, . . . . (5.24)

Example 5.4. Use the recursion formula to find P2(x) and P3(x), given that
P0(x) = 1 and P1(x) = x.

We first begin by inserting n = 1 into Equation (5.23):

2P2(x) = 3xP1(x)− P0(x) = 3x2 − 1.

So, P2(x) = 1
2 (3x2 − 1).

For n = 2, we have

3P3(x) = 5xP2(x)− 2P1(x)

=
5
2

x(3x2 − 1)− 2x

=
1
2
(15x3 − 9x). (5.25)

This gives P3(x) = 1
2 (5x3 − 3x). These expressions agree with the earlier

results.

We will prove the three term recursion formula in two ways. First The first proof of the three term recur-
sion formula is based upon the nature of
the Legendre polynomials as an orthog-
onal basis, while the second proof is de-
rived using generating functions.

we use the orthogonality properties of Legendre polynomials and the
following lemma.
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Lemma 5.1. The leading coefficient of xn in Pn(x) is 1
2nn!

(2n)!
n! .

Proof. We can prove this using Rodrigues formula. first, we focus on
the leading coefficient of (x2 − 1)n, which is x2n. The first derivative
of x2n is 2nx2n−1. The second derivative is 2n(2n − 1)x2n−2. The jth
derivative is

djx2n

dxj = [2n(2n− 1) . . . (2n− j + 1)]x2n−j.

Thus, the nth derivative is given by

dnx2n

dxn = [2n(2n− 1) . . . (n + 1)]xn.

This proves that Pn(x) has degree n. The leading coefficient of Pn(x)
can now be written as

1
2nn!

[2n(2n− 1) . . . (n + 1)] =
1

2nn!
[2n(2n− 1) . . . (n + 1)]

n(n− 1) . . . 1
n(n− 1) . . . 1

=
1

2nn!
(2n)!

n!
. (5.26)

Theorem 5.1. Legendre polynomials satisfy the three term recursion formula

(2n− 1)xPn−1(x) = nPn(x) + (n− 1)Pn−2(x), n = 1, 2, . . . . (5.27)

Proof. In order to prove the three term recursion formula we consider
the expression (2n− 1)xPn−1(x)− nPn(x). While each term is a poly-
nomial of degree n, the leading order terms cancel. We need only look
at the coefficient of the leading order term first expression. It is

(2n− 1)
1

2n−1(n− 1)!
(2n− 2)!
(n− 1)!

=
1

2n−1(n− 1)!
(2n− 1)!
(n− 1)!

=
(2n− 1)!

2n−1 [(n− 1)!]2
.

The coefficient of the leading term for nPn(x) can be written as

n
1

2nn!
(2n)!

n!
= n

(
2n
2n2

)(
1

2n−1(n− 1)!

)
(2n− 1)!
(n− 1)!

(2n− 1)!

2n−1 [(n− 1)!]2
.

It is easy to see that the leading order terms in (2n − 1)xPn−1(x) −
nPn(x) cancel.

The next terms will be of degree n − 2. This is because the Pn’s
are either even or odd functions, thus only containing even, or odd,
powers of x. We conclude that

(2n− 1)xPn−1(x)− nPn(x) = polynomial of degree n− 2.

Therefore, since the Legendre polynomials form a basis, we can write
this polynomial as a linear combination of of Legendre polynomials:

(2n− 1)xPn−1(x)− nPn(x) = c0P0(x) + c1P1(x) + . . . + cn−2Pn−2(x).
(5.28)
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Multiplying Equation (5.28) by Pm(x) for m = 0, 1, . . . , n − 3, inte-
grating from −1 to 1, and using orthogonality, we obtain

0 = cm‖Pm‖2, m = 0, 1, . . . , n− 3.

[Note:
∫ 1
−1 xkPn(x) dx = 0 for k ≤ n− 1. Thus,

∫ 1
−1 xPn−1(x)Pm(x) dx =

0 for m ≤ n− 3.]
Thus, all of these cm’s are zero, leaving Equation (5.28) as

(2n− 1)xPn−1(x)− nPn(x) = cn−2Pn−2(x).

The final coefficient can be found by using the normalization condi-
tion, Pn(1) = 1. Thus, cn−2 = (2n− 1)− n = n− 1.

Generating Functions
A second proof of the three term recursion formula can be obtained

from the generating function of the Legendre polynomials. Many spe-
cial functions have such generating functions. In this case it is given
by

g(x, t) =
1√

1− 2xt + t2
=

∞

∑
n=0

Pn(x)tn, |x| ≤ 1, |t| < 1. (5.29)

Figure 5.5: The position vectors used to
describe the tidal force on the Earth due
to the moon.

This generating function occurs often in applications. In particular,
it arises in potential theory, such as electromagnetic or gravitational
potentials. These potential functions are 1

r type functions. For ex-
ample, the gravitational potential between the Earth and the moon is
proportional to the reciprocal of the magnitude of the difference be-
tween their positions relative to some coordinate system. An even
better example, would be to place the origin at the center of the Earth
and consider the forces on the non-pointlike Earth due to the moon.
Consider a piece of the Earth at position r1 and the moon at position
r2 as shown in Figure 5.5. The tidal potential Φ is proportional to

Φ ∝
1

|r2 − r1|
=

1√
(r2 − r1) · (r2 − r1)

=
1√

r2
1 − 2r1r2 cos θ + r2

2

,

where θ is the angle between r1 and r2.
Typically, one of the position vectors is much larger than the other.

Let’s assume that r1 � r2. Then, one can write

Φ ∝
1√

r2
1 − 2r1r2 cos θ + r2

2

=
1
r2

1√
1− 2 r1

r2
cos θ +

(
r1
r2

)2
.

Now, define x = cos θ and t = r1
r2

. We then have that the tidal potential
is proportional to the generating function for the Legendre polynomi-
als! So, we can write the tidal potential as

Φ ∝
1
r2

∞

∑
n=0

Pn(cos θ)

(
r1

r2

)n
.
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The first term in the expansion, 1
r2

, is the gravitational potential that
gives the usual force between the Earth and the moon. [Recall that
the gravitational potential for mass m at distance r from M is given
by Φ = −GMm

r and that the force is the gradient of the potential,

F = −∇Φ ∝ ∇
(

1
r

)
.] The next terms will give expressions for the tidal

effects.
Now that we have some idea as to where this generating function

might have originated, we can proceed to use it. First of all, the gen-
erating function can be used to obtain special values of the Legendre
polynomials.

Example 5.5. Evaluate Pn(0) using the generating function. Pn(0) is found
by considering g(0, t). Setting x = 0 in Equation (5.29), we have

g(0, t) =
1√

1 + t2

=
∞

∑
n=0

Pn(0)tn

= P0(0) + P1(0)t + P2(0)t2 + P3(0)t3 + . . . . (5.30)

We can use the binomial expansion to find the final answer. [See Chapter 1
for a review of the binomial expansion.] Namely, we have

1√
1 + t2

= 1− 1
2

t2 +
3
8

t4 + . . . .

Comparing these expansions, we have the Pn(0) = 0 for n odd and for even
integers one can show (see Problem 12) that5 5 This example can be finished by first

proving that

(2n)!! = 2nn!

and

(2n− 1)!! =
(2n)!
(2n)!!

=
(2n)!
2nn!

.

P2n(0) = (−1)n (2n− 1)!!
(2n)!!

, (5.31)

where n!! is the double factorial,

n!! =


n(n− 2) . . . (3)1, n > 0, odd,
n(n− 2) . . . (4)2, n > 0, even,
1 n = 0,−1

.

Example 5.6. Evaluate Pn(−1). This is a simpler problem. In this case we
have

g(−1, t) =
1√

1 + 2t + t2
=

1
1 + t

= 1− t + t2 − t3 + . . . .

Therefore, Pn(−1) = (−1)n.

Second proof of the three term recursion formula. Proof of the three term recursion for-
mula using ∂g

∂t .
Proof. We can also use the generating function to find recurrence re-
lations. To prove the three term recursion (5.23) that we introduced
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above, then we need only differentiate the generating function with
respect to t in Equation (5.29) and rearrange the result. First note that

∂g
∂t

=
x− t

(1− 2xt + t2)3/2 =
x− t

1− 2xt + t2 g(x, t).

Combining this with

∂g
∂t

=
∞

∑
n=0

nPn(x)tn−1,

we have

(x− t)g(x, t) = (1− 2xt + t2)
∞

∑
n=0

nPn(x)tn−1.

Inserting the series expression for g(x, t) and distributing the sum on
the right side, we obtain

(x− t)
∞

∑
n=0

Pn(x)tn =
∞

∑
n=0

nPn(x)tn−1−
∞

∑
n=0

2nxPn(x)tn +
∞

∑
n=0

nPn(x)tn+1.

Multiplying out the x − t factor and rearranging, leads to three sepa-
rate sums:

∞

∑
n=0

nPn(x)tn−1 −
∞

∑
n=0

(2n + 1)xPn(x)tn +
∞

∑
n=0

(n + 1)Pn(x)tn+1 = 0.

(5.32)
Each term contains powers of t that we would like to combine into

a single sum. This is done by reindexing. For the first sum, we could
use the new index k = n− 1. Then, the first sum can be written

∞

∑
n=0

nPn(x)tn−1 =
∞

∑
k=−1

(k + 1)Pk+1(x)tk.

Using different indices is just another way of writing out the terms.
Note that

∞

∑
n=0

nPn(x)tn−1 = 0 + P1(x) + 2P2(x)t + 3P3(x)t2 + . . .

and

∞

∑
k=−1

(k + 1)Pk+1(x)tk = 0 + P1(x) + 2P2(x)t + 3P3(x)t2 + . . .

actually give the same sum. The indices are sometimes referred to as
dummy indices because they do not show up in the expanded expres-
sion and can be replaced with another letter.

If we want to do so, we could now replace all of the k’s with n’s.
However, we will leave the k’s in the first term and now reindex the
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next sums in Equation (5.32). The second sum just needs the replace-
ment n = k and the last sum we reindex using k = n + 1. Therefore,
Equation (5.32) becomes

∞

∑
k=−1

(k + 1)Pk+1(x)tk −
∞

∑
k=0

(2k + 1)xPk(x)tk +
∞

∑
k=1

kPk−1(x)tk = 0.

(5.33)
We can now combine all of the terms, noting the k = −1 term is
automatically zero and the k = 0 terms give

P1(x)− xP0(x) = 0. (5.34)

Of course, we know this already. So, that leaves the k > 0 terms:

∞

∑
k=1

[(k + 1)Pk+1(x)− (2k + 1)xPk(x) + kPk−1(x)] tk = 0. (5.35)

Since this is true for all t, the coefficients of the tk’s are zero, or

(k + 1)Pk+1(x)− (2k + 1)xPk(x) + kPk−1(x) = 0, k = 1, 2, . . . .

While this is the standard form for the three term recurrence relation,
the earlier form is obtained by setting k = n− 1.

There are other recursion relations which we list in the box below.
Equation (5.36) was derived using the generating function. Differen-
tiating it with respect to x, we find Equation (5.37). Equation (5.38)
can be proven using the generating function by differentiating g(x, t)
with respect to x and rearranging the resulting infinite series just as
in this last manipulation. This will be left as Problem 4. Combining
this result with Equation (5.36), we can derive Equations (5.39)-(5.40).
Adding and subtracting these equations yields Equations (5.41)-(5.42).

Recursion Formulae for Legendre Polynomials for n = 1, 2, . . . .

(n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x) (5.36)

(n + 1)P′n+1(x) = (2n + 1)[Pn(x) + xP′n(x)]− nP′n−1(x)

(5.37)

Pn(x) = P′n+1(x)− 2xP′n(x) + P′n−1(x) (5.38)

P′n−1(x) = xP′n(x)− nPn(x) (5.39)

P′n+1(x) = xP′n(x) + (n + 1)Pn(x) (5.40)

P′n+1(x) + P′n−1(x) = 2xP′n(x) + Pn(x). (5.41)

P′n+1(x)− P′n−1(x) = (2n + 1)Pn(x). (5.42)

(x2 − 1)P′n(x) = nxPn(x)− nPn−1(x) (5.43)



non-sinusoidal harmonics and special functions 227

Finally, Equation (5.43) can be obtained using Equations (5.39) and
(5.40). Just multiply Equation (5.39) by x,

x2P′n(x)− nxPn(x) = xP′n−1(x).

Now use Equation (5.40), but first replace n with n− 1 to eliminate the
xP′n−1(x) term:

x2P′n(x)− nxPn(x) = P′n(x)− nPn−1(x).

Rearranging gives the result.
Legendre Polynomials as Solutions of a Differential Equation
The Legendre polynomials satisfy a second order linear differential

equation. This differential equation occurs naturally in the solution
of initial-boundary value problems in three dimensions which possess
some spherical symmetry. We will see this in the last chapter. There
are two approaches we could take in showing that the Legendre poly-
nomials satisfy a particular differential equation. Either we can write
down the equations and attempt to solve it, or we could use the above
properties to obtain the equation. For now, we will seek the differential
equation satisfied by Pn(x) using the above recursion relations.

We begin by differentiating Equation (5.43) and using Equation (5.39)
to simplify:

d
dx

(
(x2 − 1)P′n(x)

)
= nPn(x) + nxP′n(x)− nP′n−1(x)

= nPn(x) + n2Pn(x)

= n(n + 1)Pn(x). (5.44)

Therefore, Legendre polynomials, or Legendre functions of the first
kind, are solutions of the differential equation

(1− x2)y′′ − 2xy′ + n(n + 1)y = 0.

As this is a linear second order differential equation, we expect two A generalization of the Legendre equa-
tion is given by (1 − x2)y′′ − 2xy′ +[

n(n + 1)− m2

1−x2

]
y = 0. Solutions to

this equation, Pm
n (x) and Qm

n (x), are
called the associated Legendre functions
of the first and second kind.

linearly independent solutions. The second solution, called the Leg-
endre function of the second kind, is given by Qn(x) and is not well
behaved at x = ±1. For example,

Q0(x) =
1
2

ln
1 + x
1− x

.

We will not need these for physically interesting examples in this book.
Normalization Constant Another use of the generating function is

to obtain the normalization constant. Namely, we want to evaluate

‖Pn‖2 =
∫ 1

−1
Pn(x)Pn(x) dx.
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This can be done by first squaring the generating function in order to
get the products Pn(x)Pm(x), and then integrating over x.

Squaring the generating function has to be done with care, as we
need to make proper use of the dummy summation index. So, we first
write

1
1− 2xt + t2 =

[
∞

∑
n=0

Pn(x)tn

]2

=
∞

∑
n=0

∞

∑
m=0

Pn(x)Pm(x)tn+m. (5.45)

Integrating from -1 to 1 and using the orthogonality of the Legendre
polynomials, we have∫ 1

−1

dx
1− 2xt + t2 =

∞

∑
n=0

∞

∑
m=0

tn+m
∫ 1

−1
Pn(x)Pm(x) dx

=
∞

∑
n=0

t2n
∫ 1

−1
P2

n(x) dx. (5.46)

However, one can show that6 6 You will need the integral∫ dx
a + bx

=
1
b

ln(a + bx) + C.
∫ 1

−1

dx
1− 2xt + t2 =

1
t

ln
(

1 + t
1− t

)
.

Expanding this expression about t = 0, we obtain7 7 From Appendix A you will need the se-
ries expansion

ln(1 + x) =
∞

∑
n=1

(−1)n+1 xn

n

= x− x2

2
+

x3

3
− · · · .

1
t

ln
(

1 + t
1− t

)
=

∞

∑
n=0

2
2n + 1

t2n.

Comparing this result with Equation (5.46), we find that

‖Pn‖2 =
∫ 1

−1
P2

n(x) dx =
2

2n + 1
. (5.47)

Fourier-Legendre Series
With these properties of Legendre functions we are now prepared

to compute the expansion coefficients for the Fourier-Legendre series
representation of a given function.

Example 5.7. Expand f (x) = x3 in a Fourier-Legendre series.
We simply need to compute

cn =
2n + 1

2

∫ 1

−1
x3Pn(x) dx. (5.48)

We first note that ∫ 1

−1
xmPn(x) dx = 0 for m < n.

As a result, we will have for this example that cn = 0 for n > 3. We could just
compute

∫ 1
−1 x3Pm(x) dx for m = 0, 1, 2, . . . outright by looking up Legendre
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polynomials. But, note that x3 is an odd function, c0 = 0 and c2 = 0. This
leaves us with only two coefficients to compute. We refer to Table 5.2 and find
that

c1 =
3
2

∫ 1

−1
x4 dx =

3
5

c3 =
7
2

∫ 1

−1
x3
[

1
2
(5x3 − 3x)

]
dx =

2
5

.

Thus,

x3 =
3
5

P1(x) +
2
5

P3(x).

Of course, this is simple to check using Table 5.2:

3
5

P1(x) +
2
5

P3(x) =
3
5

x +
2
5

[
1
2
(5x3 − 3x)

]
= x3.

Well, maybe we could have guessed this without doing any integration. Let’s
see,

x3 = c1x +
1
2

c2(5x3 − 3x)

= (c1 −
3
2

c2)x +
5
2

c2x3. (5.49)

Equating coefficients of like terms, we have that c2 = 2
5 and c1 = 3

2 c2 = 3
5 .

Example 5.8. Expand the Heaviside8 function in a Fourier-Legendre series. 8 Oliver Heaviside (1850-1925) was an
English mathematician, physicist and
engineer who used complex analysis to
study circuits and was a co-founder of
vector analysis. The Heaviside function
is also called the step function.

The Heaviside function is defined as

H(x) =

{
1, x > 0,
0, x < 0.

(5.50)

In this case, we cannot find the expansion coefficients without some integra-
tion. We have to compute

cn =
2n + 1

2

∫ 1

−1
f (x)Pn(x) dx

=
2n + 1

2

∫ 1

0
Pn(x) dx. (5.51)

We can make use of the identity

P′n+1(x)− P′n−1(x) = (2n + 1)Pn(x), n > 1. (5.52)

We have for n > 0

cn =
1
2

∫ 1

0
[P′n+1(x)− P′n−1(x)] dx =

1
2
[Pn−1(0)− Pn+1(0)].

For n = 0, we have

c0 =
1
2

∫ 1

0
dx =

1
2

.
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This leads to the expansion

f (x) ∼ 1
2
+

1
2

∞

∑
n=1

[Pn−1(0)− Pn+1(0)]Pn(x).

We still need to evaluate the Fourier-Legendre coefficients. Since Pn(0) =
0 for n odd, the cn’s vanish for n even. Letting n = 2k− 1, we can re-index
the sum,

f (x) ∼ 1
2
+

1
2

∞

∑
k=1

[P2k−2(0)− P2k(0)]P2k−1(x).

We can compute the Fourier coefficients, c2k−1 = 1
2 [P2k−2(0)− P2k(0)],

using a result from Problem 12:

P2k(0) = (−1)k (2k− 1)!!
(2k)!!

. (5.53)

Namely, we have

c2k−1 =
1
2
[P2k−2(0)− P2k(0)]

=
1
2

[
(−1)k−1 (2k− 3)!!

(2k− 2)!!
− (−1)k (2k− 1)!!

(2k)!!

]
= −1

2
(−1)k (2k− 3)!!

(2k− 2)!!

[
1 +

2k− 1
2k

]
= −1

2
(−1)k (2k− 3)!!

(2k− 2)!!
4k− 1

2k
. (5.54)

Figure 5.6: Sum of first 21 terms for
Fourier-Legendre series expansion of
Heaviside function.

Thus, the Fourier-Legendre series expansion for the Heaviside function is
given by

f (x) ∼ 1
2
− 1

2

∞

∑
n=1

(−1)n (2n− 3)!!
(2n− 2)!!

4n− 1
2n

P2n−1(x). (5.55)

The sum of the first 21 terms of this series are shown in Figure 5.6. We note
the slow convergence to the Heaviside function. Also, we see that the Gibbs
phenomenon is present due to the jump discontinuity at x = 0. [See Section
4.12.]

5.4 Gamma Function
The name and symbol for the Gamma
function were first given by Legendre in
1811. However, the search for a gener-
alization of the factorial extends back to
the 1720’s when Euler provided the first
representation of the factorial as an infi-
nite product, later to be modified by oth-
ers like Gauß, Weierstraß, and Legendre.

A function that often occurs in the study of special functions
is the Gamma function. We will need the Gamma function in the next
section on Fourier-Bessel series.

For x > 0 we define the Gamma function as

Γ(x) =
∫ ∞

0
tx−1e−t dt, x > 0. (5.56)
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The Gamma function is a generalization of the factorial function and a
plot is shown in Figure 5.7. In fact, we have

Γ(1) = 1

and
Γ(x + 1) = xΓ(x).

The reader can prove this identity by simply performing an integration
by parts. (See Problem 7.) In particular, for integers n ∈ Z+, we then
have

Γ(n + 1) = nΓ(n) = n(n− 1)Γ(n− 2) = n(n− 1) · · · 2Γ(1) = n!.

Figure 5.7: Plot of the Gamma function.

We can also define the Gamma function for negative, non-integer
values of x. We first note that by iteration on n ∈ Z+, we have

Γ(x + n) = (x + n− 1) · · · (x + 1)xΓ(x), x + n > 0.

Solving for Γ(x), we then find

Γ(x) =
Γ(x + n)

(x + n− 1) · · · (x + 1)x
, −n < x < 0

Note that the Gamma function is undefined at zero and the negative
integers.

Example 5.9. We now prove that

Γ
(

1
2

)
=
√

π.

This is done by direct computation of the integral:

Γ
(

1
2

)
=
∫ ∞

0
t−

1
2 e−t dt.

Letting t = z2, we have

Γ
(

1
2

)
= 2

∫ ∞

0
e−z2

dz.

Due to the symmetry of the integrand, we obtain the classic integral

Γ
(

1
2

)
=
∫ ∞

−∞
e−z2

dz,

which can be performed using a standard trick.9 Consider the integral 9 In Example 7.4 we show the more gen-
eral result:∫ ∞

−∞
e−βy2

dy =

√
π

β
.I =

∫ ∞

−∞
e−x2

dx.

Then,
I2 =

∫ ∞

−∞
e−x2

dx
∫ ∞

−∞
e−y2

dy.
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Note that we changed the integration variable. This will allow us to write this
product of integrals as a double integral:

I2 =
∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2) dxdy.

This is an integral over the entire xy-plane. We can transform this Cartesian
integration to an integration over polar coordinates. The integral becomes

I2 =
∫ 2π

0

∫ ∞

0
e−r2

rdrdθ.

This is simple to integrate and we have I2 = π. So, the final result is found
by taking the square root of both sides:

Γ
(

1
2

)
= I =

√
π.

In Problem 12 the reader will prove the identity

Γ(n +
1
2
) =

(2n− 1)!!
2n

√
π.

Another useful relation, which we only state, is

Γ(x)Γ(1− x) =
π

sin πx
.

The are many other important relations, including infinite products,
which we will not need at this point. The reader is encouraged to read
about these elsewhere. In the meantime, we move on to the discussion
of another important special function in physics and mathematics.

5.5 Fourier-Bessel Series

Bessel functions arise in many problems in physics possessing The history of Bessel functions, does not
originate in the study of partial differ-
ential equations. These solutions origi-
nally came up in the study of the Ke-
pler problem, describing planetary mo-
tion. According to G. N. Watson in
his Treatise on Bessel Functions, the for-
mulation and solution of Kepler’s Prob-
lem was discovered by Joseph-Louis La-
grange (1736-1813), in 1770. Namely, the
problem was to express the radial coor-
dinate and what is called the eccentric
anomaly, E, as functions of time. La-
grange found expressions for the coef-
ficients in the expansions of r and E in
trigonometric functions of time. How-
ever, he only computed the first few
coefficients. In 1816 Friedrich Wilhelm
Bessel (1784-1846) had shown that the
coefficients in the expansion for r could
be given an integral representation. In
1824 he presented a thorough study of
these functions, which are now called
Bessel functions.

cylindrical symmetry such as the vibrations of circular drumheads and
the radial modes in optical fibers. They provide us with another or-
thogonal set of functions. You might have seen in a course on differ-
ential equations that Bessel functions are solutions of the differential
equation

x2y′′ + xy′ + (x2 − p2)y = 0. (5.57)

Solutions to this equation are obtained in the form of series expan-
sions. Namely, one seeks solutions of the form

y(x) =
∞

∑
j=0

ajxj+n

by determining the for the coefficients must take. We will leave this
for a homework exercise and simply report the results.
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One solution of the differential equation is the Bessel function of the
first kind of order p, given as

y(x) = Jp(x) =
∞

∑
n=0

(−1)n

Γ(n + 1)Γ(n + p + 1)

( x
2

)2n+p
. (5.58)

J1(x)

J3(x)
J2(x)

J0(x)
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Figure 5.8: Plots of the Bessel functions
J0(x), J1(x), J2(x), and J3(x).

In Figure 5.8 we display the first few Bessel functions of the first
kind of integer order. Note that these functions can be described as
decaying oscillatory functions.

A second linearly independent solution is obtained for p not an
integer as J−p(x). However, for p an integer, the Γ(n + p + 1) factor
leads to evaluations of the Gamma function at zero, or negative inte-
gers, when p is negative. Thus, the above series is not defined in these
cases.

Another method for obtaining a second linearly independent solu-
tion is through a linear combination of Jp(x) and J−p(x) as

Np(x) = Yp(x) =
cos πpJp(x)− J−p(x)

sin πp
. (5.59)

These functions are called the Neumann functions, or Bessel functions
of the second kind of order p.

In Figure 5.9 we display the first few Bessel functions of the sec-
ond kind of integer order. Note that these functions are also decaying
oscillatory functions. However, they are singular at x = 0.

In many applications one desires bounded solutions at x = 0. These
functions do not satisfy this boundary condition. For example, we will
later study one standard problem is to describe the oscillations of a
circular drumhead. For this problem one solves the two dimensional
wave equation using separation of variables in cylindrical coordinates.
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N2(x) N3(x)

N0(x)
N1(x)

–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10

x

Figure 5.9: Plots of the Neumann func-
tions N0(x), N1(x), N2(x), and N3(x).

The r equation leads to a Bessel equation. The Bessel function solu-
tions describe the radial part of the solution and one does not expect
a singular solution at the center of the drum. The amplitude of the
oscillation must remain finite. Thus, only Bessel functions of the first
kind can be used.

Bessel functions satisfy a variety of properties, which we will only
list at this time for Bessel functions of the first kind. The reader will
have the opportunity to prove these for homework.

Derivative Identities These identities follow directly from the ma-
nipulation of the series solution.

d
dx
[
xp Jp(x)

]
= xp Jp−1(x). (5.60)

d
dx
[
x−p Jp(x)

]
= −x−p Jp+1(x). (5.61)

Recursion Formulae The next identities follow from adding, or sub-
tracting, the derivative identities.

Jp−1(x) + Jp+1(x) =
2p
x

Jp(x). (5.62)

Jp−1(x)− Jp+1(x) = 2J′p(x). (5.63)

Orthogonality As we will see in the next chapter, one can recast the
Bessel equation into an eigenvalue problem whose solutions form
an orthogonal basis of functions on L2

x(0, a). Using Sturm-Liouville
theory, one can show that
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∫ a

0
xJp(jpn

x
a
)Jp(jpm

x
a
) dx =

a2

2
[

Jp+1(jpn)
]2

δn,m, (5.64)

where jpn is the nth root of Jp(x), Jp(jpn) = 0, n = 1, 2, . . . . A list of
some of these roots are provided in Table 5.3.

n p = 0 p = 1 p = 2 p = 3 p = 4 p = 5
1 2.405 3.832 5.135 6.379 7.586 8.780

2 5.520 7.016 8.147 9.760 11.064 12.339

3 8.654 10.173 11.620 13.017 14.373 15.700

4 11.792 13.323 14.796 16.224 17.616 18.982

5 14.931 16.470 17.960 19.410 20.827 22.220

6 18.071 19.616 21.117 22.583 24.018 25.431

7 21.212 22.760 24.270 25.749 27.200 28.628

8 24.353 25.903 27.421 28.909 30.371 31.813

9 27.494 29.047 30.571 32.050 33.512 34.983

Table 5.3: The zeros of Bessel Functions

Generating Function

ex(t− 1
t )/2 =

∞

∑
n=−∞

Jn(x)tn, x > 0, t 6= 0. (5.65)

Integral Representation

Jn(x) =
1
π

∫ π

0
cos(x sin θ − nθ) dθ, x > 0, n ∈ Z. (5.66)

Fourier-Bessel Series

Since the Bessel functions are an orthogonal set of functions of a
Sturm-Liouville problem,10 we can expand square integrable func- 10 In the study of boundary value prob-

lems in differential equations, Sturm-
Liouville problems are a bountiful
source of basis functions for the space
of square integrable functions as will be
seen in the next section.

tions in this basis. In fact, the Sturm-Liouville problem is given in
the form

x2y′′ + xy′ + (λx2 − p2)y = 0, x ∈ [0, a], (5.67)

satisfying the boundary conditions: y(x) is bounded at x = 0 and
y(a) = 0. The solutions are then of the form Jp(

√
λx), as can be

shown by making the substitution t =
√

λx in the differential equa-
tion. Namely, we let y(x) = u(t) and note that

dy
dx

=
dt
dx

du
dt

=
√

λ
du
dt

.

Then,
t2u′′ + tu′ + (t2 − p2)u = 0,

which has a solution u(t) = Jp(t).
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Using Sturm-Liouville theory, one can show that Jp(jpn
x
a ) is a ba-

sis of eigenfunctions and the resulting Fourier-Bessel series expansion
of f (x) defined on x ∈ [0, a] is

f (x) =
∞

∑
n=1

cn Jp(jpn
x
a
), (5.68)

where the Fourier-Bessel coefficients are found using the orthogo-
nality relation as

cn =
2

a2
[

Jp+1(jpn)
]2 ∫ a

0
x f (x)Jp(jpn

x
a
) dx. (5.69)

Example 5.10. Expand f (x) = 1 for 0 < x < 1 in a Fourier-Bessel series
of the form

f (x) =
∞

∑
n=1

cn J0(j0nx)

.
We need only compute the Fourier-Bessel coefficients in Equation (5.69):

cn =
2

[J1(j0n)]
2

∫ 1

0
xJ0(j0nx) dx. (5.70)

From the identity

d
dx
[
xp Jp(x)

]
= xp Jp−1(x). (5.71)

we have ∫ 1

0
xJ0(j0nx) dx =

1
j20n

∫ j0n

0
yJ0(y) dy

=
1

j20n

∫ j0n

0

d
dy

[yJ1(y)] dy

=
1

j20n
[yJ1(y)]

j0n
0

=
1

j0n
J1(j0n). (5.72)

As a result, the desired Fourier-Bessel expansion is given as

1 = 2
∞

∑
n=1

J0(j0nx)
j0n J1(j0n)

, 0 < x < 1. (5.73)

In Figure 5.10 we show the partial sum for the first fifty terms of this series.
Note once again the slow convergence due to the Gibbs phenomenon.

Figure 5.10: Plot of the first 50 terms
of the Fourier-Bessel series in Equation
(5.73) for f (x) = 1 on 0 < x < 1.
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5.6 Sturm-Liouville Eigenvalue Problems

In the last chapter we explored the solutions of differential equa-
tions that led to solutions in the form of trigonometric functions and
special functions. Such solutions can be used to represent functions
in generalized Fourier series expansions. We would like to generalize
some of those techniques we had first used to solve the heat equation
in order to solve other boundary value problems. A class of problems
to which our previous examples belong and which have eigenfunctions
with similar properties are the Sturm-Liouville Eigenvalue Problems.
These problems involve self-adjoint (differential) operators which play
an important role in the spectral theory of linear operators and the
existence of the eigenfunctions. These ideas will be introduced in this
section.

5.6.1 Sturm-Liouville Operators

In physics many problems arise in the form of boundary value
problems involving second order ordinary differential equations. For
example, we will explore the wave equation and the heat equation in
three dimensions. Separating out the time dependence leads to a three
dimensional boundary value problem in both cases. Further separa-
tion of variables leads to a set of boundary value problems involving
second order ordinary differential equations.

In general, we might obtain equations of the form

a2(x)y′′ + a1(x)y′ + a0(x)y = f (x) (5.74)

subject to boundary conditions. We can write such an equation in
operator form by defining the differential operator

L = a2(x)
d2

dx2 + a1(x)
d

dx
+ a0(x).

Then, Equation (5.74) takes the form

Ly = f .

Recall that we had solved such nonhomogeneous differential equa-
tions in Chapter 2. In this chapter we will show that these equations
can be solved using eigenfunction expansions. Namely, we seek solu-
tions to the eigenvalue problem

Lφ = λφ
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with homogeneous boundary conditions on φ and then seek a solution
of the nonhomogeneous problem, Ly = f , as an expansion over these
eigenfunctions. Formally, we let

y(x) =
∞

∑
n=1

cnφn(x).

However, we are not guaranteed a nice set of eigenfunctions. We need
an appropriate set to form a basis in the function space. Also, it would
be nice to have orthogonality so that we can easily solve for the expan-
sion coefficients.

It turns out that any linear second order differential operator can be
turned into an operator that possesses just the right properties (self-
adjointedness) to carry out this procedure. The resulting operator is
referred to as a Sturm-Liouville operator. We will highlight some of
the properties of such operators and prove a few key theorems, though
this will not be an extensive review of Sturm-Liouville theory. The
interested reader can review the literature and advanced texts for a
more in depth analysis.

We define the Sturm-Liouville operator as The Sturm-Liouville operator.

L =
d

dx
p(x)

d
dx

+ q(x). (5.75)

The Sturm-Liouville eigenvalue problem is given by the differential equa-
tion The Sturm-Liouville eigenvalue prob-

lem.Ly = −λσ(x)y,

or
d

dx

(
p(x)

dy
dx

)
+ q(x)y + λσ(x)y = 0, (5.76)

for x ∈ (a, b), y = y(x), plus boundary conditions. The functions p(x),
p′(x), q(x) and σ(x) are assumed to be continuous on (a, b) and p(x) >
0, σ(x) > 0 on [a, b]. If the interval is finite and these assumptions on
the coefficients are true on [a, b], then the problem is said to be regular.
Otherwise, it is called singular.

We also need to impose the set of homogeneous boundary condi-
tions Types of boundary conditions.

α1y(a) + β1y′(a) = 0,

α2y(b) + β2y′(b) = 0. (5.77)

The α’s and β’s are constants. For different values, one has special
types of boundary conditions. For βi = 0, we have what are called
Dirichlet boundary conditions. Namely, y(a) = 0 and y(b) = 0. For
αi = 0, we have Neumann boundary conditions. In this case, y′(a) = 0
and y′(b) = 0. In terms of the heat equation example, Dirichlet con-
ditions correspond to maintaining a fixed temperature at the ends of
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the rod. The Neumann boundary conditions would correspond to no
heat flow across the ends, or insulating conditions, as there would be
no temperature gradient at those points. The more general boundary
conditions allow for partially insulated boundaries.

Another type of boundary condition that is often encountered is the
periodic boundary condition. Consider the heated rod that has been bent
to form a circle. Then the two end points are physically the same. So,
we would expect that the temperature and the temperature gradient
should agree at those points. For this case we write y(a) = y(b) and
y′(a) = y′(b). Boundary value problems using these conditions have to
be handled differently than the above homogeneous conditions. These
conditions leads to different types of eigenfunctions and eigenvalues.

As previously mentioned, equations of the form (5.74) occur often.
We now show that Equation (5.74) can be turned into a differential equa-
tion of Sturm-Liouville form:

d
dx

(
p(x)

dy
dx

)
+ q(x)y = F(x). (5.78)

Another way to phrase this is provided in the theorem:

Theorem 5.2. Any second order linear operator can be put into the form of
the Sturm-Liouville operator (5.76).

The proof of this is straight forward, as we shall soon show. Con-
sider the equation (5.74). If a1(x) = a′2(x), then we can write the
equation in the form

f (x) = a2(x)y′′ + a1(x)y′ + a0(x)y

= (a2(x)y′)′ + a0(x)y. (5.79)

This is in the correct form. We just identify p(x) = a2(x) and q(x) =
a0(x).

However, consider the differential equation

x2y′′ + xy′ + 2y = 0.

In this case a2(x) = x2 and a′2(x) = 2x 6= a1(x). The linear differential
operator in this equation is not of Sturm-Liouville type. But, we can
change it to a Sturm Liouville operator.

Proof. In the Sturm Liouville operator the derivative terms are gath-
ered together into one perfect derivative. This is similar to what we
saw in the Chapter 2 when we solved linear first order equations. In
that case we sought an integrating factor. We can do the same thing
here. We seek a multiplicative function µ(x) that we can multiply
through (5.74) so that it can be written in Sturm-Liouville form. We
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first divide out the a2(x), giving

y′′ +
a1(x)
a2(x)

y′ +
a0(x)
a2(x)

y =
f (x)

a2(x)
.

Now, we multiply the differential equation by µ :

µ(x)y′′ + µ(x)
a1(x)
a2(x)

y′ + µ(x)
a0(x)
a2(x)

y = µ(x)
f (x)

a2(x)
.

The first two terms can now be combined into an exact derivative
(µy′)′ if µ(x) satisfies

dµ

dx
= µ(x)

a1(x)
a2(x)

.

This is formally solved to give

µ(x) = e
∫ a1(x)

a2(x) dx
.

Thus, the original equation can be multiplied by factor

µ(x)
a2(x)

=
1

a2(x)
e
∫ a1(x)

a2(x) dx

to turn it into Sturm-Liouville form.

In summary, Conversion of a linear second order
differential equation to Sturm Liouville
form.Equation (5.74),

a2(x)y′′ + a1(x)y′ + a0(x)y = f (x), (5.80)

can be put into the Sturm-Liouville form

d
dx

(
p(x)

dy
dx

)
+ q(x)y = F(x), (5.81)

where

p(x) = e
∫ a1(x)

a2(x) dx
,

q(x) = p(x)
a0(x)
a2(x)

,

F(x) = p(x)
f (x)

a2(x)
. (5.82)

Example 5.11. For the example above,

x2y′′ + xy′ + 2y = 0.

We need only multiply this equation by

1
x2 e

∫ dx
x =

1
x

,
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to put the equation in Sturm-Liouville form:

0 = xy′′ + y′ +
2
x

y

= (xy′)′ +
2
x

y. (5.83)

5.6.2 Properties of Sturm-Liouville Eigenvalue Problems

There are several properties that can be proven for the (regular)
Sturm-Liouville eigenvalue problem in (5.76). However, we will not
prove them all here. We will merely list some of the important facts
and focus on a few of the properties.

Real, countable eigenvalues.

1. The eigenvalues are real, countable, ordered and there is a
smallest eigenvalue. Thus, we can write them as λ1 < λ2 <

. . . . However, there is no largest eigenvalue and n→ ∞, λn →
∞. Oscillatory eigenfunctions.

2. For each eigenvalue λn there exists an eigenfunction φn with
n− 1 zeros on (a, b). Orthogonality of eigenfunctions.

3. Eigenfunctions corresponding to different eigenvalues are or-
thogonal with respect to the weight function, σ(x). Defining
the inner product of f (x) and g(x) as

< f , g >=
∫ b

a
f (x)g(x)σ(x) dx, (5.84)

then the orthogonality of the eigenfunctions can be written in
the form

< φn, φm >=< φn, φn > δnm, n, m = 1, 2, . . . . (5.85)
Complete basis of eigenfunctions.

4. The set of eigenfunctions is complete; i.e., any piecewise
smooth function can be represented by a generalized Fourier
series expansion of the eigenfunctions,

f (x) ∼
∞

∑
n=1

cnφn(x),

where
cn =

< f , φn >

< φn, φn >
.

Actually, one needs f (x) ∈ L2
σ(a, b), the set of square integrable

functions over [a, b] with weight function σ(x). By square in-
tegrable, we mean that < f , f >< ∞. One can show that
such a space is isomorphic to a Hilbert space, a complete inner
product space. Hilbert spaces play a special role in quantum
mechanics. Rayleigh Quotient.
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5. Multiply the eigenvalue problem

Lφn = −λnσ(x)φn

by φn and integrate. Solve this result for λn, to find the
Rayleigh Quotient

λn =

−pφn
dφn
dx |

b
a −
∫ b

a

[
p
(

dφn
dx

)2
− qφ2

n

]
dx

< φn, φn >

The Rayleigh quotient is useful for getting estimates of
eigenvalues and proving some of the other properties.

Example 5.12. We seek the eigenfunctions of the operator found in Example
5.11. Namely, we want to solve the eigenvalue problem

Ly = (xy′)′ +
2
x

y = −λσy (5.86)

subject to a set of homogeneous boundary conditions. Let’s use the boundary
conditions

y′(1) = 0, y′(2) = 0.

[Note that we do not know σ(x) yet, but will choose an appropriate function
to obtain solutions.]

Expanding the derivative, we have

xy′′ + y′ +
2
x

y = −λσy.

Multiply through by x to obtain

x2y′′ + xy′ + (2 + λxσ) y = 0.

Notice that if we choose σ(x) = x−1, then this equation can be made a
Cauchy-Euler type equation. Thus, we have

x2y′′ + xy′ + (λ + 2) y = 0.

The characteristic equation is

r2 + λ + 2 = 0.

For oscillatory solutions, we need λ + 2 > 0. Thus, the general solution is

y(x) = c1 cos(
√

λ + 2 ln |x|) + c2 sin(
√

λ + 2 ln |x|). (5.87)

Next we apply the boundary conditions. y′(1) = 0 forces c2 = 0. This
leaves

y(x) = c1 cos(
√

λ + 2 ln x).
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The second condition, y′(2) = 0, yields

sin(
√

λ + 2 ln 2) = 0.

This will give nontrivial solutions when
√

λ + 2 ln 2 = nπ, n = 0, 1, 2, 3 . . . .

In summary, the eigenfunctions for this eigenvalue problem are

yn(x) = cos
( nπ

ln 2
ln x

)
, 1 ≤ x ≤ 2

and the eigenvalues are λn =
( nπ

ln 2

)2 − 2 for n = 0, 1, 2, . . . .
Note: We include the n = 0 case because y(x) = constant is a solution

of the λ = −2 case. More specifically, in this case the characteristic equation
reduces to r2 = 0. Thus, the general solution of this Cauchy-Euler equation
is

y(x) = c1 + c2 ln |x|.

Setting y′(1) = 0, forces c2 = 0. y′(2) automatically vanishes, leaving the
solution in this case as y(x) = c1.

We note that some of the properties listed in the beginning of the section
hold for this example. The eigenvalues are seen to be real, countable and
ordered. There is a least one, λ0 = −2. Next, one can find the zeros of each
eigenfunction on [1,2]. Then the argument of the cosine, nπ

ln 2 ln x, takes values
0 to nπ for x ∈ [1, 2]. The cosine function has n− 1 roots on this interval.

Orthogonality can be checked as well. We set up the integral and use the
substitution y = π ln x/ ln 2. This gives

< yn, ym > =
∫ 2

1
cos

( nπ

ln 2
ln x

)
cos

(mπ

ln 2
ln x

) dx
x

=
ln 2
π

∫ π

0
cos ny cos my dy

=
ln 2

2
δn,m. (5.88)

5.6.3 Adjoint Operators

In the study of the spectral theory of matrices, one learns
about the adjoint of the matrix, A†, and the role that self-adjoint, or
Hermitian, matrices play in diagonalization. Also, one needs the con-
cept of adjoint to discuss the existence of solutions to the matrix prob-
lem y = Ax. In the same spirit, one is interested in the existence of
solutions of the operator equation Lu = f and solutions of the cor-
responding eigenvalue problem. The study of linear operators on a
Hilbert space is a generalization of what the reader had seen in a lin-
ear algebra course.
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Just as one can find a basis of eigenvectors and diagonalize Her-
mitian, or self-adjoint, matrices (or, real symmetric in the case of real
matrices), we will see that the Sturm-Liouville operator is self-adjoint.
In this section we will define the domain of an operator and introduce
the notion of adjoint operators. In the last section we discuss the role
the adjoint plays in the existence of solutions to the operator equation
Lu = f .

We first introduce some definitions.

Definition 5.2. The domain of a differential operator L is the set of all
u ∈ L2

σ(a, b) satisfying a given set of homogeneous boundary condi-
tions.

The adjoint, L†, of operator L.

Definition 5.3. The adjoint, L†, of operator L satisfies

< u, Lv >=< L†u, v >

for all v in the domain of L and u in the domain of L†.

Example 5.13. As an example, we find the adjoint of second order linear
differential operator L = a2(x) d2

dx2 + a1(x) d
dx + a0(x).

In order to find the adjoint, we place the operator under an integral. So,
we consider the inner product

< u, Lv >=
∫ b

a
u(a2v′′ + a1v′ + a0v) dx.

We have to move the operator L from v and determine what operator is acting
on u in order to formally preserve the inner product. For a simple operator
like L = d

dx , this is easily done using integration by parts. For the given
operator, we will need to apply several integrations by parts to the individual
terms. We will consider the individual terms.

First we consider the a1v′ term. Integration by parts yields∫ b

a
u(x)a1(x)v′(x) dx = a1(x)u(x)v(x)

∣∣∣b
a
−
∫ b

a
(u(x)a1(x))′v(x) dx.

(5.89)
Now, we consider the a2v′′ term. In this case it will take two integrations

by parts:∫ b

a
u(x)a2(x)v′′(x) dx = a2(x)u(x)v′(x)

∣∣∣b
a
−
∫ b

a
(u(x)a2(x))′v(x)′ dx

=
[
a2(x)u(x)v′(x)− (a2(x)u(x))′v(x)

] ∣∣∣b
a

+
∫ b

a
(u(x)a2(x))′′v(x) dx. (5.90)

Combining these results, we obtain

< u, Lv > =
∫ b

a
u(a2v′′ + a1v′ + a0v) dx
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=
[
a1(x)u(x)v(x) + a2(x)u(x)v′(x)− (a2(x)u(x))′v(x)

] ∣∣∣b
a

+
∫ b

a

[
(a2u)′′ − (a1u)′ + a0u

]
v dx. (5.91)

Inserting the boundary conditions for v, one has to determine boundary
conditions for u such that[

a1(x)u(x)v(x) + a2(x)u(x)v′(x)− (a2(x)u(x))′v(x)
] ∣∣∣b

a
= 0.

This leaves

< u, Lv >=
∫ b

a

[
(a2u)′′ − (a1u)′ + a0u

]
v dx ≡< L†u, v > .

Therefore,

L† =
d2

dx2 a2(x)− d
dx

a1(x) + a0(x). (5.92)
Self-adjoint operators.

When L† = L, the operator is called formally self-adjoint. When the
domain of L is the same as the domain of L†, the term self-adjoint is
used. As the domain is important in establishing self-adjointness, we
need to do a complete example in which the domain of the adjoint is
found.

Example 5.14. Determine L† and its domain for operator Lu = du
dx where u

satisfies the boundary conditions u(0) = 2u(1) on [0, 1].
We need to find the adjoint operator satisfying < v, Lu >=< L†v, u > .

Therefore, we rewrite the integral

< v, Lu >=
∫ 1

0
v

du
dx

dx = uv|10 −
∫ 1

0
u

dv
dx

dx =< L†v, u > .

From this we have the adjoint problem consisting of an adjoint operator and
the associated boundary condition:

1. L† = − d
dx .

2. uv
∣∣∣1
0
= 0⇒ 0 = u(1)[v(1)− 2v(0)]⇒ v(1) = 2v(0).

5.6.4 Lagrange’s and Green’s Identities

Before turning to the proofs that the eigenvalues of a Sturm-
Liouville problem are real and the associated eigenfunctions orthogo-
nal, we will first need to introduce two important identities. For the
Sturm-Liouville operator,

L =
d

dx

(
p

d
dx

)
+ q,

we have the two identities:
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Lagrange’s Identity: uLv− vLu = [p(uv′ − vu′)]′.
Green’s Identity:

∫ b
a (uLv− vLu) dx = [p(uv′ − vu′)]|ba.

Proof. The proof of Lagrange’s identity follows by a simple manipula-
tions of the operator:

uLv− vLu = u
[

d
dx

(
p

dv
dx

)
+ qv

]
− v

[
d

dx

(
p

du
dx

)
+ qu

]
= u

d
dx

(
p

dv
dx

)
− v

d
dx

(
p

du
dx

)
= u

d
dx

(
p

dv
dx

)
+ p

du
dx

dv
dx
− v

d
dx

(
p

du
dx

)
− p

du
dx

dv
dx

=
d

dx

[
pu

dv
dx
− pv

du
dx

]
. (5.93)

Green’s identity is simply proven by integrating Lagrange’s identity.

5.6.5 Orthogonality and Reality

We are now ready to prove that the eigenvalues of a Sturm-Liouville
problem are real and the corresponding eigenfunctions are orthogonal.
These are easily established using Green’s identity, which in turn is a
statement about the Sturm-Liouville operator being self-adjoint.

Theorem 5.3. The eigenvalues of the Sturm-Liouville problem (5.76) are real.

Proof. Let φn(x) be a solution of the eigenvalue problem associated
with λn:

Lφn = −λnσφn.

The complex conjugate of this equation is

Lφn = −λnσφn.

Now, multiply the first equation by φn and the second equation by φn

and then subtract the results. We obtain

φnLφn − φnLφn = (λn − λn)σφnφn.

Integrate both sides of this equation:∫ b

a

(
φnLφn − φnLφn

)
dx = (λn − λn)

∫ b

a
σφnφn dx.

Apply Green’s identity to the left hand side to find

[p(φnφ′n − φnφ
′
n)]|

b
a = (λn − λn)

∫ b

a
σφnφn dx.
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Using the homogeneous boundary conditions (5.77) for a self-adjoint
operator, the left side vanishes to give

0 = (λn − λn)
∫ b

a
σ‖φn‖2 dx.

The integral is nonnegative, so we must have λn = λn. Therefore, the
eigenvalues are real.

Theorem 5.4. The eigenfunctions corresponding to different eigenvalues of
the Sturm-Liouville problem (5.76) are orthogonal.

Proof. This is proven similar to the last theorem. Let φn(x) be a solu-
tion of the eigenvalue problem associated with λn,

Lφn = −λnσφn,

and let φm(x) be a solution of the eigenvalue problem associated with
λm 6= λn,

Lφm = −λmσφm,

Now, multiply the first equation by φm and the second equation by φn.
Subtracting the results, we obtain

φmLφn − φnLφm = (λm − λn)σφnφm

Similar to the previous proof, we integrate both sides of the equation
and use Green’s identity and the boundary conditions for a self-adjoint
operator. This leaves

0 = (λm − λn)
∫ b

a
σφnφm dx.

Since the eigenvalues are distinct, we can divide by λm − λn, leaving
the desired result, ∫ b

a
σφnφm dx = 0.

Therefore, the eigenfunctions are orthogonal with respect to the weight
function σ(x).

5.6.6 The Rayleigh Quotient - optional

The Rayleigh quotient is useful for getting estimates of eigenval-
ues and proving some of the other properties associated with Sturm-
Liouville eigenvalue problems. We begin by multiplying the eigen-
value problem

Lφn = −λnσ(x)φn
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by φn and integrating. This gives

∫ b

a

[
φn

d
dx

(
p

dφn

dx

)
+ qφ2

n

]
dx = −λ

∫ b

a
φ2

n dx.

One can solve the last equation for λ to find

λ =
−
∫ b

a

[
φn

d
dx

(
p dφn

dx

)
+ qφ2

n

]
dx∫ b

a φ2
nσ dx

.

It appears that we have solved for the eigenvalue and have not needed
the machinery we had developed in Chapter 4 for studying boundary
value problems. However, we really cannot evaluate this expression
because we do not know the eigenfunctions, φn(x) yet. Nevertheless,
we will see what we can determine.

One can rewrite this result by performing an integration by parts
on the first term in the numerator. Namely, pick u = φn and dv =
d

dx

(
p dφn

dx

)
dx for the standard integration by parts formula. Then, we

have∫ b

a
φn

d
dx

(
p

dφn

dx

)
dx = pφn

dφn

dx

∣∣∣b
a
−
∫ b

a

[
p
(

dφn

dx

)2
− qφ2

n

]
dx.

Inserting the new formula into the expression for λ, leads to the Rayleigh
Quotient

λn =

−pφn
dφn
dx

∣∣∣b
a
+
∫ b

a

[
p
(

dφn
dx

)2
− qφ2

n

]
dx∫ b

a φ2
nσ dx

. (5.94)

In many applications the sign of the eigenvalue is important. As we
had seen in the solution of the heat equation, T′ + kλT = 0. Since we
expect the heat energy to diffuse, the solutions should decay in time.
Thus, we would expect λ > 0. In studying the wave equation, one
expects vibrations and these are only possible with the correct sign of
the eigenvalue (positive again). Thus, in order to have nonnegative
eigenvalues, we see from (5.94) that

a. q(x) ≤ 0, and

b. −pφn
dφn
dx |

b
a ≥ 0.

Furthermore, if λ is a zero eigenvalue, then q(x) ≡ 0 and α1 =

α2 = 0 in the homogeneous boundary conditions. This can be seen by
setting the numerator equal to zero. Then, q(x) = 0 and φ′n(x) = 0.
The second of these conditions inserted into the boundary conditions
forces the restriction on the type of boundary conditions.

One of the (unproven here) properties of Sturm-Liouville eigen-
value problems with homogeneous boundary conditions is that the
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eigenvalues are ordered, λ1 < λ2 < . . . . Thus, there is a smallest
eigenvalue. It turns out that for any continuous function, y(x),

λ1 = min
y(x)

−py dy
dx |

b
a +
∫ b

a

[
p
(

dy
dx

)2
− qy2

]
dx∫ b

a y2σ dx
(5.95)

and this minimum is obtained when y(x) = φ1(x). This result can
be used to get estimates of the minimum eigenvalue by using trial
functions which are continuous and satisfy the boundary conditions,
but do not necessarily satisfy the differential equation.

Example 5.15. We have already solved the eigenvalue problem φ′′+λφ = 0,
φ(0) = 0, φ(1) = 0. In this case, the lowest eigenvalue is λ1 = π2. We can
pick a nice function satisfying the boundary conditions, say y(x) = x− x2.
Inserting this into Equation (5.95), we find

λ1 ≤
∫ 1

0 (1− 2x)2 dx∫ 1
0 (x− x2)2 dx

= 10.

Indeed, 10 ≥ π2.

5.6.7 The Eigenfunction Expansion Method - optional

In this section we show how one can solve the nonhomogeneous
problem Ly = f using expansions over the basis of Sturm-Liouville
eigenfunctions. In this chapter we have seen that Sturm-Liouville
eigenvalue problems have the requisite set of orthogonal eigenfunc-
tions. In this section we will apply the eigenfunction expansion method
to solve a particular nonhomogenous boundary value problem.

Recall that one starts with a nonhomogeneous differential equation

Ly = f ,

where y(x) is to satisfy given homogeneous boundary conditions. The
method makes use of the eigenfunctions satisfying the eigenvalue prob-
lem

Lφn = −λnσφn

subject to the given boundary conditions. Then, one assumes that y(x)
can be written as an expansion in the eigenfunctions,

y(x) =
∞

∑
n=1

cnφn(x),

and inserts the expansion into the nonhomogeneous equation. This
gives

f (x) = L
(

∞

∑
n=1

cnφn(x)

)
= −

∞

∑
n=1

cnλnσ(x)φn(x).
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The expansion coefficients are then found by making use of the or-
thogonality of the eigenfunctions. Namely, we multiply the last equa-
tion by φm(x) and integrate. We obtain

∫ b

a
f (x)φm(x) dx = −

∞

∑
n=1

cnλn

∫ b

a
φn(x)φm(x)σ(x) dx.

Orthogonality yields

∫ b

a
f (x)φm(x) dx = −cmλm

∫ b

a
φ2

m(x)σ(x) dx.

Solving for cm, we have

cm = −
∫ b

a f (x)φm(x) dx

λm
∫ b

a φ2
m(x)σ(x) dx

.

Example 5.16. As an example, we consider the solution of the boundary
value problem

(xy′)′ +
y
x
=

1
x

, x ∈ [1, e], (5.96)

y(1) = 0 = y(e). (5.97)

This equation is already in self-adjoint form. So, we know that the associ-
ated Sturm-Liouville eigenvalue problem has an orthogonal set of eigenfunc-
tions. We first determine this set. Namely, we need to solve

(xφ′)′ +
φ

x
= −λσφ, φ(1) = 0 = φ(e). (5.98)

Rearranging the terms and multiplying by x, we have that

x2φ′′ + xφ′ + (1 + λσx)φ = 0.

This is almost an equation of Cauchy-Euler type. Picking the weight function
σ(x) = 1

x , we have

x2φ′′ + xφ′ + (1 + λ)φ = 0.

This is easily solved. The characteristic equation is

r2 + (1 + λ) = 0.

One obtains nontrivial solutions of the eigenvalue problem satisfying the
boundary conditions when λ > −1. The solutions are

φn(x) = A sin(nπ ln x), n = 1, 2, . . . .

where λn = n2π2 − 1.
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It is often useful to normalize the eigenfunctions. This means that one
chooses A so that the norm of each eigenfunction is one. Thus, we have

1 =
∫ e

1
φn(x)2σ(x) dx

= A2
∫ e

1
sin(nπ ln x)

1
x

dx

= A2
∫ 1

0
sin(nπy) dy =

1
2

A2. (5.99)

Thus, A =
√

2.
We now turn towards solving the nonhomogeneous problem, Ly = 1

x . We
first expand the unknown solution in terms of the eigenfunctions,

y(x) =
∞

∑
n=1

cn
√

2 sin(nπ ln x).

Inserting this solution into the differential equation, we have

1
x
= Ly = −

∞

∑
n=1

cnλn
√

2 sin(nπ ln x)
1
x

.
Figure 5.11: Plots of the first five eigen-
functions, y(x) =

√
2 sin(nπ ln x).

Next, we make use of orthogonality. Multiplying both sides by φm(x) =√
2 sin(mπ ln x) and integrating, gives

λmcm =
∫ e

1

√
2 sin(mπ ln x)

1
x

dx =

√
2

mπ
[(−1)m − 1].

Solving for cm, we have

cm =

√
2

mπ

[(−1)m − 1]
m2π2 − 1

.

Finally, we insert our coefficients into the expansion for y(x). The solution
is then

y(x) =
∞

∑
n=1

2
nπ

[(−1)n − 1]
n2π2 − 1

sin(nπ ln(x)).

Figure 5.12: Plot of the solution in Exam-
ple 5.16.

5.7 Appendix: The Least Squares Approximation

In the first section of this chapter we showed that we can expand
functions over an infinite set of basis functions as

f (x) =
∞

∑
n=1

cnφn(x)

and that the generalized Fourier coefficients are given by

cn =
< φn, f >

< φn, φn >
.
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In this section we turn to a discussion of approximating f (x) by the
partial sums ∑N

n=1 cnφn(x) and showing that the Fourier coefficients
are the best coefficients minimizing the deviation of the partial sum
from f (x). This will lead us to a discussion of the convergence of
Fourier series.

More specifically, we set the following goal:

Goal

To find the best approximation of f (x) on [a, b] by SN(x) =
N
∑

n=1
cnφn(x) for a set of fixed functions φn(x); i.e., to find the cn’s

such that SN(x) approximates f (x) in the least squares sense.

We want to measure the deviation of the finite sum from the given
function. Essentially, we want to look at the error made in the approx-
imation. This is done by introducing the mean square deviation:

EN =
∫ b

a
[ f (x)− SN(x)]2ρ(x) dx,

where we have introduced the weight function ρ(x) > 0. It gives us a
sense as to how close the Nth partial sum is to f (x).

We want to minimize this deviation by choosing the right cn’s. We
begin by inserting the partial sums and expand the square in the inte-
grand:

EN =
∫ b

a
[ f (x)− SN(x)]2ρ(x) dx

=
∫ b

a

[
f (x)−

N

∑
n=1

cnφn(x)

]2

ρ(x) dx

=

b∫
a

f 2(x)ρ(x) dx− 2
b∫

a

f (x)
N

∑
n=1

cnφn(x)ρ(x) dx

+

b∫
a

N

∑
n=1

cnφn(x)
N

∑
m=1

cmφm(x)ρ(x) dx (5.100)

Looking at the three resulting integrals, we see that the first term is
just the inner product of f with itself. The other integrations can be
rewritten after interchanging the order of integration and summation.
The double sum can be reduced to a single sum using the orthogonal-
ity of the φn’s. Thus, we have

EN = < f , f > −2
N

∑
n=1

cn < f , φn > +
N

∑
n=1

N

∑
m=1

cncm < φn, φm >

= < f , f > −2
N

∑
n=1

cn < f , φn > +
N

∑
n=1

c2
n < φn, φn > . (5.101)
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We are interested in finding the coefficients, so we will complete the
square in cn. Focusing on the last two terms, we have

EN− < f , f > = −2
N

∑
n=1

cn < f , φn > +
N

∑
n=1

c2
n < φn, φn >

=
N

∑
n=1

< φn, φn > c2
n − 2 < f , φn > cn

=
N

∑
n=1

< φn, φn >

[
c2

n −
2 < f , φn >

< φn, φn >
cn

]

=
N

∑
n=1

< φn, φn >

[(
cn −

< f , φn >

< φn, φn >

)2
−
(

< f , φn >

< φn, φn >

)2
]

.

(5.102)

To this point we have shown that the mean square deviation is given
as

EN =< f , f > +
N

∑
n=1

< φn, φn >

[(
cn −

< f , φn >

< φn, φn >

)2
−
(

< f , φn >

< φn, φn >

)2
]

.

So, EN is minimized by choosing cn = < f ,φn>
<φn ,φn>

. However, these are the
Fourier Coefficients. This minimization is often referred to as Mini-
mization in Least Squares Sense.

Inserting the Fourier coefficients into the mean square deviation
yields

0 ≤ EN =< f , f > −
N

∑
n=1

c2
n < φn, φn > .

Thus, we obtain Bessel’s Inequality:

< f , f >≥
N

∑
n=1

c2
n < φn, φn > .

For convergence, we next let N get large and see if the partial sums
converge to the function. In particular, we say that the infinite series
converges in the mean if∫ b

a
[ f (x)− SN(x)]2ρ(x) dx → 0 as N → ∞.

Letting N get large in Bessel’s inequality shows that ∑N
n=1 c2

n <

φn, φn > converges if

(< f , f >=
∫ b

a
f 2(x)ρ(x) dx < ∞.

The space of all such f is denoted L2
ρ(a, b), the space of square inte-

grable functions on (a, b) with weight ρ(x).
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From the nth term divergence theorem we know that ∑ an converges
implies that an → 0 as n → ∞. Therefore, in this problem the terms
c2

n < φn, φn > approach zero as n gets large. This is only possible if the
cn’s go to zero as n gets large. Thus, if ∑N

n=1 cnφn converges in the mean
to f , then

∫ b
a [ f (x) − ∑N

n=1 cnφn]2ρ(x) dx approaches zero as N → ∞.
This implies from the above derivation of Bessel’s inequality that

< f , f > −
N

∑
n=1

c2
n(φn, φn)→ 0.

This leads to Parseval’s equality:

< f , f >=
∞

∑
n=1

c2
n < φn, φn > .

Parseval’s equality holds if and only if

lim
N→∞

b∫
a

( f (x)−
N

∑
n=1

cnφn(x))2ρ(x) dx = 0.

If this is true for every square integrable function in L2
ρ(a, b), then the

set of functions {φn(x)}∞
n=1 is said to be complete. One can view

these functions as an infinite dimensional basis for the space of square
integrable functions on (a, b) with weight ρ(x) > 0.

One can extend the above limit cn → 0 as n→ ∞, by assuming that

φn(x)
‖φn‖ is uniformly bounded and that

b∫
a
| f (x)|ρ(x) dx < ∞. This is the

Riemann-Lebesque Lemma, but will not be proven now.

5.8 Appendix: The Fredholm Alternative Theorem

Given that Ly = f , when can one expect to find a solution? Is it
unique? These questions are answered by the Fredholm Alternative
Theorem. This theorem occurs in many forms from a statement about
solutions to systems of algebraic equations to solutions of boundary
value problems and integral equations. The theorem comes in two
parts, thus the term “alternative”. Either the equation has exactly one
solution for all f , or the equation has many solutions for some f ’s and
none for the rest.

The reader is familiar with the statements of the Fredholm Alter-
native for the solution of systems of algebraic equations. One seeks
solutions of the system Ax = b for A an n× m matrix. Defining the
matrix adjoint, A∗ through < Ax, y >=< x, A∗y > for all x, y,∈ Cn,
then either
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Theorem 5.5. First Alternative
The equation Ax = b has a solution if and only if < b, v >= 0 for all v

such that A∗v = 0.

or

Theorem 5.6. Second Alternative
A solution of Ax = b, if it exists, is unique if and only if x = 0 is the only

solution of Ax = 0.

The second alternative is more familiar when given in the form: The
solution of a nonhomogeneous system of n equations and n unknowns
is unique if the only solution to the homogeneous problem is the zero
solution. Or, equivalently, A is invertible, or has nonzero determinant.

Proof. We prove the second theorem first. Assume that Ax = 0 for
x 6= 0 and Ax0 = b. Then A(x0 + αx) = b for all α. Therefore, the
solution is not unique. Conversely, if there are two different solutions,
x1 and x2, satisfying Ax1 = b and Ax2 = b, then one has a nonzero
solution x = x1 − x2 such that Ax = A(x1 − x2) = 0.

The proof of the first part of the first theorem is simple. Let A∗v = 0
and Ax0 = b. Then we have

< b, v >=< Ax0, v >=< x0, A∗v >= 0.

For the second part we assume that < b, v >= 0 for all v such that
A∗v = 0. Write b as the sum of a part that is in the range of A and a
part that in the space orthogonal to the range of A, b = bR + bO. Then,
0 =< bO, Ax >=< A∗b, x > for all x. Thus, A∗bO. Since < b, v >= 0
for all v in the nullspace of A∗, then < b, bO >= 0.

Therefore, < b, v >= 0 implies that

0 =< b, bO >=< bR + bO, bO >=< bO, bO > .

This means that bO = 0, giving b = bR is in the range of A. So, Ax = b
has a solution.

Example 5.17. Determine the allowed forms of b for a solution of Ax = b
to exist, where

A =

(
1 2
3 6

)
.

First note that A∗ = AT . This is seen by looking at

< Ax, y > = < x, A∗y >
n

∑
i=1

n

∑
j=1

aijxjȳi =
n

∑
j=1

xj

n

∑
j=1

aijȳi

=
n

∑
j=1

xj

n

∑
j=1

(āT)ji yi. (5.103)
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For this example,

A∗ =

(
1 3
2 6

)
.

We next solve A∗v = 0. This means, v1 + 3v2 = 0. So, the nullspace of A∗

is spanned by v = (3,−1)T . For a solution of Ax = b to exist, b would have
to be orthogonal to v. Therefore, a solution exists when

b = α

(
1
3

)
.

So, what does this say about solutions of boundary value problems?
We need a more general theory for linear operators. A more general
statement would be

Theorem 5.7. If L is a bounded linear operator on a Hilbert space, then
Ly = f has a solution if and only if < f , v >= 0 for every v such that
L†v = 0.

The statement for boundary value problems is similar. However, we
need to be careful to treat the boundary conditions in our statement.
As we have seen, after several integrations by parts we have that

< Lu, v >= S(u, v)+ < u,L†v >,

where S(u, v) involves the boundary conditions on u and v. Note that
for nonhomogeneous boundary conditions, this term may no longer
vanish.

Theorem 5.8. The solution of the boundary value problem Lu = f with
boundary conditions Bu = g exists if and only if

< f , v > −S(u, v) = 0

for all v satisfying L†v = 0 and B†v = 0.

Example 5.18. Consider the problem

u′′ + u = f (x), u(0)− u(2π) = α, u′(0)− u′(2π) = β.

Only certain values of α and β will lead to solutions. We first note that

L = L† =
d2

dx2 + 1.

Solutions of

L†v = 0, v(0)− v(2π) = 0, v′(0)− v′(2π) = 0

are easily found to be linear combinations of v = sin x and v = cos x.
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Next one computes

S(u, v) =
[
u′v− uv′

]2π
0

= u′(2π)v(2π)− u(2π)v′(2π)− u′(0)v(0) + u(0)v′(0).

(5.104)

For v(x) = sin x, this yields

S(u, sin x) = −u(2π) + u(0) = α.

Similarly,
S(u, cos x) = β.

Using < f , v > −S(u, v) = 0, this leads to the conditions that we were
seeking, ∫ 2π

0
f (x) sin x dx = α,

∫ 2π

0
f (x) cos x dx = β.

Problems

1. Consider the set of vectors (−1, 1, 1), (1,−1, 1), (1, 1,−1).

a. Use the Gram-Schmidt process to find an orthonormal basis
for R3 using this set in the given order.

b. What do you get if you do reverse the order of these vectors?

2. Use the Gram-Schmidt process to find the first four orthogonal
polynomials satisfying the following:

a. Interval: (−∞, ∞) Weight Function: e−x2
.

b. Interval: (0, ∞) Weight Function: e−x.

3. Find P4(x) using

a. The Rodrigues Formula in Equation (5.21).

b. The three term recursion formula in Equation (5.23).

4. In Equations (5.36)-(5.43) we provide several identities for Legendre
polynomials. Derive the results in Equations (5.37)-(5.43) as decribed
in the text. Namely,

a. Differentiating Equation (5.36) with respect to x, derive Equa-
tion (5.37).

b. Derive Equation (5.38) by differentiating g(x, t) with respect
to x and rearranging the resulting infinite series.
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c. Combining the last result with Equation (5.36), derive Equa-
tions (5.39)-(5.40).

d. Adding and subtracting Equations (5.39)-(5.40), obtain Equa-
tions (5.41)-(5.42).

e. Derive Equation (5.43) using some of the other identities.

5. Use the recursion relation (5.23) to evaluate
∫ 1
−1 xPn(x)Pm(x) dx,

n ≤ m.

6. Expand the following in a Fourier-Legendre series for x ∈ (−1, 1).

a. f (x) = x2.

b. f (x) = 5x4 + 2x3 − x + 3.

c. f (x) =

{
−1, −1 < x < 0,
1, 0 < x < 1.

d. f (x) =

{
x, −1 < x < 0,
0, 0 < x < 1.

7. Use integration by parts to show Γ(x + 1) = xΓ(x).

8. Prove the double factorial identities:

(2n)!! = 2nn!

and

(2n− 1)!! =
(2n)!
2nn!

.

9. Express the following as Gamma functions. Namely, noting the
form Γ(x + 1) =

∫ ∞
0 txe−t dt and using an appropriate substitution,

each expression can be written in terms of a Gamma function.

a.
∫ ∞

0 x2/3e−x dx.

b.
∫ ∞

0 x5e−x2
dx

c.
∫ 1

0

[
ln
(

1
x

)]n
dx

10. The coefficients Cp
k in the binomial expansion for (1 + x)p are

given by

Cp
k =

p(p− 1) · · · (p− k + 1)
k!

.

a. Write Cp
k in terms of Gamma functions.

b. For p = 1/2 use the properties of Gamma functions to write
C1/2

k in terms of factorials.

c. Confirm you answer in part b by deriving the Maclaurin se-
ries expansion of (1 + x)1/2.
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11. The Hermite polynomials, Hn(x), satisfy the following:

i. < Hn, Hm >=
∫ ∞
−∞ e−x2

Hn(x)Hm(x) dx =
√

π2nn!δn,m.

ii. H′n(x) = 2nHn−1(x).

iii. Hn+1(x) = 2xHn(x)− 2nHn−1(x).

iv. Hn(x) = (−1)nex2 dn

dxn

(
e−x2

)
.

Using these, show that

a. H′′n − 2xH′n + 2nHn = 0. [Use properties ii. and iii.]

b.
∫ ∞
−∞ xe−x2

Hn(x)Hm(x) dx =
√

π2n−1n! [δm,n−1 + 2(n + 1)δm,n+1] .
[Use properties i. and iii.]

c. Hn(0) =

{
0, n odd,

(−1)m (2m)!
m! , n = 2m.

[Let x = 0 in iii. and

iterate. Note from iv. that H0(x) = 1 and H1(x) = 2x. ]

12. In Maple one can type simplify(LegendreP(2*n-2,0)-LegendreP(2*n,0));
to find a value for P2n−2(0) − P2n(0). It gives the result in terms of
Gamma functions. However, in Example 5.8 for Fourier-Legendre se-
ries, the value is given in terms of double factorials! So, we have

P2n−2(0)− P2n(0) =
√

π(4n− 1)
2Γ(n + 1)Γ

( 3
2 − n

) = (−1)n (2n− 3)!!
(2n− 2)!!

4n− 1
2n

.

You will verify that both results are the same by doing the following:

a. Prove that P2n(0) = (−1)n (2n−1)!!
(2n)!! using the generating func-

tion and a binomial expansion.

b. Prove that Γ
(

n + 1
2

)
= (2n−1)!!

2n
√

π using Γ(x) = (x− 1)Γ(x−
1) and iteration.

c. Verify the result from Maple that P2n−2(0)− P2n(0) =
√

π(4n−1)
2Γ(n+1)Γ( 3

2−n)
.

d. Can either expression for P2n−2(0)− P2n(0) be simplified fur-
ther?

13. A solution Bessel’s equation, x2y′′ + xy′ + (x2 − n2)y = 0, , can be
found using the guess y(x) = ∑∞

j=0 ajxj+n. One obtains the recurrence
relation aj =

−1
j(2n+j) aj−2. Show that for a0 = (n!2n)−1 we get the Bessel

function of the first kind of order n from the even values j = 2k:

Jn(x) =
∞

∑
k=0

(−1)k

k!(n + k)!

( x
2

)n+2k
.

14. Use the infinite series in the last problem to derive the derivative
identities (5.71) and (5.61):

a. d
dx [x

n Jn(x)] = xn Jn−1(x).
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b. d
dx [x

−n Jn(x)] = −x−n Jn+1(x).

15. Prove the following identities based on those in the last problem.

a. Jp−1(x) + Jp+1(x) = 2p
x Jp(x).

b. Jp−1(x)− Jp+1(x) = 2J′p(x).

16. Use the derivative identities of Bessel functions,(5.71)-(5.61), and
integration by parts to show that∫

x3 J0(x) dx = x3 J1(x)− 2x2 J2(x) + C.

17. Use the generating function to find Jn(0) and J′n(0).

18. Bessel functions Jp(λx) are solutions of x2y′′+ xy′+(λ2x2− p2)y =

0. Assume that x ∈ (0, 1) and that Jp(λ) = 0 and Jp(0) is finite.

a. Show that this equation can be written in the form

d
dx

(
x

dy
dx

)
+ (λ2x− p2

x
)y = 0.

This is the standard Sturm-Liouville form for Bessel’s equa-
tion.

b. Prove that ∫ 1

0
xJp(λx)Jp(µx) dx = 0, λ 6= µ

by considering∫ 1

0

[
Jp(µx)

d
dx

(
x

d
dx

Jp(λx)
)
− Jp(λx)

d
dx

(
x

d
dx

Jp(µx)
)]

dx.

Thus, the solutions corresponding to different eigenvalues (λ,
µ) are orthogonal.

c. Prove that∫ 1

0
x
[

Jp(λx)
]2 dx =

1
2

J2
p+1(λ) =

1
2

J′2p (λ).

19. We can rewrite Bessel functions, Jν(x), in a form which will allow
the order to be non-integer by using the gamma function. You will

need the results from Problem 12b for Γ
(

k + 1
2

)
.

a. Extend the series definition of the Bessel function of the first
kind of order ν, Jν(x), for ν ≥ 0 by writing the series solution
for y(x) in Problem 13 using the gamma function.

b. Extend the series to J−ν(x), for ν ≥ 0. Discuss the resulting
series and what happens when ν is a positive integer.
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c. Use these results to obtain the closed form expressions

J1/2(x) =

√
2

πx
sin x,

J−1/2(x) =

√
2

πx
cos x.

d. Use the results in part c with the recursion formula for Bessel
functions to obtain a closed form for J3/2(x).

20. In this problem you will derive the expansion

x2 =
c2

2
+ 4

∞

∑
j=2

J0(αjx)
α2

j J0(αjc)
, 0 < x < c,

where the α′js are the positive roots of J1(αc) = 0, by following the
below steps.

a. List the first five values of α for J1(αc) = 0 using the Table
5.3 and Figure 5.8. [Note: Be careful determining α1.]

b. Show that ‖J0(α1x)‖2 = c2

2 . Recall,

‖J0(αjx)‖2 =
∫ c

0
xJ2

0 (αjx) dx.

c. Show that ‖J0(αjx)‖2 = c2

2
[

J0(αjc)
]2 , j = 2, 3, . . . . (This is the

most involved step.) First note from Problem 18 that y(x) =
J0(αjx) is a solution of

x2y′′ + xy′ + α2
j x2y = 0.

i. Verify the Sturm-Liouville form of this differential equa-
tion: (xy′)′ = −α2

j xy.

ii. Multiply the equation in part i. by y(x) and integrate from
x = 0 to x = c to obtain∫ c

0
(xy′)′y dx = −α2

j

∫ c

0
xy2 dx

= −α2
j

∫ c

0
xJ2

0 (αjx) dx. (5.105)

iii. Noting that y(x) = J0(αjx), integrate the left hand side
by parts and use the following to simplify the resulting
equation.

1. J′0(x) = −J1(x) from Equation (5.61).

2. Equation (5.64).

3. J2(αjc) + J0(αjc) = 0 from Equation (5.62).

iv. Now you should have enough information to complete
this part.
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d. Use the results from parts b and c to derive the expansion
coefficients for

x2 =
∞

∑
j=1

cj J0(αjx)

in order to obtain the desired expansion.

21. Prove the if u(x) and v(x) satisfy the general homogeneous bound-
ary conditions

α1u(a) + β1u′(a) = 0,

α2u(b) + β2u′(b) = 0 (5.106)

at x = a and x = b, then

p(x)[u(x)v′(x)− v(x)u′(x)]x=b
x=a = 0.

22. Prove Green’s Identity
∫ b

a (uLv − vLu) dx = [p(uv′ − vu′)]|ba for
the general Sturm-Liouville operator L.

23. Find the adjoint operator and its domain for Lu = u′′ + 4u′ − 3u,
u′(0) + 4u(0) = 0, u′(1) + 4u(1) = 0.

24. Show that a Sturm-Liouville operator with periodic boundary con-
ditions on [a, b] is self-adjoint if and only if p(a) = p(b). [Recall, peri-
odic boundary conditions are given as u(a) = u(b) and u′(a) = u′(b).]

25. The Hermite differential equation is given by y′′ − 2xy′ + λy = 0.
Rewrite this equation in self-adjoint form. From the Sturm-Liouville
form obtained, verify that the differential operator is self adjoint on
(−∞, ∞). Give the integral form for the orthogonality of the eigen-
functions.

26. Find the eigenvalues and eigenfunctions of the given Sturm-Liouville
problems.

a. y′′ + λy = 0, y′(0) = 0 = y′(π).

b. (xy′)′ + λ
x y = 0, y(1) = y(e2) = 0.

27. The eigenvalue problem x2y′′− λxy′+ λy = 0 with y(1) = y(2) =
0 is not a Sturm-Liouville eigenvalue problem. Show that none of the
eigenvalues are real by solving this eigenvalue problem.

28. In Example 5.15 we found a bound on the lowest eigenvalue for
the given eigenvalue problem.

a. Verify the computation in the example.

b. Apply the method using

y(x) =

{
x, 0 < x < 1

2
1− x, 1

2 < x < 1.

Is this an upper bound on λ1
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c. Use the Rayleigh quotient to obtain a good upper bound for
the lowest eigenvalue of the eigenvalue problem: φ′′ + (λ−
x2)φ = 0, φ(0) = 0, φ′(1) = 0.

29. Use the method of eigenfunction expansions to solve the problem:

y′′ + 4y = x2, y(0) = y(1) = 0.

30. Determine the solvability conditions for the nonhomogeneous
boundary value problem: u′′ + 4u = f (x), u(0) = α, u′(1) = β.





6
Complex Representations of Functions

“He is not a true man of science who does not bring some sympathy to his studies, and expect to learn something
by behavior as well as by application. It is childish to rest in the discovery of mere coincidences, or of partial and
extraneous laws. The study of geometry is a petty and idle exercise of the mind, if it is applied to no larger system than
the starry one. Mathematics should be mixed not only with physics but with ethics; that is mixed mathematics. The
fact which interests us most is the life of the naturalist. The purest science is still biographical.” Henry David Thoreau
(1817-1862)

6.1 Complex Representations of Waves

We have seen that we can seek the frequency content of a function
f (t) defined on an interval [0, T] by looking for the Fourier coefficients
in the Fourier series expansion

f (t) =
a0

2
+

∞

∑
n=1

an cos
2πnt

T
+ bn sin

2πnt
T

.

The coefficients take forms like

an =
2
T

∫ T

0
f (t) cos

2πnt
T

dt.

However, trigonometric functions can be written in a complex ex-
ponential form. This is based on Euler’s formula (or, Euler’s identity):1

1 Euler’s formula can be obtained using
the Maclaurin expansion of ex :

ex =
∞

∑
n=0

xn

n!
= 1+ x+

1
2!

x2 + · · ·+ xn

n!
+ · · · .

We formally set x = iθ Then,

eiθ =
∞

∑
n=0

(iθ)n

n!

= 1 + iθ +
(iθ)2

2!
+

(iθ)3

3!
+

(iθ)4

4!
+ · · ·

= 1 + iθ − (θ)2

2!
− i

(θ)3

3!
+

(θ)4

4!
+ · · ·

=

(
1− (θ)2

2!
+

(θ)4

4!
+ · · ·

)
+i
(

iθ − (θ)3

3!
+

(θ)5

5!
+ · · ·

)
= cos θ + i sin θ. (6.1)

eiθ = cos θ + i sin θ.

The complex conjugate is found by replacing i with −i to obtain

e−iθ = cos θ − i sin θ.

Adding these expressions, we have

2 cos θ = eiθ + e−iθ .

Subtracting the exponentials leads to an expression for the sine func-
tion. Thus, we have the important result that sines and cosines can be
written as complex exponentials:
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cos θ =
eiθ + e−iθ

2
,

sin θ =
eiθ − e−iθ

2i
. (6.2)

So, we can write

cos
2πnt

T
=

1
2
(e

2πint
T + e−

2πint
T ).

Later we will see that we can use this information to rewrite our series
as a sum over complex exponentials in the form

f (t) =
∞

∑
n=−∞

cne
2πint

T

where the Fourier coefficients now take the form

cn =
∫ T

0
f (t)e−

2πint
T .

In fact, in order to connect our analysis to ideal signals over an infinite
interval and containing a continuum of frequencies, we will see the
above sum become an integral and we will naturally find ourselves
needing to work with functions of complex variables and perform
complex integrals.

We can extend these ideas to develop a complex representation for
waves. Recall from our discussion in Section 4.11 on finite length
strings the solution

u(x, t) =
1
2

[
∞

∑
n=1

An sin kn(x + ct) +
∞

∑
n=1

An sin kn(x− ct)

]
. (6.3)

We can replace the sines with their complex forms as

u(x, t) =
1
4i

[
∞

∑
n=1

An

(
eikn(x+ct) − e−ikn(x+ct)

)
+

∞

∑
n=1

An

(
eikn(x−ct) − e−ikn(x−ct)

)]
. (6.4)

Now, defining k−n = −kn, we can rewrite this solution in the form

u(x, t) =
∞

∑
n=−∞

[
cneikn(x+ct) + dneikn(x−ct)

]
. (6.5)

Such representations are also possible for waves propagating over
the entire real line. In such cases we are not restricted to discrete
frequencies and wave numbers. The sum of the harmonics will then
be a sum over a continuous range, which means that our sums become
integrals. So, we are then lead to the complex representation
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u(x, t) =
∫ ∞

−∞

[
c(k)eik(x+ct) + d(k)eik(x−ct)

]
dk. (6.6)

The forms eik(x+ct) and eik(x−ct) are complex representations of what
are called plane waves in one dimension. The integral represents a
general wave form consisting of a sum over plane waves, typically
representing wave packets. The Fourier coefficients in the representa-
tion can be complex valued functions and the evaluation of the integral
may be done using methods from complex analysis. We would like to
be able to compute such integrals.

With the above ideas in mind, we will now take a tour of complex
analysis. We will first review some facts about complex numbers and
then introduce complex functions. This will lead us to the calculus of
functions of a complex variable, including differentiation and complex
integration.

6.2 Complex Numbers

Complex numbers were first introduced in order to solve some
simple problems. The history of complex numbers only extends about
five hundred years. In essence, it was found that we need to find the
roots of equations such as x2 + 1 = 0. The solution is x = ±

√
−1.

Due to the usefulness of this concept, which was not realized at first,
a special symbol was introduced - the imaginary unit, i =

√
−1. In

particular, Girolamo Cardano (1501− 1576) was one of the first to use
square roots of negative numbers when providing solutions of cubic
equations. However, complex numbers did not become an important
part of mathematics or science until the late seventh and eighteenth
centuries after people like de Moivre, the Bernoulli2 family and Euler

2 The Bernoulli’s were a family of Swiss
mathematicians spanning three gener-
ations. It all started with Jakob
Bernoulli (1654-1705) and his brother
Johann Bernoulli (1667-1748). Jakob
had a son, Nikolaus Bernoulli (1687-
1759) and Johann (1667-1748) had three
sons, Nikolaus Bernoulli II (1695-1726),
Daniel Bernoulli (1700-1872), and Johann
Bernoulli II (1710-1790). The last gener-
ation consisted of Johann II’s sons, Jo-
hann Bernoulli III (1747-1807) and Jakob
Bernoulli II (1759-1789). Johann, Jakob
and Daniel Bernoulli were the most fa-
mous of the Bernoulli’s. Jakob stud-
ied with Leibniz, Johann studied under
his older brother and later taught Leon-
hard Euler and Daniel Bernoulli, who is
known for his work in hydrodynamics.

took them seriously.
A complex number is a number of the form z = x + iy, where x and

y are real numbers. x is called the real part of z and y is the imaginary
part of z. Examples of such numbers are 3 + 3i, −1i = −i, 4i and 5.
Note that 5 = 5 + 0i and 4i = 0 + 4i.

There is a geometric representation of complex numbers in a two
dimensional plane, known as the complex plane C. This is given by
the Argand diagram as shown in Figure 6.1. Here we can think of the
complex number z = x + iy as a point (x, y) in the z-complex plane
or as a vector. The magnitude, or length, of this vector is called the
complex modulus of z, denoted by |z| =

√
x2 + y2.

Figure 6.1: The Argand diagram for plot-
ting complex numbers in the complex z-
plane.

We can also use the geometric picture to develop a polar represen-
tation of complex numbers. From Figure 6.1 we can see that in terms
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of r and θ we have that

x = r cos θ,

y = r sin θ. (6.7)

Thus, Complex numbers can be represented in
rectangular (Cartesian), z = x + iy, or
polar form, z = reiθ . Her we define the
argument, θ, and modulus, |z| = r of
complex numbers.

z = x + iy = r(cos θ + i sin θ) = reiθ . (6.8)

So, given r and θ we have z = reiθ . However, given the Cartesian
form, z = x + iy, we can also determine the polar form, since

r =
√

x2 + y2,

tan θ =
y
x

. (6.9)

Note that r = |z|.
Locating 1 + i in the complex plane, it is possible to immediately

determine the polar form from the angle and length of the "complex
vector". This is shown in Figure 6.2. It is obvious that θ = π

4 and
r =
√

2.

Figure 6.2: Locating 1 + i in the complex
z-plane.

Example 6.1. Write 1+ i in polar form.If one did not see the polar form from
the plot in the z-plane, then one could systematically determine the results.
First, write +1 + i in polar form: 1 + i = reiθ for some r and θ. Using the
above relations, we have r =

√
x2 + y2 =

√
2 and tan θ = y

x = 1. This
gives θ = π

4 . So, we have found that

1 + i =
√

2eiπ/4.

We can also use define binary operations of addition, subtraction,
multiplication and division of complex numbers to produce a new
complex number. The addition of two complex numbers is simply We can easily add, subtract, multiply

and divide complex numbers.done by adding the real parts and the imaginary parts of each number.
So,

(3 + 2i) + (1− i) = 4 + i.

Subtraction is just as easy,

(3 + 2i)− (1− i) = 2 + 3i.

We can multiply two complex numbers just like we multiply any bi-
nomials, though we now can use the fact that i2 = −1. For example,
we have

(3 + 2i)(1− i) = 3 + 2i− 3i + 2i(−i) = 5− i.

We can even divide one complex number into another one and get
a complex number as the quotient. Before we do this, we need to
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introduce the complex conjugate, z̄, of a complex number. The complex
conjugate of z = x + iy, where x and y are real numbers, is given as

z = x− iy.

The complex conjugate of z = x + iy, is
given as

z = x− iy.
Complex conjugates satisfy the following relations for complex num-

bers z and w and real number x.

z + w = z + w

zw = zw

z = z

x = x. (6.10)

One consequence is that the complex conjugate of reiθ is

reiθ = cos θ + i sin θ = cos θ − i sin θ = re−iθ .

Another consequence is that

zz = reiθre−iθ = r2.

Thus, the product of a complex number with its complex conjugate is
a real number. We can also prove this result using the Cartesian form

zz = (x + iy)(x− iy) = x2 + y2 = |z|2.

Now we are in a position to write the quotient of two complex
numbers in the standard form of a real plus an imaginary number.
As an example, we want to divide 3 + 2i by 1− i. This is accomplished
by multiplying the numerator and denominator of this expression by
the complex conjugate of the denominator:

3 + 2i
1− i

=
3 + 2i
1− i

1 + i
1 + i

=
1 + 5i

2
.

Therefore, the quotient is a complex number, 1
2 + 5

2 i.
We can also consider powers of complex numbers. For example,

(1 + i)2 = 2i,

(1 + i)3 = (1 + i)(2i) = 2i− 2.

But, what is (1 + i)1/2 =
√

1 + i?
In general, we want to find the nth root of a complex number. Let

t = z1/n. To find t in this case is the same as asking for the solution of

z = tn
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given z. But, this is the root of an nth degree equation, for which we
expect n roots. If we write z in polar form, z = reiθ , then we would
naively compute

z1/n =
(

reiθ
)1/n

= r1/neiθ/n

= r1/n
[

cos
θ

n
+ i sin

θ

n

]
. (6.11)

For example,

(1 + i)1/2 =
(√

2eiπ/4
)1/2

= 21/4eiπ/8.

But this is only one solution. We expected two solutions for n = 2.. The function f (z) = z1/n is multivalued.
z1/n = r1/nei(θ+2kπ)/n, k = 0, 1, . . . , n− 1.The reason we only found one solution is that the polar representa-

tion for z is not unique. We note that

e2kπi = 1, k = 0,±1,±2, . . . .

So, we can rewrite z as z = reiθe2kπi = rei(θ+2kπ). Now, we have that

z1/n = r1/nei(θ+2kπ)/n.

Note that there are only different values for k = 0, 1, . . . , n − 1. Con-
sider k = n. Then one finds that

ei(θ+2πin)/n = eiθ/ne2πi = eiθ/n.

So, we have recovered the n = 0 value. Similar results can be shown
for other k values larger than n.

Now, we can finish the example.

(1 + i)1/2 =
(√

2eiπ/4e2kπi
)1/2

, k = 0, 1,

= 21/4ei(π/8+kπ), k = 0, 1,

= 21/4eiπ/8, 21/4e9πi/8. (6.12)

Finally, what is n
√

1? Our first guess would be n
√

1 = 1. But, we now
know that there should be n roots. These roots are called the nth roots
of unity. Using the above result with r = 1 and θ = 0, we have that The nth roots of unity, n√1.

n√1 =

[
cos

2πk
n

+ i sin
2πk

n

]
, k = 0, . . . , n− 1.

For example, we have

3√1 =

[
cos

2πk
3

+ i sin
2πk

3

]
, k = 0, 1, 2.
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These three roots can be written out as

Figure 6.3: Locating the cube roots of
unity in the complex z-plane.

3√1 = 1,−1
2
+

√
3

2
i,−1

2
−
√

3
2

i.

We can locate these cube roots of unity in the complex plane. In
Figure 6.3 we see that these points lie on the unit circle and are at the
vertices of an equilateral triangle. In fact, all nth roots of unity lie on
the unit circle and are the vertices of a regular n-gon with one vertex
at z = 1.

6.3 Complex Valued Functions

We would like to next explore complex functions and the calculus of
complex functions. We begin by defining a function that takes complex
numbers into complex numbers, f : C → C. It is difficult to visualize
such functions. For real functions of one variable, f : R→ R. We graph
these functions by first drawing two intersecting copies of R and then
proceeding to map the domain into the range of f .

It would be more difficult to do this for complex functions. Imag-
ine placing together two orthogonal copies of C. One would need a
four dimensional space in order to complete the visualization. Instead,
typically uses two copies of the complex plane side by side in order
to indicate how such functions behave. We will assume that the do-
main lies in the z-plane and the image lies in the w-plane and write
w = f (z). We show these planes in Figure 6.4.

Figure 6.4: Defining a complex valued
function, w = f (z), on C for z = x + iy
and w = u + iv.

Letting z = x + iy and w = u + iv, we can write the real and imagi-
nary parts of f (z) :

w = f (z) = f (x + iy) = u(x, y) + iv(x, y).

We see that one can view this function as a function of z or a function
of x and y. Often, we have an interest in writing out the real and
imaginary parts of the function, which are functions of two variables.
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0

2

4 Figure 6.5: 2D plot showing how the
function f (z) = z2 maps a grid in the
z-plane into the w-plane.

Example 6.2. f (z) = z2.
For example, we can look at the simple function f (z) = z2. It is a simple

matter to determine the real and imaginary parts of this function. Namely,
we have

z2 = (x + iy)2 = x2 − y2 + 2ixy.

Therefore, we have that

u(x, y) = x2 − y2, v(x, y) = 2xy.

In Figure 6.5 we show how a grid in the z-plane is mapped by f (z) = z2

into the w-plane. For example, the horizontal line x = 1 is mapped to
u(1, y) = 1− y2 and v(1, y) = 2y. Eliminating the “parameter” y between
these two equations, we have u = 1− v2/4. This is a parabolic curve. Simi-
larly, the horizontal line y = 1 results in the curve u = v2/4− 1.

If we look at several curves, x =const and y =const, then we get a family
of intersecting parabolae, as shown in Figure 6.5.

Example 6.3. f (z) = ez.
For this case, we make use of Euler’s Formula.

f (z) = ez

= ex+iy

= exeiy

= ex(cos y + i sin y).

(6.13)

Thus, u(x, y) = ex cos y and v(x, y) = ex sin y. In Figure 6.6 we show
how a grid in the z-plane is mapped by f (z) = ez into the w-plane.

Example 6.4. f (z) = ln z.
In this case we make use of the polar form, z = reiθ . Our first thought

would be to simply compute

ln z = ln r + iθ.

However, the natural logarithm is multivalued, just like the nth root. Recall-
ing that e2πik = 1 for k an integer, we have z = rei(θ+2πk). Therefore,
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4 Figure 6.6: 2D plot showing how the
function f (z) = ez maps a grid in the
z-plane into the w-plane.

ln z = ln r + i(θ + 2πk), k = integer.

The natural logarithm is a multivalued function. In fact there are an infi-
nite number of values for a given z. Of course, this contradicts the definition
of a function that you were first taught.

Figure 6.7: Domain coloring of the com-
plex z-plane assigning colors to arg(z).

Thus, one typically will only report the principal value, Log z = ln r + iθ,
for θ restricted to some interval of length 2π, such as [0, 2π). In order to
account for the multivaluedness, one introduces a way to extend the complex
plane so as to include all of the branches. This is done by assigning a plane
to each branch, using (branch) cuts along lines, and then gluing the planes
together at the branch cuts to form what is called a Riemann surface. We will
not elaborate upon this any further here and refer the interested reader to more
advanced texts. Comparing the multivalued logarithm to the principal value
logarithm, we have

ln z = Log z + 2nπi.

We should not that some books use log z instead of ln z. It should not be
confused with the common logarithm.

Figure 6.8: Domain coloring for f (z) =
z2. The left figure shows the phase col-
oring. The right figure show the colored
surface with height | f (z)|.

Another method for visualizing complex functions is domain color-
ing. The idea was described by Frank Ferris. There are a few ap-
proaches to this method. The main idea is that one colors each point
of the z-plane (the domain) as shown in Figure 6.7. The modulus,
| f (z)| is then plotted as a surface. Examples are shown for f (z) = z2

in Figure 6.8 and f (z) = 1/z(1− z) in Figure 6.9.
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Figure 6.9: Domain coloring for f (z) =
1/z(1 − z). The left figure shows the
phase coloring. The right figure show
the colored surface with height | f (z)|.

We would like to put all of this information in one plot. We can
do this by adjusting the brightness of the colored domain by using the
modulus of the function. In the plots that follow we use the fractional
part of ln |z|. In Figure 6.10 we show the effect for the z-plane using
f (z) = z. In the figures that follow we look at several other functions.
In these plots we have chosen to view the functions in a circular win-
dow.

Figure 6.10: Domain coloring for f (z) =
z showing a coloring for arg(z) and
brightness based on | f (z)|.

One can see the rich behavior hidden in these figures. As you
progress in your reading, especially after the next chapter, you should
return to these figures and locate the zeros, poles, branch points and
branch cuts. A search online will lead you to other colorings and su-
perposition of the uv grid on these figures.

As a final picture, we look at iteration in the complex plane. Con-
sider the function f (z) = z2 − 0.75 − 0.2i. Interesting figures result
when studying the iteration in the complex plane. In Figure 6.13 we
show f (z) and f 20(z), which is the iteration of f twenty times. It leads
to an interesting coloring. What happens when one keeps iterating?
Such iterations lead to the study of Julia and Mandelbrot sets . In
Figure 6.14 we show six iterations of f (z) = (1− i/2) sin x.

Figure 6.11: Domain coloring for f (z) =
z2.

The following code was used in MATLAB to produce these figures.

fn = @(x) (1-i/2)*sin(x);

xmin=-2; xmax=2; ymin=-2; ymax=2;

Nx=500;

Ny=500;

x=linspace(xmin,xmax,Nx);

y=linspace(ymin,ymax,Ny);

[X,Y] = meshgrid(x,y); z = complex(X,Y);

tmp=z; for n=1:6

tmp = fn(tmp);

end Z=tmp;

XX=real(Z);

YY=imag(Z);

R2=max(max(X.^2));

R=max(max(XX.^2+YY.^2));
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Figure 6.12: Domain coloring for sev-
eral functions. On the top row the do-
main coloring is shown for f (z) = z4

and f (z) = sin z. On the second row
plots for f (z) =

√
1 + z and f (z) =

1
z(1/2−z)(z−i)(z−i+1) are shown. In the last
row domain colorings for f (z) = ln z
and f (z) = sin(1/z) are shown.

Figure 6.13: Domain coloring for f (z) =
z2 − 0.75− 0.2i. The left figure shows the
phase coloring. On the right is the plot
for f 20(z).
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Figure 6.14: Domain coloring for six it-
erations of f (z) = (1− i/2) sin x.

circle(:,:,1) = X.^2+Y.^2 < R2;

circle(:,:,2)=circle(:,:,1);

circle(:,:,3)=circle(:,:,1);

addcirc(:,:,1)=circle(:,:,1)==0;

addcirc(:,:,2)=circle(:,:,1)==0;

addcirc(:,:,3)=circle(:,:,1)==0;

warning off MATLAB:divideByZero; hsvCircle=ones(Nx,Ny,3);

hsvCircle(:,:,1)=atan2(YY,XX)*180/pi+(atan2(YY,XX)*180/pi<0)*360;

hsvCircle(:,:,1)=hsvCircle(:,:,1)/360; lgz=log(XX.^2+YY.^2)/2;

hsvCircle(:,:,2)=0.75; hsvCircle(:,:,3)=1-(lgz-floor(lgz))/2;

hsvCircle(:,:,1) = flipud((hsvCircle(:,:,1)));

hsvCircle(:,:,2) = flipud((hsvCircle(:,:,2)));

hsvCircle(:,:,3) =flipud((hsvCircle(:,:,3)));

rgbCircle=hsv2rgb(hsvCircle);

rgbCircle=rgbCircle.*circle+addcirc;

image(rgbCircle)

axis square

set(gca,’XTickLabel’,{})

set(gca,’YTickLabel’,{})
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6.4 Complex Differentiation

Next we want to differentiate complex functions . We generalize
our definition from single variable calculus,

Figure 6.15: There are many paths that
approach z as ∆z→ 0.

f ′(z) = lim
∆z→0

f (z + ∆z)− f (z)
∆z

, (6.14)

provided this limit exists.
The computation of this limit is similar to what we faced in multi-

variable calculus. Letting ∆z → 0 means that we get closer to z. There
are many paths that one can take that will approach z. [See Figure
6.15.]

It is sufficient to look at two paths in particular. We first consider
the path y = constant. Such a path is shown in Figure 6.16 For this
path, ∆z = ∆x + i∆y = ∆x, since y does not change along the path.
The derivative, if it exists, is then computed as

f ′(z) = lim
∆z→0

f (z + ∆z)− f (z)
∆z

= lim
∆x→0

u(x + ∆x, y) + iv(x + ∆x, y)− (u(x, y) + iv(x, y))
∆x

= lim
∆x→0

u(x + ∆x, y)− u(x, y)
∆x

+ lim
∆x→0

i
v(x + ∆x, y)− v(x, y)

∆x
.

(6.15)

The last two limits are easily identified as partial derivatives of real
valued functions of two variables. Thus, we have shown that when
f ′(z) exists,

f ′(z) =
∂u
∂x

+ i
∂v
∂x

. (6.16)

A similar computation can be made if instead we take a path corre-
sponding to x = constant. In this case ∆z = i∆y and

f ′(z) = lim
∆z→0

f (z + ∆z)− f (z)
∆z

= lim
∆y→0

u(x, y + ∆y) + iv(x, y + ∆y)− (u(x, y) + iv(x, y))
i∆y

= lim
∆y→0

u(x, y + ∆y)− u(x, y)
i∆y

+ lim
∆y→0

v(x, y + ∆y)− v(x, y)
∆y

.

(6.17)

Therefore,

f ′(z) =
∂v
∂y
− i

∂u
∂y

. (6.18)

Figure 6.16: A path that approaches z
with y = constant.

We have found two different expressions for f ′(z) by following two
different paths to z. If the derivative exists, then these two expressions
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must be the same. Equating the real and imaginary parts of these
expressions, we have The Cauchy-Riemann Equations.

∂u
∂x

=
∂v
∂y

∂v
∂x

= −∂u
∂y

. (6.19)

These are known as the Cauchy-Riemann equations3. 3 Augustin-Louis Cauchy (1789-1857)
was a French mathematician well known
for his work in analysis. Georg Friedrich
Bernhard Riemann (1826-1866) was
a German mathematician who made
major contributions to geometry and
analysis.

Theorem 6.1. f (z) is holomorphic (differentiable) if and only if the Cauchy-
Riemann equations are satisfied.

Example 6.5. f (z) = z2.
In this case we have already seen that z2 = x2 − y2 + 2ixy. Therefore,

u(x, y) = x2 − y2 and v(x, y) = 2xy. We first check the Cauchy-Riemann
equations.

∂u
∂x

= 2x =
∂v
∂y

∂v
∂x

= 2y = −∂u
∂y

. (6.20)

Therefore, f (z) = z2 is differentiable.
We can further compute the derivative using either Equation (6.16) or

Equation (6.18). Thus,

f ′(z) =
∂u
∂x

+ i
∂v
∂x

= 2x + i(2y) = 2z.

This result is not surprising.

Example 6.6. f (z) = z̄.
In this case we have f (z) = x− iy. Therefore, u(x, y) = x and v(x, y) =

−y. But, ∂u
∂x = 1 and ∂v

∂y = −1. Thus, the Cauchy-Riemann equations are
not satisfied and we conclude the f (z) = z̄ is not differentiable.

Another consequence of the Cauchy-Riemann equations is that both
u(x, y) and v(x, y) are harmonic functions. A real-valued function u(x, y)
is harmonic if it satisfies Laplace’s equation in 2D, ∇2u = 0, or

∂2u
∂x2 +

∂2u
∂y2 = 0.

Theorem 6.2. f (z) = u(x, y) + iv(x, y) is differentiable if and only if u and
v are harmonic functions.

This is easily proven using the Cauchy-Riemann equations.

∂2u
∂x2 =

∂

∂x
∂u
∂x
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=
∂

∂x
∂v
∂y

=
∂

∂y
∂v
∂x

= − ∂

∂y
∂u
∂y

= −∂2u
∂y2 . (6.21)

Example 6.7. Is u(x, y) = x2 + y2 harmonic?

∂2u
∂x2 +

∂2u
∂y2 = 2 + 2 6= 0.

No, it is not.

Example 6.8. Is u(x, y) = x2 − y2 harmonic?

∂2u
∂x2 +

∂2u
∂y2 = 2− 2 = 0.

Yes, it is.

Given a harmonic function u(x, y), can one find a function, v(x, y), The harmonic conjugate function.

such f (z) = u(x, y) + iv(x, y) is differentiable? In this case, v are called
the harmonic conjugate of u.

Example 6.9. u(x, y) = x2 − y2 is harmonic, find v(x, y) so that u + iv is
differentiable.

The Cauchy-Riemann equations tell us the following about the unknown
function, v(x, y) :

∂v
∂x

= −∂u
∂y

= 2y,

∂v
∂y

=
∂u
∂x

= 2x.

We can integrate the first of these equations to obtain

v(x, y) =
∫

2y dx = 2xy + c(y).

Here c(y) is an arbitrary function of y. One can check to see that this works
by simply differentiating the result with respect to x. However, the second
equation must also hold. So, we differentiate our result with respect to y to
find that

∂v
∂y

= 2x + c′(y).

Since we were supposed to get 2x, we have that c′(y) = 0. Thus, c(y) = k is
a constant.

We have just shown that we get an infinite number of functions,

v(x, y) = 2xy + k,
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such that
f (z) = x2 − y2 + i(2xy + k)

is differentiable. In fact, for k = 0 this is nothing other than f (z) = z2.

6.5 Complex Integration

In the last chapter we introduced functions of a complex variable.
We also established when functions are differentiable as complex func-
tions, or holomorphic. In this chapter we will turn to integration in the
complex plane. We will learn how to compute complex path integrals,
or contour integrals. We will see that contour integral methods are
also useful in the computation of some of the real integrals that we
will face when exploring Fourier transforms in the next chapter.

Figure 6.17: We would like to integrate a
complex function f (z) over the path Γ in
the complex plane.

6.5.1 Complex Path Integrals

In this section we will investigate the computation of complex path
integrals. Given two points in the complex plane, connected by a path
Γ, we would like to define the integral of f (z) along Γ,∫

Γ
f (z) dz.

A natural procedure would be to work in real variables, by writing∫
Γ

f (z) dz =
∫

Γ
[u(x, y) + iv(x, y)] (dx + idy).

Figure 6.18: Examples of (a) a connected
set and (b) a disconnected set.

In order to carry out the integration, we then have to find a parametriza-
tion of the path and use methods from a multivariate calculus class.

Before carrying this out with some examples, we first provide some
definitions.

Definition 6.1. A set D is connected if and only if for all z1, and z2 in D
there exists a piecewise smooth curve connecting z1 to z2 and lying in
D. Otherwise it is called disconnected. Examples are shown in Figure
6.18

Definition 6.2. A set D is open if and only if for all z0 in D there exists
an open disk |z− z0| < ρ in D.

In Figure 6.19 we show a region with two disks.

Figure 6.19: Locations of open disks in-
side and on the boundary of a region.

For all points on the interior of the region one can find at least
one disk contained entirely in the region. The closer one is to the
boundary, the smaller the radii of such disks. However, for a point on
the boundary, every such disk would contain points inside and outside
the disk. Thus, an open set in the complex plane would not contain
any of its boundary points.
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Definition 6.3. D is called a domain if it is both open and connected.

Definition 6.4. Let u and v be continuous in domain D, and Γ a piece-
wise smooth curve in D. Let (x(t), y(t)) be a parametrization of Γ for
t0 ≤ t ≤ t1 and f (z) = u(x, y) + iv(x, y) for z = x + iy. Then

∫
Γ

f (z) dz =
∫ t1

t0

[u(x(t), y(t)) + iv(x(t), y(t))] (
dx
dt

+ i
dy
dt

)dt.

(6.22)

Note that we have used

dz = dx + idy =

(
dx
dt

+ i
dy
dt

)
dt.

This definition gives us a prescription for computing path integrals.
Let’s see how this works with a couple of examples.

Figure 6.20: Contour for Example 6.10.
Example 6.10.

∫
C z2 dz, C = the arc of the unit circle in the first quadrant

as shown in Figure 6.20.
We first specify the parametrization . There are two ways we could do this.

First, we note that the standard parametrization of the unit circle is

(x(θ), y(θ)) = (cos θ, sin θ), 0 ≤ θ ≤ 2π.

For a quarter circle in the first quadrant, 0 ≤ θ ≤ π
2 , we let z = cos θ +

i sin θ. Therefore, dz = (− sin θ + i cos θ) dθ and the path integral becomes

∫
C

z2 dz =
∫ π

2

0
(cos θ + i sin θ)2(− sin θ + i cos θ) dθ.

We can expand the integrand and integrate, having to perform some trigono-
metric integrations:4 4 The reader should work out these

trigonometric integrations and confirm
the result. For example, you can use

sin3 θ = sin θ(1− cos2 θ))

to write the real part of the integrand as

sin θ − 4 cos2 θ sin θ.

The resulting antiderivative becomes

− cos θ +
4
3

cos3 θ.

The imaginary integrand can be inte-
grated in a similar fashion.

∫ π
2

0
[sin3 θ − 3 cos2 θ sin θ + i(cos3 θ − 3 cos θ sin2 θ)] dθ.

While this is doable, there is a simpler procedure. We first note that z = eiθ

on C. So, dz = ieiθdθ. The integration then becomes

∫
C

z2 dz =
∫ π

2

0
(eiθ)2ieiθ dθ

= i
∫ π

2

0
e3iθ dθ

=
ie3iθ

3i

∣∣∣π/2

0

= −1 + i
3

. (6.23)

Example 6.11.
∫

Γ z dz, Γ = γ1 ∪ γ2 is the path shown in Figure 6.21.
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In this problem we have path that is a piecewise smooth curve. We can
compute the path integral by computing the values along the two segments of
the path and adding up the results. Let the two segments be called γ1 and γ2

as shown in Figure 6.21.

Figure 6.21: Contour for Example 6.11

with Γ = γ1 ∪ γ2.

Over γ1 we note that y = 0. Thus, z = x for x ∈ [0, 1]. It is natural to
take x as the parameter. So, dz = dx and we have∫

γ1

z dz =
∫ 1

0
x dx =

1
2

.

For path γ2 we have that z = 1 + iy for y ∈ [0, 1]. Inserting z and
dz = i dy, the integral becomes∫

γ2

z dz =
∫ 1

0
(1 + iy) idy = i− 1

2
.

Combining these results, we have
∫

Γ z dz = 1
2 + (i− 1

2 ) = i.

Example 6.12.
∫

γ3
z dz, γ3 is the path shown in Figure 6.22.

In this case we take a path from z = 0 to z = 1 + i along a different path.
Let γ3 = {(x, y)|y = x2, x ∈ [0, 1]} = {z|z = x + ix2, x ∈ [0, 1]}. Then,
dz = (1 + 2ix) dx.

Figure 6.22: Contour for Example 6.12.

The integral becomes∫
γ3

z dz =
∫ 1

0
(x + ix2)(1 + 2ix) dx

=
∫ 1

0
(x + 3ix2 − 2x3) dx =

=

[
1
2

x2 + ix3 − 1
2

x4
]1

0
= i. (6.24)

In the last case we found the same answer as in Example 6.11. But
we should not take this as a general rule for all complex path inte-
grals. In fact, it is not true that integrating over different paths always
yields the same results. We will now look into this notion of path
independence.

Definition 6.5. The integral
∫

f (z) dz is path independent if∫
Γ1

f (z) dz =
∫

Γ2

f (z) dz

for all paths from z1 to z2.

Figure 6.23:
∫

Γ1
f (z) dz =

∫
Γ2

f (z) dz for
all paths from z1 to z2 when the integral
of f (z) is path independent.

If
∫

f (z) dz is path independent, then the integral of f (z) over all
closed loops is zero, ∫

closed loops
f (z) dz = 0.

A common notation for integrating over closed loops is
∮

C f (z) dz. But
first we have to define what we mean by a closed loop.
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Definition 6.6. A simple closed contour is a path satisfying

a The end point is the same as the beginning point. (This makes
the loop closed.)

b The are no self-intersections. (This makes the loop simple.)

A loop in the shape of a figure eight is closed, but it is not simple.

Figure 6.24: The integral
∮

C f (z) dz
around C is zero if the integral

∫
Γ f (z) dz

is path independent.

Now, consider an integral over the closed loop C shown in Figure
6.24. We pick two points on the loop breaking it into two contours, C1

and C2. Then we make use of the path independence by defining C−2
to be the path along C2 but in the opposite direction. Then,

∮
C

f (z) dz =
∫

C1

f (z) dz +
∫

C2

f (z) dz

=
∫

C1

f (z) dz−
∫

C−2
f (z) dz. (6.25)

Assuming that the integrals from point 1 to point 2 are path indepen-
dent, then the integrals over C1 and C−2 are equal. Therefore, we have∮

C f (z) dz = 0.

Example 6.13. Consider the integral
∮

C z dz for C the closed contour shown
in Figure 6.22 starting at z = 0 following path γ1, then γ2 and returning to
z = 0. Based on the earlier examples and the fact that going backwards on γ3

introduces a negative sign, we have

∮
C

z dz =
∫

γ1

z dz +
∫

γ2

z dz−
∫

γ3

z dz =
1
2
+

(
i− 1

2

)
− i = 0.

6.5.2 Cauchy’s Theorem

Next we want to investigate if we can determine that integrals
over simple closed contours vanish without doing all the work of
parametrizing the contour. First, we need to establish the direction
about which we traverse the contour.

Definition 6.7. A curve with parametrization (x(t), y(t)) has a normal
(nx, ny) = (− dx

dt , dy
dt ).

Recall that the normal is a perpendicular to the curve. There are two
such perpendiculars. The above normal points outward and the other
normal points towards the interior of a closed curve. We will define a
positively oriented contour as one that is traversed with the outward
normal pointing to the right. As one follows loops, the interior would
then be on the left.
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We now consider
∮

C(u + iv) dz over a simple closed contour. This
can be written in terms of two real integrals in the xy-plane.∮

C
(u + iv) dz =

∫
C
(u + iv)(dx + i dy)

=
∫

C
u dx− v dy + i

∫
C

v dx + u dy. (6.26)

These integrals in the plane can be evaluated using Green’s Theorem
in the Plane. Recall this theorem from your last semester of calculus: Green’s Theorem in the Plane is one

of the major integral theorems of vec-
tor calculus. It was discovered by
George Green (1793-1841) and published
in 1828, about four years before he en-
tered Cambridge as an undergraduate.

Green’s Theorem in the Plane.

Theorem 6.3. Let P(x, y) and Q(x, y) be continuously differentiable
functions on and inside the simple closed curve C. Denoting the en-
closed region S, we have∫

C
P dx + Q dy =

∫ ∫
S

(
∂Q
∂x
− ∂P

∂y

)
dxdy. (6.27)

Using Green’s Theorem to rewrite the first integral in (6.26), we have∫
C

u dx− v dy =
∫ ∫

S

(
−∂v
∂x
− ∂u

∂y

)
dxdy.

If u and v satisfy the Cauchy-Riemann equations (6.19), then the inte-
grand in the double integral vanishes. Therefore,∫

C
u dx− v dy = 0.

In a similar fashion, one can show that∫
C

v dx + u dy = 0.

We have thus proven the following theorem:

Cauchy’s Theorem

Theorem 6.4. If u and v satisfy the Cauchy-Riemann equations (6.19)
inside and on the simple closed contour C, then∮

C
(u + iv) dz = 0. (6.28)

Corollary
∮

C f (z) dz = 0 when f is differentiable in domain D with
C ⊂ D.

Either one of these is referred to as Cauchy’s Theorem.

Example 6.14. Consider
∮
|z−1|=3 z4 dz. Since f (z) = z4 is differentiable

inside the circle |z− 1| = 3, this integral vanishes.
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We can use Cauchy’s Theorem to show that we can deform one
contour into another, perhaps simpler, contour.

One can deform contours into simpler
ones.Theorem 6.5. If f (z) is holomorphic between two simple closed contours, C

and C′, then
∮

C f (z) dz =
∮

C′ f (z) dz.

Proof. We consider the two curves as shown in Figure 6.25. Connecting
the two contours with contours Γ1 and Γ2 (as shown in the figure), C
is seen to split into contours C1 and C2 and C′ into contours C′1 and
C′2. Note that f (z) is differentiable inside the newly formed regions
between the curves. Also, the boundaries of these regions are now
simple closed curves. Therefore, Cauchy’s Theorem tells us that the
integrals of f (z) over these regions are zero.

Figure 6.25: The contours needed to
prove that

∮
C f (z) dz =

∮
C′ f (z) dz when

f (z) is holomorphic between the con-
tours C and C′.

Noting that integrations over contours opposite to the positive ori-
entation are the negative of integrals that are positively oriented, we
have from Cauchy’s Theorem that∫

C1

f (z) dz +
∫

Γ1

f (z) dz−
∫

C′1
f (z) dz +

∫
Γ2

f (z) dz = 0

and ∫
C2

f (z) dz−
∫

Γ2

f (z) dz−
∫

C′2
f (z) dz−

∫
Γ1

f (z) dz = 0.

In the first integral we have traversed the contours in the following
order: C1, Γ1, C′1 backwards, and Γ2. The second integral denotes
the integration over the lower region, but going backwards over all
contours except for C2.

Combining these results by adding the two equations above, we
have ∫

C1

f (z) dz +
∫

C2

f (z) dz−
∫

C′1
f (z) dz−

∫
C′2

f (z) dz = 0.

Noting that C = C1 + C2 and C′ = C′1 + C′2, we have∮
C

f (z) dz =
∮

C′
f (z) dz,

as was to be proven.

Example 6.15. Compute
∮

R
dz
z for R the rectangle [−2, 2]× [−2i, 2i].

Figure 6.26: The contours used to com-
pute

∮
R

dz
z . Note that to compute the in-

tegral around R we can deform the con-
tour to the circle C since f (z) is differ-
entiable in the region between the con-
tours.

We can compute this integral by looking at four separate integrals over the
sides of the rectangle in the complex plane. One simply parametrizes each line
segment, perform the integration and sum the four separate results. From the
last theorem, we can instead integrate over a simpler contour by deforming
the rectangle into a circle as long as f (z) = 1

z is differentiable in the region
bounded by the rectangle and the circle. So, using the unit circle, as shown in
Figure 6.26, the integration might be easier to perform.
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More specifically, the last theorem tells us that∮
R

dz
z

=
∮
|z|=1

dz
z

The latter integral can be computed using the parametrization z = eiθ for
θ ∈ [0, 2π]. Thus, ∮

|z|=1

dz
z

=
∫ 2π

0

ieiθ dθ

eiθ

= i
∫ 2π

0
dθ = 2πi. (6.29)

Therefore, we have found that
∮

R
dz
z = 2πi by deforming the original simple

closed contour.

Figure 6.27: The contours used to com-
pute

∮
R

dz
z . The added diagonals are

for the reader to easily see the argu-
ments used in the evaluation of the lim-
its when integrating over the segments
of the square R.

For fun, let’s do this the long way to see how much effort was saved.
We will label the contour as shown in Figure 6.27. The lower segment, γ4

of the square can be simple parametrized by noting that along this segment
z = x− 2i for x ∈ [−2, 2]. Then, we have∮

γ4

dz
z

=
∫ 2

−2

dx
x− 2i

= ln |x− 2i|2−2

=

(
ln(2
√

2)− πi
4

)
−
(

ln(2
√

2)− 3πi
4

)
=

πi
2

. (6.30)

We note that the arguments of the logarithms are determined from the angles
made by the diagonals provided in Figure 6.27.

Similarly, the integral along the top segment, z = x + 2i, x ∈ [−2, 2], is
computed as∮

γ2

dz
z

=
∫ −2

2

dx
x + 2i

= ln |x + 2i|−2
2
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=

(
ln(2
√

2) +
3πi

4

)
−
(

ln(2
√

2) +
πi
4

)
=

πi
2

. (6.31)

The integral over the right side, z = 2 + iy, y ∈ [−2, 2], is∮
γ1

dz
z

=
∫ 2

−2

idy
2 + iy

= ln |2 + iy|2−2

=

(
ln(2
√

2) +
πi
4

)
−
(

ln(2
√

2)− πi
4

)
=

πi
2

. (6.32)

Finally, the integral over the left side, z = −2 + iy, y ∈ [−2, 2], is∮
γ3

dz
z

=
∫ −2

2

idy
−2 + iy

= ln | − 2 + iy|2−2

=

(
ln(2
√

2) +
5πi

4

)
−
(

ln(2
√

2) +
3πi

4

)
=

πi
2

. (6.33)

Therefore, we have that∮
R

dz
z

=
∫

γ1

dz
z

+
∫

γ2

dz
z

+
∫

γ3

dz
z

+
∫

γ4

dz
z

=
πi
2

+
πi
2

+
πi
2

+
πi
2

= 4(
πi
2
) = 2πi. (6.34)

This gives the same answer we had found using a simple contour deformation.

The converse of Cauchy’s Theorem is not true, namely
∮

C f (z) dz =

0 does not always imply that f (z) is differentiable. What we do have
is Morera’s Theorem(Giacinto Morera, 1856-1909):

Theorem 6.6. Let f be continuous in a domain D. Suppose that for every
simple closed contour C in D,

∮
C f (z) dz = 0. Then f is differentiable in D.

The proof is a bit more detailed than we need to go into here. How-
ever, this theorem is useful in the next section.

6.5.3 Analytic Functions and Cauchy’s Integral Formula

In the previous section we saw that Cauchy’s Theorem was use-
ful for computing particular integrals without having to parametrize
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the contours, or to deform contours to simpler ones. The integrand
needs to possess certain differentiability properties. In this section, we
will generalize our integrand slightly so that we can integrate a larger
family of complex functions. This will take the form of what is called
Cauchy’s Integral Formula, which extends Cauchy’s Theorem to func-
tions analytic in an annulus. However, first we need to explore the
concept of analytic functions. Definition of an analytic function: the

existence of a convergent power series
expansion.Definition 6.8. f (z) is analytic in D if for every open disk |z− z0| < ρ

lying in D, f (z) can be represented as a power series in z0. Namely,

f (z) =
∞

∑
n=0

cn(z− z0)
n.

This series converges uniformly and absolutely inside the circle of con-
vergence, |z − z0| < R, with radius of convergence R. [See the Ap-
pendix for a review of convergence.]

Since f (z) can be written as a uniformly convergent power se- There are various types of complex-
valued functions. A holomorphic func-
tion is (complex-)differentiable in a
neighborhood of every point in its do-
main. An analytic function has a conver-
gent Taylor series expansion in a neigh-
borhood of each point in its domain. We
see here that analytic functions are holo-
morphic and vice versa. If a function
is holomorphic throughout the complex
plane, then it is called an entire function.
Finally, a function which is holomorphic
on all of its domain except at a set of iso-
lated poles (to be defined later), then it
is called a meromorphic function.

ries, we can integrate it term by term over any simple closed contour
in D containing z0. In particular, we have to compute integrals like∮

C(z− z0)
n dz. As we will see in the homework exercises, these inte-

grals evaluate to zero for most n. Thus, we can show that for f (z) an-
alytic in D and any C lying in D,

∮
C f (z) dz = 0. Also, f is a uniformly

convergent sum of continuous functions, so f (z) is also continuous.
Thus, by Morera’s Theorem, we have that f (z) is differentiable if it is
analytic. Often terms like analytic, differentiable and holomorphic are
used interchangeably, though there is a subtle distinction due to their
definitions.

Let’s recall some manipulations from our study of series of real
functions.

Example 6.16. f (z) = 1
1+z for z0 = 0.

This case is simple. From Chapter 1 we recall that f (z) is the sum of a
geometric series for |z| < 1. We have

f (z) =
1

1 + z
=

∞

∑
n=0

(−z)n.

Thus, this series expansion converges inside the unit circle (|z| < 1) in the
complex plane.

Example 6.17. f (z) = 1
1+z for z0 = 1

2 . We now look into an expansion about
a different point. We could compute the expansion coefficients using Taylor’
formula for the coefficients. However, we can also make use of the formula
for geometric series after rearranging the function. We seek an expansion in
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powers of z − 1
2 . So, we rewrite the function in a form that has this term.

Thus,

f (z) =
1

1 + z
=

1
1 + (z− 1

2 + 1
2 )

=
1

3
2 + (z− 1

2 )
.

This is not quite in the form we need. It would be nice if the denominator
were of the form of one plus something. [Note: This is just like what we show
in the Appendix for functions of real variables. See Example A.28.] We can
get the denominator into such a form by factoring out the 3

2 . Then we would
have

f (z) =
2
3

1
1 + 2

3 (z−
1
2 )

.

The second factor now has the form 1
1−r , which would be the sum of a geo-

metric series with first term a = 1 and ratio r = − 2
3 (z−

1
2 ) provided that

|r|<1. Therefore, we have found that

f (z) =
2
3

∞

∑
n=0

[
−2

3
(z− 1

2
)

]n

for

| − 2
3
(z− 1

2
)| < 1.

This convergence interval can be rewritten as

|z− 1
2
| < 3

2
.

This is a circle centered at z = 1
2 with radius 3

2 .

In Figure 6.28 we show the regions of convergence for the power
series expansions of f (z) = 1

1+z about z = 0 and z = 1
2 . We note

that the first expansion gives that f (z) is at least analytic inside the
region |z| < 1. The second expansion shows that f (z) is analytic in a
region even further outside to the region |z− 1

2 | <
3
2 . We will see later

that there are expansions outside of these regions, though some are
expansions involving negative powers of z− z0.

Figure 6.28: Regions of convergence for
expansions of f (z) = 1

1+z about z = 0
and z = 1

2 .

We now present the main theorem of this section:

Cauchy Integral Formula

Theorem 6.7. Let f (z) be analytic in |z − z0| < ρ and let C be the
boundary (circle) of this disk. Then,

f (z0) =
1

2πi

∮
C

f (z)
z− z0

dz. (6.35)

Proof. In order to prove this, we first make use of the analyticity of
f (z). We insert the power series expansion of f (z) about z0 into the
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integrand. Then we have

f (z)
z− z0

=
1

z− z0

[
∞

∑
n=0

cn(z− z0)
n

]

=
1

z− z0

[
c0 + c1(z− z0) + c2(z− z0)

2 + . . .
]

=
c0

z− z0
+ c1 + c2(z− z0) + . . .︸ ︷︷ ︸

analytic function

. (6.36)

As noted the integrand can be written as

f (z)
z− z0

=
c0

z− z0
+ h(z),

where h(z) is an analytic function, since h(z) is representable as a se-
ries expansion about z0. We have already shown that analytic functions
are differentiable, so by Cauchy’s Theorem

∮
C h(z) dz = 0. Noting also

that c0 = f (z0) is the first term of a Taylor series expansion about
z = z0, we have∮

C

f (z)
z− z0

dz =
∮

C

[
c0

z− z0
+ h(z)

]
dz = f (z0)

∮
C

1
z− z0

dz.

We need only compute the integral
∮

C
1

z−z0
dz to finish the proof of

Cauchy’s Integral Formula. This is done by parametrizing the circle,
|z− z0| = ρ, as shown in Figure 6.29. This is simply done by letting

z− z0 = ρeiθ .

(Note that this has the right complex modulus since |eiθ | = 1. Then
dz = iρeiθdθ. Using this parametrization, we have∮

C

dz
z− z0

=
∫ 2π

0

iρeiθ dθ

ρeiθ = i
∫ 2π

0
dθ = 2πi.

Figure 6.29: Circular contour used in
proving the Cauchy Integral Formula.

Therefore,∮
C

f (z)
z− z0

dz = f (z0)
∮

C

1
z− z0

dz = 2πi f (z0),

as was to be shown.

Example 6.18. Compute
∮
|z|=4

cos z
z2−6z+5 dz.

In order to apply the Cauchy Integral Formula, we need to factor the de-
nominator, z2 − 6z + 5 = (z − 1)(z − 5). We next locate the zeros of the
denominator. In Figure 6.30 we show the contour and the points z = 1 and
z = 5. The only point inside the region bounded by the contour is z = 1.
Therefore, we can apply the Cauchy Integral Formula for f (z) = cos z

z−5 to the
integral ∫

|z|=4

cos z
(z− 1)(z− 5)

dz =
∫
|z|=4

f (z)
(z− 1)

dz = 2πi f (1).
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Therefore, we have∫
|z|=4

cos z
(z− 1)(z− 5)

dz = −πi cos(1)
2

.

We have shown that f (z0) has an integral representation for f (z)
analytic in |z− z0| < ρ. In fact, all derivatives of an analytic function
have an integral representation. This is given by

f (n)(z0) =
n!

2πi

∮
C

f (z)
(z− z0)n+1 dz. (6.37)

Figure 6.30: Circular contour used in
computing

∮
|z|=4

cos z
z2−6z+5 dz.

This can be proven following a derivation similar to that for the
Cauchy Integral Formula. Inserting the Taylor series expansion for
f (z) into the integral on the right hand side, we have∮

C

f (z)
(z− z0)n+1 dz =

∞

∑
m=0

cm

∮
C

(z− z0)
m

(z− z0)n+1 dz

=
∞

∑
m=0

cm

∮
C

dz
(z− z0)n−m+1 . (6.38)

Picking k = n−m, the integrals in the sum can be computed by using
the following lemma.

Lemma ∮
C

dz
(z− z0)k+1 =

{
0, k 6= 0

2πi, k = 0.
(6.39)

This is Problem 3. So, the only nonvanishing integrals are when k =

n−m = 0, or m = n. Therefore,∮
C

f (z)
(z− z0)n+1 dz = 2πicn.

To finish the proof, we recall (from the Appendix) that the coeffi-
cients of the Taylor series expansion for f (z) are given by

cn =
f (n)(z0)

n!

and the result follows.

6.5.4 Laurent Series

Until this point we have only talked about series whose terms have
nonnegative powers of z− z0. It is possible to have series representa-
tions in which there are negative powers. In the last section we inves-
tigated expansions of f (z) = 1

1+z about z = 0 and z = 1
2 . The regions

of convergence for each series was shown in Figure 6.28. Let us recon-
sider each of these expansions, but for values of z outside the region
of convergence previously found..
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Example 6.19. f (z) = 1
1+z for |z| > 1.

As before, we make use of the geometric series . Since |z| > 1, we instead
rewrite our function as

f (z) =
1

1 + z
=

1
z

1
1 + 1

z
.

We now have the function in a form of the sum of a geometric series with first
term a = 1 and ratio r = − 1

z . We note that |z| > 1 implies that |r| < 1.
Thus, we have the geometric series

f (z) =
1
z

∞

∑
n=0

(
−1

z

)n
.

This can be re-indexed5 as

5 Re-indexing a series is often useful in
series manipulations. In this case, we
have the series

∞

∑
n=0

(−1)nz−n−1 = z−1 − z−2 + z−3 + . . . .

The index is n. You can see that the in-
dex does not appear when the sum is
expanded showing the terms. The sum-
mation index is sometimes referred to
as a dummy index for this reason. Re-
indexing allows one to rewrite the short-
hand summation notation while captur-
ing the same terms. In this example, the
exponents are −n − 1. We can simplify
the notation by letting −n− 1 = −j, or
j = n + 1. Noting that j = 1 when n = 0,
we get the sum ∑∞

j=1(−1)j−1z−j.

f (z) =
∞

∑
n=0

(−1)nz−n−1 =
∞

∑
j=1

(−1)j−1z−j.

Note that this series, which converges outside the unit circle, |z| > 1, has
negative powers of z.

Example 6.20. f (z) = 1
1+z for |z− 1

2 | >
3
2 .

As before, we express this in a form in which we can use a geometric series
expansion. We seek powers of z− 1

2 . So, we add and subtract 1
2 to the z to

obtain:

f (z) =
1

1 + z
=

1
1 + (z− 1

2 + 1
2 )

=
1

3
2 + (z− 1

2 )
.

Instead of factoring out the 3
2 as we had done in Example 6.17, we factor out

the (z− 1
2 ) term. Then, we obtain

f (z) =
1

1 + z
=

1
(z− 1

2 )

1[
1 + 3

2 (z−
1
2 )
−1
] .

Now we identify a = 1 and r = − 3
2 (z−

1
2 )
−1. This leads to the series

f (z) =
1

z− 1
2

∞

∑
n=0

(
−3

2
(z− 1

2
)−1
)n

=
∞

∑
n=0

(
−3

2

)n (
z− 1

2

)−n−1
. (6.40)

This converges for |z− 1
2 | >

3
2 and can also be re-indexed to verify that this

series involves negative powers of z− 1
2 .

This leads to the following theorem:
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Theorem 6.8. Let f (z) be analytic in an annulus, R1 < |z− z0| < R2, with
C a positively oriented simple closed curve around z0 and inside the annulus
as shown in Figure 6.31. Then,

f (z) =
∞

∑
j=0

aj(z− z0)
j +

∞

∑
j=1

bj(z− z0)
−j,

with

aj =
1

2πi

∮
C

f (z)
(z− z0)j+1 dz,

and

bj =
1

2πi

∮
C

f (z)
(z− z0)−j+1 dz.

The above series can be written in the more compact form

f (z) =
∞

∑
j=−∞

cj(z− z0)
j.

Such a series expansion is called a Laurent series expansion named after
its discoverer Pierre Alphonse Laurent (1813-1854).

Figure 6.31: This figure shows an an-
nulus, R1 < |z − z0| < R2, with C a
positively oriented simple closed curve
around z0 and inside the annulus.

Example 6.21. Expand f (z) = 1
(1−z)(2+z) in the annulus 1 < |z| < 2.

Using partial fractions , we can write this as

f (z) =
1
3

[
1

1− z
+

1
2 + z

]
.

We can expand the first fraction, 1
1−z , as an analytic function in the region

|z| > 1 and the second fraction, 1
2+z , as an analytic function in |z| < 2. This

is done as follows. First, we write

1
2 + z

=
1

2[1− (− z
2 )]

=
1
2

∞

∑
n=0

(
− z

2

)n
.

Then we write
1

1− z
= − 1

z[1− 1
z ]

= −1
z

∞

∑
n=0

1
zn .

Therefore, in the common region, 1 < |z| < 2, we have that

1
(1− z)(2 + z)

=
1
3

[
1
2

∞

∑
n=0

(
− z

2

)n
−

∞

∑
n=0

1
zn+1

]

=
∞

∑
n=0

(−1)n

6(2n)
zn +

∞

∑
n=1

(−1)
3

z−n. (6.41)

We note that this indeed is not a Taylor series expansion due to the existence
of terms with negative powers in the second sum.
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6.5.5 Singularities and The Residue Theorem

In the last section we found that we could integrate functions
satisfying some analyticity properties along contours without using
detailed parametrizations around the contours. We can deform con-
tours if the function is analytic in the region between the original and
new contour. In this section we will extend our tools for performing
contour integrals.

The integrand in the Cauchy Integral Formula was of the form
g(z) = f (z)

z−z0
, where f (z) is well behaved at z0. The point z = z0 is

called a singularity of g(z), as g(z) is not defined there. As we saw
from the proof of the Cauchy Integral Formula, g(z) has a Laurent
series expansion about z = z0,

g(z) =
f (z0)

z− z0
+ f ′(z0) +

1
2

f ′′(z0)(z− z0)
2 + . . . .

We will first classify singularities and then use singularities to aid in
computing contour integrals.

Definition 6.9. A singularity of f (z) is a point at which f (z) fails to be
analytic.

Classification of singularities.
Typically these are isolated singularities. In order to classify the

singularities of f (z), we look at the principal part of the Laurent series
of f (z) about z = z0: ∑∞

j−1 bj(z− z0)
−j.

1. If f (z) is bounded near z0, then z0 is a removable singularity.

2. If there are a finite number of terms in the principal part of
the Laurent series of f (z) about z = z0, then z0 is called a
pole.

3. If there are an infinite number of terms in the principal part
of the Laurent series of f (z) about z = z0, then z0 is called an
essential singularity.

Example 6.22. Removable singularity: f (z) = sin z
z .

At first it looks like there is a possible singularity at z = 0, since the
denominator is zero at z = 0. However, we know from the first semester
of calculus that limz→0

sin z
z = 1. Furthermore, we can expand sin z about

z = 0 and see that

sin z
z

=
1
z
(z− z3

3!
+ . . .) = 1− z2

3!
+ . . . .

Thus, there are only nonnegative powers in the series expansion. So, z = 0 is
a removable singularity.
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Example 6.23. Poles f (z) = ez

(z−1)n .

For n = 1 we have f (z) = ez

z−1 . This function has a singularity at z = 1.
The series expansion is found by expanding ez about z = 1:

f (z) =
e

z− 1
ez−1 =

e
z− 1

+ e +
e
2!
(z− 1) + . . . .

Note that the principal part of the Laurent series expansion about z = 1 only
has one term, e

z−1 . Therefore, z = 1 is a pole. Since the leading term has an
exponent of −1, z = 1 is called a pole of order one, or a simple pole. Simple pole.

For n = 2 we have f (z) = ez

(z−1)2 . The series expansion is found again by
expanding ez about z = 1:

f (z) =
e

(z− 1)2 ez−1 =
e

(z− 1)2 +
e

z− 1
+

e
2!

+
e
3!
(z− 1) + . . . .

Note that the principal part of the Laurent series has two terms involving
(z − 1)−2 and (z − 1)−1. Since the leading term has an exponent of −2,
z = 1 is called a pole of order 2, or a double pole. Double pole.

Example 6.24. Essential Singularity f (z) = e
1
z .

In this case we have the series expansion about z = 0 given by

f (z) = e
1
z =

∞

∑
n=0

(
1
z

)n

n!
=

∞

∑
n=0

1
n!

z−n.

We see that there are an infinite number of terms in the principal part of the
Laurent series. So, this function has an essential singularity at z = 0.

In the above examples we have seen poles of order one (a simple
pole) and two (a double pole). In general, we can define poles of order
k.

Definition 6.10. f (z) has a pole of order k at z0 if and only if (z −
z0)

k f (z) has a removable singularity at z0, but (z− z0)
k−1 f (z) for k > 0

does not.

Example 6.25. Determine the order of the pole at z = 0 of f (z) = cot z csc z.
First we rewrite f (z) in terms of sines and cosines.

f (z) = cot z csc z =
cos z
sin2 z

.

We note that the denominator vanishes at z = 0. However, how do we know
that the pole is not a simple pole? Well, we check to see if (z− 0) f (z) has a
removable singularity at z = 0 :

lim
z→0

(z− 0) f (z) = lim
z→0

z cos z
sin2 z

=

(
lim
z→0

z
sin z

)(
lim
z→0

cos z
sin z

)
= lim

z→0

cos z
sin z

. (6.42)
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We see that this limit is undefined. So, now we check to see if (z− 0)2 f (z)
has a removable singularity at z = 0 :

lim
z→0

(z− 0)2 f (z) = lim
z→0

z2 cos z
sin2 z

=

(
lim
z→0

z
sin z

)(
lim
z→0

z cos z
sin z

)
= lim

z→0

z
sin z

cos(0) = 1. (6.43)

In this case, we have obtained a finite, nonzero, result. So, z = 0 is a pole of
order 2.

We could have also relied on series expansions. So, we expand both the
sine and cosine in a Taylor series expansion:

f (z) =
cos z
sin2 z

=
1− 1

2! z
2 + . . .

(z− 1
3! z

3 + . . .)2
.

Factoring a z from the expansion in the denominator,

f (z) =
1
z2

1− 1
2! z

2 + . . .

(1− 1
3! z + . . .)2

=
1
z2

(
1 + O(z2)

)
,

we can see that the leading term will be a 1/z2, indicating a pole of order 2.

We will see how knowledge of the poles of a function can aid in
the computation of contour integrals. We now show that if a function,
f (z), has a pole of order k, then Integral of a function with a simple pole

inside C.∮
C

f (z) dz = 2πi Res[ f (z); z0],

where we have defined Res[ f (z); z0] as the residue of f (z) at z = z0.
In particular, for a pole of order k the residue is given by Residues of a function with poles of or-

der k.

Residues - Poles of order k

Res[ f (z); z0] = lim
z→z0

1
(k− 1)!

dk−1

dzk−1

[
(z− z0)

k f (z)
]

. (6.44)

Proof. Let φ(z) = (z − z0)
k f (z) be analytic. Then φ(z) has a Taylor

series expansion about z0. As we had seen in the last section, we can
write the integral representation of derivatives of φ as

φ(k−1)(z0) =
(k− 1)!

2πi

∮
C

φ(z)
(z− z0)k dz.

Inserting the definition of φ(z) we then have

φ(k−1)(z0) =
(k− 1)!

2πi

∮
C

f (z) dz.
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Solving for the integral, we have the result∮
C

f (z) dz =
2πi

(k− 1)!
dk−1

dzk−1

[
(z− z0)

k f (z)
]

z=z0

≡ 2πi Res[ f (z); z0] (6.45)

The residue for a simple pole.

Note: If z0 is a simple pole, the residue is easily computed as

Res[ f (z); z0] = lim
z→z0

(z− z0) f (z).

In fact, one can show (Problem 18) that for g and h analytic functions
at z0, with g(z0) 6= 0, h(z0) = 0, and h′(z0) 6= 0,

Res
[

g(z)
h(z)

; z0

]
=

g(z0)

h′(z0)
.

Example 6.26. Find the residues of f (z) = z−1
(z+1)2(z2+4) .

f (z) has poles at z = −1, z = 2i, and z = −2i. The pole at z = −1 is
a double pole (pole of order 2). The other poles are simple poles. We compute
those residues first:

Res[ f (z); 2i] = lim
z→2i

(z− 2i)
z− 1

(z + 1)2(z + 2i)(z− 2i)

= lim
z→2i

z− 1
(z + 1)2(z + 2i)

=
2i− 1

(2i + 1)2(4i)
= − 1

50
− 11

100
i. (6.46)

Res[ f (z);−2i] = lim
z→−2i

(z + 2i)
z− 1

(z + 1)2(z + 2i)(z− 2i)

= lim
z→−2i

z− 1
(z + 1)2(z− 2i)

=
−2i− 1

(−2i + 1)2(−4i)
= − 1

50
+

11
100

i. (6.47)

For the double pole, we have to do a little more work.

Res[ f (z);−1] = lim
z→−1

d
dz

[
(z + 1)2 z− 1

(z + 1)2(z2 + 4)

]
= lim

z→−1

d
dz

[
z− 1
z2 + 4

]
= lim

z→−1

d
dz

[
z2 + 4− 2z(z− 1)

(z2 + 4)2

]
= lim

z→−1

d
dz

[
−z2 + 2z + 4
(z2 + 4)2

]
=

1
25

. (6.48)



298 mathematical physics

Example 6.27. Find the residue of f (z) = cot z at z = 0.
We write f (z) = cot z = cos z

sin z and note that z = 0 is a simple pole. Thus,

Res[cot z; z = 0] = lim
z→0

z cos z
sin z

= cos(0) = 1.

Figure 6.32: Contour for computing∮
|z|=1

dz
sin z .

Example 6.28.
∮
|z|=1

dz
sin z .

We begin by looking for the singularities of the integrand. These are located
at values of z for which sin z = 0. Thus, z = 0,±π,±2π, . . . , are the
singularities. However, only z = 0 lies inside the contour, as shown in Figure
6.32. We note further that z = 0 is a simple pole, since

lim
z→0

(z− 0)
1

sin z
= 1.

Therefore, the residue is one and we have∮
|z|=1

dz
sin z

= 2πi.

In general, we could have several poles of different orders. For
example, we will be computing∮

|z|=2

dz
z2 − 1

.

The integrand has singularities at z2 − 1 = 0, or z = ±1. Both poles
are inside the contour, as seen in Figure 6.34. One could do a par-
tial fraction decomposition and have two integrals with one pole each.
However, in cases in which we have many poles, we can use the fol-
lowing theorem, known as the Residue Theorem. The Residue Theorem.

The Residue Theorem

Theorem 6.9. Let f (z) be a function which has poles zj, j = 1, . . . , N
inside a simple closed contour C and no other singularities in this re-
gion. Then, ∮

C
f (z) dz = 2πi

N

∑
j=1

Res[ f (z); zj], (6.49)

where the residues are computed using Equation (6.44).

The proof of this theorem is based upon the contours shown in Fig-
ure 6.33. One constructs a new contour C′ by encircling each pole, as
show in the figure. Then one connects a path from C to each circle. In
the figure two paths are shown only to indicate the direction followed
on the cut. The new contour is then obtained by following C and cross-
ing each cut as it is encountered. Then one goes around a circle in the
negative sense and returns along the cut to proceed around C. The
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sum of the contributions to the contour integration involve two inte-
grals for each cut, which will cancel due to the opposing directions.
Thus, we are left with∮

C′
f (z) dz =

∮
C

f (z) dz−
∮

C1

f (z) dz−
∮

C2

f (z) dz−
∮

C3

f (z) dz = 0.

Figure 6.33: A depiction of how one
cuts out poles to prove that the inte-
gral around C is the sum of the integrals
around circles with the poles at the cen-
ter of each.

Of course, the sum is zero because f (z) is analytic in the enclosed
region, since all singularities have be cut out. Solving for

∮
C f (z) dz,

one has that this integral is the sum of the integrals around the sepa-
rate poles, which can be evaluated with single residue computations.
Thus, the result is that

∮
C f (z) dz is 2πi times the sum of the residues.

Example 6.29.
∮
|z|=2

dz
z2−1 .

We first note that there are two poles in this integral since

1
z2 − 1

=
1

(z− 1)(z + 1)
.

In Figure 6.34 we plot the contour and the two poles, denoted by an "x".
Since both poles are inside the contour, we need to compute the residues for
each one. They are both simple poles, so we have

Figure 6.34: Contour for computing∮
|z|=2

dz
z2−1 .

Res
[

1
z2 − 1

; z = 1
]

= lim
z→1

(z− 1)
1

z2 − 1

= lim
z→1

1
z + 1

=
1
2

, (6.50)

and

Res
[

1
z2 − 1

; z = −1
]

= lim
z→−1

(z + 1)
1

z2 − 1

= lim
z→−1

1
z− 1

= −1
2

. (6.51)

Then, ∮
|z|=2

dz
z2 − 1

= 2πi(
1
2
− 1

2
) = 0.

Example 6.30.
∮
|z|=3

z2+1
(z−1)2(z+2) dz.

Figure 6.35: Contour for computing∮
|z|=3

z2+1
(z−1)2(z+2) dz.

In this example there are two poles z = 1,−2 inside the contour. z = 1 is
a second order pole and z = −2 is a simple pole. [See Figure 6.35]. Therefore,
we need the residues at each pole of f (z) = z2+1

(z−1)2(z+2) :

Res[ f (z); z = 1] = lim
z→1

1
1!

d
dz

[
(z− 1)2 z2 + 1

(z− 1)2(z + 2)

]
= lim

z→1

(
z2 + 4z− 1
(z + 2)2

)
=

4
9

. (6.52)
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Res[ f (z); z = −2] = lim
z→−2

(z + 2)
z2 + 1

(z− 1)2(z + 2)

= lim
z→−2

z2 + 1
(z− 1)2

=
5
9

. (6.53)

The evaluation of the integral is found by computing 2πi times the sum of
the residues:∮

|z|=3

z2 + 1
(z− 1)2(z + 2)

dz = 2πi
(

4
9
+

5
9

)
= 2πi.

Example 6.31.
∫ 2π

0
dθ

2+cos θ .
Here we have a real integral in which there are no signs of complex func-

tions. In fact, we could apply methods from our calculus class to do this
integral, attempting to write 1 + cos θ = 2 cos2 θ

2 . However, we do not get
very far. Computation of integrals of functions of

sines and cosines, f (cos θ, sin θ).One trick, useful in computing integrals whose integrand is in the form
f (cos θ, sin θ), is to transform the integration to the complex plane through
the transformation z = eiθ . Then,

cos θ =
eiθ + e−iθ

2
=

1
2

(
z +

1
z

)
,

sin θ =
eiθ − e−iθ

2i
= − i

2

(
z− 1

z

)
.

Under this transformation, z = eiθ , the integration now takes place around
the unit circle in the complex plane. Noting that dz = ieiθ dθ = iz dθ, we
have ∫ 2π

0

dθ

2 + cos θ
=

∮
|z|=1

dz
iz

2 + 1
2

(
z + 1

z

)
= −i

∮
|z|=1

dz
2z + 1

2 (z
2 + 1)

= −2i
∮
|z|=1

dz
z2 + 4z + 1

. (6.54)

We can apply the Residue Theorem to the resulting integral. The singu-
larities occur for z2 + 4z + 1 = 0. Using the quadratic formula, we have the
roots z = −2±

√
3. The location of these poles are shown in Figure 6.36.

Only z = −2 +
√

3 lies inside the integration contour. We will therefore
need the residue of f (z) = −2i

z2+4z+1 at this simple pole:

Res[ f (z); z = −2 +
√

3] = lim
z→−2+

√
3
(z− (−2 +

√
3))

−2i
z2 + 4z + 1

= −2i lim
z→−2+

√
3

z− (−2 +
√

3)
(z− (−2 +

√
3))(z− (−2−

√
3))
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Figure 6.36: Contour for computing∫ 2π
0

dθ
2+cos θ .

= −2i lim
z→−2+

√
3

1
z− (−2−

√
3)

=
−2i

−2 +
√

3− (−2−
√

3)

=
−i√

3

=
−i
√

3
3

. (6.55)

Therefore, we have∫ 2π

0

dθ

2 + cos θ
= −2i

∮
|z|=1

dz
z2 + 4z + 1

= 2πi

(
−i
√

3
3

)
=

2π
√

3
3

.

(6.56)
The Weierstraß substitution method.

Before moving on to further applications, we note that there is an-
other way to compute the integral in the last example. Weierstraß
introduced a substitution method for computing integrals involving
rational functions of sine and cosine. One makes the substitution
t = tan θ

2 and converts the integrand into a rational function of t. You
can show that this substitution implies that

sin θ =
2t

1 + t2 , cos θ =
1− t2

1 + t2 ,

and
dθ =

2dt
1 + t2 .

The interested reader can show this in Problem 8 and apply the method.
In order to see how it works, we will redo the last problem.

Example 6.32. Apply the Weierstraß substitution method to compute
∫ 2π

0
dθ

2+cos θ .∫ 2π

0

dθ

2 + cos θ
=

∫ ∞

−∞

1

2 + 1−t2

1+t2

2dt
1 + t2

= 2
∫ ∞

−∞

dt
t2 + 3

=
2
3

√
3 tan−1

(√
3

3
t

) ∣∣∣∞
−∞

=
2π
√

3
3

. (6.57)
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6.5.6 Infinite Integrals

As our final application of complex integration techniques, we
will turn to the evaluation of infinite integrals of the form

∫ ∞
−∞ f (x) dx.

These types of integrals will appear later in the text and will help to
tie in what seems to be a digression in our study of physics. In this
section we will see that such integrals may be computed by extending
the integration to a contour in the complex plane.

Recall that such integrals are improper integrals and you had seen
them in your calculus classes. The way that one determines if such
integrals exist, or converge, is to compute the integral using a limit:

∫ ∞

−∞
f (x) dx = lim

R→∞

∫ R

−R
f (x) dx.

For example,

∫ ∞

−∞
x dx = lim

R→∞

∫ R

−R
x dx = lim

R→∞

(
R2

2
− (−R)2

2

)
= 0.

However, the integrals
∫ ∞

0 x dx and
∫ 0
−∞ x dx do not exist. Note that

∫ ∞

0
x dx = lim

R→∞

∫ R

0
x dx = lim

R→∞

(
R2

2

)
= ∞.

Therefore,

∫ ∞

−∞
f (x) dx =

∫ 0

−∞
f (x) dx +

∫ ∞

0
f (x) dx

does not exist while limR→∞
∫ R
−R f (x) dx does exist. We will be inter-

ested in computing the latter type of integral. Such an integral is called
the Cauchy Principal Value Integral and is denoted with either a P, PV, The Cauchy principal value integral.

or a bar through the integral:

P
∫ ∞

−∞
f (x) dx = PV

∫ ∞

−∞
f (x) dx = −

∫ ∞

−∞
f (x) dx = lim

R→∞

∫ R

−R
f (x) dx.

(6.58)
If there is a discontinuity in the integral, one can further modify

this definition of principal value integral to bypass the singularity. For
example, if f (x) is continuous on a ≤ x ≤ b and not defined at x = x0,
then ∫ b

a
f (x) dx = lim

ε→0

(∫ x0−ε

a
f (x) dx +

∫ b

x0+ε
f (x) dx

)
.

In our discussions we will be computing integrals over the real line in
the Cauchy principal value sense.
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Example 6.33. Compute
∫ 1
−1

dx
x3 in the Cauchy Principal Value sense. In

this case, f (x) = 1
x3 is not defined at x = 0. So, we have

∫ 1

−1

dx
x3 = lim

ε→0

(∫ −ε

−1

dx
x3 +

∫ 1

ε

dx
x3

)
= lim

ε→0

(
− 1

2x2

∣∣∣−ε

−1
− 1

2x2

∣∣∣1
ε

)
= 0. (6.59)

We now proceed to the evaluation of such principal value integrals
using complex integration methods. We want to evaluate the integral Computation of real integrals by embed-

ding the problem in the complex plane.∫ ∞
−∞ f (x) dx. We will extend this into an integration in the complex

plane. We extend f (x) to f (z) and assume that f (z) is analytic in the
upper half plane (Im(z) > 0) except at isolated poles. We then con-
sider the integral

∫ R
−R f (x) dx as an integral over the interval (−R, R).

We view this interval as a piece of a contour CR obtained by complet-
ing the contour with a semicircle ΓR of radius R extending into the
upper half plane as shown in Figure 6.37. Note, a similar construc-
tion is sometimes needed extending the integration into the lower half
plane (Im(z) < 0) as we will later see.

Figure 6.37: Contours for computing
P
∫ ∞
−∞ f (x) dx.

The integral around the entire contour CR can be computed using
the Residue Theorem and is related to integrations over the pieces of
the contour by ∮

CR

f (z) dz =
∫

ΓR

f (z) dz +
∫ R

−R
f (z) dz. (6.60)

Taking the limit R → ∞ and noting that the integral over (−R, R) is
the desired integral, we have

P
∫ ∞

−∞
f (x) dx =

∮
C

f (z) dz− lim
R→∞

∫
ΓR

f (z) dz, (6.61)

where we have identified C as the limiting contour as R gets large.
Now the key to carrying out the integration is that the second inte-

gral vanishes in the limit. This is true if R| f (z)| → 0 along ΓR as R →
∞. This can be seen by the following argument. We can parametrize
the contour ΓR using z = Reiθ . Then, when | f (z)| < M(R),∣∣∣∣∫ΓR

f (z) dz
∣∣∣∣ =

∣∣∣∣∫ 2π

0
f (Reiθ)Reiθ dθ

∣∣∣∣
≤ R

∫ 2π

0

∣∣∣ f (Reiθ)
∣∣∣ dθ

< RM(R)
∫ 2π

0
dθ

= 2πRM(R). (6.62)

So, if limR→∞ RM(R) = 0, then limR→∞
∫

ΓR
f (z) dz = 0.

We show how this applies some examples.
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Example 6.34.
∫ ∞
−∞

dx
1+x2 .

We already know how to do this integral from our calculus course. We
have that ∫ ∞

−∞

dx
1 + x2 = lim

R→∞

(
2 tan−1 R

)
= 2

(π

2

)
= π.

We will apply the methods of this section and confirm this result. The
needed contours are shown in Figure 6.38 and the poles of the integrand are
at z = ±i.

Figure 6.38: Contour for computing∫ ∞
−∞

dx
1+x2 .

We first note that f (z) = 1
1+z2 goes to zero fast enough on ΓR as R gets

large.

R| f (z)| = R
|1 + R2e2iθ| =

R√
1 + 2R2 cos θ + R4

.

Thus, as R→ ∞, R| f (z)| → 0. So,∫ ∞

−∞

dx
1 + x2 =

∮
C

dz
1 + z2 .

We need only compute the residue at the enclosed pole, z = i.

Res[ f (z); z = i] = lim
z→i

(z− i)
1

1 + z2 = lim
z→i

1
z + i

=
1
2i

.

Then, using the Residue Theorem, we have∫ ∞

−∞

dx
1 + x2 = 2πi

(
1
2i

)
= π.

Example 6.35. P
∫ ∞
−∞

sin x
x dx.

Figure 6.39: Contour for computing
P
∫ ∞
−∞

sin x
x dx.

There are several new techniques that have to be introduced in order to
carry out this integration. We need to handle the pole at z = 0 in a special
way and we need something called Jordan’s Lemma to guarantee that integral
over the contour ΓR vanishes.

For this example the integral is unbounded at z = 0. Constructing the
contours as before we are faced for the first time with a pole lying on the
contour. We cannot ignore this fact. We can proceed with our computation by
carefully going around the pole with a small semicircle of radius ε, as shown
in Figure 6.39. Then our principal value integral computation becomes

P
∫ ∞

−∞

sin x
x

dx = lim
ε→0,R→∞

(∫ −ε

−R

sin x
x

dx +
∫ R

ε

sin x
x

dx
)

. (6.63)

We will also need to rewrite the sine function in term of exponentials in
this integral.

P
∫ ∞

−∞

sin x
x

dx =
1
2i

(
P
∫ ∞

−∞

eix

x
dx− P

∫ ∞

−∞

e−ix

x
dx
)

. (6.64)

We now employ Jordan’s Lemma.
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Jordan’s Lemma

If f (z) converges uniformly to zero as z→ ∞, then

lim
R→∞

∫
CR

f (z)eikz dz = 0

where k > 0 and CR is the upper half of the circle |z| = R.

A similar result applies for k < 0, but one closes the contour in the lower half
plane. [See Section 6.5.8 for the proof of Jordan’s Lemma.]

We now put these ideas together to compute the given integral. According
to Jordan’s lemma, we will need to compute the above exponential integrals
using two different contours. We first consider P

∫ ∞
−∞

eix

x dx. We use the
contour in Figure 6.39. Then we have∮

CR

eiz

z
dz =

∫
ΓR

eiz

z
dz +

∫ −ε

−R

eiz

z
dz +

∫
Cε

eiz

z
dz +

∫ R

ε

eiz

z
dz.

The integral
∮

CR
eiz

z dz vanishes since there are no poles enclosed in the con-
tour! The integral over ΓR will vanish as R gets large according to Jordan’s
Lemma. The sum of the second and fourth integrals is the integral we seek as
ε→ 0 and R→ ∞.

The remaining integral around the small circle has to be done separately.6 6 Note that we have not previously done
integrals in which a singularity lies on
the contour. One can show, as in this
example, that points like this can be ac-
counted for by using using half of a
residue (times 2πi). For the semicircle
Cε you can verify this. The negative sign
comes from going clockwise around the
semicircle.

We have∫
Cε

eiz

z
dz =

∫ 0

π

exp(iεeiθ)

εeiθ iεeiθ dθ = −
∫ π

0
i exp(iεeiθ) dθ.

Taking the limit as ε goes to zero, the integrand goes to i and we have∫
Cε

eiz

z
dz = −πi.

So far, we have that

P
∫ ∞

−∞

eix

x
dx = − lim

ε→0

∫
Cε

eiz

z
dz = πi.

We can compute P
∫ ∞
−∞

e−ix

x dx in a similar manner, being careful with the
sign changes due to the orientations of the contours as shown in Figure 6.40.
In this case, we find the same value

P
∫ ∞

−∞

e−ix

x
dx = πi.

Figure 6.40: Contour in the lower half
plane for computing P

∫ ∞
−∞

e−ix

x dx.

Finally, we can compute the original integral as

P
∫ ∞

−∞

sin x
x

dx =
1
2i

(
P
∫ ∞

−∞

eix

x
dx− P

∫ ∞

−∞

e−ix

x
dx
)

=
1
2i

(πi + πi)

= π. (6.65)
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Example 6.36. Evaluate
∮
|z|=1

dz
z2+1 .

x

y
i

−i

C
C+

C−

Figure 6.41: Example with poles on con-
tour.

In this example there are two simple poles, z = ±i lying on the contour,
as seen in Figure 6.41. This problem is similar to Problem 1c, except we will
do it using contour integration instead of a parametrization. We bypass the
two poles by drawing small semicircles around them. Since the poles are not
included in the closed contour, then the Residue Theorem tells us that the
integral nd the path vanishes. We can write the full integration as a sum over
three paths, C± for the semicircles and C for the original contour with the
poles cut out. Then we take the limit as the semicircle radii go to zero. So,

0 =
∫

C

dz
z2 + 1

+
∫

C+

dz
z2 + 1

+
∫

C−

dz
z2 + 1

.

The integral over the semicircle around i can be done using the parametriza-
tion z = i + εeiθ . Then z2 + 1 = 2iεeiθ + ε2e2iθ . This gives∫

C+

dz
z2 + 1

= lim
ε→0

∫ −π

0

iεeiθ

2iεeiθ + ε2e2iθ dθ =
1
2

∫ −π

0
dθ = −π

2
.

As in the last example, we note that this is just πi times the residue,
Res

[
1

z2+1 ; z = i
]
= 1

2i . Since the path is traced clockwise, we find the con-
tribution is −πiRes = −π

2 , which is what we obtained above. A Similar
computation will give the contribution from z = −i as π

2 . Adding these val-
ues gives the total contribution from C± as zero. So, the final result is that∮

|z|=1

dz
z2 + 1

= 0.

Example 6.37. Evaluate
∫ ∞
−∞

eax

1+ex dx, for 0 < a < 1.
In dealing with integrals involving exponentials or hyperbolic functions it

is sometimes useful to use different types of contours. This example is one
such case. We will replace x with z and integrate over the contour in Figure
6.42. Letting R → ∞, the integral along the real axis is the integral that
we desire. The integral along the path for y = 2π leads to a multiple of this
integral since z = x + 2πi along this path. Integration along the vertical
paths vanish as R→ ∞.

x

y

R

R + 2πi−R + 2πi

−R

Figure 6.42: Example using a rectangular
contour.

Thus, we are left with the following computation:∮
C

eaz

1 + ez dz = lim
R→∞

(∫ R

−R

eax

1 + ex dx− e2πia
∫ R

−R

eax

1 + ex dx
)

= (1− e2πia)
∫ ∞

−∞

eax

1 + ex dx. (6.66)

We need only evaluate the left contour integral using the Residue Theorem.
The poles are found from

1 + ez = 0.

Within the contour, this is satisfied by z = iπ. So,

Res
[

eaz

1 + ez ; z = iπ
]
= lim

z→iπ
(z− iπ)

eaz

1 + ez = −eiπa.
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Applying the Residue Theorem, we have

(1− e2πia)
∫ ∞

−∞

eax

1 + ex dx = −2πieiπa.

Therefore, we have found that

∫ ∞

−∞

eax

1 + ex dx =
−2πieiπa

1− e2πia =
π

sin πa
, 0 < a < 1.

6.5.7 Integration Over Multivalued Functions

In the last chapter we found that some complex functions in-
herently possess multivaluedness; i.e., such functions do not evalu-
ate to a single value, but have many values. The key examples were
f (z) = z1/n and f (z) = ln z. The nth roots have n distinct values and
logarithms have an infinite number of values as determined by the
range of the resulting arguments. We mentioned that the way to han-
dle multivaluedness is to assign different branches to these functions,
introduce a branch cut and glue them together at the branch cuts to
form Riemann surfaces. In this way we can draw continuous paths
along the Riemann surfaces as we move from on Riemann sheet to
another.

Before we do examples of contour integration involving multival-
ued functions, lets first try to get a handle on multivaluedness in a
simple case. We will consider the square root function,

w = z1/2 = r1/2ei( θ
2+kπ), k = 0, 1.

There are two branches, corresponding to each k value. If we follow
a path not containing the origin, then we stay in the same branch, so
the final argument (θ) will be equal to the initial argument. However,
if we follow a path that encloses the origin, this will not be true. In
particular, for an initial point on the unit circle, z0 = eiθ0 , we have
its image as w0 = eiθ0/2. However, if we go around a full revolution,
θ = θ0 + 2π, then

z1 = eiθ0+2πi = eiθ0 ,

but
w1 = e(iθ0+2πi)/2 = eiθ0/2eπi 6= w0.

Here we obtain a final argument (θ) that is not be equal to the initial
argument! Somewhere, we have crossed from one branch to another.
Points, such as the origin in this example, are called branch points.
Actually, there are two branch points, because we can view the closed
path around the origin as a closed path around complex infinity in the
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compactified complex plane. However, we will not go into that at this
time.

We can show this in the following figures. In Figure 6.43 we show
how the points A-E are mapped from the z-plane into the w-plane
under the square root function for the principal branch, k = 0. As we
trace out the unit circle in the z-plane, we only trace out a semicircle
in the w-plane. If we consider the branch k = 1, we then trace out a
semicircle in the lower half plane, as shown in Figure 6.44 following
the points from F to J.

x

y

A

B

C

D

E
x

y

A

B
C

D

E

Figure 6.43: In this figure we show how
points on the unit circle in the z-plane
are mapped to points in the w-plane un-
der the square root function.

x

y

F

G

H

I

J
x

y

F

G
H

I

J

Figure 6.44: In this figure we show how
points on the unit circle in the z-plane
are mapped to points in the w-plane un-
der the square root function.

x

y

A

B

C

D

E

x

y

A

B
C

D

E

x

y

F

G

H

I

J

x

y

F

G
H

I

J

Figure 6.45: In this figure we show how
points on the unit circle in the z-plane
are mapped to points in the w-plane un-
der the square root function.

We can combine these into one mapping depicting how the two
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complex planes corresponding to each branch provide a mapping to
the w-plane. This is shown in Figure 6.45. A common way to draw
this domain, which looks like two separate complex planes, would be
to glue them together. Imagine cutting each plane along the positive
x-axis, extending between the two branch points, z = 0 and z = ∞.
As one approaches the cut on the principal branch, then one can move
onto the glued second branch. Then one continues around the ori-
gin on this branch until one once again reaches the cut. This cut is
glued to the principal branch in such a way that the path returns to
its starting point. The resulting surface we obtain is the Riemann sur-
face shown in Figure 6.46. Note that there is nothing that forces us to
place the branch cut at a particular place. For example, the branch cut
could be along the positive real axis, the negative real axis, or any path
connecting the origin and complex infinity.

Figure 6.46: Riemann surface for f (z) =
z1/2.

We now turn to a couple of examples of integrals of multivalued
functions.

Example 6.38. Evaluate
∫ ∞

0

√
x

1+x2 dx.

We consider the contour integral
∮

C

√
z

1+z2 dz.
The first thing we can see in this problem is the square root function in

the integrand. Being there is a multivalued function, we locate the branch
point and determine where to draw the branch cut. In Figure 6.47 we show
the contour that we will use in this problem. Note that we picked the branch
cut along the positive x-axis.

x

y

i

−i

CR

Cε

Figure 6.47: An example of a contour
which accounts for a branch cut.

We take the contour C to be positively oriented, being careful to enclose
the two poles and to hug the branch cut. It consists of two circles. The outer
circle CR is a circle of radius R and the inner circle Cε will have a radius of
ε. The sought answer will be obtained by letting R → ∞ and ε → 0. On the
large circle we have that the integrand goes to zero fast enough as R → ∞.
The integral around the small circle vanishes as ε → 0. We can see this by
parametrizing the circle as z = εeiθ for θ ∈ [0, 2π] :∮

Cε

√
z

1 + z2 dz =
∫ 2π

0

√
εeiθ

1 + (εeiθ)2 iεeiθdθ

= iε3/2
∫ 2π

0

e3iθ/2

1 + (ε2e2iθ)
dθ. (6.67)

It should now be easy to see that as ε→ 0 this integral vanishes.
The integral above the branch cut is the one we are seeking,

∫ ∞
0

√
x

1+x2 dx.
The integral under the branch cut, where z = re2πi, is∫ √

z
1 + z2 dz =

∫ 0

∞

√
re2πi

1 + r2e4πi dr

=
∫ ∞

0

√
r

1 + r2 dr. (6.68)

We note that this is the same as that above the cut.
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Up to this point, we have that the contour integral, as R→ ∞ and ε→ 0
is ∮

C

√
z

1 + z2 dz = 2
∫ ∞

0

√
x

1 + x2 dx.

In order to finish this problem, we need the residues at the two simple poles.

Res
[ √

z
1 + z2 ; z = i

]
=

√
i

2i
=

√
2

4
(1 + i),

Res
[ √

z
1 + z2 ; z = −i

]
=

√
−i
−2i

=

√
2

4
(1− i).

So,

2
∫ ∞

0

√
x

1 + x2 dx = 2πi

(√
2

4
(1 + i) +

√
2

4
(1− i)

)
= π
√

2.

Finally, we have the value of the integral that we were seeking,

∫ ∞

0

√
x

1 + x2 dx =
π
√

2
2

.

Example 6.39. Compute
∫ ∞

a f (x) dx using contour integration involving
logarithms.7

7 This was originally published in
Neville, E. H., 1945, "Indefinite inte-
gration by means of residues". The
Mathematical Student, 13, 16-35, and
discussed in Duffy, D. G., Transform
Methods for Solving Partial Differential
Equations, 1994.

In this example we will apply contour integration to the integral∮
C

f (z) ln(a− z) dz

for the contour shown in Figure 6.48.

x

y

C1

C2

C3

C4

Figure 6.48: Contour needed to compute∮
C f (z) ln(a− z) dz.

We will assume that f (z) is single valued and vanishes as |z| → ∞. We
will choose the branch cut to span from the origin along the positive real axis.
Employing the Residue Theorem and breaking up the integrals over the pieces
of the contour in Figure 6.48, we have schematically that

2πi ∑ Res[ f (z) ln(a− z)] =
(∫

C1

+
∫

C2

+
∫

C3

+
∫

C4

)
f (z) ln(a− z) dz.

First of all, we need to assume that f (z) is well behaved at z = a and
vanishes fast enough as |z| = R→ ∞ Then the integrals over C2 and C4 will
vanish. For example, for the path C4, we let z = a + εeiθ , 0 < θ < 2π. Then,∫

C4

f (z) ln(a− z) dz. = lim
ε→0

∫ 0

2π
f (a + εeiθ) ln(εeiθ)iεeiθ dθ.

If f (a) is well behaved, then we only need to show that limε→0 ε ln ε = 0.
This is left to the reader.

Similarly, we consider the integral over C2 as R gets large,∫
C2

f (z) ln(a− z) dz = lim
R→∞

∫ 2π

0
f (Reiθ) ln(Reiθ)iReiθ dθ.
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Thus, we need only require that

lim
R→∞

R ln R| f (Reiθ)| = 0.

Next, we consider the two straight line pieces. For C1, the integration of
the real axis occurs for z = x, so∫

C1

f (z) ln(a− z) dz =
∫ ∞

a
f (x) ln(a− x) dz.

However, integration over C3 requires noting that we need the branch for the
logarithm such that ln z = ln(a− x) + 2πi. Then,∫

C3

f (z) ln(a− z) dz =
∫ a

∞
f (x)[ln(a− x) + 2πi] dz.

Combining these results, we have∫ ∞

a
f (x) dx = −∑ Res[ f (z) ln(a− z)].

Example 6.40. Compute
∫ ∞

1
dx

4x2−1 .
We can apply the last example to this case. Namely,∫ ∞

1

dx
4x2 − 1

= −Res
[

ln(1− z)
4z2 − 1

; z =
1
2

]
− Res

[
ln(1− z)
4z2 − 1

; z = −1
2

]
= −

ln 1
2

4
+

ln 3
2

4
=

ln 3
4

. (6.69)

6.5.8 Appendix: Jordan’s Lemma

For completeness, we prove Jordan’s Lemma.

Theorem 6.10. If f (z) converges uniformly to zero as z→ ∞, then

lim
R→∞

∫
CR

f (z)eikz dz = 0

where k > 0 and CR is the upper half of the circle |z| = R.

Proof. We consider the integral

IR =
∫

CR

f (z)eikz dz,

where k > 0 and CR is the upper half of the circle |z| = R in the
complex plane. Let z = Reiθ be a parametrization of CR. Then,

IR =
∫ π

0
f (Reiθ)eikR cos θ−aR sin θ iReiθ dθ.

Since
lim
|z|→∞

f (z) = 0, 0 ≤ arg z ≤ π,
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then for large |R|, | f (z)| < ε for some ε > 0. Then,

|IR| =

∣∣∣∣∫ π

0
f (Reiθ)eikR cos θ−aR sin θ iReiθ dθ

∣∣∣∣
≤

∫ π

0

∣∣∣ f (Reiθ)
∣∣∣ ∣∣∣eikR cos θ

∣∣∣ ∣∣∣e−aR sin θ
∣∣∣ ∣∣∣iReiθ

∣∣∣ dθ

≤ εR
∫ π

0
e−aR sin θ dθ

= 2εR
∫ π/2

0
e−aR sin θ dθ. (6.70)

The last integral still cannot be computed, but we can get a bound
on it over the range θ ∈ [0, π/2]. Note that

sin θ ≥ π

2
θ, θ ∈ [0, π/2].

Therefore, we have

|IR| ≤ 2εR
∫ π/2

0
e−2aRθ/π dθ =

2εR
2aR/π

(1− e−aR).

For large R we have

lim
R→∞

|IR| ≤
πε

a
.

So, as ε→ 0, the integral vanishes.

Problems

1. Write the following in standard form.

a. (4− 7i)(−2 + 3i).

b. (1− i)3.

c. 5+2i
1+i .

2. Write the following in polar form, z = reiθ .

a. i− 1.

b. −2i.

c.
√

3 + 3i.

3. Write the following in rectangular form, z = a + ib.

a. 10eiπ/6.

b.
√

2e5iπ/4.

c. (1− i)100.

4. Find all z such that z4 = 16i. Write the solutions in rectangular
form, z = a + ib, with no decimal approximation or trig functions.
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5. Show that sin(x + iy) = sin x cosh y + i cos x sinh y using trigono-
metric identities and the exponential forms of these functions.

6. Find all z such that cos z = 2, or explain why there are none. You
will need to consider cos(x + iy) and equate real and imaginary parts
of the resulting expression similar to problem 5.

7. Find the principal value of ii. Rewrite the base, i, as an exponential
first.

8. Consider the circle |z− 1| = 1.

a. Rewrite the equation in rectangular coordinates by setting
z = x + iy.

b. Sketch the resulting circle using part a.

c. Consider the image of the circle under the mapping f (z) =

z2, given by |z2 − 1| = 1.

i. By inserting z = reiθ = r(cos θ + i sin θ), find the equation
of the image curve in polar coordinates.

ii. Sketch the image curve. You may need to refer to your
Calculus II text for polar plots. [Maple might help.]

9. Find the real and imaginary parts of the functions:

a. f (z) = z3.

b. f (z) = sinh(z).

c. f (z) = cos z.

10. Find the derivative of each function in Problem 9 when the deriva-
tive exists. Otherwise, show that the derivative does not exist.

11. Let f (z) = u + iv be differentiable. Consider the vector field given
by F = vi + uj. Show that the equations ∇ · F = 0 and ∇× F = 0 are
equivalent to the Cauchy-Riemann equations. [You will need to recall
from multivariable calculus the del operator, ∇ = i ∂

∂x + j ∂
∂y + k ∂

∂z .]

12. What parametric curve is described by the function

γ(t) = (3t + 4) + i(t− 6),

0 ≤ t ≤ 1? [Hint: What would you do if you were instead considering
the parametric equations x = 3t + 4 and y = t− 6?]

13. Write the equation that describes the circle of radius 2 which is
centered at z = 3− 2i in a) Cartesian form (in terms of x and y); b)
polar form (in terms of θ and r); c) complex form (in terms of z, r, and
eiθ).
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14. Consider the function u(x, y) = x3 − 3xy2.

a. Show that u(x, y) is harmonic; i.e., ∇2u = 0.

b. Find its harmonic conjugate, v(x, y).

c. Find a differentiable function, f (z), for which u(x, y) is the
real part.

d. Determine f ′(z) for the function in part c. [Use f ′(z) = ∂u
∂x +

i ∂v
∂x and rewrite your answer as a function of z.]

15. Evaluate the following integrals:

a.
∫

C z dz, where C is the parabola y = x2 from z = 0 to z =

1 + i.

b.
∫

C f (z) dz, where f (z) = z + 2z and C is the path from z = 0
to z = 1 + 2i consisting of two line segments from z = 0 to
z = 1 and then z = 1 to z = 1 + 2i.

c.
∫

C
1

z2+4 dz for C the positively oriented circle, |z| = 2. [Hint:
Parametrize the circle as z = 2eiθ , multiply numerator and
denominator by e−iθ , and put in trigonometric form.]

16. Let C be the ellipse 9x2 + 4y2 = 36 traversed once in the counter-
clockwise direction. Define

g(z0) =
∫

C

z2 + z + 1
z− z0

dz.

Find g(i) and g(4i). [Hint: Sketch the ellipse in the complex plane. Use
the Cauchy Integral Theorem with an appropriate f (z), of Cauchy’s
Theorem if z0 is outside the contour.]

17. Show that

∫
C

dz
(z− 1− i)n+1 =

{
0, n 6= 0,

2πi, n = 0,

for C the boundary of the square 0 ≤ x ≤ 2, 0 ≤ y ≤ 2 taken coun-
terclockwise. [Hint: Use the fact that contours can be deformed into
simpler shapes (like a circle) as long as the integrand is analytic in the
region between them. After picking a simpler contour, integrate using
parametrization.]

18. Show that for g and h analytic functions at z0, with g(z0) 6= 0,
h(z0) = 0, and h′(z0) 6= 0,

Res
[

g(z)
h(z)

; z0

]
=

g(z0)

h′(z0)
.

19. For the following determine if the given point is a removable
singularity, an essential singularity, or a pole (indicate its order).
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a. 1−cos z
z2 , z = 0.

b. sin z
z2 , z = 0.

c. z2−1
(z−1)2 , z = 1.

d. ze1/z, z = 0.

e. cos π
z−π , z = π.

20. Find the Laurent series expansion for f (z) = sinh z
z3 about z =

0. [Hint: You need to first do a MacLaurin series expansion for the
hyperbolic sine.]

21. Find series representations for all indicated regions.

a. f (z) = z
z−1 , |z| < 1, |z| > 1.

b. f (z) = 1
(z−i)(z+2) , |z| < 1, 1 < |z| < 2, |z| > 2. [Hint: Use

partial fractions to write this as a sum of two functions first.]

22. Find the residues at the given points:

a. 2z2+3z
z−1 at z = 1.

b. ln(1+2z)
z at z = 0.

c. cos z
(2z−π)3 at z = π

2 .

23. Consider the integral
∫ 2π

0
dθ

5−4 cos θ .

a. Evaluate this integral by making the substitution 2 cos θ =

z + 1
z , z = eiθ and using complex integration methods.

b. In the 1800’s Weierstrass introduced a method for computing
integrals involving rational functions of sine and cosine. One
makes the substitution t = tan θ

2 and converts the integrand
into a rational function of t. Note that the integration around
the unit circle corresponds to t ∈ (−∞, ∞).

i. Show that

sin θ =
2t

1 + t2 , cos θ =
1− t2

1 + t2 .

ii. Show that
dθ =

2dt
1 + t2

iii. Use the Weierstrass substitution to compute the above in-
tegral.

24. Do the following integrals.

a. ∮
|z−i|=3

ez

z2 + π2 dz.
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b. ∮
|z−i|=3

z2 − 3z + 4
z2 − 4z + 3

dz.

c. ∫ ∞

−∞

sin x
x2 + 4

dx.

[Hint: This is Im
∫ ∞
−∞

eix

x2+4 dx.]

25. Evaluate the integral
∫ ∞

0
(ln x)2

1+x2 dx.
[Hint: Replace x with z = et and use the rectangular contour in

Figure 6.49 with R→ ∞.

x

y

R

R + πi−R + πi

−R

Figure 6.49: Example using a rectangular
contour.

26. Do the following integrals for fun!

a. For C the boundary of the square |x| ≤ 2, |y| ≤ 2,∮
C

dz
z(z− 1)(z− 3)2 .

b. ∫ π

0

sin2 θ

13− 12 cos θ
dθ.

c. ∫ ∞

−∞

dx
x2 + 5x + 6

.

d. ∫ ∞

0

cos πx
1− 9x2 dx.

e. ∫ ∞

0

dx
(x2 + 9)(1− x)2 .

f. ∫ ∞

0

√
x

(1 + x)2 dx.

g. ∫ ∞

0

√
x

(1 + x)2 dx.



7
Transform Techniques in Physics

“There is no branch of mathematics, however abstract, which may not some day be applied to phenomena of the real
world.”, Nikolai Lobatchevsky (1792-1856)

7.1 Introduction

Some of the most powerful tools for solving problems in physics
are transform methods. The idea is that one can transform the prob- In this chapter we will explore the use

of integral transforms. Given a function
f (x), we define an integral transform to
a new function F(k) as

F(k) =
∫ b

a
f (x)K(x, k) dx.

Here K(x, k) is called the kernel of the
transform. We will concentrate specifi-
cally on Fourier transforms,

f̂ (k) =
∫ ∞

−∞
f (x)eikx dx,

and Laplace transforms

F(s) =
∫ ∞

0
f (t)e−st dt.

lem at hand to a new problem in a different space, hoping that the
problem in the new space is easier to solve. Such transforms appear in
many forms.

As we had seen in Chapter 3 and will see later in the book, the solu-
tions of a linear partial differential equations can be found by using the
method of separation of variables to reduce solving PDEs to solving
ODEs. We can also use transform methods to transform the given PDE
into ODEs or algebraic equations. Solving these equations, we then
construct solutions of the PDE (or ODE) using an inverse transform.
A schematic of these processes is shown below and we will describe
in this chapter how one can use Fourier and Lapace transforms to this
effect.

PDE ODE// AlgEQ//kkkk jj

7.1.1 Example 1 - The Linearized KdV Equation

As a relatively simple example, we consider the linearized Kortweg-
deVries (KdV) equation:

ut + cux + βuxxx = 0, −∞ < x < ∞. (7.1)
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This equation governs the propagation of some small amplitude water
waves. Its nonlinear counterpart has been at the center of attention in
the last 40 years as a generic nonlinear wave equation. The nonlinear counterpart to this equa-

tion is the Kortweg-deVries (KdV) equa-
tion: ut + 6uux + uxxx = 0. This equa-
tion was derived by Diederik Johannes
Korteweg (1848-1941) and his student
Gustav de Vries (1866-1934). This equa-
tion governs the propagation of traveling
waves called solitons. These were first
observed by John Scott Russell (1808-
1882) and were the source of a long de-
bate on the existence of such waves. The
history of this debate is interesting and
the KdV turned up as a generic equation
in many other fields in the latter part of
the last century leading to many papers
on nonlinear evolution equations.

We seek solutions that oscillate in space. So, we assume a solution
of the form

u(x, t) = A(t)eikx. (7.2)

Such behavior was seen in Chapters 3 and 6 for the wave equation for
vibrating strings. In that case, we found plane wave solutions of the
form eik(x±ct), which we could write as ei(kx±ωt) by defining ω = kc.
We further note that one often seeks complex solutions as a linear com-
bination of such forms and then takes the real part in order to obtain
physical solutions. In this case, we will find plane wave solutions for
which the angular frequency ω = ω(k) is a function of the wavenum-
ber.

Inserting the guess into the linearized KdV equation, we find that

dA
dt

+ i(ck− βk3)A = 0. (7.3)

Thus, we have converted the problem of seeking a solution of the par-
tial differential equation into seeking a solution to an ordinary differ-
ential equation. This new problem is easier to solve. In fact, given an
initial value, A(0), we have

A(t) = A(0)e−i(ck−βk3)t. (7.4)

Therefore, the solution of the partial differential equation is

u(x, t) = A(0)eik(x−(c−βk2)t). (7.5)

We note that this solution takes the form ei(kx−ωt), where

ω = ck− βk3.

In general, the equation ω = ω(k) gives the angular frequency as a A dispersion relation is an expression
giving the angular frequency as a func-
tion of the wave number, ω = ω(k).

function of the wave number, k, and is called a dispersion relation. For
β = 0, we see that c is nothing but the wave speed. For β 6= 0, the
wave speed is given as

v =
ω

k
= c− βk2.

This suggests that waves with different wave numbers will travel at dif-
ferent speeds. Recalling that wave numbers are related to wavelengths,
k = 2π

λ , this means that waves with different wavelengths will travel
at different speeds. For example, an initial localized wave packet will
not maintain its shape. It is said to disperse, as the component waves
of differing wavelengths will tend to part company.
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For a general initial condition, we write the solutions to the lin-
earized KdV as a superposition of plane waves. We can do this since
the partial differential equation is linear. This should remind you of
what we had done when using separation of variables. We first sought
product solutions and then took a linear combination of the product
solutions to obtain the general solution.

For this problem, we will sum over all wave numbers. The wave
numbers are not restricted to discrete values. We instead have a con-
tinuous range of values. Thus, “summing” over k means that we have
to integrate over the wave numbers. Thus, we have the general solu-
tion1 1 The extra 2π has been introduced to

be consistent with the definition of the
Fourier transform which is given later in
the chapter.

u(x, t) =
1

2π

∫ ∞

−∞
A(k, 0)eik(x−(c−βk2)t) dk. (7.6)

Note that we have indicated that A a function of k. This is similar
to introducing the An’s and Bn’s in the series solution for waves on a
string.

How do we determine the A(k, 0)’s? We introduce an initial condi-
tion. Let u(x, 0) = f (x). Then, we have

f (x) = u(x, 0) =
1

2π

∫ ∞

−∞
A(k, 0)eikx dk. (7.7)

Thus, given f (x), we seek A(k, 0). In this chapter we will see that

A(k, 0) =
∫ ∞

−∞
f (x)e−ikx dx.

This is what is called the Fourier transform of f (x). It is just one of the
so-called integral transforms that we will consider in this chapter.

In Figure 7.1 we summarize the transform scheme. One can use
methods like separation of variables to solve the partial differential
equation directly, evolving the initial condition u(x, 0) into the solution
u(x, t) at a later time.

u(x, 0)

PDE

u(x, t)

FT

IFT

A(k, 0)

ODE

A(k, t)

Figure 7.1: Schematic of using Fourier
transforms to solve a linear evolution
equation.

The transform method works as follows. Starting with the initial
condition, one computes its Fourier Transform (FT) as2 2 Note: The Fourier transform as used

in this section and the next section are
defined slightly differently than how we
will define them later. The sign of the
exponentials has been reversed.

A(k, 0) =
∫ ∞

−∞
f (x)e−ikx dx.
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Applying the transform on the partial differential equation, one ob-
tains an ordinary differential equation satisfied by A(k, t) which is
simpler to solve than the original partial differential equation. Once
A(k, t) has been found, then one applies the Inverse Fourier Transform
(IFT) to A(k, t) in order to get the desired solution:

u(x, t) =
1

2π

∫ ∞

−∞
A(k, t)eikx dk

=
1

2π

∫ ∞

−∞
A(k, 0)eik(x−(c−βk2)t) dk. (7.8)

7.1.2 Example 2 - The Free Particle Wave Function

A more familiar example in physics comes from quantum me-
chanics. The Schrödinger equation gives the wave function Ψ(x, t)
for a particle under the influence of forces, represented through the
corresponding potential function V(x). The one dimensional time de-
pendent Schrödinger equation is given by The one dimensional time dependent

Schrödinger equation.

ih̄Ψt = −
h̄2

2m
Ψxx + VΨ. (7.9)

We consider the case of a free particle in which there are no forces,
V = 0. Then we have

ih̄Ψt = −
h̄2

2m
Ψxx. (7.10)

Taking a hint from the study of the linearized KdV equation, we
will assume that solutions of Equation (7.10) take the form

Ψ(x, t) =
1

2π

∫ ∞

−∞
φ(k, t)eikx dk.

[Here we have opted to use the more traditional notation, φ(k, t) in-
stead of A(k, t) as above.]

Inserting the expression for Ψ(x, t) into (7.10), we have

ih̄
∫ ∞

−∞

dφ(k, t)
dt

eikx dk = − h̄2

2m

∫ ∞

−∞
φ(k, t)(ik)2eikx dk.

Since this is true for all t, we can equate the integrands, giving

ih̄
dφ(k, t)

dt
=

h̄2k2

2m
φ(k, t).

As with the last example, we have obtained a simple ordinary differ-
ential equation. The solution of this equation is given by

φ(k, t) = φ(k, 0)e−i h̄k2
2m t.
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Applying the inverse Fourier transform, the general solution to the
time dependent problem for a free particle is found as

Ψ(x, t) =
1

2π

∫ ∞

−∞
φ(k, 0)eik(x− h̄k

2m t) dk.

We note that this takes the familiar form

Ψ(x, t) =
1

2π

∫ ∞

−∞
φ(k, 0)ei(kx−ωt) dk,

where the dispersion relation is found as

ω =
h̄k2

2m
.

The wave speed is given as

v =
ω

k
=

h̄k
2m

.

As a special note, we see that this is not the particle velocity! Recall
that the momentum is given as p = h̄k.3 So, this wave speed is v = p

2m , 3 Since p = h̄k, we also see that the dis-
persion relation is given by ω = h̄k2

2m =
p2

2mh̄ = E
h̄ .

which is only half the classical particle velocity! A simple manipula-
tion of this result will clarify the “problem”.

We assume that particles can be represented by a localized wave
function. This is the case if the major contributions to the integral are
centered about a central wave number, k0. Thus, we can expand ω(k)
about k0:

ω(k) = ω0 + ω′0(k− k0)t + . . . . (7.11)

Here ω0 = ω(k0) and ω′0 = ω′(k0). Inserting this expression into the
integral representation for Ψ(x, t), we have

Ψ(x, t) =
1

2π

∫ ∞

−∞
φ(k, 0)ei(kx−ω0t−ω′0(k−k0)t+...) dk,

We now make the change of variables, s = k − k0 and rearrange the
resulting factors to find

Ψ(x, t) ≈ 1
2π

∫ ∞

−∞
φ(k0 + s, 0)ei((k0+s)x−(ω0+ω′0s)t) ds

=
1

2π
ei(−ω0t+k0ω′0t)

∫ ∞

−∞
φ(k0 + s, 0)ei(k0+s)(x−ω′0t) ds

= ei(−ω0t+k0ω′0t)Ψ(x−ω′0t, 0). (7.12)

What we have found is that for an initially localized wave packet,
Ψ(x, 0) with wave numbers grouped around k0 the wave function,Ψ(x, t),
is a translated version of the initial wave function, up to a phase fac-
tor. In quantum mechanics we are more interested in the probability
density for locating a particle, so from

|Ψ(x, t)|2 = |Ψ(x−ω′0t, 0)|2
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we see that the “velocity of the wave packet” is found to be

ω′0 =
dω

dk

∣∣∣
k=k0

=
h̄k
m

.

This corresponds to the classical velocity of the particle (vpart = p/m).
Thus, one usually defines ω′0 to be the group velocity, Group and phase velocities, vg = dω

dk ,
vp = ω

k .

vg =
dω

dk

and the former velocity as the phase velocity,

vp =
ω

k
.

7.1.3 Transform Schemes

These examples have illustrated one of the features of trans-
form theory. Given a partial differential equation, we can transform
the equation from spatial variables to wave number space, or time
variables to frequency space. In the new space the time evolution is
simpler. In these cases, the evolution is governed by an ordinary dif-
ferential equation. One solves the problem in the new space and then
transforms back to the original space. This is depicted in Figure 7.2
for the Schrödinger equation and was shown in Figure 7.1 for the lin-
earized KdV equation.

Figure 7.2: The scheme for solving
the Schrödinger equation using Fourier
transforms. The goal is to solve for
Ψ(x, t) given Ψ(x, 0). Instead of a direct
solution in coordinate space (on the left
side), one can first transform the initial
condition obtaining φ(k, 0) in wave num-
ber space. The governing equation in the
new space is found by transforming the
PDE to get an ODE. This simpler equa-
tion is solved to obtain φ(k, t). Then an
inverse transform yields the solution of
the original equation.

This is similar to the solution of the system of ordinary differential
equations in Chapter 3, ẋ = Ax. In that case we diagonalized the
system using the transformation x = Sy. This lead to a simpler system
ẏ = Λy. Solving for y, we inverted the solution to obtain x. Similarly,
one can apply this diagonalization to the solution of linear algebraic
systems of equations. The general scheme is shown in Figure 7.3.

Similar transform constructions occur for many other type of prob-
lems. We will end this chapter with a study of Laplace transforms,



transform techniques in physics 323

which are useful in the study of initial value problems, particularly
for linear ordinary differential equations with constant coefficients. A
similar scheme for using Laplace transforms is depicted in Figure 7.25.

Figure 7.3: The scheme for solving the
linear system Ax = b. One finds a trans-
formation between x and y of the form
x = Sy which diagonalizes the system.
The resulting system is easier to solve
for y. Then one uses the inverse trans-
formation to obtain the solution to the
original problem. Also, this scheme ap-
plies to solving the ODE system ẋ = Ax
as we had seen in Chapter 3.

In this chapter we will turn to the study of Fourier transforms.
These will provide an integral representation of functions defined on
the real line. Such functions can also represent analog signals. Analog
signals are continuous signals which can be represented as a sum over
a continuous set of frequencies, as opposed to the sum over discrete
frequencies, which Fourier series were used to represent in an ear-
lier chapter. We will then investigate a related transform, the Laplace
transform, which is useful in solving initial value problems such as
those encountered in ordinary differential equations.

7.2 Complex Exponential Fourier Series

We first recall from Chapter 4 the trigonometric Fourier series
representation of a function defined on [−π, π] with period 2π. The
Fourier series is given by

f (x) ∼ a0

2
+

∞

∑
n=1

(an cos nx + bn sin nx) , (7.13)

where the Fourier coefficients were found as

an =
1
π

∫ π

−π
f (x) cos nx dx, n = 0, 1, . . . ,

bn =
1
π

∫ π

−π
f (x) sin nx dx, n = 1, 2, . . . . (7.14)

In order to derive the exponential Fourier series, we replace the
trigonometric functions with exponential functions and collect like ex-
ponential terms. This gives

f (x) ∼ a0

2
+

∞

∑
n=1

[
an

(
einx + e−inx

2

)
+ bn

(
einx − e−inx

2i

)]
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=
a0

2
+

∞

∑
n=1

(
an − ibn

2

)
einx +

∞

∑
n=1

(
an + ibn

2

)
e−inx. (7.15)

The coefficients of the complex exponentials can be rewritten by
defining

cn =
1
2
(an + ibn), n = 1, 2, . . . . (7.16)

This implies that

c̄n =
1
2
(an − ibn), n = 1, 2, . . . . (7.17)

So far the representation is rewritten as

f (x) ∼ a0

2
+

∞

∑
n=1

c̄neinx +
∞

∑
n=1

cne−inx.

Re-indexing the first sum, by introducing k = −n, we can write

f (x) ∼ a0

2
+
−∞

∑
k=−1

c̄−ke−ikx +
∞

∑
n=1

cne−inx.

Since k is a dummy index, we replace it with a new n as

f (x) ∼ a0

2
+
−∞

∑
n=−1

c̄−ne−inx +
∞

∑
n=1

cne−inx.

We can now combine all of the terms into a simple sum. We first
define cn for negative n’s by

cn = c̄−n, n = −1,−2, . . . .

Letting c0 = a0
2 , we can write the complex exponential Fourier series rep-

resentation as

f (x) ∼
∞

∑
n=−∞

cne−inx, (7.18)

where

cn =
1
2
(an + ibn), n = 1, 2, . . .

cn =
1
2
(a−n − ib−n), n = −1,−2, . . .

c0 =
a0

2
. (7.19)

Given such a representation, we would like to write out the integral
forms of the coefficients, cn. So, we replace the an’s and bn’s with their
integral representations and replace the trigonometric functions with
complex exponential functions. Doing this, we have for n = 1, 2, . . . .

cn =
1
2
(an + ibn)
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=
1
2

[
1
π

∫ π

−π
f (x) cos nx dx +

i
π

∫ π

−π
f (x) sin nx dx

]
=

1
2π

∫ π

−π
f (x)

(
einx + e−inx

2

)
dx +

i
2π

∫ π

−π
f (x)

(
einx − e−inx

2i

)
dx

=
1

2π

∫ π

−π
f (x)einx dx. (7.20)

It is a simple matter to determine the cn’s for other values of n. For
n = 0, we have that

c0 =
a0

2
=

1
2π

∫ π

−π
f (x) dx.

For n = −1,−2, . . ., we find that

cn = c̄n =
1

2π

∫ π

−π
f (x)e−inx dx =

1
2π

∫ π

−π
f (x)einx dx.

Therefore, for all n we have obtained the complex exponential series
for f (x) defined on [−π, π].

Complex Exponential Series for f (x) defined on [−π, π].

f (x) ∼
∞

∑
n=−∞

cne−inx, (7.21)

cn =
1

2π

∫ π

−π
f (x)einx dx. (7.22)

We have converted the trigonometric series for functions defined on
[−π, π] to a complex exponential series in Equation (7.21) with Fourier
coefficients given by (7.22). We can easily extend the above analysis to
other intervals. For example, for x ∈ [−L, L] the Fourier trigonometric
series is

f (x) ∼ a0

2
+

∞

∑
n=1

(
an cos

nπx
L

+ bn sin
nπx

L

)
with Fourier coefficients

an =
1
L

∫ L

−L
f (x) cos

nπx
L

dx, n = 0, 1, . . . ,

bn =
1
L

∫ L

−L
f (x) sin

nπx
L

dx, n = 1, 2, . . . .

This can be rewritten as an exponential Fourier series of the form

Complex Exponential Series for f (x) defined on [−L, L].

f (x) ∼
∞

∑
n=−∞

cne−inπx/L, (7.23)

cn =
1

2L

∫ L

−L
f (x)einπx/L dx. (7.24)
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7.3 Exponential Fourier Transform

Both the trigonometric and complex exponential Fourier se-
ries provide us with representations of a class of functions of finite
period in terms of sums over a discrete set of frequencies. In partic-
ular, for functions defined on x ∈ [−L, L], the period of the Fourier
series representation is 2L. We can write the arguments in the ex-
ponentials, e−inπx/L, in terms of the angular frequency, ωn = nπ/L,
as e−iωnx. We note that the frequencies, νn, are then defined through
ωn = 2πνn = nπ

L . Therefore, the complex exponential series is seen to
be a sum over a discrete, or countable, set of frequencies.

We would now like to extend the finite interval to an infinite inter-
val, x ∈ (−∞, ∞) and to extend the discrete set of (angular) frequencies
to a continuous range of frequencies, ω ∈ (−∞, ∞). One can do this
rigorously. It amounts to letting L and n get large and keeping n

L fixed.
We first define ∆ω = π

L , so that ωn = n∆ω. Inserting the Fourier
coefficients (7.24) into Equation (7.21), we have

f (x) ∼
∞

∑
n=−∞

cne−inπx/L

=
∞

∑
n=−∞

(
1

2L

∫ L

−L
f (ξ)einπξ/L dξ

)
e−inπx/L

=
∞

∑
n=−∞

(
∆ω

2π

∫ L

−L
f (ξ)eiωnξ dξ

)
e−iωnx. (7.25)

Now, we let L get large, so that ∆ω becomes small and ωn ap-
proaches the angular frequency ω. Then

f (x) ∼ lim
∆ω→0,L→∞

1
2π

∞

∑
n=−∞

(∫ L

−L
f (ξ)eiωnξ dξ

)
e−iωnx∆ω

=
1

2π

∫ ∞

−∞

(∫ ∞

−∞
f (ξ)eiωξ dξ

)
e−iωx dω. (7.26)

Looking at this last result, we formally arrive at the definition of Definitions of the Fourier transform and
the inverse Fourier transform.the Fourier transform

F[ f ] = f̂ (ω) =
∫ ∞

−∞
f (x)eiωx dx. (7.27)

This is a generalization of the Fourier coefficients (7.22). Once we
know the Fourier transform, f̂ (ω), then we can reconstruct the original
function, f (x), using the inverse Fourier transform, which is given by

F−1[ f̂ ] = f (x) =
1

2π

∫ ∞

−∞
f̂ (ω)e−iωx dω. (7.28)
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We note that it can be proven that the Fourier transform exists when
f (x) is absolutely integrable, i.e.,∫ ∞

−∞
| f (x)| dx < ∞.

Such functions are said to be L1.

The Fourier transform and inverse Fourier transform are inverse
operations. Defining the Fourier transform as

F[ f ] = f̂ (ω) =
∫ ∞

−∞
f (x)eiωx dx. (7.29)

and the inverse Fourier transform as

F−1[ f̂ ] = f (x) =
1

2π

∫ ∞

−∞
f̂ (ω)e−iωx dω. (7.30)

then
F−1[F[ f ]] = f (x) (7.31)

and
F[F−1[ f̂ ]] = f̂ (ω). (7.32)

We will now prove the first of these equations, (7.31). [The second
equation, (7.32), follows in a similar way.]

Proof. The proof is carried out by inserting the definition of the Fourier
transform, (7.29), into the inverse transform definition, (7.30), and then
interchanging the orders of integration. Thus, we have

F−1[F[ f ]] =
1

2π

∫ ∞

−∞
F[ f ]e−iωx dω

=
1

2π

∫ ∞

−∞

[∫ ∞

−∞
f (ξ)eiωξ dξ

]
e−iωx dω

=
1

2π

∫ ∞

−∞

∫ ∞

−∞
f (ξ)eiω(ξ−x) dξdω

=
1

2π

∫ ∞

−∞

[∫ ∞

−∞
eiω(ξ−x) dω

]
f (ξ) dξ. (7.33)

In order to complete the proof, we need to evaluate the inside inte-
gral, which does not depend upon f (x). This is an improper integral,
so we first define

DΩ(x) =
∫ Ω

−Ω
eiωx dω

and compute the inner integral as∫ ∞

−∞
eiω(ξ−x) dω = lim

Ω→∞
DΩ(ξ − x).
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Figure 7.4: A plot of the function DΩ(x)
for Ω = 4.
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We can compute DΩ(x). A simple evaluation yields

DΩ(x) =
∫ Ω

−Ω
eiωx dω

=
eiωx

ix

∣∣∣∣Ω
−Ω

=
eixΩ − e−ixΩ

2ix

=
2 sin xΩ

x
. (7.34)

A plot of this function is in Figure 7.4 for Ω = 4. For large Ω the
peak grows and the values of DΩ(x) for x 6= 0 tend to zero as show
in Figure 7.5. In fact, as x approaches 0, DΩ(x) approaches 2Ω. For
x 6= 0, the DΩ(x) function tends to zero.
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x

Figure 7.5: A plot of the function DΩ(x)
for Ω = 40.

We further note that

lim
Ω→∞

DΩ(x) = 0 x 6= 0

and limΩ→∞ DΩ(x) is infinite at x = 0. However, the area is constant
for each Ω. In fact, ∫ ∞

−∞
DΩ(x) dx = 2π.

We can show this by recalling the computation in Example 6.35,∫ ∞

−∞

sin x
x

dx = π.

Then, ∫ ∞

−∞
DΩ(x) dx =

∫ ∞

−∞

2 sin xΩ
x

dx

=
∫ ∞

−∞
2

sin y
y

dy

= 2π. (7.35)

Another way to look at DΩ(x) is to consider the sequence of func-
tions fn(x) = sin nx

πx , n = 1, 2, . . . . Then we have shown that this se-
quence of functions satisfies the two properties,

lim
n→∞

fn(x) = 0, x 6= 0,∫ ∞

−∞
fn(x) dx = 1.

This is a key representation of such generalized functions. The limiting
value vanishes at all but one point, but the area is finite.
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Figure 7.6: A plot of the functions fn(x)
for n = 2, 4, 8.

Such behavior can be seen for the limit of other sequences of func-
tions. For example, consider the sequence of functions

fn(x) =

{
0, |x| > 1

n ,
n
2 , |x| < 1

n .
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This is a sequence of functions as shown in Figure 7.6. As n→ ∞, we P. A. M. Dirac (1902-1984) introduced the
δ function in his book, “The Principles of
Quantum Mechanics”, 4th Ed., Oxford
University Press, 1958, originally pub-
lished in 1930, as part of his orthogonal-
ity statement for a basis of functions in
a Hilbert space, < ξ ′|ξ ′′ >= cδ(ξ ′ − ξ ′′)
in the same way we introduced discrete
orthogonality using the Kronecker delta.

find the limit is zero for x 6= 0 and is infinite for x = 0. However, the
area under each member of the sequences is one. Thus, the limiting
function is zero at most points but has area one.

The limit is not really a function. It is a generalized function. It is
called the Dirac delta function, which is defined by

1. δ(x) = 0 for x 6= 0.

2.
∫ ∞
−∞ δ(x) dx = 1.

Before returning to the proof that the inverse Fourier transform of
the Fourier transform is the identity, we state one more property of the
Dirac delta function, which we will prove in the next section. Namely,
we will show that ∫ ∞

−∞
δ(x− a) f (x) dx = f (a).

Returning to the proof, we now have that∫ ∞

−∞
eiω(ξ−x) dω = lim

Ω→∞
DΩ(ξ − x) = 2πδ(ξ − x).

Inserting this into (7.33), we have

F−1[F[ f ]] =
1

2π

∫ ∞

−∞

[∫ ∞

−∞
eiω(ξ−x) dω

]
f (ξ) dξ.

=
1

2π

∫ ∞

−∞
2πδ(ξ − x) f (ξ) dξ.

= f (x). (7.36)

Thus, we have proven that the inverse transform of the Fourier trans-
form of f is f .

7.4 The Dirac Delta Function

In the last section we introduced the Dirac delta function, δ(x).

Properties of the Dirac δ-function:∫ ∞

−∞
δ(x− a) f (x) dx = f (a).

∫ ∞

−∞
δ(ax) dx =

1
|a|

∫ ∞

−∞
δ(y) dy.

∫ ∞

−∞
δ( f (x)) dx =

∫ ∞

−∞

n

∑
j=1

1
| f ′(xj)|

δ(x− xj) dx.

(For n simple roots.)
These and other properties are often

written outside the integral:

δ(ax) =
1
|a| δ(x).

δ(−x) = δ(x).

δ((x− a)(x− b)) =
1

|a− b| [δ(x− a)+ δ(x− a)].

δ( f (x)) = ∑
j

δ(x− xj)

| f ′(xj)|
, f (xj) = 0, f ′(xj) 6= 0.

As noted above, this is one example of what is known as a generalized
function, or a distribution. Dirac had introduced this function in the
1930’s in his study of quantum mechanics as a useful tool. It was
later studied in a general theory of distributions and found to be more
than a simple tool used by physicists. The Dirac delta function, as any
distribution, only makes sense under an integral. [Note: The Dirac
delta function was also discussed in the optional Section ??.]

Two properties were used in the last section. First one has that the
area under the delta function is one,∫ ∞

−∞
δ(x) dx = 1.
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Integration over more general intervals gives

∫ b

a
δ(x) dx =

{
1, 0 ∈ [a, b],
0, 0 6∈ [a, b].

(7.37)

The other property that was used was the sifting property:∫ ∞

−∞
δ(x− a) f (x) dx = f (a).

This can be seen by noting that the delta function is zero everywhere
except at x = a. Therefore, the integrand is zero everywhere and the
only contribution from f (x) will be from x = a. So, we can replace
f (x) with f (a) under the integral. Since f (a) is a constant, we have
that∫ ∞

−∞
δ(x− a) f (x) dx =

∫ ∞

−∞
δ(x− a) f (a) dx = f (a)

∫ ∞

−∞
δ(x− a) dx = f (a).

Another property results from using a scaled argument, ax. In this
case we show that

δ(ax) = |a|−1δ(x). (7.38)

As usual, this only has meaning under an integral sign. So, we place
δ(ax) inside an integral and make a substitution y = ax:

∫ ∞

−∞
δ(ax) dx = lim

L→∞

∫ L

−L
δ(ax) dx

= lim
L→∞

1
a

∫ aL

−aL
δ(y) dy. (7.39)

If a > 0 then ∫ ∞

−∞
δ(ax) dx =

1
a

∫ ∞

−∞
δ(y) dy.

However, if a < 0 then∫ ∞

−∞
δ(ax) dx =

1
a

∫ −∞

∞
δ(y) dy = −1

a

∫ ∞

−∞
δ(y) dy.

The overall difference in a multiplicative minus sign can be absorbed
into one expression by changing the factor 1/a to 1/|a|. Thus,

∫ ∞

−∞
δ(ax) dx =

1
|a|

∫ ∞

−∞
δ(y) dy. (7.40)

Example 7.1. Evaluate
∫ ∞
−∞(5x + 1)δ(4(x− 2)) dx. This is a straight for-

ward integration:∫ ∞

−∞
(5x + 1)δ(4(x− 2)) dx =

1
4

∫ ∞

−∞
(5x + 1)δ(x− 2) dx =

11
4

.
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A more general scaling of the argument takes the form δ( f (x)). The
integral of δ( f (x)) can be evaluated depending upon the number of
zeros of f (x). If there is only one zero, f (x1) = 0, then one has that∫ ∞

−∞
δ( f (x)) dx =

∫ ∞

−∞

1
| f ′(x1)|

δ(x− x1) dx.

This can be proven using the substitution y = f (x) and is left as an
exercise for the reader. This result is often written as

δ( f (x)) =
1

| f ′(x1)|
δ(x− x1),

again keeping in mind that this only has meaning when placed under
an integral.

Example 7.2. Evaluate
∫ ∞
−∞ δ(3x− 2)x2 dx.

This is not a simple δ(x − a). So, we need to find the zeros of f (x) =

3x− 2. There is only one, x = 2
3 . Also, | f ′(x)| = 3. Therefore, we have

∫ ∞

−∞
δ(3x− 2)x2 dx =

∫ ∞

−∞

1
3

δ(x− 2
3
)x2 dx =

1
3

(
2
3

)2
=

4
27

.

Note that this integral can be evaluated the long way by using the substi-
tution y = 3x− 2. Then, dy = 3 dx and x = (y + 2)/3. This gives

∫ ∞

−∞
δ(3x− 2)x2 dx =

1
3

∫ ∞

−∞
δ(y)

(
y + 2

3

)2
dy =

1
3

(
4
9

)
=

4
27

.

More generally, one can show that when f (xj) = 0 and f ′(xj) 6= 0
for xj, j = 1, 2, . . . , n, (i.e.; when one has n simple zeros), then

δ( f (x)) =
n

∑
j=1

1
| f ′(xj)|

δ(x− xj).

Example 7.3. Evaluate
∫ 2π

0 cos x δ(x2 − π2) dx.
In this case the argument of the delta function has two simple roots.

Namely, f (x) = x2 − π2 = 0 when x = ±π. Furthermore, f ′(x) = 2x.
Therefore, | f ′(±π)| = 2π. This gives

δ(x2 − π2) =
1

2π
[δ(x− π) + δ(x + π)].

Inserting this expression into the integral and noting that x = −π is not in
the integration interval, we have∫ 2π

0
cos x δ(x2 − π2) dx =

1
2π

∫ 2π

0
cos x [δ(x− π) + δ(x + π)] dx

=
1

2π
cos π = − 1

2π
. (7.41)
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Finally, one can show that there is a relationship between the Heav-
iside function (or, step function) and the Dirac delta function. We
define the Heaviside function as

H(x) =

{
0, x < 0
1, x > 0

Then, it is easy to see that H′(x) = δ(x). In some texts the notation
θ(x) is used for the step function.

7.5 Properties of the Fourier Transform

We now return to the Fourier transform. Before actually comput-
ing the Fourier transform of some functions, we prove a few of the
properties of the Fourier transform.

First we note that there are several forms that one may encounter for
the Fourier transform. In applications functions can either be functions
of time, f (t), or space, f (x). The corresponding Fourier transforms are
then written as

f̂ (ω) =
∫ ∞

−∞
f (t)eiωt dt, (7.42)

or
f̂ (k) =

∫ ∞

−∞
f (x)eikx dx. (7.43)

ω is called the angular frequency and is related to the frequency ν by
ω = 2πν. The units of frequency are typically given in Hertz (Hz).
Sometimes the frequency is denoted by f when there is no confusion.
k is called the wavenumber. It has units of inverse length and is related
to the wavelength, λ, by k = 2π

λ .

1. Linearity. For any functions f (x) and g(x) for which the
Fourier transform exists and constant a, we have

F[ f + g] = F[ f ] + F[g]

and
F[a f ] = aF[ f ].

These simply follow from the properties of integration and
establish the linearity of the Fourier transform.

2. Transform of a Derivative. F
[

d f
dx

]
= −ik f̂ (k)

Here we compute the Fourier transform (7.29) of the deriva-
tive by inserting the derivative in the Fourier integral and
using integration by parts.

F
[

d f
dx

]
=

∫ ∞

−∞

d f
dx

eikx dx
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= lim
L→∞

[
f (x)eikx

]L

−L
− ik

∫ ∞

−∞
f (x)eikx dx.

(7.44)

The limit will vanish if we assume that limx→±∞ f (x) = 0.
The last integral is recognized as the Fourier transform of f ,
proving the given property.

3. Higher Order Derivatives. F
[

dn f
dxn

]
= (−ik)n f̂ (k)

The proof of this property follows from the last result, or do-
ing several integration by parts. We will consider the case
when n = 2. Noting that the second derivative is the deriva-
tive of f ′(x) and applying the last result, we have

F
[

d2 f
dx2

]
= F

[
d

dx
f ′
]

= −ikF
[

d f
dx

]
= (−ik)2 f̂ (k). (7.45)

This result will be true if

lim
x→±∞

f (x) = 0 and lim
x→±∞

f ′(x) = 0.

The generalization to the transform of the nth derivative eas-
ily follows.

4. F [x f (x)] = −i d
dk f̂ (k)

This property can be shown by using the fact that d
dk eikx =

ixeikx and the ability to differentiate an integral with respect
to a parameter.

F[x f (x)] =
∫ ∞

−∞
x f (x)eikx dx

=
∫ ∞

−∞
f (x)

d
dk

(
1
i

eikx
)

dx

= −i
d
dk

∫ ∞

−∞
f (x)eikx dx

= −i
d
dk

f̂ (k). (7.46)

This result can be generalized to F [xn f (x)] as an exercise.

5. Shifting Properties. For constant a, we have the following
shifting properties:

f (x− a)↔ eika f̂ (k), (7.47)

f (x)e−iax ↔ f̂ (k− a). (7.48)

Here we have denoted the Fourier transform pairs using a
double arrow as f (x) ↔ f̂ (k). These are easily proven by



334 mathematical physics

inserting the desired forms into the definition of the Fourier
transform (7.29), or inverse Fourier transform (7.30). The first
shift property (7.47) is shown by the following argument. We
evaluate the Fourier transform.

F[ f (x− a)] =
∫ ∞

−∞
f (x− a)eikx dx.

Now perform the substitution y = x− a. Then,

F[ f (x− a)] =
∫ ∞

−∞
f (y)eik(y+a) dy

= eika
∫ ∞

−∞
f (y)eiky dy

= eika f̂ (k). (7.49)

The second shift property (7.48) follows in a similar way.

6. Convolution We define the convolution of two functions f (x)
and g(x) as

( f ∗ g)(x) =
∫ ∞

−∞
f (t)g(x− t) dx. (7.50)

Then the Fourier transform of the convolution is the product
of the Fourier transforms of the individual functions:

F[ f ∗ g] = f̂ (k)ĝ(k). (7.51)

We will return to the proof of this property in Section 7.6.

7.5.1 Fourier Transform Examples

In this section we will compute the Fourier transforms of several
functions.

Example 7.4. Gaussian Functions. f (x) = e−ax2/2. The Fourier transform of a Gaussian is a
Gaussian.This function is called the Gaussian function. It has many applications

in areas such as quantum mechanics, molecular theory, probability and heat
diffusion. We will compute the Fourier transform of this function and show
that the Fourier transform of a Gaussian is a Gaussian. In the derivation we
will introduce classic techniques for computing such integrals.

We begin by applying the definition of the Fourier transform,

f̂ (k) =
∫ ∞

−∞
f (x)eikx dx =

∫ ∞

−∞
e−ax2/2+ikx dx. (7.52)

The first step in computing this integral is to complete the square in the
argument of the exponential. Our goal is to rewrite this integral so that a
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simple substitution will lead to a classic integral of the form
∫ ∞
−∞ eβy2

dy,
which we can integrate. The completion of the square follows as usual:

− a
2

x2 + ikx = − a
2

[
x2 − 2ik

a
x
]

= − a
2

[
x2 − 2ik

a
x +

(
− ik

a

)2
−
(
− ik

a

)2
]

= − a
2

(
x− ik

a

)2
− k2

2a
. (7.53)

We now put this expression into the integral and make the substitutions
y = x− ik

a and β = a
2 .

f̂ (k) =
∫ ∞

−∞
e−ax2/2+ikx dx

= e−
k2
2a

∫ ∞

−∞
e−

a
2 (x− ik

a )
2

dx

= e−
k2
2a

∫ ∞− ik
a

−∞− ik
a

e−βy2
dy. (7.54)

One would be tempted to absorb the − ik
a terms in the limits of integration.

However, we know from our previous study that the integration takes place
over a contour in the complex plane as shown in Figure 7.7.

x

y

z = x− ik
a

Figure 7.7: Simple horizontal contour.
In this case we can deform this horizontal contour to a contour along the

real axis since we will not cross any singularities of the integrand. So, we
now safely write

f̂ (k) = e−
k2
2a

∫ ∞

−∞
e−βy2

dy.

The resulting integral is a classic integral and can be performed using a
standard trick. Define I by 4 4 Here we show∫ ∞

−∞
e−βy2

dy =

√
π

β
.

Note that we solved the β = 1 case in
Example 5.9, so a simple variable trans-
formation z =

√
βy is all that is needed

to get the answer. However, it cannot
hurt to see this classic derivation again.

I =
∫ ∞

−∞
e−βy2

dy.

Then,
I2 =

∫ ∞

−∞
e−βy2

dy
∫ ∞

−∞
e−βx2

dx.

Note that we needed to change the integration variable so that we can write
this product as a double integral:

I2 =
∫ ∞

−∞

∫ ∞

−∞
e−β(x2+y2) dxdy.

This is an integral over the entire xy-plane. We now transform to polar
coordinates to obtain

I2 =
∫ 2π

0

∫ ∞

0
e−βr2

rdrdθ

= 2π
∫ ∞

0
e−βr2

rdr

= −π

β

[
e−βr2

]∞

0
=

π

β
. (7.55)
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The final result is gotten by taking the square root, yielding

I =
√

π

β
.

We can now insert this result to give the Fourier transform of the Gaussian
function:

f̂ (k) =

√
2π

a
e−k2/2a. (7.56)

Example 7.5. Box or Gate Function. f (x) =

{
b, |x| ≤ a
0, |x| > a

.
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Figure 7.8: A plot of the box function in
Example 7.5.

This function is called the box function, or gate function. It is shown in
Figure 7.8. The Fourier transform of the box function is relatively easy to
compute. It is given by

f̂ (k) =
∫ ∞

−∞
f (x)eikx dx

=
∫ a

−a
beikx dx

=
b
ik

eikx
∣∣∣a
−a

=
2b
k

sin ka. (7.57)

We can rewrite this as

f̂ (k) = 2ab
sin ka

ka
≡ 2ab sinc ka.

Here we introduced the sinc function,

sinc x =
sin x

x
.

A plot of this function is shown in Figure 7.9.
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Figure 7.9: A plot of the Fourier trans-
form of the box function in Example 7.5.
This is the general shape of the sinc func-
tion.

We will now consider special limiting values for the box function and
its transform. This will lead us to the Uncertainty Principle for signals,
connecting the relationship between the localization properties of a signal and
its transform.

1. a→ ∞ and b fixed.

In this case, as a gets large the box function approaches the constant
function f (x) = b. At the same time, we see that the Fourier trans-
form approaches a Dirac delta function. We had seen this function
earlier when we first defined the Dirac delta function. Compare
Figure 7.9 with Figure 7.4. In fact, f̂ (k) = bDa(k). [Recall the
definition of DΩ(x) in Equation (7.34).] So, in the limit we obtain
f̂ (k) = 2πbδ(k). This limit implies fact that the Fourier transform
of f (x) = 1 is f̂ (k) = 2πδ(k). As the width of the box becomes
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wider, the Fourier transform becomes more localized. In fact, we
have arrived at the result that∫ ∞

−∞
eikx = 2πδ(k). (7.58)

2. b→ ∞, a→ 0, and 2ab = 1.

In this case the box narrows and becomes steeper while maintaining
a constant area of one. This is the way we had found a represen-
tation of the Dirac delta function previously. The Fourier trans-
form approaches a constant in this limit. As a approaches zero, the
sinc function approaches one, leaving f̂ (k) → 2ab = 1. Thus, the
Fourier transform of the Dirac delta function is one. Namely, we
have

∫ ∞

−∞
δ(x)eikx = 1. (7.59)

In this case we have that the more localized the function f (x) is, the
more spread out the Fourier transform, f̂ (k), is. We will summarize
these notions in the next item by relating the widths of the function
and its Fourier transform.

3. The Uncertainty Principle

The widths of the box function and its Fourier transform are related
as we have seen in the last two limiting cases. It is natural to define
the width, ∆x of the box function as

∆x = 2a.

The width of the Fourier transform is a little trickier. This function
actually extends the entire k-axis. However, as f̂ (k) became more
localized, the central peak in Figure 7.9 became narrower. So, we
define the width of this function, ∆k as the distance between the
first zeros on either side of the main lobe. This gives

∆k =
2π

a
.

More formally, the uncertainty principle
for signals is about the relation between
duration and bandwidth, which are de-
fined by ∆t = ‖t f ‖2

‖ f ‖2
and ∆ω = ‖ω f̂ ‖2

‖ f̂ ‖2
, re-

spectively, where ‖ f ‖2 =
∫ ∞
−∞ | f (t)|

2 dt
and ‖ f̂ ‖2 = 1

2π

∫ ∞
−∞ | f̂ (ω)|2 dω. Under

appropriate conditions, one can prove
that ∆t∆ω ≥ 1

2 . Equality holds for Gaus-
sian signals. Werner Heisenberg (1901-
1976) introduced the uncertainty princi-
ple into quantum physics in 1926, relat-
ing uncertainties in the position (∆x) and
momentum (∆px) of particles. In this
case, ∆x∆px ≥ 1

2 h̄. Here, the uncertain-
ties are defined as the positive square
roots of the quantum mechanical vari-
ances of the position and momentum.

Combining these two relations, we find that

∆x∆k = 4π.

Thus, the more localized a signal, the less localized its transform.
This notion is referred to as the Uncertainty Principle. For general
signals, one needs to define the effective widths more carefully, but
the main idea holds:

∆x∆k ≥ c > 0.
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We now turn to other examples of Fourier transforms.

Example 7.6. f (x) =

{
e−ax, x ≥ 0

0, x < 0
, a > 0.

The Fourier transform of this function is

f̂ (k) =
∫ ∞

−∞
f (x)eikx dx

=
∫ ∞

o
eikx−ax dx

=
1

a− ik
. (7.60)

Next, we will compute the inverse Fourier transform of this result and
recover the original function.

Example 7.7. f̂ (k) = 1
a−ik .

The inverse Fourier transform of this function is

f (x) =
1

2π

∫ ∞

−∞
f̂ (k)e−ikx dk =

1
2π

∫ ∞

−∞

e−ikx

a− ik
dk.

This integral can be evaluated using contour integral methods. We recall
Jordan’s Lemma from the last chapter:

If f (z) converges uniformly to zero as z→ ∞, then

lim
R→∞

∫
CR

f (z)eikz dz = 0

where k > 0 and CR is the upper half of the circle |z| = R. A similar result
applies for k < 0, but one closes the contour in the lower half plane.

In this example, we have to evaluate the integral

I =
∫ ∞

−∞

e−ixz

a− iz
dz.

According to Jordan’s Lemma, we need to enclose the contour with a semicircle
in the upper half plane for x < 0 and in the lower half plane for x > 0 as
shown in Figure 7.10.

x

y

−ia
R−R

CR

x

y

−ia

R−R

CR

Figure 7.10: Contours for inverting
f̂ (k) = 1

a−ik .

The integrations along the semicircles will vanish and we will have

f (x) =
1

2π

∫ ∞

−∞

e−ikx

a− ik
dk

= ± 1
2π

∮
C

e−ixz

a− iz
dz

=

{
0, x < 0

− 1
2π 2πi Res [z = −ia], x > 0

=

{
0, x < 0

e−ax, x > 0
. (7.61)
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Example 7.8. f̂ (ω) = πδ(ω + ω0) + πδ(ω−ω0).
We would like to find the inverse Fourier transform of this function. In-

stead of carrying out any integration, we will make use of the properties of
Fourier transforms. Since the transforms of sums are the sums of transforms,
we can look at each term individually. Consider δ(ω−ω0). This is a shifted
function. From the shift theorems in Equations (7.47)-(7.48) we have

eiω0t f (t)↔ f̂ (ω−ω0).

Recalling from a previous example that∫ ∞

−∞
eiωt dt = 2πδ(ω),

we have
F−1[δ(ω−ω0)] =

1
2π

e−iω0t.

The second term can be transformed similarly. Therefore, we have

F−1[πδ(ω + ω0) + πδ(ω−ω0] =
1
2

eiω0t +
1
2

e−iω0t = cos ω0t.

Example 7.9. The Finite Wave Train. f (t) =

{
cos ω0t, |t| ≤ a

0, |t| > a
.

For the last example, we consider the finite wave train, which will reappear
in the last chapter on signal analysis. In Figure 7.11 we show a plot of this
function.

Figure 7.11: A plot of the finite wave
train.

A straight forward computation gives

f̂ (ω) =
∫ ∞

−∞
f (t)eiωt dt

=
∫ a

−a
[cos ω0t + i sin ω0t]eiωt dt

=
∫ a

−a
cos ω0t cos ωt dt + i

∫ a

−a
sin ω0t sin ωt dt

=
1
2

∫ a

−a
[cos((ω + ω0)t) + cos((ω−ω0)t)] dt

=
sin((ω + ω0)a)

ω + ω0
+

sin((ω−ω0)a)
ω−ω0

. (7.62)

7.6 The Convolution Theorem

In the list of properties of the Fourier transform, we de-
fined the convolution of two functions, f (x) and g(x) to be the integral

Box Function
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0.8

1
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x

Figure 7.12: A plot of the box function
f (x).

( f ∗ g)(x) =
∫ ∞

−∞
f (t)g(x− t) dt. (7.63)
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In some sense one is looking at a sum of the overlaps of one of the
functions and all of the shifted versions of the other function. The
German word for convolution is faltung, which means “folding”.

First, we note that the convolution is commutative: f ∗ g = g ∗ f .
This is easily shown by replacing x− t with a new variable, y.

(g ∗ f )(x) =
∫ ∞

−∞
g(t) f (x− t) dt

= −
∫ −∞

∞
g(x− y) f (y) dy

=
∫ ∞

−∞
f (y)g(x− y) dy

= ( f ∗ g)(x). (7.64)

Example 7.10. Graphical Convolution.

Triangle Function
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Figure 7.13: A plot of the triangle func-
tion.

In order to understand the convolution operation, we need to apply it to
several functions. We will do this graphically for the box function

f (x) =

{
1, |x| < 1
0, |x| > 1

and the triangular function

g(x) =

{
x, |x| < 1
0, |x| > 1

as shown in Figures 7.12 and 7.13.
In order to determine the contributions to the integrand, we look at the

shifted and reflected function g(t− x) in Equation 7.63 for various values of
t. For t = 0, we have g(−x). This is a reflection of the triangle function as
shown in Figure 7.14.

Reflected Triangle Function

0

0.2

0.4

0.6

0.8

1

–4 –2 2 4

x

Figure 7.14: A plot of the reflected trian-
gle function.

We then translate this function performing horizontal shifts by t. In Figure
7.15 we show such a shifted and reflected g(x) for t = 2. The following
figures show other shifts superimposed on f (x). The integrand is the product
of f (x) and g(t − x) and the convolution evaluated at t is given by the
shaded areas. In Figures 7.16 the area is zero, as there is no overlap of the
functions. Intermediate shift values are displayed in Figures 7.17-7.19 and
the convolution is shown by the area under the product of the two functions.

F[ f ∗ g] = f̂ (k)ĝ(k). (7.65)

We see that the value of the convolution integral builds up and then quickly
drops to zero. The plot of the convolution of the box and triangle functions is
given in Figure 7.20.

Shifted, Reflected Triangle Function
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Figure 7.15: A plot of the reflected trian-
gle function shifted by 2 units.

Next we would like to compute the Fourier transform of the convo-
lution integral. First, we use the definitions of Fourier transform and
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Convolution for Various t
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Figure 7.16: A plot of the box and trian-
gle functions with the overlap indicated
by the shaded area.

Convolution for Various t
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Figure 7.17: A plot of the box and trian-
gle functions with the overlap indicated
by the shaded area.

Convolution for Various t
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Figure 7.18: A plot of the box and trian-
gle functions with the overlap indicated
by the shaded area.

Convolution for Various t
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Figure 7.19: A plot of the box and trian-
gle functions with the overlap indicated
by the shaded area.

Convolution of Block & Triangle Functions
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Figure 7.20: A plot of the convolution of
the box and triangle functions.
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convolution to write the transform as

F[ f ∗ g] =
∫ ∞

−∞
( f ∗ g)(x)eikx dx

=
∫ ∞

−∞

(∫ ∞

−∞
f (t)g(x− t) dt

)
eikx dx

=
∫ ∞

−∞

(∫ ∞

−∞
g(x− t)eikx dx

)
f (t) dt. (7.66)

We now substitute y = x − t on the inside integral and separate the
integrals:

F[ f ∗ g] =
∫ ∞

−∞

(∫ ∞

−∞
g(x− t)eikx dx

)
f (t) dt

=
∫ ∞

−∞

(∫ ∞

−∞
g(y)eik(y+t) dy

)
f (t) dt

=
∫ ∞

−∞

(∫ ∞

−∞
g(y)eiky dy

)
f (t)eikt dt. (7.67)

We see that the two integrals are just the Fourier transforms of f and
g. Therefore, the Fourier transform of a convolution is the product of
the Fourier transforms of the functions involved:

Example 7.11. Convolution of two Gaussian functions f (x) = e−ax2
.

In this example we will compute the convolution of two Gaussian func-
tions with different widths. Let f (x) = e−ax2

and g(x) = e−bx2
. A direct

evaluation of the integral would be to compute

( f ∗ g)(x) =
∫ ∞

−∞
f (t)g(x− t) dt =

∫ ∞

−∞
e−at2−b(x−t)2

dt.

This integral can be rewritten as

( f ∗ g)(x) = e−bx2
∫ ∞

−∞
e−(a+b)t2+2bxt dt.

One could proceed to complete the square and finish carrying out the in-
tegration. However, we will use the Convolution Theorem to evaluate the
convolution and leave the evaluation of this integral to Problem 8.

Recalling the Fourier transform of a Gaussian from Example 7.4, we have

f̂ (k) = F[e−ax2
] =

√
π

a
e−k2/4a (7.68)

and

ĝ(k) = F[e−bx2
] =

√
π

b
e−k2/4b.

Denoting the convolution function by h(x) = ( f ∗ g)(x), the Convolution
Theorem gives

ĥ(k) = f̂ (k)ĝ(k) =
π√
ab

e−k2/4ae−k2/4b.
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This is another Gaussian function, as seen by rewriting the Fourier transform
of h(x) as

ĥ(k) =
π√
ab

e−
1
4 (

1
a +

1
b )k2

=
π√
ab

e−
a+b
4ab k2

. (7.69)

In order to complete the evaluation of the convolution of these two Gaus-
sian functions, we need to find the inverse transform of the Gaussian in Equa-
tion (7.69). We can do this by looking at Equation (7.68). We have first that

F−1
[√

π

a
e−k2/4a

]
= e−ax2

.

Moving the constants, we then obtain

F−1[e−k2/4a] =

√
a
π

e−ax2
.

We now make the substitution α = 1
4a ,

F−1[e−αk2
] =

√
1

4πα
e−x2/4α.

This is in the form needed to invert (7.69). Thus, for α = a+b
4ab we find

( f ∗ g)(x) = h(x) =
√

π

a + b
e−

ab
a+b x2

.

7.6.1 Application to Signal Analysis

Figure 7.21: Schematic plot of a signal
f (t) and its Fourier transform f̂ (ω).

There are many applications of the convolution operation. One
of these areas is the study of analog signals. An analog signal is a
continuous signal and may contain either a finite, or continuous set of
frequencies. Fourier transforms can be used to represent such signals
as a sum over the frequency content. In this section we will describe
how convolutions can be used in studying signal analysis.

The first application is filtering. For a given signal there might be
some noise in the signal, or some undesirable high frequencies. Or, the
device used for recording an analog signal might naturally not be able
to record high frequencies. Let f (t) denote the amplitude of a given
analog signal and f̂ (ω) be the Fourier transform of this signal. An
example is provided in Figure 7.21. Recall that the Fourier transform
gives the frequency content of the signal and that ω = 2πν, where ν is
the frequency in Hertz, or cycles per second (cps).

Figure 7.22: (a) Plot of the Fourier trans-
form f̂ (ω) of a signal. (b) The gate func-
tion pω0 (ω) used to filter out high fre-
quencies. (c) The product of the func-
tions, ĝ(ω) = f̂ (ω)pω0 (ω), in (a) and
(b).

There are many ways to filter out unwanted frequencies. The sim-
plest would be to just drop all of the high frequencies, |ω| > ω0 for
some cutoff frequency ω0. The Fourier transform of the filtered signal
would then be zero for |ω| > ω0. This could be accomplished by mul-
tiplying the Fourier transform of the signal by a function that vanishes
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for |ω| > ω0. For example, we could consider the gate function

pω0(ω) =

{
1, |ω| ≤ ω0

0, |ω| > ω0
. (7.70)

Figure 7.22 shows how the gate function is used to filter the signal.
In general, we multiply the Fourier transform of the signal by some

filtering function ĥ(t) to get the Fourier transform of the filtered signal,

ĝ(ω) = f̂ (ω)ĥ(ω).

The new signal, g(t) is then the inverse Fourier transform of this prod-
uct, giving the new signal as a convolution:

g(t) = F−1[ f̂ (ω)ĥ(ω)] =
∫ ∞

−∞
h(t− τ) f (τ) dτ. (7.71)

Such processes occur often in systems theory as well. One thinks of
f (t) as the input signal into some filtering device which in turn pro-
duces the output, g(t). The function h(t) is called the impulse response.
This is because it is a response to the impulse function, δ(t). In this
case, one has ∫ ∞

−∞
h(t− τ)δ(τ) dτ = h(t).

Another application of the convolution is in windowing. This rep-
resents what happens when one measures a real signal. Real signals
cannot be recorded for all values of time. Instead data is collected over
a finite time interval. If the length of time the data is collected is T,
then the resulting signal is zero outside this time interval. This can be
modeled in the same way as with filtering, except the new signal will
be the product of the old signal with the windowing function. The re-
sulting Fourier transform of the new signal will be a convolution of the
Fourier transforms of the original signal and the windowing function.

Example 7.12. Finite Wave Train, Revisited.
We return to the finite wave train in Example 7.9 given by

h(t) =

{
cos ω0t, |t| ≤ a

0, |t| > a
.

Figure 7.23: A plot of the finite wave
train.

We can view this as a windowed version of f (t) = cos ω0t obtained by
multiplying f (t) by the gate function

ga(t) =

{
1, |x| ≤ a
0, |x| > a

. (7.72)

This is shown in Figure 7.23. Then, the Fourier transform is given as a
convolution,

ĥ(ω) = ( f̂ ∗ ĝa)(ω)

=
1

2π

∫ ∞

−∞
f̂ (ω− ν)ĝa(ν) dν. (7.73)
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Note that the convolution in frequency space requires the extra factor of
1/(2π).

We need the Fourier transforms of f and ga in order to finish the computa-
tion. The Fourier transform of the box function was already found in Example
7.5 as

ĝa(ω) =
2
ω

sin ωa.

The Fourier transform of the cosine function, f (t) = cos ω0t, is

f̂ (ω) =
∫ ∞

−∞
cos(ω0t)eiωt dt

=
∫ ∞

−∞

1
2

(
eiω0t + e−iω0t

)
eiωt dt

=
1
2

∫ ∞

−∞

(
ei(ω+ω0)t + ei(ω−ω0)t

)
dt

= π [δ(ω + ω0) + δ(ω−ω0)] . (7.74)

Note that we had earlier computed the inverse Fourier transform of this func-
tion in Example 7.8.

Inserting these results in the convolution integral, we have

ĥ(ω) =
1

2π

∫ ∞

−∞
f̂ (ω− ν)ĝa(ν) dν

=
1

2π

∫ ∞

−∞
π [δ(ω− ν + ω0) + δ(ω− ν−ω0)]

2
ν

sin νa dν

=
sin(ω + ω0)a

ω + ω0
+

sin(ω−ω0)a
ω−ω0

. (7.75)

This is the same result we had obtained in Example 7.9.

7.6.2 Parseval’s Equality

As another example of the convolution theorem, we derive Parse-
val’s Equality (named after Marc-Antoine Parseval (1755-1836)):∫ ∞

−∞
| f (t)|2 dt =

1
2π

∫ ∞

−∞
| f̂ (ω)|2 dω. (7.76)

This equality has a physical meaning for signals. The integral on the
left side is a measure of the energy content of the signal in the time
domain. The right side provides a measure of the energy content of
the transform of the signal. Parseval’s equality, is simply a statement
that the energy is invariant under the transform. Parseval’s equality is
a special case of Plancherel’s formula (named after Michel Plancherel).

Let’s rewrite the Convolution Theorem in its inverse form

F−1[ f̂ (k)ĝ(k)] = ( f ∗ g)(t). (7.77)
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Then, by the definition of the inverse Fourier transform, we have∫ ∞

−∞
f (t− u)g(u) du =

1
2π

∫ ∞

−∞
f̂ (ω)ĝ(ω)e−iωt dω.

Setting t = 0,∫ ∞

−∞
f (−u)g(u) du =

1
2π

∫ ∞

−∞
f̂ (ω)ĝ(ω) dω. (7.78)

Now, let g(t) = f (−t), or f (−t) = g(t). We note that the Fourier
transform of g(t) is related to the Fourier transform of f (t) :

ĝ(ω) =
∫ ∞

−∞
f (−t)eiωt dt

= −
∫ −∞

∞
f (τ)e−iωτ dτ

=
∫ ∞

−∞
f (τ)eiωτ dτ = f̂ (ω). (7.79)

So, inserting this result into Equation (7.78), we find that∫ ∞

−∞
f (−u) f (−u) du =

1
2π

∫ ∞

−∞
| f̂ (ω)|2 dω

which yields Parseval’s Equality in the form (7.76) after subsituting
t = −u on the left.

As noted above, the forms in Equations (7.76) and (7.78) are often re-
ferred to as the Plancherel formula or Parseval formula. A more com-
monly defined Paresval equation is that given for Fourier series. For
example, for a function f (x) defined on [−π, π], which has a Fourier
series representation, we have

a2
0

2
+

∞

∑
n=1

(a2
n + b2

n) =
1
π

∫ π

−π
[ f (x)]2 dx.

In general, there is a Parseval identity for functions that can be ex-
panded in a complete sets of orthonormal functions, {φn(x)}, n =

1, 2, . . . , which is given by

∞

∑
n=1

< f , φn >2= ‖ f ‖2.

Here ‖ f ‖2 =< f , f > . The Fourier series example is just a special case
of this formula.

7.7 The Laplace Transform
The Laplace transform is named af-
ter Pierre-Simon de Laplace (1749-1827).
Laplace made major contributions, espe-
cially to celestial mechanics, tidal analy-
sis, and probability.

Up until this point we have only explored Fourier exponential
transforms as one type of integral transform. The Fourier transform is
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useful on infinite domains. However, students are often introduced to
another integral transform, called the Laplace transform, in their intro-
ductory differential equations class. These transforms are defined over
semi-infinite domains and are useful for solving ordinary differential
equations.

The Fourier and Laplace transforms are examples of a broader class
of transforms known as integral transforms. For a function f (x) defined
on an interval (a, b), we define the integral transform

F(k) =
∫ b

a
K(x, k) f (x) dx,

where K(x, k) is a specified kernel of the transform. Looking at the
Fourier transform, we see that the interval is stretched over the entire
real axis and the kernel is of the form, K(x, k) = eikx. In Table 7.1 we
show several types of integral transforms.

Laplace Transform F(s) =
∫ ∞

0 e−sx f (x) dx
Fourier Transform F(k) =

∫ ∞
−∞ eikx f (x) dx

Fourier Cosine Transform F(k) =
∫ ∞

0 cos(kx) f (x) dx
Fourier Sine Transform F(k) =

∫ ∞
0 sin(kx) f (x) dx

Mellin Transform F(k) =
∫ ∞

0 xk−1 f (x) dx
Hankel Transform F(k) =

∫ ∞
0 xJn(kx) f (x) dx

Table 7.1: A table of common integral
transforms.

Laplace transforms also have proven useful in engineering for solv-
ing circuit problems and doing systems analysis. In Figure 7.24 it is
shown that a signal x(t) is provided as input to a linear system, indi-
cated by h(t). One is interested in the system output, y(t), which is
given by a convolution of the input and system functions. By consid-
ering the transforms of x(t) and h(t), the transform of the output is
given as a product of the Laplace transforms in the s-domain. In order
to obtain the output, one needs to compute a convolution product for
Laplace transforms similar to the convolution operation we had seen
for Fourier transforms earlier in the chapter. Of course, for us to do
this in practice, we have to know how to compute Laplace transforms.

The Laplace transform of a function f (t) is defined as

F(s) = L[ f ](s) =
∫ ∞

0
f (t)e−st dt, s > 0. (7.80)

This is an improper integral and one needs

lim
t→∞

f (t)e−st = 0

to guarantee convergence.
It is typical that one makes use of Laplace transforms by referring

to a Table of transform pairs. A sample of such pairs is given in Table
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x(t)

Laplace
Transform

X(s)

h(t)

Laplace
Transform

H(s)

y(t) = h(t) ∗ x(t)

Inverse Laplace
Transform

Y(s) = H(s)X(s)

Time domain

Frequency domain

Figure 7.24: A schematic depicting the
use of Laplace transforms in systems
theory.

7.2. Combining some of these simple Laplace transforms with the
properties of the Laplace transform, as shown in Table 7.3, we can
deal with many applications of the Laplace transform. We will first
prove a few of the given Laplace transforms and show how they can
be used to obtain new transform pairs. In the next section we will
show how these can be used to solve ordinary differential equations.

f (t) F(s) f (t) F(s)

c
c
s

eat 1
s− a

, s > a

tn n!
sn+1 , s > 0 tneat n!

(s− a)n+1

sin ωt
ω

s2 + ω2 eat sin ωt ω
(s−a)2+ω2

cos ωt
s

s2 + ω2 eat cos ωt
s− a

(s− a)2 + ω2

t sin ωt
2ωs

(s2 + ω2)2 t cos ωt
s2 −ω2

(s2 + ω2)2

sinh at
a

s2 − a2 cosh at
s

s2 − a2

H(t− a)
e−as

s
, s > 0 δ(t− a) e−as, a ≥ 0, s > 0

Table 7.2: Table of selected Laplace
transform pairs.

We begin with some simple transforms. These are found by simply
using the definition of the Laplace transform.

Example 7.13. L[1]
For this example, we insert f (t) = 1 into the integral transform:

L[1] =
∫ ∞

0
e−st dt.

This is an improper integral and the computation is understood by introduc-
ing an upper limit of a and then letting a→ ∞. We will not always write this
limit, but it will be understood that this is how one computes such improper
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integrals. Proceeding with the computation, we have

L[1] =
∫ ∞

0
e−st dt

= lim
a→∞

∫ a

0
e−st dt

= lim
a→∞

(
−1

s
e−st

)a

0

= lim
a→∞

(
−1

s
e−sa +

1
s

)
=

1
s

. (7.81)

Thus, we have found that the Laplace transform of 1 is 1
s . This

result can be extended to any constant c, using the linearity of the
transform. Since the Laplace transform is simply an integral, L[c] =
cL[1]. Therefore,

L[c] = c
s

.

Example 7.14. L[eat],
For this example, we can easily compute the transform. Again, we only

need to compute the integral of an exponential function.

L[eat] =
∫ ∞

0
eate−st dt

=
∫ ∞

0
e(a−s)t dt

=

(
1

a− s
e(a−s)t

)∞

0

= lim
t→∞

1
a− s

e(a−s)t − 1
a− s

=
1

s− a
. (7.82)

Note that the last limit was computed as limt→∞ e(a−s)t = 0. This is only
true if a− s < 0, or s > a. [Actually, a could be complex. In this case we
would only need s to be greater than the real part of a, s > Re(a) = 0.]

Example 7.15. L[cos at] and L[sin at]
For these examples, we could again insert the trigonometric functions di-

rectly into the transform and integrate. For example,

L[cos at] =
∫ ∞

0
e−st cos at dt.

Recall how one evaluates integrals involving the product of a trigonometric
function and the exponential function. One integrates by parts two times
and then obtains an integral of the original unknown integral. Rearranging
the resulting integral expressions, one arrives at the desired result. However,
there is a much simpler way to compute these transforms.

Recall that eiat = cos at + i sin at. Making use of the linearity of the
Laplace transform, we have

L[eiat] = L[cos at] + iL[sin at].
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Thus, transforming this complex exponential will simultaneously provide the
Laplace transforms for the sine and cosine functions! The transform is simply
computed as

L[eiat] =
∫ ∞

0
eiate−st dt =

∫ ∞

0
e−(s−ia)t dt =

1
s− ia

.

Note that we could easily have used the result for the transform of an expo-
nential, which was already proven. In this case s > Re(ia) = 0.

We now extract the real and imaginary parts of the result using the com-
plex conjugate of the denominator:

1
s− ia

=
1

s− ia
s + ia
s + ia

=
s + ia

s2 + a2 .

Reading off the real and imaginary parts gives

L[cos at] =
s

s2 + a2

L[sin at] =
a

s2 + a2 . (7.83)

Example 7.16. L[t]
For this example we evaluate

L[t] =
∫ ∞

0
te−st dt.

This integral can be done using the method of integration by parts. (Pick
u = t and dv = e−st dt. Then, du = dt and v = − 1

s e−st.) So, we have

∫ ∞

0
te−st dt = −t

1
s

e−st
∣∣∣∞
0
+

1
s

∫ ∞

0
e−st dt

=
1
s2 . (7.84)

Example 7.17. L[tn]

We can generalize the last example to integer powers of t greater than
n = 1. In this case we have to do the integral

L[tn] =
∫ ∞

0
tne−st dt.

Following the previous example, we again integrate by parts:5 5 This integral can just as easily be done
using differentiation. We note that(
− d

ds

)n ∫ ∞

0
e−st dt =

∫ ∞

0
tne−st dt.

Since ∫ ∞

0
e−st dt =

1
s

,∫ ∞

0
tne−st dt =

(
− d

ds

)n 1
s
=

n!
sn+1 .

∫ ∞

0
tne−st dt = −tn 1

s
e−st

∣∣∣∞
0
+

n
s

∫ ∞

0
t−ne−st dt

=
n
s

∫ ∞

0
t−ne−st dt. (7.85)

We could continue to integrate by parts until the final integral is com-

We compute
∫ ∞

0 tne−st dt using an itera-
tive method.

puted. However, look at the integral that resulted after one integration by
parts. It is just the Laplace transform of tn−1. So, we can write the result as

L[tn] =
n
s
L[tn−1].
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This is an example of a recursive definition of a sequence. In this case we
have a sequence of integrals. Denoting

In = L[tn] =
∫ ∞

0
tne−st dt

and noting that I0 = L[1] = 1
s , we have the following: Here we see an example of a first order

difference equation and the solution of
the corresponding initial value problem.

In =
n
s

In−1, I0 =
1
s

. (7.86)

This is also what is called a difference equation. It is a first order difference
equation with an “initial condition", I0. There is a whole theory of difference
equations, which we will not get into here.

Our goal is to solve the above difference equation. It is easy to do by simple
iteration. Note that replacing n with n− 1, we have

In−1 =
n− 1

s
In−2.

So, repeating the process we find

In =
n
s

In−1

=
n
s

(
n− 1

s
In−2

)
=

n(n− 1)
s2 In−2. (7.87)

We can repeat this process until we get to I0, which we know. We have to
carefully count the number of iterations. We do this by iterating k times and
then figure out how many steps will get us to the known initial value. A list
of iterates is easily written out:

In =
n
s

In−1

=
n(n− 1)

s2 In−2

=
n(n− 1)(n− 2)

s3 In−3

= . . .

=
n(n− 1)(n− 2) . . . (n− k + 1)

sk In−k. (7.88)

Since we know I0 = 1
s , we choose to stop at k = n obtaining

In =
n(n− 1)(n− 2) . . . (2)(1)

sn I0 =
n!

sn+1 .

Therefore, we have shown that L[tn] = n!
sn+1 . [Such iterative techniques are

useful in obtaining a variety of of integrals, such as In =
∫ ∞
−∞ x2ne−x2

dx.
See Problem 10]
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As a final note, one can extend this result to cases when n is not an
integer. To do this, one introduces what is called the Gamma function,
which was discussed in Chapter 5. This function is defined as

Γ(x) =
∫ ∞

0
tx−1e−t dt. (7.89)

Note the similarity to the Laplace transform of tx−1 :

L[tx−1] =
∫ ∞

0
tx−1e−st dt.

For x− 1 an integer and s = 1, we have that

Γ(x) = (x− 1)!.

Thus, the Gamma function can be viewed as a generalization of the
factorial and we have shown that

L[tp] =
Γ(p + 1)

sp+1

for p > −1.
Now we are ready to introduce additional properties of the Laplace

transform. We will prove a few of the properties in Table 7.3.

Laplace Transform Properties
L[a f (t) + bg(t)] = aF(s) + bG(s)

L[t f (t)] = − d
ds

F(s)

L
[

d f
dt

]
= sF(s)− f (0)

L
[

d2 f
dt2

]
= s2F(s)− s f (0)− f ′(0)

L[eat f (t)] = F(s− a)
L[H(t− a) f (t− a)] = e−asF(s)

L[( f ∗ g)(t)] = L[
∫ t

0
f (t− u)g(u) du] = F(s)G(s)

Table 7.3: Table of selected Laplace
transform properties.

Example 7.18. L
[

d f
dt

]
We have to compute

L
[

d f
dt

]
=
∫ ∞

0

d f
dt

e−st dt.

We can move the derivative off of f by integrating by parts. This is similar
to what we had done when finding the Fourier transform of the derivative of
a function. Letting u = e−st and v = f (t), we have

L
[

d f
dt

]
=

∫ ∞

0

d f
dt

e−st dt

= f (t)e−st
∣∣∣∞
0
+ s

∫ ∞

0
f (t)e−st dt

= − f (0) + sF(s). (7.90)
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Here we have assumed that f (t)e−st vanishes for large t.
The final result is that

L
[

d f
dt

]
= sF(s)− f (0).

Example 6: L
[

d2 f
dt2

]
We can compute this Laplace transform using two integrations by parts,

or we could make use of the last result. Letting g(t) = d f (t)
dt , we have

L
[

d2 f
dt2

]
= L

[
dg
dt

]
= sG(s)− g(0) = sG(s)− f ′(0).

But,

G(s) = L
[

d f
dt

]
= sF(s)− f (0).

So,

L
[

d2 f
dt2

]
= sG(s)− f ′(0)

= s [sF(s)− f (0)]− f ′(0)

= s2F(s)− s f (0)− f ′(0). (7.91)

7.8 Further Uses of Laplace Transforms

Although the Laplace transform is a very useful transform, it is
often encountered only as a method for solving initial value problems
in introductory differential equations. In this section we will show how
to solve simple differential equations. Along the way we will introduce
step and impulse functions and show how the Convolution Theorem
plays a role in finding solutions. Also, we will show that there is an
inverse Laplace transform, called the Bromwich integral, named after
Thomas John l’Anson Bromwich (1875-1929) . This inverse transform
is not usually covered in differential equations courses because the
integration takes place in the complex plane.

However, we will first explore an unrelated application of Laplace
transforms. We will see that the Laplace transform is useful in finding
sums of infinite series. Generally, many of the topics in this section are
optional and not needed in the rest of the text.

7.8.1 Series Summation Using Laplace Transforms

We saw in Chapter 4 that Fourier series can be used to sum series.
For example, in Problem 4.13, one gets to prove that

∞

∑
n=1

1
n2 =

π2

6
.
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In this section we will show how Laplace transforms can be used to
sum series. [See Wheelon’s book6.] There is an interesting history of 6 Albert D. Wheelon, Tables of Summable

Series and Integrals Involving Bessel Func-
tions, Holden-Day, 1968.

using integral transforms to sum series. For example, Richard Feyn-
man7 (1918-1988) described how one can use the convolution theorem

7 R. P. Feynman, 1949, Phys. Rev. 76, p.
769for Laplace transforms to sum series with denominators that involved

products. We will describe this and simpler sums in this section.
We begin by considering the Laplace transform of a known function,

F(s) =
∫ ∞

0
f (t)e−st dt.

Inserting this expression into the sum ∑n F(n) and interchanging the
sum and integral, we find

∞

∑
n=0

F(n) =
∞

∑
n=0

∫ ∞

0
f (t)e−nt dt

=
∫ ∞

0
f (t)

∞

∑
n=0

(
e−t)n dt

=
∫ ∞

0
f (t)

1
1− e−t dt. (7.92)

The last step was obtained using the sum of a geometric series. The
key is being able to carry out the final integral as we show in the next
example.

Example 7.19. Evaluate the sum ∑∞
n=1

(−1)n+1

n .
Since, L[1] = 1/s, we have

∞

∑
n=1

(−1)n+1

n
=

∞

∑
n=1

∫ ∞

0
(−1)n+1e−nt dt

=
∫ ∞

0

e−t

1 + e−t dt

=
∫ 2

1

du
u

= ln 2. (7.93)

Example 7.20. Evaluate the sum ∑∞
n=1

1
n2 .

This is a special case of the Riemann zeta function 8 8 A translation of Riemann, Bernhard
(1859), "Über die Anzahl der Primzahlen
unter einer gegebenen Grösse" is in H.
M. Edwards (1974). Riemann’s Zeta
Function. Academic Press. Riemann
had shown that the Riemann zeta func-
tion can be obtained through contour in-
tegral representation, 2 sin(πs)Γζ(s) =

i
∮

C
(−x)s−1

ex−1 dx, for a specific contour C.

ζ(s) =
∞

∑
n=1

1
ns . (7.94)

This function is important in the study of prime numbers and more recently
has seen applications in the study of dynamical systems. The series in this
example is ζ(2). We have already seen in 4.13that

ζ(2) =
π2

6
.

Using Laplace transforms, we can provide an integral representation of ζ(2).
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The first step is to find the correct Laplace transform pair. The sum in-
volves the function F(n) = 1/n2. So, we look for a function f (t) whose
Laplace transform is F(s) = 1/s2. We know by now that the inverse Laplace
transform of F(s) = 1/s2 is f (t) = t. As before, we replace each term in the
series by a Laplace transform, exchange the summation and integration, and
sum the resulting geometric series:

∞

∑
n=1

1
n2 =

∞

∑
n=1

∫ ∞

0
te−nt dt

=
∫ ∞

0

t
et − 1

dt. (7.95)

So, we have that ∫ ∞

0

t
et − 1

dt =
∞

∑
n=1

1
n2 = ζ(2).

Integrals of this type occur often in statistical mechanics in the form of Bose-
Einstein integrals. These are of the form

Gn(z) =
∫ ∞

0

xn−1

z−1ex − 1
dx.

Note that Gn(1) = Γ(n)ζ(n).

In general the Riemann zeta function has to be tabulated through
other means. In some special cases, one can closed form expressions.
For example,

ζ(2n) =
22n−1π2n

(2n)!
Bn,

where the Bn’s are the Bernoulli numbers. Bernoulli numbers are de-
fined through the Maclaurin series expansion

x
ex − 1

=
∞

∑
n=0

Bn

n!
xn.

The first few Riemann zeta functions are

ζ(2) =
π2

6
, ζ(4) =

π4

90
, ζ(6) =

π6

945
.

We can extend this method of using Laplace transforms to summing
series whose terms take special general forms. For example, from
Feynman’s paper we note that

1
(a + bn)2 = − ∂

∂a

∫ ∞

0
e−s(a+bn) ds.

This identity can be shown easily by first noting

∫ ∞

0
e−s(a+bn) ds =

[
−e−s(a+bn)

a + bn

]∞

0

=
1

a + bn
.
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Now, differentiate the result with respect to a and the result follows.
The latter identity can be generalized further as

1
(a + bn)k+1 =

(−1)k

k!
∂k

∂ak

∫ ∞

0
e−s(a+bn) ds.

In Feynman’s 1949 paper, he develops methods for handling several
other general sums using the convolution theorem. Wheelon gives
more examples of these. We will just provide one such result and an
example. First, we note that

1
ab

=
∫ 1

0

du
[a(1− u) + bu]2

.

However,
1

[a(1− u) + bu]2
=
∫ ∞

0
te−t[a(1−u)+bu] dt.

So, we have
1
ab

=
∫ 1

0
du
∫ ∞

0
te−t[a(1−u)+bu] dt.

We see in the next example how this representation can be useful.

Example 7.21. Evaluate ∑∞
n=0

1
(2n+1)(2n+2) . We compute this as follows:

∞

∑
n=0

1
(2n + 1)(2n + 2)

=
∞

∑
n=0

∫ 1

0

du
[(2n + 1)(1− u) + (2n + 2)u]2

=
∞

∑
n=0

∫ 1

0
du
∫ ∞

0
te−t(2n+1+u) dt

=
∫ ∞

0

e−t

1− e−2t

∫ 1

0
e−tu du dt

=
∫ ∞

0

te−t

1− e−2t
1− e−t

t
dt

=
∫ ∞

0

e−t

1 + e−t dt

= − ln(1 + e−t)
∣∣∣∞
0
= ln 2. (7.96)

7.8.2 Solution of ODEs Using Laplace Transforms

One of the typical applications of Laplace transforms is the so-
lution of nonhomogeneous linear constant coefficient differential equa-
tions. In the following examples we will show how this works.

The general idea is that one transforms the equation for an un-
known function y(t) into an algebraic equation for its transform, Y(t).
Typically, the algebraic equation is easy to solve for Y(s) as a function
of s. Then one transforms back into t-space using Laplace transform
tables and the properties of Laplace transforms. The scheme is shown
in Figure 7.25.
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Figure 7.25: The scheme for solving
an ordinary differential equation using
Laplace transforms. One transforms the
initial value problem for y(t) and obtains
an algebraic equation for Y(s). Solve for
Y(s) and the inverse transform give the
solution to the initial value problem.

Example 7.22. Solve the initial value problem y′ + 3y = e2t, y(0) = 1.
The first step is to perform a Laplace transform of the initial value problem.

The transform of the left side of the equation is

L[y′ + 3y] = sY− y(0) + 3Y = (s + 3)Y− 1.

Transforming the right hand side, we have

L[e2t] =
1

s− 2
.

Combining these two results, we obtain

(s + 3)Y− 1 =
1

s− 2
.

The next step is to solve for Y(s) :

Y(s) =
1

s + 3
+

1
(s− 2)(s + 3)

.

Now, we need to find the inverse Laplace transform. Namely, we need to
figure out what function has a Laplace transform of the above form. It is easy
to do if we only had the first term. The inverse transform of the first term is
e−3t.

So far we have not seen anything that looks like the second form in the table
of transforms that we have compiled. However, we are not stuck. We know
that we can rewrite the second term by using a partial fraction decomposition.
Let’s recall how to do this. This is an example of carrying out a par-

tial fraction decomposition.The goal is to find constants, A and B, such that

1
(s− 2)(s + 3)

=
A

s− 2
+

B
s + 3

.

We picked this form because we know that recombining the two terms into
one term will have the same denominator. We just need to make sure the
numerators agree afterwards. So, adding the two terms, we have

1
(s− 2)(s + 3)

=
A(s + 3) + B(s− 2)

(s− 2)(s + 3)
.
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Equating numerators,

1 = A(s + 3) + B(s− 2).

This has to be true for all s. Rewriting the equation by gathering terms with
common powers of s, we have

(A + B)s + 3A− 2B = 1.

The only way that this can be true for all s is that the coefficients of the
different powers of s agree on both sides. This leads to two equations for A
and B:

A + B = 0

3A− 2B = 1. (7.97)

The first equation gives A = −B, so the second equation becomes −5B = 1.
The solution is then A = −B = 1

5 .
Returning to the problem, we have found that

Y(s) =
1

s + 3
+

1
5

(
1

s− 2
− 1

s + 3

)
.

[Of course, we could have tried to guess the form of the partial fraction de-
composition as we had done earlier when talking about Laurent series.]

Figure 7.26: A plot of the solution to Ex-
ample 7.22.

In order to finish the problem at hand, we find a function whose Laplace
transform is of this form. We easily see that

y(t) = e−3t +
1
5

(
e2t − e−3t

)
works. Simplifying, we have the solution of the initial value problem

y(t) =
1
5

e2t +
4
5

e−3t.

Example 7.23. Solve the initial value problem y′′ + 4y = 0, y(0) = 1,
y′(0) = 3.

We can probably solve this without Laplace transforms, but it is a simple
exercise. Transforming the equation, we have

0 = s2Y− sy(0)− y′(0) + 4Y

= (s2 + 4)Y− s− 3. (7.98)

Solving for Y, we have

Y(s) =
s + 3
s2 + 4

.

Figure 7.27: A plot of the solution to Ex-
ample 7.23.

We now ask if we recognize the transform pair needed. The denominator
looks like the type needed for the transform of a sine or cosine. We just need
to play with the numerator. Splitting the expression into two terms, we have

Y(s) =
s

s2 + 4
+

3
s2 + 4

.
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The first term is now recognizable as the transform of cos 2t. The second term
is not the transform of sin 2t. It would be if the numerator were a 2. This can
be corrected by multiplying and dividing by 2:

3
s2 + 4

=
3
2

(
2

s2 + 4

)
.

The solution is then found as

y(t) = L
[

s
s2 + 4

+
3
2

(
2

s2 + 4

)]
= cos 2t +

3
2

sin 2t.

7.8.3 Step and Impulse Functions

Often the initial value problems that one faces in differential
equations courses can be solved using either the Method of Undeter-
mined Coefficients or the Method of Variation of Parameters. How-
ever, using the latter can be messy and involves some skill with inte-
gration. Many circuit designs can be modeled with systems of differ-
ential equations using Kirchoff’s Rules. Such systems can get fairly
complicated. However, Laplace transforms can be used to solve such
systems and electrical engineers have long used such methods in cir-
cuit analysis.

In this section we add a couple of more transform pairs and trans-
form properties that are useful in accounting for things like turning on
a driving force, using periodic functions like a square wave, or intro-
ducing impulse forces.

We first recall the Heaviside step function, given by

H(t) =

{
0, t < 0,
1, t > 0.

(7.99)

Figure 7.28: A shifted Heaviside func-
tion, H(t− a).

A more general version of the step function is the horizontally
shifted step function, H(t− a). This function is shown in Figure 7.28.
The Laplace transform of this function is found for a > 0 as

L[H(t− a)] =
∫ ∞

0
H(t− a)e−st dt

=
∫ ∞

a
e−st dt

=
e−st

s

∣∣∣∞
a
=

e−as

s
. (7.100)

Just like the Fourier transform, the Laplace transform has two shift
theorems involving the multiplication of the function, f (t), or its trans-
form, F(s), by exponentials. The first and second shifting proper-
ties/theorems are given by

L[eat f (t)] = F(s− a) (7.101)

L[ f (t− a)H(t− a)] = e−asF(s). (7.102)
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We prove the First Shift Theorem and leave the other proof as an
exercise for the reader. Namely,

L[eat f (t)] =
∫ ∞

0
eat f (t)e−st dt

=
∫ ∞

0
f (t)e−(s−a)t dt = F(s− a). (7.103)

Example 7.24. Compute the Laplace transform of e−at sin ωt.
This function arises as the solution of the underdamped harmonic oscilla-

tor. We first note that the exponential multiplies a sine function. The shift
theorem tells us that we need the transform of the sine function. So,

F(s) =
ω

s2 + ω2 .

Using this transform, we can obtain the solution to this problem as

L[e−at sin ωt] = F(s + a) =
ω

(s + a)2 + ω2 .

More interesting examples can be found in piecewise functions. First we
consider the function H(t) − H(t − a). For t < 0 both terms are zero.
In the interval [0, a] the function H(t) = 1 and H(t − a) = 0. Therefore,
H(t)− H(t− a) = 1 for t ∈ [0, a]. Finally, for t > a, both functions are one
and therefore the difference is zero. This function is shown in Figure 7.29.

Figure 7.29: The box function, H(t) −
H(t− a).

We now consider the piecewise defined function

g(t) =

{
f (t), 0 ≤ t ≤ a,
0, t < 0, t > a.

This function can be rewritten in terms of step functions. We only need
to multiply f (t) by the above box function,

g(t) = f (t)[H(t)− H(t− a)].

We depict this in Figure 7.30.

Figure 7.30: Formation of a piecewise
function, f (t)[H(t)− H(t− a)].

Even more complicated functions can be written out in terms of
step functions. We only need to look at sums of functions of the form
f (t)[H(t− a)− H(t− b)] for b > a. This is just a box between a and
b of height f (t). An example of a square wave function is shown in
Figure 7.31. It can be represented as a sum of an infinite number of
boxes,

f (t) =
∞

∑
n=−∞

[H(t− 2na)− H(t− (2n + 1)a)].

Example 7.25. Laplace Transform of a square wave turned on at t = 0,

f (t) =
∞

∑
n=0

[H(t− 2na)− H(t− (2n + 1)a)].
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Figure 7.31: A square wave, f (t) =

∑∞
n=−∞[H(t− 2na)− H(t− (2n + 1)a)].

Using the properties of the Heaviside function, we have

L[ f (t)] =
∞

∑
n=0

[L[H(t− 2na)]−L[H(t− (2n + 1)a)]]

=
∞

∑
n=0

[
e−2nas

s
− e−(2n+1)as

s

]

=
1− e−as

s

∞

∑
n=0

(
e−2as

)n

=
1− e−as

s

(
1

1− e−2as

)
=

1− e−as

s(1− e−2as)
. (7.104)

Note that the third line in the derivation is a geometric series. We summed
this series to get the answer in a compact form.

Another interesting example is the delta function. The delta func-
tion represents a point impulse, or point driving force. For example,
while a mass on a spring is undergoing simple harmonic motion, one
could hit it for an instant at time t = a. In such a case, we could
represent the force as a multiple of δ(t− a). One would then need the
Laplace transform of the delta function to solve the associated initial
value problem.

We find that for a > 0

L[δ(t− a)] =
∫ ∞

0
δ(t− a)e−st dt

=
∫ ∞

−∞
δ(t− a)e−st dt

= e−as. (7.105)

The Dirac delta function can be used to represent a unit impulse.
Summing over a number of impulses, or point sources, we can describe
a general function. Such a sum of impulses located at points ai, i =
1, . . . , n with strengths f (ai) would be given by

f (x) =
n

∑
i=1

f (ai)δ(x− ai).
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A continuous sum could be written as

f (x) =
∫ ∞

−∞
f (ξ)δ(x− ξ) dξ.

This is simply an application of the sifting property of the delta func-
tion. In the next example we explore the application of a unit impulse
to a still harmonic oscillator.

Example 7.26. Solve the initial value problem y′′ + 4π2y = δ(t − 2),
y(0) = y′(0) = 0.

This initial value problem models a spring oscillation with an impulse
force. Without the forcing term, given by the delta function, this spring is
initially at rest and not stretched. The delta function models a unit impulse
at t = 2. Of course, we anticipate that at this time the spring will begin to
oscillate. We will solve this problem using Laplace transforms.

First, transform the differential equation:

s2Y− sy(0)− y′(0) + 4π2Y = e−2s.

Inserting the initial conditions, we have

(s2 + 4π2)Y = e−2s.

Solve for Y(s) :

Y(s) =
e−2s

s2 + 4π2 .

We now seek the function for which this is the Laplace transform. The form
of this function is an exponential times some Laplace transform, F(s). Thus,
we need the Second Shift Theorem.

Spring Oscillation Under an Impulse
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–0.05

0

0.05

0.1
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2 4 6 8

t

Figure 7.32: A plot of the solution to Ex-
ample 7.26 in which a spring at rest ex-
periences an impulse force at t = 2.

First we need to find the f (t) corresponding to

F(s) =
1

s2 + 4π2 .

The denominator suggests a sine or cosine. Since the numerator is constant,
we pick sine. From the tables of transforms, we have

L[sin 2πt] =
2π

s2 + 4π2 .

So, we write

F(s) =
1

2π

2π

s2 + 4π2 .

This gives f (t) = (2π)−1 sin 2πt.
We now apply the Second Shift Theorem, L[ f (t− a)H(t− a)] = e−asF(s).

y(t) = H(t− 2) f (t− 2)

=
1

2π
H(t− 2) sin 2π(t− 2). (7.106)

This solution tells us that the mass is at rest until t = 2 and then begins
to oscillate at its natural frequency. A plot of this solution is shown in Figure
7.32
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Example 7.27. Solve the initial value problem y′′ + y = f (t), y(0) = 0,
y′(0) = 0, where

f (t) =

{
cosπt, 0 ≤ t ≤ 2

0, otherwise.

We need the Laplace transform of f (t). This function can be written in
terms of a Heaviside function, f (t) = cos πtH(t − 2). In order to apply
the Second Shift Theorem, we need a shifted version of the cosine function.
However, cos π(t− 2) = cos πt. So, f (t) = cos π(t− 2)H(t− 2) and

F(s) = (1− e−2s)L[cos πt] = (1− e−2s)
s

s2 + π2 .

Now we can proceed to solve the initial value problem. Its Laplace trans-
form is

(s2 + 1)Y(s) = (1− e−2s)
s

s2 + π2 ,

or
Y(s) = (1− e−2s)

s
(s2 + π2)(s2 + 1)

.

We can retrieve the solution to the initial value problem using the Second
Shift Theorem again. A partial fraction decomposition gives

s
(s2 + π2)(s2 + 1)

=
1

π2 − 1

[
s

s2 + 1
− s

s2 + π2

]
.

Thus,

L
[

s
(s2 + π2)(s2 + 1)

]
=

1
π2 − 1

(cos t− cos πt) .

The final solution is then

y(t) =
1

π2 − 1
[cos t− cos πt− H(t− 2)(cos(t− 2)− cos πt)] .

A plot of this solution is shown in Figure 7.33

Figure 7.33: A plot of the solution to Ex-
ample 7.27 in which a spring at rest ex-
periences an piecewise defined force.7.8.4 The Convolution Theorem

Finally, we consider the convolution of two functions. Often we
are faced with having the product of two Laplace transforms that we
know and we seek the inverse transform of the product. For example,
let’s say you end up with Y(s) = 1

(s−1)(s−2) while trying to solve an
initial value problem. We know how to do this if we only have one
of the factors present in the denominator. Of course, we could do a
partial fraction decomposition. But, there is another way to find the
inverse transform, especially if we cannot perform a partial fraction
decomposition.
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We define the convolution of two functions defined on [0, ∞) much
the same way as we had done for the Fourier transform. The convolu-
tion f ∗ g is defined as

( f ∗ g)(t) =
∫ t

0
f (u)g(t− u) du. (7.107)

Note that the convolution integral has finite limits as opposed to the
Fourier transform case.

The convolution operation has two important properties:

1. The convolution is commutative: f ∗ g = g ∗ f

Proof. The key is to make a substitution y = t − u in the
integral. This makes f a simple function of the integration
variable.

(g ∗ f )(t) =
∫ t

0
g(u) f (t− u) du

= −
∫ 0

t
g(t− y) f (y) dy

=
∫ t

0
f (y)g(t− y) dy

= ( f ∗ g)(t). (7.108)

2. The Convolution Theorem: The Laplace transform of a con-
volution is the product of the Laplace transforms of the indi-
vidual functions:

L[ f ∗ g] = F(s)G(s)

Proof. Proving this theorem takes a bit more work. We will
make some assumptions that will work in many cases. First,
we assume that the functions are causal, f (t) = 0 and g(t) =
0 for t < 0. Secondly, we will assume that we can interchange
integrals, which needs more rigorous attention than will be
provided here. The first assumption will allow us to write
the finite integral as an infinite integral. Then a change of
variables will allow us to split the integral into the product of
two integrals that are recognized as a product of two Laplace
transforms.

L[ f ∗ g] =
∫ ∞

0

(∫ t

0
f (u)g(t− u) du

)
e−st dt

=
∫ ∞

0

(∫ ∞

0
f (u)g(t− u) du

)
e−st dt
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=
∫ ∞

0
f (u)

(∫ ∞

0
g(t− u)e−st dt

)
du

=
∫ ∞

0
f (u)

(∫ ∞

0
g(τ)e−s(τ+u) dτ

)
du

=
∫ ∞

0
f (u)e−su

(∫ ∞

0
g(τ)e−sτ dτ

)
du

=

(∫ ∞

0
f (u)e−su du

)(∫ ∞

0
g(τ)e−sτ dτ

)
= F(s)G(s). (7.109)

We make use of the Convolution Theorem to do the following ex-
ample.

Example 7.28. y(t) = L−1
[

1
(s−1)(s−2)

]
.

We note that this is a product of two functions

Y(s) =
1

(s− 1)(s− 2)
=

1
s− 1

1
s− 2

= F(s)G(s).

We know the inverse transforms of the factors: f (t) = et and g(t) = e2t.
Using the Convolution Theorem, we find y(t) = ( f ∗ g)(t). We compute

the convolution:

y(t) =
∫ t

0
f (u)g(t− u) du

=
∫ t

0
eue2(t−u) du

= e2t
∫ t

0
e−u du

= e2t[−et + 1] = e2t − et. (7.110)

One can also confirm this by carrying out a partial fraction decomposition.

Example 7.29. Consider the initial value problem, y′′ + 9y = 2 sin 3t,
y(0) = 1, y′(0) = 0.

The Laplace transform of this problem is given by

(s2 + 9)Y− s =
6

s2 + 9
.

Solving for Y(s), we obtain

Y(s) =
6

(s2 + 9)2 +
s

s2 + 9
.

The inverse Laplace transform of the second term is easily found as cos(3t);
however, the first term is more complicated.
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If we look at Table 7.2, we see that the Laplace transform pairs with the
denominator (s2 + ω2)2 are

L[t sin ωt] =
2ωs

(s2 + ω2)2 ,

and

L[t cos ωt] =
s2 −ω2

(s2 + ω2)2 .

So, we might consider rewriting a partial fraction decomposition as

6
(s2 + 9)2 =

A6s
(s2 + 9)2 +

B(s2 − 9)
(s2 + 9)2 +

Cs + D
s2 + 9

.

Combining the terms on the right over a common denominator, we find

6 = 6As + B(s2 − 9) + (Cs + D)(s2 + 9).

Collecting like powers of s, we have

Cs3 + (D + B)s2 + 6As + (D− B) = 6.

Therefore, C = 0, A = 0, D + B = 0, and D− B = 2
3 . Solving the last two

equations, we find D = −B = 1
3 .

Figure 7.34: Plot of the solution to Exam-
ple 7.29 showing a resonance.

Using these results, we find

Y(s) = −1
3
(s2 − 9)
(s2 + 9)2 +

1
3

1
s2 + 9

+
s

s2 + 9
.

Therefore, the solution to the initial value problem,

y(t) = −1
3

t cos 3t +
1
9

sin 3t + cos 3t.

Note that the amplitude of the solution will grow in time from the first term.
You can see this in Figure 7.34. This is known as a resonance.

Example 7.30. Find L−1[ 6
(s2+9)2 ] using the Convolution Theorem.

We can use the Convolution Theorem to find the Laplace transform in the
last example. We note that

6
(s2 + 9)2 =

2
3

3
(s2 + 9)

3
(s2 + 9)

is a product of two Laplace transforms (up to the constant factor). Thus,

L−1[
6

(s2 + 9)2 ] =
2
3
( f ∗ g)(t),

where f (t) = g(t) = sin3t. Evaluating this convolution product, we have

L−1[
6

(s2 + 9)2 ] =
2
3
( f ∗ g)(t)
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=
2
3

∫ t

0
sin 3u sin 3(t− u) du

=
1
3

∫ t

0
[cos 3(2u− t)− cos 3t] du

=
1
3

[
1
6

sin(6u− 3t)− u cos 3t
]t

0

=
1
9

sin 3t− 1
3

t cos 3t. (7.111)

This is the result we had obtained in the last example.

7.8.5 The Inverse Laplace Transform

Up until this point we have seen that the inverse Laplace transform
can be found by making use of Laplace transform tables and properties
of Laplace transforms. This is typically the way Laplace transforms are
taught and used. One can do the same for Fourier transforms. How-
ever, in that case we introduced an inverse transform in the form of an
integral. Does such an inverse exist for the Laplace transform? Yes, it
does! In this section we will introduce the inverse Laplace transform
integral and show how it is used.

We begin by considering a function f (t) which vanishes for t < 0
and define the function g(t) = f (t)e−ct. For g(t) absolutely integrable,∫ ∞

−∞
|g(t)| dt =

∫ ∞

0
| f (t)|e−ct dt < ∞,

we can write the Fourier transform,

ĝ(ω) =
∫ ∞

−∞
g(t)eiωtdt =

∫ ∞

0
f (t)eiωt−ctdt

and the inverse Fourier transform,

g(t) = f (t)e−ct =
1

2π

∫ ∞

−∞
ĝ(ω)e−iωt dω.

Multiplying by ect and inserting ĝ(ω) into the integral for g(t), we
find

f (t) =
1

2π

∫ ∞

−∞

∫ ∞

0
f (τ)e(iω−c)τdτe−(iω−c)t dω.

Letting s = c− iω (so dω = ids), we have

f (t) =
i

2π

∫ c−i∞

c+i∞

∫ ∞

0
f (τ)e−sτdτest ds.

Note that the inside integral is simply F(s). So, we have

f (t) =
1

2πi

∫ c+i∞

c−i∞
F(s)est ds. (7.112)
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The integral in the last equation is the inverse Laplace transform,
called the Bromwich integral. This integral is evaluated along a path
in the complex plane. The typical way to compute this integral is to
chose c so that all poles are to the left of the contour and to close the
contour with a semicircle enclosing the poles. One then relies on a
generalization of Jordan’s lemma to the second and third quadrants.

Figure 7.35: The contour used for ap-
plying the Bromwich integral to F(s) =

1
s(s+1) .

Example 7.31. Find the inverse Laplace transform of F(s) = 1
s(s+1) .

The integral we have to compute is

f (t) =
1

2πi

∫ c+i∞

c−i∞

est

s(s + 1)
ds.

This integral has poles at s = 0 and s = −1. The contour we will use is
shown in Figure 7.35. We enclose the contour with a semicircle to the left of
the path in the complex s-plane. One has to verify that the integral over the
semicircle vanishes as the radius goes to infinity. Assuming that we have done
this, then the result is simply obtained as 2πi times the sum of the residues.
The residues in this case are:

Res
[

ezt

z(z + 1)
; z = 0

]
= lim

z→0

ezt

(z + 1)
= 1

and

Res
[

ezt

z(z + 1)
; z = −1

]
= lim

z→−1

ezt

z
= −e−t.

Therefore, we have

f (t) = 2πi
[

1
2πi

(1) +
1

2πi
(−e−t)

]
= 1− e−t.

We can verify this result using the Convolution Theorem or using a partial
fraction decomposition. The decomposition is simplest:

1
s(s + 1)

=
1
s
− 1

s + 1
.

The first term leads to an inverse transform of 1 and the second term gives an
e−t. Thus, we have verified the result from doing contour integration.

Problems

1. In this problem you will show that the sequence of functions

fn(x) =
n
π

(
1

1 + n2x2

)
approaches δ(x) as n → ∞. Use the following to support your argu-
ment:

a. Show that limn→∞ fn(x) = 0 for x 6= 0.
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b. Show that the area under each function is one.

2. Evaluate the following integrals:

a.
∫ π

0 sin xδ
(

x− π
2
)

dx.

b.
∫ ∞
−∞ δ

( x−5
3 e2x) (3x2 − 7x + 2

)
dx.

c.
∫ π

0 x2δ
(

x + π
2
)

dx.

d.
∫ ∞

0 e−2xδ(x2 − 5x + 6) dx. [See Problem 3.]

e.
∫ ∞
−∞(x2 − 2x + 3)δ(x2 − 9) dx. [See Problem 3.]

3. For the case that a function has multiple roots, f (xi) = 0, i =

1, 2, . . . , it can be shown that

δ( f (x)) =
n

∑
i=1

δ(x− xi)

| f ′(xi)|
.

Use this result to evaluate
∫ ∞
−∞ δ(x2 − 5x + 6)(3x2 − 7x + 2) dx.

4. For a > 0, find the Fourier transform, f̂ (k), of f (x) = e−a|x|.

5. Prove the second shift property in the form

F
[
eiβx f (x)

]
= f̂ (k + β).

6. A damped harmonic oscillator is given by

f (t) =

{
Ae−αteiω0t, t ≥ 0,

0, t < 0.

.

a. Find f̂ (ω) and

b. the frequency distribution | f̂ (ω)|2.

c. Sketch the frequency distribution.

7. Show that the convolution operation is associative: ( f ∗ (g ∗ h))(t) =
(( f ∗ g) ∗ h)(t).

8. In this problem you will directly compute the convolution of two
Gaussian functions in two steps.

a. Use completing the square to evaluate∫ ∞

−∞
e−αt2+βt dt.

b. Use the result from part a to directly compute the convolu-
tion in example 7.11:

( f ∗ g)(x) = e−bx2
∫ ∞

−∞
e−(a+b)t2+2bxt dt.
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9. You will compute the (Fourier) convolution of two box functions of
the same width. Recall the box function is given by

fa(x) =

{
1, |x| ≤ a
0, |x| > a.

Consider ( fa ∗ fa)(x) for different intervals of x. A few preliminary
sketches would help. In Figure 7.36 the factors in the convolution
integrand are show for one value of x. The integrand is the product of
the first two functions. The convolution at x is the area of the overlap
in the third figure. Think about how these pictures change as you vary
x. Plot the resulting areas as a function of x. This is the graph of the
desired convolution.

Figure 7.36: Sketch used to compute the
convolution of the box function with it-
self. In the top figure is the box function.
The second figure shows the box shifted
by x. The last figure indicates the over-
lap of the functions.

10. Define the integrals In =
∫ ∞
−∞ x2ne−x2

dx. Noting that I0 =
√

π,

a. Find a recursive relation between In and In−1.

b. Use this relation to determine I1, I2 and I3.

c. Find an expression in terms of n for In.

11. Find the Laplace transform of the following functions.

a. f (t) = 9t2 − 7.

b. f (t) = e5t−3.

c. f (t) = cos 7t.

d. f (t) = e4t sin 2t.

e. f (t) = e2t(t + cosh t).

f. f (t) = t2H(t− 1).
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g. f (t) =

{
sin t, t < 4π,

sin t + cos t, t > 4π
.

h. f (t) =
∫ t

0 (t− u)2 sin u du.

12. Find the inverse Laplace transform of the following functions us-
ing the properties of Laplace transforms and the table of Laplace trans-
form pairs.

a. F(s) = 18
s3 + 7

s .

b. F(s) = 1
s−5 −

2
s2+4 .

c. F(s) = s+1
s2+1 .

d. F(s) = 3
s2+2s+2 .

e. F(s) = 1
(s−1)2 .

f. F(s) = e−3s

s2−1 .

13. Compute the convolution ( f ∗ g)(t) (in the Laplace transform
sense) and its corresponding Laplace transform L[ f ∗ g] for the fol-
lowing functions:

a. f (t) = t2, g(t) = t3.

b. f (t) = t2, g(t) = cos 2t.

c. f (t) = 3t2 − 2t + 1, g(t) = e−3t.

b. f (t) = δ
(
t− π

4
)

, g(t) = sin 5t.

14. Use the convolution theorem to compute the inverse transform of
the following:

a. F(s) = 2
s2(s2+1) .

b. F(s) = e−3s

s2 .

15. Find the inverse Laplace transform two different ways: i) Use
Tables. ii) Use the Bromwich Integral.

a. F(s) = 1
s3(s+4)2 .

b. F(s) = 1
s2−4s−5 .

c. F(s) = s+3
s2+8s+17 .

d. F(s) = s+1
(s−2)2(s+4) .

16. Use Laplace transforms to solve the following initial value prob-
lems. Where possible, describe the solution behavior in terms of oscil-
lation and decay.

a. y′′ − 5y′ + 6y = 0, y(0) = 2, y′(0) = 0.
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b. y′′ − y = te2t, y(0) = 0, y′(0) = 1.

c. y′′ + 4y = δ(t− 1), y(0) = 3, y′(0) = 0.

d. y′′ + 6y′ + 18y = 2H(π − t), y(0) = 0, y′(0) = 0.

17. Use Laplace transforms to sum the following series.

a. ∑∞
n=0

(−1)n

1+2n .

b. ∑∞
n=1

1
n(n+3) .

c. ∑∞
n=1

(−1)n

n(n+3) .

d. ∑∞
n=0

(−1)n

n2−a2 .

e. ∑∞
n=0

1
(2n+1)2−a2 .

f. ∑∞
n=1

1
n e−an.

18. Do the following.

a. Find the first four nonvanishing terms of the Maclaurin series
expansion of f (x) = x

ex−1 .

b. Use the result in part a. to determine the first four nonvan-
ishing Bernoulli numbers, Bn.

c. Use these results to compute ζ(2n) for n = 1, 2, 3, 4.

19. Given the following Laplace transforms, F(s), find the function
f (t). Note that in each case there are an infinite number of poles, re-
sulting in an infinite series representation.

a. F(s) = 1
cosh s .

b. F(s) = 1
s sinh s .

c. F(s) = sinh s
s2 cosh s .

d. F(s) = sinh(β
√

sx)
s sinh(β

√
sL) .



8
Vector Analysis and EM Waves

“From a long view of the history of mankind seen from, say, ten thousand years from now, there can be little doubt that
the most significant event of the 19th century will be judged as Maxwell’s discovery of the laws of electrodynamics.”
The Feynman Lectures on Physics (1964), Richard Feynman (1918-1988)

Up to this point we have mainly been confined to problems in-
volving only one or two independent variables. In particular, the heat
equation and the wave equation involved one time and one space di-
mension. However, we live in a world of three spatial dimensions.
(Though, some theoretical physicists live in worlds of many more di-
mensions, or at least they think so.) We will need to extend the study
of the heat equation and the wave equation to three spatial dimensions.

Recall that the one-dimensional wave equation takes the form

∂2u
∂t2 = c2 ∂2u

∂x2 . (8.1)

For higher dimensional problems we will need to generalize the ∂2u
∂x2

term. For the case of electromagnetic waves in a source-free environ-
ment, we will derive a three dimensional wave equation for the electric
and magnetic fields: It is given by

∂2u
∂t2 = c2

(
∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2

)
. (8.2)

This is the generic form of the linear wave equation in Cartesian coor-
dinates. It can be written a more compact form using the Laplacian,
∇2,

∂2u
∂t2 = c2∇2u. (8.3)

The introduction of the Laplacian is common when generalizing to
higher dimensions. In fact, we have already presented some generic
one and three dimensional equations in Table 4.1, which we reproduce
in Table 8.1. We have studied the one dimensional wave equation,
heat equation, and Schrödinger equation. For steady-state, or equi-
librium, heat flow problems, the heat equation no longer involves the
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time derivative. What is left is called Laplace’s equation, which we
have also seen in relation to complex functions. Adding an external
heat source, Laplace’s equation becomes what is known as Poisson’s
equation.

Name 2 Vars 3 D
Heat Equation ut = kuxx ut = k∇2u
Wave Equation utt = c2uxx utt = c2∇2u

Laplace’s Equation uxx + uyy = 0 ∇2u = 0
Poisson’s Equation uxx + uyy = F(x, y) ∇2u = F(x, y, z)

Schrödinger’s Equation iut = uxx + F(x, t)u iut = ∇2u + F(x, y, z, t)u

Table 8.1: List of generic partial differen-
tial equations.

Using the Laplacian allows us not only to write these equations
in a more compact form, but also in a coordinate-free representation.
Many problems are more easily cast in other coordinate systems. For
example, the propagation of electromagnetic waves in an optical fiber
are naturally described in terms of cylindrical coordinates. The heat
flow inside a hemispherical igloo can be described using spherical co-
ordinates. The vibrations of a circular drumhead can be described
using polar coordinates. In each of these cases the Laplacian has to be
written in terms of the needed coordinate systems.

The solution of these partial differential equations can be handled
using separation of variables or transform methods. In the next chap-
ter we will look at several examples of applying the separation of vari-
ables in higher dimensions. This will lead to the study of ordinary
differential equations, which in turn leads to new sets of functions,
other than the typical sine and cosine solutions.

In this chapter we will review some of the needed vector analysis for
the derivation of the three dimensional wave equation from Maxwell’s
equations. We will review the basic vector operations (the dot and
cross products), define the gradient, curl, and divergence and intro-
duce standard vector identities that are often seen in physics courses.
Equipped with these vector operations, we will derive the three di-
mensional waves equation for electromagnetic waves from Maxwell’s
equations. We will conclude this chapter with a section on curvilinear
coordinates and provide the vector differential operators for different
coordinate systems.

8.1 Vector Analysis

8.1.1 A Review of Vector Products

At this point you might want to reread the first section of Chapter
3. In that chapter we introduced the formal definition of a vector space
and some simple properties of vectors. We also discussed one of the
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common vector products, the dot product, which is defined as

u · v = uv cos θ. (8.4)

There is also a component form, which we write as

u · v = u1v1 + u2v2 + u3v3 =
3

∑
k=1

ukvk. (8.5)

One of the first physical examples using a cross product is the defi-
nition of work. The work done on a body by a constant force F during
a displacement d is

W = F · d.

In the case of a nonconstant force, we have to add up the incremental
contributions to the work, dW = F · dr to obtain

W =
∫

C
dW =

∫
C

F · dr (8.6)

over the path C. Note how much this looks like a complex path inte-
gral. It is a path integral, but the path lies in a real three dimensional
space.

Another application of the dot product is the proof of the Law of
Cosines. Recall that this law gives the side opposite a given angle in
terms of the angle and the other two sides of the triangle:

c2 = a2 + b2 − 2ab cos θ. (8.7)

Figure 8.1: v = rω. The Law of Cosines
can be derived using vectors.

Consider the triangle in Figure 8.1. We draw the sides of the triangle
as vectors. Note that b = c + a. Also, recall that the square of the
length any vector can be written as the dot product of the vector with
itself. Therefore, we have

c2 = c · c
= (b− a) · (b− a)

= a · a + b · b− 2a · b
= a2 + b2 − 2ab cos θ. (8.8)

We note that this also comes up in writing out inverse square laws
in many applications. Namely, the vector a can locate a mass, or
charge, and vector b points to an observation point. Then the in-
verse square law would involve vector c, whose length is obtained
as
√

a2 + b2 − 2ab cos θ. Typically, one does not have a’s and b’s, but
something like r1 and r2, or r and R. For these problems one is typi-
cally interested in approximating the expression of interest in terms of
ratios like r

R for R� r.
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Another important vector product is the cross product. The cross
product produces a vector, unlike the dot product that results in a
scalar. The magnitude of the cross product is given as

|a× b| = ab sin θ. (8.9)

Figure 8.2: The cross product is shown.
The direction is obtained using the right
hand rule: Curl fingers from a through
to b. The thumb will point in the direc-
tion of a× b.

Being a vector, we also have to specify the direction. The cross
product produces a vector that is perpendicular to both vectors a and
b. Thus, the vector is normal to the plane in which these vectors live.
There are two possible directions. The direction taken is given by the
right hand rule. This is shown in Figure 8.2. The direction can also be
determined using your right hand. Curl your fingers from a through
to b. The thumb will point in the direction of a× b.

Figure 8.3: A force applied at a point lo-
cated at r from the axis of rotation pro-
duces a torque τ= r× F with respect to
the axis.

One of the first occurrences of the cross product in physics is in
the definition of the torque, τ= r × F. Recall that the torque is the
analogue to the force. A net torque will cause an angular acceleration.
Consider a rigid body in which a force is applied to to the body at a
position r from the axis of rotation. (See Figure 8.3.) Then this force
produces a torque with respect to the axis. The direction of the torque
is given by the right hand rule. Point your fingers in the direction of
r and rotate them towards F. In the figure this would be out of the
page. This indicates that the bar would rotate in a counter clockwise
direction if this were the only force acting on the bar.

Figure 8.4: A mass rotates at an angular
velocity ωabout a fixed axis of rotation.
The tangential velocity with respect to a
given origin is given by v =ω×r.

Another example is that of a body rotating about an axis as shown in
Figure 8.4. We locate the body with a position vector pointing from the
origin of the coordinate system to the body. The tangential velocity of
the body is related to the angular velocity by a cross product v =ω×r.
The direction of the angular velocity is given be a right hand rule. Curl
the fingers of your right hand in the direction of the motion of the
rotating mass. Your thumb will point in the direction of ω. Counter
clockwise motion produces a positive angular velocity and clockwise
will give a negative angular velocity. Note that for the origin at the
center of rotation of the mass, we obtain the familiar expression v =

rω.
There is also a geometric interpretation of the cross product. Con-

sider the vectors a and b in Figure 8.5. Now draw a perpendicular
from the tip of b to vector a. This forms a triangle of height h. Slide
the triangle over to form a rectangle of base a and height h. The area
of this triangle is

A = ah

= a(b sin θ)

= |a× b|. (8.10)

Therefore, the magnitude of the cross product is the area of the triangle
formed by the vectors a and b.

Figure 8.5: The magnitudes of the cross
product gives the area of the parallelo-
gram defined by a and b.
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The dot product was shown to have a simple form in terms of the
components of the vectors. Similarly, we can write the cross product
in component form. Recall that we can expand any vector v as

v =
n

∑
k=1

vkek, (8.11)

where the ek’s are the standard basis vectors.
We would like to expand the cross product of two vectors,

u× v =

(
n

∑
k=1

ukek

)
×
(

n

∑
k=1

vkek

)
.

In order to do this we need a few properties of the cross product.
First of all, the cross product is not commutative. In fact, it is Properties of the cross product.

anticommutative:
u× v = −v× u.

A simple consequence of this is that v× v = 0. Just replace u with v in
the anticommutativity rule and you have v× v = −v× v. Something
that is its negative must be zero.

The cross product also satisfies distributive properties:

u× (v + w) = u× v + u×w),

and
u× (av) = (au)× v = au× v.

Thus, we can expand the cross product in terms of the components
of the given vectors. A simple computation shows that u× v can be
expressed in terms of sums over ei × ej :

u× v =

(
n

∑
i=1

uiei

)
×
(

n

∑
j=1

vjej

)

=
n

∑
i=1

n

∑
j=1

uivjei × ej. (8.12)

ij

k

+

ij

k

−

Figure 8.6: The sign for the cross product
for basis vectors can be determined from
a simple diagram. Arrange the vectors
on a circle as above. If the needed com-
putation goes counterclockwise, then the
sign is positive. Thus, j × k = i and
k× j = −i.

The cross products of basis vectors are simple to compute. First of
all, the cross products ei × ej vanish when i = j by anticommutativity
of the cross product. For i 6= j, it is not much more difficult. For the
typical basis, {i, j, k}, this is simple. Imagine computing i × j. This
is a vector of length |i × j| = |i||j| sin 90◦ = 1. The vector i × j is
perpendicular to both vectors, i and j. Thus, the cross product is either
k or −k. Using the right hand rule, we have i× j = k. Similarly, we
find the following

i× j = k, j× k = i, k× i = j,

j× i = −k, k× j = −i, i× k = −j. (8.13)
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Inserting these results into the cross product for vectors in R3, we
have

u× v = (u2v3 − u3v2)i + (u3v1 − u1v3)j + (u1v2 − u2v1)k. (8.14)

While this form for the cross product is correct and useful, there are
other forms that help in verifying identities or making computation
simpler with less memorization. However, some of these new expres-
sions can lead to problems for the novice as dealing with indices can
be daunting at first sight.

One expression that is useful for computing cross products is the
familiar computation using determinants. Namely, we have that

u× v =

∣∣∣∣∣∣∣
i j k

u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣∣
=

∣∣∣∣∣ u2 u3

v2 v3

∣∣∣∣∣ i−
∣∣∣∣∣ u1 u3

v1 v3

∣∣∣∣∣ j +

∣∣∣∣∣ u1 u2

v1 v2

∣∣∣∣∣ k

= (u2v3 − u3v2)i + (u3v1 − u1v3)j + (u1v2 − u2v1)k.

(8.15)

A more compact form for the cross product is obtained by introduc-
ing the completely antisymmetric symbol, εijk. This symbol is defined The completely antisymmetric symbol,

or permutation symbol, εijk .by the relations
ε123 = ε231 = ε312 = 1,

and
ε321 = ε213 = ε132 = −1,

and all other combinations, like ε113, vanish. Note that all indices must
differ. Also, if the order is a cyclic permutation of {1, 2, 3}, then the
value is +1. For this reason εijk is also called the permutation symbol
or the Levi-Civita symbol. We can also indicate the index permutation
more generally using the following identities:

εijk = εjki = εkij = −εjik = −εikj = −εkji.

12

3

+

12

3

−

Figure 8.7: The sign for the permuta-
tion symbol can be determined from a
simple cyclic diagram similar to that for
the cross product. Arrange the num-
bers from 1 to 3 on a circle. If the
needed computation goes counterclock-
wise, then the sign is positive, otherwise
it is negative.

Returning to the cross product, we can introduce the standard basis
e1 = i, e2 = j, and e3 = k. With this notation, we have that

ei × ej =
3

∑
k=1

εijkek. (8.16)

Example 8.1. Compute the cross product of the basis vectors e2 × e1 using
the permutation symbol. A straight forward application of the definition of
the cross product,

e2 × e1 =
3

∑
k=1

ε21kek
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= ε211e1 + ε212e2 + ε213e3

= −e3. (8.17)

It is helpful to write out enough terms in these sums until you get familiar
with manipulating the indices. Note that the first two terms vanished because
of repeated indices. In the last term we used ε213 = −1.

We now write out the general cross product as

u× v =
3

∑
i=1

3

∑
j=1

uivjei × ej

=
3

∑
i=1

3

∑
j=1

uivj

(
3

∑
k=1

εijkek

)

=
3

∑
i,j,k=1

εijkuivjek. (8.18)

Note that the last sum is a triple sum over the indices i, j, and k.

Example 8.2. Let u = 2i− 3j and v = i + 5j + 4k. Compute u× v. We
can compute this easily using determinants.

u× v =

∣∣∣∣∣∣∣
i j k
2 −3 0
1 5 4

∣∣∣∣∣∣∣
=

∣∣∣∣∣ −3 0
5 4

∣∣∣∣∣ i−
∣∣∣∣∣ 2 0

1 4

∣∣∣∣∣ j +

∣∣∣∣∣ 2 −3
1 5

∣∣∣∣∣ k

= −12i− 8j + 13k.

(8.19)

Using the permutation symbol to compute this cross product, we have

u× v = ε123u1v2k + ε231u2v3i + ε312u3v1j

+ε213u2v1k + ε132u1v3j + ε321u3v2i

= 2(5)k + (−3)4i + (0)1j− (−3)1k− (2)4j− (0)5i

= −12i− 8j + 13k. (8.20)

Sometimes it is useful to note that the kth component of the cross
product is given by

(u× v)k =
3

∑
i,j=1

εijkuivj.

In more advanced texts, or in the case of relativistic computations
with tensors, the summation symbol is suppressed. For this case, one
writes

(u× v)k = εijkuivj,
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where it is understood that summation is performed over repeated
indices. This is called the Einstein summation convention. Einstein summation convention is used

to suppress summation notation. In gen-
eral relativity, one also needs to em-
ploy raised indices, so that vector com-
ponents are written in the form ui . The
convention then requires that one only
sums over a combination of one lower
and one upper index. Thus, we would
write εijkuivj. We will forgo the need for
raised indices.

Since the cross product can be written as both a determinant,

u× v =

∣∣∣∣∣∣∣
i j k

u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣∣
= εij1uivji + εij2uivjj + εij3uivjk. (8.21)

and using the permutation symbol,

u× v = εijkuivjek,

we can define the determinant as∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣ =
3

∑
i,j,k=1

εijka1ia2ja3k. (8.22)

Here we added the triple sum in order to emphasize the hidden sum-
mations.

Example 8.3. Compute the determinant

∣∣∣∣∣∣∣
1 0 2
0 −3 4
2 4 −1

∣∣∣∣∣∣∣ .

We insert the components of each row into the expression for the determi-
nant:∣∣∣∣∣∣∣

1 0 2
0 −3 4
2 4 −1

∣∣∣∣∣∣∣ = ε123(1)(−3)(−1) + ε231(0)(4)(2) + ε312(2)(0)(4)

+ε213(0)(0)(−1) + ε132(1)(4)(4) + ε321(2)(−3)(2)

= 3 + 0 + 0− 0− 14− (−12)

= 15. (8.23)

Note that if one adds copies of the first two columns, as shown in Fig-
ure 8.8, then the products of the first three diagonals, downward to the right
(blue), give the positive terms in the determinant computation and the prod-
ucts of the last three diagonals, downward to the left (red), give the negative
terms.

1 0 2 1 0

0 -3 4 0 -3
2 4 -1 2 4

Figure 8.8: Diagram for computing de-
terminants.

One useful identity is
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εjkiεj`m = δk`δim − δkmδi`,

Product identity satisfied by the permu-
tation symbol, εijk .

where δij is the Kronecker delta. Note that the Einstein summation
convention is used in this identity; i.e., summing over j is understood.
So, the left side is really a sum of three terms:

εjkiεj`m = ε1kiε1`m + ε2kiε2`m + ε3kiε3`m.

This identity is simple to understand. For nonzero values of the
Levi-Civita symbol, we have to require that all indices differ for each
factor on the left side of the equation: j 6= k 6= i and j 6= ` 6= m. Since
the first two slots are the same j, and the indices only take values 1, 2,
or 3, then either k = ` or k = m. This will give terms with factors of δk`

or δkm. If the former is true, then there is only one possibility for the
third slot, i = m. Thus, we have a term δk`δim. Similarly, the other case
yields the second term on the right side of the identity. We just need
to get the signs right. Obviously, changing the order of ` and m will
introduce a minus sign. A little care will show that the identity gives
the correct ordering.

Other identities involving the permutation symbol are

εmjkεnjk = 2δmn,

εijkεijk = 6.

We will end this section by recalling triple products. There are only
two ways to construct triple products. Starting with the cross product
b× c, which is a vector, we can multiply the cross product by a a to
either obtain a scalar or a vector.

In the first case we have the triple scalar product, a · (b× c). Actu-
ally, we do not need the parentheses. Writing a ·b× c could only mean
one thing. If we computed a · b first, we would get a scalar. Then the
result would be a multiple of c, which is not a scalar. So, leaving off
the parentheses would mean that we want the triple scalar product by
convention.

Let’s consider the component form of this product. We will use
the Einstein summation convention and the fact that the permutation
symbol is cyclic in ijk. Using εjki = εijk,

a · (b× c) = ai(b× c)i

= εjkiaibjck

= εijkaibjck

= (a× b)kck

= (a× b) · c. (8.24)

We have proven that

a · (b× c) = (a× b) · c.
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Now, imagine how much writing would be involved if we had ex-
panded everything out in terms of all of the components.

Note that this result suggests that the triple scalar product can be
computed by just computing a determinant:

a · (b× c) = εijkaibjck

=

∣∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣∣ . (8.25)

Figure 8.9: Three non-coplanar vectors
define a parallelepiped. The volume is
given by the triple scalar product, a · b×
c.

There is a geometric interpretation of the scalar triple product. Con-
sider the three vectors drawn as in Figure 8.9. If they do not all lie in
a plane, then they form the sides of a parallelepiped. The cross prod-
uct a× b gives the area of the base as we had seen earlier. The cross
product is perpendicular to this base. The dot product of c with this
cross product gives the height of the parallelepiped. So, the volume
of the parallelepiped is the height times the base, or the triple scalar
product. In general, one gets a signed volume, as the cross product
could be pointing below the base.

The second type of triple product is the triple cross product,

a× (b× c) = εmnjεijkaibmcnek.

In this case we cannot drop the parentheses as this would lead to a
real ambiguity. Lets think a little about this product. The vector b× c
is a vector that is perpendicular to both b and c. Computing the triple
cross product would then produce a vector perpendicular to a and
b × c. But the later vector is perpendicular to both b and c already.
Therefore, the triple cross product must lie in the plane spanned by
these vectors. In fact, there is an identity that tells us exactly the right
combination of vectors b and c. It is given by The BAC-CAB rule.

a× (b× c) = b(a · c)− c(a · b). (8.26)

This rule is called the BAC-CAB rule because of the order of the right
side of this equation.

Example 8.4. Prove that a× (b× c) = b(a · c)− c(a · b).
We can prove the BAC-CAB rule the permutation symbol and some identi-

ties. We first use the cross products ei× ej = εijkek and b× c = εmnjbmcnej :

a× (b× c) = (aiei)× ((b× c)jej)

= ai(b× c)j(ei × ej)

= ai(b× c)jεijkek

= εmnjεijkaibmcnek (8.27)
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Now, we use the identity

εmnjεijk = δmkδni − δmiδnk,

the properties of the Kronecker delta functions, and then rearrange the results
to finish the proof:

a× (b× c) = εmnjεijkaibmcnek

= aibmcn (δmkδni − δmiδnk) ek

= anbmcnem − ambmcnen

= (bmem)(cnan)− (cnen)(ambm)

= b(a · c)− c(a · b). (8.28)

8.1.2 Differentiation and Integration of Vectors

You have already been introduced to the idea that vectors can
be differentiated and integrated in your introductory physics course.
These ideas are also the major theme encountered in a multivariate cal-
culus class, or Calculus III. We review some of these topics in the next
sections. We first recall the differentiation and integration of vector
functions.

v(t)

r(t)

O

Figure 8.10: Position and velocity vectors
of moving particle.

The position vector can change in time, r(t) = x(t)i + y(t)j + x(t)k.
The rate of change of this vector is the velocity,

v(t) =
dr
dt

= lim
∆t→0

r(t + ∆t)− r(t)
∆t

=
dx
dt

i +
dy
dt

j +
dz
dt

k

= vxi + vyk + vzk. (8.29)

The velocity vector is tangent to the path, r(t), as seen in Figure 8.1.2.
The magnitude of this vector gives the speed,

|v| =

√(
dx
dt

)2
+

(
dy
dt

)2
+

(
dz
dt

)2
.

Moreover, differentiating this vector gives the acceleration, a(t) =

v′(t).
In general, one can differentiate an arbitrary time-dependent vector

v(t) = f (t)i + g(t)j + h(t)k as

dv
dt

=
d f
dt

i +
dg
dt

j +
dh
dt

k. (8.30)
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Example 8.5. A simple example is given by the motion on a circle. A circle
in the xy-plane can be parametrized as r(t) = r cos(ωt)i + r sin(ωt)j. Then
the velocity is found as

v(t) = −rω sin(ωt)i + rω cos(ωt)j.

Its speed is v = rω, which is easily recognized as the tangential speed. The
acceleration is

a(t) = −ω2r cos(ωt)i−ω2r sin(ωt)j.

The magnitude gives the centripetal acceleration, a = ω2r and the accelera-
tion vector is pointing towards the center of the circle.

v(t)

r(t)
O

Figure 8.11: Particle on circular path.

Once one can differentiate time-dependent vectors, one can prove
some standard properties.

a.
d
dt

[u + v] =
du
dt

+
dv
dt

.

b.
d
dt

[cu] = c
du
dt

.

c.
d
dt

[ f (t)u] = f ′(t)u + f (t)
du
dt

.

d.
d
dt

[u · v] = du
dt
· v + u · dv

dt
.

e.
d
dt

[u× v] =
du
dt
× v + u× dv

dt
.

f.
d
dt

[u( f (t))] =
du
d f

d f
dt

.

Example 8.6. Let |r(t)| =const. Then, r′(t) is perpendicular r(t).
Since |r| =const, |r|2 = r · r =const. Differentiating this expression, one

has d
dt (r · r) = 2r · dr

dt = 0. Therefore, r · dr
dt = 0, as was to be shown.

In this discussion, we have referred to t as the time. However, when
parametrizing spacecurves, t could represent any parameter. For ex-
ample, the circle could be parametrized for t the angle swept out along
any arc of the circle, r(t) = r cos ti + r sin tj, for t1 ≤ t ≤ t2. We can
still differentiate with respect to this parameter. It not longer has the
meaning of velocity. another standard parameter is that of arclength.
The arclength of a path is the distance along the path from some start-
ing point. In deriving an expression for arclength, one first considers
incremental distances along paths. Moving from point (x, y, z) to point
(x + ∆x, y + ∆y, z + ∆z), one has gone a distance of

∆s =
√
(∆x)2 + (∆y)2 + (∆z)2.

Given a curve parametrized by t, such as the time, one can rewrite this
as

∆s =

√(
∆x
∆t

)2
+

(
∆y
∆t

)2
+

(
∆z
∆t

)2
∆t.



vector analysis and em waves 385

Letting ∆t get small, as well as the other increments, we are led to

ds =

√(
dx
dt

)2
+

(
dy
dt

)2
+

(
dz
dt

)2
dt. (8.31)

We note that the square root is |r′(t)|. So,

ds = |r′(t)|dt,

or
ds
dt

= |r′(t)|.

In order to find the total arclength, we need only integrate over the
parameter range,

s =
∫ t2

t1

|r′(t)| dt.

If t is time and r(t) is the position vector of a particle, then |r′(t)| is
the particle speed and we have that the distance traveled is simply an
integral of the speed,

s =
∫ t2

t1

v dt.

If one is interested in knowing the distance traveled from point r(t1)

to an arbitrary point r(t), one can define the arclength function

s(t) =
∫ t

t1

|r′(τ)| dτ.

Example 8.7. Determine the length of the parabolic path described by r =

ti + t2j, t ∈ [0, 1].
We want to determine the length, L =

∫ 1
0 |r
′(t)| dt, of a path. First, we

have r′(t) = i + 2tj. Then, |r′(t)| =
√

1 + 4t2. Using∫ √
t2 + a2 dt =

1
2

(
t
√

t2 + a2 + a2 ln(t +
√

t2 + a2)
)

,

s =
∫ 1

0
|r′(t)| dt

=
∫ 1

0

√
1 + 4t2 dt

=

[
x

√
x2 +

1
4
+

1
4

ln

(
x +

√
x2 +

1
4

)]1

0

=

√
5

2
+

1
4

ln(2 +
√

5). (8.32)

Line integrals are defined as integrals of functions along a path, or
curve, in space. Let f (x, y, z) be the function, and C a parametrized
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path. Then we are interested in computing
∫

C f (x, y, z) ds, where s
is the arclength parameter. This integral looks similar to the contour
integrals that we had studied in Chapter 5. We can compute such
integrals in a similar manner by introducing the parametrization:∫

C
f (x, y, z) ds =

∫
C

f (x(t), y(t), z(t))|r′(t)| dt.

Example 8.8. Compute
∫

C(x2 + y2 + z2) ds for the helical path r = (cos t, sin t, t),
t ∈ [0, 2π].

In order to do this integral, we have to integrate over the given range of t
values. So, we replace ds with |r′(t)|dt. In this problem |r′(t)| =

√
2. Also,

we insert the parametric forms for x(t) = cos t, y(t) = sin t, and z = t into
f (x, y, z). Thus,

∫
C
(x2 + y2 + z2) ds =

∫ 2π

0
(1 + t2)

√
2 dt = 2

√
2π

(
1 +

4π2

3

)
. (8.33)

One can also integrate vector functions. Given the vector function
v(t) = f (t)i+ g(t)j+ h(t)k, we can do a straight forward term by term
integration,

∫ b

a
v(t) dt =

∫ b

a
f (t) dti +

∫ b

a
g(t) dtj +

∫ b

a
h(t) dtk.

If v(t) is the velocity and t is the time, then

∫ b

a
v(t) dt =

∫ b

a

dr
dt

dt = r(b)− r(a).

We can thus interpret this integral as giving the displacement of a
particle between times t = a and t = b.

At the beginning of this chapter we had recalled the work done on
a body by a nonconstant force F over a path C,

W =
∫

C
F · dr (8.34)

If the path is parametrized by t, then we can write dr = dr
dt dt. Thus the

prescription for computing line integrals such as this is

∫
C

F · dr =
∫

C
F · dr

dt
dt.

There are other forms that such line integrals can take. Let F =

P(x, y, z)i + Q(x, y, z)j + R(x, y, z)k. Noting that dr = dxi + dyy + dzk,
then we can write∫

C
F · dr =

∫
C

P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz.
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Example 8.9. Compute the work done by the force F = yi− xj on a particle
as it moves around the circle r = (cos t)i + (sin t)j, for 0 ≤ t ≤ π.

W =
∫

C
F · dr =

∫
C

y dx− x dy.

One way to complete this is to note that dx = − sin t dt and dy = cos t dt.
Then ∫

C
y dx− x dy =

∫ π

0
(− sin2 t− cos2 t) dt = −π.

8.1.3 Div, Grad, Curl

Throughout physics we see functions which vary in both space
and time. A function f (x, y, z, t) is called a scalar function when the
output is a scalar, or number. An example of such a function is the
temperature. A function F(x, y, z, t) is called a vector (or vector val-
ued) function if the output of the function is a vector. Let v(x, y, z, t)
represent the velocity of a fluid at position (x, y, z) at time t. This is an
example of a vector function. Typically when we assign a number, or a
vector, to every point in a domain, we refer to this as a scalar, or vector,
field. In this section we discuss how fields change from one point in
space to another. Namely, we look at derivatives of multivariate func-
tions with respect to their independent variables and the meanings of
these derivatives in a physical context.

In studying functions of one variable in calculus, one is introduced
to the derivative, d f

dx : The derivative has several meanings. The stan-
dard mathematical meaning is that the derivative gives the slope of
the graph of f (x) at x. The derivative also tells us how rapidly f (x)
varies when x is changed by dx. Recall that dx is called a differential.
We can think of the differential dx as an infinitesimal increment in x.
Then changing x by an amount dx results in a change in f (x) by

d f =
d f
dx

dx.

We can extend this idea to functions of several variables. Consider
the temperature T(x, y, z) at a point in space. The change in tempera-
ture depends on the direction in which one moves in space. Extending
the above relation between differentials of the dependent and indepen-
dent variables, we have

dT =
∂T
∂x

dx +
∂T
∂y

dy +
∂T
∂z

dz. (8.35)

Note that if we only changed x, keeping y and z fixed, then we recover
the form dT = dT

dx dx.
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Introducing the vectors,

dr = dxi + dyj + dzk, (8.36)

The gradient of a function,

∇T =
∂T
∂x

i +
∂T
∂y

j +
∂T
∂z

k, .
∇T ≡ ∂T

∂x
i +

∂T
∂y

j +
∂T
∂z

k, (8.37)

we can write Equation (8.35) as

dT = ∇T · dr (8.38)

Equation (8.37) defines the gradient of a scalar function, T. Equation
(8.38) gives the change in T as one moves in the direction dr.

Using the definition of the dot product, we also have

dT = |∇T||dr| cos θ.

Note that by fixing |dr| and varying θ, the maximum value of dT is
obtained when cos θ = 1. Thus, the maximum value of dT is in the
direction of the gradient. Similarly, since cos π = −1, the minimum
value of dT is in a direction 180◦ from the gradient. The greatest change is a function is in the

direction of its gradient.
Example 8.10. Let f (x, y, z) = x2y + zexy. Compute ∇ f .

∇ f =
∂ f
∂x

i +
∂ f
∂y

j +
∂ f
∂z

k,

= (2xy + yzexy)i + (x2 + xzexy)j + exyk. (8.39)

From this analysis, we see that the rate of change of a function, such
as T(x, y, z, ), depends on the direction one heads away from a given
point. So, if one moves an infinitesimal distance ds in some direction
dr, then how does T change with respect to s? Another way to ask
this is to ask what is the directional derivative of T in direction n? We
define this directional derivative as The directional derivative of a function,

DnT = dT
ds = ∇T · n.

DnT =
dT
ds

. (8.40)

We can develop an operational definition of the directional deriva-
tive. From Equation (8.38) we have

dT
ds

= ∇T · dr
ds

. (8.41)

We note that
dr
ds

=

(
dx
ds

)
i +
(

dy
ds

)
j +
(

dz
ds

)
k

and ∣∣∣∣dr
ds

∣∣∣∣ =
√(

dx
ds

)2
+

(
dy
ds

)2
+

(
dz
ds

)2
= 1.

Thus, n = dr
ds is a unit vector pointing in the direction of interest and

the directional derivative of T(x, y, z) in direction n can be written as

DnT = ∇T · n. (8.42)
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Example 8.11. Let the temperature in a rectangular plate be given by T(x, y) =
5.0 sin 3πx

2 sin πy
2 . Determine the directional derivative at (x, y) = (1, 1) in

the following directions: (a) i, (b) 3i + 4j.
In part (a) we have

DiT = ∇T · i = ∂T
∂x

.

So,

DiT
∣∣∣∣
(1,1)

=
15
2

cos
3π

2
sin

π

2
= 0.

In part (b) the direction given is not a unit vector, |3i + 4j| = 5. Dividing
by the length of the vector, we obtain a unit normal vector, n = 3

5 i + 4
5 j. The

directional derivative can now be computed:

DnT = ∇T · n

=
3
5

∂T
∂x

+
4
5

∂T
∂y

=
9π

2
cos

3πx
2

sin
πy
2

+ 2π sin
3πx

2
cos

πy
2

. (8.43)

Evaluating this result at (x, y) = (1, 1), we have

DnT
∣∣∣∣
(1,1)

=
9π

2
cos

3π

2
sin

π

2
+ 2π sin

3π

2
cos

π

2
= 0.

We can write the gradient in the form

∇T =

(
∂

∂x
i +

∂

∂y
j +

∂

∂z
k
)

T. (8.44)

Thus, we see that the gradient can be viewed as an operator acting on
T. The operator,

∇ =
∂

∂x
i +

∂

∂y
j +

∂

∂z
k,

is called the del, or gradient, operator. It is a differential vector operator.
It can act on scalar functions to produce a vector field. Recall, if the
gravitational potential is given by Φ(r), then the gravitational force is
found as F = −∇Φ.

We can also allow the del operator to act on vector fields. Recall
that a vector field is simply a vector valued function. For example, a
force field is a function defined at points in space indicating the force
that would act on a mass placed at that location. We could denote it as
F(x, y, z). Again, think about the gravitational force above. The force
acting on a mass in the Earth’s gravitational field is a given by a vector
field. At each point in space one would see that the force vector takes
on different magnitudes and directions depending upon the location
of the mass in space.

How can we combine the (vector) del operator and a vector field?
Well, we could “multiply” them. We could either compute the dot
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product, ∇ · F, or we could compute the cross product ∇× F. The first
expression is called the divergence of the vector field and the second is
called the curl of the vector field. These are typically encountered in a
third semester calculus course. In some texts they are denoted by div
F and curl F.

The divergence is computed the same as any other dot product. The divergence, div F = ∇ · F.

Writing the vector field in component form,

F = F1(x, y, z)i + F2(x, y, z)j + F3(x, y, z)k,

we find the divergence is simply given as

∇ · F =

(
∂

∂x
i +

∂

∂y
j +

∂

∂z
k
)
· (F1i + F2j + F3k)

=
∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z
(8.45)

Similarly, we can compute the curl of F. Using the determinant The curl F = ∇× F.

form, we have

∇× F =

(
∂

∂x
i +

∂

∂y
j +

∂

∂z
k
)
× (F1i + F2j + F3k)

=

∣∣∣∣∣∣∣
i j k
∂

∂x
∂

∂y
∂

∂y

F1 F2 F3

∣∣∣∣∣∣∣
=

(
∂F3

∂y
− ∂F2

∂z

)
i +
(

∂F1

∂z
− ∂F3

∂x

)
j +
(

∂F2

∂x
− ∂F1

∂y

)
k.

(8.46)

Example 8.12. Compute the divergence and curl of the vector field: F =

yi− xj.

∇ · F =
∂y
∂x
− ∂x

∂y
= 0.

∇× F =

∣∣∣∣∣∣∣
i j k
∂

∂x
∂

∂y
∂

∂y

y −x 0

∣∣∣∣∣∣∣
=

(
−∂x

∂x
− ∂y

∂y

)
k = −2. (8.47)

These operations also have interpretations. The divergence mea-
sures how much the vector field F spreads from a point. When the
divergence of a vector field is nonzero around a point, that is an in-
dication that there is a source (div F > 0) or a sink (div F < 0). For
example, ∇ · E = ρ

ε0
indicates that there are sources contributing to the

electric ŕled. For a single charge, the field lines are radially pointing
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towards (sink) or away from (source) the charge. A field in which the
divergence is zero is called divergenceless or solenoidal.

The curl is an indication of a rotational field. It is a measure of how
much a field curls around a point. Consider the flow of a stream. The
velocity of each element of fluid can be represented by a velocity field.
If the curl of the field is nonzero, then when we drop a leaf into the
stream we will see it begin to rotate about some point. A field that has
zero curl is called irrotational.

The last common differential operator is the Laplace operator. This The Laplace operator, ∇2 f = ∂2 f
∂x2 +

∂2 f
∂y2 + ∂2 f

∂z2 .is the common second derivative operator, the divergence of the gra-
dient,

∇2 f = ∇ · ∇ f .

It is easily computed as

∇2 f = ∇ · ∇ f

= ∇ ·
(

∂ f
∂x

i +
∂ f
∂y

j +
∂ f
∂z

k
)

=
∂2 f
∂x2 +

∂2 f
∂y2 +

∂2 f
∂z2 . (8.48)

8.1.4 The Integral Theorems

Maxwell’s equations are given later in this chapter in dif-
ferential form and only describe electric and magnetic fields locally.
At times we would like to also provide global information, or informa-
tion over an finite region. In this case one can derive various integral
theorems. These are the finale in a three semester calculus sequence.
We will not delve into these theorems here, as this will take us away
from our goal of deriving a three dimensional wave equation. How-
ever, these integral theorems are important and useful in deriving local
conservation laws.

These theorems are all different versions of a generalized Funda-
mental Theorem of Calculus:

(a)
∫ b

a
d f
dx dx = f (b)− f (a), The Fundamental Theorem of

Calculus in 1D.

(b)
∫ b

a ∇T · dr = T(b)− T(a), The Fundamental Theorem
of Calculus for Vector Fields.

(c)
∮

C (P dx + Q dy) =
∫

D

(
∂Q
∂x −

∂P
∂y

)
dxdy, Green’s Theo-

rem in the Plane.

(d)
∫

V ∇ · F dV =
∮

S F · da, Gauss’ Divergence Theorem.

(e)
∫

S(∇× F) · da =
∮

C F · dr, Stoke’s Theorem.
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The connections between these integral theorems are probably more
easily seen by thinking in terms of fluids. Consider a fluid with mass
density ρ(x, y, z) and fluid velocity v(x, y, z, t). We define (Q) = ρv as
the mass flow rate. [Note the units are kg/m2/s indicating the mass
per area per time.]

Now consider the fluid flowing through an imaginary rectangular
box. Let the fluid flow into the left face and out the right face. The
rate at which the fluid mass flows through a face can be represented
by Q · dσ, where dσ = ndσ represents the differential area element
normal to the face. The rate of flow across the left face is

Q · dσ = −Qy dxdz
∣∣∣
y

and that flowing across the right face is

Q · dσ = Qy dxdz
∣∣∣
y+dy

.

The net flow rate is the sum of these

Qydxdz
∣∣∣
y+dy
−Qydxdz

∣∣∣
y
=

∂Qy

∂y
dxdydz.

A similar computation can be done for the other faces, leading to
the result that the total rate of flow is ∇ ·Q dτ, where dτ = dxdydz is
the volume element. So, the rate of flow per volume from the volume
element gives

∇ ·Q = −∂ρ

∂t
.

Note that if more fluid is flowing out the right face than is flowing into Conservation of mass equation,

∂ρ

∂t
+∇ ·Q = 0.

the left face, then the amount of fluid inside the region will decrease.
That is why the right hand side of this equation has the negative sign.

If the fluid is incompressible, i.e., ρ =const., then ∇ ·Q = 0, which
implies ∇ · v = 0 assuming there are no sinks or sources. If there
were a sink in the rectangular box, then there would be a loss of fluid
not accounted for. Likewise, is a hose were inserted and fluid were
supplied, then one would have a source.

If there are sinks, or sources, then the net mass due to these would
contribute to an overall flow through the surrounding surface. This is
captured by the equation Gauss’ Divergence Theorem∫

V
∇ ·Q dτ︸ ︷︷ ︸

Net mass due to sink/sources

=
∮

S
Q · n dσ︸ ︷︷ ︸

Net flow outward from S

. (8.49)

Dividing out the constant mass density, since Q = ρv, this becomes

∫
V
∇ · v dτ =

∮
S

v · n dσ. (8.50)
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The surface integral on the right had side is called the flux of the vector
field through surface S. This is nothing other than Gauss’ Divergence
Theorem.1 1 We should note that the Divergence

Theorem holds provided v is a continu-
ous vector field and has continuous par-
tial derivatives in a domain containing
V. Also, n is the outward normal to the
surface S.

The unit normal can be written in terms of the direction cosines,

n = cos αi + cos βj + cos γk,

where the angles are the directions between n and the coordinate axes.
For example, n · i = cos α. For vector v = v1i + v2j + v3k, we have∫

S
v · n dσ =

∫
S
(v1 cos α + v2 cos β + v3 cos γ) dσ

=
∫

S
(u1dydz + u2dzdx + u3dxdy). (8.51)

Example 8.13. Use the Divergence Theorem to compute∫
S
(x2dydz + y2dzdx + z2dxdy)

for S the surface of the unit cube, [0, 1]× [0, 1]× [0, 1].
We first compute the divergence of the vector v = x2i + y2j + z2k, which

we obtained from the coefficients in the given integral. Then

∇ · v =
∂x2

∂x
+

∂y2

∂y
+

∂z2

∂z
= 2(x + y + z).

Then,∫
S
(x2dydz + y2dzdx + z2dxdy) =

∫
V

2(x + y + z) dτ

= 2
∫ 1

0

∫ 1

0

∫ 1

0
(x + y + z) dxdydz

= 2
∫ 1

0

∫ 1

0
(

1
2
+ y + z) dydz

= 2
∫ 1

0
(

1
2
+

1
2
+ z) dz

= 2(1 +
1
2
) = 3. (8.52)

The other integral theorem’s are just a variation of the divergence
theorem. For example, a two dimensional version of this obtained
by considering a simply connected region, D, bounded by a simple
closed curve, C. One could think of the laminar flow of a thin sheet of
fluid. Then the total mass in contained in D and the net mass would be
related to the next flow through the boundary, C. The integral theorem
for this situation is given as∫

D
∇ · v dA =

∮
C

v · n ds. (8.53)

The tangent vector to the curve at point r on the curve C, is

dr
ds

=
dx
ds

i +
dy
ds

j.
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Therefore, the outward normal at that point is given by

n =
dy
ds

i− dx
ds

j.

Letting v = Q(x, y)i − P(x, y)j, the two dimensional version of the
Divergence Theorem becomes Green’s Theorem in the Plane, which is

a special case of Stoke’s Theorem.∮
C
(P dx + Q dy) =

∫
D

(
∂Q
∂x
− ∂P

∂y

)
dxdy. (8.54)

This is just Green’s Theorem in the Plane.

Example 8.14. Evaluate
∫

C(e
x − 3y) dx + (ey + 6x) dy for C given by x2 +

4y2 = 4.
Green’s Theorem in the Plane gives

∫
C
(ex − 3y) dx + (ey + 6x) dy =

∫
S

(
∂

∂x
(ey + 6x)− ∂

∂y
(ex − 3y)

)
dxdy

=
∫

S
(6 + 3) dxdy

= 9
∫

S
dxdy. (8.55)

The integral that we need to compute is simply the area of the ellipse
x2 + 4y2 = 4. Recall that the area of an ellipse with semimajor axis a and
semiminor axis b is πab. For this ellipse a = 2 and b = 1. So,∫

C
(ex − 3y) dx + (ey + 6x) dy = 18π.

We can obtain Stoke’s Theorem by applying the Divergence Theo-
rem to the vector v× n.∫

V
∇ · (v× n) dτ =

∮
S

ns · (v× n) dσ. (8.56)

Here ns = u× n where u is tangent to the curve C, and n is normal to
the domain D. Noting that (u× n)× (v× n) = v · u and ∇ · (v× n) =
n · ∇ × v, then∫ h

0

(∫
D

n · ∇ × v dσ

)
dh =

∫ h

0

(∮
C

v · u ds
)

dh. (8.57)

Since h is arbitrary, then we obtain Stoke’s Theorem: Stoke’s Theorem.

∫
D

n · ∇ × v dσ =
∮

C
v · u ds. (8.58)

Example 8.15. Evaluate
∫

C(z dx + x dy + y dz) for C the boundary of the
triangle with vertices (1,0,0), (0,1,0), (0,0,1) using Stoke’s Theorem.
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We first identify the vector v = zi + xj + yk. Then, we compute the curl,

∇× v =

∣∣∣∣∣∣∣
i j k
∂

∂x
∂

∂y
∂

∂y

z x y

∣∣∣∣∣∣∣
= i + j + k. (8.59)

Stoke’s Theorem then gives∫
C
(z dx + x dy + y dz) =

∫
D

n · (i + j + k) dσ,

where n is the outward normal to the surface of the triangle. For a surface
defined by φ(x, y, z) =const, the normal is in the direction of∇φ. In this case
the triangle lives in the plane x + y + z = 1. Thus, φ(x, y, z) = x + y + z
and ∇φ = i + j + k. Thus,∫

C
(z dx + x dy + y dz) = 3

∫
D

dσ.

The remaining integral is just the area of the triangle. We can determine
this area as follows. Imagine the vectors a and b pointing from (1,0,0) to
(0,1,0) and from (1,0,0) to (0,0,1), respectively. So, a = j− i and b = k− i.

These vectors are the sides of a parallelogram whose area is twice that of
the triangle. The area of the parallelogram is given by |a× b|. The area of the
triangle is thus ∫

D
dσ =

1
2
|a× b|

=
1
2
|(j− i)× (k− i)|

=
1
2
|i + j + k| = 3

2
. (8.60)

Finally, we have ∫
C
(z dx + x dy + y dz) =

9
2

.

8.1.5 Vector Identities

In this section we will list some common vector identities and show
how to prove a few of them. We will introduce two triple products and
list first derivative and second derivative identities. These are useful
in reducing some equations into simpler forms.

Proving these identities can be straight forward, though sometimes
tedious in the more complicated cases. You should try to prove these
yourself. Sometimes it is useful to write out the components on each
side of the identity and see how one can fill in the needed arguments
which would provide the proofs. We will provide a couple of examples
of this process.
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1. Triple Products

(a) A · (B× C) = B · (C×A) = C · (A× B)

(b) A× (B× C) = B(A · C)− C(A · B)

2. First Derivatives

(a) ∇( f g) = f∇g + g∇ f

(b) ∇(A · B) = A× (∇× B) + B× (∇×A) + (A · ∇)B + (B · ∇)A
(c) ∇ · ( f A) = f∇ ·A + A · ∇ f

(d) ∇ · (A× B) = B · (∇×A)−A · (∇× B)

(e) ∇× ( f A) = f∇×A−A×∇ f

(f) ∇× (A× B) = (B · ∇)A− (A · ∇)B + A(∇ · B)− B(∇ ·A)

3. Second Derivatives

(a) ∇ · (∇×A) = 0 div curl = 0.

(b) ∇× (∇ f ) = 0 curl grad= 0.

(c) ∇ · (∇ f ×∇g) = 0

(d) ∇2( f g) = f∇2g + 2∇ f · ∇g + g∇2 f
(e) ∇ · ( f∇g− g∇ f ) = f∇2g− g∇2 f
(f) ∇× (∇×A) = ∇(∇ ·A)−∇2A

Example 8.16. Prove A · (B× C) = B · (C×A).
In such problems one can write out the components on both sides of the

identity. Using the determinant form of the triple scalar, the left hand side
becomes

A · (B× C) =

∣∣∣∣∣∣∣
A1 A2 A3

B1 B2 B3

C1 C2 C3

∣∣∣∣∣∣∣
= A1(B2C3 − B3C2)− A2(B1C3 − B3C1) + A3(B1C2 − B2C1).

(8.61)

Similarly, the right hand side is given as

B · (C×A) =

∣∣∣∣∣∣∣
B1 B2 B3

C1 C2 C3

A1 A2 A3

∣∣∣∣∣∣∣
= B1(C2 A3 − C3 A2)− B2(C1 A3 − C3 A1) + B3(C1 A2 − C2 A1).

(8.62)

We can rearrange this result by separating out the components of A.

B1(C2 A3 − C3 A2)− B2(C1 A3 − C3 A1) + B3(C1 A2 − C2 A1)

= A1(B2C3 − B3C2) + A2(B3C1 − B1C3) + A3(B1C2 − B2C1).

(8.63)
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Upon inspection, we see that we obtain the same result as we had for the left
hand side.

This problem can also be solved using the completely antisymmetric sym-
bol, εijk. Recall that the scalar triple product is given by

A · (B× C) = εijk AiBjCk.

(We have employed the Einstein summation convention.) Since εijk = εjki,
we have

εijk AiBjCk = εjki AiBjCk = εjkiBjCk Ai.

But,
εjkiBjCk Ai = B · (C×A).

So, we have once again proven the identity. However, it took a little less work
and an understanding of the antisymmetric symbol. Furthermore, you should
note that this identity was proven earlier in the chapter.

Example 8.17. Prove∇( f g) = f∇g + g∇ f . In this problem we compte the
gradient of f g. Then we note that each derivative is the derivative of a product
and apply the Product Rule. Carefully writing out the terms, we obtain the
desired result.

∇( f g) =
∂ f g
∂x

i +
∂ f g
∂y

j +
∂ f g
∂z

k

=

(
∂ f
∂x

i +
∂ f
∂y

j +
∂ f
∂z

k
)

g + f
(

∂g
∂x

i +
∂g
∂y

j +
∂g
∂z

k
)

= f∇g + g∇ f . (8.64)

8.2 Electromagnetic Waves

8.2.1 Maxwell’s Equations

There are many applications leading to the equations in Table
8.1. One goal of this chapter is to derive the three dimensional wave
equation for electromagnetic waves. This derivation was first carried
out by James Clerk Maxwell in 1860. At the time much was known
about the relationship between electric and magnetic fields through
the work of of such people as Hans Christian Ørstead (1777-1851),
Michael Faraday (1791-1867), and André-Marie Ampère. Maxwell pro-
vided a mathematical formalism for these relationships consisting of
twenty partial differential equations in twenty unknowns. Later these
equations were put into more compact notations, namely in terms of
quaternions, only later to be cast in vector form.

Quaternions were introduced in 1843

by William Rowan Hamilton (1805-1865)
as a four dimensional generalization of
complex numbers.

In vector form, the original Maxwell’s equations are given as

∇ ·D = ρ
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∇×H = µ0Jtot
D = εE

J = σE

Jtot = J
∂D
∂t

∇ · J = −∂ρ

∂t

E = −∇φ− ∂A
∂t

µH = ∇×A. (8.65)

Note that Maxwell expressed the electric and magnetic fields in terms
of the scalar and vector potentials, φ and A, respectively, as defined in
the last two equation. Here H is the magnetic field, D is the electric
displacement field, E is the electric field, J is the current density, ρ is
the charge density, and σ is the conductivity.

This set of equations differs from what we typically present in physics
courses. Several of these equations are defining quantities. While the
potentials are part of a course in electrodynamics, they are not cast as
the core set of equations now referred to as Maxwell’s equations. Also,
several equations are given as defining relations between the various
variables, though they have some physical significance of their own,
such as the continuity equation, given by ∇ · J = − ∂ρ

∂t .
Furthermore, the distinction between the magnetic field strength,

H, and the magnetic flux density, B, only becomes important in the
presence of magnetic materials. Students are typically first introduced
to B in introductory physics classes. In general, B = µH, where µ is
the magnetic permeability of a material. In the absence of magnetic
materials, µ = µ0. In fact, in many applications of the propagation of
electromagnetic waves, µ ≈ µ0.

These equations can be written in a more familiar form. The equa-
tions that we will refer to as Maxwell’s equations from now on are

∇ · E =
ρ

ε0
, (Gauss’ Law)

∇ · B = 0

∇× E = −∂B
∂t

, (Faraday’s Law)

∇× B = µ0J + µ0ε0
∂E
∂t

, (Maxwell-Ampère Law) (8.66)

We have noted the common names attributed to each law. There are
corresponding integral forms of these laws, which are often presented
in introductory physics class. The first law is Gauss’ law. It allows one
to determine the electric field due to specific charge distributions. The
second law typically has no name attached to it, but in some cases is
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called Gauss’ law for magnetic fields. It simply states that there are
no free magnetic poles. The third law is Faraday’s law, indicating that
changing magnetic flux induces electric potential differences. Lastly,
the fourth law is a modification of Ampere’s law that states that electric
currents produce magnetic fields.

It should be noted that the last term in the fourth equation was
introduced by Maxwell. As we have seen, the divergence of the curl of
any vector is zero, The divergence of the curl of any vector

is zero.
∇ · (∇×V) = 0.

Computing the divergence of the curl of the electric field, we find from
Maxwell’s equations that

∇ · (∇× E) = −∇ · ∂B
∂t

= − ∂

∂t
∇ · B = 0. (8.67)

Thus, the relation works here.
However, before Maxwell, Ampère’s law in differential form would Ampère’s law in differential form.

have been written as

∇× B = µ0J.

Computing the divergence of the curl of the magnetic field, we have The introduction of the displacement
current makes Maxwell’s equations
mathematically consistent.∇ · (∇× B) = µ0∇ · J

= −µ0
∂ρ

∂t
. (8.68)

Here we made use of the continuity equation,

µ0
∂ρ

∂t
+ µ0∇ · J = 0.

As you can see, the vector identity, div curl = 0, does not work
here! Maxwell argued that we need to account for a changing charge
distribution. He introduced what he called the displacement current,
µ0ε0

∂E
∂t into the Ampère Law. Now, we have

∇ · (∇× B) = µ0∇ ·
(

J + µ0ε0
∂E
∂t

)
= −µ0

∂ρ

∂t
+ µ0ε0

∂

∂t
∇ · E

= −µ0
∂ρ

∂t
+ µ0ε0

∂

∂t

(
ρ

ε0

)
= 0. (8.69)

So, Maxwell’s introduction of the displacement current was not only
physically important, it made the equations mathematically consistent.
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8.2.2 Electromagnetic Wave Equation

We are now ready to derive the wave equation for electromagnetic
waves. We will consider the case of free space in which there are no
free charges or currents and the waves propagate in a vacuum. We
then have Maxwell’s equations in the form Maxwell’s equations in a vacuum.

∇ · E = 0,

∇ · B = 0,

∇× E = −∂B
∂t

,

∇× B = µ0ε0
∂E
∂t

. (8.70)

We will derive the wave equation for the electric field. You should
confirm that a similar result can be obtained for the magnetic field.
Consider the expression ∇× (∇× E). We note that the identities give

∇× (∇× E) = ∇(∇ · E)−∇2E.

However, the divergence of E is zero, so we have

∇× (∇× E) = −∇2E. (8.71)

We can also use Faraday’s Law on the right side of this equation to
obtain

∇× (∇× E) = −∇×
(

∂B
∂t

)
.

Interchanging the time and space derivatives, and using the Ampere-
Maxwell Law, we find

∇× (∇× E) = − ∂

∂t
(∇× B)

= − ∂

∂t

(
ε0µ0

∂E
∂t

)
= −ε0µ0

∂2E
∂t2 . (8.72)

The three dimensional wave equations
for electric and magnetic fields in a vac-
uum.

Combining the two expressions for∇× (∇×E), we have the sought
result:

ε0µ0
∂2E
∂t2 = ∇2E.

This is the three dimensional equation for an oscillating electric
field. A similar equation can be found for the magnetic field,

ε0µ0
∂2B
∂t2 = ∇2B.

Recalling that ε0 = 8.85 × 10−12 C2/Nm2 and µ0 = 4π × 10−7

N/A2, one finds that c = 3× 108 m/s.
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One can derive more general equations. For example, we could
look for waves in what are called linear media. In this case one has
D = εE and B = µH. Here ε is called the electric permittivity and µ is
the magnetic permeability of the material. Then, the wave speed in a
vacuum, c, is replaced by the wave speed in the medium, v. It is given
by

v =
1
√

εµ
=

c
n

.

Here, n is the index of refraction, n =
√

εµ
ε0µ0

. In many materials µ ≈
µ0. Introducing the dielectric constant, κ = ε

ε0
, one finds that n ≈

√
κ.

The wave equations lead to many of the properties of the elec-
tric and magnetic fields. We can also study systems in which these
waves are confined, such as waveguides. In such cases we can impose
boundary conditions and determine what modes are allowed to prop-
agate within certain structures, such as optical fibers. However, these
equation involve unknown vector fields. We have to solve for several
inter-related component functions. In the next chapter we will look
at simpler models in order to get some ideas as to how one can solve
scalar wave equations in higher dimensions. However, we will first ex-
plore how the differential operators introduced in this chapter appear
in different coordinate systems.

8.2.3 Potential Functions and Helmholtz’s Theorem

Another application of the use of vector analysis for study-
ing electromagnetism is that of potential theory. In this section we de-
scribe the use of a scalar potential, φ(r, t) and a vector potential, A(r, t)
to solve problems in electromagnetic theory. Helmholtz’s theorem says

Hermann Ludwig Ferdinand von
Helmholtz (1821-1894) made many
contributions to physics. There are
several theorems named after him.

that a vector field is uniquely determined by knowing its divergence
and its curl. Combining this result with the definitions of the electric
and magnetic potentials, we will show that Maxwell’s equations will
the electric and magnetic fields can be found by simply solving a set
of Poisson equations, ∇2u = f , for the potential functions. A vector field is uniquely determined by

knowing its divergence and its curl.In the case of static fields, we have from Maxwell’s equations
Electric and magnetic potentials.

∇ · B = 0, ∇× E = 0.

We saw earlier in this chapter that the curl of a gradient is zero and
the divergence of a curl is zero. This suggests that E is the gradient of
a scalar function and B is the curl of a vector function:

E = −∇φ,

B = ∇×A.
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φ is called the electric potential and A is called the magnetic potential.
The remaining Maxwell equations are

∇ · E =
ρ

ε0
, ∇× B = µ0J.

Inserting the potential functions, we have

∇2φ = − ρ

ε0
, ∇× (∇×A) = µ0J.

Thus, φ satisfies a Poisson equation, which is a simple partial differ-
ential equation which can be solved using separation of variables, or
other techniques.

The equation satisfied by the magnetic potential looks a little more
complicated. However, we can use the identity

∇× (∇×A) = ∇(∇ ·A)−∇2A.

If ∇ ·A = 0, then we find that

∇2A = −µ0J.

Thus, the components of the magnetic potential also satisfy Poisson
equations!

It turns out that requiring ∇ · A = 0 is not as restrictive as one
might first think. Potential functions are not unique. For example,
adding a constant to a potential function will still give the same fields.
For example

∇(φ + c) = ∇φ = −E.

This is not too alarming because it is the field that is physical and
not the potential. In the case of the magnetic potential, adding the
gradient of some field gives the same magnetic field, ∇× (A +∇ψ) =

∇×A = B. So, we can choose ψ such that the new magnetic potential
is divergenceless, ∇ · A = 0. A particular choice of the scalar and
vector potentials is a called a gauge and the process is called fixing,
or choosing, a gauge. The choice of ∇ · A = 0 is called the Coulomb
gauge. Coulomb gauge: ∇ ·A = 0.

If the fields are dynamic, i.e., functions of time, then the magnetic
potential also contributes to the electric field. In this case, we have

E = −∇φ− ∂A
∂t

,

B = ∇×A.

Thus, two of Maxwell’s equations are automatically satisfied,

∇ · B = 0, ∇× E = −∂B
∂t

.



vector analysis and em waves 403

The other two equations become

∇ · E =
ρ

ε0
⇒ ∇2φ +

∂

∂t
∇ ·A = − ρ

ε0
,

and
∇× B = µ0J + µ0ε0

∂E
∂t
⇒

∇(∇ ·A)−∇2A = µ0J− 1
c2

∂

∂t

(
∇φ +

∂A
∂t

)
.

Rearranging, we have(
∇2 − 1

c2
∂2

∂t2

)
A−∇

(
∇ ·A +

1
c2

∂φ

∂t

)
= −µ0J.

If we choose the Lorentz gauge, by requiring Lorentz gauge: ∇ ·A + 1
c2

∂φ
∂t = 0.

∇ ·A +
1
c2

∂φ

∂t
,

then In relativity, one defines the
d’Alembertian by � ≡ 1

c2
∂2

∂t2 − ∇2.
Then, the equations for the potentials
become

�φ =
ρ

ε0
,

and
�A = µ0J.

(
∇2 − 1

c2
∂2

∂t2

)
φ = − ρ

ε0
,(

∇2 − 1
c2

∂2

∂t2

)
A = −µ0J.

Thus, the potential satisfy nonhomogeneous wave equations, which
can be solved with standard methods as one will see in a course in
electrodynamics.

The above introduction of potentials to describe the electric and
magnetic fields is a special case of Helmholtz’s Theorem for vectors.
This theorem states that “any sufficiently smooth, rapidly decaying
vector field in three dimensions can be resolved into the sum of an irro-
tational (curl-free) vector field and a solenoidal (divergence-free) vec-
tor field.”2 This is known as the Helmholtz decomposition. Namely, 2 Wikipedia entry for the Helmholtz de-

composition.given any nice vector field v, we can write it as

v = −∇φ︸ ︷︷ ︸
irrotational

+ ∇×A︸ ︷︷ ︸
solenoidal

.

Given
∇ · v = ρ, ∇× v = F,

then one has
∇2φ = ρ

and
∇(∇ ·A)−∇2A = F.

Forcing ∇ ·A = 0,
∇2A = −F.

Thus, one obtains Poisson equations for φ and A. This is just repeating
the above procedure which we had seen in the special case of static
electromagnetic fields.
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8.3 Curvilinear Coordinates

In order to study solutions of the wave equation, the heat
equation, or even Schrödinger’s equation in different geometries, we
need to see how differential operators, such as the Laplacian, appear
in these geometries. The most common coordinate systems arising in
physics are polar coordinates, cylindrical coordinates, and spherical
coordinates. These reflect the common geometrical symmetries often
encountered in physics.

In such systems it is easier to describe boundary conditions and
to make use of these symmetries. For example, specifying that the
electric potential is 10.0 V on a spherical surface of radius one, we
would say φ(x, y, z) = 10 for x2 + y2 + z2 = 1. However, if we use
spherical coordinates, (r, θ, φ), then we would say φ(r, θ, φ) = 10 for
r = 1, or φ(1, θ, φ) = 10. This is a much simpler representation of the
boundary condition.

However, this simplicity in boundary conditions leads to a more
complicated looking partial differential equation in spherical coordi-
nates. In this section we will consider general coordinate systems and
how the differential operators are written in the new coordinate sys-
tems. In the next chapter we will solve some of these new problems.

We begin by introducing the general coordinate transformations be-
tween Cartesian coordinates and the more general curvilinear coordi-
nates. Let the Cartesian coordinates be designated by (x1, x2, x3) and
the new coordinates by (u1, u2, u3). We will assume that these are re-
lated through the transformations

x1 = x1(u1, u2, u3),

x2 = x2(u1, u2, u3),

x3 = x3(u1, u2, u3). (8.73)

Thus, given the curvilinear coordinates (u1, u2, u3) for a specific point
in space, we can determine the Cartesian coordinates, (x1, x2, x3), of
that point. We will assume that we can invert this transformation:
Given the Cartesian coordinates, one can determine the corresponding
curvilinear coordinates. Need to insert figures depicting this.

In the Cartesian system we can assign an orthogonal basis, {i, j, k}.
As a particle traces out a path in space, one locates its position by
the coordinates (x1, x2, x3). Picking x2 and x3 constant, the particle lies
on the curve x1 = value of the x1 coordinate. This line lies in the
direction of the basis vector i. We can do the same with the other co-
ordinates and essentially map out a grid in three dimensional space.
All of the xi-curves intersect at each point orthogonally and the basis
vectors {i, j, k} lie along the grid lines and are mutually orthogonal.
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We would like to mimic this construction for general curvilinear co-
ordinates. Requiring the orthogonality of the resulting basis vectors
leads to orthogonal curvilinear coordinates.

As for the Cartesian case, we consider u2 and u3 constant. This
leads to a curve parametrized by u1 : r = x1(u1)i + x2(u1)j + x3(u1)k.
We call this the u1-curve. Similarly, when u1 and u3 are constant we
obtain a u2-curve and for u1 and u2 constant we obtain a u3-curve. We
will assume that these curves intersect such that each pair of curves
intersect orthogonally. Furthermore, we will assume that the unit tan-
gent vectors to these curves form a right handed system similar to the
{i, j, k} systems for Cartesian coordinates. We will denote these as
{û1, û2, û3}.

We can quantify all of this. Consider the position vector as a func-
tion of the new coordinates,

r(u1, u2, u3) = x1(u1, u2, u3)i + x2(u1, u2, u3)j + x3(u1, u2, u3)k.

Then the infinitesimal change in position is given by

dr =
∂r

∂u1
du1 +

∂r
∂u2

du2 +
∂r

∂u3
du3 =

3

∑
i=1

∂r
∂ui

dui.

We note that the vectors ∂r
∂ui

are tangent to the ui-curves. Thus, we
define the unit tangent vectors

ûi =

∂r
∂ui∣∣∣ ∂r
∂ui

∣∣∣ .
Solving for the tangent vector, we have

∂r
∂ui

= hiûi,

where The scale factors, hi ≡
∣∣∣ ∂r

∂ui

∣∣∣ .

hi ≡
∣∣∣∣ ∂r
∂ui

∣∣∣∣
are called the scale factors for the transformation.

Example 8.18. Determine the scale factors for the polar coordinate transfor-
mation. Show an annotated polar plot here.

The transformation for polar coordinates is

x = r cos θ, y = r sin θ.

Here we note that x1 = x, y1 = y, u1 = r, and u2 = θ. The u1-curves
are curves with θ = const. Thus, these curves are radial lines. Similarly,
the u2-curves have r = const. These curves are concentric circles about the
origin.
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The unit vectors are easily found. We will denote them by ûr and ûθ . We
can determine these unit be first computing ∂r

∂ui
. Let

r = x(r, θ)i + y(r, θ)j = r cos θi + r sin θj.

Then,

∂r
∂r

= cos θi + sin θj

∂r
∂θ

= −r sin θi + r cos θj. (8.74)

The first vector already is a unit vector. So,

ûr = cos θi + sin θj.

The second vector has length r since | − r sin θi + r cos θj| = r. Dividing ∂r
∂θ

by r, we have
ûθ = − sin θi + cos θj.

We can see these vectors are orthogonal and form a right hand system. That
they form a right hand system can be seen by either drawing the vectors, or
computing the cross product,

(cos θi + sin θj)× (− sin θi + cos θj) = k.

Since

∂r
∂r

= ûr,

∂r
∂θ

= rûθ ,

The scale factors are hr = 1 and hθ = r.

We have determined that once we know the scale factors, we have
that

dr =
3

∑
i=1

hiduiûi.

The infinitesimal arclength is then given by

ds2 = dr · dr =
3

∑
i=1

h2
i du2

i

when the system is orthogonal. Also, along the ui-curves,

dr = hiduiûi, (no summation).

So, we consider at a given point (u1, u2, u3) an infinitesimal paral-
lelepiped of sides hidui, i = 1, 2, 3. This infinitesimal parallelepiped
has a volume of size

dV =

∣∣∣∣ ∂r
∂u1
· ∂r

∂u2
× ∂r

∂u3

∣∣∣∣ du1du2du3.
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The triple scalar product can be computed using determinants and the
resulting determinant is call the Jacobian, and is given by

J =

∣∣∣∣ ∂(x1, x2, x3)

∂(u1, u2, u3)

∣∣∣∣
=

∣∣∣∣ ∂r
∂u1
· ∂r

∂u2
× ∂r

∂u3

∣∣∣∣
=

∣∣∣∣∣∣∣
∂x1
∂u1

∂x2
∂u1

∂x3
∂u1

∂x1
∂u2

∂x2
∂u2

∂x3
∂u2

∂x1
∂u3

∂x2
∂u3

∂x3
∂u3

∣∣∣∣∣∣∣ . (8.75)

Therefore, the volume element can be written as

dV = J du1du2du3 =

∣∣∣∣ ∂(x1, x2, x3)

∂(u1, u2, u3)

∣∣∣∣ du1du2du3.

Example 8.19. Determine the volume element for cylindrical coordinates
(r, θ, z), given by

x = r cos θ, (8.76)

y = r sin θ, (8.77)

z = z. (8.78)

Here, we have (u1, u2, u3) = (r, θ, z). Then, the Jacobian is given by

J =

∣∣∣∣∂(x, y, z)
∂(r, θ, z)

∣∣∣∣
=

∣∣∣∣∣∣∣
∂x
∂r

∂y
∂r

∂z
∂r

∂x
∂θ

∂y
∂θ

∂z
∂θ

∂x
∂z

∂y
∂z

∂z
∂z

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
cos θ sin θ 0
−r sin θ r cos θ 0

0 0 1

∣∣∣∣∣∣∣
= r (8.79)

Thus, the volume element is given as

dV = rdrdθdz.

This result should be familiar from multivariate calculus.

Next we will derive the forms of the gradient, divergence, and curl
in curvilinear coordinates. The results are given here for quick refer-
ence. Gradient, divergence and curl in orthog-

onal curvilinear coordinates.
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∇φ =
3

∑
i=1

ûi
hi

∂φ

∂ui

=
û1

h1

∂φ

∂u1
+

û2

h2

∂φ

∂u2
+

û3

h3

∂φ

∂u3
. (8.80)

∇ · F =
1

h1h2h3

(
∂

∂u1
(h2h3F1) +

∂

∂u2
(h1h3F2) +

∂

∂u3
(h1h2F3)

)
.

(8.81)

∇× F =
1

h1h2h3

∣∣∣∣∣∣∣
h1û1 h2û2 h3û3

∂
∂u1

∂
∂u2

∂
∂u3

F1h1 F2h2 F3h3

∣∣∣∣∣∣∣ . (8.82)

∇2φ =
1

h1h2h3

(
∂

∂u1

(
h2h3

h1

∂φ

∂u1

)
+

∂

∂u2

(
h1h3

h2

∂φ

∂u2

)
+

∂

∂u3

(
h1h2

h3

∂φ

∂u3

))
(8.83)

(8.84)

We begin the derivations of these formulae by looking at the gradi-
ent, ∇φ, of the scalar function φ(u1, u2, u3). We recall that the gradient Derivation of the gradient form.

operator appears in the differential change of a scalar function,

dφ = ∇φ · dr =
3

∑
i=1

∂φ

∂ui
dui.

Since

dr =
3

∑
i=1

hiduiûi,

we also have that

dφ = ∇φ · dr =
3

∑
i=1

(∇φ)i hidui.

Comparing these two expressions for dφ, we determine that the com-
ponents of the del operator can be written as

(∇φ)i =
1
hi

∂φ

∂ui

and thus the gradient is given by

∇φ =
û1

h1

∂φ

∂u1
+

û2

h2

∂φ

∂u2
+

û3

h3

∂φ

∂u3
.

Next we compute the divergence, Derivation of the divergence form.

∇ · F =
3

∑
i=1
∇ · (Fiûi) .

We can do this by computing the individual terms in the sum. We will
compute ∇ · (F1û1) .
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We first note that the gradients of the coordinate functions are found

as ∇ui =
ûi
hi

. (This results from a direct application of the gradient

operator form just derived.) Then

∇u2 ×∇u3 =
û2 × û3

h2h3
=

û1

h2h3
.

This gives

∇ · (F1û1) = ∇ · (F1h2h3∇u2 ×∇u3)

= ∇ (F1h2h3) · ∇u2 ×∇u3 + F1h2h2∇ · (∇u2 ×∇u3).

(8.85)

Here we used the vector identity

∇ · ( f A) = f∇ ·A + A · ∇ f

The second term can be handled using the identity

∇ · (A× B) = B · (∇×A)−A · (∇× B),

where A and B are gradients. However, each term the curl of a gradi-
ent, which are identically zero! Or, you could just use the third identity
in the previous list of second derivative identities,

∇ · (∇ f ×∇g) = 0.

Using the expression ∇u2 ×∇u3 = û1
h2h3

and the expression for the
gradient operator in curvilinear coordinates, we have

∇ · (F1û1) = ∇ (F1h2h3) ·
û1

h2h3
=

1
h1h2h3

∂

∂u1
(F1h2h3) .

Similar computations can be done for the remaining components,
leading to the sought expression for the divergence in curvilinear co-
ordinates:

∇ · F =
1

h1h2h3

(
∂

∂u1
(h2h3F1) +

∂

∂u2
(h1h3F2) +

∂

∂u2
(h1h2F3)

)
.

We now turn to the curl operator. In this case, we need to simplify Derivation of the curl form.

∇× F =
3

∑
i=1
∇× (Fiûi) .

Using the identity

∇× ( f A) = f∇×A−A×∇ f ,

we have

∇× (F1û1) = ∇× (F1h1∇u1)

= ∇ (F1h1)×∇u1 + F1h1∇×∇u1. (8.86)
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Again, the curl of the gradient vanishes, leaving

∇× (F1û1) = ∇ (F1h1)×∇u1.

Since ∇u1 = û1
h1

, we have

∇× (F1û1) = ∇ (F1h1)×
û1

h1

=

(
3

∑
i=1

ûi
hi

∂ (F1h1)

∂ui

)
× û1

h1

=
û2

h3h1

∂ (F1h1)

∂u3
− û3

h1h2

∂ (F1h1)

∂u2
. (8.87)

The other terms can be handled in a similar manner. The overall
result is that

∇× F =
û1

h2h3

(
∂ (h3F3)

∂u2
− ∂ (h2F2)

∂u3

)
+

û2

h1h3

(
∂ (h1F1)

∂u3
− ∂ (h3F3)

∂u1

)
+

û3

h1h2

(
∂ (h2F2)

∂u1
− ∂ (h1F1)

∂u2

)
(8.88)

This can be written more compactly as

∇× F =
1

h1h2h3

∣∣∣∣∣∣∣
h1û1 h2û2 h3û3

∂
∂u1

∂
∂u2

∂
∂u3

F1h1 F2h2 F3h3

∣∣∣∣∣∣∣ (8.89)

Finally, we turn to the Laplacian. In the next chapter we will solve
higher dimensional problems in various geometric settings such as the
wave equation, the heat equation, and Laplace’s equation. These all
involve knowing how to write the Laplacian in different coordinate
systems. Since ∇2φ = ∇ ·∇φ, we need only combine the above results
for the gradient and the divergence in curvilinear coordinates. This is
straight forward and gives

∇2φ =
1

h1h2h3

(
∂

∂u1

(
h2h3

h1

∂φ

∂u1

)
+

∂

∂u2

(
h1h3

h2

∂φ

∂u2

)
+

∂

∂u3

(
h1h2

h3

∂φ

∂u3

))
. (8.90)

The results of rewriting the standard differential operators in cylin-
drical and spherical coordinates are shown in Problems 28 and 29. In
particular, the Laplacians are given as
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Cylindrical Coordinates:

∇2 f =
1
r

∂

∂r

(
r

∂ f
∂r

)
+

1
r2

∂2 f
∂θ2 +

∂2 f
∂z2 . (8.91)

Spherical Coordinates:

∇2 f =
1
ρ2

∂

∂ρ

(
ρ2 ∂ f

∂ρ

)
+

1
ρ2 sin θ

∂

∂θ

(
sin θ

∂ f
∂θ

)
+

1
ρ2 sin2 θ

∂2 f
∂φ2 .

(8.92)

These forms will be used in the next chapter for the solution of
Laplace’s equation, the heat equation, and the wave equation in these
coordinate systems.

Problems

1. Compute u× v using the permutation symbol. Verify your answer
by computing these products using traditional methods.

a. u = 2i− 3k, v = 3i− 2j.

b. u = i + j + k, v = i− k.

c. u = 5i + 2j− 3k, v = i− 4j + 2k.

2. Compute the following determinants using the permutation sym-
bol. Verify your answer.

a.

∣∣∣∣∣∣∣
3 2 0
1 4 −2
−1 4 3

∣∣∣∣∣∣∣
b.

∣∣∣∣∣∣∣
1 2 2
4 −6 3
2 3 1

∣∣∣∣∣∣∣
3. For the given expressions, write out all values for i, j = 1, 2, 3.

a. εi2j.

b. εi13.

c. εij1εi32.

4. Show that

a. δii = 3.

b. δijεijk = 0

c. εimnεjmn = 2δij.

d. εijkεijk = 6.
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5. Show that the vector (a×b)× (c×d) lies on the line of intersection
of the two planes: (1) the plane containing a and b and (2) the plane
containing c and d.

6. Prove the following vector identities:

a. (a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c).
b. (a× b)× (c× d) = (a · b× d)c− (a · b× c)d.

7. Use problem 6a to prove that |a× b| = ab sin θ.

8. A particle moves on a straight line, r = tu, from the center of a
disk. If the disk is rotating with angular velocity ω, then u rotates. Let
u = (cos ωt)i + (sin ωt)j.

a. Determine the velocity, v.

b. Determine the acceleration, a.

c. Describe the resulting acceleration terms identifying the cen-
tripetal acceleration and Coriolis acceleration.

9. Compute the gradient of the following:

a. f (x, y) = x2 − y2.

b. f (x, y, z) = yz + xy + xz.

c. f (x, y) = tan−1 ( y
x
)

.

d. f (x, y, z) =

10. Find the directional derivative of the given function at the indi-
cated point in the given direction.

a. f (x, y) = x2 − y2, (3, 2), u = i + j.

b. f (x, y) = y
x , (2, 1), u = 3i + 4j.

c. f (x, y, z) = x2 + y2 + z2, (1, 0, 2), u = 2i− j.

11. Zaphod Beeblebrox was in trouble after the infinite improbability
drive caused the Heart of Gold, the spaceship Zaphod had stolen when
he was President of the Galaxy, to appear between a small insignificant
planet and its hot sun. The temperature of the ship’s hull is given by
T(x, y, z) = e−k(x2+y2+z2) Nivleks. He is currently at (1, 1, 1), in units of
globs, and k = 2 globs−2. (Check the Hitchhikers Guide for the current
conversion of globs to kilometers and Nivleks to Kelvins.)

a. In what direction should he proceed so as to decrease the
temperature the quickest?

b. If the Heart of Gold travels at e6 globs per second, then how
fast will the temperature decrease in the direction of fastest
decline?
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12. For the given vector field, find the divergence and curl of the field.

a. F = xi + yj.

b. F = y
r i− x

r j, for r =
√

x2 + y2.

c. F = x2yi + zj + xyzk.

13. Write the following using εijk notation and simplify if possible.

a. C× (A× (A× C)).

b. ∇ · (∇×A).

c. ∇×∇φ.

14. Prove the identities:

a. ∇ · (∇×A) = 0.

b. ∇ · ( f∇g− g∇ f ) = f∇2g− g∇2 f .

c. ∇rn = nrn−2r, n ≥ 2.

15. For r = xi + yj + zk and r = |r|, simplify the following.

a. ∇× (k× r).

b. ∇ ·
( r

r
)

.

c. ∇×
( r

r
)

.

d. ∇ ·
(

r
r3

)
.

16. Newton’s Law of Gravitation gives the gravitational force between
two masses as

F = −GmM
r3 r.

a. Prove that F is irrotational.

b. Find a scalar potential for F.

17. Consider an electric dipole moment p at the origin. It produces
an electric potential of φ = p·r

4πε0r3 outside the dipole. Noting that
E = −∇φ, find the electric field at r.

18. In fluid dynamics the Euler equations govern inviscid fluid flow
and provide quantitative statements on the conservation of mass, mo-
mentum and energy. The continuity equation is given by

∂ρ

∂t
+∇ · (ρv) = 0,

where ρ(x, y, z, t) is the mass density and v(x, y, z, t) is the fluid veloc-
ity. The momentum equations are given by

∂ρv
∂t

+ v · ∇(ρv) = f−∇p.

Here p(x, y, z, t) is the pressure and F is the external force per volume.
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a. Show that the continuity equation can be rewritten as

∂ρ

∂t
+ ρ∇ · (v) + v · ∇ρ = 0.

b. Prove the identity 1
2∇v2 = v · ∇v for irrotational v.

c. Assume that

• the external forces are conservative (F = −∇φ),

• the velocity field is irrotational (∇× v = 0).

• the fluid is incompressible (ρ =const), and

• the flow is steady, ∂v
∂t = 0.

Under these assumptions, prove Bernoulli’s Principle:

1
2

v2 + φ +
p
ρ
= const.

19. Find the lengths of the following curves:

a. y(x) = x for x ∈ [0, 2].

b. (x, y, z) = (t, ln t, 2
√

2t) for 1 ≤ t ≤ 2.

c. y(x) = 2 cosh 3x, x ∈ [−2, 2]. (Recall the hanging chain ex-
ample from classical dynamics.)

20. Consider the integral
∫

C y2 dx − 2x2 dy. Evaluate this integral for
the following curves:

a. C is a straight line from (0,2) to (1,1).

b. C is the parabolic curve y = x2 from (0,0) to (2,4).

c. C is the circular path from (1,0) to (0,1) in a clockwise direc-
tion.

21. Evaluate
∫

C(x2 − 2xy + y2) ds for the curve x(t) = 2 cos t, y(t) =
2 sin t, 0 ≤ t ≤ π.

22. Prove that the magnetic flux density, B, satisfies the wave equation.

23. Prove the identity∫
C

φ∇φ · n ds =
∫

D
(φ∇2φ +∇ · ∇φ) dA.

24. Compute the work done by the force F = (x2− y2)i+ 2xyj in mov-
ing a particle counterclockwise around the boundary of the rectangle
R = [0, 3]× [0, 5].

25. Compute the following integrals:

a.
∫

C(x2 + y) dx + (3x + y3) dy for C the ellipse x2 + 4y2 = 4.
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b.
∫

S(x− y) dydz + (y2 + z2) dzdx + (y− x2) dxdy for S the pos-
itively oriented unit sphere.

c.
∫

C(y− z) dx + (3x + z) dy + (x + 2y) dz, where C is the curve
of intersection between z = 4− x2− y2 and the plane x + y +
z = 0.

d.
∫

C x2y dx − xy2 dy for C a circle of radius 2 centered about
the origin.

e.
∫

S x2y dydz + 3y2 dzdx− 2xz2 dxdy, where S is the surface of
the cube [−1, 1]× [−1, 1]× [−1, 1].

26. Use Stoke’s theorem to evaluate the integral∫
C
−y3 dx + x3 dy− z3 dz

for C the (positively oriented) curve of intersection between the cylin-
der x2 + y2 = 1 and the plane x + y + z = 1.

27. Use Stoke’s theorem to derive the integral form of Faraday’s law,∫
C

E · ds = − ∂

∂t

∫ ∫
S

H · dS

from the differential form of Maxwell’s equations.

28. For cylindrical coordinates,

x = r cos θ,

y = r sin θ,

z = z. (8.93)

find the scale factors and derive the following expressions: Note that it is customary to write the ba-
sis as {er , eθ , ez} instead of {û1, û2, û3}.

∇ f =
∂ f
∂r

er +
1
r

∂ f
∂θ

eθ +
∂ f
∂z

ez. (8.94)

∇ · F =
1
r

∂(rFr)

∂r
+

1
r

∂Fθ

∂θ
+

∂Fz

∂z
. (8.95)

∇× F =

(
1
r

∂Fz

∂θ
− ∂Fθ

∂z

)
er +

(
∂Fr

∂z
− ∂Fz

∂r

)
eθ +

1
r

(
∂(rFθ)

∂r
− ∂Fr

∂θ

)
ez

(8.96)

∇2 f =
1
r

∂

∂r

(
r

∂ f
∂r

)
+

1
r2

∂2 f
∂θ2 +

∂2 f
∂z2 . (8.97)

29. For spherical coordinates,

x

y

z

ρ

φ

θ

Figure 8.12: Definition of spherical coor-
dinates for Problem 29.

x = ρ sin θ cos φ,

y = ρ sin θ sin φ,

z = ρ cos θ. (8.98)
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find the scale factors and derive the following expressions:

∇ f =
∂ f
∂ρ

eρ +
1
ρ

∂ f
∂θ

eθ +
1

ρ sin θ

∂ f
∂φ

eφ. (8.99)

∇ · F =
1
ρ2

∂(ρ2Fρ)

∂ρ
+

1
ρ sin θ

∂(sin θFθ)

∂θ
+

1
ρ sin θ

∂Fφ

∂φ
. (8.100)

∇× F =
1

ρ sin θ

(
∂(sin θFφ)

∂θ
− ∂Fθ

∂φ

)
eρ +

1
ρ

(
1

sin θ

∂Fρ

∂φ
−

∂(ρFφ)

∂ρ

)
eθ

+
1
ρ

(
∂(ρFθ)

∂ρ
−

∂Fρ

∂θ

)
eφ (8.101)

∇2 f =
1
ρ2

∂

∂ρ

(
ρ2 ∂ f

∂ρ

)
+

1
ρ2 sin θ

∂

∂θ

(
sin θ

∂ f
∂θ

)
+

1
ρ2 sin2 θ

∂2 f
∂φ2 .

(8.102)



9
Oscillations in Higher Dimensions

“Equations of such complexity as are the equations of the gravitational field can be found only through the discovery of
a logically simple mathematical condition that determines the equations completely or at least almost completely.”

“What I have to say about this book can be found inside this book.” Albert Einstein (1879-1955)

In this chapter we will explore several generic examples of the
solution of initial-boundary value problems involving higher spatial
dimensions. These are described by higher dimensional partial dif-
ferential equations, such as the ones presented in Table 8.1 in the last
chapter. We will solve these problems for different geometries, using
rectangular, polar, cylindrical, or spherical coordinates.

We will solve these problems using the method of separation of
variables, though there are other methods which we will not consider
in this text. Using separation of variables will result in a system of
ordinary differential equations for each problem. Adding the bound-
ary conditions, we will need to solve a variety of eigenvalue problems.
The product solutions that result will involve trigonometric or some of
the special functions that we had encountered in Chapter 5.

As you go through the examples in this chapter, you will see some
common features. For example, the two key equations that we have
studied are the heat equation and the wave equation. For higher di-
mensional problems these take the form

ut = k∇2u, (9.1)

utt = c2∇2u. (9.2)

One can first separate out the time dependence. Let u(r, t) = φ(r)T(t).
Inserting u into the heat and wave equations, we have

T′φ = kT∇2φ, (9.3)

T′′φ = c2T∇2φ. (9.4)

Separating out the time and space dependence, we find

1
k

T′

T
=
∇2φ

φ
= −λ, (9.5)
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1
c2

T′′

T
=
∇2φ

φ
= −λ. (9.6)

Note that in each case we have that a function of time equals a function
of the spatial variables. Thus, they must be constant functions. We
set these equal to the constant −λ. The sign of λ is chosen because we
expect decaying solutions in time for the heat equation and oscillations
in time for the wave equation and will pick λ > 0.

First, we look at the time dependence. The respective set of equa-
tions for T(t) are given by

T′ = −λkT, (9.7)

T′′ + c2λT = 0. (9.8)

These are easily solved. We have

T(t) = T(0)e−λkt, (9.9)

T(t) = a cos ωt + b sin ωt, ω = c
√

λ. (9.10)

In both cases the spatial equation becomes The Helmholtz equation.

∇2φ + λφ = 0. (9.11)

This is called the Helmholtz equation. For one dimensional problems,
which we have already solved, the Helmholtz equation takes the form
φ′′ + λφ = 0. We had to impose the boundary conditions and found
that there were a discrete set of eigenvalues, λn, and associated eigen-
functions, φn.

In higher dimensional problems we need to further separate out the
spatial dependence. We will again use the boundary conditions and
find the eigenvalues and eigenfunctions for the Helmholtz equation,
though the eigenfunctions will be labeled with more than one index.
The resulting boundary value problems are often second order ordi-
nary differential equations, which can be set up as Sturm-Liouville
problems. We know from Chapter 5 that such problems possess an
orthogonal set of eigenfunctions. These can then be used to construct
a general solution out of product solutions consisting of elementary or
special functions, such as Legendre functions or Bessel functions.

We will begin our study of higher dimensional problems by con-
sidering the vibrations of two dimensional membranes. First we will
solve the problem of a vibrating rectangular membrane and then we
turn out attention to a vibrating circular membranes. The rest of the
chapter will be devoted to the study of three dimensional problems
possessing cylindrical or spherical symmetry.
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9.1 Vibrations of Rectangular Membranes

Our first example will be the study of the vibrations of a rectan-
gular membrane. You can think of this as a drum with a rectangular
cross section as shown in Figure 9.1. We stretch the membrane over
the drumhead and fasten the material to the boundary of the rectan-
gle. The height of the vibrating membrane is described by its height
from equilibrium, u(x, y, t). This problem is a much simpler example
of higher dimensional vibrations than that possessed by the oscillating
electric and magnetic fields in the last chapter.

Figure 9.1: The rectangular membrane of
length L and width H. There are fixed
boundary conditions along the edges.

The problem is given by the two dimensional wave equation in
Cartesian coordinates,

utt = c2(uxx + uyy), t > 0, 0 < x < L, 0 < y < H, (9.12)

a set of boundary conditions,

u(0, y, t) = 0, u(L, y, t) = 0, t > 0, 0 < y < H,

u(x, 0, t) = 0, u(x, H, t) = 0, t > 0, 0 < x < L, (9.13)

and a pair of initial conditions (since the equation is second order in
time),

u(x, y, 0) = f (x, y), ut(x, y, 0) = g(x, y). (9.14)

The first step is to separate the variables: u(x, y, t) = X(x)Y(y)T(t).
Inserting the guess, u(x, y, t) into the wave equation, we have

X(x)Y(y)T′′(t) = c2 (X′′(x)Y(y)T(t) + X(x)Y′′(y)T(t)
)

.

Dividing by both u(x, y, t) and c2, we obtain

1
c2

T′′

T︸ ︷︷ ︸
Function of t

=
X′′

X
+

Y′′

Y︸ ︷︷ ︸
Function of x and y

= −λ. (9.15)

We see that we have a function of t equals a function of x and y.
Thus, both expressions are constant. We expect oscillations in time,
so we chose the constant λ to be positive, λ > 0. (Note: As usual,
the primes mean differentiation with respect to the specific dependent
variable. So, there should be no ambiguity.)

These lead to two equations:

T′′ + c2λT = 0, (9.16)

and
X′′

X
+

Y′′

Y
= −λ. (9.17)
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The first equation is easily solved. We have

T(t) = a cos ωt + b sin ωt, (9.18)

where
ω = c

√
λ. (9.19)

This is the angular frequency in terms of the separation constant, or
eigenvalue. It leads to the frequency of oscillations for the various
harmonics of the vibrating membrane as

ν =
ω

2π
=

c
2π

√
λ. (9.20)

Once we know λ, we can compute these frequencies.
Now we solve the spatial equation. Again, we need to do a separa-

tion of variables. Rearranging the spatial equation, we have

X′′

X︸︷︷︸
Function of x

= −Y′′

Y
− λ︸ ︷︷ ︸

Function of y

= −µ. (9.21)

Here we have a function of x equals a function of y. So, the two
expressions are constant, which we indicate with a second separation
constant, −µ < 0. We pick the sign in this way because we expect
oscillatory solutions for X(x). This leads to two equations:

X′′ + µX = 0,

Y′′ + (λ− µ)Y = 0. (9.22)

We now need to use the boundary conditions. We have u(0, y, t) = 0
for all t > 0 and 0 < y < H. This implies that X(0)Y(y)T(t) = 0 for
all t and y in the domain. This is only true if X(0) = 0. Similarly,
from the other boundary conditions we find that X(L) = 0, Y(0) = 0,
and Y(H) = 0. We note that homogeneous boundary conditions are
important in carrying out this process. Nonhomogeneous boundary
conditions could be imposed, but the techniques are a bit more com-
plicated and we will not discuss these techniques here.

The boundary values problems we need to solve are:

X′′ + µX = 0, X(0) = 0, X(L) = 0.

Y′′ + (λ− µ)Y = 0, Y(0) = 0, Y(H) = 0. (9.23)

We have seen the first of these problems before, except with a λ

instead of a µ. The solutions of the eigenvalue problem are

X(x) = sin
nπx

L
, λ =

(nπ

L

)2
, n = 1, 2, 3, . . . .

The second equation is solved in the same way. The differences are
that the “eigenvalue" is λ− µ, the independent variable is y, and the
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interval is [0, H]. Thus, we can quickly write down the solutions of the
eigenvalue problem as

Y(y) = sin
mπx

H
, λ− µ =

(mπ

H

)2
, m = 1, 2, 3, . . . .

We have successfully carried out the separation of variables for the
wave equation for the vibrating rectangular membrane. The product
solutions can be written as

unm = (a cos ωnmt + b sin ωnmt) sin
nπx

L
sin

mπy
H

. (9.24)

Recall that ω is given in terms of λ. We have that The harmonics for the vibrating rectan-
gular membrane are given by

νnm =
c
2

√( n
L

)2
+
(m

H

)2
,

for n, m = 1, 2, . . . .

λmn − µn =
(mπ

H

)2

and
µn =

(nπ

L

)2
.

Therefore,

λnm =
(nπ

L

)2
+
(mπ

H

)2
. (9.25)

So,

ωnm = c

√(nπ

L

)2
+
(mπ

H

)2
. (9.26)

The most general solution can now be written as a linear combi-
nation of the product solutions and we can solve for the expansion
coefficients that will lead to a solution satisfying he initial conditions.
However, we will first concentrate on the two dimensional harmonics
of this membrane.

For the vibrating string the nth harmonic corresponded to the func-
tion sin nπx

L . The various harmonics corresponded to the pure tones
supported by the string. These then lead to the corresponding fre-
quencies that one would hear. The actual shapes of the harmonics
could be sketched by locating the nodes, or places on the string that
did not move.

In the same way, we can explore the shapes of the harmonics of the
vibrating membrane. These are given by the spatial functions

φnm(x, y) = sin
nπx

L
sin

mπy
H

. (9.27)

Instead of nodes, we will look for the nodal curves, or nodal lines. These A discussion of the nodal lines.

are the points (x, y) at which φnm(x, y) = 0. Of course, these depend
on the indices, n and m.

For example, when n = 1 and m = 1, we have

sin
πx
L

sin
πy
H

= 0.



422 mathematical physics

Figure 9.2: The first few modes of the
vibrating rectangular membrane. The
dashed lines show the nodal lines indi-
cating the points that do not move for
the particular mode. Compare these the
nodal lines to the 3D view in Figure 9.3

These are zero when either

sin
πx
L

= 0, or sin
πy
H

= 0.

Of course, this can only happen for x = 0, L and y = 0, H. Thus, there
are no interior nodal lines.

When n = 2 and m = 1, we have y = 0, H and

sin
2πx

L
= 0,

or, x = 0, L
2 , L. Thus, there is one interior nodal line at x = L

2 . These
points stay fixed during the oscillation and all other points oscillate
on either side of this line. A similar solution shape results for the
(1,2)-mode; i.e., n = 1 and m = 2.

In Figure 9.2 we show the nodal lines for several modes for n, m =

1, 2, 3 The blocked regions appear to vibrate independently. A better
view is the three dimensional view depicted in Figure 9.3 . The fre-
quencies of vibration are easily computed using the formula for ωnm.

For completeness, we now see how one satisfies the initial condi-
tions. The general solution is given by a linear superposition of the
product solutions. There are two indices to sum over. Thus, the gen-
eral solution is The general solution for the vibrating

rectangular membrane.

u(x, y, t) =
∞

∑
n=1

∞

∑
m=1

(anm cos ωnmt + bnm sin ωnmt) sin
nπx

L
sin

mπy
H

,

(9.28)
where

ωnm = c

√(nπ

L

)2
+
(mπ

H

)2
. (9.29)

The first initial condition is u(x, y, 0) = f (x, y). Setting t = 0 in the
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Figure 9.3: A three dimensional view of
the vibrating rectangular membrane for
the lowest modes. Compare these im-
ages with the nodal lines in Figure 9.2

general solution, we obtain

f (x, y) =
∞

∑
n=1

∞

∑
m=1

anm sin
nπx

L
sin

mπy
H

. (9.30)

This is a double Fourier sine series. The goal is to find the unknown
coefficients anm. This can be done knowing what we already know
about Fourier sine series. We can write the initial condition as the
single sum

f (x, y) =
∞

∑
n=1

An(y) sin
nπx

L
, (9.31)

where

An(y) =
∞

∑
m=1

anm sin
mπy

H
. (9.32)

These are two Fourier sine series. Recalling that the coefficients of
Fourier sine series can be computed as integrals, we have

An(y) =
2
L

∫ L

0
f (x, y) sin

nπx
L

dx,

anm =
2
H

∫ H

0
An(y) sin

mπy
H

dy. (9.33)

Inserting the integral for An(y) into that for anm, we have an integral
representation for the Fourier coefficients in the double Fourier sine
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series,

anm =
4

LH

∫ H

0

∫ L

0
f (x, y) sin

nπx
L

sin
mπy

H
dxdy. (9.34)

The Fourier coefficients for the double
Fourier sine series.We can carry out the same process for satisfying the second initial

condition, ut(x, y, 0) = g(x, y) for the initial velocity of each point.
Inserting this into the general solution, we have

g(x, y) =
∞

∑
n=1

∞

∑
m=1

bnmωnm sin
nπx

L
sin

mπy
H

. (9.35)

Again, we have a double Fourier sine series. But, now we can write
down Fourier coefficients quickly using the above expression for anm:

bnm =
4

ωnmLH

∫ H

0

∫ L

0
g(x, y) sin

nπx
L

sin
mπy

H
dxdy. (9.36)

This completes the full solution of the vibrating rectangular mem-
brane problem. Namely, we have obtained the solution The full solution of the vibrating rectan-

gular membrane.

u(x, y, t) =
∞

∑
n=1

∞

∑
m=1

(anm cos ωnmt+ bnm sin ωnmt) sin
nπx

L
sin

mπy
H

,

(9.37)
where

anm =
4

LH

∫ H

0

∫ L

0
f (x, y) sin

nπx
L

sin
mπy

H
dxdy, (9.38)

bnm =
4

ωnmLH

∫ H

0

∫ L

0
g(x, y) sin

nπx
L

sin
mπy

H
dxdy, (9.39)

and the angular frequencies are given by

ωnm = c

√(nπ

L

)2
+
(mπ

H

)2
. (9.40)

9.2 Vibrations of a Kettle Drum
x

y

a

r

θ

Figure 9.4: The circular membrane of ra-
dius a. A general point on the mem-
brane is given by the distance from the
center, r, and the angle, . There are fixed
boundary conditions along the edge at
r = a.

In this section we consider the vibrations of a circular membrane of
radius a as shown in Figure 9.4. Again we are looking for the harmon-
ics of the vibrating membrane, but with the membrane fixed around
the circular boundary given by x2 + y2 = a2. However, expressing the
boundary condition in Cartesian coordinates is awkward. Namely, we
can only write u(x, y, t) = 0 for x2 + y2 = a2. It is more natural to
use polar coordinates as indicated in Figure 9.4. Let the height of the
membrane be given by u = u(r, θ, t) at time t and position (r, θ). Now
the boundary condition is given as u(a, θ, t) = 0 for all t > 0 and
θ ∈ [0, 2π].
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Before solving the initial-boundary value problem, we have to cast
the full problem in polar coordinates. This means that we need to
rewrite the Laplacian in r and θ. To do so would require that we know
how to transform derivatives in x and y into derivatives with respect to
r and θ. Using the results from Section 8.3 on curvilinear coordinates,
we know that the Laplacian can be written in polar coordinates. In fact,
we could use the results from Problem 28 for cylindrical coordinates
for functions which are z-independent, f = f (r, θ). Then we would
have

∇2 f =
1
r

∂

∂r

(
r

∂ f
∂r

)
+

1
r2

∂2 f
∂θ2 .

We can obtain this result using a more direct approach, namely
applying the Chain Rule in higher dimensions. First recall the trans-
formation between polar and Cartesian coordinates:

x = r cos θ, y = r sin θ

and
r =

√
x2 + y2, tan θ =

y
x

.

Now, consider a function f = f (x(r, θ), y(r, θ)) = g(r, θ). (Technically,
once we transform a given function of Cartesian coordinates we obtain
a new function g of the polar coordinates. Many texts do not rigor-
ously distinguish between the two functions.) Thinking of x = x(r, θ)

and y = y(r, θ), we have from the chain rule for functions of two vari-
ables:

∂ f
∂x

=
∂g
∂r

∂r
∂x

+
∂g
∂θ

∂θ

∂x

=
∂g
∂r

x
r
− ∂g

∂θ

y
r2

= cos θ
∂g
∂r
− sin θ

r
∂g
∂θ

. (9.41)

Here we have used
∂r
∂x

=
x√

x2 + y2
=

x
r

;

and
∂θ

∂x
=

d
dx

(
tan−1 y

x

)
=
−y/x2

1 +
( y

x
)2 = − y

r2 .

Similarly,

∂ f
∂y

=
∂g
∂r

∂r
∂y

+
∂g
∂θ

∂θ

∂y

=
∂g
∂r

y
r
+

∂g
∂θ

x
r2

= sin θ
∂g
∂r

+
cos θ

r
∂g
∂θ

. (9.42)
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The 2D Laplacian can now be computed as

∂2 f
∂x2 +

∂2 f
∂y2 = cos θ

∂

∂r

(
∂ f
∂x

)
− sin θ

r
∂

∂θ

(
∂ f
∂x

)
+ sin θ

∂

∂r

(
∂ f
∂y

)
+

cos θ

r
∂

∂θ

(
∂ f
∂y

)
= cos θ

∂

∂r

(
cos θ

∂g
∂r
− sin θ

r
∂g
∂θ

)
− sin θ

r
∂

∂θ

(
cos θ

∂g
∂r
− sin θ

r
∂g
∂θ

)
+ sin θ

∂

∂r

(
sin θ

∂g
∂r

+
cos θ

r
∂g
∂θ

)
+

cos θ

r
∂

∂θ

(
sin θ

∂g
∂r

+
cos θ

r
∂g
∂θ

)
= cos θ

(
cos θ

∂2g
∂r2 +

sin θ

r2
∂g
∂θ
− sin θ

r
∂2g
∂r∂θ

)
− sin θ

r

(
cos θ

∂2g
∂θ∂r

− sin θ

r
∂2g
∂θ2 − sin θ

∂g
∂r
− cos θ

r
∂g
∂θ

)
+ sin θ

(
sin θ

∂2g
∂r2 +

cos θ

r
∂2g
∂r∂θ

− cos θ

r2
∂g
∂θ

)
+

cos θ

r

(
sin θ

∂2g
∂θ∂r

+
cos θ

r
∂2g
∂θ2 + cos θ

∂g
∂r
− sin θ

r
∂g
∂θ

)
=

∂2g
∂r2 +

1
r

∂g
∂r

+
1
r2

∂2g
∂θ2

=
1
r

∂

∂r

(
r

∂g
∂r

)
+

1
r2

∂2g
∂θ2 . (9.43)

The last form often occurs in texts because it is in the form of a Sturm-
Liouville operator. Also, it agrees with the result from using the Lapla-
cian written in cylindrical coordinates as given in Problem 28.

Now that we have written the Laplacian in polar coordinates we
can pose the problem of a vibrating circular membrane. It is given by
a partial differential equation,1 1 Here we state the problem of a vibrat-

ing circular membrane. We have chosen
−π < θ < π, but could have just as eas-
ily used 0 < θ < 2π. The symmetric in-
terval about θ = 0 will make the use of
boundary conditions simpler.

utt = c2
[

1
r

∂

∂r

(
r

∂u
∂r

)
+

1
r2

∂2u
∂θ2

]
, (9.44)

t > 0, 0 < r < a, −π < θ < π,

the boundary condition,

u(a, θ, t) = 0, t > 0, −π < θ < π, (9.45)

and the initial conditions,

u(r, θ, 0) = f (r, θ), ut(r, θ, 0) = g(r, θ). (9.46)

Now we are ready to solve this problem using separation of vari-
ables. As before, we can separate out the time dependence. Let
u(r, θ, t) = T(t)φ(r, θ). As usual, T(t) can be written in terms of sines
and cosines. This leads to the Helmholtz equation,

∇2φ + λφ = 0.
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We now separate the Helmholtz equation by letting φ(r, θ) = R(r)Θ(θ).
This gives

1
r

∂

∂r

(
r

∂RΘ
∂r

)
+

1
r2

∂2RΘ
∂θ2 + λRΘ = 0. (9.47)

Dividing by u = RΘ, as usual, leads to

1
rR

d
dr

(
r

dR
dr

)
+

1
r2Θ

d2Θ
dθ2 + λ = 0. (9.48)

The last term is a constant. The first term is a function of r. How-
ever, the middle term involves both r and θ. This can be remedied by
multiplying the equation by r2. Rearranging the resulting equation,
we can separate out the θ-dependence from the radial dependence.
Letting µ be the separation constant, we have

r
R

d
dr

(
r

dR
dr

)
+ λr2 = − 1

Θ
d2Θ
dθ2 = µ. (9.49)

This gives us two ordinary differential equations:

d2Θ
dθ2 + µΘ = 0,

r
d
dr

(
r

dR
dr

)
+ (λr2 − µ)R = 0. (9.50)

Let’s consider the first of these equations. It should look familiar by
now. For µ > 0, the general solution is

Θ(θ) = a cos
√

µθ + b sin
√

µθ.

The next step typically is to apply the boundary conditions in θ. How-
ever, when we look at the given boundary conditions in the problem,
we do not see anything involving θ. This is a case for which the bound-
ary conditions that are needed are implied and not stated outright.

We can determine the hidden boundary conditions by making some
observations. Let’s consider the solution corresponding to the end-
points θ = ±π, noting that at these values for any r < a we are at
the same physical point. So, we would expect the solution to have the
same value at θ = −π as it has at θ = π. Namely, the solution is
continuous at these physical points. Similarly, we expect the slope of
the solution to be the same at these points. This tells us that The boundary conditions in θ are peri-

odic boundary conditions.

Θ(π) = Θ(−π) Θ′(π) = Θ′(−π).

Such boundary conditions are called periodic boundary conditions.
Let’s apply these conditions to the general solution for Θ(θ). First,

we set Θ(π) = Θ(−π) and use the symmetries of the sine and cosine
functions:

a cos
√

µπ + b sin
√

µπ = a cos
√

µπ − b sin
√

µπ.
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This implies that
sin
√

µπ = 0.

This can only be true for
√

µ = m, m = 0, 1, 2, 3, . . . . Therefore, the
eigenfunctions are given by

Θm(θ) = a cos mθ + b sin mθ, m = 0, 1, 2, 3, . . . .

For the other half of the periodic boundary conditions, Θ′(π) =

Θ′(−π), we have that

−am sin mπ + bm cos mπ = am sin mπ + bm cos mπ.

But, this gives no new information.
To summarize so far, we have found the general solutions to the

temporal and angular equations. The product solutions will have var-
ious products of {cos ωt, sin ωt} and {cos mθ, sin mθ}∞

m=0. We also
know that µ = m2 and ω = c

√
λ.

That leaves us with the radial equation. Inserting µ = m2, we have

r
d
dr

(
r

dR
dr

)
+ (λr2 −m2)R = 0. (9.51)

A little rewriting,

r2R′′(r) + rR′(r) + (λr2 −m2)R(r) = 0. (9.52)

The reader should recognize this differential equation from Equation
??. It is a Bessel equation with bounded solutions R(r) = Jm(

√
λr).

Recall there are two linearly independent solutions of this second
order equation: Jm(

√
λr), the Bessel function of the first kind of or-

der m, and Nm(
√

λr), the Bessel function of the second kind of order
m. Plots of these functions are shown in Figures 5.8 and 5.9. Some-
times the Nm’s are called Neumann functions. So, we have the general
solution of the radial equation is

R(r) = c1 Jm(
√

λr) + c2Nm(
√

λr).

Now we are ready to apply the boundary conditions to the radial
factor in the product solutions. Looking at the original problem we
find only one condition: u(a, θ, t) = 0 for t > 0 and −π < < π. This
implies that R(0) = 0. But where is the second condition?

This is another unstated boundary condition. Look again at the
plots of the Bessel functions. Notice that the Neumann functions are
not well behaved at the origin. Do you expect that the solution will
become infinite at the center of the drum? No, the solutions should be
finite at the center. So, this observation leads to the second boundary
condition. Namely, |R(0)| < ∞. This implies that c2 = 0.
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Now we are left with

R(r) = Jm(
√

λr).

We have set c1 = 1 for simplicity. We can apply the vanishing condition
at r = a. This gives

Jm(
√

λa) = 0.

Looking again at the plots of Jm(x), we see that there are an infinite
number of zeros, but they are not as easy as π! In Table 9.1 we list the
nth zeros of Jm, which were first seen in Table 5.3.

n m = 0 m = 1 m = 2 m = 3 m = 4 m = 5
1 2.405 3.832 5.136 6.380 7.588 8.771

2 5.520 7.016 8.417 9.761 11.065 12.339

3 8.654 10.173 11.620 13.015 14.373 15.700

4 11.792 13.324 14.796 16.223 17.616 18.980

5 14.931 16.471 17.960 19.409 20.827 22.218

6 18.071 19.616 21.117 22.583 24.019 25.430

7 21.212 22.760 24.270 25.748 27.199 28.627

8 24.352 25.904 27.421 28.908 30.371 31.812

9 27.493 29.047 30.569 32.065 33.537 34.989

Table 9.1: The zeros of Bessel Functions,
Jm(jmn) = 0.

Let’s denote the nth zero of Jm(x) by jmn. Then the boundary con-
dition tells us that √

λa = jmn.

This gives us the eigenvalue as

λmn =

(
jmn

a

)2
.

Thus, the radial function satisfying the boundary conditions is

R(r) = Jm(
jmn

a
r).

We are finally ready to write out the product solutions for the vi-
brating circular membrane. They are given by Product solutions for the vibrating circu-

lar membrane.

u(r, θ, t) =

{
cos ωmnt
sin ωmnt

}{
cos mθ

sin mθ

}
Jm(

jmn

a
r). (9.53)

Here we have indicated choices with the braces, leading to four differ-
ent types of product solutions. Also, m = 0, 1, 2, . . . , and

ωmn =
jmn

a
c.
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Figure 9.5: The first few modes of the vi-
brating circular membrane. The dashed
lines show the nodal lines indicating the
points that do not move for the partic-
ular mode. Compare these nodal lines
with the three dimensional images in
Figure 9.6.

As with the rectangular membrane, we are interested in the shapes
of the harmonics. So, we consider the spatial solution (t = 0)

φ(r, θ) = (cos mθ)Jm

(
jmn

a
r
)

.

Including the solutions involving sin mθ will only rotate these modes.
The nodal curves are given by φ(r, θ) = 0. This can be satisfied if
cos mθ = 0, or Jm(

jmn
a r) = 0. The various nodal curves which result are

shown in Figure 9.5.
For the angular part, we easily see that the nodal curves are radial

lines, θ =const. For m = 0, there are no solutions, since cos mθ = 1
and sin mθ = 1 for m = 0. in Figure 9.5 this is seen by the absence of
radial lines in the first column.

For m = 1, we have cos θ = 0. This implies that θ = ±π
2 . These

values give the vertical line as shown in the second column in Figure
9.5. For m = 2, cos 2θ = 0 implies that θ = π

4 , 3π
4 . This results in the

two lines shown in the last column of Figure 9.5.
We can also consider the nodal curves defined by the Bessel func-

tions. We seek values of r for which jmn
a r is a zero of the Bessel function

and lies in the interval [0, a]. Thus, we have

jmn

a
r = jmj,

or

r =
jmj

jmn
a.

These will give circles of this radius with jmj ≤ jmn, or j ≤ n. The
zeros can be found in Table 9.1. For m = 0 and n = 1, there is only one
zero and r = a. In fact, for all n = 1 modes, there is only one zero and
r = a. Thus, the first row in Figure 9.5 shows no interior nodal circles.
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Figure 9.6: A three dimensional view of
the vibrating circular membrane for the
lowest modes. Compare these images
with the nodal line plots in Figure 9.5.

For n = 2 modes, we have two circles, r = a and r = jm1
jm2

as shown
in the second row of Figure 9.5. For m = 0,

r =
2.405
5.520

a ≈ 0.436a

for the inner circle. For m = 1,

r =
3.832
7.016

a ≈ 0.546a,

and for m = 2,

r =
5.135
8.147

a ≈ 0.630a.

For n = 3 we obtain circles of radii r = a,

r =
jm1

jm3
, and r =

jm2

jm3
.

For m = 0,

r = a,
5.520
8.654

a ≈ 0.638a,
2.405
8.654

a ≈ 0.278a.

Similarly, for m = 1,

r = a,
3.832

10.173
0.377a ≈ a,

7.016
10.173

a ≈ 0.0.690a



432 mathematical physics

and for m = 2,

r = a,
5.135
11.620

a ≈ 0.442a,
8.417

11.620
a ≈ 0.724a.

For a three dimensional view, one can look at Figure 9.6. Imag-
ine that the various regions are oscillating independently and that the
points on the nodal curves are not moving.

Example 9.1. Vibrating Annulus

x

y

a

b

Figure 9.7: An annular membrane with
radii a and b > a. There are fixed bound-
ary conditions along the edges at r = a
and r = b.

More complicated vibrations can be dreamt up for this geometry. We could
consider an annulus in which the drum is formed from two concentric circular
cylinders and the membrane is stretch between the two with an annular cross
section as shown in Figure 9.7. The separation would follow as before except
now the boundary conditions are that the membrane is fixed around the two
circular boundaries. In this case we cannot toss out the Neumann functions
because the origin is not part of the drum head.

With this in mind, we have that the product solutions take the form

u(r, θ, t) =

{
cos ωmnt
sin ωmnt

}{
cos mθ

sin mθ

}
Rm(r), (9.54)

where
Rm(r) = c1 Jm(

√
λr) + c2Nm(

√
λr)

and ω = c
√

λ.
For this problem the radial boundary conditions are that the membrane is

fixed at r = a and r = b. Taking b < a, we then have to satisfy the conditions

R(a) = c1 Jm(
√

λa) + c2Nm(
√

λa) = 0,

R(b) = c1 Jm(
√

λb) + c2Nm(
√

λb) = 0. (9.55)

This leads to two homogeneous equations for c1 and c2. The coefficient de-
terminant of this system has to vanish if there are to be nontrivial solutions.
This gives the eigenvalue equation λ :

Jm(
√

λa)Nm(
√

λb)− Jm(
√

λb)Nm(
√

λa) = 0.

This eigenvalue equation needs to be solved numerically. Choosing a = 2 and
b = 4, we have for the first few modes√

λmn ≈ 1.562, 3.137, 4.709, m = 0

≈ 1.598, 3.156, 4.722, m = 1

≈ 1.703, 3.214, 4.761, m = 2. (9.56)

Note, since
√

λmn = ωmn
c , these numbers essentially give us the frequencies

of oscillation.
For these particular roots, we then solve for c1 and c2 by setting c2 = −1

and determining

c1 =
Nm(
√

λmnb)
Jm(
√

λmnb)
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(This selection is not unique. We could replace the b’s in c1 with a’s and that
would work as well.) This leads to the basic modes of vibration,

Rmn(r)Θm(θ) = cos mθ

(
Nm(
√

λmnb)
Jm(
√

λmnb)
Jm(
√

λmnr)− Nm(
√

λmnr)
)

.

In Figure 9.8 we show various modes for the particular choice of membrane
dimensions, a = 2 and b = 4.

Figure 9.8: A three dimensional view of
the vibrating annular membrane for the
lowest modes.

9.3 Laplace’s Equation in 2D

Another of the generic partial differential equations is
Laplace’s equation, ∇2u = 0. This equation first appeared in the chap-
ter on complex variables when we discussed harmonic functions. An-
other example is the electric potential for electrostatics. As we de-
scribed in the last chapter, for static electromagnetic fields, ∇ · E =

ρ/ε0. Also, E = ∇φ. In regions devoid of charge, we have ∇2φ = 0.
Another example comes from studying temperature distributions.

Consider a thin rectangular plate with the boundaries set at fixed tem-
peratures. One can solve the heat equation. The solution is time de-
pendent. However, if one wait a long time, the plate reaches ther-
mal equilibrium. If the boundary temperature is zero, then the plate
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temperatures decays to zero. However, keeping the boundaries at a
nonzero temperature, which means energies is being put into the sys-
tem to maintain the boundary conditions, the internal temperature
may reach a nonzero equilibrium temperature. Reaching thermal equi-
librium means that asymptotically in time the solution becomes time
independent. Thus, the equilibrium state is a solution of the time in-
dependent heat equation, which is ∇2u = 0.

Finally, we could look at fluid flow. For an incompressible flow,
∇ · v = 0. If the flow is irrotational, then ∇× v = 0. We can introduce
a velocity potential, v = ∇φ. Thus, ∇× v vanishes by a vector identity
and ∇ · v = 0 implies ∇2φ = 0. So, once again we obtain Laplace’s
equation.

In this section we will look at a couple examples of Laplace’s equa-
tion in two dimensions. The solutions could be examples of any of the
above physical situations and can be determined appropriately.

Example 9.2. Equilibrium Temperature Distribution for a Rectangular Plate

Let’s consider Laplace’s equation in Cartesian coordinates,

uxx + uyy = 0, 0 < x < L, 0 < y < H

with the boundary conditions

u(0, y) = 0, u(L, y) = 0, u(x, 0) = f (x), u(x, H) = 0.

The boundary conditions are shown in Figure 9.9
x

y

u(x, 0) = f (x)

u(x, H) = 0

u(0, y) = 0 u(L, y) = 0

Figure 9.9: In this figure we show the
domain and boundary conditions for the
example of determining the equilibrium
temperature distribution for a rectangu-
lar plate.

As usual, we solve this equation using the method of separation of vari-
ables. Let u(x, y) = X(x)Y(y). Then Laplace’s equation becomes

X′′

X
= −Y′′

Y
= −λ. (9.57)

This leads to two differential equations,

X′′ + λX = 0,

Y′′ − λY = 0. (9.58)

We next turn to the boundary conditions. Since u(0, y) = 0, u(L, y) = 0,
we have X(0) = 0, X(L) = 0. So, we have an eigenvalue problem for X(x),

X′′ + λX = 0, X(0) = 0, X(L) = 0.

We can easily write down the solution to this problem,

Xn(x) = sin
nπx

L
, λn =

(nπ

L

)2
, n = 1, 2, · · · .

The general solution of the equation for Y(y) is given by

Y(y) = c1e
√

λy + c2e−
√

λy.
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The boundary condition u(x, H) = 0 implies Y(H) = 0. So, we have

c1e
√

λH + c2e−
√

λH = 0.

Thus,
c2 = −c1e2

√
λH .

Inserting this result into the expression for Y(y), we have Note: Having carried out this computa-
tion, we can now see that it would be
better to guess at this form in the fu-
ture. So, for Y(H) = 0, one would
guess a solution Y(y) = sinh

√
λ(H− y).

For Y(0) = 0, one would guess a so-
lution Y(y) = sinh

√
λy. Similarly, if

Y′(H) = 0, one would guess a solution
Y(y) = cosh

√
λ(H − y).

Y(y) = c1e
√

λy − c1e2
√

λHe−
√

λy

= c1e2
√

λH
(

e−
√

λHe
√

λy − e
√

λHe−
√

λy
)

= −c1e2
√

λH
(

e−
√

λ(H−y) − e
√

λ(H−y)
)

= −2c1e2
√

λH sinh
√

λ(H − y). (9.59)

Since we already know the values of the eigenvalues λn from the eigenvalue
problem for X(x), we have that

Yn(y) = sinh
nπ(H − y)

L
.

So, the product solutions are given by

un(x, y) = sin
nπx

L
sinh

nπ(H − y)
L

, n = 1, 2, · · · .

These solutions satisfy the three homogeneous boundary conditions in the
problem.

The remaining boundary condition, u(x, 0) = f (x), still needs to be sat-
isfied. Inserting y = 0 in the product solutions does not satisfy the boundary
condition unless f (x) is proportional to one of the eigenfunctions Xn(x). So,
we first need to write the general solution, which is a linear combination of
the product solutions,

u(x, y) =
∞

∑
n=1

an sin
nπx

L
sinh

nπ(H − y)
L

. (9.60)

Now we apply the boundary condition to find that

f (x) =
∞

∑
n=1

an sinh
nπH

L
sin

nπx
L

. (9.61)

Defining bn = an sinh nπH
L , this becomes

f (x) =
∞

∑
n=1

bn sin
nπx

L
. (9.62)

We see that the determination of the unknown coefficients, bn, is simply done
by recognizing that this is a Fourier sine series. The Fourier coefficients are
easily found as

bn =
2
L

∫ L

0
f (x) sin

nπx
L

dx. (9.63)
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Finally, we have the solution to this problem,

u(x, y) =
∞

∑
n=1

an sin
nπx

L
sinh

nπ(H − y)
L

, (9.64)

where

an =
2

L sinh nπH
L

∫ L

0
f (x) sin

nπx
L

dx. (9.65)

Example 9.3. Equilibrium Temperature Distribution for a Rectangular Plate
for General Boundary Conditions

Now we consider Laplace’s equation in Cartesian coordinates,

uxx + uyy = 0, 0 < x < L, 0 < y < H

with the non-zero boundary conditions on more than one side,

u(0, y) = g1(y), u(L, y) = g2(y), u(x, 0) = f1(x), u(x, H) = f2(x).

The boundary conditions are shown in Figure 9.10
x

y

u(x, 0) = f1(x)

u(x, H) = f2(x)

u(0, y) = g1(y) u(L, y) = g2(y)

Figure 9.10: In this figure we show the
domain and general boundary condi-
tions for the example of determining the
equilibrium temperature distribution for
a rectangular plate.

The problem with this example is that none of the boundary conditions are
homogeneous, so we cannot specify the boundary conditions for the eigenvalue
problems. However, we can express this problem as in terms of four problems
with nonhomogeneous boundary conditions on only one side of the rectangle.
In Figure 9.11 we show how the problem can be broken up into four separate
problems. Since the boundary conditions and Laplace’s equation are linear,
the solution to the general problem is simply the sum of the solutions to these
four problems.

x

y

u = f1(x)

u = 0

u = 0 u = 0

x

y

u) = 0

u = f2(x)

u = 0 u = 0

x

y

u = 0

u = 0

u = g1(y) u = 0

x

y

u = 0

u = 0

u = 0 u = g2(y)

Figure 9.11: Breaking up the general
boundary value problem for a rectangu-
lar plate.

We can solve each of the problems quickly, based on the solution obtained
in the last example. The solution for boundary conditions

u(0, y) = 0, u(L, y) = 0, u(x, 0) = f1(x), u(x, H) = 0.
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is the easiest to write down:

u(x, y) =
∞

∑
n=1

an sin
nπx

L
sinh

nπ(H − y)
L

. (9.66)

where

an =
2

L sinh nπH
L

∫ L

0
f1(x) sin

nπx
L

dx. (9.67)

For the boundary conditions

u(0, y) = 0, u(L, y) = 0, u(x, 0) = 0, u(x, H) = f2(x),

the boundary conditions for X(x) are X(0) = 0 and X(L) = 0. So, we get
the same form for the eigenvalues and eigenfunctions as before:

Xn(x) = sin
nπx

L
, λn =

(nπ

L

)2
, n = 1, 2, · · · .

However, the remaining homogeneous boundary condition is now Y(0) = 0.
Recalling the equation satisfied by Y(y) is

Y′′ − λY = 0,

we can write the general solution as

Y(y) = c1 cosh
√

λy + c2 sinh
√

λy.

Requiring Y(0) = 0, we have c1 = 0, or

Y(y) = c2 sinh
√

λy.

Then the general solution is

u(x, y) =
∞

∑
n=1

bn sin
nπx

L
sinh

nπy
L

. (9.68)

We now force the nonhomogenous boundary condition, u(x, H) = f2(x),

f2(x) =
∞

∑
n=1

bn sin
nπx

L
sinh

nπH
L

. (9.69)

Once again we have a Fourier sine series. The Fourier coefficients are given
by

bn =
2

L sinh nπH
L

∫ L

0
f2(x) sin

nπx
L

dx. (9.70)

Now we turn to the problem with the boundary conditions

u(0, y) = g1(y), u(L, y) = 0, u(x, 0) = 0, u(x, H) = 0.

In this case the pair of homogeneous boundary conditions u(x, 0) = 0, u(x, H) =

0. lead to solutions

Yn(y) = sin
nπy

H
, λn = −

(nπ

H

)2
, n = 1, 2 · · · .
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The condition u(L, 0) = 0 gives X(x) = sinh nπ(L−x)
H . The general solution

is

u(x, y) =
∞

∑
n=1

cn sin
nπy

H
sinh

nπ(L− x)
H

. (9.71)

We now force the nonhomogenous boundary condition, u(0, y) = g1(y),

g1(y) =
∞

∑
n=1

cn sin
nπy

H
sinh

nπL
H

. (9.72)

The Fourier coefficients are given by

cn =
2

H sinh nπL
H

∫ H

0
g1(y) sin

nπy
H

dy. (9.73)

Finally, we can find the solution for

u(0, y) = 0, u(L, y) = g2(y), u(x, 0) = 0, u(x, H) = 0.

Following the above analysis, we find the general solution

u(x, y) =
∞

∑
n=1

dn sin
nπy

H
sinh

nπx
H

. (9.74)

We now force the nonhomogenous boundary condition, u(L, y) = g2(y),

g2(y) =
∞

∑
n=1

dn sin
nπy

H
sinh

nπL
H

. (9.75)

The Fourier coefficients are given by

dn =
2

H sinh nπL
H

∫ H

0
g1(y) sin

nπy
H

dy. (9.76)

The solution to the general problem is given by the sum of these four solu-
tions.

u(x, y) =
∞

∑
n=1

[(
an sinh

nπ(H − y)
L

+ bn sinh
nπy

L

)
sin

nπx
L

+

(
cn sinh

nπ(L− x)
H

+ dn sinh
nπx

H

)
sin

nπy
H

]
,

(9.77)

where the coefficients are given by the above Fourier integrals.

Example 9.4. Laplace’s Equation on a Disk
We now turn to solving Laplace’s equation on a disk of radius a as shown

in Figure 9.12. Laplace’s equation in polar coordinates is given by

1
r

∂

∂r

(
r

∂u
∂r

)
+

1
r2

∂2u
∂θ2 = 0, 0 < r < a, −π < θ < π. (9.78)
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The boundary conditions are given as

u(a, θ) = f (θ), −π < θ < π, (9.79)

plus periodic boundary conditions in θ.

x

y

a

u(a, θ) = f (θ)

Figure 9.12: The circular plate of radius a
with boundary condition along the edge
at r = a.

Separation of variable proceeds as usual. Let u(r, θ) = R(r)Θ(θ). Then

1
r

∂

∂r

(
r

∂(RΘ)

∂r

)
+

1
r2

∂2(RΘ)

∂θ2 = 0, (9.80)

or
Θ

1
r
(rR′)′ +

1
r2 RΘ′′ = 0. (9.81)

Diving by u(r, θ) = R(r)Θ(θ) and rearranging, we have

r
R
(rR′)′ = −Θ′′

θ
= λ. (9.82)

Since this equation gives a function of r equal to a function of θ, we set
the equation equal to a constant. Thus, we have obtained two differential
equations, which can be written as

r(rR′)′ − λR = 0, (9.83)

Θ′′ + λΘ = 0. (9.84)

We can solve the second equation, using periodic boundary conditions. The
reader should be able to confirm that

Θ(θ) = an cos nθ + bn sin nθ, λ = n2, n = 0, 1, 2, · · ·

is the solution. Note that the n = 0 case just leads to a constant solution.
Inserting λ = n2 into the radial equation, we find

r2R′′ + rR′ − n2R = 0.

This is a Cauchy-Euler type of ordinary differential equation. Recall that we
solve such equations by guessing a solution of the form R(r) = rm. This leads
to the characteristic equation m2 − n2 = 0. Therefore, m = ±n. So,

R(r) = c1rn + c2r−n.

Since we expect finite solutions at the origin, r = 0, we can set c2 = 0. Thus,
the general solution is

u(r, θ) =
a0

2
+

∞

∑
n=1

(an cos nθ + bn sin nθ) rn. (9.85)

Note that we have taken the constant term out of the sum and put it into a
familiar form.

Now were are ready to impose the remaining boundary condition, u(a, θ) =

f (θ). This gives

f (θ) =
a0

2
+

∞

∑
n=1

(an cos nθ + bn sin nθ) an. (9.86)
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This is a Fourier trigonometric series. The Fourier coefficients can be deter-
mined using the results from Chapter 4:

an =
1

πan

∫ π

−π
f (θ) cos nθ dθ, n = 0, 1, · · · , (9.87)

bn =
1

πan

∫ π

−π
f (θ) sin nθ dθ n = 1, 2 · · · . (9.88)

We can put the solution from the last example in a more compact
form by inserting these coefficients into the general solution. Doing
this, we have

u(r, θ) =
a0

2
+

∞

∑
n=1

(an cos nθ + bn sin nθ) rn

=
1

2π

∫ π

−π
f (φ) dφ

+
1
π

∫ π

−π

∞

∑
n=1

[cos nφ cos nθ + sin nφ sin nθ]
( r

a

)n
f (φ) dφ

=
1
π

∫ π

−π

[
1
2
+

∞

∑
n=1

cos n(θ − φ)
( r

a

)n
]

f (φ) dφ. (9.89)

The term in the brackets can be summed. We note that cos n(θ −
φ) = Re(ein(θ−φ)). Then

cos n(θ − φ)
( r

a

)n
= Re

(
ei(θ−φ)

( r
a

)n)
= Re

( r
a

ei(θ−φ)
)n

. (9.90)

Therefore,

∞

∑
n=1

cos n(θ − φ)
( r

a

)n
= Re

(
∞

∑
n=1

( r
a

ei(θ−φ)
)n
)

The right hand side of this equation is a geometric series with common

ratio r
a ei(θ−φ). Since

∣∣∣ r
a ei(θ−φ)

∣∣∣ = r
a < 1, the series converges. Summing

the series, we obtain

∞

∑
n=1

( r
a

ei(θ−φ)
)n

=
r
a ei(θ−φ)

1− r
a ei(θ−φ)

=
rei(θ−φ)

a− rei(θ−φ)

=
rei(θ−φ)

a− rei(θ−φ)

a− re−i(θ−φ)

a− re−i(θ−φ)

=
are−i(θ−φ) − r2

a2 + r2 − 2ar cos(θ − φ)
. (9.91)

We have rewritten this sum so that we can easily take the real part,

Re

(
∞

∑
n=1

( r
a

ei(θ−φ)
)n
)

=
ar cos(θ − φ)− r2

a2 + r2 − 2ar cos(θ − φ)
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Therefore, the factor in the brackets under the integral in Equation
(9.89) is

1
2
+

∞

∑
n=1

cos n(θ − φ)
( r

a

)n
=

1
2
+

ar cos(θ − φ)− r2

a2 + r2 − 2ar cos(θ − φ)

=
a2 − r2

2(a2 + r2 − 2ar cos(θ − φ))
.(9.92)

Thus, we have shown that the solution of Laplace’s equation on a
disk of radius a with boundary condition u(a, θ) = f (θ) can be written
in the closed form Poisson Integral Formula

u(r, θ) =
1

2π

∫ π

−π

a2 − r2

a2 + r2 − 2ar cos(θ − φ)
f (φ) dφ. (9.93)

This result is called the Poisson Integral Formula and

K(θ, φ) =
a2 − r2

a2 + r2 − 2ar cos(θ − φ)

is called the Poisson kernel.

9.4 Three Dimensional Cake Baking

In the rest of the chapter we will extend our studies to three
dimensions. In this section we will solve the heat equation as we look
at examples of baking cakes. We consider cake batter, which is at This discussion of cake baking is

adapted from R. Wilkinson’s thesis
work. That in turn was inspired by work
done by Dr. Olszewski.

room temperature of Ti = 80◦F. It is placed into an oven, also at a
fixed temperature, Tb = 350◦F. For simplicity, we will assume that the
thermal conductivity and cake density are constant. Of course, this
is not quite true. However, it is an approximation which simplifies
the model. We will consider two cases, one in which the cake is a
rectangular solid (0 ≤ x ≤W, 0 ≤ y ≤ L, 0 ≤ z ≤ H), such as baking it
in a 13′′ × 9′′ × 2′′ baking pan. The other case will lead to a cylindrical
cake, such as you would obtain from a round cake pan.

Assuming that the heat constant k is indeed constant and the tem-
perature is given by T(r, t), we begin with the heat equation in three
dimensions,

∂T
∂t

= k∇2T. (9.94)

We will need to specify initial and boundary conditions. Let Ti be the
initial batter temperature, and write the initial condition as

T(x, y, z, 0) = Ti.

We choose the boundary conditions to be fixed at the oven temperature
Tb. However, these boundary conditions are not homogeneous and
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would lead to problems when carrying out separation of variables.
This is easily remedied by subtracting the oven temperature from all
temperatures involved and defining u(x, y, z, t) = T(x, y, z, t)− Tb. The
heat equation then becomes

∂u
∂t

= k∇2u (9.95)

with initial condition
u(r, 0) = Ti − Tb.

The boundary conditions are now that u = 0 on the boundary. We
cannot be any more specific than this until we specify the geometry.

Example 9.5. Temperature of a Rectangular Cake
For this problem, we seek solutions of the heat equation plus the conditions

u(x, y, z, 0) = Ti − Tb,

u(0, y, z, t) = u(W, y, z, t) = 0,

u(x, 0, z, t) = u(x, L, z, t) = 0,

u(x, y, 0, t) = u(x, y, H, t) = 0.

Using the method of separation of variables, we seek solutions of the form

u(x, y, z, t) = X(x)Y(y)Z(z)G(t). (9.96)

Substituting this form into the heat equation, we get

1
k

G′

G
=

X′′

X
+

Y′′

Y
+

Z′′

Z
. (9.97)

Setting these expressions equal to −λ, we get

1
k

G′

G
= −λ and

X′′

X
+

Y′′

Y
+

Z′′

Z
= −λ. (9.98)

Therefore, the equation for G(t) is given by

G′ + kλG = 0.

We further have to separate out the functions of x, y, and z. We anticipate
that the homogeneous boundary conditions will lead to oscillatory solutions
in these variables. Therefore, we expect separation of variable will lead to the
eigenvalue problems

X′′ + µ2X = 0, X(0) = X(W) = 0,

Y′′ + ν2Y = 0, Y(0) = Y(L) = 0,

Z′′ + κ2Z = 0, Z(0) = Z(H) = 0. (9.99)

Noting that
X′′

X
= −µ2,

Y′′

Y
= −ν2,

Z′′

Z
= −κ2,
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we have the relation λ2 = µ2 + ν2 + κ2.
From the boundary conditions, we get product solutions for u(x, y, z, t) in

the form

umn`(x, y, z, t) = sin µmx sin νny sin κ`ze−λmn`kt,

for

λmnl = µ2
m + ν2

n + κ2
` =

(mπ

W

)2
+
(nπ

L

)2
+

(
`π

H

)2
, m, n, ` = 1, 2, . . . .

The general solution is then

u(x, y, z, t) =
∞

∑
m=1

∞

∑
n=1

∞

∑
`=1

Amnl sin µmx sin νny sin κ`ze−λmn`kt, (9.100)

where the Amn`’s are arbitrary constants.
We can use the initial condition u(x, y, z, 0) = Ti − Tb to determine the

Amn`’s. We find

Ti − Tb =
∞

∑
m=1

∞

∑
n=1

∞

∑
`=1

Amnl sin µmx sin νny sin κ`z. (9.101)

This is a triple Fourier sine series. We can determine these coefficients in a
manner similar to how we handled a double Fourier sine series earlier. Defin-
ing

bm(y, z) =
∞

∑
n=1

∞

∑
`=1

Amnl sin νny sin κ`z,

we obtain a simple Fourier sine series:

Ti − Tb =
∞

∑
m=1

bm(y, z) sin µmx. (9.102)

The Fourier coefficients can then be found as

bm(y, z) =
2

W

∫ W

0
(Ti − Tb) sin µmx dx.

Using the same technique for the remaining sine series and noting that
Ti − Tb is constant, we can compute the general coefficient Amnl by carrying
out the needed integrations:

Amnl =
8

WLH

∫ H

0

∫ L

0

∫ W

0
(Ti − Tb) sin µmx sin νny sin κ`z dxdydz

= (Ti − Tb)
8

π3

[
cos (mπx

W )

m

]W

0

[
cos ( nπy

L )

n

]L

0

[
cos ( `πz

H )

`

]H

0

= (Ti − Tb)
8

π3

[
cos mπ − 1

m

] [
cos nπ − 1

n

] [
cos `π − 1

`

]
= (Ti − Tb)

8
π3

{
0, for at least one m, n, ` even,[−2

m
] [−2

n
] [−2

`

]
, for m, n, ` all odd.
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Since only the odd multiples yield non-zero Amn` we let m = 2m′ − 1,
n = 2n′ − 1, and ` = 2`′ − 1. Thus

Amnl =
−64(Ti − Tb)

(2m′ − 1) (2n′ − 1) (2`′ − 1)π3 .

Substituting this result into general solution and dropping the primes, we
find

u(x, y, z, t) =
−64(Ti − Tb)

π3

∞

∑
m=1

∞

∑
n=1

∞

∑
`=1

sin µmx sin νny sin κ`ze−λmn`kt

(2m− 1)(2n− 1)(2`− 1)
,

where

λmn` =

(
(2m− 1)π

W

)2

+

(
(2n− 1)π

L

)2

+

(
(2`− 1)π

H

)2

for m, n, ` = 1, 2, . . ..
Recalling T(x, y, z, t) = u(x, y, z, t)− Tb,

T(x, y, z, t) = Tb−
64(Ti − Tb)

π3

∞

∑
m=1

∞

∑
n=1

∞

∑
`=1

sin µ̂mx sin ν̂ny sin κ̂`ze−λ̂mn`kt

(2m− 1)(2n− 1)(2`− 1)
.

We show some temperature distributions in Figure 9.13. Vertical slices
are taken at the positions and times indicated for a 13′′ × 9′′ × 2′′ cake. Ob-
viously, this is not accurate because the cake consistency is changing and
this will affect the parameter k. A more realistic model would be to allow
k = k(T(x, y, z, t)). however, such problems are beyond the simple methods
described in this book.

Example 9.6. Circular Cakes
In this case the geometry is cylindrical. Therefore, we need to express the

boundary conditions and heat equation in cylindrical coordinates.
We assume u(r, z, t) = T(r, z, t)− Tb is independent of θ due to symme-

try. This gives the heat equation in cylindrical coordinates as

∂u
∂t

= k
(

1
r

∂

∂r

(
r

∂u
∂r

)
+

∂2u
∂z2

)
, (9.103)

where 0 ≤ r ≤ a and 0 ≤ z ≤ Z. The initial condition is

u(r, z, 0) = Ti − Tb,

and the homogeneous boundary conditions are

u(a, z, t) = 0,

u(r, 0, t) = u(r, Z, t) = 0.

Again, we seek solutions of the form u(r, z, t) = R(r)H(z)G(t). Separa-
tion of variables leads to

1
k

G′

G
=

1
rR

d
dr
(
rR′
)
+

H′′

H
. (9.104)
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Figure 9.13: Temperature evolution for
a 13′′ × 9′′ × 2′′ cake shown as vertical
slices at the indicated length in feet.Choosing λ as the separation constant, we get

G′ − kλG = 0, (9.105)

and
1

rR
d
dr
(
rR′
)
= −H′′

H
+ λ. (9.106)

Since negative eigenvalues yield the oscillatory solutions we expect, we con-
tinue as before by setting both sides of this equation equal to −µ2. After some
rearrangement, we obtain the needed differential equations:

d
dr
(
rR′
)
+ rµ2R = 0 (9.107)

and

H′′ + ν2H = 0. (9.108)

Here λ = −
(
µ2 + ν2).

We can easily write down the solutions

G(t) = Aeλkt



446 mathematical physics

and
Hn(z) = sin

(nπz
Z

)
, n = 1, 2, 3, . . . ,

where ν = nπ
Z . Recalling from the rectangular case that only odd terms arise

in the Fourier sine series coefficients for the constant initial condition, we
proceed by rewriting H(z) as

Hn(z) = sin
(
(2n− 1)πz

Z

)
, n = 1, 2, 3, . . . (9.109)

with ν = (2n−1)π
Z .

The radial equation can be written in the form

r2R′′ + rR′ + r2µ2R = 0.

This is a Bessel equation of the first kind of order zero and the general solution
is a linear combination of Bessel functions of the first and second kind,

R(r) = c1 J0(µr) + c2N0(µr). (9.110)

Since we wish to have u(r, z, t) bounded at r = 0 and N0(µr) is not well
behaved at r = 0, we set c2 = 0. Up to a constant factor, the solution
becomes

R(r) = J0(µr). (9.111)

The boundary condition R(a) = 0 gives J0(µa) = 0 and thus µm = j0m
a ,

for m = 1, 2, 3, . . .. Here the j0m’s are the mth roots of the zeroth-order Bessel
function, J0(j0m) = 0, which are given in Table 9.1. This suggests that

Rm(r) = J0

( r
a

j0m

)
, m = 1, 2, 3, . . . . (9.112)

Thus, we have found that the general solution is given as

u(r, z, t) =
∞

∑
n=1

∞

∑
m=1

Anm sin
(
(2n− 1)πz

Z

)
J0

( r
a

j0m

)
e−λnmkt (9.113)

with

λnm =

((
(2n− 1)π

Z

)2

+

(
j0m

a

)2
)

,

for n, m = 1, 2, 3, . . . .
Using the constant initial condition to find the Anm’s, we have

Ti − Tb =
∞

∑
n=1

∞

∑
m=1

Anm sin
[
(2n− 1)πz

Z

]
J0

( r
a

j0m

)
.

If we let bn(r) = ∑∞
m=1 Anm J0

( r
a j0m

)
, we have

Ti − Tb =
∞

∑
n=1

bn(r) sin
(
(2n− 1)πz

Z

)
.
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As seen previously, this is a Fourier sine series and the Fourier coefficients are
given by

bn(r) =
2
Z

∫ Z

0
(Ti − Tb) sin

(
(2n− 1)πz

Z

)
dz

=
2(Ti − Tb)

Z

[
− Z
(2n− 1)π

cos
(
(2n− 1)πz

Z

)]Z

0

=
4(Ti − Tb)

(2n− 1)π
.

Then, we have

bn(r) =
4(Ti − Tb)

(2n− 1)π
=

∞

∑
m=1

Anm J0

( r
a

j0m

)
.

This is a Fourier-Bessel series. Given bn(r) =
4(Ti−Tb)
(2n−1)π , we seek to find the

Fourier coefficients Anm. Recall from Chapter 5 that the Fourier-Bessel series
is given by

f (x) =
∞

∑
n=1

cn Jp(jpn
x
a
), (9.114)

where the Fourier-Bessel coefficients are found as

cn =
2

a2
[

Jp+1(jpn)
]2 ∫ a

0
x f (x)Jp(jpn

x
a
) dx. (9.115)

For this problem, we have

Anm =
2

a2 J2
1 (j0m)

4(Ti − Tb)

(2n− 1)π

∫ a

0
J0(µmr)r dr. (9.116)

In order to evaluate
∫ a

0 J0(µkr)r dr, we let y = µkr and get∫ a

0
J0(µkr)rdr =

∫ µka

0
J0(y)

y
µk

dy
µk

=
1

µ2
k

∫ µka

0
J0(y)y dy

=
1

µ2
k

∫ µka

0

d
dy

(yJ1(y)) dy

=
1

µ2
k
(µka)J1(µka) =

a2

j0k
J1(j0k). (9.117)

Here we have made use of the identity d
dx (xJ1(x)) = J0(x).

Substituting the result of this integral computation into the expression for
Anm, we find

Anm =
8(Ti − Tb)

(2n− 1)π
1

j0m J1(j0m)
.

Substituting Anm into the original expression for u(r, z, t), gives

u(r, z, t) =
8(Ti − Tb)

π

∞

∑
n=1

∞

∑
m=1

sin
(
(2n−1)πz

Z

)
(2n− 1)

J0(
r
a j0m)eλnmDt

j0m J1(j0m)
.
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Therefore, T(r, z, t) can be found as

T(r, z, t) = Tb +
8(Ti − Tb)

π

∞

∑
n=1

∞

∑
m=1

sin
(
(2n−1)πz

Z

)
(2n− 1)

J0(
r
a j0m)eλnmkt

j0m J1(j0m)
.

We have therefore found the general solution for the three-dimensional heat
equation in cylindrical coordinates with constant diffusivity. Similar to the
solutions shown in Figure 9.13 of the previous section, we show in Figure
9.14 the temperature temperature evolution throughout a standard 9′′ round
cake pan.

Figure 9.14: Temperature evolution for a
standard 9′′ cake shown as vertical slices
through the center.

9.5 Laplace’s Equation and Spherical Symmetry

We have seen that Laplace’s equation, ∇2u = 0, arises in elec-
trostatics as an equation for electric potential outside a charge distribu-
tion and it occurs as the equation governing equilibrium temperature
distributions. As we had seen in the last chapter, Laplace’s equation
generally occurs in the study of potential theory, which also includes
the study of gravitational and fluid potentials. The equation is named
after Pierre-Simon Laplace (1749-1827) who had studied the properties
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of this equation. solutions of Laplace’s equation are called harmonic
functions.

Laplace’s equation in spherical coordinates is given by2 2 The Laplacian in spherical coordinates
is given in Problem 29 in Chapter 8.

1
ρ2

∂

∂ρ

(
ρ2 ∂u

∂ρ

)
+

1
ρ2 sin θ

∂

∂θ

(
sin θ

∂u
∂θ

)
+

1
ρ2 sin2 θ

∂2u
∂φ2 = 0, (9.118)

where u = u(ρ, θ, φ).

Figure 9.15: A sphere of radius r with
the boundary condition u(r, θ, φ) =
g(θ, φ).

We seek solutions of this equation inside a sphere of radius r subject
to the boundary condition u(r, θ, φ) = g(θ, φ) as shown in Figure 9.15.

As before, we perform a separation of variables by seeking product
solutions of the form u(ρ, θ, φ) = R(ρ)Θ(θ)Φ(φ). Inserting this form
into the Laplace equation, we obtain

x

y

z

ρ

φ

θ

Figure 9.16: Definition of spherical coor-
dinates (ρ, θ, φ). Note that there are dif-
ferent conventions for labeling spherical
coordinates. This labeling is used often
in physics.

ΘΦ
ρ2

d
dρ

(
ρ2 dR

dρ

)
+

RΦ
ρ2 sin θ

d
dθ

(
sin θ

dΘ
dθ

)
+

RΘ
ρ2 sin2 θ

d2Φ
dφ2 = 0. (9.119)

Multiplying this equation by ρ2 and dividing by RΘΦ, yields

1
R

d
dρ

(
ρ2 dR

dρ

)
+

1
sin θΘ

d
dθ

(
sin θ

dΘ
dθ

)
+

1
sin2 θΦ

d2Φ
dφ2 = 0. (9.120)

Note that the first term is the only term depending upon ρ. Thus, we
can separate out the radial part. However, there is still more work to
do on the other two terms, which give the angular dependence. Thus,
we have

− 1
R

d
dρ

(
ρ2 dR

dρ

)
=

1
sin θΘ

d
dθ

(
sin θ

dΘ
dθ

)
+

1
sin2 θΦ

d2Φ
dφ2 = −λ,

(9.121)
where we have introduced the first separation constant. This leads to
two equations:

d
dρ

(
ρ2 dR

dρ

)
− λR = 0 (9.122)

and Equation (9.123) is a key equation which
occurs when studying problems possess-
ing spherical symmetry. It is an eigen-
value problem for Y(θ, φ) = Θ(θ)Φ(φ),
LY = −λY, where

L =
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂φ2 .

The eigenfunctions of this operator are
referred to as spherical harmonics.

1
sin θΘ

d
dθ

(
sin θ

dΘ
dθ

)
+

1
sin2 θΦ

d2Φ
dφ2 = −λ. (9.123)

The final separation can be performed by multiplying the last equa-
tion by sin2 θ, rearranging the terms, and introducing a second sepa-
ration constant:

sin θ

Θ
d
dθ

(
sin θ

dΘ
dθ

)
+ λ sin2 θ = − 1

Φ
d2Φ
dφ2 = µ. (9.124)

From this expression we can determine the differential equations sat-
isfied by Θ(θ) and Φ(φ):

sin θ
d
dθ

(
sin θ

dΘ
dθ

)
+ (λ sin2 θ − µ)Θ = 0, (9.125)
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and
d2Φ
dφ2 + µΦ = 0. (9.126)

We now have three ordinary differential equations to solve. These
are the radial equation (9.122) and the two angular equations (9.125)-
(9.126). We note that all three are in Sturm-Liouville form. We will
solve each eigenvalue problem subject to appropriate boundary condi-
tions.

The simplest of these differential equations is the one for Φ(φ),
Equation (9.126). We have seen equations of this form many times
and the general solution is a linear combination of sines and cosines.
As argues in such problems, we have to impose periodic boundary
conditions. For example, we expect that

u(ρ, θ, 0) = u(ρ, θ, 2π), uφ(ρ, θ, 0) = uφ(ρ, θ, 2π).

Since these conidtions hold for all ρ and θ, we must require that

Φ(0) = Φ(2π), Φ′(0) = Φ′(2π).

As we have seen before, the eigenfunctions and eigenvalues are then
found as

Φ(φ) = {cos mφ, sin mφ} , µ = m2, m = 0, 1, . . . . (9.127)

Next we turn to solving equation, (9.126). We first transform this
equation in order to identify the solutions. Let x = cos θ. Then the
derivatives with respect to θ transform as

d
dθ

=
dx
dθ

d
dx

= sin θ
d

dx
.

Letting y(x) = Θ(θ) and noting that sin2 θ = 1− x2, Equation (9.126)
becomes

d
dx

(
(1− x2)

dy
dx

)
+

(
λ− m2

1− x2

)
y = 0. (9.128)

We further note that x ∈ [−1, 1], as can be easily confirmed by the
reader.

This is a Sturm-Liouville eigenvalue problem. The solutions consist
of a set of orthogonal eigenfunctions. For the special case that m = 0
Equation (9.128) becomes

d
dx

(
(1− x2)

dy
dx

)
+ λy = 0. (9.129)

In a course in differential equations one learns to seek solutions of this
equation in the form

y(x) =
∞

∑
n=0

anxn.
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This leads to the recursion relation

an+2 =
n(n + 1)− λ

(n + 2)(n + 1)
an.

Setting n = 0 and seeking a series solution, one finds that the resulting
series does not converge for x = ±1. This is remedied by choosing
λ = `(`+ 1) for ` = 0, 1, . . . , leading to the differential equation

d
dx

(
(1− x2)

dy
dx

)
+ `(`+ 1)y = 0. (9.130)

We saw this equation in Chapter 5. The solutions of this Legendre
differential equation are the Legendre polynomials, denoted by P`(x).

For the more general case, m 6= 0, the differential equation (9.128)
with λ = `(`+ 1) becomes Associated Legendre Functions

d
dx

(
(1− x2)

dy
dx

)
+

(
`(`+ 1)− m2

1− x2

)
y = 0. (9.131)

The solutions of this equation are called the associated Legendre func-
tions. The two linearly independent solutions are denoted by Pm

` (x)
and Qm

` (x). The latter functions are not well behaved at x = ±1, cor-
responding to the north and south poles of the original problem. So,
we can throw out these solutions, leaving

Θ(θ) = Pm
` (cos θ)

as the needed solutions. In Table 9.2 we list a few of these.

Pm
n (x) Pm

n (cos θ)

P0
1 (x) x cos θ

P1
1 (x) (1− x2)

1
2 sin θ

P0
2 (x) 1

2 (3x2 − 1) 1
2 (cos2 θ − 1)

P1
2 (x) 3x(1− x2)

1
2 3 cos θ sin θ

P2
2 (x) 3(1− x2) 3 sin2 θ

P0
3 (x) 1

2 (5x3 − 32x) 1
2 (5 cos3 θ − 3 cos θ)

P1
3 (x) 3

2 (5x2 − 1)(1− x2)
1
2 3

2 (5 cos2 θ − 1) sin θ

P2
3 (x) 15x(1− x2) 15 cos θ sin2 θ

P3
3 (x) 15(1− x2)

3
2 15 sin3 θ

Table 9.2: Associated Legendre Func-
tions, Pm

n (x).

The associated Legendre functions are related to the Legendre poly-
nomials by3 3 Some definitions do not include the

(−1)m factor.

Pm
` (x) = (−1)m(1− x2)m/2 dm

dxm P`(x), (9.132)

for ` = 0, 1, 2, , . . . and m = 0, 1, . . . , `. We further note that P0
` (x) =

P`(x), as one can see in the table. Since P`(x) is a polynomial of degree
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`, then for m > `, dm

dxm P`(x) = 0 and Pm
` (x) = 0. Furthermore, since

the differential equation only depends on m2, P−m
` (x) is proportional

to Pm
` (x). One normalization is given by

P−m
` (x) = (−1)m (`−m)!

(`+ m)!
Pm
` (x).

The associated Legendre functions also satisfy the orthogonality
condition ∫ 1

−1
Pm
` (x)Pm

`′ (x) dx =
2

2`+ 1
(`+ m)!
(`−m)!

δ``′ . (9.133)

The last differential equation we need to solve is the radial equation.
With λ = `(` + 1), ` = 0, 1, 2, . . . , the radial equation (9.122) can be
written as

ρ2R′′ + 2ρR′ − `(`+ 1)R = 0. (9.134)

The radial equation is a Cauchy-Euler type of equation. So, we can
guess the form of the solution to be R(ρ) = ρs, where s is a yet to be
determined constant. Inserting this guess, we obtain the characteristic
equation

s(s + 1) = `(`+ 1).

Solving for s, we have

s = `,−(`+ 1).

Thus, the general solution of the radial equation is

R(ρ) = aρ` + bρ−(`+1). (9.135)

We would normally apply boundary conditions at this point. Recall
that we gave that for ρ = r, u(r, θ, φ) = g(θ, φ). This is not a homoge-
neous boundary condition, so we will need to hold off using it until we
have the general solution to the three dimensional problem. However,
we do have a hidden condition. Since we are interested in solutions in-
side the sphere, we need to consider what happens at ρ = 0. Note that
ρ−(`+1) is not defined at the origin. Since the solution is expected to
be bounded at the origin, we can set b = 0. So, in the current problem
we have established that

R(ρ) = aρ`.

We have carried out the full separation of Laplace’s equation in
spherical coordinates. The product solutions consist of the forms

u(ρ, θ, φ) = ρ`Pm
` (cos θ) cos mφ

and

u(ρ, θ, φ) = ρ`Pm
` (cos θ) sin mφ
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for ` = 0, 1, 2, . . . and m = 0,±1, , . . . ,±`. These solutions can be
combined to give a complex representation of the product solutions as

u(ρ, θ, φ) = ρ`Pm
` (cos θ)eimφ.

The general solution is then given as a linear combination of these
product solutions. As there are two indices, we have a double sum:4 4 While this appears to be a complex-

valued solution, it can be rewritten as
a sum over real functions. The inner
sum contains terms for both m = k and
m = −k. Adding these contributions, we
have that

a`kρ`Pk
` (cos θ)eikφ + a`(−k)ρ

`P−k
` (cos θ)e−ikφ

can be rewritten as

(A`k cos kφ + B`k sin kφ)ρ`Pk
` (cos θ).

u(ρ, θ, φ) =
∞

∑
`=0

`

∑
m=−`

a`mρ`Pm
` (cos θ)eimφ. (9.136)

The solutions of the angular parts of the problem are often com-
bined into one function of two variables, as problems with spherical
symmetry arise often, leaving the main differences between such prob-
lems confined to the radial equation. These functions are referred to
as spherical harmonics, Y`m(θ, φ), which are defined with a special Y`m(θ, φ), are the spherical harmonics.

Spherical harmonics are important in
applications from atomic electron con-
figurations to gravitational fields, plane-
tary magnetic fields, and the cosmic mi-
crowave background radiation.

normalization as

Y`m(θ, φ) =

√
2`+ 1

4π

(`−m)!
(`+ m)!

Pm
` eimφ. (9.137)

These satisfy the simple orthogonality relation∫ π

0

∫ 2π

0
Y`m(θ, φ)Y∗`′m′(θ, φ) sin θ dφ dθ = δ``′δmm′ .

As noted in an earlier side note, the spherical harmonics are eigen-
functions of the eigenvalue problem LY = −λY, where

L =
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂φ2 .

This operator appears in many problems in which there is spherical
symmetry, such as obtaining the solution of Schrödinger’s equation
for the hydrogen atom as we will see later. Therefore, it is customary
to plot spherical harmonics. Because the Y`m’s are complex functions,
one typically plots either the real part or the modulus squared. One
rendition of |Y`m(θ, φ)|2 is shown in Figure 9.17.

We could also look for the nodal curves of the spherical harmonics
like we had for vibrating membranes. Such surface plots on a sphere
are shown in Figure 9.18. The colors provide for the amplitude of
the |Y`m(θ, φ)|2. We can match these with the shapes in Figure 9.17

by coloring the plots with some of the same colors. This is shown
in Figure 9.19. However, by plotting just the sign of the spherical
harmonics, as in Figure 9.20, we can pick out the nodal curves much
easier.
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Figure 9.17: The first few spherical har-
monics, |Y`m(θ, φ)|2

Figure 9.18: Spherical harmonic con-
tours for |Y`m(θ, φ)|2.
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Figure 9.19: The first few spherical har-
monics, |Y`m(θ, φ)|2

Figure 9.20: In these figures we show the
nodal curves of |Y`m(θ, φ)|2
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Figure 9.21: Zonal harmonics, ` = 1,
m = 0.

Figure 9.22: Zonal harmonics, ` = 2,
m = 0.

Figure 9.23: Sectoral harmonics, ` = 2,
m = 2.

Spherical, or surface, harmonics can be further grouped into zonal,
sectoral, and tesseral harmonics. Zonal harmonics correspond to the
m = 0 modes. In this case, one seeks nodal curves for which P`(cos θ) =

0. These lead to constant θ values such that cos θ is a zero of the Legen-
dre polynomial, P`(x). These correspond to the first column in Figure
9.20. Since P`(x) is a polynomial of degree `, the zonal harmonics
consist of ` latitudinal circles.

Sectoral, or meridional, harmonics result for the case that m = ±`.
For this case, we note that P±`` (x) ∝ (1 − x2)m/2. This vanishes for
x = ±1, or θ = 0, π. Therefore, the spherical harmonics can only
produce nodal curves for eimφ = 0. Thus, one obtains the meridians
corresponding to solutions of A cos mφ + B sin mφ = 0. Such solutions
are constant values of φ. These can be seen in Figure 9.20 in the top
diagonal and can be described as m circles passing through the poles,
or longitudinal circles.

Tesseral harmonics are all of the rest, which typically look like a
checker board glued to the surface of a sphere. Examples can be seen
in the pictures of nodal curves, such as Figure 9.20. Looking in Figure
9.20 along the diagonals going downward from left to right, one can
see the same number of latitudinal circles. In fact, there are ` − m
latitudinal nodal curves in these figures

Figure 9.24: Tesseral harmonics, ` = 3,
m = 1.

Figure 9.25: Sectoral harmonics, ` = 3,
m = 3.

Figure 9.26: Tesseral harmonics, ` = 4,
m = 3.

In summary, the spherical harmonics have several representations,
as show in Figures 9.17-9.20. Note that there are ` nodal lines, m
meridional curves, and `− m horizontal curves in these figures. The
plots in Figures 9.17 and 9.19 are the typical plots shown in physics for
discussion of the wavefunctions of the hydrogen atom. Those in 9.18

are useful for describing gravitational or electric potential functions,
temperature distributions, or wave modes on a spherical surface. The
relationships between these pictures and the nodal curves can be bet-
ter understood by comparing respective plots. Several modes were
separated out in Figures 9.21-9.26 to make this comparison easier.

Example 9.7. Laplace’s Equation with Azimuthal Symmetry
As a simple example we consider the solution of Laplace’s equation in which

there is azimuthal symmetry. Let

u(r, θ, φ) = g(θ) = 1− cos 2θ.

This function is zero at the poles and has a maximum at the equator. So, this
could be a crude model of the temperature distribution of the Earth with zero
temperature at the poles and a maximum near the equator.

In problems in which there is no φ-dependence, only the m = 0 term of the
general solution survives. Thus, we have that

u(ρ, θ, φ) =
∞

∑
`=0

a`ρ`P`(cos θ). (9.138)
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Here we have used the fact that P0
` (x) = P`(x). We just need to determine

the unknown expansion coefficients, a`. Imposing the boundary condition at
ρ = r, we are lead to

g(θ) =
∞

∑
`=0

a`r`P`(cos θ). (9.139)

This is a Fourier-Legendre series representation of g(θ). Since the Legen-
dre polynomials are an orthogonal set of eigenfunctions, we can extract the
coefficients. In Chapter 5 we had proven that∫ π

0
Pn(cos θ)Pm(cos θ) sin θ dθ =

∫ 1

−1
Pn(x)Pm(x) dx =

2
2n + 1

δnm.

So, multiplying the expression for g(θ) by Pm(cos θ) sin θ and integrating,
we obtain the expansion coefficients:

a` =
2`+ 1

2r`

∫ π

0
g(θ)P`(cos θ) sin θ dθ. (9.140)

Sometimes it is easier to rewrite g(θ) as a polynomial in cos θ and avoid
the integration. For this example we see that

g(θ) = 1− cos 2θ

= 2 sin2 θ

= 2− 2 cos2 θ. (9.141)

Thus, setting x = cos θ, we have g(θ) = 2− 2x2. We seek the form

g(θ) = c0P0(x) + c1P1(x) + c2P2(x),

where P0(x) = 1, P1(x) = x, and P2(x) = 1
2 (3x2 − 1). Since g(θ) =

2− 2x2 does not have any x terms, we know that c1 = 0. So,

2− 2x2 = c0(1) + c2
1
2
(3x2 − 1) = c0 −

1
2

c2 +
3
2

c2x2.

By observation we have c2 = − 4
3 and thus, c0 = 2 + 1

2 c2 = 4
3 . This gives

the sought expansion for g(θ):

g(θ) =
4
3

P0(cos θ)− 4
3

P2(cos θ). (9.142)

Therefore, the nonzero coefficients in the general solution become

a0 =
4
3

, a2 =
4
3

1
r2 ,

and the rest of the coefficients are zero. Inserting these into the general solu-
tion, we have

u(ρ, θ, φ) =
4
3

P0(cos θ)− 4
3

(ρ

r

)2
P2(cos θ)

=
4
3
− 2

3

(ρ

r

)2
(3 cos2 θ − 1). (9.143)
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9.6 Schrödinger Equation in Spherical Coordinates

Another important eigenvalue problem in physics is the Schrödinger
equation. The time-dependent Schrödinger equation is given by

ih̄
∂Ψ
∂t

= − h̄2

2m
∇2Ψ + VΨ. (9.144)

Here Ψ(r, t) is the wave function, which is determines the quantum
state of a particle of mass m subject to a (time independent) potential,
V(r). h̄ = h

2π , where h is Planck’s constant. The probability of finding
the particle in an infinitesimal volume, dV, is given by |Ψ(r, t)|2 dV,
assuming the wave function is normalized,∫

all space
|Ψ(r, t)|2 dV = 1.

One can separate out the time dependence by assuming a special
form, Ψ(r, t) = ψ(r)e−iEt/h̄, where E is the energy of the particular
stationary state solution, or product solution. Inserting this form into
the time-dependent equation, one finds that ψ(r) satisfies

− h̄2

2m
∇2ψ + Vψ = Eψ. (9.145)

Assuming that the potential depends only on distance from the ori-
gin, V = V(ρ), we can further separate out the radial part of this solu-
tion using spherical coordinates. Recall that the Laplacian in spherical
coordinates is given by

∇2 =
1
ρ2

∂

∂ρ

(
ρ2 ∂

∂ρ

)
+

1
ρ2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
ρ2 sin2 θ

∂2

∂φ2 . (9.146)

Then, the time-independent Schrödinger equation can be written as

− h̄2

2m

[
1
ρ2

∂

∂ρ

(
ρ2 ∂ψ

∂ρ

)
+

1
ρ2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1
ρ2 sin2 θ

∂2ψ

∂φ2

]
= [E−V(ρ)]ψ. (9.147)

Let’s continue with the separation of variables. Assuming that the
wave function takes the form ψ(ρ, θ, φ) = R(ρ)Y(θ, φ), we obtain

− h̄2

2m

[
Y
ρ2

d
dρ

(
ρ2 dR

dρ

)
+

R
ρ2 sin θ

d
dθ

(
sin θ

dY
dθ

)
+

R
ρ2 sin2 θ

d2Y
dφ2

]
= RY[E−V(ρ)]ψ. (9.148)

Now dividing by ψ = RY, multiplying by − 2mρ2

h̄2 , and rearranging,
we have

1
R

d
dρ

(
ρ2 dR

dρ

)
− 2mρ2

h̄2 [V(ρ)− E] = − 1
Y

[
1

sin θ

d
dθ

(
sin θ

dY
dθ

)
+

1
sin2 θ

d2Y
dφ2

]
.
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We have a function of ρ equal to a function of the angular variables.
So, we set each side equal to a constant. We will judiciously set the
constant equal to `(`+ 1). The resulting equations are

d
dρ

(
ρ2 dR

dρ

)
− 2mρ2

h̄2 [V(ρ)− E] R = `(`+ 1)R, (9.149)

1
sin θ

∂

∂θ

(
sin θ

∂Y
∂θ

)
+

1
sin2 θ

∂2Y
∂φ2 = −`(`+ 1)Y. (9.150)

The second of these equations should look familiar from the last
section. This is the equation for spherical harmonics,

Y`m(θ, φ) =

√
2`+ 1

2
(`−m)!
(`+ m)!

Pm
` eimφ. (9.151)

So, any further analysis of the problem depends upon the choice of
potential, V(ρ), and the solution of the radial equation. For this, we
turn to the determination of the wave function for an electron in orbit
about a proton.

Example 9.8. The Hydrogen Atom - ` = 0 States
Historically, the first test of the Schrödinger equation was the determina-

tion of the energy levels in a hydrogen atom. This is modeled by an electron
orbiting a proton. The potential energy is provided by the Coulomb potential,

V(ρ) = − e2

4πε0ρ
.

Thus, the radial equation becomes

d
dρ

(
ρ2 dR

dρ

)
+

2mρ2

h̄2

[
e2

4πε0ρ
+ E

]
R = `(`+ 1)R. (9.152)

Before looking for solutions, we need to simplify the equation by absorbing
some of the constants. One way to do this is to make an appropriate change
of variables. Let ρ = ar. Then by the Chain Rule we have

d
dρ

=
dr
dρ

d
dr

=
1
a

d
dr

.

Under this transformation, the radial equation becomes

d
dr

(
r2 du

dr

)
+

2ma2r2

h̄2

[
e2

4πε0ar
+ E

]
u = `(`+ 1)u, (9.153)

where u(r) = R(ρ). Expanding the second term,

2ma2r2

h̄2

[
e2

4πε0ar
+ E

]
u =

[
mae2

2πε0h̄2 r +
2mEa2

h̄2 r2
]

u,
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we see that we can define

a =
2πε0h̄2

me2 , (9.154)

ε = −2mEa2

h̄2

= −2(2πε0)
2h̄2

me4 E. (9.155)

Using these constants, the radial equation becomes

d
dr

(
r2 du

dr

)
+ ru− `(`+ 1)u = εr2u. (9.156)

Expanding the derivative and dividing by r2,

u′′ +
2
r

u′ +
1
r

u− `(`+ 1)
r2 u = εu. (9.157)

The first two terms in this differential equation came from the Laplacian. The
third term came from the Coulomb potential. The next term can be thought
to contribute to the potential and is attributed to angular momentum. Thus,
` is called the angular momentum quantum number. This is an eigenvalue
problem for the radial eigenfunctions u(r) and energy eigenvalues ε.

The solutions of this equation are determined in a quantum mechanics
course. In order to get a feeling for the solutions, we will consider the zero
angular momentum case, ` = 0 :

u′′ +
2
r

u′ +
1
r

u = εu. (9.158)

Even this equation is one we have not encountered in this book. Let’s see if
we can find some of the solutions.

First, we consider the behavior of the solutions for large r. For large r the
second and third terms on the left hand side of the equation are negligible. So,
we have the approximate equation

u′′ − εu = 0. (9.159)

The solutions thus behave like u(r) = e±
√

εr. For bounded solutions, we
choose the decaying solution.

This suggests that solutions take the form u(r) = v(r)e−
√

εr for some
unknown function, v(r). Inserting this guess into Equation (9.158), gives an
equation for v(r) :

rv′′ + 2
(
1−
√

εr
)

v′ + (1− 2
√

ε)v = 0. (9.160)

Next we seek a series solution to this equation. Let

v(r) =
∞

∑
k=0

ckrk.
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Inserting this series into Equation (9.160), we have

∞

∑
k=1

[k(k− 1) + 2k]ckrk−1 +
∞

∑
k=1

[1− 2
√

ε(k + 1)]ckrk = 0.

We can re-index the dummy variable in each sum. Let k = m in the first sum
and k = m− 1 in the second sum. We then find that

∞

∑
k=1

[m(m + 1)cm+[ 1− 2m
√

ε]cm−1]rm−1 = 0.

Since this has to hold for all m ≥ 1,

cm =
2m
√

ε− 1
m(m + 1)

cm−1.

Further analysis indicates that the resulting series leads to unbounded so-
lutions unless the series terminates. This is only possible if the numerator,
2m
√

ε− 1, vanishes for m = n, n = 1, 2 . . . . Thus,

ε =
1

4n2 .

Since ε is related to the energy eigenvalue, E, we have

En = − me4

2(4πε0)2h̄2n2
.

Inserting the values for the constants, this gives

En = −13.6 eV
n2 .

This is the well known set of energy levels for the hydrogen atom.
The corresponding eigenfunctions are polynomials, since the infinite series

was forced to terminate. We could obtain these polynomials by iterating the
recursion equation for the cm’s. However, we will instead rewrite the radial
equation (9.160).

Let x = 2
√

εr and define y(x) = v(r). Then

d
dr

= 2
√

ε
d

dx
.

This gives
2
√

εxy′′ + (2− x)2
√

εy′ + (1− 2
√

ε)y = 0.

Rearranging, we have

xy′′ + (2− x)y′ +
1

2
√

ε
(1− 2

√
ε)y = 0.

Noting that 2
√

ε = 1
n , this becomes

xy′′ + (2− x)y′ + (n− 1)y = 0. (9.161)
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The resulting equation is well known. It takes the form

xy′′ + (α + 1− x)y′ + ny = 0. (9.162)

Solutions of this equation are the associated Laguerre polynomials. The The associated Laguerre polynomials are
named after the French mathematician
Edmond Laguerre (1834-1886).

solutions are denoted by Lα
n(x). They can be defined in terms of the Laguerre

polynomials,

Ln(x) = ex
(

d
dx

)n
(e−xxn).

The associated Laguerre polynomials are defined as

Lm
n−m(x) = (−1)m

(
d

dx

)m
Ln(x).

Note: The Laguerre polynomials were first encountered in Problem 2 in Chap-
ter 5 as an example of a classical orthogonal polynomial defined on [0, ∞) with
weight w(x) = e−x. Some of these polynomials are listed in Table 9.3.

Comparing Equation (9.161) with Equation (9.162), we find that y(x) =
L1

n−1(x).

Lm
n (x)

L0
0(x) 1

L0
1(x) 1− x

L0
2(x) x2 − 4x + 2

L1
0(x) 1

L1
1(x) 4− 2x

L1
2(x) 3x2 − 18x + 18

L2
0(x) 2

L2
1(x) −6x + 18

L2
2(x) 12x2 − 96x + 144

L3
0(x) 6

L3
1(x) −24x + 96

L3
2(x) 60x2 − 600x + 1200

Table 9.3: Associated Laguerre Func-
tions, Lm

n (x).

In summary, we have made the following transformations: In most derivation in quantum mechan-

ics a = a0
2 . where a0 = 4πε0 h̄2

me2 is the Bohr
radius and a0 = 5.2917× 10−11m.1. R(ρ) = u(r), ρ = ar.

2. u(r) = v(r)e−
√

εr.

3. v(r) = y(x) = L1
n−1(x), x = 2

√
εr.

Therefore,
R(ρ) = e−

√
ερ/aL1

n−1(2
√

ερ/a).

However, we also found that 2
√

ε = 1/n. So,

R(ρ) = e−ρ/2naL1
n−1(ρ/na).
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For the general case, for all ` ≥ 0, we need to solve the differential
equation

u′′ +
2
r

u′ +
1
r

u− `(`+ 1)
r2 u = εu. (9.163)

Instead of letting u(r) = v(r)e−
√

εr, we let

u(r) = v(r)r`e−
√

εr.

This lead to the differential equation

rv′′ + 2(`+ 1−
√

εr)v′ + (1− 2(`+ 1)
√

ε)v = 0. (9.164)

as before, we let x = 2
√

εr to obtain

xy′′ + 2
[
`+ 1− x

2

]
v′ +

[
1

2
√

ε
− `(`+ 1)

]
v = 0.

Noting that 2
√

ε = 1/n, we have

xy′′ + 2 [2(`+ 1)− x] v′ + (n− `(`+ 1))v = 0.

We see that this is once again in the form of the associate Laguerre
equation and the solutions are

y(x) = L2`+1
n−`−1(x).

So, the solution to the radial equation for the hydrogen atom is given
by

R(ρ) = r`e−
√

εrL2`+1
n−`−1(2

√
εr)

=
( ρ

2na

)`
e−ρ/2naL2`+1

n−`−1

( ρ

na

)
. (9.165)

Interpretations of these solutions will be left for your quantum me-
chanics course.

Problems

1. Consider Laplace’s equation on the unit square, uxx + uyy = 0,
0 ≤ x, y ≤ 1. Let u(0, y) = 0, u(1, y) = 0 for 0 < y < 1 and uy(x, 0) = 0
for 0 < y < 1. Carry out the needed separation of variables and write
down the product solutions satisfying these boundary conditions.

2. Consider a cylinder of height H and radius a.

a. Write down LaplaceŠs Equation for this cylinder in cylindri-
cal coordinates.

b. Carry out the separation of variables and obtain the three
ordinary differential equations that result from this problem.
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c. What kind of boundary conditions could be satisfied in this
problem in the independent variables?

3. Consider a square drum of side s and a circular drum of radius a.

a. Rank the modes corresponding to the first 6 frequencies for
each.

b. Write each frequency (in Hz) in terms of the fundamental
(i.e., the lowest frequency.)

c. What would the lengths of the sides of the square drum have
to be to have the same fundamental frequency? (Assume that
c = 1.0 for each one.)

4. A copper cube 10.0 cm on a side is heated to 100◦ C. The block
is placed on a surface that is kept at 0◦ C. The sides of the block are
insulated, so the normal derivatives on the sides are zero. Heat flows
from the top of the block to the air governed by the gradient uz =

−10◦C/m. Determine the temperature of the block at its center after
1.0 minutes. Note that the thermal diffusivity is given by k = K

ρcp
,

where K is the thermal conductivity, ρ is the density, and cp is the
specific heat capacity.

5. Consider a spherical balloon of radius a. Small deformations on the
surface can produce waves on the balloon’s surface.

a. Write the wave equation in spherical polar coordinates. (Note:
ρ is constant!)

b. Carry out a separation of variables and find the product so-
lutions for this problem.

c. Describe the nodal curves for the first six modes.

d. For each mode determine the frequency of oscillation in Hz
assuming c = 1.0 m/s.

6. Consider a circular cylinder of radius R = 4.00 cm and height
H = 20.0 cm which obeys the steady state heat equation

urr +
1
r

ur + uzz.

Find the temperature distribution, u(r, z), given that u(r, 0) = 0, u(r, 20) =
20, and heat is lost through the sides due to Newton’s Law of Cooling

[ur + hu]r=4 = 0,

for h = 1.0 cm−1.



A
Review of Sequences and Infinite Series

“Once you eliminate the impossible, whatever remains, no matter how improbable, must be the truth.” Sherlock Holmes
(by Sir Arthur Conan Doyle, 1859-1930)

The material in this chapter is a review
of material covered in a standard course
in calculus with some additional notions
from advanced calculus. It is provided
as a review before encountering the no-
tion of Fourier series and their conver-
gence as seen in the next chapter.

In this chapter we will review and extend some of the concepts
and definitions related to infinite series that you might have seen pre-
viously in your calculus class (1, 2, 3). Working with infinite series can

1

2

3

be a little tricky and we need to understand some of the basics before
moving on to the study of series of trigonometric functions in the next
chapter.

As we will see, ln(1 + x) = x− x
2 + x

3 −
. . . . So, inserting x = 1 yields the first
result - at least formally! It was shown in
Cowen, Davidson and Kaufman (in The
American Mathematical Monthly, Vol. 87,
No. 10. (Dec., 1980), pp. 817-819) that
expressions like

f (x) =
1
2

[
ln

1 + x
1− x

+ ln(1− x4)

]
=

1
2

ln
[
(1 + x)2(1 + x2)

]
lead to alternate sums of the rearrange-
ment of the alternating harmonic series.

For example, one can show that the infinite series

S = 1− 1
2
+

1
3
− 1

4
+

1
5
− · · ·

converges to ln 2. However, the terms can be rearranged to give

1 +
(

1
3
− 1

2
+

1
5

)
+

(
1
7
− 1

4
+

1
9

)
+

(
1
11
− 1

6
+

1
13

)
+ · · · = 3

2
ln 2.

In fact, other rearrangements can be made to give any desired sum!
Other problems with infinite series can occur. Try to sum the fol-

lowing infinite series to find that

∞

∑
k=2

ln k
k2 ∼ 0.937548 . . . .

A sum of even as many as 107 terms only gives convergence to four or
five decimal places.

The series
1
x
− 1

x2 +
2!
x3 −

3!
x4 +

4!
x5 − · · · , x > 0

diverges for all x. So, you might think this divergent series is useless.
However, truncation of this divergent series leads to an approximation
of the integral ∫ ∞

0

e−t

x + t
dt, x > 0.
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So, can we make sense out of any of these, or other manipulations,
of infinite series? We will not answer these questions now, but we will
go back and review what you have seen in your calculus classes.

A.1 Sequences of Real Numbers

We first begin with the definitions for sequences and series of num-
bers.

Definition A.1. A sequence is a function whose domain is the set of
positive integers, a(n), n ∈ N [N = {1, 2, . . . .}].

2 4 6 8 10

0

2

4

6

8

n

Plot of an = n− 1 vs n

Figure A.1: Plot of an = n − 1 for n =
1 . . . 10.

Examples are

1. a(n) = n yields the sequence {1, 2, 3, 4, 5, . . .}

2. a(n) = 3n yields the sequence {3, 6, 9, 12, . . .}

However, one typically uses subscript notation and not functional
notation: an = a(n). We then call an the nth term of the sequence.
Furthermore, we will denote sequences by {an}∞

n=1. Sometimes we will
only give the nth term of the sequence and will assume that n ∈ N
unless otherwise noted.

2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

n

Plot of an =
1
2n vs n

Figure A.2: Plot of an =
1
2n for n =

1 . . . 10.

Another way to define a particular sequence is recursively.

Definition A.2. A recursive sequence is defined in two steps:

1. The value of first term (or first few terms) is given.

2. A rule, or recursion formula, to determine later terms from
earlier ones is given.

Example A.1. A typical example is given by the Fibonacci4 sequence. It
4 Leonardo Pisano Fibonacci (c.1170-
c.1250) is best known for this sequence
of numbers. This sequence is the solu-
tion of a problem in one of his books:
A certain man put a pair of rabbits in a
place surrounded on all sides by a wall. How
many pairs of rabbits can be produced from
that pair in a year if it is supposed that
every month each pair begets a new pair
which from the second month on becomes
productive http://www-history.mcs.st-
and.ac.uk

can be defined by the recursion formula an+1 = an + an−1, n ≥ 2 and the
starting values of a1 = 0 and a1 = 1. The resulting sequence is {an}∞

n=1 =

{0, 1, 1, 2, 3, 5, 8, . . .}. Writing the general expression for the nth term is pos-
sible, but it is not as simply stated. Recursive definitions are often useful in
doing computations for large values of n.

A.2 Convergence of Sequences

Next we are interested in the behavior of the sequence as n gets
large. For the sequence defined by an = n− 1, we find the behavior
as shown in Figure A.1. Notice that as n gets large, an also gets large.
This sequence is said to be divergent.
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On the other hand, the sequence defined by an = 1
2n approaches

a limit as n gets large. This is depicted in Figure A.2. Another re-
lated series, an = (−1)n

2n , is shown in Figure A.3. This sequence is the
alternating sequence {− 1

2 , 1
4 ,− 1

8 , . . .}.

Definition A.3. The sequence an converges to the number L if to every
positive number ε there corresponds an integer N such that for all n,

n > N ⇒ |a− L| < ε.

If no such number exists, then the sequence is said to diverge.

2 4 6 8 10

−0.4

−0.2

0

0.2

n

Plot of an =
(−1)n

2n vs n

Figure A.3: Plot of an = (−1)n

2n for n =
1 . . . 10.

In Figures A.4-A.5 we see what this means. For the sequence given
by an = (−1)n

2n , we see that the terms approach L = 0. Given an ε > 0,
we ask for what value of N the nth terms (n > N) lie in the interval
[L− ε, L + ε]. In these figures this interval is depicted by a horizontal
band. We see that for convergence, sooner, or later, the tail of the
sequence ends up entirely within this band.

0 2 4 6 8 10

−0.4

−0.2

0
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0.4

L + ε

L− ε

n

Plot of an =
(−1)n

2n vs n

Figure A.4: Plot of an = (−1)n

2n for n =
1 . . . 10. Picking ε = 0.1, one sees that the
tail of the sequence lies between L + ε
and L− ε for n > 3.
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Plot of an =
(−1)n

2n vs n

Figure A.5: Plot of an = (−1)n

2n for n =
1 . . . 10. Picking ε = 0.05, one sees that
the tail of the sequence lies between L +
ε and L− ε for n > 4.

If a sequence {an}∞
n=1 converges to a limit L, then we write either

an → L as n → ∞ or limn→∞ an = L. For example, we have already
seen in Figure A.3 that limn→∞

(−1)n

2n = 0.

A.3 Limit Theorems

Once we have defined the notion of convergence of a sequence
to some limit, then we can investigate the properties of the limits of
sequences. Here we list a few general limit theorems and some special
limits, which arise often.

Limit Theorem

Theorem A.1. Consider two convergent sequences {an} and {bn} and
a number k. Assume that limn→∞ an = A and limn→∞ bn = B. Then
we have

1. limn→∞(an ± bn) = A± B.

2. limn→∞(kbn) = kB.

3. limn→∞(anbn) = AB.

4. limn→∞
an
bn

= A
B , B 6= 0.

Some special limits are given next. These are generally first encoun-
tered in a second course in calculus.
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Special Limits

Theorem A.2. The following are special cases:

1. limn→∞
ln n

n = 0.

2. limn→∞ n
1
n = 1.

3. limn→∞ x
1
n = 1, x > 0.

4. limn→∞ xn = 0, |x| < 1.

5. limn→∞(1 + x
n )

n = ex.

6. limn→∞
xn

n! = 0.

The proofs generally are straight forward and found in beginning
calculus texts. For example, one can prove the first limit by first re-
alizing that limn→∞

ln n
n = limx→∞

ln x
x . This limit is indeterminate as

x → ∞ in its current form since the numerator and the denominator
get large for large x. In such cases one employs L’Hopital’s Rule: One
computes

lim
x→∞

ln x
x

= lim
x→∞

1/x
1

= 0. L’Hopital’s Rule is used often in com-
puting limits. We recall this powerful
rule here as a reference for the reader.

Theorem A.3. Let c be a finite number
or c = ∞. If limx→c f (x) = 0 and
limx→c g(x) = 0, then

lim
x→c

f (x)
g(x)

= lim
x→c

f ′(x)
g′(x)

.

If limx→c f (x) = ∞ and limx→c g(x) = ∞,
then

lim
x→c

f (x)
g(x)

= lim
x→c

f ′(x)
g′(x)

.

The second limit in Theorem A.2 can be proven by first looking at

lim
n→∞

ln n1/n = lim
n→∞

ln n
n

= 0.

Now, if limn→∞ ln f (n) = 0, then limn→∞ f (n) = e0 = 1. Thus proving
the second limit.5

5 We should note that we are assum-
ing something about limits of compos-
ite functions. Let a and b be real num-
bers. Suppose f and g are continu-
ous functions, limx→a f (x) = f (a) and
limx→b g(x) = b, and g(b) = a. Then,
limx→b f (g(x)) = f (limx→b g(x)) =
f (g(b)) = f (a).

The third limit can be done similarly. The reader is left to confirm
the other limits. We finish this section with a few selected examples.

Example A.2. limn→∞
n2+2n+3

n3+n
Divide the numerator and denominator by n2. Then

lim
n→∞

n2 + 2n + 3
n3 + n

= lim
n→∞

1 + 2
n + 3

n2

n + 1
n

= lim
n→∞

1
n
= 0.

Another approach to this example is to consider the behavior of the nu-
merator and denominator as n → ∞. As n gets large, the numerator behaves
like n2, since 2n + 3 becomes negligible for large enough n. Similarly, the
denominator behaves like n3 for large n. Thus,

lim
n→∞

n2 + 2n + 3
n3 + n

= lim
n→∞

n2

n3 = 0.

Example A.3. limn→∞
ln n2

n

Rewriting ln n2

n = 2 ln n
n , we find from identity 1 of the Theorem A.2 that

lim
n→∞

ln n2

n
= 2 lim

n→∞

ln n
n

= 0.
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Example A.4. limn→∞(n2)
1
n

To compute this limit, we rewrite

lim
n→∞

(n2)
1
n = lim

n→∞
(n)

1
n (n)

1
n = 1,

using identity 2 of the Theorem A.2.

Example A.5. limn→∞( n−2
n )n

This limit can be written as

lim
n→∞

(
n− 2

n

)n
= lim

n→∞

(
1 +

(−2)
n

)n
= e−2.

Here we used identity 5 of the Theorem A.2.

A.4 Infinite Series

There is story that’s described in E.T.
Bell’s “Men of Mathematics” about
Carl Friedrich Gauß (1777-1855). Gauß’
third grade teacher needed to occupy the
students, so she asked the class to sum
the first 100 integers thinking that this
would occupy the students for a while.
However, Gauß was able to do so in
practically no time. He recognized the
sum could be written as (1+ 100) + (2+
99) + . . . (50 + 51) = 50(101). ∑n

k=1 k =
n(n+1)

2 . This is an example of an arith-
metic progression which is a finite sum
of terms.

In this section we investigate the meaning of infinite series, which
are infinite sums of the form

a1 + a2 + a2 + . . . . (A.1)

A typical example is the infinite series

1 +
1
2
+

1
4
+

1
8
+ . . . . (A.2)

How would one evaluate this sum? We begin by just adding the
terms. For example,

1 +
1
2
=

3
2

,

1 +
1
2
+

1
4
=

7
4

,

1 +
1
2
+

1
4
+

1
8
=

15
8

,

1 +
1
2
+

1
4
+

1
8
+

1
16

=
31
16

, (A.3)

etc. The values tend to a limit. We can see this graphically in Figure
A.6.
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Plot of the partial sums sn =
n

∑
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1
2k−1 vs n

Figure A.6: Plot of sn = ∑n
k=1

1
2k−1 for

n = 1 . . . 10.

In general, we want to make sense out of Equation (A.1). As with
the example, we look at a sequence of partial sums . Thus, we consider
the sums

s1 = a1,

s2 = a1 + a2,

s3 = a1 + a2 + a3,

s4 = a1 + a2 + a3 + a4, (A.4)
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etc. In general, we define the nth partial sum as

sn = a1 + a2 + . . . + an.

If the infinite series (A.1) is to make any sense, then the sequence of
partial sums should converge to some limit. We define this limit to be
the sum of the infinite series, S = limn→∞ sn.

Definition A.4. If the sequence of partial sums converges to the limit
L as n gets large, then the infinite series is said to have the sum L.

We will use the compact summation notation

∞

∑
n=1

an = a1 + a2 + . . . + an + . . . .

Here n will be referred to as the index and it may start at values other
than n = 1.

A.5 Convergence Tests

Given a general infinite series, it would be nice to know if it
converges, or not. Often, we are only interested in the convergence
and not the actual sum as it is often difficult to determine the sum
even if the series converges. In this section we will review some of
the standard tests for convergence, which you should have seen in
Calculus II.

First, we have the nth term divergence test. This is motivated by
two examples:

1. ∑∞
n=0 2n = 1 + 2 + 4 + 8 + . . . .

2. ∑∞
n=1

n+1
n = 2

1 + 3
2 + 4

3 + . . . .

In the first example it is easy to see that each term is getting larger
and larger, and thus the partial sums will grow without bound. In
the second case, each term is bigger than one. Thus, the series will be
bigger than adding the same number of ones as there are terms in the
sum. Obviously, this series will also diverge. The nth Term Divergence Test.

This leads to the nth Term Divergence Test:

Theorem A.4. If lim an 6= 0 or if this limit does not exist, then ∑n an

diverges.

This theorem does not imply that just because the terms are getting
smaller, the series will converge. Otherwise, we would not need any
other convergence theorems.

For the next theorems, we will assume that the series has nonnega-
tive terms.
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1. Comparison Test The Comparison Test.

The series ∑ an converges if there is a convergent series ∑ cn such
that an ≤ cn for all n > N for some N. The series ∑ an diverges if
there is a divergent series ∑ dn such that dn ≤ an for all n > N for
some N.

This is easily seen. In the first case, we have

an ≤ cn, ∀n > N.

Summing both sides of the inequality, we have

∑
n

an ≤∑
n

cn.

If ∑ cn converges, ∑ cn < ∞, the ∑ an converges as well. A similar
argument applies for the divergent series case.

For this test one has to dream up a second series for comparison.
Typically, this requires some experience with convergent series. Of-
ten it is better to use other tests first if possible.

Example A.6. ∑∞
n=0

1
3n

We already know that ∑∞
n=0

1
2n converges. So, we compare these two

series. In the above notation, we have an = 1
3n and cn = 1

2n . Since
1

2n ≤ 1
3n for n ≥ 0 and ∑∞

n=0
1

2n converges, then ∑∞
n=0

1
3n converges by

the Comparison Test.

2. Limit Comparison Test The Limit comparison Test.

If limn→∞
an
bn

is finite, then ∑ an and ∑ bn converge together or
diverge together.

Example A.7. ∑∞
n=1

2n+1
(n+1)2
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Plot of the partial sums sk =
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1
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vs k

Figure A.7: Plot of the partial sums, sk =

∑k
n=1

1
n , for the harmonic series ∑∞

n=1
1
n .

In order to establish the convergence, or divergence, of this series, we
look to see how the terms, an = 2n+1

(n+1)2 , behave for large n. As n gets
large, the numerator behaves like 2n and the denominator behaves like
n2. So, an behaves like 2n

n2 = 2
n . The factor of 2 does not really mat-

ter. So, will compare the infinite series ∑∞
n=1

2n+1
(n+1)2 with ∑∞

n=1
1
n . Then,

limn→∞
an
bn

= limn→∞
2n2+n
(n+1)2 = 2. Thus, these two series both converge,

or both diverge. If we knew the behavior of the second series, then we
could draw a conclusion. Using the next test, we will prove that ∑∞

n=1
1
n

diverges, therefore ∑∞
n=1

2n+1
(n+1)2 diverges by the Limit Comparison Test.

Another example of this test is given in Example A.9.

3. Integral Test The Integral Test.

Consider the infinite series ∑∞
n=1 an, where an = f (n). Then,

∑∞
n=1 an and

∫ ∞
1 f (x) dx both converge or both diverge. Here we

mean that the integral converges or diverges as an improper inte-
gral.
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Example A.8. The harmonic series: ∑∞
n=1

1
n

We are interested in the convergence or divergence of the infinite series
∑∞

n=1
1
n which we saw in the Limit Comparison Test example. This infinite

series is famous and is called the harmonic series. The plot of the partial
sums is given in Figure A.7. It appears that the series could possibly
converge or diverge. It is hard to tell graphically.
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x

Figure A.8: Plot of f (x) = x and boxes
of height 1

n and width 1.

In this case we can use the Integral Test. In Figure A.8 we plot f (x) =
1
x and at each integer n we plot a box from n to n + 1 of height 1

n . We can
see from the figure that the total area of the boxes is greater than the area
under the curve. Since the area of each box is 1

n , then we have that∫ ∞

1

dx
x

<
∞

∑
n=1

1
n

.

But, we can compute the integral.∫ ∞

1

dx
x

= lim
x→∞

(ln x) = ∞.

Thus, the integral diverges. However, the infinite series is larger than this!
So, the harmonic series diverges by the Integral Test.

The Integral Test provides us with the convergence behavior for
a class of infinite series called a p-series . These series are of the p-series and p-test.

form ∑∞
n=1

1
np . Recalling that the improper integrals

∫ ∞
1

dx
xp converge

for p > 1 and diverge otherwise, we have the p-test :

∞

∑
n=1

1
np converges for p > 1

and diverges otherwise.

Example A.9. ∑∞
n=1

n+1
n3−2 .

We first note that as n gets large, the general term behaves like 1
n2 since

the numerator behaves like n and the denominator behaves like n3. So, we
expect that this series behaves like the series ∑∞

n=1
1

n2 . Thus, by the Limit
Comparison Test,

lim
n→∞

n + 1
n3 − 2

(n2) = 1.

These series both converge, or both diverge. However, we know that ∑∞
n=1

1
n2

converges by the p-test since p = 2. Therefore, the original series con-
verges.

4. Ratio Test The Ratio Test.

Consider the series ∑∞
n=1 an for an > 0. Let ρ = limn→∞

an+1
an

.
Then the behavior of the infinite series can be determined from the
conditions

ρ < 1, converges
ρ > 1, diverges
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Example A.10. ∑∞
n=1

n10

10n .
We compute

ρ = lim
n→∞

an+1

an

= lim
n→∞

(n + 1)10

n10
10n

10n+1

= lim
n→∞

(
1 +

1
n

)10 1
10

=
1

10
< 1.

(A.5)

Therefore, the series is said to converge by the Ratio Test.

Example A.11. ∑∞
n=1

3n

n! .
In this case we make use of the fact that6 (n + 1)! = (n + 1)n!. We 6 Note that the Ratio Test works when

factorials are involved because using
(n + 1)! = (n + 1)n! helps to reduce the
needed ratios into something manage-
able.

compute

ρ = lim
n→∞

an+1

an

= lim
n→∞

3n+1

3n
n!

(n + 1)!

= lim
n→∞

3
n + 1

= 0 < 1

(A.6)

This series also converges by the Ratio Test.

5. nth Root Test The nth Root Test.

Consider the series ∑∞
n=1 an for an > 0. Let ρ = limn→∞ an

1/n.
Then the behavior of the infinite series can be determined using

ρ < 1, converges
ρ > 1, diverges

Example A.12. ∑∞
n=0 e−n.

We use the nth Root Test: limn→∞ n
√

an = limn→∞ e−1 = e−1 < 1.
Thus, this series converges by the nth Root Test.7

7 Note that the Root Test works when
there are no factorials and simple pow-
ers are involved. In such cases special
limit rules help in the evaluation.Example A.13. ∑∞

n=1
nn

2n2 .
This series also converges by the nth Root Test.

lim
n→∞

n
√

an = lim
n→∞

(
nn

2n2

)1/n
= lim

n→∞

n
2n = 0 < 1.

We next turn to series which have both positive and negative terms.
We can toss out the signs by taking absolute values of each of the
terms. We note that since an ≤ |an|, we have

−
∞

∑
n=1
|an| ≤

∞

∑
n=1

an ≤
∞

∑
n=1
|an|.
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If the sum ∑∞
n=1 |an|converges, then the original series converges. This

type of convergence is useful, because we can use the previous tests
to establish convergence of such series. Thus, we say that a series
converges absolutely if ∑∞

n=1 |an| converges. If a series converges, but Conditional and absolute convergence.

does not converge absolutely, then it is said to converge conditionally.

Example A.14. ∑∞
n=1

cos πn
n2 . This series converges absolutely because ∑∞

n=1 |an| =
∑∞

n=1
1

n2 is a p-series with p = 2.

Finally, there is one last test that we recall from your introductory Convergence of alternating series.

calculus class. We consider the alternating series, given by ∑∞
n=1(−1)n+1an.

The convergence of an alternating series is determined from Leibniz’s
Theorem8 . 8 Gottfried Wilhelm Leibniz (1646-1716)

developed calculus independently of Sir
Isaac Newton (1643-1727).Theorem A.5. The series ∑∞

n=1(−1)n+1an converges if

1. an’s are positive.

2. an ≥ an+1 for all n.

3. an → 0.

The first condition guarantees that we have alternating signs in the
series. The next condition says that the magnitude if the terms gets
smaller and the last condition imposes further that the terms approach
zero.

Example A.15. The alternating harmonic series: ∑∞
n=1

(−1)n+1

n .

First of all, this series is an alternating series. The an’s in Leibniz’s
Theorem are given by an = 1

n . Condition 2 for this case is

1
n
≥ 1

n + 1
.

This is certainly true, as condition 2 just means that the terms are not
getting bigger as n increases. Finally, condition 3 says that the terms
are in fact going to zero as n increases. This is true in this example.
Therefore, the the alternating harmonic series converges by Leibniz’s
Theorem. Note: The alternating harmonic series converges condition-

ally, since ∑∞
n=1

∣∣∣ (−1)n+1

n

∣∣∣ = ∑∞
n=1

1
n gives the (divergent) harmonic se-

ries. So, the alternating harmonic series does not converge absolutely.

Example A.16. ∑∞
n=0

(−1)n

2n also passes the conditions of Leibniz’s Theorem.
It should be clear that the terms of this alternating series are getting smaller
and approach zero. Furthermore, this series converges absolutely!

A.6 Sequences of Functions

Our immediate goal is to prepare for studying Fourier series, which
are series whose terms are functions. So, in this section we begin to
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discuss series of functions and the convergence of such series. Once
more we will need to resort to the convergence of the sequence of
partial sums. This means we really need to start with sequences of
functions.

Definition A.5. A sequence of functions is simply a set of functions
fn(x), n = 1, 2, . . . defined on a common domain D. A frequently used
example will be the sequence of functions {1, x, x2, . . .}, x ∈ [−1, 1].

Evaluating each sequences of functions at a given value of x, we
obtain a sequence of real numbers. As before, we can ask if this se-
quence converges. Doing this for each point in the domain D, we then
ask if the resulting collection of limits defines a function on D. More
formally, this leads us to the idea of pointwise convergence.

Definition A.6. A sequence of functions fn converges pointwise on D Pointwise convergence.

to a limit g if
lim

n→∞
fn(x) = g(x)

for each x ∈ D. More formally, we write that

lim
n→∞

fn = g (pointwise on D)

if given x ∈ D and ε > 0, there exists an integer N such that

| fn(x)− g(x)| < ε, ∀n ≥ N.

Example A.17. Consider the sequence of functions

fn(x) =
1

1 + nx
, |x| < ∞, n = 1, 2, 3, . . . .

The limits depends on the value of x. We consider two cases, x = 0 and
x 6= 0.

1. x = 0. Here limn→∞ fn(0) = limn→∞ 1 = 1.

2. x 6= 0. Here limn→∞ fn(x) = limn→∞
1

1+nx = 0.

Therefore, we can say that fn → g pointwise for |x| < ∞, where

g(x) =

{
0, x 6= 0,
1, x = 0.

(A.7)

We also note that in Definition A.6 N generally depends on both x
and ε.

Example A.18. We consider the functions fn(x) = xn, x ∈ [0, 1], n =

1, 2, . . . . We recall that the definition for pointwise convergence suggests that
for each x we seek an N such that | fn(x)− g(x)| < ε, ∀n ≥ N. This is not
at first easy to see. So, we will provide some simple examples showing how N
can depend on both x and ε.
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1. x = 0. Here we have fn(0) = 0 for all n. So, given ε > 0 we seek
an N such that | fn(0)− 0| < ε, ∀n ≥ N. Inserting fn(0) = 0, we
have 0 < ε. Since this is true for all n, we can pick N = 1.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

f n
(x
)

Plot of fn(x) = xn vs x

Figure A.9: Plot of fn(x) = xn showing
how N depends on x = 0, 0.1, 0.5, 0.9 (the
vertical lines) and ε = 0.1 (the horizontal
line). Look at the intersection of a given
vertical line with the horizontal line and
determine N from the number of curves
not under the intersection point.

2. x = 1
2 . In this case we have fn(

1
2 ) = 1

2n , for n = 1, 2, . . . . As n
gets large, fn → 0. So, given ε > 0, we seek N such that | 1

2n − 0| <
ε, ∀n ≥ N. This means that 1

2n < ε. Solving the inequality for
n, we have n > − ln ε

ln 2 We choose N ≥ − ln ε
ln 2 . Thus, our choice of

N depends on ε. For, ε = 0.1, this gives

N ≥ − ln 0.1
ln 2

=
ln 10
ln 2

≈ 3.32.

So, we pick N = 4 and we have n > N = 4.

3. x = 1
10 . This can be examined like the last example. We have

fn(
1

10 ) = 1
10n , for n = 1, 2, . . . . This leads to N ≥ − ln ε

ln 10 For
ε = 0.1, this gives N ≥ 1, or n > 1.

4. x = 9
10 . This can be examined like the last two examples. We have

fn(
9

10 ) =
( 9

10
)n

, for n = 1, 2, . . . . So given an ε > 0, we seek an
N such that

( 9
10
)n

< ε for all n > N. Therefore,

n > N ≥ ln ε

ln
( 9

10
) .

For ε = 0.1, we have N ≥ 21.85, or n > N = 22.

So, for these cases, we have shown that N can depend on both x and ε.
These cases are shown in Figure A.9.

There are other questions that can be asked about sequences of func-
tions. Let the sequence of functions fn be continuous on D. If the se-
quence of functions converges pointwise to g on D then we can ask
the following.

1. Is g continuous on D?

2. If each fn is integrable on [a, b], then does

lim
n→∞

∫ b

a
fn(x) dx =

∫ b

a
g(x) dx?

3. If each fn is differentiable at c, then does

lim
n→∞

f ′n(c) = g′(c)?

It turns out that pointwise convergence is not enough to provide
an affirmative answer to any of these questions. Though we will not
prove it here, what we will need is uniform convergence.

−1 0 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
Uniform Convergence

x

f n(x
)

g(x)

g(x)+ε

g(x)−ε

Figure A.10: For uniform convergence,
as n gets large, fn(x) lies in the band
g(x)− ε, g(x)− ε.
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Definition A.7. Consider a sequence of functions { fn(x)}∞
n=1 on D.

Let g(x) be defined for x ∈ D. Then the sequence converges uniformly
on D, or

lim
n→∞

fn = g uniformly on D,

if given ε > 0, there exists an N such that

| fn(x)− g(x)| < ε, ∀n ≥ N and ∀x ∈ D.

This definition almost looks like the definition for pointwise con-
vergence. However, the seemingly subtle difference lies in the fact that
N does not depend upon x. The sought N works for all x in the do-
main. As seen in Figure A.10 as n gets large, fn(x) lies in the band
(g(x)− ε, g(x) + ε).

Example A.19. fn(x) = xn, for x ∈ [0, 1].

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

g(x) + ε

g(x)− ε

x

f n
(x
)

Plot of fn(x) = xn vs x

Figure A.11: Plot of fn(x) = xn on [-1,1]
for n = 1 . . . 10 and g(x)± ε for ε = 0.2.

Note that in this case as n gets large, fn(x) does not lie in the band (g(x)−
ε, g(x) + ε). This is displayed in Figure A.11.

Example A.20. fn(x) = cos(nx)/n2 on [−1, 1].
For this example we plot the first several members of the sequence in Figure

A.12. We can see that eventually (n ≥ N) members of this sequence do lie
inside a band of width ε about the limit g(x) ≡ 0 for all values of x. Thus,
this sequence of functions will converge uniformly to the limit.

−3 −2 −1 0 1 2 3

−0.4

−0.2

0

0.2

0.4

g(x) + ε

g(x)− ε

x

f n
(x
)

Plot of fn(x) = cos(nx)/n2 vs x

Figure A.12: Plot of fn(x) = cos(nx)/n2

on [−π, π] for n = 1 . . . 10 and g(x)± ε
for ε = 0.2.

Finally, we should note that if a sequence of functions is uniformly
convergent then it converges pointwise. However, the examples should
bear out that the converse is not true.

A.7 Infinite Series of Functions

We now turn our attention to infinite series of functions, which will
form the basis of our study of Fourier series. An infinite series of func-
tions is given by ∑∞

n=1 fn(x), x ∈ D. Using powers of x again, an
example would be ∑∞

n=1 xn, x ∈ [−1, 1]. In order to investigate the
convergence of this series; i.e., we would substitute values for x and
determine if the resulting series of numbers converges. This means
that we would need to consider the Nth partial sums

sN(x) =
N

∑
n=1

fn(x).

Does this sequence of functions converge? We begin to answer this
question by defining pointwise and uniform convergence.

Definition A.8. ∑ f j(x) converges pointwise to f (x) on D if given x ∈ D,

Pointwise convergence.
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and ε > 0, there exists and N such that

| f (x)− sn(x)| < ε

for all n > N.

Definition A.9. ∑ f j(x) converges uniformly to f (x) on D given ε > 0, Uniform convergence.

there exists and N such that

| f (x)− sn(x)| < ε

for all n > N and all x ∈ D.

Again, we state without proof the following:

Uniform convergence give nice proper-
ties under some additional conditions,
such as being able to integrate, or dif-
ferentiate, term by term.

1. Uniform convergence implies pointwise convergence.

2. If fn is continuous on D, and ∑∞
n fn converges uniformly to

f on D, then f is continuous on D.

3. If fn is continuous on [a, b] ⊂ D, ∑∞
n fn converges uniformly

on D, and
∫ b

a fn(x) dx exists, then

∞

∑
n

∫ b

a
fn(x) dx =

∫ b

a

∞

∑
n

fn(x) dx =
∫ b

a
g(x) dx.

4. If f ′n is continuous on [a, b] ⊂ D, ∑∞
n fn converges point-

wise to g on D, and ∑∞
n f ′n converges uniformly on D, then

∑∞
n f ′n(x) = d

dx (∑
∞
n fn(x)) = g′(x) for x ∈ (a, b).

Since uniform convergence of series gives so much, like term by
term integration and differentiation, we would like to be able to rec-
ognize when we have a uniformly convergent series. One test for such
convergence is the Weierstraß M-Test9.

9 Karl Theodor Wilhelm Weierstraß
(1815-1897) was a German mathemati-
cian who may be thought of as the
father of analysis.

Theorem A.6. Weierstraß M-Test Let { fn}∞
n=1 be a sequence of functions

on D. If | fn(x)| ≤ Mn, for x ∈ D and ∑∞
n=1 Mn converges, then ∑∞

n=1 fn

converges uniformly of D.

Proof. First, we note that for x ∈ D,

∞

∑
n=1
| fn(x)| ≤

∞

∑
n=1

Mn.

Thus, since by the assumption that ∑∞
n=1 Mn converges, we have that

∑∞
n=1 fn converges absolutely on D. Therefore, ∑∞

n=1 fn converges point-
wise on D. So, let ∑∞

n=1 fn = g.
We now want to prove that this convergence is in fact uniform.

Given ε > 0, we need to find an N such that

|g(x)−
n

∑
j=1

f j(x)| < ε
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if n ≥ N for all x ∈ D.
So, for any x ∈ D,

|g(x)−
n

∑
j=1

f j(x)| = |
∞

∑
j=1

f j(x)−
n

∑
j=1

f j(x)|

= |
∞

∑
j=n+1

f j(x)|

≤
∞

∑
j=n+1

| f j(x)|, by the triangle inequality

≤
∞

∑
j=n+1

Mj. (A.8)

Now, the sum over the Mj’s is convergent, so we can choose N such
that

∞

∑
j=n+1

Mj < ε, n ≥ N.

Then, we have from above that

|g(x)−
n

∑
j=1

f j(x)| ≤
∞

∑
j=n+1

Mj < ε

for all n ≥ N and x ∈ D. Thus, ∑ f j → g uniformly on D.

We now given an example of how to use the Weierstraß M-Test.

Example A.21. We consider the series ∑∞
n=1

cos nx
n2 defined on [−π, π]. Each

term is bounded by
∣∣∣ cos nx

n2

∣∣∣ = 1
n2 ≡ Mn. We know that ∑∞

n=1 Mn =

∑∞
n=1

1
n2 < ∞. Thus, we can conclude that the original series converges uni-

formly, as it satisfies the conditions of the Weierstraß M-Test.

A.8 Power Series

A typical example of a series of functions that the student has
encountered in previous courses is the power series. Examples of such
series were provided by Taylor and Maclaurin series.10 10 Actually, what are now known as Tay-

lor and Maclaurin series were known
long before they were named. James
Gregory (1638-1675) has been recog-
nized for discovering Taylor series,
which were later named after Brook Tay-
lor (1685-1731) . Similarly, Colin Maclau-
rin (1698-1746) did not actually discover
Maclaurin series, but because of his par-
ticular use of them.

Definition A.10. A power series expansion about x = a with coefficient
sequence cn is given by ∑∞

n=0 cn(x− a)n.

For now we will consider all constants to be real numbers with x in
some subset of the set of real numbers.

An example of such a power series is the following expansion about
x = 0 :

∞

∑
n=0

xn = 1 + x + x2 + . . . . (A.9)
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We would like to make sense of such expansions. For what values
of x will this infinite series converge? Until now we did not pay much
attention to which infinite series might converge. However, this par-
ticular series is already familiar to us. It is a geometric series. Note
that each term is gotten from the previous one through multiplication
by r = x. The first term is a = 1. So, from Equation (1.74), we have the
sum of the series is given by

∞

∑
n=0

xn =
1

1− x
, |x| < 1.

In this case we see that the sum, when it exists, is a simple function.
In fact, when x is small, we can use this infinite series to provide
approximations to the function (1 − x)−1. If x is small enough, we
can write

(1− x)−1 ≈ 1 + x.

In Figure A.13 we see that for small values of x these functions do
agree.

−0.1 0 0.1
0.9

0.95

1

1.05

1.1

1.15
Comparison of 1/(1−x) and 1+x

x

Figure A.13: Comparison of 1
1−x (solid)

to 1 + x (dashed) for x ∈ [−0.1, 0.1].

Of course, if we want better agreement, we select more terms. In
Figure A.14 we see what happens when we do so. The agreement is
much better. But extending the interval, we see in Figure A.15 shows
that keeping only quadratic terms may not be good enough. Keeping
the cubic terms gives better agreement over the interval.
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0.9
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Comparison of 1/(1−x) and 1+x+x2

x

Figure A.14: Comparison of 1
1−x (solid)

to 1+ x + x2 (dashed) for x ∈ [−0.1, 0.1].

Finally, in Figure A.16 we show the sum of the first 21 terms over
the entire interval [−1, 1]. Note that there are problems with approxi-
mations near the endpoints of the interval, x = ±1.

Such polynomial approximations are called Taylor polynomials. Thus,
T3(x) = 1 + x + x2 + x3 is the third order Taylor polynomial approxi-
mation of f (x) = 1

1−x .
With this example we have seen how useful a series representation

might be for a given function. However, the series representation was a
simple geometric series, which we already knew how to sum. Is there
a way to begin with a function and then find its series representation?
Once we have such a representation, will the series converge to the
function with which we started? For what values of x will it converge?
These questions can be answered by recalling the definitions of Taylor
and Maclaurin series.
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x

Figure A.15: Comparison of 1
1−x (solid)

to 1+ x+ x2 (dashed) and 1+ x+ x2 + x3

(dash-dot) for x ∈ [−0.5, 0.5].

Definition A.11. A Taylor series expansion of f (x) about x = a is the

Taylor series expansion.

series

f (x) ∼
∞

∑
n=0

cn(x− a)n, (A.10)

where

cn =
f (n)(a)

n!
. (A.11)
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Note that we use ∼ to indicate that we have yet to determine when
the series may converge to the given function. A special class of series
are those Taylor series for which the expansion is about x = 0.

Definition A.12. A Maclaurin series expansion of f (x) is a Taylor series
expansion of f (x) about x = 0, or Maclaurin series expansion.

f (x) ∼
∞

∑
n=0

cnxn, (A.12)

where

cn =
f (n)(0)

n!
. (A.13)
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Figure A.16: Comparison of 1
1−x (solid)

to ∑∞
n=0 xn for x ∈ [−1, 1].

Example A.22. Expand f (x) = ex about x = 0.
We begin by creating a table. In order to compute the expansion coeffi-

cients, cn, we will need to perform repeated differentiations of f (x). So, we
provide a table for these derivatives. Then we only need to evaluate the second
column at x = 0 and divide by n!.

n f (n)(x) cn

0 ex e0

0! = 1

1 ex e0

1! = 1

2 ex e0

2! =
1
2!

3 ex e0

3! =
1
3!

Next, one looks at the last column and tries to determine some pattern so
as to write down the general term of the series. If there is only a need to get a
polynomial approximation, then the first few terms may be sufficient.

In this case, we have that the pattern is obvious: cn = 1
n! . So,

ex ∼
∞

∑
n=0

xn

n!
.

Example A.23. Expand f (x) = ex about x = 1.
Here we seek an expansion of the form ex ∼ ∑∞

n=0 cn(x − 1)n. We could
create a table like the last example. In fact, the last column would have values
of the form e

n! . (You should confirm this.) However, we could make use of
the Maclaurin series expansion for ex and get the result quicker. Note that
ex = ex−1+1 = eex−1. Now, apply the known expansion for ex :

ex ∼ e
(

1 + (x− 1) +
(x− 1)2

2
+

(x− 1)3

3!
+ . . .

)
=

∞

∑
n=0

e(x− 1)n

n!
.
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Example A.24. Expand f (x) = 1
1−x about x = 0.

This is the example with which we started our discussion. We set up a
table again. We see from the last column that we get back our geometric series
(A.9).

n f (n)(x) cn

0 1
1−x

1
0! = 1

1 1
(1−x)2

1
1! = 1

2 2(1)
(1−x)3

2!
2! = 1

3 3(2)(1)
(1−x)4

3!
3! = 1

So, we have found

1
1− x

∼
∞

∑
n=0

xn.

We can replace ∼ by equality if we can determine the range of x-
values for which the resulting infinite series converges. We will inves-
tigate such convergence shortly.

Series expansions for many elementary functions arise in a variety
of applications. Some common expansions are provided below.
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Series Expansions You Should Know

ex = 1 + x +
x2

2
+

x3

3!
+

x4

4!
+ . . . =

∞

∑
n=0

xn

n!
(A.14)

cos x = 1− x2

2
+

x4

4!
− . . . =

∞

∑
n=0

(−1)n x2n

(2n)!
(A.15)

sin x = x− x3

3!
+

x5

5!
− . . . =

∞

∑
n=0

(−1)n x2n+1

(2n + 1)!
(A.16)

cosh x = 1 +
x2

2
+

x4

4!
+ . . . =

∞

∑
n=0

x2n

(2n)!
(A.17)

sinh x = x +
x3

3!
+

x5

5!
+ . . . =

∞

∑
n=0

x2n+1

(2n + 1)!
(A.18)

1
1− x

= 1 + x + x2 + x3 + . . . =
∞

∑
n=0

xn (A.19)

1
1 + x

= 1− x + x2 − x3 + . . . =
∞

∑
n=0

(−x)n (A.20)

tan−1 x = x− x3

3
+

x5

5
− x7

7
+ . . . =

∞

∑
n=0

(−1)n x2n+1

2n + 1
(A.21)

ln(1 + x) = x− x2

2
+

x3

3
− . . . =

∞

∑
n=1

(−1)n+1 xn

n
(A.22)

What is still left to be determined is for what values do such power
series converge. The first five of the above expansions converge for all
reals, but the others only converge for |x| < 1.

We consider the convergence of ∑∞
n=0 cn(x− a)n. For x = a the series

obviously converges. Will it converge for other points? One can prove

Theorem A.7. If ∑∞
n=0 cn(b− a)n converges for b 6= a, then

∑∞
n=0 cn(x− a)n converges absolutely for all x satisfying |x− a| < |b− a|.

This leads to three possibilities

1. ∑∞
n=0 cn(x− a)n may only converge at x = a.

2. ∑∞
n=0 cn(x− a)n may converge for all real numbers.

3. ∑∞
n=0 cn(x − a)n converges for |x − a| < R and diverges for
|x− a| > R.

The number R is called the radius of convergence of the power series Interval and radius of convergence.

and (a− R, a + R) is called the interval of convergence. Convergence at
the endpoints of this interval has to be tested for each power series.

In order to determine the interval of convergence, one needs only
note that when a power series converges, it does so absolutely. So, we
need only test the convergence of ∑∞

n=0 |cn(x − a)n| = ∑∞
n=0 |cn||x −
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a|n. This is easily done using either the ratio test or the nth root test.
We first identify the nonnegative terms an = |cn||x − a|n, using the
notation from Section A.4. Then we apply one of our convergence
tests.

For example, the nth Root Test gives the convergence condition

ρ = lim
n→∞

n
√

an = lim
n→∞

n
√
|cn||x− a| < 1.

Thus,

|x− a| <
(

lim
n→∞

n
√
|cn|
)−1

≡ R.

This, R is the radius of convergence.
Similarly, we can apply the Ratio Test.

ρ = lim
n→∞

an+1

an
= lim

n→∞

|cn+1|
|cn|

|x− a| < 1.

Again, we rewrite this result to determine the radius of convergence:

|x− a| <
(

lim
n→∞

|cn+1|
|cn|

)−1

≡ R.

Example A.25. ex = ∑∞
n=0

xn

n! .
Since there is a factorial, we will use the Ratio Test with a = 0..

ρ = lim
n→∞

|n!|
|(n + 1)!| |x| = lim

n→∞

1
n + 1

|x| = 0.

Since ρ = 0, it is independent of |x| and thus the series converges for all x.
We also can say that the radius of convergence is infinite.

Example A.26. 1
1−x = ∑∞

n=0 xn.
In this example we will use the nth Root Test with a = 0.

ρ = lim
n→∞

n√1|x| = |x| < 1.

Thus, we find that we have absolute convergence for |x| < 1. Setting x = 1 or
x = −1, we find that the resulting series do not converge. So, the endpoints
are not included in the complete interval of convergence.

In this example we could have also used the Ratio Test. Thus,

ρ = lim
n→∞

1
1
|x| = |x| < 1.

We have obtained the same result as when we used the nth Root Test.

Example A.27. ∑∞
n=1

3n(x−2)n

n .
In this example, we have an expansion about x = 2. Using the nth Root

Test we find that

ρ = lim
n→∞

n

√
3n

n
|x− 2| = 3|x− 2| < 1.
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Solving for |x− 2| in this inequality, we find |x− 2| < 1
3 . Thus, the radius

of convergence is R = 1
3 and the interval of convergence is

(
2− 1

3 , 2 + 1
3

)
=( 5

3 , 7
3
)

.
As for the endpoints, we need to first test at x = 7

3 . The resulting series

is ∑∞
n=1

3n( 1
3 )

n

n = ∑∞
n=1

1
n . This is the harmonic series, and thus it does not

converge. Inserting x = 5
3 we get the alternating harmonic series, which does

converge. So, we have convergence on [ 5
3 , 7

3 ). However, it is only conditionally
convergent at the left endpoint, x = 5

3 .

Example A.28. Find an expansion of f (x) = 1
x+2 about x = 1.

Instead of explicitly computing the Taylor series expansion for this func-
tion, we can make use of an already known function. We first write f (x) as a
function of x− 1, since we are expanding about x = 1. This is easily done by
noting that 1

x+2 = 1
(x−1)+3 . Factoring out a 3, we can rewrite this as a sum

of a geometric series. Namely, we use the expansion for

g(z) =
1

1 + z
= 1− z + z2 − z3 + . . . . (A.23)

and then we rewrite f (x) as

f (x) =
1

x + 2

=
1

(x− 1) + 3

=
1

3[1 + 1
3 (x− 1)]

=
1
3

1
1 + 1

3 (x− 1)
. (A.24)

Note that f (x) = 1
3 g( 1

3 (x− 1)) for g(z) = 1
1+z So, the expansion becomes

f (x) =
1
3

[
1− 1

3
(x− 1) +

(
1
3
(x− 1)

)2
−
(

1
3
(x− 1)

)3
+ . . .

]
.

This can further be simplified as

f (x) =
1
3
− 1

9
(x− 1) +

1
27

(x− 1)2 − . . . .

Convergence is easily established. The expansion for g(z) converges for
|z| < 1. So, the expansion for f (x) converges for | − 1

3 (x − 1)| < 1. This
implies that |x − 1| < 3. Putting this inequality in interval notation, we
have that the power series converges absolutely for x ∈ (−2, 4). Inserting the
endpoints, one can show that the series diverges for both x = −2 and x = 4.
You should verify this!
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Euler’s Formula, eiθ = cos θ + i sin θ, is
an important formula and will be used
throughout the text.

As a final application, we can derive Euler’s Formula ,

eiθ = cos θ + i sin θ,

where i =
√
−1. We naively use the expansion for ex with x = iθ. This

leads us to

eiθ = 1 + iθ +
(iθ)2

2!
+

(iθ)3

3!
+

(iθ)4

4!
+ . . . .

Next we note that each term has a power of i. The sequence of
powers of i is given as {1, i,−1,−i, 1, i,−1,−i, 1, i,−1,−i, . . .}. See the
pattern? We conclude that

in = ir, where r = remainder after dividing n by 4.

This gives

eiθ =

(
1− θ2

2!
+

θ4

4!
− . . .

)
+ i
(

θ − θ3

3!
+

θ5

5!
− . . .

)
.

We recognize the expansions in the parentheses as those for the cosine
and sine functions. Thus, we end with Euler’s Formula.

We further derive relations from this result, which will be important
for our next studies. From Euler’s formula we have that for integer n:

einθ = cos(nθ) + i sin(nθ).

We also have
einθ =

(
eiθ
)n

= (cos θ + i sin θ)n .

Equating these two expressions, we are led to de Moivre’s Formula,
named after Abraham de Moivre (1667-1754),

(cos θ + i sin θ)n = cos(nθ) + i sin(nθ). (A.25)

Here we see elegant proofs of well
known trigonometric identities. We will
later make extensive use of these identi-
ties. Namely, you should know:

cos 2θ = cos2 θ − sin2 θ, (A.26)

sin 2θ = 2 sin θ cos θ, (A.27)

cos2 θ =
1
2
(1 + cos 2θ), (A.28)

sin2 θ =
1
2
(1− cos 2θ). (A.29)

This formula is useful for deriving identities relating powers of sines
or cosines to simple functions. For example, if we take n = 2 in Equa-
tion (A.25), we find

cos 2θ + i sin 2θ = (cos θ + i sin θ)2 = cos2 θ − sin2 θ + 2i sin θ cos θ.

Looking at the real and imaginary parts of this result leads to the well
known double angle identities

cos 2θ = cos2 θ − sin2 θ, sin 2θ = 2 sin θ cos θ.

Replacing cos2 θ = 1− sin2 θ or sin2 θ = 1− cos2 θ leads to the half
angle formulae:

cos2 θ =
1
2
(1 + cos 2θ), sin2 θ =

1
2
(1− cos 2θ).
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Trigonometric functions can be written
in terms of complex exponentials:

cos θ =
eiθ + e−iθ

2
,

sin θ =
eiθ − e−iθ

2i
.

We can also use Euler’s Formula to write sines and cosines in terms
of complex exponentials. We first note that due to the fact that the
cosine is an even function and the sine is an odd function, we have

e−iθ = cos θ − i sin θ.

Combining this with Euler’s Formula, we have that

cos θ =
eiθ + e−iθ

2
, sin θ =

eiθ − e−iθ

2i
.

Hyperbolic functions and trigonometric
functions are intimately related.

cos(ix) = cosh x,

sin(ix) = −i sinh x.

We finally note that there is a simple relationship between hyper-
bolic functions and trigonometric functions. Recall that

cosh x =
ex + e−x

2
.

If we let x = iθ, then we have that cosh(iθ) = cos θ and cos(ix) =

cosh x. Similarly, we can show that sinh(iθ) = i sin θ and sin(ix) =

−i sinh x. The binomial expansion is a special se-
ries expansion used to approximate ex-
pressions of the form (a + b)p for b� a,
or (1 + x)p for |x| � 1.One series expansion which occurs often in examples and appli-

cations is the binomial expansion. This is simply the expansion of
the expression (a + b)p in powers of a and b. We will investigate this
expansion first for nonnegative integer powers p and then derive the
expansion for other values of p. While the binomial expansion can
be obtained using Taylor series, we will provide a more interesting
derivation here to show that

(a + b)p =
∞

∑ Cr
pan−rbr, (A.30)

where the Cr
p are called the binomial coefficients.

One series expansion which occurs often in examples and applica-
tions is the binomial expansion. This is simply the expansion of the
expression (a+ b)p. We will investigate this expansion first for nonneg-
ative integer powers p and then derive the expansion for other values
of p.

Lets list some of the common expansions for nonnegative integer
powers.

(a + b)0 = 1

(a + b)1 = a + b

(a + b)2 = a2 + 2ab + b2

(a + b)3 = a3 + 3a2b + 3ab2 + b3

(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4

· · · (A.31)
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We now look at the patterns of the terms in the expansions. First, we
note that each term consists of a product of a power of a and a power
of b. The powers of a are decreasing from n to 0 in the expansion of
(a + b)n. Similarly, the powers of b increase from 0 to n. The sums of
the exponents in each term is n. So, we can write the (k + 1)st term
in the expansion as an−kbk. For example, in the expansion of (a + b)51

the 6th term is a51−5b5 = a46b5. However, we do not yet know the
numerical coefficient in the expansion.

Let’s list the coefficients for the above expansions.

n = 0 : 1
n = 1 : 1 1
n = 2 : 1 2 1
n = 3 : 1 3 3 1
n = 4 : 1 4 6 4 1

(A.32)

This pattern is the famous Pascal’s triangle.11 There are many inter-

11 Pascal’s triangle is named after Blaise
Pascal (1623-1662). While such configu-
rations of number were known earlier in
history, Pascal published them and ap-
plied them to probability theory.

Pascal’s triangle has many unusual
properties and a variety of uses:

• Horizontal rows add to powers of 2.

• The horizontal rows are powers of 11

(1, 11, 121, 1331, etc.).

• Adding any two successive numbers
in the diagonal 1-3-6-10-15-21-28...
results in a perfect square.

• When the first number to the right of
the 1 in any row is a prime number,
all numbers in that row are divisible
by that prime number.

• Sums along certain diagonals leads
to the Fibonacci sequence.

esting features of this triangle. But we will first ask how each row can
be generated.

We see that each row begins and ends with a one. The second
term and next to last term have a coefficient of n. Next we note that
consecutive pairs in each row can be added to obtain entries in the next
row. For example, we have for rows n = 2 and n = 3 that 1 + 2 = 3
and 2 + 1 = 3 :

n = 2 : 1 2 1
↘ ↙ ↘ ↙

n = 3 : 1 3 3 1
(A.33)

With this in mind, we can generate the next several rows of our
triangle.

n = 3 : 1 3 3 1
n = 4 : 1 4 6 4 1
n = 5 : 1 5 10 10 5 1
n = 6 : 1 6 15 20 15 6 1

(A.34)

So, we use the numbers in row n = 4 to generate entries in row n = 5 :
1 + 4 = 5, 4 + 6 = 10. We then use row n = 5 to get row n = 6, etc.

Of course, it would take a while to compute each row up to the
desired n. Fortunately, there is a simple expression for computing a
specific coefficient. Consider the kth term in the expansion of (a + b)n.
Let r = k − 1. Then this term is of the form Cn

r an−rbr. We have seen
the the coefficients satisfy

Cn
r = Cn−1

r + Cn−1
r−1 .



review of sequences and infinite series 489

Actually, the binomial coefficients have been found to take a simple
form,

Cn
r =

n!
(n− r)!r!

≡
(

n
r

)
.

This is nothing other than the combinatoric symbol for determining
how to choose n things r at a time. In our case, this makes sense. We
have to count the number of ways that we can arrange r products of b
with n− r products of a. There are n slots to place the b’s. For example,
the r = 2 case for n = 4 involves the six products: aabb, abab, abba,
baab, baba, and bbaa. Thus, it is natural to use this notation.

So, we have found that

(a + b)n =
n

∑
r=0

(
n
r

)
an−rbr. (A.35)

Now consider the geometric series 1 + x + x2 + . . . . We have seen
that such a series converges for |x| < 1, giving

1 + x + x2 + . . . =
1

1− x
.

But, 1
1−x = (1− x)−1.

This is again a binomial to a power, but the power is not an integer.
It turns out that the coefficients of such a binomial expansion can be
written similar to the form in Equation (A.35).

This example suggests that our sum may no longer be finite. So, for
p a real number, we write

(1 + x)p =
∞

∑
r=0

(
p
r

)
xr. (A.36)

However, we quickly run into problems with this form. Consider
the coefficient for r = 1 in an expansion of (1 + x)−1. This is given by(

−1
1

)
=

(−1)!
(−1− 1)!1!

=
(−1)!
(−2)!1!

.

But what is (−1)!? By definition, it is

(−1)! = (−1)(−2)(−3) · · · .

This product does not seem to exist! But with a little care, we note that

(−1)!
(−2)!

=
(−1)(−2)!

(−2)!
= −1.

So, we need to be careful not to interpret the combinatorial coefficient
literally. There are better ways to write the general binomial expansion.
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We can write the general coefficient as(
p
r

)
=

p!
(p− r)!r!

=
p(p− 1) · · · (p− r + 1)(p− r)!

(p− r)!r!

=
p(p− 1) · · · (p− r + 1)

r!
. (A.37)

With this in mind we now state the theorem:

General Binomial Expansion

The general binomial expansion for (1 + x)p is a simple gener-
alization of Equation (A.35). For p real, we have the following
binomial series:

(1 + x)p =
∞

∑
r=0

p(p− 1) · · · (p− r + 1)
r!

xr, |x| < 1. (A.38)

Often we need the first few terms for the case that x � 1 :

(1 + x)p = 1 + px +
p(p− 1)

2
x2 + O(x3). (A.39)

Example A.29. Approximate 1√
1− v2

c2

for v� c. This can be rewritten as The factor γ =
(

1− v2

c2

)−1/2
is impor-

tant in special relativity. Namely, this
is the factor relating differences in time
and length measurements by observers
moving relative inertial frames. For ce-
lestial speeds, this is an appropriate ap-
proximation.

1√
1− v2

c2

=

[
1−

(v
c

)2
]−1/2

.

Using the binomial expansion for p = −1/2, we have

1√
1− v2

c2

≈ 1 +
(
−1

2

)(
−v2

c2

)
= 1 +

v2

2c2 .

Example A.30. Small differences in large numbers.
As an example, we could compute f (R, h) =

√
R2 + h2 − R for R =

6378.164 km and h = 1.0 m. Inserting these values into a scientific calculator,
one finds that

f (6378164, 1) =
√

63781642 + 1− 6378164 = 1× 10−7 m.

In some calculators one might obtain 0, in other calculators, or computer
algebra systems like Maple, one might obtain other answers. What answer do
you get and how accurate is your answer?

The problem with this computation is that R� h. Therefore, the computa-
tion of f (R, h) depends on how many digits the computing device can handle.
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The best way to get an answer is to use the binomial approximation. Writing
x = h

R , we have

f (R, h) =
√

R2 + h2 − R

= R
√

1 + x2 − R

' R
[

1 +
1
2

x2
]
− R

=
1
2

Rx2

=
1
2

h
R2 = 7.83926× 10−8 m. (A.40)

Of course, you should verify how many digits should be kept in reporting the
result.

In the next examples, we show how computations taking a more
general form can be handled. Such general computations appear in
proofs involving general expansions without specific numerical values
given.

Example A.31. Obtain an approximation to (a + b)p when a is much larger
than b, denoted by a� b.

If we neglect b then (a + b)p ' ap. How good of an approximation is
this? This is where it would be nice to know the order of the next term in the
expansion. Namely, what is the power of b/a of the first neglected term in
this expansion?

In order to do this we first divide out a as

(a + b)p = ap
(

1 +
b
a

)p
.

Now we have a small parameter, b
a . According to what we have seen earlier,

we can use the binomial expansion to write(
1 +

b
a

)n
=

∞

∑
r=0

(
p
r

)(
b
a

)r
. (A.41)

Thus, we have a sum of terms involving powers of b
a . Since a � b, most of

these terms can be neglected. So, we can write(
1 +

b
a

)p
= 1 + p

b
a
+ O

((
b
a

)2
)

.

Here we used O(), big-Oh notation, to indicate the size of the first neglected
term. (This notation is formally defined in another section.)

Summarizing, this then gives

(a + b)p = ap
(

1 +
b
a

)p
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= ap

(
1 + p

b
a
+ O

((
b
a

)2
))

= ap + pap b
a
+ apO

((
b
a

)2
)

. (A.42)

Therefore, we can approximate (a + b)p ' ap + pbap−1, with an error on
the order of b2ap−2. Note that the order of the error does not include the
constant factor from the expansion. We could also use the approximation that
(a + b)p ' ap, but it is not typically good enough in applications because the
error in this case is of the order bap−1.

Example A.32. Approximate f (x) = (a + x)p − ap for x� a.
In an earlier example we computed f (R, h) =

√
R2 + h2 − R for R =

6378.164 km and h = 1.0 m. We can make use of the binomial expansion to
determine the behavior of similar functions in the form f (x) = (a+ x)p− ap.
Inserting the binomial expression into f (x), we have as x

a → 0 that

f (x) = (a + x)p − ap

= ap
[(

1 +
x
a

)p
− 1
]

= ap
[

px
a

+ O
(( x

a

)2
)]

= O
( x

a

)
as

x
a
→ 0. (A.43)

This result might not be the approximation that we desire. So, we could
back up one step in the derivation to write a better approximation as

(a + x)p − ap = ap−1 px + O
(( x

a

)2
)

as
x
a
→ 0.

We could use this approximation to answer the original question by letting
a = R2, x = 1 and p = 1

2 . Then, our approximation would be of order

O
(( x

a

)2
)
= O

((
1

63781642

)2
)
∼ 2.4× 10−14.

Thus, we have √
63781642 + 1− 6378164 ≈ ap−1 px

where
ap−1 px = (63781642)−1/2(0.5)1 = 7.83926× 10−8.

This is the same result we had obtained before.

A.9 The Order of Sequences and Functions

Often we are interested in comparing the rates of convergence
of sequences or asymptotic behavior of functions. This is useful in
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approximation theory as we had seen in the last section. We begin
with the comparison of sequences and introduce big-Oh notation. We
will then extend this to functions of continuous variables.

Definition A.13. Let {an} and {bn} be two sequences. Then if there
are numbers N and K (independent of N) such that∣∣∣∣ an

bn

∣∣∣∣ < K whenever n > N,

then we say that an is of the order of bn. We write this as

an = O(bn) as n→ ∞

and say an is “big O” of bn.

Example A.33. Consider the sequences given by an = 2n+1
3n2+2 and bn = 1

n .
In this case we consider the ratio,∣∣∣∣ an

bn

∣∣∣∣ =
∣∣∣∣∣

2n+1
3n2+2

1
n

∣∣∣∣∣ =
∣∣∣∣2n2 + n

3n2 + 2

∣∣∣∣ .

We want to find a bound on the last expression as n gets large. We divide
the numerator and denominator by n2 and find that∣∣∣∣ an

bn

∣∣∣∣ = ∣∣∣∣ 2 + 1/n
3 + 2/n2

∣∣∣∣ = 2
3

∣∣∣∣ 1 + 1/2n
1 + 2/3n2

∣∣∣∣ .

The last expresssion is largest for n = 1. This gives∣∣∣∣ an

bn

∣∣∣∣ = 2
3

∣∣∣∣ 1 + 1/2n
1 + 2/3n2

∣∣∣∣ ≤ 2
3

∣∣∣∣1 + 1/2
1 + 2/3

∣∣∣∣ = 9
10

.

Thus, for n > 1, we have that∣∣∣∣ an

bn

∣∣∣∣ ≤ 9
10

< 1 ≡ K.

We then conclude from Definition A.13 that

an = O(bn) = O
(

1
n

)
.

In practice one is often given a sequence like an, but the second
simpler sequence needs to be found by looking at the large n behavior
of an.

Referring to the last example, we are given an = 2n+1
3n2+2 . We look

at the large n behavior. The numerator behaves like 2n and the de-
nominator behaves like 3n2. Thus, an = 2n+1

3n2+2 ∼
2n
3n2 = 2

3n for large n.
Therefore, we say that an = O( 1

n ) for large n. Note that we are only in-
terested in the n-dependence and not the multiplicative constant since
1
n and 2

3n have the same growth rate.
In a similar way, we can compare functions. We modify our defini-

tion of big-Oh for functions of a continuous variable.
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Definition A.14. f (x) is of the order of g(x), or f (x) = O(g(x)) as
x → x0 if

lim
x→x0

∣∣∣∣ f (x)
g(x)

∣∣∣∣ < K

for some K independent of x0.

Example A.34. Show that

cos x− 1 +
x2

2
= O(x4) as x → 0.

This should be apparent from the Taylor series expansion for cos x,

cos x = 1− x2

2
+ O(x4) as x → 0.

However, we will show that cos x− 1 + x2

2 is of the order of O(x4) using the
above definition.

We need to compute

lim
x→0

∣∣∣∣∣cos x− 1 + x2

2
x4

∣∣∣∣∣ .

The numerator and denominator separately go to zero, so we have an indeter-
minate form. This suggests that we need to apply L’Hopital’s Rule. In fact,
we apply it several times to find that

lim
x→0

∣∣∣∣∣cos x− 1 + x2

2
x4

∣∣∣∣∣ = lim
x→0

∣∣∣∣− sin x + x
4x3

∣∣∣∣
= lim

x→0

∣∣∣∣− cos x + 1
12x2

∣∣∣∣
= lim

x→0

∣∣∣∣ sin x
24x

∣∣∣∣ = 1
24

.

Thus, for any number K > 1
24 , we have that

lim
x→0

∣∣∣∣∣cos x− 1 + x2

2
x4

∣∣∣∣∣ < K.

We conclude that

cos x− 1 +
x2

2
= O(x4) as x → 0.

Example A.35. Determine the order of f (x) = (x3 − x)1/3 − x as x →
∞. We can use a binomial expansion to write the first term in powers of x.
However, since x→ ∞, we want to write f (x) in powers of 1

x , so that we can
neglect higher order powers. We can do this by first factoring out the x3 :

(x3 − x)1/3 − x = x
(

1− 1
x2

)1/3
− x
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= x
(

1− 1
3x2 + O

(
1
x4

))
− x

= − 1
3x

+ O
(

1
x3

)
. (A.44)

Now we can see from the first term on the right that (x3 − x)1/3 − x =

O
(

1
x

)
as x → ∞.

Problems

1. For those sequences that converge, find the limit limn→∞ an.

a. an = n2+1
n3+1 .

b. an = 3n+1
n+2 .

c. an =
( 3

n
)1/n

.

d. an = 2n2+4n3

n3+5
√

2+n6 .

e. an = n ln
(

1 + 1
n

)
.

f. an = n sin
(

1
n

)
.

g. an = (2n+3)!
(n+1)! .

2. Find the sum for each of the series:

a. ∑∞
n=0

(−1)n3
4n .

b. ∑∞
n=2

2
5n .

c. ∑∞
n=0

(
5

2n + 1
3n

)
.

d. ∑∞
n=1

3
n(n+3) .

3. Determine if the following converge, or diverge, using one of the
convergence tests. If the series converges, is it absolute or conditional?

a. ∑∞
n=1

n+4
2n3+1 .

b. ∑∞
n=1

sin n
n2 .

c. ∑∞
n=1

( n
n+1
)n2

.

d. ∑∞
n=1(−1)n n−1

2n2−3 .

e. ∑∞
n=1

ln n
n .

f. ∑∞
n=1

100n

n200 .

g. ∑∞
n=1(−1)n n

n+3 .

h. ∑∞
n=1(−1)n

√
5n

n+1 .

4. Do the following:
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a. Compute: limn→∞ n ln
(
1− 3

n
)

.

b. Use L’Hopital’s Rule to evaluate L = limx→∞

(
1− 4

x

)x
. Hint:

Consider ln L.

c. Determine the convergence of ∑∞
n=1

( n
3n+2

)n2
.

d. Sum the series ∑∞
n=1

[
tan−1 n− tan−1(n + 1)

]
by first writing

the Nth partial sum and then computing limN→∞ sN .

5. Consider the sum ∑∞
n=1

1
(n+2)(n+1) .

a. Use an appropriate convergence test to show that this series
converges.

b. Verify that

∞

∑
n=1

1
(n + 2)(n + 1)

=
∞

∑
n=1

(
n + 1
n + 2

− n
n + 1

)
.

c. Find the nth partial sum of the series ∑∞
n=1

(
n+1
n+2 −

n
n+1

)
and

use it to determine the sum of the resulting telescoping series.

6. Recall that the alternating harmonic series converges conditionally.

a. From the Taylor series expansion for f (x) = ln(1+ x), insert-
ing x = 1 gives the alternating harmonic series. What is the
sum of the alternating harmonic series?

Since the alternating harmonic series does not converge absolutely,
then a rearrangement of the terms in the series will result in series
whose sums vary. One such rearrangement in alternating p positive
terms and n negative terms leads to the following sum12: 12 This is discussed by Lawrence H. Rid-

dle in the Kenyon Math. Quarterly, 1(2),
6-21.1

2
ln

4p
n

=

(
1 +

1
3
+ · · ·+ 1

2p− 1

)
︸ ︷︷ ︸

p terms

−
(

1
2
+

1
4
+ · · ·+ 1

2n

)
︸ ︷︷ ︸

n terms

+

(
1

2p + 1
+ · · ·+ 1

4p− 1

)
︸ ︷︷ ︸

p terms

−
(

1
2n + 2

+ · · ·+ 1
4n

)
︸ ︷︷ ︸

n terms

+ · · · .

Find rearrangements of the alternating harmonic series to give the fol-
lowing sums; i.e., determine p and n for the given expression and write
down the above series explicitly; i.e, determine p and n leading to the
following sums.

b. 5
2 ln 2.

c. ln 8.

d. 0.

e. A sum that is close to π.
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7. Determine the radius and interval of convergence of the following
infinite series:

a. ∑∞
n=1(−1)n (x−1)n

n .

b. ∑∞
n=1

xn

2nn! .

c. ∑∞
n=1

1
n
( x

5
)n

d. ∑∞
n=1(−1)n xn

√
n .

8. Find the Taylor series centered at x = a and its corresponding
radius of convergence for the given function. In most cases, you need
not employ the direct method of computation of the Taylor coefficients.

a. f (x) = sinh x, a = 0.

b. f (x) =
√

1 + x, a = 0.

c. f (x) = xex, a = 1.

d. f (x) = x−1
2+x , a = 1.

9. Test for pointwise and uniform convergence on the given set. [The
Weierstraß M-Test might be helpful.]

a. f (x) = ∑∞
n=1

ln nx
n2 , x ∈ [1, 2].

b. f (x) = ∑∞
n=1

1
3n cos x

2n on R.

10. Consider Gregory’s expansion

tan−1 x = x− x3

3
+

x5

5
− · · · =

∞

∑
k=0

(−1)k

2k + 1
x2k+1.

a. Derive Gregory’s expansion by using the definition

tan−1 x =
∫ x

0

dt
1 + t2 ,

expanding the integrand in a Maclaurin series, and integrat-
ing the resulting series term by term.

b. From this result, derive Gregory’s series for π by inserting
an appropriate value for x in the series expansion for tan−1 x.

11. Use deMoivre’s Theorem to write sin3 θ in terms of sin θ and sin 3θ.
Hint: Focus on the imaginary part of e3iθ .

12. Evaluate the following expressions at the given point. Use your
calculator and your computer (such as Maple). Then use series ex-
pansions to find an approximation to the value of the expression to as
many places as you trust.

a. 1√
1+x3 − cos x2 at x = 0.015.

b. ln
√

1+x
1−x − tan x at x = 0.0015.
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c. f (x) = 1√
1+2x2 − 1 + x2 at x = 5.00× 10−3.

d. f (R, h) = R−
√

R2 + h2 for R = 1.374× 103 km and h = 1.00
m.

e. f (x) = 1− 1√
1−x

for x = 2.5× 10−13.

13. Determine the order, O(xp), of the following functions. You may
need to use series expansions in powers of x when x → 0, or series
expansions in powers of 1/x when x → ∞.

a.
√

x(1− x) as x → 0.

b. x5/4

1−cos x as x → 0.

c. x
x2−1 as x → ∞.

d.
√

x2 + x− x as x → ∞.



Bibliography

George Arfken. Mathematical Methods for Physicists. Academic Press,
second edition, 1970.

Mary L. Boas. Mathematical Methods in the Physical Sciences. John
Wiley & Sons, Inc, third edition, 2006.

Sadri Hassani. Foundations of Mathematical Physics. Allyn and Bacon,
1991.

Abdul J. Jerri. Integral and Discrete Transforms with Applications and
Error Analysis. Marcal Dekker, Inc, 1992.

Susan M. Lea. Mathematics for Physicists. Brooks/Cole, 2004.





Index

c, 400

Ørstead, Christian, 397

matrix:symmetric, 160

adjoint operator, 243
Ampère,André-Marie, 397
amplitude, 55
analog signal, 343
analytic function, 288
angular frequency, 55, 332
anticommutative, 377
arclength, 385
Argand diagram, 267
associated Laguerre polynomials, 462
Associated Legendre Functions, 451
associated Legendre functions, 227
atomic bomb example, 41
autonomous, 87

BAC-CAB rule, 382
back of the envelope calculations, 40
beats, 72
Beeblebrox, Zaphod, 412
Bernoulli numbers, 355
Bernoulli, Daniel, 166, 267
Bernoulli, Jakob, 267
Bernoulli, Jakob II, 267
Bernoulli, Johann, 267
Bernoulli, Johann II, 267
Bernoulli, Johann III, 267
Bernoulli, Nicolaus II, 267
Bernoulli, Nikolaus I, 267
Bessel function, 428
Bessel functions, 232

first kind, 233
Fourier-Bessel series, 235
generating function, 235
identities, 234
orthogonality, 234

recursion formula, 234
second kind, 233
zeros, 235

Bessel’s inequality, 253
Bessel, Friedrich Wilhelm, 232
big-Oh, 34, 491, 493
binomial coefficients, 30, 487
binomial expansion, 30, 487
Bose-Einstein integrals, 355
boundary value problem, 167
box function, 336
branch cut, 273
branch point, 307
Bromwich integral, 368
Bromwich, Thomas John l’Anson, 353
Buckingham Π Theorem, 39
Buckingham, edgar, 39

cakes
cylindrical, 444
rectangular, 442

capacitor, 61
Cardano, Girolamo, 267
Carlo, Giulio, 105
Cauchy Integral Formula, 290
Cauchy principal value integral, 302
Cauchy’s Theorem, 284
Cauchy, Augustin-Louis, 278
Cauchy-Euler equations, 72

nonhomogeneous, 75
Cauchy-Riemann equations, 278
center, 95
Chain Rule, 18
characteristic equation, 58, 74, 135
charge density, 398
chemical kinetics, 149
chili problem, 163, 164
circle of convergence, 288
circular membrane, 424

classical orthogonal polynomials, 215, 219
coefficient matrix, 136
cofactors, 126
commutation operation, 160
complete basis, 254
completely antisymmetric symbol, 378
complex differentiation, 277
complex functions, 271

multivalued, 272
natual logarithm, 273
real and imaginary parts, 272

complex numbers, 267
addition, 268
Cartesian form, 268
complex conjugate, 269
imaginary part, 267
modulus, 267
multiplication, 268
nth root, 269
nth roots of unity, 270
polar form, 268
quotient, 268
real part, 267

complex plane, 267
conic equation, 151
conics, 151

ellipse, 152
general equation, 151, 154
hyperbola, 155

connected set, 280
constant coefficient equations, 57
constant coefficient equations:complex

roots, 59
constant coefficient equations:repeated

roots, 58
constant coefficient systems, 137
continuity equation, 399
contour deformation, 285
contour integral, 303



502 mathematical physics

convergence
absolute, 474
conditional, 474
pointwise, 475
real sequences, 467
uniform, 476, 478

convergence in the mean, 253
convergence tests, 470

Comparison test, 471
Integral test, 471
Limit comparison test, 471
M-test, 478
nth term divergence test, 470
Ratio test, 472
Root test, 473

convolution
Fourier transform, 339
Laplace transform, 364

convolution theorem
Fourier transform, 339
Laplace transform, 363

coordinates
cylindrical, 407
polar, 117

cosine series, 194
Coulomb gauge, 402
coupled systems, 87
Cramer’s rule, 90, 128
cross product, 375
cube roots of unity, 271
curl, 390
current, 61
current density, 398
curvilinear coordinates, 404
cutoff frequency, 343

d’Alembert, Jean le Rond, 166
d’Alembertian, 404
damped harmonic motion, 96
de Moivre’s Formula, 486
de Moivre, Abraham, 486
de Vries, Gustav, 318
derivatives, 11

table, 18
determinant, 125
diagonalization, 131, 155
difference equation, 351
differential equation

autonomous, 49
first order, 49, 50
linear, 49, 56

nonhomogeneous, 67
second order, 56
separable, 49

differential equations, 356
coupled, 130

differential operator, 56
Differentiation Under Integral, 24
dimensional analysis, 39
Dirac delta function, 329

Laplace transform, 361
sifting property, 330

Dirac, Paul Adrien Maurice, 114, 329
direction field, 92
directional derivative, 388
Dirichlet boundary conditions, 238
Dirichlet kernel, 205
dispersion relation, 318
displacement current, 399
distribution, 329
divergence, 390
divergenceless, 391
domain, 281
domain coloring, 273
dot product, 375
double factorial, 224
double tank problem, 148
drag force, 53
Dyson, Freeman, 3

eigenfunction expansion, 249
eigenvalue, 132
eigenvalue problem, 132, 135

generalized, 159
eigenvector, 132
Einstein summation convention, 380
electric dipole, 413
electric field, 398
electric permittivity, 401
electric potential, 401
electromagnetic waves, 373, 400
ellipse, 151
elliptic integral, 104, 105
entire function, 288
epidemic model, 150
equilibrium, 89

center, 95
degenerate node, 97
focus, 96
node, 95
saddle, 94
source, 95

Euler angles, 121
Euler’s Formula, 486
Euler’s method, 80
Euler, Leonhard, 105, 166, 267
even functions, 188
exponential of a matrix, 136

Faraday’s law, 398
Faraday, Michael, 397
Feynman’s trick, 24
Feynman, Richard, 15, 24, 354
Fibonacci, Leonardo Pisano, 466
field, 112
filtering, 343
finite wave train, 339, 344
flux, 393
Fourier analysis, 180
Fourier coefficients, 180
Fourier series, 180

complex exponential, 325
Maple code, 197
representation on [0, 2π], 181

Fourier transform, 326
convolution, 334
properties, 332
shifitng properties, 333

Fourier, Joseph, 166
Fourier-Bessel series, 232
Fourier-Legendre series, 219, 228
Fredholm alternative, 254
free fall, 45
frequency, 55, 332
function space, 212
functions

exponential, 12
hyperbolic, 16
logarithmic, 12
polynomial, 12
rational, 12
trigonometric, 13

functions:inverse trigonometric functions,
15

Fundamental Theorem of Calculus, 19, 46
fundamental theorem of calculus, 391

Gamma function, 230, 352
gate function, 336, 344
Gauß, Carl Friedrich, 469
Gauss’ law, 398
Gaussian function, 334, 342
Gaussian integral, 335



index 503

Gegenbauer polynomials, 219
generalized function, 329
geometric series, 27, 288, 292
Gibbs phenomenon, 198, 204
Gibbs, Josiah Willard, 204
Goeppert-Mayer, Maria, 45
gradient, 388
Gram-Schmidt Orthogonalization, 216
gravitational potential, 223
Green’s identity, 246
Green’s Theorem in the Plane, 284
Green,George, 284
Gregory, James, 479
group velocity, 322

Hamilton, William Rowan, 399
harmonic conjugate, 279
harmonic functions, 278, 449
harmonics, 166

meridional, 456
sectoral, 456
spherical, 456
surface, 456
tesseral, 456
zonal, 456

Heart of Gold, 412
heat equation, 170

1D, 170, 199
Heaviside function, 229, 359

step function, 359
Heaviside, Oliver, 229
Heisenberg, Werner, 337
Helmholtz equation, 418
Helmholtz’s Theorem, 401
Helmholtz, Ludwig, 401
Hermite polynomials, 219, 259
Hitchhiker’s Guide, 412
Holmes, Sherlock, 465
holomorphic function, 278, 288
homogeneous, 87
Hooke’s law, 85
hydrogen atom, 459
hyperbolic cosine, 16
hyperbolic function identities, 17
hyperbolic sine, 16
hyperbolic tangent, 16

identities
double angle, 14
half angle, 14
product, 14

Pythagorean, 14
sum and difference, 14
tangent, 14

implicit solution, 50
impulse function, 344

unit impulse, 362
impulse response, 344
inductor, 61
infinite dimensional, 212
initial value problem, 49, 357
inner product, 212
inner product space, 213
integral transforms, 347
integrals, 11

integration limits, 20
simple substitution, 19
table, 19
trigonometric, 26

integrating factor, 50
integration by parts, 21, 190
integration by recursion, 351
interval of convergence, 483
inverse Fourier transform, 326
inverse Laplace transform, 357, 367
irrotational, 391

Jacobi polynomials, 219
Jacobian determinant, 407
Jordan canonical form, 158
Jordan’s lemma, 304, 311
Julia set, 274

Kepler, Johannes, 166, 232
kernel, 317
kettle drum, 424
Kirchoff’s rules, 61, 145
Kortweg, Diederik, 318
Kortweg-deVries equation, 317
Kronecker delta, 114, 214, 381
Kronecker, Leopold, 114

L’Hopital’s Rule, 468
Lagrange’s identity, 246
Lagrange, Joseph-Louis, 232
Laguerre polynomials, 219, 462
Laguerre, Edmond, 462
Laplace operator, 391
Laplace Transform

transform pairs, 348
Laplace transform, 346

convolution, 363

differential equations, 356
inverse, 367
properties, 352
series summation, 353

Laplace’s equation, 433, 448
Polar coordinates, 438
Rectangular coordinates, 434

Laplace, Pierre-Simon, 346
Laplace,Pierre-Simon, 448
Laplacian, 169, 373

polar coordinates, 425
Laurent series, 293

singular part, 294
Laurent, Pierre Alphonse, 293
law of cosines, 375
Law of Gravitation, 413
LC circuit, 64
least squares approximation, 251
Legendre polynomials, 219, 451

generating function, 223
leading coefficient, 222
normalization, 228
recurrence relation, 220
recursion formula, 220
Rodrigues formula, 220

Legendre, Adrien-Marie, 218, 230
Leibniz’s Theorem, 474
Leibniz, Gottfried Wilhelm, 474
Levi-Civita symbol, 378
limit theorems, 467
line of equilibria, 99
linear operator, 56

matrix representation, 122
linear transformation, 121
linearity, 56, 332
logarithm

multi-valued, 273
principal value, 273

LRC circuits, 61, 145

Maclaurin series, 136
Maclaurin, Colin, 479
magnetic field, 398
magnetic permeability, 401
magnetic potential, 401
Mandelbrot set, 274
mass-spring system, 54

coupled, 86
MATLAB code, 274
matrices, 119
matrix



504 mathematical physics

determinant, 125
Hermitian, 132
identity, 121
inverse, 120
multiplication, 119
real symmetric, 132
similar, 156
singular, 126
trace, 127
transpose, 120

matrix system, 136
matrix:antisymmetrc, 160
matrix:inverse, 126
Maxwell’s equations, 397
Maxwell, James Clerk, 397
Maxwell-Ampère Law, 398
mean square deviation, 252
mechanical energy, 104
membrane

annular, 432
circlur, 424
rectangular, 419

meromorphic function, 288
Method of Undetermined Coefficients, 60,

68
modified, 70

method of undetermined coefficients, 57
mixture problems, 147
momentum, 321
Morera’s Theorem, 288
Morera, Giacinto , 287
multivalued functions, 270, 307

integration, 309

Neumann boundary conditions, 238
Neumann function, 428
Neumann functions, 233
Newton’s Law of Cooling, 464
Newton’s second law, 46, 55
Newton, Isaac, 474
nodal curves, 421
nodal lines, 421
nonautonomous, 87
norm of functions, 215
normal, 283
normalization, 183
normalize basis functions, 215
numerical solutions, 79

odd functions, 188
open set, 280

orbit, 91
ordinary differential equation, 49
orthogonal functions, 183
orthonormal, 183
oscillations

coupled, 85
damped, 66
forced, 71
underdamped, 67

overdamped, 97

p-test, 472
parallelepiped, 382
parametrization, 281
Parseval’s equality, 254, 345
Parseval, Marc-Antoine, 345
partial differential equation, 169
partial fraction decomposition, 53, 357
partial fractions, 293
partial sum, 469
particle wave function, 320
particular solution, 49
partition function, 29
Pascal’s triangle, 31, 488
Pascal, Blaise, 31, 488
path independence, 282
path integral, 280
Pauli matrices, 160
pendulum, 54

nonlinear, 102
period, 40

period, 55, 102, 178
periodic boundary condition, 239
periodic boundary conditions, 427
periodic extension, 180, 191
periodic function, 15, 178
permutation symbol, 378
phase, 179
phase portrait, 91
phase shift, 179
phase velocity, 322
Plancherel’s formula, 345
Plancherel, Michel, 345
Poisson equation, 401
Poisson Integral Formula, 441
Poisson kernel, 441
polar coordinates, 100, 117

derivatives, 100
poles, 294
potential drops, 61
potential energy, 104

potential function, 401
predator-prey model, 147
principal axes, 152
principal vectors, 154
product solutions, 173

quaternions, 397

radius of convergence, 288, 483
Rayleigh quotient, 247
RC circuits, 62
rectangular membrane, 419
relative error, 103
residue, 296
Residue Theorem, 298
resistor, 61
resonance, 71
Riemann surface, 273, 307
Riemann zeta function, 354
Riemann, Georg Friedrich Bernhard, 278
Riemann-Lebesque Lemma, 254
Romeo and Juliet, 146
rotation matrix, 123
rotation of conics, 151
rotations, 118
Russell, Bertrand, 11
Russell, J. Scott, 318

saddle point, 94
scalar field, 387
scalar product, 183
scale factors, 405
scheme

algebraic system, 323
Laplace transform, 347
Schrödinger equation, 322

Schrödiger equation , 320
Schrödinger equation, 458
self-adjoint, 245
separation of variables, 171
sequence

Fibonacci, 466
functions, 475
real numbers, 466
recursive, 466

series
alternating series, 474
binomial series, 33, 490
Fourier series, 180
functions, 477
geometric series, 27



index 505

harmonic series, 472
Laurent series, 291
Maclaurin series, 481
p-series, 472
power series, 479
re-indexed, 292
real numbers, 469
summation by transforms, 353
Taylor series, 480
telescoping, 29, 496

similarity matrix, 156
simple closed contour, 283
simple harmonic motion, 54, 85, 97, 361
simple pendulum, 55
sinc function, 336
sine series, 194

double, 423
singularity, 294

double pole, 295
essential, 294
poles, 294
removable, 294
simple pole, 295

slope field, 91
small angle approximation, 56
solenoidal, 391
solitons, 16
solutions

equilibrium, 89
space of square integrable functions, 253
spacecurve, 384
special limits, 467
speed of light, 400
spherical harmonics, 449, 453
spherical symmetry, 448
spiral, 96, 100
square wave, 360

step function, 359
Stone-Weierstraß Theorem, 216
Sturm-Liouville operator, 238
Sturm-Liouville problem, 235, 237, 260,

261
sum of an infinite series, 470
systems

constant coefficient, 87

Tabular Method, 23
Taylor polynomials, 480
Taylor’s series, 288
Taylor, Brook, 166, 479
Tchebychef polynomials, 219
terminal velocity, 52
time constant, 63
tones, 177
torque, 376
trajectory, 91
transformation

similarity, 131
transformations

linear, 117
rotation, 118

Trigonometric identities, 182
trigonometric identities, 14
triple cross product, 382
triple scalar product, 381

uncertainty principle, 337
underdamped, 97
units

basic, 38
unstable node, 95

variation of parameters, 57, 76
vector, 111

vector field, 387, 389
vector functions, 383
vector identities, 395
vector projection, 217
vector space, 56, 111

function space, 212
inner product space, 213

vector spaces, 111
finite dimensional, 111

vectors
components, 113
length, 113
linearly independent, 113
orthogonal basis, 114
orthonormal basis, 114
scalar product, 114
standard basis, 113

vibrating string, 170

Wallis, John, 166
Watson, G.N., 232
wave equation, 166, 170

1D, 174, 201
electromagnetic, 400
rectangular, 419

wave packet, 321
wave speed, 318
wavelength, 318
wavenumber, 318, 332
Weierstraß, Karl Theodor Wilhelm, 478
Weierstraß M-Test, 478
Weierstraß substitution, 301
Wilbraham, Henry, 204
Wilkinson, Rebecca, 441
windowing, 344
work, 375
Wronskian, 57


	Prologue
	Introduction
	What is Mathematical Physics?
	An Overview of the Course
	Tips for Students
	Acknowledgments

	Introduction
	What Do I Need To Know From Calculus?
	What I Need From My Intro Physics Class?
	Technology and Tables
	Appendix: Dimensional Analysis
	Problems

	Free Fall and Harmonic Oscillators
	Free Fall and Terminal Velocity
	First Order Differential Equations
	The Simple Harmonic Oscillator
	Second Order Linear Differential Equations
	LRC Circuits
	Damped Oscillations
	Forced Systems
	Numerical Solutions of ODEs
	Linear Systems
	Appendix: The Nonlinear Pendulum
	Problems

	Linear Algebra
	Vector Spaces
	Linear Transformations
	Matrices
	Eigenvalue Problems
	Matrix Formulation of Planar Systems
	Applications
	Rotations of Conics
	Appendix: Diagonalization and Linear Systems
	Problems

	The Harmonics of Vibrating Strings
	Harmonics and Vibrations
	Boundary Value Problems
	Partial Differential Equations
	The 1D Heat Equation
	The 1D Wave Equation
	Introduction to Fourier Series
	Fourier Trigonometric Series
	Fourier Series Over Other Intervals
	Sine and Cosine Series
	Solution of the Heat Equation
	Finite Length Strings
	Appendix: The Gibbs Phenomenon
	Problems

	Non-sinusoidal Harmonics and Special Functions
	Function Spaces
	Classical Orthogonal Polynomials
	Fourier-Legendre Series
	Gamma Function
	Fourier-Bessel Series
	Sturm-Liouville Eigenvalue Problems
	Appendix: The Least Squares Approximation
	Appendix: The Fredholm Alternative Theorem
	Problems

	Complex Representations of Functions
	Complex Representations of Waves
	Complex Numbers
	Complex Valued Functions
	Complex Differentiation
	Complex Integration
	Problems

	Transform Techniques in Physics
	Introduction
	Complex Exponential Fourier Series
	Exponential Fourier Transform
	The Dirac Delta Function
	Properties of the Fourier Transform
	The Convolution Theorem
	The Laplace Transform
	Further Uses of Laplace Transforms
	Problems

	Vector Analysis and EM Waves
	Vector Analysis
	Electromagnetic Waves
	Curvilinear Coordinates
	Problems

	Oscillations in Higher Dimensions
	Vibrations of Rectangular Membranes
	Vibrations of a Kettle Drum
	Laplace's Equation in 2D
	Three Dimensional Cake Baking
	Laplace's Equation and Spherical Symmetry
	Schrödinger Equation in Spherical Coordinates
	Problems

	Review of Sequences and Infinite Series
	Sequences of Real Numbers
	Convergence of Sequences
	Limit Theorems
	Infinite Series
	Convergence Tests
	Sequences of Functions
	Infinite Series of Functions
	Power Series
	The Order of Sequences and Functions
	Problems

	Bibliography
	Index

