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Linear Algebra

"Physics is much too hard for physicists." David Hilbert (1862-1943)

Linear algebra is the backbone of most
of applied mathematics and underlies
many areas of physics, such as quantum
mechanics.

As the reader is aware by now, calculus has its roots in physics
and has become a very useful tool for modeling the physical world.
Another very important area of mathematics is linear algebra. Physics
students who have taken a course in linear algebra in a mathematics
department might not come away with this perception. It is not un-
til students take more advanced classes in physics that they begin to
realize that a good grounding in linear algebra can lead to a better
understanding of the behavior of physical systems.

In this chapter we will introduce some of the basics of linear alge-
bra for finite dimensional vector spaces and we will reinforce these
concepts through generalizations in later chapters to infinite dimen-
sional vector spaces. In keeping with the theme of our text, we will
apply some of these ideas to the coupled systems introduced in the
last chapter. Such systems lead to linear and nonlinear oscillations in
dynamical systems.

3.1 Vector Spaces

Much of the discussion and terminology that we will use comes
from the theory of vector spaces . Up until now you may only have
dealt with finite dimensional vector spaces. Even then, you might
only be comfortable with two and three dimensions. We will review a
little of what we know about finite dimensional spaces so that we can
introduce more general function spaces.

The notion of a vector space is a generalization of three dimensional
vectors and operations on them. In three dimensions, we have things
called vectors1 , which are arrows of a specific length and pointing in 1 In introductory physics one defines a

vector as any quantity that has both
magnitude and direction.

a given direction. To each vector, we can associate a point in a three
dimensional Cartesian system. We just attach the tail of the vector v to
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the origin and the head lands at (x, y, z).2 We then use unit vectors i, j 2 In multivariate calculus one concen-
trates on the component form of vectors.
These representations are easily general-
ized as we will see.

and k along the coordinate axes to write

v = xi + yj + zk.

Having defined vectors, we then learned how to add vectors and
multiply vectors by numbers, or scalars. Under these operations, we
expected to get back new vectors. Then we learned that there were
two types of multiplication of vectors. We could multiply them to get
a scalar or a vector. This leads to dot products and cross products,
respectively. The dot product is useful for determining the length of a
vector, the angle between two vectors, or if the vectors were orthogo-
nal. The cross product is used to produce orthogonal vectors, areas of
parallelograms, and volumes of parallelepipeds.

In physics you first learned about vector products when you defined
work, W = F · r. Cross products were useful in describing things like
torque, τ = r× F, or the force on a moving charge in a magnetic field,
F = qv× B. We will return to these more complicated vector opera-
tions later when reviewing Maxwell’s equations of electrodynamics.

These notions are then generalized to spaces of more than three
dimensions in linear algebra courses. The properties outlined roughly
above need to be preserved. So, we have to start with a space of vectors
and the operations between them. We also need a set of scalars, which
generally come from some field . However, in our applications the field
will either be the set of real numbers or the set of complex numbers.3 3 A field is a set together with two oper-

ations, usually addition and multiplica-
tion, such that we have

• Closure under addition and multipli-
cation

• Associativity of addition and multi-
plication

• Commutativity of addition and mul-
tiplication

• Additive and multiplicative identity

• Additive and multiplicative inverses

• Distributivity of multiplication over
addition

A vector space V over a field F is a set that is closed under addition
and scalar multiplication and satisfies the following conditions: For
any u, v, w ∈ V and a, b ∈ F

1. u + v = v + u.

2. (u + v) + w = u + (v + w).

3. There exists a 0 such that 0 + v= v.

4. There exists an additive inverse, −v, such that v + (−v) = 0.

There are several distributive properties:

5. a(bv) = (ab)v.

6. (a + b)v = av + bv.

7. a(u + v) = au + av.

8. There exists a multiplicative identity, 1, such that 1(v) = v.

For now, we will restrict our examples to two and three dimensions
and the field will consist of the real numbers.

In three dimensions the unit vectors i, j, and k play an important
role. Any vector in the three dimensional space can be written as a
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linear combination of these vectors,

v = xi + yj + zk.

In fact, given any three non-coplanar vectors, {a1, a2, a3}, all vectors
can be written as a linear combination of those vectors,

v = c1a1 + c2a2 + c3a3.

Such vectors are said to span the space and are called a basis for the
space.

We can generalize these ideas. In an n-dimensional vector space
any vector in the space can be represented as the sum over n linearly
independent vectors (the equivalent of non-coplanar vectors). Such a
linearly independent set of vectors {vj}n

j=1 satisfies the condition

n

∑
j=1

cjvj = 0 ⇔ cj = 0.

Note that we will often use summation notation instead of writing out
all of the terms in the sum.

This leads to the idea of a basis set. The standard basis in an n- The standard basis vectors, ek are a nat-
ural generalization of i, j and k.dimensional vector space is a generalization of the standard basis in

three dimensions (i, j and k). We define

ek = (0, . . . , 0, 1︸︷︷︸
kth space

, 0, . . . , 0), k = 1, . . . , n. (3.1)

Then, we can expand any v ∈ V as

v =
n

∑
k=1

vkek, (3.2)

where the vk’s are called the components of the vector in this basis.
Sometimes we will write v as an n-tuple (v1, v2, . . . , vn). This is similar
to the ambiguous use of (x, y, z) to denote both vectors and points in
the three dimensional space.

The only other thing we will need at this point is to generalize the
dot product. Recall that there are two forms for the dot product in For more general vector spaces the term

inner product is used to generalize the
notions of dot and scalar products as we
will see below.

three dimensions. First, one has that

u · v = uv cos θ, (3.3)

where u and v denote the length of the vectors. The other form is the
component form:

u · v = u1v1 + u2v2 + u3v3 =
3

∑
k=1

ukvk. (3.4)
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Of course, this form is easier to generalize. So, we define the scalar
product between two n-dimensional vectors as

< u, v >=
n

∑
k=1

ukvk. (3.5)

Actually, there are a number of notations that are used in other texts.
One can write the scalar product as (u, v) or even in the Dirac bra-ket
notation4 < u|v > . 4 The bra-ket notation was introduced by

Paul Adrien Maurice Dirac (1902-1984)
in order to facilitate computations of in-
ner products in quantum mechanics. In
the notation < u|v >, < u| is the bra
and |v > is the ket. The kets live in
a vector space and represented by col-
umn vectors with respect to a given ba-
sis. The bras live in the dual vector space
and are represented by row vectors. The
correspondence between bra and kets is
|v >= |v >T . One can operate on kets,
A|v >, and make sense out of operations
like< u|A|v >, which are used to ob-
tain expectation values associated with
the operator. Finally, the outer product,
|v >< v| is used to perform vector space
projections.

We note that the (real) scalar product satisfies some simple proper-
ties. For vectors v, w and real scalar α we have

1. < v, v >≥ 0 and < v, v >= 0 if and only if v = 0.

2. < v, w >=< w, v >.

3. < αv, w >= α < v, w > .

While it does not always make sense to talk about angles between
general vectors in higher dimensional vector spaces, there is one con-
cept that is useful. It is that of orthogonality, which in three dimen-
sions is another way of saying the vectors are perpendicular to each
other. So, we also say that vectors u and v are orthogonal if and only if
< u, v >= 0. If {ak}n

k=1, is a set of basis vectors such that

< aj, ak >= 0, k 6= j,

then it is called an orthogonal basis. Orthogonal basis vectors.

If in addition each basis vector is a unit vector, then one has an
orthonormal basis. This generalization of the unit basis can be expressed
more compactly. We will denote such a basis of unit vectors by ej for
j = 1 . . . n. Then,

< ej, ek >= δjk, (3.6)

where we have introduced the Kronecker delta (named after Leopold
Kronecker (1823-1891))

δjk ≡
{

0, j 6= k
1, j = k

(3.7)

The process of making vectors have unit length is called normaliza- Normalization of vectors.

tion. This is simply done by dividing by the length of the vector. Recall
that the length of a vector, v, is obtained as v =

√
v · v. So, if we want

to find a unit vector in the direction of v, then we simply normalize it
as

v̂ =
v
v

.

Notice that we used a hat to indicate that we have a unit vector. Fur-
thermore, if {aj}n

j=1, is a set of orthogonal basis vectors, then

âj =
ai√

< aj, aj >
, j = 1 . . . n.
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Example 3.1. Find the angle between the vectors u = (−2, 1, 3) and v =

(1, 0, 2). we need the lengths of each vector,

u =
√
(−2)2 + 12 + 32 =

√
14,

v =
√

12 + 02 + 22 =
√

5.

We also need the scalar product of these vectors,

u · v = −2 + 6 = 4.

This gives

cos θ =
u · v
uv

=
4√

5
√

14
.

So, θ = 61.4◦.

Example 3.2. Normalize the vector v = 2i + j− 2k.
The length of the vector is v =

√
22 + 12 + (−2)2 =

√
9 = 3. So, the

unit vector in the direction of v is v̂ = 2
3 i + 1

3 j− 2
3 k.

Let {ak}n
k=1, be a set of orthogonal basis vectors for vector space

V. We know that any vector v can be represented in terms of this
basis, v = ∑n

k=1 vkak. If we know the basis and vector, can we find the
components, vk? The answer is yes. We can use the scalar product of v
with each basis element aj. Using the properties of the scalar product,
we have for j = 1, . . . , n

< aj, v > = < aj,
n

∑
k=1

vkak >

=
n

∑
k=1

vk < aj, ak > . (3.8)

Since we know the basis elements, we can easily compute the num-
bers

Ajk ≡< aj, ak >

and
bj ≡< aj, v > .

Therefore, the system (3.8) for the vk’s is a linear algebraic system,
which takes the form

bj =
n

∑
k=1

Ajkvk. (3.9)

We can write this set of equations in a more compact form. The
set of numbers Ajk, j, k = 1, . . . n are the elements of an n× n matrix
A with Ajk being an element in the jth row and kth column. Also, vj

and bj can be written as column vectors, v and b, respectively. Thus,
system (3.8) can be written in matrix form as

Av = b.
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However, if the basis is orthogonal, then the matrix Ajk ≡< aj, ak >

is diagonal and the system is easily solvable. Recall that two vectors
are orthogonal if and only if

< ai, aj >= 0, i 6= j. (3.10)

Thus, in this case we have that

< aj, v >= vj < aj, aj >, j = 1, . . . , n. (3.11)

or
vj =

< aj, v >

< aj, aj >
. (3.12)

In fact, if the basis is orthonormal, i.e., the basis consists of an orthog-
onal set of unit vectors, then A is the identity matrix and the solution
takes on a simpler form:

vj =< aj, v > . (3.13)

Example 3.3. Consider the set of vectors a1 = i + j and a2 = i− 2j.

1. Determine the matrix elements Ajk =< aj, ak > .

2. Is this an orthogonal basis?

3. Expand the vector v = 2i + 3j in the basis {a1, a2}.

First, we compute the matrix elements of A:

A11 = < a1, a1 >= 2

A12 = < a1, a2 >= −1

A21 = < a2, a1 >= −1

A22 = < a2, a2 >= 5 (3.14)

So,

A =

(
2 −1
−1 5

)
.

Since A12 = A21 6= 0, the vectors are not orthogonal. However, they are
linearly independent. Obviously, if c1 = c2 = 0, then the linear combination
c1a1 + c2a2 = 0. Conversely, we assume that c1a1 + c2a2 = 0 and solve for
the coefficients. Inserting the given vectors, we have

0 = c1(i + j) + c2(i− 2j)

= (c1 + c2)i + (c1 − 2c2)j. (3.15)

This implies that

c1 + c2 = 0

c1 − 2c2 = 0. (3.16)
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Solving this system, one has c1 = 0, c2 = 0. Therefore, the two vectors are
linearly independent.

In order to determine the components of v with respect to the new basis,
we need to set up the system (3.8) and solve for the vk’s. We have first,

b =

(
< a1, v >

< a2, v >

)

=

(
< i + j, 2i + 3j >
< i− 2j, 2i + 3j >

)

=

(
5
−4

)
. (3.17)

So, now we have to solve the system Av = b for v :(
2 −1
−1 5

)(
v1

v2

)
=

(
5
−4

)
. (3.18)

We can solve this with matrix methods, v = A−1b, or rewrite it as a system
of two equations and two unknowns. The result is v1 = 7

3 , v2 = − 1
3 . Thus,

v = 7
3 a1 − 1

3 a2.

3.2 Linear Transformations

Figure 3.1: Vector v in a standard coor-
dinate system.

A main theme in linear algebra is to study linear transformations
between vector spaces. These come in many forms and there are an
abundance of applications in physics. For example, the transforma-
tion between the spacetime coordinates of observers moving in inertial
frames in the theory of special relativity constitute such a transforma-
tion.

A simple example often encountered in physics courses is the rota-
tion by a fixed angle. This is the description of points in space using
two different coordinate bases, one just a rotation of the other by some
angle. We begin with a vector v as described by a set of axes in the
standard orientation, as shown in Figure 3.1. Also displayed in this
figure are the unit vectors. To find the coordinates (x, y), one needs
only draw perpendiculars to the axes and read the coordinates off the
axes.

Figure 3.2: Vector v in a rotated coordi-
nate system.

In order to derive the needed transformation we will make use of
polar coordinates. In Figure 3.1 we see that the vector makes an angle
of φ with respect to the positive x-axis. The components (x, y) of the
vector can be determined from this angle and the magnitude of v as

x = v cos φ

y = v sin φ. (3.19)



118 mathematical physics

We now consider another set of axes at an angle of θ to the old.
Such a system is shown in Figure 3.2. We will designate these axes
as x′ and y′. Note that the basis vectors are different in this system.
Projections to the axes are shown. Comparing the coordinates in both
systems shown in Figures 3.1-3.2, we see that the primed coordinates
are not the same as the unprimed ones.

Figure 3.3: Comparison of the coordi-
nate systems.

In Figure 3.3 the two systems are superimposed on each other. The
polar form for the primed system is given by

x′ = v cos(φ− θ)

y′ = v sin(φ− θ). (3.20)

We can use this form to find a relationship between the two systems.
Namely, we use the addition formula for trigonometric functions to
obtain

x′ = v cos φ cos θ + v sin φ sin θ

y′ = v sin φ cos θ − v cos φ sin θ. (3.21)

Noting that these expressions involve products of v with cos φ and Passive rotation.

sin φ, we can use the polar form for x and y to find the desired form:

x′ = x cos θ + y sin θ

y′ = −x sin θ + y cos θ. (3.22)

This is an example of a transformation between two coordinate sys-
tems. It is called a rotation by θ. We can designate it generally by

(x′, y′) = R̂θ(x, y).

It is referred to as a passive transformation, because it does not affect
the vector. [Note: We will use the hat for the passive rotation.]

An active rotation is one in which one rotates the vector, such as Active rotation.

shown in Figure 3.4. One can derive a similar transformation for how
the coordinate of the vector change under such a transformation. De-
noting the new vector as v′ with new coordinates (x′′, y′′), we have

Figure 3.4: Rotation of vector v

x′′ = x cos θ − y sin θ

y′′ = x sin θ + y cos θ. (3.23)

We can designate this transformation by

(x′′, y′′) = Rθ(x, y)

and see that the active and passive rotations are related,

Rθ(x, y) = R̂−θ(x, y).
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3.3 Matrices

Linear transformations such as the rotation in the last section can
be represented by matrices. Such matrix representations often become
the core of a linear algebra class to the extent that one loses sight of
their meaning. We will review matrix representations and show how
they are useful in solving coupled systems of differential equations
later in the chapter.

We begin with the rotation transformation as applied to the axes in
Equation (3.22). We write vectors like v as a column matrix

v =

(
x
y

)
.

We can also write the trigonometric functions in a 2× 2 matrix form
as

R̂θ =

(
cos θ sin θ

− sin θ cos θ

)
.

Then, the transformation takes the form(
x′

y′

)
=

(
cos θ sin θ

− sin θ cos θ

)(
x
y

)
. (3.24)

This can be written in the more compact form

v′ = R̂θv.

In using the matrix form of the transformation, we have employed
the definition of matrix multiplication. Namely, we have multiplied
a 2× 2 matrix times a 2× 1 matrix. (Note that an n × m matrix has
n rows and m columns.) The multiplication proceeds by selecting the
ith row of the first matrix and the jth column of the second matrix.
Multiply corresponding elements of each and add them. Then, place
the result into the ijth entry of the product matrix. This operation can
only be performed if the number of columns of the first matrix is the
same as the number of columns of the second matrix.

Example 3.4. As an example, we multiply a 3 × 2 matrix times a 2 × 2
matrix to obtain a 3× 2 matrix: 1 2

5 −1
3 2

( 3 2
1 4

)
=

 1(3) + 2(1) 1(2) + 2(4)
5(3) + (−1)(1) 5(2) + (−1)(4)

3(3) + 2(1) 3(2) + 2(4)


=

 5 10
14 6
11 14

 (3.25)
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In Equation (3.24), we have the row (cos θ, sin θ) and column (x, y)T .
Combining these we obtain x cos θ + y sin θ. This is x′. We perform the
same operation for the second row:(

x′

y′

)
=

(
cos θ sin θ

− sin θ cos θ

)(
x
y

)
=

(
x cos θ + y sin θ

−x sin θ + y cos θ

)
.

(3.26)
In the last section we also introduced active rotations. These were

rotations of vectors keeping the coordinate system fixed. Thus, we
start with a vector v and rotate it by θ to get a new vector u. That
transformation can be written as

u = Rθv, (3.27)

where

Rθ =

(
cos θ − sin θ

sin θ cos θ

)
.

Now consider a rotation by −θ. Due to the symmetry properties of
the sines and cosines, we have

R−θ =

(
cos θ sin θ

− sin θ cos θ

)
.

We see that if the 12 and 21 elements of this matrix are interchanged
we recover Rθ . This is an example of what is called the transpose of Rθ .
Given a matrix, A, its transpose AT is the matrix obtained by inter-
changing the rows and columns of A. Formally, let Aij be the elements
of A. Then

AT
ij = Aji.

Matrix transpose.

It is also the case that these matrices are inverses of each other. We
can understand this in terms of the nature of rotations. We first rotate
the vector by θ as u = Rθv and then rotate u by −θ obtaining w =

R−θu. Thus, the “composition” of these two transformations leads to

w = R−θu = R−θ(Rθv). (3.28)

We can view this as a net transformation from v to w given by

w = (R−θ Rθ)v,

where the transformation matrix for the composition is given by R−θ Rθ .
Actually, if you think about it, we should end up with the original vec-
tor. We can compute the resulting matrix by carrying out the multipli-
cation. We obtain

R−θ Rθ =

(
cos θ sin θ

− sin θ cos θ

)(
cos θ − sin θ

sin θ cos θ

)
=

(
1 0
0 1

)
.

(3.29)
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This is the 2× 2 identity matrix. We note that the product of these two
matrices yields the identity. This is like the multiplication of numbers.
If ab = 1, then a and b are multiplicative inverses of each other. So, we
see here that Rθ and R−θ are inverses of each other as well. In fact, we
have determined that

R−θ = R−1
θ = RT

θ , (3.30)

where the T designates the transpose. We note that matrices satisfying
the relation AT = A−1 are called orthogonal matrices. Orthogonal matrices.

We can easily extend this discussion to three dimensions. Such ro-
tations in the xy-plane can be viewed as rotations about the z-axis. Ro-
tating a vector about the z-axis by angle α will leave the z-component
fixed. This can be represented by the rotation matrix

Rz(α) =

 cos α − sin α 0
sin α cos α 0

0 0 1

 . (3.31)

We can also rotate vectors about the other axes, so that we would have
two other rotation matrices:

Ry(β) =

 cos β 0 − sin β

0 1 0
sin β 0 cos β

 . (3.32)

Rx(γ) =

 1 0 0
0 cos γ sin γ

0 − sin γ cos γ

 . (3.33)

As before, passive rotations of the coordinate axes are obtained by
replacing the angles above by their negatives; e.g., R̂x(γ) = Rx(−γ).5 5 In classical dynamics one describes a

general rotation in terms of the so-called
Euler angles. These are the angles
(φ, θ, ψ) such that the combined rotation
R̂z(ψ)R̂x(θ)R̂z(φ) rotates the initial coor-
dinate system into a new one.

We can generalize what we have seen with the simple example of
rotation to other linear transformations. We begin with a vector v in
an n-dimensional vector space. We can consider a transformation L
that takes v into a new vector u as

u = L(v).

We will restrict ourselves to linear transformations between two n-
dimensional vector spaces. A linear transformation satisfies the follow-
ing condition:

L(αa + βb) = αL(a) + βL(b) (3.34)

for any vectors a and b and scalars α and β.6 6 In section we define a linear operator
using two conditions, L(a + b) = L(a) +
L(b) and L(αa) = αL(a). The reader can
show that this is equivalent to the con-
dition presented here. Furthermore, all
linear transformations take the origin to
the origin, L(0) = 0.

Such linear transformations can be represented by matrices. Take
any vector v. It can be represented in terms of a basis. Let’s use the
standard basis {ei}, i = 1, . . . n. Then we have

v =
n

∑
i=1

viei.
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Now consider the effect of the transformation L on v, using the linear-
ity property:

L(v) = L

(
n

∑
i=1

viei

)
=

n

∑
i=1

viL(ei). (3.35)

Thus, we see that determining how L acts on v requires that we
know how L acts on the basis vectors. Namely, we need L(ei). Since ei

is a vector, this produces another vector in the space. But the resulting
vector can be expanded in the basis. Let’s assume that the resulting
vector takes the form

L(ei) =
n

∑
j=1

Ljiej, (3.36)

where Lji is the jth component of L(ei) for each i = 1, . . . , n. The
matrix of Lji’s is called the matrix representation of the operator L.

Typically, in a linear algebra class you start with matrices and do not
see this connection to linear operators. However, there will be times
that you will need this connection to understand why matrices are
involved. Furthermore, the matrix representation depends on the basis
used. We used the standard basis above. However, you could have
started with a different basis, such as dictated by another coordinate
system. We will not go further into this point at this time and just stick
with the standard basis.

Example 3.5. Consider the linear transformation of u = (u, v) into x =

(x, y) by

L(u, v) = (3u− v, v + u) = (x, y).

The matrix representation for this transformation is found by considering how
L acts on the basis vectors. We have L(1, 0) = (3, 1) and L(0, 1) = (−1, 1).
Thus, the representation is given as

L =

(
3 −1
1 1

)
.

Now that we know how L acts on basis vectors, what does this have
to say about how L acts on any other vector in the space? We insert
expression (3.36) into Equation (3.35). Then we find

L(v) =
n

∑
i=1

viL(ei)

=
n

∑
i=1

vi

(
n

∑
j=1

Ljiej

)

=
n

∑
j=1

(
n

∑
i=1

viLji

)
ej. (3.37)
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Since L(v) = u, we see that the jth component of u can be written as

uj =
n

∑
i=1

Ljivi, j = 1 . . . n. (3.38)

This equation can be written in matrix form as

u = Lv,

where L now takes the role of a matrix. It is similar to the multiplica-
tion of the rotation matrix times a vector as seen in the last section. We
will just work with matrix representations from here on.

Example 3.6. For the transformation L(u, v) = (3u − v, v + u) = (x, y)
in the last example, what does v = 5i + 3j get mapped into? We know the
matrix representation from the previous example, so we have

u =

(
3 −1
1 1

)(
5
3

)
=

(
12
2

)
.

Next, we can compose transformations like we had done with the
two rotation matrices. Let u = A(v) and w = B(u) for two transfor-
mations A and B. (Thus, v → u → w.) Then a composition of these
transformations is given by

w = B(u) = B(Av).

This can be viewed as a transformation from v to w as

w = BA(v),

where the matrix representation of BA is given by the product of the
matrix representations of A and B.

To see this, we look at the ijth element of the matrix representation
of BA. We first note that the transformation from v to w is given by

wi =
n

∑
j=1

(BA)ijvj. (3.39)

However, if we use the successive transformations, we have

wi =
n

∑
k=1

Bikuk

=
n

∑
k=1

Bik

(
n

∑
j=1

Akjvj

)

=
n

∑
j=1

(
n

∑
k=1

Bik Akj

)
vj. (3.40)
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We have two expressions for wi as sums over vj. So, the coefficients
must be equal. This leads to our result:

(BA)ij =
n

∑
k=1

Bik Akj. (3.41)

Thus, we have found the component form of matrix multiplication,
which resulted from the composition of two linear transformations.
This agrees with our earlier example of matrix multiplication: The ij-
th component of the product is obtained by multiplying elements in
the ith row of B and the jth column of A and summing.

Example 3.7. Consider the rotation in two dimensions of the axes by an
angle θ. Now apply the scaling transformation7 7 This scaling transformation will rescale

x-components by a and y-components
by b. If either is negative, it will also
provide an additional reflection.Ls =

(
a 0
0 b

)
.

what is the matrix representation of this combination of transformations?
The result is a simple product of the matrix representations (in reverse order
of application):

LsR̂ =

(
a 0
0 b

)(
cos θ sin θ

− sin θ cos θ

)
=

(
a cos θ a sin θ

−b sin θ b cos θ

)
.

There are many other properties of matrices and types of matrices
that one may encounter. We will list a few.

First of all, there is the n× n identity matrix, I. The identity is defined Identity matrix.

as that matrix satisfying

IA = AI = A (3.42)

for any n× n matrix A. The n× n identity matrix takes the form

I =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...

0 0
... 1

 (3.43)

A component form is given by the Kronecker delta. Namely, we have Kronecker delta, δij.

that

Iij = δij ≡
{

0, i 6= j
1, i = j

(3.44)

The inverse of matrix A is that matrix A−1 such that

AA−1 = A−1 A = I. (3.45)
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There is a systematic method for determining the inverse in terms of
cofactors, which we describe a little later. However, the inverse of a
2× 2 matrix is easily obtained without learning about cofactors. Let

A =

(
a b
c d

)
.

Now consider the matrix

B =

(
d −b
−c a

)
.

Multiplying these matrices, we find that

AB =

(
a b
c d

)(
d −b
−c a

)
=

(
ad− bc 0

0 ad− bc

)
.

This is not quite the identity, but it is a multiple of the identity. We just
need to divide by ad− bc. So, we have found the inverse matrix: Inverse of a 2× 2 matrix.

A−1 =
1

ad− bc

(
d −b
−c a

)
.

We leave it to the reader to show that A−1 A = I.
The factor ad− bc is the difference in the products of the diagonal

and off-diagonal elements of matrix A. This factor is called the deter-
minant of A. It is denoted as det(A), det A or |A|. Thus, we define

det(A) =

∣∣∣∣∣ a b
c d

∣∣∣∣∣ = ad− bc. (3.46)

For higher dimensional matrices one can write the definition of the
determinant. We will for now just indicate the process for 3× 3 matri-
ces. We write matrix A as Detemrinant of a 3× 3 matrix.

A =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 . (3.47)

The determinant of A can be computed in terms of simpler 2× 2 de-
terminants. We define

det A =

∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣
= a11

∣∣∣∣∣ a22 a23

a32 a33

∣∣∣∣∣− a12

∣∣∣∣∣ a21 a23

a31 a33

∣∣∣∣∣+ a13

∣∣∣∣∣ a21 a22

a31 a32

∣∣∣∣∣ .

(3.48)
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There are many other properties of determinants. For example, if
two rows, or columns, of a matrix are multiples of each other, then
det A = 0. If one multiplies one row, or column, of a matrix by a
constant, k, then the determinant of the matrix is multiplies by k.

If det A = 0, A is called a singular matrix. Otherwise, it is called
nonsingular. If a matrix is nonsingular, then the inverse exists. From
our example for a general 2× 2 system, the inverse exists if ad− bc 6= 0.

Computing the inverse of a larger matrix is a little more compli-
cated. One first constructs the matrix of cofactors. The ij-th cofactor is
obtained by computing the determinant of the matrix resulting from
eliminating the ith row and jth column of A and multiplying by either
+1 or −1. Thus, The matrix of cofactors.

Cij = (−1)i+jdet (αij).

Then, the inverse matrix is obtained by dividing the transpose of the
matrix of cofactors by the determinant of A. Thus,(

A−1
)

ij
=

Cji

det A
.

This is best shown by example.

Example 3.8. Find the inverse of the matrix

A =

 1 2 −1
0 3 2
1 −2 1

 .

The determinant of this matrix is easily found as

det A =

∣∣∣∣∣∣∣
1 2 −1
0 3 2
1 −2 1

∣∣∣∣∣∣∣ = 1

∣∣∣∣∣ 3 2
−2 1

∣∣∣∣∣+ 1

∣∣∣∣∣ 2 −1
3 2

∣∣∣∣∣ = 14.

Next, we construct the matrix of cofactors:

Cij =



+

∣∣∣∣∣ 3 2
−2 1

∣∣∣∣∣ −
∣∣∣∣∣ 0 2

1 1

∣∣∣∣∣ +

∣∣∣∣∣ 0 3
1 −2

∣∣∣∣∣
−
∣∣∣∣∣ 2 −1
−2 1

∣∣∣∣∣ +

∣∣∣∣∣ 1 −1
1 1

∣∣∣∣∣ −
∣∣∣∣∣ 1 2

1 −2

∣∣∣∣∣
+

∣∣∣∣∣ 2 −1
3 2

∣∣∣∣∣ −
∣∣∣∣∣ 1 −1

0 2

∣∣∣∣∣ +

∣∣∣∣∣ 1 2
0 3

∣∣∣∣∣


.

Computing the 2× 2 determinants, we obtain

Cij =

 7 −2 −3
0 2 4
7 −2 3

 .
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Finally, we compute the inverse as

A−1 =
1
14

 7 −2 −3
0 2 4
7 −2 3


T

=
1
14

 7 0 7
−2 2 −2
−3 4 3


=

 1
2 0 1

2
− 1

7
1
7 − 1

7
− 3

14
2
7

3
14

 . (3.49)

Another operation that we have seen earlier is the transpose of a Matrix transpose.

matrix. The transpose of a matrix is a new matrix in which the rows
and columns are interchanged. If write an n×m matrix A in standard
form as

A =


a11 a12 . . . a1m

a21 a22 . . . a2m
...

...
. . .

...
an1 an2 . . . anm

 , (3.50)

then the transpose is defined as

AT =


a11 a21 . . . a1n

a12 a22 . . . a2n
...

...
. . .

...
a1m a2m . . . amn

 . (3.51)

In index form, we have

(AT)ij = Aji, i, j = 1, . . . , n.

As we had seen in the last section, a matrix satisfying

AT = A−1, or AAT = AT A = I,

is called an orthogonal matrix. One also can show that

(AB)T = BT AT .

Finally, the trace of a square matrix is the sum of its diagonal ele- Trace of a matrix.

ments:

Tr(A) = a11 + a22 + . . . + ann =
n

∑
i=1

aii.

We can show that for two square matrices

Tr(AB) = Tr(BA).
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A standard application of determinants is the solution of a system Cramer’s Rule for solving algebraic sys-
tems of equations.of linear algebraic equations using Cramer’s Rule. As an example, we

consider a simple system of two equations and two unknowns. Let’s
consider this system of two equations and two unknowns, x and y, in
the form

ax + by = e,

cx + dy = f . (3.52)

The standard way to solve this is to eliminate one of the variables.
(Just imagine dealing with a bigger system!). So, we can eliminate the
x’s. Multiply the first equation by c and the second equation by a and
subtract. We then get

(bc− ad)y = (ec− f a).

If bc− ad 6= 0, then we can solve to y, getting

y =
ec− f a
bc− ad

. Similarly, we find

x =
ed− b f
ad− bc

.

We note the the denominators can be replaced with the determinant
of the matrix of coefficients, (

a b
c d

)
.

In fact, we can also replace each numerator with a determinant. Thus,
our solutions may be written as

x =

∣∣∣∣∣ e b
f d

∣∣∣∣∣∣∣∣∣∣ a b
c d

∣∣∣∣∣
y =

∣∣∣∣∣ a e
c f

∣∣∣∣∣∣∣∣∣∣ a b
c d

∣∣∣∣∣
. (3.53)

This is Cramer’s Rule for writing out solutions of systems of equa-
tions. Note that each variable is determined by placing a determinant
with e and f placed in the column of the coefficient matrix correspond-
ing to the order of the variable in the equation. The denominator is
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the determinant of the coefficient matrix. This construction is easily
extended to larger systems of equations.

Cramer’s Rule can be extended to higher dimensional systems. As
an example, we now solve a system of three equations and three un-
knowns.

Example 3.9. Solve the system of equations

x + 2y− z = 1,

3y + 2z = 2

x− 2y + z = 0. (3.54)

First, one writes the system in the form Lx = b, where L is the coefficient
matrix

L =

 1 2 −1
0 3 2
1 −2 1


and

b =

 1
2
0

 .

The solution is generally, x = L−1b if L−1 exists. So, we check that det L =

14 6= 0. Thus, L is nonsingular and its inverse exists.
So, the solution of this system of three equations and three unknowns can

now be found using Cramer’s rule. Thus, we have

x =

∣∣∣∣∣∣∣
1 2 −1
2 3 2
0 −2 1

∣∣∣∣∣∣∣
det L

=
7

14
=

1
2

,

y =

∣∣∣∣∣∣∣
1 1 −1
0 2 2
1 0 1

∣∣∣∣∣∣∣
det L

=
6
14

=
3
7

,

z =

∣∣∣∣∣∣∣
1 2 1
0 3 2
1 −2 0

∣∣∣∣∣∣∣
det L

=
5
14

. (3.55)

We end this section by summarizing the rule for the existence of
solutions of systems of algebraic equations, Lx = b.

1. If det L 6= 0, then there exists a unique solution, x = L−1b.
In particular, if b = 0, the system is homogeneous and only
has the trivial solution, x = 0.
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2. If det L = 0, then the system does not have a unique solution.
Either there is no solution, or an infinite number of solutions.
For example, the system

2x + y = 5,

4x + 2y = 2, (3.56)

has no solutions, while

2x + y = 0,

4x + 2y = 0, (3.57)

has an infinite number of solutions (y = −2x).

3.4 Eigenvalue Problems

3.4.1 An Introduction to Coupled Systems

Recall that one of the reasons we have seemingly digressed into
topics in linear algebra and matrices is to solve a coupled system of
differential equations. The simplest example is a system of linear dif-
ferential equations of the form

dx
dt

= ax + by

dy
dt

= cx + dy. (3.58)

We note that this system is coupled. We cannot solve either equation
without knowing either x(t) or y(t). A much easier problem would be
to solve an uncoupled system like Uncoupled system.

dx
dt

= λ1x

dy
dt

= λ2y. (3.59)

The solutions are quickly found to be

x(t) = c1eλ1t,

y(t) = c2eλ2t. (3.60)

Here c1 and c2 are two arbitrary constants.
We can determine particular solutions of the system by specifying

x(t0) = x0 and y(t0) = y0 at some time t0. Thus,

x(t) = x0eλ1t,

y(t) = y0eλ2t. (3.61)
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Wouldn’t it be nice if we could transform the more general system
into one that is not coupled? Let’s write these systems in more general
form. We write the coupled system as

d
dt

x = Ax

and the uncoupled system as

d
dt

y = Λy,

where

Λ =

(
λ1 0
0 λ2

)
.

We note that Λ is a diagonal matrix.
Now, we seek a transformation between x and y that will transform

the coupled system into the uncoupled system. Thus, we define the
transformation

x = Sy. (3.62)

Inserting this transformation into the coupled system we have

d
dt

x = Ax ⇒

d
dt

Sy = ASy ⇒

S
d
dt

y = ASy. (3.63)

Multiply both sides by S−1. [We can do this if we are dealing with
an invertible transformation; i.e., a transformation in which we can get
y from x as y = S−1x.] We obtain

d
dt

y = S−1 ASy.

Noting that
d
dt

y = Λy,

we have
Λ = S−1 AS. (3.64)

The expression S−1 AS is called a similarity transformation of matrix
A. So, in order to uncouple the system, we seek a similarity trans-
formation that results in a diagonal matrix. This process is called the
diagonalization of matrix A. We do not know S, nor do we know Λ. We
can rewrite this equation as

AS = SΛ.
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We can solve this equation if S is real symmetric, i.e, ST = S. [In the
case of complex matrices, we need the matrix to be Hermitian, S̄T = S
where the bar denotes complex conjugation. Further discussion of
diagonalization is left for the end of the chapter.]

We first show that SΛ = ΛS. We look at the ijth component of SΛ
and rearrange the terms in the matrix product.

(SΛ)ij =
n

∑
k=1

SikΛkj

=
n

∑
k=1

Sikλj Ikj

=
n

∑
k=1

λj IjkST
ki

=
n

∑
k=1

ΛjkSki

= (ΛS)ij (3.65)

This result leads us to the fact that S satisfies the equation

AS = ΛS.

Therefore, one has that the columns of S (denoted v) satisfy an equa-
tion of the form

Av = λv. (3.66)

This is an equation for vectors v and numbers λ given matrix A. It
is called an eigenvalue problem. The vectors are called eigenvectors and
the numbers, λ, are called eigenvalues. In principle, we can solve the
eigenvalue problem and this will lead us to solutions of the uncoupled
system of differential equations.

3.4.2 Example of an Eigenvalue Problem

We will determine the eigenvalues and eigenvectors for

A =

(
1 −2
−3 2

)
In order to find the eigenvalues and eigenvectors of this equation,

we need to solve
Av = λv. (3.67)

Let v =

(
v1

v2

)
. Then the eigenvalue problem can be written out.

We have that

Av = λv
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(
1 −2
−3 2

)(
v1

v2

)
= λ

(
v1

v2

)
(

v1 − 2v2

−3v1 + 2v2

)
=

(
λv1

λv2

)
. (3.68)

So, we see that the system becomes

v1 − 2v2 = λv1,

−3v1 + 2v2 = λv2. (3.69)

This can be rewritten as

(1− λ)v1 − 2v2 = 0,

−3v1 + (2− λ)v2 = 0. (3.70)

This is a homogeneous system. We can try to solve it using elim-
ination, as we had done earlier when deriving Cramer’s Rule. We
find that multiplying the first equation by 2− λ, the second by 2 and
adding, we get

[(1− λ)(2− λ)− 6]v1 = 0.

If the factor in the brackets is not zero, we obtain v1 = 0. Inserting this
into the system gives v2 = 0 as well. Thus, we find v is the zero vec-
tor. However, this does not get us anywhere. We could have guessed
this solution. This simple solution is the solution of all eigenvalue
problems and is called the trivial solution. When solving eigenvalue
problems, we only look for nontrivial solutions!

So, we have to stipulate that the factor in the brackets is zero. This
means that v1 is still unknown. This situation will always occur for
eigenvalue problems. The general eigenvalue problem can be written
as

Av− λv = 0,

or by inserting the identity matrix,

Av− λIv = 0.

Finally, we see that we always get a homogeneous system,

(A− λI)v = 0.

The factor that has to be zero can be seen now as the determinant of
this system. Thus, we require

det(A− λI) = 0. (3.71)

We write out this condition for the example at hand. We have that∣∣∣∣∣ 1− λ −2
−3 2− λ

∣∣∣∣∣ = 0.
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This will always be the starting point in solving eigenvalue problems.
Note that the matrix is A with λ’s subtracted from the diagonal ele-
ments.

Computing the determinant, we have

(1− λ)(2− λ)− 6 = 0,

or

λ2 − 3λ− 4 = 0.

We therefore have obtained a condition on the eigenvalues! It is a
quadratic and we can factor it:

(λ− 4)(λ + 1) = 0.

So, our eigenvalues are λ = 4,−1.
The second step is to find the eigenvectors. We have to do this for

each eigenvalue. We first insert λ = 4 into our system:

− 3v1 − 2v2 = 0,

−3v1 − 2v2 = 0. (3.72)

Note that these equations are the same. So, we have one equation in
two unknowns. We will not get a unique solution. This is typical of
eigenvalue problems. We can pick anything we want for v2 and then
determine v1. For example, v2 − 1 gives v1 = −2/3. A nicer solution
would be v2 = 3 and v1 = −2. These vectors are different, but they
point in the same direction in the v1v2 plane.

For λ = −1, the system becomes

2v1 − 2v2 = 0,

−3v1 + 3v2 = 0. (3.73)

While these equations do not at first look the same, we can divide out
the constants and see that once again we get the same equation,

v1 = v2.

Picking v2 = 1, we get v1 = 1.
In summary, the solution to our eigenvalue problem is

λ = 4, v =

(
−2
3

)

λ = −1, v =

(
1
1

)
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3.4.3 Eigenvalue Problems - A Summary

In the last subsection we were introduced to eigenvalue problems
as a way to obtain a solution to a coupled system of linear differential
equations. Eigenvalue problems appear in many contexts in physical
applications. In this section we will summarize the method of solution
of eigenvalue problems based upon our discussion in the last section.
In the next subsection we will look at another problem that is a bit
more geometric and will give us more insight into the process of di-
agonalization. We will return to our coupled system in a later section
and provide more examples of solving eigenvalue problems.

We seek nontrivial solutions to the eigenvalue problem

Av = λv. (3.74)

We note that v = 0 is an obvious solution. Furthermore, it does not
lead to anything useful. So, it is a trivial solution. Typically, we are
given the matrix A and have to determine the eigenvalues, λ, and the
associated eigenvectors, v, satisfying the above eigenvalue problem.
Later in the course we will explore other types of eigenvalue problems.

For now we begin to solve the eigenvalue problem for v =

(
v1

v2

)
.

Inserting this into Equation (3.74), we obtain the homogeneous alge-
braic system

(a− λ)v1 + bv2 = 0,

cv1 + (d− λ)v2 = 0. (3.75)

The solution of such a system would be unique if the determinant of
the system is not zero. However, this would give the trivial solution
v1 = 0, v2 = 0. To get a nontrivial solution, we need to force the
determinant to be zero. This yields the eigenvalue equation

0 =

∣∣∣∣∣ a− λ b
c d− λ

∣∣∣∣∣ = (a− λ)(d− λ)− bc.

This is a quadratic equation for the eigenvalues that would lead to
nontrivial solutions. If we expand the right side of the equation, we
find that

λ2 − (a + d)λ + ad− bc = 0.

This is the same equation as the characteristic equation for the general
constant coefficient differential equation considered in the last chapter
as we will later show in Equation (2.113). Thus, the eigenvalues corre-
spond to the solutions of the characteristic polynomial for the system.
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Once we find the eigenvalues, then there are possibly an infinite
number solutions to the algebraic system. We will see this in the ex-
amples.

The method for solving eigenvalue problems, as you have seen, con-
sists of just a few simple steps. We list these steps as follows:

Solving Eigenvalue Problems

a) Write the coefficient matrix;

b) Find the eigenvalues from the equation det(A− λI) =
0; and,

c) Solve the linear system (A− λI)v = 0 for each λ.

3.5 Matrix Formulation of Planar Systems

We have investigated several linear systems in the plane in the
last chapter. However, we need a deeper insight into the solutions of
planar systems. So, in this section we will recast the first order linear
systems into matrix form. This will lead to a better understanding of
first order systems and allow for extensions to higher dimensions and
the solution of nonhomogeneous equations. In particular, we can see
that the solutions obtained for planar systems in the last chapters are
intimately connected to the underlying eigenvalue problems.

We start with the usual homogeneous system in Equation (2.110).
Let the unknowns be represented by the vector

x(t) =

(
x(t)
y(t)

)
.

Then we have that

x′ =

(
x′

y′

)
=

(
ax + by
cx + dy

)
=

(
a b
c d

)(
x
y

)
≡ Ax.

Here we have introduced the coefficient matrix A. This is a first order
vector differential equation,

x′ = Ax.

Formerly, we can write the solution as8

8 The exponential of a matrix is defined us-
ing the Maclaurin series expansion

ex =
∞

∑
k=0

= 1 + x +
x2

2!
+

x3

3!
+ · · · .

So, we define

eA =
∞

∑
k=0

= I + A +
A2

2!
+

A3

3!
+ · · · .

(3.76)
In general, it is difficult computing eA

unless A is diagonal.

x = x0eAt.

We would like to investigate the solution of our system. Our inves-
tigations will lead to new techniques for solving linear systems using
matrix methods.
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We begin by recalling the solution to the specific problem (2.117).
We obtained the solution to this system as

x(t) = c1et + c2e−4t,

y(t) =
1
3

c1et − 1
2

c2e−4t. (3.77)

This can be rewritten using matrix operations. Namely, we first write
the solution in vector form.

x =

(
x(t)
y(t)

)

=

(
c1et + c2e−4t

1
3 c1et − 1

2 c2e−4t

)

=

(
c1et

1
3 c1et

)
+

(
c2e−4t

− 1
2 c2e−4t

)

= c1

(
1
1
3

)
et + c2

(
1
− 1

2

)
e−4t. (3.78)

We see that our solution is in the form of a linear combination of
vectors of the form

x = veλt

with v a constant vector and λ a constant number. This is similar to
how we began to find solutions to second order constant coefficient
equations. So, for the general problem (3.5) we insert this guess. Thus,

x′ = Ax⇒
λveλt = Aveλt. (3.79)

For this to be true for all t, we have that

Av = λv. (3.80)

This is an eigenvalue problem. A is a 2× 2 matrix for our problem,
but could easily be generalized to a system of n first order differential
equations. We will confine our remarks for now to planar systems.
However, we need to recall how to solve eigenvalue problems and
then see how solutions of eigenvalue problems can be used to obtain
solutions to our systems of differential equations.

3.5.1 Solving Constant Coefficient Systems in 2D

Before proceeding to examples, we first indicate the types of so-
lutions that could result from the solution of a homogeneous, constant
coefficient system of first order differential equations.
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We begin with the linear system of differential equations in matrix
form.

dx
dt

=

(
a b
c d

)
x = Ax. (3.81)

The type of behavior depends upon the eigenvalues of matrix A. The
procedure is to determine the eigenvalues and eigenvectors and use
them to construct the general solution.

If we have an initial condition, x(t0) = x0, we can determine the two
arbitrary constants in the general solution in order to obtain the par-
ticular solution. Thus, if x1(t) and x2(t) are two linearly independent
solutionspt-4, then the general solution is given as -4 Recall that linear independence means

c1x1(t) + c2x2(t) = 0 if and only if
c1, c2 = 0. The reader should derive the
condition on the xi for linear indepen-
dence.

x(t) = c1x1(t) + c2x2(t).

Then, setting t = 0, we get two linear equations for c1 and c2:

c1x1(0) + c2x2(0) = x0.

The major work is in finding the linearly independent solutions.
This depends upon the different types of eigenvalues that one obtains
from solving the eigenvalue equation, det(A− λI) = 0. The nature of
these roots indicate the form of the general solution. On the next page
we summarize the classification of solutions in terms of the eigenval-
ues of the coefficient matrix. We first make some general remarks
about the plausibility of these solutions and then provide examples in
the following section to clarify the matrix methods for our two dimen-
sional systems.

The construction of the general solution in Case I is straight for-
ward. However, the other two cases need a little explanation.
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Classification of the Solutions for Two
Linear First Order Differential Equations

1. Case I: Two real, distinct roots.

Solve the eigenvalue problem Av = λv for each eigenvalue obtaining
two eigenvectors v1, v2. Then write the general solution as a linear
combination x(t) = c1eλ1tv1 + c2eλ2tv2

2. Case II: One Repeated Root

Solve the eigenvalue problem Av = λv for one eigenvalue λ, obtaining
the first eigenvector v1. One then needs a second linearly independent
solution. This is obtained by solving the nonhomogeneous problem
Av2 − λv2 = v1 for v2.

The general solution is then given by x(t) = c1eλtv1 + c2eλt(v2 + tv1).

3. Case III: Two complex conjugate roots.

Solve the eigenvalue problem Ax = λx for one eigenvalue, λ = α +

iβ, obtaining one eigenvector v. Note that this eigenvector may have
complex entries. Thus, one can write the vector

y(t) = eλtv = eαt(cos βt + i sin βt)v.

Now, construct two linearly independent solutions to the problem us-
ing the real and imaginary parts of y(t) :

y1(t) = Re(y(t)) and y2(t) = Im(y(t)).

Then the general solution can be written as x(t) = c1y1(t) + c2y2(t).

Let’s consider Case III. Note that since the original system of equa-
tions does not have any i’s, then we would expect real solutions. So,
we look at the real and imaginary parts of the complex solution. We
have that the complex solution satisfies the equation

d
dt

[Re(y(t)) + iIm(y(t))] = A[Re(y(t)) + iIm(y(t))].

Differentiating the sum and splitting the real and imaginary parts of
the equation, gives

d
dt

Re(y(t)) + i
d
dt

Im(y(t)) = A[Re(y(t))] + iA[Im(y(t))].

Setting the real and imaginary parts equal, we have

d
dt

Re(y(t)) = A[Re(y(t))],

and
d
dt

Im(y(t)) = A[Im(y(t))].
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Therefore, the real and imaginary parts each are linearly independent
solutions of the system and the general solution can be written as a
linear combination of these expressions.

We now turn to Case II. Writing the system of first order equations
as a second order equation for x(t) with the sole solution of the char-
acteristic equation, λ = 1

2 (a + d), we have that the general solution
takes the form

x(t) = (c1 + c2t)eλt.

This suggests that the second linearly independent solution involves a
term of the form vteλt. It turns out that the guess that works is

x = teλtv1 + eλtv2.

Inserting this guess into the system x′ = Ax yields

(teλtv1 + eλtv2)
′ = A

[
teλtv1 + eλtv2

]
.

eλtv1 + λteλtv1 + λeλtv2 = λteλtv1 + eλt Av2.

eλt (v1 + λv2) = eλt Av2. (3.82)

Noting this is true for all t, we find that

v1 + λv2 = Av2. (3.83)

Therefore,
(A− λI)v2 = v1.

We know everything except for v2. So, we just solve for it and obtain
the second linearly independent solution.

3.5.2 Examples of the Matrix Method

Here we will give some examples for typical systems for the three
cases mentioned in the last section.

Example 3.10. A =

(
4 2
3 3

)
.

Eigenvalues: We first determine the eigenvalues.

0 =

∣∣∣∣∣ 4− λ 2
3 3− λ

∣∣∣∣∣ (3.84)

Therefore,

0 = (4− λ)(3− λ)− 6

0 = λ2 − 7λ + 6

0 = (λ− 1)(λ− 6) (3.85)
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The eigenvalues are then λ = 1, 6. This is an example of Case I.
Eigenvectors: Next we determine the eigenvectors associated with each of

these eigenvalues. We have to solve the system Av = λv in each case.

Case λ = 1. (
4 2
3 3

)(
v1

v2

)
=

(
v1

v2

)
(3.86)(

3 2
3 2

)(
v1

v2

)
=

(
0
0

)
(3.87)

This gives 3v1 + 2v2 = 0. One possible solution yields an eigenvector of(
v1

v2

)
=

(
2
−3

)
.

Case λ = 6.

(
4 2
3 3

)(
v1

v2

)
= 6

(
v1

v2

)
(3.88)(

−2 2
3 −3

)(
v1

v2

)
=

(
0
0

)
(3.89)

For this case we need to solve −2v1 + 2v2 = 0. This yields(
v1

v2

)
=

(
1
1

)
.

General Solution: We can now construct the general solution.

x(t) = c1eλ1tv1 + c2eλ2tv2

= c1et

(
2
−3

)
+ c2e6t

(
1
1

)

=

(
2c1et + c2e6t

−3c1et + c2e6t

)
. (3.90)

Example 3.11. A =

(
3 −5
1 −1

)
.

Eigenvalues: Again, one solves the eigenvalue equation.

0 =

∣∣∣∣∣ 3− λ −5
1 −1− λ

∣∣∣∣∣ (3.91)

Therefore,
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0 = (3− λ)(−1− λ) + 5

0 = λ2 − 2λ + 2

λ =
−(−2)±

√
4− 4(1)(2)

2
= 1± i. (3.92)

The eigenvalues are then λ = 1 + i, 1− i. This is an example of Case III.
Eigenvectors: In order to find the general solution, we need only find the

eigenvector associated with 1 + i.(
3 −5
1 −1

)(
v1

v2

)
= (1 + i)

(
v1

v2

)
(

2− i −5
1 −2− i

)(
v1

v2

)
=

(
0
0

)
. (3.93)

We need to solve (2− i)v1 − 5v2 = 0. Thus,(
v1

v2

)
=

(
2 + i

1

)
. (3.94)

Complex Solution: In order to get the two real linearly independent so-
lutions, we need to compute the real and imaginary parts of veλt.

eλt

(
2 + i

1

)
= e(1+i)t

(
2 + i

1

)

= et(cos t + i sin t)

(
2 + i

1

)

= et

(
(2 + i)(cos t + i sin t)

cos t + i sin t

)

= et

(
(2 cos t− sin t) + i(cos t + 2 sin t)

cos t + i sin t

)

= et

(
2 cos t− sin t

cos t

)
+ iet

(
cos t + 2 sin t

sin t

)
.

General Solution: Now we can construct the general solution.

x(t) = c1et

(
2 cos t− sin t
cos t

)
+ c2et

(
cos t + 2 sin t

sin t

)

= et

(
c1(2 cos t− sin t) + c2(cos t + 2 sin t)

c1 cos t + c2 sin t

)
. (3.95)

Note: This can be rewritten as

x(t) = et cos t

(
2c1 + c2

c1

)
+ et sin t

(
2c2 − c1

c2

)
.
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Example 3.12. A =

(
7 −1
9 1

)
.

Eigenvalues:

0 =

∣∣∣∣∣ 7− λ −1
9 1− λ

∣∣∣∣∣ (3.96)

Therefore,

0 = (7− λ)(1− λ) + 9

0 = λ2 − 8λ + 16

0 = (λ− 4)2. (3.97)

There is only one real eigenvalue, λ = 4. This is an example of Case II.
Eigenvectors: In this case we first solve for v1 and then get the second

linearly independent vector.(
7 −1
9 1

)(
v1

v2

)
= 4

(
v1

v2

)
(

3 −1
9 −3

)(
v1

v2

)
=

(
0
0

)
. (3.98)

Therefore, we have

3v1 − v2 = 0, ⇒
(

v1

v2

)
=

(
1
3

)
.

Second Linearly Independent Solution:
Now we need to solve Av2 − λv2 = v1.

(
7 −1
9 1

)(
u1

u2

)
− 4

(
u1

u2

)
=

(
1
3

)
(

3 −1
9 −3

)(
u1

u2

)
=

(
1
3

)
. (3.99)

Expanding the matrix product, we obtain the system of equations

3u1 − u2 = 1

9u1 − 3u2 = 3. (3.100)

The solution of this system is

(
u1

u2

)
=

(
1
2

)
.

General Solution: We construct the general solution as

y(t) = c1eλtv1 + c2eλt(v2 + tv1).
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= c1e4t

(
1
3

)
+ c2e4t

[(
1
2

)
+ t

(
1
3

)]

= e4t

(
c1 + c2(1 + t)

3c1 + c2(2 + 3t)

)
. (3.101)

3.5.3 Planar Systems - Summary

The reader should have noted by now that there is a connection
between the behavior of the solutions of planar systems obtained in
Chapter 2 and the eigenvalues found from the coefficient matrices in
the previous examples. Here we summarize some of these cases.

Type Eigenvalues Stability
Node Real λ, same signs λ > 0, stable

Saddle Real λ opposite signs Mostly Unstable
Center λ pure imaginary —

Focus/Spiral Complex λ, Re(λ) 6= 0 Re(λ > 0), stable
Degenerate Node Repeated roots λ > 0, stable
Line of Equilibria One zero eigenvalue λ > 0, stable

Table 3.1: List of typical behaviors in pla-
nar systems.

The connection, as we have seen, is that the characteristic equation
for the associated second order differential equation is the same as
the eigenvalue equation of the coefficient matrix for the linear system.
However, one should be a little careful in cases in which the coeffi-
cient matrix in not diagonalizable. In Table 3.2 are three examples of
systems with repeated roots. The reader should look at these systems
and look at the commonalities and differences in these systems and
their solutions. In these cases one has unstable nodes, though they are
degenerate in that there is only one accessible eigenvector.

System 1 System 2 System 3

x
K3 K2 K1 0 1 2 3

y

K3

K2

K1

1

2

3
a = 2, b = 0, c = 0, d = 2

x
K3 K2 K1 0 1 2 3

y

K3

K2

K1

1

2

3
a = 0, b = 1, c = -4, d = 4

x
K3 K2 K1 0 1 2 3

y

K3

K2

K1

1

2

3
a = 2, b = 1, c = 0, d = 2

x′ =

(
2 0
0 2

)
x x′ =

(
0 1
−4 4

)
x x′ =

(
2 1
0 2

)
x

Table 3.2: Three examples of systems
with a repeated root of λ = 2.
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3.6 Applications

In this section we will describe some simple applications leading to
systems of differential equations which can be solved using the meth-
ods in this chapter. These systems are left for homework problems and
the as the start of further explorations for student projects.

3.6.1 Circuits

In the last chapter we investigated simple series LRC circuits. More
complicated circuits are possible by looking at parallel connections, or
other combinations, of resistors, capacitors and inductors. This will
result in several equations for each loop in the circuit, leading to larger
systems of differential equations. an example of another circuit setup
is shown in Figure 3.5. This is not a problem that can be covered in
the first year physics course.

R

C LV(t)

R1 2

Figure 3.5: A circuit with two loops con-
taining several different circuit elements.

There are two loops, indicated in Figure 3.6 as traversed clockwise.
For each loop we need to apply Kirchoff’s Loop Rule. There are three
oriented currents, labeled Ii, i = 1, 2, 3. Corresponding to each current
is a changing charge, qi such that

Figure 3.6: The previous parallel circuit
with the directions indicated for travers-
ing the loops in Kirchoff’s Laws.

Ii =
dqi
dt

, i = 1, 2, 3.

For loop one we have

I1R1 +
q2

C
= V(t). (3.102)

For loop two

I3R2 + L
dI3

dt
=

q2

C
. (3.103)

We have three unknown functions for the charge. Once we know
the charge functions, differentiation will yield the currents. However,
we only have two equations. We need a third equation. This is found
from Kirchoff’s Point (Junction) Rule. Consider the points A and B in
Figure 3.6. Any charge (current) entering these junctions must be the
same as the total charge (current) leaving the junctions. For point A
we have

I1 = I2 + I3, (3.104)

or
q̇1 = q̇2 + q̇3. (3.105)

Equations (3.102), (3.103), and (3.105) form a coupled system of dif-
ferential equations for this problem. There are both first and second
order derivatives involved. We can write the whole system in terms of
charges as

R1q̇1 +
q2

C
= V(t)
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R2q̇3 + Lq̈3 =
q2

C
q̇1 = q̇2 + q̇3. (3.106)

The question is whether, or not, we can write this as a system of
first order differential equations. Since there is only one second or-
der derivative, we can introduce the new variable q4 = q̇3. The first
equation can be solved for q̇1. The third equation can be solved for q̇2

with appropriate substitutions for the other terms. q̇3 is gotten from
the definition of q4 and the second equation can be solved for q̈3 and
substitutions made to obtain the system

q̇1 =
V
R1
− q2

R1C

q̇2 =
V
R1
− q2

R1C
− q4

q̇3 = q4

q̇4 =
q2

LC
− R2

L
q4.

So, we have a nonhomogeneous first order system of differential
equations. In the last section we learned how to solve such systems.

3.6.2 Love Affairs

The next application is one that has been studied by several authors
as a cute system involving relationships. One considers what happens
to the affections that two people have for each other over time. Let R
denote the affection that Romeo has for Juliet and J be the affection
that Juliet has for Romeo. positive values indicate love and negative
values indicate dislike.

One possible model is given by

dR
dt

= bJ

dJ
dt

= cR (3.107)

with b > 0 and c < 0. In this case Romeo loves Juliet the more she likes
him. But Juliet backs away when she finds his love for her increasing.

A typical system relating the combined changes in affection can be
modeled as

dR
dt

= aR + bJ

dJ
dt

= cR + dJ. (3.108)

Several scenarios are possible for various choices of the constants.
For example, if a > 0 and b > 0, Romeo gets more and more excited by
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Juliet’s love for him. If c > 0 and d < 0, Juliet is being cautious about
her relationship with Romeo. For specific values of the parameters
and initial conditions, one can explore this match of an overly zealous
lover with a cautious lover.

3.6.3 Predator Prey Models

Another common model studied is that of competing species. For
example, we could consider a population of rabbits and foxes. Left to
themselves, rabbits would tend to multiply, thus

dR
dt

= aR,

with a > 0. In such a model the rabbit population would grow ex-
ponentially. Similarly, a population of foxes would decay without the
rabbits to feed on. So, we have that

dF
dt

= −bF

for b > 0.
Now, if we put these populations together on a deserted island, they

would interact. The more foxes, the rabbit population would decrease.
However, the more rabbits, the foxes would have plenty to eat and
the population would thrive. Thus, we could model the competing
populations as

dR
dt

= aR− cF,

dF
dt

= −bF + dR, (3.109)

where all of the constants are positive numbers. Studying this coupled
system would lead to as study of the dynamics of these populations.
We will discuss other (nonlinear) systems in the next chapter.

3.6.4 Mixture Problems

There are many types of mixture problems. Such problems are stan-
dard in a first course on differential equations as examples of first
order differential equations. Typically these examples consist of a tank
of brine, water containing a specific amount of salt with pure water
entering and the mixture leaving, or the flow of a pollutant into, or
out of, a lake.

In general one has a rate of flow of some concentration of mixture
entering a region and a mixture leaving the region. The goal is to
determine how much stuff is in the region at a given time. This is
governed by the equation
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Rate of change of substance = Rate In − Rate Out.

This can be generalized to the case of two interconnected tanks. We
provide some examples.

Example 3.13. Single Tank Problem
A 50 gallon tank of pure water has a brine mixture with concentration of

2 pounds per gallon entering at the rate of 5 gallons per minute. [See Figure
3.7.] At the same time the well-mixed contents drain out at the rate of 5
gallons per minute. Find the amount of salt in the tank at time t. In all such
problems one assumes that the solution is well mixed at each instant of time.

Figure 3.7: A typical mixing problem.

Let x(t) be the amount of salt at time t. Then the rate at which the salt
in the tank increases is due to the amount of salt entering the tank less that
leaving the tank. To figure out these rates, one notes that dx/dt has units of
pounds per minute. The amount of salt entering per minute is given by the
product of the entering concentration times the rate at which the brine enters.
This gives the correct units:(

2
pounds

gal

)(
5

gal
min

)
= 10

pounds
min

.

Similarly, one can determine the rate out as(
x pounds

50 gal

)(
5

gal
min

)
=

x
10

pounds
min

.

Thus, we have
dx
dt

= 10− x
10

.

This equation is easily solved using the methods for first order equations.

Example 3.14. Double Tank Problem
One has two tanks connected together, labeled tank X and tank Y, as shown

in Figure 3.8.

Figure 3.8: The two tank problem.

Let tank X initially have 100 gallons of brine made with 100 pounds of salt.
Tank Y initially has 100 gallons of pure water. Now pure water is pumped
into tank X at a rate of 2.0 gallons per minute. Some of the mixture of brine
and pure water flows into tank Y at 3 gallons per minute. To keep the tank
levels the same, one gallon of the Y mixture flows back into tank X at a rate
of one gallon per minute and 2.0 gallons per minute drains out. Find the
amount of salt at any given time in the tanks. What happens over a long
period of time?

In this problem we set up two equations. Let x(t) be the amount of salt
in tank X and y(t) the amount of salt in tank Y. Again, we carefully look at
the rates into and out of each tank in order to set up the system of differential
equations. We obtain the system

dx
dt

=
y

100
− 3x

100
dy
dt

=
3x
100
− 3y

100
. (3.110)
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This is a linear, homogenous constant coefficient system of two first order
equations, which we know how to solve.

3.6.5 Chemical Kinetics

There are many problems that come from studying chemical reactions.
The simplest reaction is when a chemical A turns into chemical B.
This happens at a certain rate, k > 0. This can be represented by the
chemical formula

A
k

// B.

In this case we have that the rates of change of the concentrations of
A, [A], and B, [B], are given by

d[A]

dt
= −k[A]

d[B]
dt

= k[A] (3.111)

Think about this as it is a key to understanding the next reactions.
A more complicated reaction is given by

A
k1

// B
k2

// C.

In this case we can add to the above equation the rates of change of
concentrations [B] and [C]. The resulting system of equations is

d[A]

dt
= −k1[A],

d[B]
dt

= k1[A]− k2[B],

d[C]
dt

= k2[B]. (3.112)

One can further consider reactions in which a reverse reaction is
possible. Thus, a further generalization occurs for the reaction

A
k1

// B
k3oo

k2

// C.

The resulting system of equations is

d[A]

dt
= −k1[A] + k3[B],

d[B]
dt

= k1[A]− k2[B]− k3[B],

d[C]
dt

= k2[B]. (3.113)

More complicated chemical reactions will be discussed at a later time.
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3.6.6 Epidemics

Another interesting area of application of differential equation is in
predicting the spread of disease. Typically, one has a population of
susceptible people or animals. Several infected individuals are intro-
duced into the population and one is interested in how the infection
spreads and if the number of infected people drastically increases or
dies off. Such models are typically nonlinear and we will look at what
is called the SIR model in the next chapter. In this section we will
model a simple linear model.

Let break the population into three classes. First, S(t) are the healthy
people, who are susceptible to infection. Let I(t) be the number of in-
fected people. Of these infected people, some will die from the infec-
tion and others recover. Let’s assume that initially there in one infected
person and the rest, say N, are obviously healthy. Can we predict how
many deaths have occurred by time t?

Let’s try and model this problem using the compartmental analysis
we had seen in the mixing problems. The total rate of change of any
population would be due to those entering the group less those leaving
the group. For example, the number of healthy people decreases due
infection and can increase when some of the infected group recovers.
Let’s assume that the rate of infection is proportional to the number
of healthy people,aS. Also, we assume that the number who recover is
proportional to the number of infected, rI. Thus, the rate of change of
the healthy people is found as

dS
dt

= −aS + rI.

Let the number of deaths be D(t). Then, the death rate could be taken
to be proportional to the number of infected people. So,

dD
dt

= dI

Finally, the rate of change of infectives is due to healthy people get-
ting infected and the infectives who either recover or die. Using the
corresponding terms in the other equations, we can write

dI
dt

= aS− rI − dI.

This linear system can be written in matrix form.

d
dt

 S
I
D

 =

 −a r 0
a −d− r 0
0 d 0


 S

I
D

 . (3.114)

The eigenvalue equation for this system is

λ
[
λ2 + (a + r + d)λ + ad

]
= 0.
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The reader can find the solutions of this system and determine if this
is a realistic model.

3.7 Rotations of Conics

Eigenvalue problems show up in applications other than the solu-
tion of differential equations. We will see applications of this later in
the text. For now, we are content to deal with problems which can be
cast into matrix form. One example is the transformation of a simple
system through rotation into a more complicated appearing system
simply do to the choice of coordinate system. In this section we will
explore this through the study of the rotation of conics.

You may have seen the general form for the equation of a conic in
Cartesian coordinates in your calculus class. It is given by

Ax2 + 2Bxy + Cy2 + Ex + Fy = D. (3.115)

This equation can describe a variety of conics (ellipses, hyperbolae and
parabolae) depending on the constants. The E and F terms result from
a translation9 of the origin and the B term is the result of a rotation of 9 It is easy to see how such terms corre-

spond to translations of conics. Consider
the simple example x2 + y2 + 2x− 6y =
0. By completing the squares in both x
and y, this equation can be written as
(x + 1)2 + (y − 3)2 = 10. Now you rec-
ognize that this is a circle whose center
has been translated from the origin to
(−1, 3).

the coordinate system. We leave it to the reader to show that coordi-
nate translations can be made to eliminate the linear terms. So, we will
set E = F = 0 in our discussion and only consider quadratic equations
of the form

Ax2 + 2Bxy + Cy2 = D.

If B = 0, then the resulting equation could be an equation for the
standard ellipse or hyperbola with center at the origin. In the case of
an ellipse, the semimajor and semiminor axes lie along the coordinate
axes. However, you could rotate the ellipse and that would introduce
a B term, as we will see.

This conic equation can be written in matrix form. We note that

(
x y

)( A B
B C

)(
x
y

)
= Ax2 + 2Bxy + Cy2.

In short hand matrix form, we thus have for our equation

xTQx = D,

where Q is the matrix of coefficients A, B, and C.
We want to determine the transformation that puts this conic into a

coordinate system in which there is no B term. Our goal is to obtain
an equation of the form

A′x′2 + C′y′2 = D′
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in the new coordinates yT = (x′, y′). The matrix form of this equation
is given as

yT

(
A′ 0
0 C′

)
y = D′.

We will denote the diagonal matrix by Λ.
So, we let

x = Ry,

where R is a rotation matrix. Inserting this transformation into our
equation we find that

xTQx = (Ry)TQRy

= yT(RTQR)y. (3.116)

Comparing this result to to desired form, we have

Λ = RTQR. (3.117)

Recalling that the rotation matrix is an orthogonal matrix, RT = R−1,
we have

Λ = R−1QR. (3.118)

Thus, the problem reduces to that of trying to diagonalize the matrix
Q. The eigenvalues of Q will lead to the constants in the rotated equa-
tion and the eigenvectors, as we will see, will give the directions of the
principal axes (the semimajor and semiminor axes). We will first show
this in an example.

Example 3.15. Determine the principle axes of the ellipse given by

13x2 − 10xy + 13y2 − 72 = 0.

A plot of this conic in Figure 3.9 shows that it is an ellipse. However, we
might not know this without plotting it. (Actually, there are some conditions
on the coefficients that do allow us to determine the conic. But you may not
know this yet.) If the equation were in standard form, we could identify its
general shape. So, we will use the method outlined above to find a coordinate
system in which the ellipse appears in standard form.

The coefficient matrix for this equation is given by

Q =

(
13 −5
−5 13

)
. (3.119)

Rotated Ellipse
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Figure 3.9: Plot of the ellipse given by
13x2 − 10xy + 13y2 − 72 = 0.

We seek a solution to the eigenvalue problem: Qv = λv. Recall, the first
step is to get the eigenvalue equation from det(Q− λI) = 0. For this problem
we have ∣∣∣∣∣ 13− λ −5

−5 13− λ

∣∣∣∣∣ = 0. (3.120)
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So, we have to solve
(13− λ)2 − 25 = 0.

This is easily solved by taking square roots to get

λ− 13 = ±5,

or
λ = 13± 5 = 18, 8.

Thus, the equation in the new system is

8x′2 + 18y′2 = 72.

Dividing out the 72 puts this into the standard form

x′2

9
+

y′2

4
= 1.

Now we can identify the ellipse in the new system. We show the two ellipses
in Figure 3.10. We note that the given ellipse is the new one rotated by some
angle, which we still need to determine. –2

–1

0

1

2

y

–3 –2 –1 1 2 3

x

Figure 3.10: Plot of the ellipse given by
13x2 − 10xy + 13y2 − 72 = 0 and the el-

lipse x′2
9 + y′2

4 = 1 showing that the first
ellipse is a rotated version of the second
ellipse.

Next, we seek the eigenvectors corresponding to each eigenvalue.
Eigenvalue 1: λ = 8
We insert the eigenvalue into the equation (Q− λI)v = 0. The system for

the unknown eigenvector is(
13− 8 −5
−5 13− 8

)(
v1

v2

)
= 0. (3.121)

The first equation is
5v1 − 5v2 = 0, (3.122)

or v1 = v2. Thus, we can choose our eigenvector to be(
v1

v2

)
=

(
1
1

)
.

Eigenvalue 2: λ = 18
In the same way, we insert the eigenvalue into the equation (Q−λI)v = 0

and obtain (
13− 18 −5
−5 13− 18

)(
v1

v2

)
= 0. (3.123)

The first equation is
− 5v1 − 5v2 = 0, (3.124)

or v1 = −v2. Thus, we can choose our eigenvector to be(
v1

v2

)
=

(
−1
1

)
.
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In Figure 3.11 we superimpose the eigenvectors on our original ellipse. We
see that the eigenvectors point in directions along the semimajor and semimi-
nor axes and indicate the angle of rotation. Eigenvector one is at a 45o angle.
Thus, our ellipse is a rotated version of one in standard position. Or, we could
define new axes that are at 45o to the standard axes and then the ellipse would
take the standard form in the new coordinate system.

Standard Ellipse and its Rotation
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Figure 3.11: Plot of the ellipse given by
13x2 − 10xy + 13y2 − 72 = 0 and the
eigenvectors. Note that they are along
the semimajor and semiminor axes and
indicate the angle of rotation.

A general rotation of any conic can be performed. Consider the
general equation:

Ax2 + 2Bxy + Cy2 + Ex + Fy = D. (3.125)

We would like to find a rotation that puts it in the form

λ1x′2 + λ2y′2 + E′x′ + F′y′ = D. (3.126)

We use the rotation matrix

R̂θ =

(
cos θ − sin θ

sin θ cos θ

)

and define x′ = R̂T
θ x, or x = Rθx′.

The general equation can be written in matrix form:

xTQx + fx = D, (3.127)

where Q is the usual matrix of coefficients A, B, and C and f = (E, F).
Transforming this equation gives

x′T R−1
θ QRθx′ + fRθx′ = D. (3.128)

The resulting equation is of the form

A′x′2 + 2B′x′y′ + C′y′2 + E′x′ + F′y′ = D, (3.129)

where
B′ = 2(C− A) sin θ cos θ + 2B(2 cos θ2 − 1). (3.130)

(We only need B′ for this discussion). If we want the nonrotated form,
then we seek an angle θ such that B′ = 0. Noting that 2 sin θ cos θ =

sin 2θ and 2 cos θ2 − 1 = cos 2θ, this gives

tan(2θ) =
A− C

B
. (3.131)

Example 3.16. So, in our previous example, with A = C = 13 and B = −5,
we have tan(2θ) = ∞. Thus, 2θ = π/2, or θ = π/4.

Finally, we had noted that knowing the coefficients in the general
quadratic is enough to determine the type of conic represented without
doing any plotting. This is based on the fact that the determinant of
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the coefficient matrix is invariant under rotation. We see this from the
equation for diagonalization

det(Λ) = det(R−1
θ QRθ)

= det(R−1
θ )det(Q)det(Rθ)

= det(R−1
θ Rθ)det(Q)

= det(Q). (3.132)

Therefore, we have
λ1λ2 = AC− B2.

Looking at Equation (3.126), we have three cases:

1. Ellipse λ1λ2 > 0 or B2 − AC < 0.

2. Hyperbola λ1λ2 < 0 or B2 − AC > 0.

3. Parabola λ1λ2 = 0 or B2 − AC = 0. and one eigenvalue is nonzero.
Otherwise the equation degenerates to a linear equation.

Example 3.17. Consider the hyperbola xy = 6. We can see that this is a
rotated hyperbola by plotting y = 6/x. A plot is shown in Figure 3.12.
Determine the rotation need to put transform the hyperbola to new coordinates
so that its equation will be in standard form.

Rotated Hyperbola
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Figure 3.12: Plot of the hyperbola given
by xy = 6.

The coefficient matrix for this equation is given by

A =

(
0 −0.5

0.5 0

)
. (3.133)

The eigenvalue equation is ∣∣∣∣∣ −λ −0.5
−0.5 −λ

∣∣∣∣∣ = 0. (3.134)

Thus,
λ2 − 0.25 = 0,

or λ = ±0.5.
Once again, tan(2θ) = ∞, so the new system is at 45o to the old. The

equation in new coordinates is 0.5x2 + (−0.5)y2 = 6, or x2 − y2 = 12. A
plot is shown in Figure 3.13.
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Figure 3.13: Plot of the rotated hyper-
bola given by x2 − y2 = 12.

3.8 Appendix: Diagonalization and Linear Systems

As we have seen, the matrix formulation for linear systems can be
powerful, especially for n differential equations involving n unknown
functions. Our ability to proceed towards solutions depended upon
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the solution of eigenvalue problems. However, in the case of repeated
eigenvalues we saw some additional complications. This all depends
deeply on the background linear algebra. Namely, we relied on being
able to diagonalize the given coefficient matrix. In this section we
will discuss the limitations of diagonalization and introduce the Jordan
canonical form.

We begin with the notion of similarity. Matrix A is similar to matrix
B if and only if there exists a nonsingular matrix P such that

B = P−1 AP. (3.135)

Recall that a nonsingular matrix has a nonzero determinant and is
invertible.

We note that the similarity relation is an equivalence relation. Namely,
it satisfies the following

1. A is similar to itself.

2. If A is similar to B, then B is similar to A.

3. If A is similar to B and B is similar to C, the A is similar to
C.

Also, if A is similar to B, then they have the same eigenvalues.
This follows from a simple computation of the eigenvalue equation.
Namely,

0 = det(B− λI)

= det(P−1 AP− λP−1 IP)

= det(P)−1 det(A− λI)det(P)

= det(A− λI). (3.136)

Therefore, det(A− λI) = 0 and λ is an eigenvalue of both A and B.
An n × n matrix A is diagonalizable if and only if A is similar to a

diagonal matrix D; i.e., there exists a nonsingular matrix P such that

D = P−1 AP. (3.137)

One of the most important theorems in linear algebra is the Spectral
Theorem. This theorem tells us when a matrix can be diagonalized. In
fact, it goes beyond matrices to the diagonalization of linear operators.
We learn in linear algebra that linear operators can be represented by
matrices once we pick a particular representation basis. Diagonaliza-
tion is simplest for finite dimensional vector spaces and requires some
generalization for infinite dimensional vectors spaces. Examples of op-
erators to which the spectral theorem applies are self-adjoint operators
(more generally normal operators on Hilbert spaces). We will explore
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some of these ideas later in the course. The spectral theorem pro-
vides a canonical decomposition, called the spectral decomposition, or
eigendecomposition, of the underlying vector space on which it acts.

The next theorem tells us how to diagonalize a matrix:

Theorem 3.1. Let A be an n× n matrix. Then A is diagonalizable if and
only if A has n linearly independent eigenvectors. If so, then

D = P−1 AP.

If {v1, . . . , vn} are the eigenvectors of A and {λ1, . . . , λn} are the correspond-
ing eigenvalues, then vj is the jth column of P and Djj = λj.

A simpler determination results by noting

Theorem 3.2. Let A be an n× n matrix with n real and distinct eigenvalues.
Then A is diagonalizable.

Therefore, we need only look at the eigenvalues and determine di-
agonalizability. In fact, one also has from linear algebra the following
result.

Theorem 3.3. Let A be an n× n real symmetric matrix. Then A is diago-
nalizable.

Recall that a symmetric matrix is one whose transpose is the same
as the matrix, or Aij = Aji.

Example 3.18. Consider the matrix

A =

 1 2 2
2 3 0
2 0 3


This is a real symmetric matrix. The characteristic polynomial is found to be

det(A− λI) = −(λ− 5)(λ− 3)(λ + 1) = 0.

As before, we can determine the corresponding eigenvectors (for λ = −1, 3, 5,
respectively) as  −2

1
1

 ,

 0
−1
1

 ,

 1
1
1

 .

We can use these to construct the diagonalizing matrix P. Namely, we have

P−1 AP =

 −2 0 1
1 −1 1
1 1 1


−1 1 2 2

2 3 0
2 0 3


 −2 0 1

1 −1 1
1 1 1


=

 −1 0 0
0 3 0
0 0 5

 . (3.138)
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Now diagonalization is an important idea in solving linear systems
of first order equations, as we have seen for simple systems. If our
system is originally diagonal, that means our equations are completely
uncoupled. Let our system take the form

dy
dt

= Dy, (3.139)

where D is diagonal with entries λi, i = 1, . . . , n. The system of equa-
tions, y′i = λiyi, has solutions

yi(t) = cceλit.

Thus, it is easy to solve a diagonal system.
Let A be similar to this diagonal matrix. Then

dy
dt

= P−1 APy. (3.140)

This can be rewritten as
dPy
dt

= APy.

Defining x = Py, we have
dx
dt

= Ax. (3.141)

This simple derivation shows that if A is diagonalizable, then a
transformation of the original system in x to new coordinates, or a new
basis, results in a simpler system in y.

However, it is not always possible to diagonalize a given square
matrix. This is because some matrices do not have enough linearly
independent vectors, or we have repeated eigenvalues. However, we
have the following theorem:

Theorem 3.4. Every n× n matrix A is similar to a matrix of the form

J = diag[J1, J2, . . . , Jn],

where

Ji =


λi 1 0 · · · 0
0 λi 1 · · · 0
...

. . . . . . . . .
...

0 · · · 0 λi 1
0 0 · · · 0 λi

 (3.142)

We will not go into the details of how one finds this Jordan Canon-
ical Form or proving the theorem. In practice you can use a computer
algebra system to determine this and the similarity matrix. However,
we would still need to know how to use it to solve our system of dif-
ferential equations.
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Example 3.19. Let’s consider a simple system with the 3× 3 Jordan block

A =

 2 1 0
0 2 1
0 0 2

 .

The corresponding system of coupled first order differential equations takes
the form

dx1

dt
= 2x1 + x2,

dx2

dt
= 2x2 + x3,

dx3

dt
= 2x3. (3.143)

The last equation is simple to solve, giving x3(t) = c3e2t. Inserting into
the second equation, you have a

dx2

dt
= 2x2 + c3e2t.

Using the integrating factor, e−2t, one can solve this equation to get x2(t) =
(c2 + c3t)e2t. Similarly, one can solve the first equation to obtain x1(t) =

(c1 + c2t + 1
2 c3t2)e2t.

This should remind you of a problem we had solved earlier leading to the
generalized eigenvalue problem in (3.83). This suggests that there is a more
general theory when there are multiple eigenvalues and relating to Jordan
canonical forms.

Let’s write the solution we just obtained in vector form. We have

x(t) =

c1

 1
0
0

+ c2

 t
1
0

+ c3

 1
2 t2

t
1


 e2t. (3.144)

It looks like this solution is a linear combination of three linearly indepen-
dent solutions,

x = v1e2λt

x = (tv1 + v2)eλt

x = (
1
2

t2v1 + tv2 + v3)eλt, (3.145)

where λ = 2 and the vectors satisfy the equations

(A− λI)v1 = 0,

(A− λI)v2 = v1,

(A− λI)v3 = v2, (3.146)
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and

(A− λI)v1 = 0,

(A− λI)2v2 = 0,

(A− λI)3v3 = 0. (3.147)

It is easy to generalize this result to build linearly independent solutions
corresponding to multiple roots (eigenvalues) of the characteristic equation.

Problems

1. Express the vector v = (1, 2, 3) as a linear combination of the vectors
a1 = (1, 1, 1), a2 = (1, 0,−1), and a3 = (2, 1, 0).

2. A symmetric matrix is one for which the transpose of the matrix is
the same as the original matrix, AT = A. An antisymmetric matrix is
one which satisfies AT = −A.

a. Show that the diagonal elements of an n× n antisymmetric
matrix are all zero.

b. Show that a general 3 × 3 antisymmetric matrix has three
independent off-diagonal elements.

c. How many independent elements does a general 3× 3 sym-
metric matrix have?

d. How many independent elements does a general n× n sym-
metric matrix have?

e. How many independent elements does a general n× n anti-
symmetric matrix have?

3. Consider the matrix representations for two dimensional rotations
of vectors by angles α and β, denoted by Rα and Rβ, respectively.

a. Find R−1
α and RT

α . How do they relate?

b. Prove that Rα+β = RαRβ = RβRα.

4. The Pauli spin matrices in quantum mechanics are given by the

matrices: σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, and σ3 =

(
1 0
0 −1

)
.

Show that

a. σ2
1 = σ2

2 = σ2
3 = I.

b. {σi, σj} ≡ σiσj + σjσi = 2δij I, for i, j = 1, 2, 3 and I the 2× 2
identity matrix. {, } is the anti-commutation operation.

c. [σ1, σ2] ≡ σ1σ2− σ2σ1 = 2iσ3, and similarly for the other pairs.
[, ] is the commutation operation.
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d. Show that an arbitrary 2× 2 matrix M can be written as a
linear combination of Pauli matrices, M = a0 I + ∑3

j=1 ajσj,
where the aj’s are complex numbers.

5. Use Cramer’s Rule to solve the system:

2x− 5z = 7

x− 2y = 1

3x− 5y− z = 4. (3.148)

6. Find the eigenvalue(s) and eigenvector(s) for the following:

a.

(
4 2
3 3

)

b.

(
3 −5
1 −1

)

c.

(
4 1
0 4

)

d.

 1 −1 4
3 2 −1
2 1 −1


7. For the matrices in the last problem, compute the determinants and
find the inverses, if they exist.

8. Consider the conic 5x2 − 4xy + 2y2 = 30.

a. Write the left side in matrix form.

b. Diagonalize the coefficient matrix, finding the eigenvalues
and eigenvectors.

c. Construct the rotation matrix from the information in part b.
What is the angle of rotation needed to bring the conic into
standard form?

d. What is the conic?

9. In Equation (3.76) the exponential of a matrix was defined.

a. Let

A =

(
2 0
0 0

)
.

Compute eA.

b. Give a definition of cos A and compute cos

(
1 0
0 2

)
in sim-

plest form.
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c. Using the definition of eA, prove ePAP−1
= PeAP−1 for general

A.

10. Consider the following systems. For each system determine the
coefficient matrix. When possible, solve the eigenvalue problem for
each matrix and use the eigenvalues and eigenfunctions to provide
solutions to the given systems. Finally, in the common cases which
you investigated in Problem 17, make comparisons with your previous
answers, such as what type of eigenvalues correspond to stable nodes.

a.

x′ = 3x− y

y′ = 2x− 2y.

b.

x′ = −y

y′ = −5x.

c.

x′ = x− y

y′ = y.

d.

x′ = 2x + 3y

y′ = −3x + 2y.

e.

x′ = −4x− y

y′ = x− 2y.

f.

x′ = x− y

y′ = x + y.

11. Add a third spring connected to mass two in the coupled system
shown in Figure 2.17 to a wall on the far right. Assume that the masses
are the same and the springs are the same.

a. Model this system with a set of first order differential equa-
tions.

b. If the masses are all 2.0 kg and the spring constants are all
10.0 N/m, then find the general solution for the system.
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c. Move mass one to the left (of equilibrium) 10.0 cm and mass
two to the right 5.0 cm. Let them go. find the solution and
plot it as a function of time. Where is each mass at 5.0 sec-
onds?

12. Consider the series circuit in Figure 2.7 with L = 1.00 H, R =

1.00× 102 Ω, C = 1.00× 10−4 F, and V0 = 1.00× 103 V.

a. Set up the problem as a system of two first order differential
equations for the charge and the current.

b. Suppose that no charge is present and no current is flowing
at time t = 0 when V0 is applied. Find the current and the
charge on the capacitor as functions of time.

c. Plot your solutions and describe how the system behaves over
time.

13. Consider the series circuit in Figure 3.5 with L = 1.00 H, R1 =

R2 = 1.00× 102 Ω, C = 1.00× 10−4 F, and V0 = 1.00× 103 V.

a. Set up the problem as a system of first order differential
equations for the charges and the currents in each loop.

b. Suppose that no charge is present and no current is flowing
at time t = 0 when V0 is applied. Find the current and the
charge on the capacitor as functions of time.

c. Plot your solutions and describe how the system behaves over
time.

14. Initially a 200 gallon tank is filled with pure water. At time t =

0 a salt concentration with 3 pounds of salt per gallon is added to
the container at the rate of 4 gallons per minute, and the well-stirred
mixture is drained from the container at the same rate.

a. Find the number of pounds of salt in the container as a func-
tion of time.

b. How many minutes does it take for the concentration to
reach 2 pounds per gallon?

c. What does the concentration in the container approach for
large values of time? Does this agree with your intuition?

d. Assuming that the tank holds much more than 200 gallons,
and everything is the same except that the mixture is drained
at 3 gallons per minute, what would the answers to parts a
and b become?

15. You make two gallons of chili for a party. The recipe calls for
two teaspoons of hot sauce per gallon, but you had accidentally put
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in two tablespoons per gallon. You decide to feed your guests the
chili anyway. Assume that the guests take 1 cup/min of chili and
you replace what was taken with beans and tomatoes without any hot
sauce. [1 gal = 16 cups and 1 Tb = 3 tsp.]

a. Write down the differential equation and initial condition for
the amount of hot sauce as a function of time in this mixture-
type problem.

b. Solve this initial value problem.

c. How long will it take to get the chili back to the recipe’s
suggested concentration?

16. Consider the chemical reaction leading to the system in (3.113).
Let the rate constants be k1 = 0.20 ms−1, k2 = 0.05 ms−1, and k3 = 0.10
ms−1. What do the eigenvalues of the coefficient matrix say about the
behavior of the system? Find the solution of the system assuming
[A](0) = A0 = 1.0 µmol, [B](0) = 0, and [C](0) = 0. Plot the solutions
for t = 0.0 to 50.0 ms and describe what is happening over this time.

17. Consider the epidemic model leading to the system in (3.114).
Choose the constants as a = 2.0 days−1, d = 3.0 days−1, and r = 1.0
days−1. What are the eigenvalues of the coefficient matrix? Find the
solution of the system assuming an initial population of 1, 000 and
one infected individual. Plot the solutions for t = 0.0 to 5.0 days and
describe what is happening over this time. Is this model realistic?
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