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Introduction

“Ordinary language is totally unsuited for expressing what physics really asserts, since the words of everyday life are
not sufficiently abstract. Only mathematics and mathematical logic can say as little as the physicist means to say.”
Bertrand Russell (1872-1970)

Before we begin our study of mathematical physics, perhaps we
should review some things from your past classes. You definitely
need to know something before taking this class. It is assumed that
you have taken Calculus and are comfortable with differentiation and
integration. You should also have taken some introductory physics
class, preferably the calculus based course. Of course, you are not ex-
pected to know every detail from these courses. However, there are
some topics and methods that will come up and it would be useful to
have a handy reference to what it is you should know, especially when
it comes to exams.

Most importantly, you should still have your introductory physics
and calculus texts to which you can refer throughout the course. Look-
ing back on that old material, you will find that it appears easier than
when you first encountered the material. That is the nature of learning
mathematics and physics. Your understanding is continually evolving
as you explore topics more in depth. It does not always sink in the
first time you see it.

In this chapter we will give a quick review of these topics. We will
also mention a few new things that might be interesting. This review
is meant to make sure that everyone is at the same level.

1.1 What Do I Need To Know From Calculus?

1.1.1 Introduction

There are two main topics in calculus: derivatives and integrals .
You learned that derivatives are useful in providing rates of change in
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either time or space. Integrals provide areas under curves, but also are
useful in providing other types of sums over continuous bodies, such
as lengths, areas, volumes, moments of inertia, or flux integrals. In
physics, one can look at graphs of position versus time and the slope
(derivative) of such a function gives the velocity. By plotting velocity
versus time you can either look at the derivative to obtain acceleration,
or you could look at the area under the curve and get the displacement:

x =
∫ t

t0

v dt. (1.1)

Of course, you need to know how to differentiate and integrate
given functions. Even before getting into differentiation and integra-
tion, you need to have a bag of functions useful in physics. Common
functions are the polynomial and rational functions. You should be
fairly familiar with these. Polynomial functions take the general form

f (x) = anxn + an−1xn−1 + · · ·+ a1x + a0, (1.2)

where an 6= 0. This is the form of a polynomial of degree n. Rational
functions, f (x) = g(x)

h(x) , consist of ratios of polynomials. Their graphs
can exhibit vertical and horizontal asymptotes.

Next are the exponential and logarithmic functions. The most com-
mon are the natural exponential and the natural logarithm. The nat-
ural exponential is given by f (x) = ex, where e ≈ 2.718281828 . . . .
The natural logarithm is the inverse to the exponential, denoted by
ln x. (One needs to be careful, because some mathematics and physics
books use log to mean natural exponential, whereas many of us were
first trained to use it to mean the common logarithm, which is the ‘log
base 10’. Here we will use ln x for the natural logarithm.)

The properties of the exponential function follow from the basic
properties for exponents. Namely, we have: Exponential properties.

e0 = 1, (1.3)

e−a =
1
ea (1.4)

eaeb = ea+b, (1.5)

(ea)b = eab. (1.6)

The relation between the natural logarithm and natural exponential
is given by

y = ex ⇔ x = ln y. (1.7)

Some common logarithmic properties are Logarithmic properties.
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ln 1 = 0, (1.8)

ln
1
a

= − ln a, (1.9)

ln(ab) = ln a + ln b, (1.10)

ln
a
b

= ln a− ln b, (1.11)

ln
1
b

= − ln b. (1.12)

We will see further applications of these relations as we progress
through the course.

1.1.2 Trigonometric Functions

Another set of useful functions are the trigonometric functions.
These functions have probably plagued you since high school. They
have their origins as far back as the building of the pyramids. Typical
applications in your introductory math classes probably have included
finding the heights of trees, flag poles, or buildings. It was recognized
a long time ago that similar right triangles have fixed ratios of any pair
of sides of the two similar triangles. These ratios only change when
the non-right angles change.

Thus, the ratio of two sides of a right triangle only depends upon
the angle. Since there are six possible ratios (think about it!), then
there are six possible functions. These are designated as sine, cosine,
tangent and their reciprocals (cosecant, secant and cotangent). In your
introductory physics class, you really only needed the first three. You
also learned that they are represented as the ratios of the opposite
to hypotenuse, adjacent to hypotenuse, etc. Hopefully, you have this
down by now.

You should also know the exact values of these basic trigonometric
functions for the special angles θ = 0, π

6 , π
3 , π

4 , π
2 , and their correspond-

ing angles in the second, third and fourth quadrants. This becomes
internalized after much use, but we provide these values in Table 1.1
just in case you need a reminder.

θ cos θ sin θ tan θ

0 1 0 0

π
6

√
3

2
1
2

√
3

3
π
3

1
2

√
3

2

√
3

π
4

√
2

2

√
2

2 1

π
2 0 1 undefined

Table 1.1: Table of Trigonometric Values
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The problems students often have using trigonometric functions in
later courses stem from using, or recalling, identities. We will have
many an occasion to do so in this class as well. What is an identity? It
is a relation that holds true all of the time. For example, the most com-
mon identity for trigonometric functions is the Pythagorean identity

sin2 θ + cos2 θ = 1. (1.13)

This hold true for every angle θ! An even simpler identity is

tan θ =
sin θ

cos θ
. (1.14)

Other simple identities can be derived from the Pythagorean iden-
tity. Dividing the identity by cos2 θ, or sin2 θ, yields

tan2 θ + 1 = sec2 θ, (1.15)

1 + cot2 θ = csc2 θ. (1.16)

Several other useful identities stem from the use of the sine and
cosine of the sum and difference of two angles. Namely, we have that Sum and difference identities.

sin(A± B) = sin A cos B± sin B cos A, (1.17)

cos(A± B) = cos A cos B∓ sin A sin B. (1.18)

Note that the upper (lower) signs are taken together.
The double angle formulae are found by setting A = B :

Double angle formulae.

sin(2A) = 2 sin A cos B, (1.19)

cos(2A) = cos2 A− sin2 A. (1.20)

Using Equation (1.13), we can rewrite (1.20) as

cos(2A) = 2 cos2 A− 1, (1.21)

= 1− 2 sin2 A. (1.22)

These, in turn, lead to the half angle formulae. Solving for cos2 A and
sin2 A, we find that Half angle formulae.

sin2 A =
1− cos 2A

2
, (1.23)

cos2 A =
1 + cos 2A

2
. (1.24)

Finally, another useful set of identities are the product identities. Product Identities



introduction 15

For example, if we add the identities for sin(A + B) and sin(A− B),
the second terms cancel and we have

sin(A + B) + sin(A− B) = 2 sin A cos B.

Thus, we have that

sin A cos B =
1
2
(sin(A + B) + sin(A− B)). (1.25)

Similarly, we have

cos A cos B =
1
2
(cos(A + B) + cos(A− B)). (1.26)

and

sin A sin B =
1
2
(cos(A− B)− cos(A + B)). (1.27)

Know the above boxed identities!
These boxed equations are the most common trigonometric identi-

ties. They appear often and should just roll off of your tongue.
We will also need to understand the behaviors of trigonometric

functions. In particular, we know that the sine and cosine functions
are periodic. They are not the only periodic functions, as we shall see.
[Just visualize the teeth on a carpenter’s saw.] However, they are the
most common periodic functions.

A periodic function f (x) satisfies the relation

f (x + p) = f (x), for all x

for some constant p. If p is the smallest such number, then p is called
the period. Both the sine and cosine functions have period 2π. This
means that the graph repeats its form every 2π units. Similarly, sin bx
and cos bx have the common period p = 2π

b . We will make use of this
fact in later chapters.

Related to these are the inverse trigonometric functions. For exam-
ple, f (x) = sin−1 x, or f (x) = arcsin x. Inverse functions give back In Feynman’s Surely You’re Joking Mr.

Feynman!, Richard Feynman (1918-1988)
talks about his invention of his own no-
tation for both trigonometric and inverse
trigonometric functions as the standard
notation did not make sense to him.

angles, so you should think

θ = sin−1 x ⇔ x = sin θ. (1.28)

Also, you should recall that y = sin−1 x = arcsin x is only a function
if −π

2 ≤ x ≤ π
2 . Similar relations exist for y = cos−1 x = arccos x and

tan−1 x = arctan x.
Once you think about these functions as providing angles, then

you can make sense out of more complicated looking expressions, like
tan(sin−1 x). Such expressions often pop up in evaluations of integrals.
We can untangle this in order to produce a simpler form by referring
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to expression (1.28). θ = sin−1 x is simple an angle whose sine is x.
Knowing the sine is the opposite side of a right triangle divided by its
hypotenuse, then one just draws a triangle in this proportion. Namely,
the side opposite the angle has length x and the hypotenuse has length
1. Using the Pythagorean Theorem, the missing side (adjacent to the
angle) is simply

√
1− x2. Having obtained the lengths for all three

sides, we can now produce the tangent of the angle as

tan(sin−1 x) =
x√

1− x2
.

1.1.3 Hyperbolic Functions

So, are there any other functions that are useful in physics? Actu-
ally, there are many more. However, you have probably not see many
of them to date. We will see by the end of the semester that there
are many important functions that arise as solutions of some fairly
generic, but important, physics problems. In your calculus classes you
have also seen that some relations are represented in parametric form.
However, there is at least one other set of elementary functions, which
you should already know about. These are the hyperbolic functions.
Such functions are useful in representing hanging cables, unbounded
orbits, and special traveling waves called solitons. They also play a
role in special and general relativity.

Solitons are special solutions to some
generic nonlinear wave equations. They
typically experience elastic collisions
and play special roles in a variety of
fields in physics, such as hydrodynam-
ics and optics. A simple soliton solution
is of the form u(x, t) = 2η2 sech 2η(x −
4η2t).

Hyperbolic functions are actually related to the trigonometric func-
tions, as we shall see after a little bit of complex function theory. For
now, we just want to recall a few definitions and an identity. Just as all
of the trigonometric functions can be built from the sine and the co-
sine, the hyperbolic functions can be defined in terms of the hyperbolic
sine and hyperbolic cosine: Hyperbolic functions; We will see later

the connection between the hyperbolic
and trigonometric functions.

sinh x =
ex − e−x

2
, (1.29)

cosh x =
ex + e−x

2
. (1.30)

There are four other hyperbolic functions. These are defined in
terms of the above functions similar to the relations between the trigono-
metric functions. We have Hyperbolic identities

tanh x =
sinh x
cosh x

=
ex − e−x

ex + e−x , (1.31)

sech x =
1

cosh x
=

2
ex + e−x , (1.32)

csch x =
1

sinh x
=

2
ex − e−x , (1.33)
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coth x =
1

tanh x
=

ex + e−x

ex − e−x . (1.34)

There are also a whole set of identities, similar to those for the
trigonometric functions. For example, the Pythagorean identity for
trigonometric functions, sin2 θ + cos2 θ = 1, is replaced by the identity

cosh2 x− sinh2 x = 1.

This is easily shown by simply using the definitions of these functions.
This identity is also useful for providing a parametric set of equations
describing hyperbolae. Letting x = a cosh t and y = b sinh t, one has

x2

a2 −
y2

b2 = cosh2 t− sinh2 t = 1.

A list of commonly needed hyperbolic function identities are given
by the following:

cosh2 x− sinh2 x = 1, (1.35)

tanh2 x + sech 2x = 1, (1.36)

cosh(A± B) = cosh A cosh B± sinh A sinh B, (1.37)

sinh(A± B) = sinh A cosh B± sinh B cosh A, (1.38)

cosh 2x = cosh2 x + sinh2 x, (1.39)

sinh 2x = 2 sinh x cosh x, (1.40)

cosh2 x =
1
2
(1 + cosh 2x) , (1.41)

sinh2 x =
1
2
(cosh 2x− 1) . (1.42)

Note the similarity with the trigonometric identities. Other identities
can be derived from these. Inverse Hyperbolic Functions:

sinh−1 x = ln
(

x +
√

1 + x2
)

cosh−1 x = ln
(

x +
√

x2 − 1
)

tanh−1 x =
1
2

ln
1 + x
1− x

There also exist inverse hyperbolic functions and these can be writ-
ten in terms of logarithms. As with the inverse trigonometric func-
tions, we begin with the definition

y = sinh−1 x ⇔ x = sinh y. (1.43)

The aim is to write y in terms of x without using the inverse function.
First, we note that

x =
1
2
(
ey − e−y) . (1.44)

Now, we solve for ey. This is done by noting that e−y = 1
ey and rewrit-

ing the previous equation as

0 = (ey)2 − 2xey − 1. (1.45)
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This equation is in quadratic form which we can solve as

ey = x +
√

1 + x2.

(There is only one root as we expect the exponential to be positive.)
The final step is to solve for y,

y = ln
(

x +
√

1 + x2
)

. (1.46)

1.1.4 Derivatives

Now that we know some elementary functions, we seek their deriva-
tives. We will not spend time exploring the appropriate limits in any
rigorous way. We are only interested in the results. We provide these
in Table 1.2. We expect that you know the meaning of the derivative
and all of the usual rules, such as the product and quotient rules.

Function Derivative
a 0

xn nxn−1

eax aeax

ln ax 1
x

sin ax a cos ax
cos ax −a sin ax
tan ax a sec2 ax
csc ax −a csc ax cot ax
sec ax a sec ax tan ax
cot ax −a csc2 ax

sinh ax a cosh ax
cosh ax a sinh ax
tanh ax a sech 2ax
csch ax −a csch ax coth ax
sech ax −a sech ax tanh ax
coth ax −a csch 2ax

Table 1.2: Table of Derivatives (a is a con-
stant.)

Also, you should be familiar with the Chain Rule. Recall that this
rule tells us that if we have a composition of functions, such as the
elementary functions above, then we can compute the derivative of
the composite function. Namely, if h(x) = f (g(x)), then

dh
dx

=
d

dx
( f (g(x))) =

d f
dg

∣∣∣
g(x)

dg
dx

= f ′(g(x))g′(x). (1.47)

For example, let H(x) = 5 cos
(
π tanh 2x2). This is a composition

of three functions, H(x) = f (g(h(x))), where f (x) = 5 cos x, g(x) =
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π tanh x, and h(x) = 2x2. Then the derivative becomes

H′(x) = 5
(
− sin

(
π tanh 2x2

)) d
dx

((
π tanh 2x2

))
= −5π sin

(
π tanh 2x2

)
sech 22x2 d

dx

(
2x2
)

= −20πx sin
(

π tanh 2x2
)

sech 22x2. (1.48)

1.1.5 Integrals

Integration is typically a bit harder. Imagine being given the last
result result in (1.48) and having to figure out what I differentiated in
order to get that function. As you may recall from the Fundamental
Theorem of Calculus, the integral is the inverse operation to differen-
tiation: ∫ d f

dx
dx = f (x) + C. (1.49)

It is not always easy to evaluate a given integral. In fact some in-
tegrals are not even doable! However, you learned in calculus that
there are some methods that could yield an answer. While you might
be happier using a computer algebra system, such as Maple or Wol-
framAlpha.com, or a fancy calculator, you should know a few basic
integrals and know how to use tables for some of the more compli-
cated ones. In fact, it can be exhilarating when you can do a given
integral without reference to a computer or a Table of Integrals. How-
ever, you should be prepared to do some integrals using what you
have been taught in calculus. We will review a few of these methods
and some of the standard integrals in this section.

First of all, there are some integrals you are expected to know with-
out doing any work. These integrals appear often and are just an
application of the Fundamental Theorem of Calculus to the previous
Table 1.2. The basic integrals that students should know off the top of
their heads are given in Table 1.3.

These are not the only integrals you should be able to do. However,
we can expand the list by recalling a few of the techniques that you
learned in calculus. There are just a few: The Method of Substitution,
Integration by Parts, Integration Using Partial Fraction Decomposition,
and Trigonometric Integrals.

Example 1.1. When confronted with an integral, you should first ask if a
simple substitution would reduce the integral to one you know how to do. So,
as an example, consider the following integral∫ x√

x2 + 1
dx.
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Function Indefinite Integral
a ax

xn xn+1

n+1
eax 1

a eax

1
x ln x

sin ax − 1
a cos ax

cos ax 1
a sin ax

sec2 ax 1
a tan ax

sinh ax 1
a cosh ax

cosh ax 1
a sinh ax

sech 2ax 1
a tanh ax

sec x ln | sec x + tan x|
1

a+bx
1
b ln(a + bx)

1
a2+x2

1
a tan−1 ax

1√
a2−x2

1
a sin−1 ax

1√
x2−a2

1
a sec−1 ax

Table 1.3: Table of Integrals

The ugly part of this integral is the x2 + 1 under the square root. So, we
let u = x2 + 1. Noting that when u = f (x), we have du = f ′(x) dx. For
our example, du = 2x dx. Looking at the integral, part of the integrand can
be written as x dx = 1

2 u du. Then, the integral becomes∫ x√
x2 + 1

dx =
1
2

∫ du√
u

.

The substitution has converted our integral into an integral over u. Also, this
integral is doable! It is one of the integrals we should know. Namely, we can
write it as

1
2

∫ du√
u
=

1
2

∫
u−1/2 du.

This is now easily finished after integrating and using our substitution vari-
able to give ∫ x√

x2 + 1
dx =

1
2

u1/2

1
2

+ C =
√

x2 + 1 + C.

Note that we have added the required integration constant and that the deriva-
tive of the result easily gives the original integrand (after employing the Chain
Rule).

Often we are faced with definite integrals, in which we integrate be-
tween two limits. There are several ways to use these limits. However,
students often forget that a change of variables generally means that
the limits have to change.

Example 1.2. Consider the above example with limits added.∫ 2

0

x√
x2 + 1

dx.
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We proceed as before. We let u = x2 + 1. As x goes from 0 to 2, u takes
values from 1 to 5. So, this substitution gives∫ 2

0

x√
x2 + 1

dx =
1
2

∫ 5

1

du√
u
=
√

u|51 =
√

5− 1.

When the Method of Substitution fails, there are other methods you
can try. One of the most used is the Method of Integration by Parts.
Recall the Integration by Parts Formula: Integration by Parts Formula.

∫
u dv = uv−

∫
v du. (1.50)

The idea is that you are given the integral on the left and you can relate
it to an integral on the right. Hopefully, the new integral is one you
can do, or at least it is an easier integral than the one you are trying to
evaluate.

However, you are not usually given the functions u and v. You have
to determine them. The integral form that you really have is a function
of another variable, say x. Another form of the formula can be given
as ∫

f (x)g′(x) dx = f (x)g(x)−
∫

g(x) f ′(x) dx. (1.51)

This form is a bit more complicated in appearance, though it is clearer Note: Often in physics one needs to
move a derivative between functions in-
side an integrand. The key - use inte-
gration by parts to move the derivative
from one function to the other under an
integral.

what is happening. The derivative has been moved from one function
to the other. Recall that this formula was derived by integrating the
product rule for differentiation.

The two formulae are related by using the differential relations

u = f (x) → du = f ′(x) dx,

v = g(x) → dv = g′(x) dx. (1.52)

This also gives a method for applying the Integration by Parts For-
mula.

Example 1.3. Consider the integral
∫

x sin 2x dx. We choose u = x and
dv = sin 2x dx. This gives the correct left side of the Integration by Parts
Formula. We next determine v and du:

du =
du
dx

dx = dx,

v =
∫

dv =
∫

sin 2x dx = −1
2

cos 2x.

We note that one usually does not need the integration constant. Inserting
these expressions into the Integration by Parts Formula, we have∫

x sin 2x dx = −1
2

x cos 2x +
1
2

∫
cos 2x dx.
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We see that the new integral is easier to do than the original integral. Had
we picked u = sin 2x and dv = x dx, then the formula still works, but the
resulting integral is not easier.

For completeness, we finish the integration. The result is∫
x sin 2x dx = −1

2
x cos 2x +

1
4

sin 2x + C.

As always, you can check your answer by differentiating the result, a step
students often forget to do. Namely,

d
dx

(
−1

2
x cos 2x +

1
4

sin 2x + C
)

= −1
2

cos 2x + x sin 2x +
1
4
(2 cos 2x)

= x sin 2x. (1.53)

So, we do get back the integrand in the original integral.

We can also perform integration by parts on definite integrals. The
general formula is written as Integration by Parts for Definite Inte-

grals.∫ b

a
f (x)g′(x) dx = f (x)g(x)

∣∣∣∣b
a
−
∫ b

a
g(x) f ′(x) dx. (1.54)

Example 1.4. Consider the integral∫ π

0
x2 cos x dx.

This will require two integrations by parts. First, we let u = x2 and dv =

cos x. Then,
du = 2x dx. v = sin x.

Inserting into the Integration by Parts Formula, we have∫ π

0
x2 cos x dx = x2 sin x

∣∣∣π
0
− 2

∫ π

0
x sin x dx

= −2
∫ π

0
x sin x dx. (1.55)

We note that the resulting integral is easier that the given integral, but we
still cannot do the integral off the top of our head (unless we look at Example
3!). So, we need to integrate by parts again. (Note: In your calculus class you
may recall that there is a tabular method for carrying out multiple applications
of the formula. We will show this method in the next example.)

We apply integration by parts by letting U = x and dV = sin x dx. This
gives dU = dx and V = − cos x. Therefore, we have∫ π

0
x sin x dx = −x cos x

∣∣∣π
0
+
∫ π

0
cos x dx

= π + sin x
∣∣∣π
0

= π. (1.56)
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The final result is ∫ π

0
x2 cos x dx = −2π.

There are other ways to compute integrals of this type. First of all,
there is the Tabular Method to perform integration by parts. A second
method is to use differentiation of parameters under the integral. We
will demonstrate this using examples.

Example 1.5. Compute the integral
∫ π

0 x2 cos x dx using the Tabular Method.
Using the Tabular Method.

First we identify the two functions under the integral, x2 and cos x. We
then write the two functions and list the derivatives and integrals of each,
respectively. This is shown in Table 1.5. Note that we stopped when we
reached 0 in the left column.

D I
x2 cos x

↘ +

2x sin x
↘ −

2 − cos x
↘ +

0 − sin x

Table 1.4: Tabular Method

Next, one draws diagonal arrows, as indicated, with alternating signs at-
tached, starting with +. The indefinite integral is then obtained by summing
the products of the functions at the ends of the arrows along with the signs on
each arrow: ∫

x2 cos x dx = x2 sin x + 2x cos x− 2 sin x + C.

To find the definite integral, one evaluates the antiderivative at the given
limits. ∫ π

0
x2 cos x dx =

[
x2 sin x + 2x cos x− 2 sin x

]π

0

= (π2 sin π + 2π cos π − 2 sin π)− 0

= −2π. (1.57)

Actually, the Tabular Method works even if a 0 does not appear on
the left side. One can go as far as possible, and if a 0 does not appear,
then one needs only integrate, if possible, the product of the functions
in the last row, adding the next sign in the alternating sign progression.
The next example shows how this works.

Example 1.6. Use the Tabular Method to compute
∫

e2x sin 3x dx.
As before, we first set up the table.
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D I
sin 3x e2x

↘ +

3 cos 3x 1
2 e2x

↘ −
−9 sin 3x 1

4 e2x

Table 1.5: Tabular Method - Non-
terminating Example.

Putting together the pieces, noting that the derivatives in the left column
will never vanish, we have∫

e2x sin 3x dx = (
1
2

sin 3x− 3
4

cos 3x)e2x +
∫

(−9 sin 3x)
(

1
4

e2x
)

dx.

The integral on the right is a multiple of the one on the left, so we can combine
them,

13
4

∫
e2x sin 3x dx = (

1
2

sin 3x− 3
4

cos 3x)e2x,

or ∫
e2x sin 3x dx = (

2
13

sin 3x− 3
13

cos 3x)e2x.

Another method that one can use to evaluate this integral is to dif-
ferentiate under the integral sign. This is mentioned in the Richard
Feynman’s memoir Surely You’re Joking, Mr. Feynman!. In the book Differentiation Under the Integral Sign

and Feynman’s trick.Feynman recounts using this “trick” to be able to do integrals that his
MIT classmates could not do. This is based on a theorem in Advanced
Calculus.

Theorem 1.1. Let the functions f (x, t) and ∂ f (x,t)
∂x be continuous in both t,

and x, in the region of the (t, x) plane which includes a(x) ≤ t ≤ b(x),
x0 ≤ x ≤ x1, where the functions a(x) and b(x) are continuous and have
continuous derivatives for x0 ≤ x ≤ x1. Defining

F(x) ≡
∫ b(x)

a(x)
f (x, t) dt,

then

dF(x)
dx

=

(
∂F
∂b

)
db
dx

+

(
∂F
∂a

)
da
dx

+
∫ b(x)

a(x)

∂

∂x
f (x, t) dt

= f (x, b(x)) b′(x)− f (x, a(x)) a′(x) +
∫ b(x)

a(x)

∂

∂x
f (x, t) dt.

(1.58)

for x0 ≤ x ≤ x1. This is a generalized version of the Fundamental Theorem
of Calculus.

In the next examples we show how we can use this theorem to
bypass integration by parts.
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Example 1.7. Use differentiation under the integral sign to evaluate
∫

xex dx.
First, consider the integral

I(x, a) =
∫

eax dx.

Then
∂I(x, a)

∂a
=
∫

xeax dx.

So, ∫
xeax dx =

∂I(x, a)
∂a

=
∂

∂a

(∫
eax dx

)
=

∂

∂a

(
eax

a

)
=

(
x
a
− 1

a2

)
eax (1.59)

Evaluating this result at a = 1, we have∫
xex dx = (x− 1)ex.

Example 1.8. We will do the integral
∫ π

0 x2 cos x dx once more. First, con-
sider the integral

I(a) ≡
∫ π

0
cos ax dx

=
sin ax

a

∣∣∣π
0

=
sin aπ

a
. (1.60)

Differentiating the integral with respect to a twice gives

d2 I(a)
da2 = −

∫ π

0
x2 cos ax dx. (1.61)

Evaluation of this result at a = 1 leads to the desired result. Thus,

∫ π

0
x2 cos x dx = −d2 I(a)

da2

∣∣∣
a=1

= − d2

da2

(
sin aπ

a

) ∣∣∣
a=1

= − d
da

(
aπ cos aπ − sin aπ

a2

) ∣∣∣
a=1

= −
(

a2π2 sin aπ + 2aπ cos aπ − 2 sin aπ

a3

) ∣∣∣
a=1

= −2π. (1.62)
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Other types of integrals that you will see often are trigonometric in-
tegrals. In particular, integrals involving powers of sines and cosines.
For odd powers, a simple substitution will turn the integrals into sim-
ple powers.

Integration of odd powers of sine and co-
sine.Example 1.9. For example, consider∫

cos3 x dx.

This can be rewritten as∫
cos3 x dx =

∫
cos2 x cos x dx.

Let u = sin x. Then du = cos x dx. Since cos2 x = 1− sin2 x, we have∫
cos3 x dx =

∫
cos2 x cos x dx

=
∫
(1− u2) du

= u− 1
3

u3 + C

= sin x− 1
3

sin3 x + C. (1.63)

A quick check confirms the answer:

d
dx

(
sin x− 1

3
sin3 x + C

)
= cos x− sin2 x cos x = cos x(1− sin2 x) = cos3 x.

Even powers of sines and cosines are a little more complicated, but
doable. In these cases we need the half angle formulae: Integration of even powers of sine and

cosine.

sin2 α =
1− cos 2α

2
, (1.64)

cos2 α =
1 + cos 2α

2
. (1.65)

Example 1.10. As an example, we will compute∫ 2π

0
cos2 x dx.

Substituting the half angle formula for cos2 x, we have∫ 2π

0
cos2 x dx =

1
2

∫ 2π

0
(1 + cos 2x) dx

=
1
2

(
x− 1

2
sin 2x

)2π

0
= π. (1.66)

We note that this result appears often in physics. When looking at
root mean square averages of sinusoidal waves, one needs the average
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of the square of sines and cosines. Recall that the average of a function
on interval [a, b] is given as

fave =
1

b− a

∫ b

a
f (x) dx. (1.67)

So, the average of cos2 x over one period is

1
2π

∫ 2π

0
cos2 x dx =

1
2

. (1.68)

The root mean square is then 1√
2

.

1.1.6 Geometric Series

Geometric series are fairly common and
will be used throughout the book. You
should learn to recognize them and
work with them.

Infinite series occur often in mathematics and physics. Two series
which occur often are the geometric series and the binomial series. we
will discuss these in the next two sections.

A geometric series is of the form
∞

∑
n=0

arn = a + ar + ar2 + . . . + arn + . . . . (1.69)

Here a is the first term and r is called the ratio. It is called the ratio
because the ratio of two consecutive terms in the sum is r.

Example 1.11. For example,

1 +
1
2
+

1
4
+

1
8
+ . . .

is an example of a geometric series. We can write this using summation
notation,

1 +
1
2
+

1
4
+

1
8
+ . . . =

∞

∑
n=0

1
(

1
2

)n
.

Thus, a = 1 is the first term and r = 1
2 is the common ratio of successive

terms. Next, we seek the sum of this infinite series, if it exists.

The sum of a geometric series, when it converges, can easily be
determined. We consider the nth partial sum:

sn = a + ar + . . . + arn−2 + arn−1. (1.70)

Now, multiply this equation by r.

rsn = ar + ar2 + . . . + arn−1 + arn. (1.71)

Subtracting these two equations, while noting the many cancelations,
we have

(1− r)sn = (a + ar + . . . + arn−2 + arn−1)

−(ar + ar2 + . . . + arn−1 + arn)

= a− arn

= a(1− rn). (1.72)
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Thus, the nth partial sums can be written in the compact form

sn =
a(1− rn)

1− r
. (1.73)

Recall that the sum, if it exists, is given by S = limn→∞ sn. Letting n get
large in the partial sum (1.73), we need only evaluate limn→∞ rn. From
our special limits we know that this limit is zero for |r| < 1. Thus, we
have

Geometric Series

The sum of the geometric series is given by

∞

∑
n=0

arn =
a

1− r
, |r| < 1. (1.74)

The reader should verify that the geometric series diverges for all
other values of r. Namely, consider what happens for the separate
cases |r| > 1, r = 1 and r = −1.

Next, we present a few typical examples of geometric series.

Example 1.12. ∑∞
n=0

1
2n

In this case we have that a = 1 and r = 1
2 . Therefore, this infinite series

converges and the sum is

S =
1

1− 1
2
= 2.

This agrees with the plot of the partial sums in Figure A.6.

Example 1.13. ∑∞
k=2

4
3k

In this example we note that the first term occurs for k = 2. So, a = 4
9 .

Also, r = 1
3 . So,

S =
4
9

1− 1
3
=

2
3

.

Example 1.14. ∑∞
n=1(

3
2n − 2

5n )

Finally, in this case we do not have a geometric series, but we do have the
difference of two geometric series. Of course, we need to be careful whenever
rearranging infinite series. In this case it is allowed 1. Thus, we have

1 A rearrangement of terms in an infinite
series is allowed when the series is abso-
lutely convergent.

∞

∑
n=1

(
3
2n −

2
5n

)
=

∞

∑
n=1

3
2n −

∞

∑
n=1

2
5n .

Now we can add both geometric series:

∞

∑
n=1

(
3
2n −

2
5n

)
=

3
2

1− 1
2
−

2
5

1− 1
5
= 3− 1

2
=

5
2

.
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Geometric series are important because they are easily recognized
and summed. Other series, which can be summed, are special cases of
Taylor series, as we will see later. Another type of series that can be
summed is a telescoping series as seen in the next example.

Example 1.15. ∑∞
n=1

1
n(n+1) The first few terms of this series are

∞

∑
n=1

1
n(n + 1)

=
1
2
+

1
6
+

1
12

+
1
20

+ . . . .

It does not appear that we can sum this infinite series. However, if we used
the partial fraction expansion

1
n(n + 1)

=
1
n
− 1

n + 1
,

then we find the partial sums can be written as

sk =
k

∑
n=1

1
n(n + 1)

=
k

∑
n=1

(
1
n
− 1

n + 1

)
=

(
1
1
− 1

2

)
+

(
1
2
− 1

3

)
+ · · ·+

(
1
k
− 1

k + 1

)
. (1.75)

We see that there are many cancelations of neighboring terms, leading to the
series collapsing (like a telescope) to something manageable:

sk = 1− 1
k + 1

.

Taking the limit as k→ ∞, we find ∑∞
n=1

1
n(n+1) = 1.

Example 1.16. The Partition Function
A common occurrence of geometric series is a series of exponentials. An

example of this occurs in statistical mechanics. Statistical mechanics is the
branch of physics which explores the thermodynamic behavior of systems con-
taining a large number of particles. An important tool is the partition func-
tion, Z. This function is the sum of terms, e−εn/kT , over all possible quantum
states of the system. Here εn is the energy of the nth state, T the tempera-
ture, and k is Boltzmann’s constant. Given Z, one can compute macroscopic
quantities, such as the average energy,

< E >= −∂ ln Z
∂β

,

where β = 1/kT.
For the case of the quantum harmonic oscillator, the energy states are given

by εn =
(

n + 1
2

)
h̄ω. The partition function is then

Z =
∞

∑
n=0

e−βεn



30 mathematical physics

=
∞

∑
n=0

e−β(n+ 1
2 )h̄ω

= e−βh̄ω/2
∞

∑
n=0

e−βnh̄ω. (1.76)

The terms in the last sum are really powers of an exponential,

e−βnh̄ω =
(

e−βh̄ω
)n

.

So,

Z = e−βh̄ω/2
∞

∑
n=0

(
e−βh̄ω

)n
.

This is a geometric series, which can be summed as long as e−βh̄ω < 1. Thus,

Z =
e−βh̄ω/2

1− e−βh̄ω
.

Multiplying the numerator and denominator by eβh̄ω/2, we have

Z =
1

eβh̄ω/2 − e−βh̄ω/2 = (2 sinh βh̄ω/2)−1.

1.1.7 The Binomial Expansion
The binomial expansion is a special se-
ries expansion used to approximate ex-
pressions of the form (a + b)p for b� a,
or (1 + x)p for |x| � 1.

One series expansion which occurs often in examples and appli-
cations is the binomial expansion. This is simply the expansion of
the expression (a + b)p in powers of a and b. We will investigate this
expansion first for nonnegative integer powers p and then derive the
expansion for other values of p. While the binomial expansion can
be obtained using Taylor series, we will provide a more interesting
derivation here to show that

(a + b)p =
∞

∑ Cr
pan−rbr, (1.77)

where the Cr
p are called the binomial coefficients.

One series expansion which occurs often in examples and applica-
tions is the binomial expansion. This is simply the expansion of the
expression (a+ b)p. We will investigate this expansion first for nonneg-
ative integer powers p and then derive the expansion for other values
of p.

Lets list some of the common expansions for nonnegative integer
powers.

(a + b)0 = 1

(a + b)1 = a + b

(a + b)2 = a2 + 2ab + b2
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(a + b)3 = a3 + 3a2b + 3ab2 + b3

(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4

· · · (1.78)

We now look at the patterns of the terms in the expansions. First, we
note that each term consists of a product of a power of a and a power
of b. The powers of a are decreasing from n to 0 in the expansion of
(a + b)n. Similarly, the powers of b increase from 0 to n. The sums of
the exponents in each term is n. So, we can write the (k + 1)st term
in the expansion as an−kbk. For example, in the expansion of (a + b)51

the 6th term is a51−5b5 = a46b5. However, we do not yet know the
numerical coefficient in the expansion.

Let’s list the coefficients for the above expansions.

n = 0 : 1
n = 1 : 1 1
n = 2 : 1 2 1
n = 3 : 1 3 3 1
n = 4 : 1 4 6 4 1

(1.79)

This pattern is the famous Pascal’s triangle.2 There are many interest-

2 Pascal’s triangle is named after Blaise
Pascal (1623-1662). While such configu-
rations of number were known earlier in
history, Pascal published them and ap-
plied them to probability theory.

Pascal’s triangle has many unusual
properties and a variety of uses:

• Horizontal rows add to powers of 2.

• The horizontal rows are powers of 11

(1, 11, 121, 1331, etc.).

• Adding any two successive numbers
in the diagonal 1-3-6-10-15-21-28...
results in a perfect square.

• When the first number to the right of
the 1 in any row is a prime number,
all numbers in that row are divisible
by that prime number.

• Sums along certain diagonals leads
to the Fibonacci sequence.

ing features of this triangle. But we will first ask how each row can be
generated.

We see that each row begins and ends with a one. The second
term and next to last term have a coefficient of n. Next we note that
consecutive pairs in each row can be added to obtain entries in the next
row. For example, we have for rows n = 2 and n = 3 that 1 + 2 = 3
and 2 + 1 = 3 :

n = 2 : 1 2 1
↘ ↙ ↘ ↙

n = 3 : 1 3 3 1
(1.80)

With this in mind, we can generate the next several rows of our
triangle.

n = 3 : 1 3 3 1
n = 4 : 1 4 6 4 1
n = 5 : 1 5 10 10 5 1
n = 6 : 1 6 15 20 15 6 1

(1.81)

So, we use the numbers in row n = 4 to generate entries in row n = 5 :
1 + 4 = 5, 4 + 6 = 10. We then use row n = 5 to get row n = 6, etc.

Of course, it would take a while to compute each row up to the
desired n. Fortunately, there is a simple expression for computing a
specific coefficient. Consider the kth term in the expansion of (a + b)n.
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Let r = k − 1. Then this term is of the form Cn
r an−rbr. We have seen

the the coefficients satisfy

Cn
r = Cn−1

r + Cn−1
r−1 .

Actually, the binomial coefficients have been found to take a simple
form,

Cn
r =

n!
(n− r)!r!

≡
(

n
r

)
.

This is nothing other than the combinatoric symbol for determining
how to choose n things r at a time. In our case, this makes sense. We
have to count the number of ways that we can arrange r products of b
with n− r products of a. There are n slots to place the b’s. For example,
the r = 2 case for n = 4 involves the six products: aabb, abab, abba,
baab, baba, and bbaa. Thus, it is natural to use this notation.

So, we have found that

(a + b)n =
n

∑
r=0

(
n
r

)
an−rbr. (1.82)

Now consider the geometric series 1 + x + x2 + . . . . We have seen
that such a series converges for |x| < 1, giving

1 + x + x2 + . . . =
1

1− x
.

But, 1
1−x = (1− x)−1.

This is again a binomial to a power, but the power is not an integer.
It turns out that the coefficients of such a binomial expansion can be
written similar to the form in Equation (A.35).

This example suggests that our sum may no longer be finite. So, for
p a real number, we write

(1 + x)p =
∞

∑
r=0

(
p
r

)
xr. (1.83)

However, we quickly run into problems with this form. Consider
the coefficient for r = 1 in an expansion of (1 + x)−1. This is given by(

−1
1

)
=

(−1)!
(−1− 1)!1!

=
(−1)!
(−2)!1!

.

But what is (−1)!? By definition, it is

(−1)! = (−1)(−2)(−3) · · · .

This product does not seem to exist! But with a little care, we note that

(−1)!
(−2)!

=
(−1)(−2)!

(−2)!
= −1.
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So, we need to be careful not to interpret the combinatorial coefficient
literally. There are better ways to write the general binomial expansion.
We can write the general coefficient as(

p
r

)
=

p!
(p− r)!r!

=
p(p− 1) · · · (p− r + 1)(p− r)!

(p− r)!r!

=
p(p− 1) · · · (p− r + 1)

r!
. (1.84)

With this in mind we now state the theorem:

General Binomial Expansion

The general binomial expansion for (1 + x)p is a simple gener-
alization of Equation (A.35). For p real, we have the following
binomial series:

(1 + x)p =
∞

∑
r=0

p(p− 1) · · · (p− r + 1)
r!

xr, |x| < 1. (1.85)

Often we need the first few terms for the case that x � 1 :

(1 + x)p = 1 + px +
p(p− 1)

2
x2 + O(x3). (1.86)

Example 1.17. Approximate 1√
1− v2

c2

for v� c. This can be rewritten as The factor γ =
(

1− v2

c2

)−1/2
is impor-

tant in special relativity. Namely, this
is the factor relating differences in time
and length measurements by observers
moving relative inertial frames. For ce-
lestial speeds, this is an appropriate ap-
proximation.

1√
1− v2

c2

=

[
1−

(v
c

)2
]−1/2

.

Using the binomial expansion for p = −1/2, we have

1√
1− v2

c2

≈ 1 +
(
−1

2

)(
−v2

c2

)
= 1 +

v2

2c2 .

Example 1.18. Small differences in large numbers.
As an example, we could compute f (R, h) =

√
R2 + h2 − R for R =

6378.164 km and h = 1.0 m. Inserting these values into a scientific calculator,
one finds that

f (6378164, 1) =
√

63781642 + 1− 6378164 = 1× 10−7 m.

In some calculators one might obtain 0, in other calculators, or computer
algebra systems like Maple, one might obtain other answers. What answer do
you get and how accurate is your answer?

The problem with this computation is that R� h. Therefore, the computa-
tion of f (R, h) depends on how many digits the computing device can handle.
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The best way to get an answer is to use the binomial approximation. Writing
x = h

R , we have

f (R, h) =
√

R2 + h2 − R

= R
√

1 + x2 − R

' R
[

1 +
1
2

x2
]
− R

=
1
2

Rx2

=
1
2

h
R2 = 7.83926× 10−8 m. (1.87)

Of course, you should verify how many digits should be kept in reporting the
result.

In the next examples, we show how computations taking a more
general form can be handled. Such general computations appear in
proofs involving general expansions without specific numerical values
given.

Example 1.19. Obtain an approximation to (a + b)p when a is much larger
than b, denoted by a� b.

If we neglect b then (a + b)p ' ap. How good of an approximation is
this? This is where it would be nice to know the order of the next term in the
expansion. Namely, what is the power of b/a of the first neglected term in
this expansion?

In order to do this we first divide out a as

(a + b)p = ap
(

1 +
b
a

)p
.

Now we have a small parameter, b
a . According to what we have seen earlier,

we can use the binomial expansion to write(
1 +

b
a

)n
=

∞

∑
r=0

(
p
r

)(
b
a

)r
. (1.88)

Thus, we have a sum of terms involving powers of b
a . Since a � b, most of

these terms can be neglected. So, we can write(
1 +

b
a

)p
= 1 + p

b
a
+ O

((
b
a

)2
)

.

Here we used O(), big-Oh notation, to indicate the size of the first neglected
term. (This notation is formally defined in another section.)

Summarizing, this then gives

(a + b)p = ap
(

1 +
b
a

)p
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= ap

(
1 + p

b
a
+ O

((
b
a

)2
))

= ap + pap b
a
+ apO

((
b
a

)2
)

. (1.89)

Therefore, we can approximate (a + b)p ' ap + pbap−1, with an error on
the order of b2ap−2. Note that the order of the error does not include the
constant factor from the expansion. We could also use the approximation that
(a + b)p ' ap, but it is not typically good enough in applications because the
error in this case is of the order bap−1.

Example 1.20. Approximate f (x) = (a + x)p − ap for x � a.
In an earlier example we computed f (R, h) =

√
R2 + h2 − R for R =

6378.164 km and h = 1.0 m. We can make use of the binomial expansion to
determine the behavior of similar functions in the form f (x) = (a+ x)p− ap.
Inserting the binomial expression into f (x), we have as x

a → 0 that

f (x) = (a + x)p − ap

= ap
[(

1 +
x
a

)p
− 1
]

= ap
[

px
a

+ O
(( x

a

)2
)]

= O
( x

a

)
as

x
a
→ 0. (1.90)

This result might not be the approximation that we desire. So, we could
back up one step in the derivation to write a better approximation as

(a + x)p − ap = ap−1 px + O
(( x

a

)2
)

as
x
a
→ 0.

We could use this approximation to answer the original question by letting
a = R2, x = 1 and p = 1

2 . Then, our approximation would be of order

O
(( x

a

)2
)
= O

((
1

63781642

)2
)
∼ 2.4× 10−14.

Thus, we have √
63781642 + 1− 6378164 ≈ ap−1 px

where
ap−1 px = (63781642)−1/2(0.5)1 = 7.83926× 10−8.

This is the same result we had obtained before.

So far, this is enough to get started in the course. We will recall other
topics as we need them. For example, we will discuss the method
of partial fraction decomposition when we discuss terminal velocity
in the next chapter and when we cover applications of the Laplace
transform later in the book.
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1.2 What I Need From My Intro Physics Class?

So, what do we need to know about physics? You should be com-
fortable with common terms from mechanics and electromagnetism.
In some cases, we will review specific topics. However, it would be
helpful to review some topics from your introductory and modern
physics texts.

As you may recall, your study of physics began with the simplest
systems. You first studied motion for point masses. You were then in-
troduced to the concepts of position, displacement, velocity and accel-
eration. You studied motion first in one dimension and even then can
only do problems in which the acceleration is constant, or piecewise
constant. You looked at horizontal motion and then vertical motion, in
terms of free fall. Finally, you moved into two dimensions and consid-
ered projectile motion. Some calculus was introduced and you learned
how to represent vector quantities.

You then asked, “What causes a change in the state of motion of a
body?” We are lead to a discussion of forces. The types of forces en-
countered are the weight, the normal force, tension, the force of grav-
ity and then centripetal forces. You might have also seen spring forces,
which we will see shortly, lead to oscillatory motion - the underlying
theme of this book.

Next, you found out that there are well known conservation prin-
ciples for energy and momentum. In these cases you were lead to
the concepts of work, kinetic energy and potential energy. You found
out that even when mechanical energy is not conserved, you could
account for the missing energy as the work done by nonconservative
forces. Momentum becomes important in collision problems or when
looking at impulses.

With these basic ideas under your belt, you proceeded to study
more complicated systems. Looking at extended bodies, most notably
rigid bodies, led to the study of rotational motion. you found out
that there are analogues to all of the previously discussed concepts for
point masses. For example, there are the natural analogues of rota-
tional velocity and acceleration. The cause of rotational acceleration is
the torque. The analogue to mass is the moment of inertia.

The next level of complication, which sometimes is not covered, are
bulk systems. One can study fluids, solids and gases. These can be
investigated by looking at things like mass density, pressure, volume
and temperature. This leads to the study of thermodynamics in which
one studies the transfer of energy between a system and its surround-
ings. This involves the relationship between the work done on the
system, the heat energy added to a systems and its change in internal
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energy.
Bulk systems can also suffer deformations when a force per area is

applied. This can lead to the idea that small deformations can lead to
the propagation of energy throughout the system in the form of waves.
We will later explore this wave motion in several systems.

The second course in physics is spent on electricity and magnetism,
leading to electromagnetic waves. You first learned about charges and
charge distributions, electric fields, electric potentials. Then you found
out that moving charges produce magnetic fields and are affected by
external magnetic fields. Furthermore, changing magnetic fields pro-
duce currents. This can all be summarized by Maxwell’s equations,
which we will recall later in the course. These equations, in turn, pre-
dict the existence of electromagnetic waves.

Depending how far you delved into the book, you may have seen
excursions into optics and the impact that trying to understand the
existence of electromagnetic waves has had on the development of
so-called "modern physics". For example, in trying to understand
what medium electromagnetic waves might propagate through, Ein-
stein proposed an answer that completely changed the way we under-
stand the nature of space and time. In trying to understand how ion-
ized gases radiate and interact with matter, Einstein and others were
lead down a path that has lead to quantum mechanics and further
challenges to our understanding of reality.

So, that is the introductory physics course in a nutshell. In fact, that
is most of physics. The rest is detail, which you will explore in your
other courses as you progress toward a degree in physics.

1.3 Technology and Tables

As we progress through the course, you will often have to compute
integrals and derivatives by hand. However, many of you know that
some of the tedium can be alleviated by using computers, or even
looking up what you need in tables. In some cases you might even
find applets online that can quickly give you the answers you seek.

However, you also need to be comfortable in doing many computa-
tions by hand. This is necessary, especially in your early studies, for
several reasons. For example, you should try to evaluate integrals by
hand when asked to do them. This reinforces the techniques, as out-
lined earlier. It exercises your brain in much the same way that you
might jog daily to exercise your body. Who knows, keeping your brain
active this way might even postpone Alzheimer’s. The more comfort-
able you are with derivations and evaluations, the easier it is to follow
future lectures without getting bogged down by the details, wonder-
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ing how your professor got from step A to step D. You can always use
a computer algebra system, or a Table of Integrals, to check on your
work.

Problems can arise when depending purely on the output of com-
puters, or other "black boxes". Once you have a firm grasp on the tech-
niques and a feeling as to what answers should look like, then you can
feel comfortable with what the computer gives you. Sometimes, Com-
puter Algebra Systems (CAS) like Maple can give you strange looking
answers, and sometimes even wrong answers. Also, these programs
cannot do every integral, or solve every differential equation, that you
ask them to do. Even some of the simplest looking expressions can
cause computer algebra systems problems. Other times you might
even provide wrong input, leading to erroneous results.

Another source of indefinite integrals, derivatives, series expan-
sions, etc, is a Table of Mathematical Formulae. There are several good
books that have been printed. Even some of these have typos in them,
so you need to be careful. However, it may be worth the investment
to have such a book in your personal library. Go to the library, or the
bookstore, and look at some of these tables to see how useful they
might be.

There are plenty of online resources as well. For example, there is
the Wolfram Integrator at http://integrals.wolfram.com/ as well as
the recent http://www.wolframalpha.com/. There is also a wealth of
information at the following sites: http://www.sosmath.com/,
http://www.math2.org/, http://mathworld.wolfram.com/, and
http://functions.wolfram.com/.

1.4 Appendix: Dimensional Analysis

In the first chapter in your introductory physics text you were
introduced to dimensional analysis. Dimensional analysis is useful for
recalling particular relationships between variables by looking at the
units involved, independent of the system of units employed. Though
most of the time you have used SI, or MKS, units in most of your
physics problems.

There are certain basic units - length, mass and time. By the second
course, you found out that you could add charge to the list. We can
represent these as [L], [M], [T] and [C]. Other quantities typically have
units that can be expressed in terms of the basic units. These are called
derived units. So, we have that the units of acceleration are [L]/[T]2

and units of mass density are [M]/[L]3. Slightly more complicated

http://integrals.wolfram.com/
http://www.wolframalpha.com/
http://www.sosmath.com/
http://www.math2.org/
http://mathworld.wolfram.com/
http://functions.wolfram.com/
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units arise for force. Since F = ma, the units of force are

[F] = [m][a] = [M]
[L]
[T]2

.

Similarly, units of magnetic field can be found, though with a little
more effort. Recall that F = qvB sin θ for a charge q moving with speed
v through a magnetic field B at an angle of θ. sin θ has no units. So,

[B] =
[F]
[q][v]

=

[M][L]
[T]2

[C] [L]
[T]

=
[M]

[C][T]
. (1.91)

Now, assume that you do not know how B depended on F, q and v,
but you knew the units of all of the quantities. Can you figure out the
relationship between them? We could write

[B] = [F]α[q]β[v]γ

and solve for the exponents by inserting the dimensions. Thus, we
have

[M][C]−1[T]−1 =
(
[M][L][T]−2

)α
[C]β

(
[L][T]−1

)γ
.

Right away we can see that α = 1 and β = −1 by looking at the powers
of [M] and [C], respectively. Thus,

[M][C]−1[T]−1 = [M][L][T]−2[C]−1
(
[L][T]−1

)γ
= [M][C]−1[L]1+γ[T]−2−γ.

We see that picking γ = −1 balances the exponents and gives the
correct relation

[B] = [F][q]−1[v]−1.

An important theorem at the heart of dimensional analysis is the The Buckingham Π Theorem.

Buckingham Π Theorem. In essence, this theorem tells us that physi-
cally meaningful equations in n variables can be written as an equation
involving n − m dimensionless quantities, where m is the number of
dimensions used. The importance of this theorem is that one can actu-
ally compute useful quantities without even knowing the exact form
of the equation!

The Buckingham Π Theorem was introduced by Edgar Buckingham
(1867-1940) in 1914. Let qi be n physical variables that are related by

f (q1, q2, . . . , qn) = 0. (1.92)

Assuming that m dimensions are involved, we let πi be k = n − m
dimensionless variables. Then the equation (1.92) can be rewritten as

http://en.wikipedia.org/wiki/Buckingham_Pi_theorem
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a function of these dimensionless variables as

F(π1, π2, . . . , πk) = 0, (1.93)

where the πi’s can be written in terms of the physical variables as

πi = qk1
1 qk2

2 · · · q
kn
n , i = 1, . . . , k. (1.94)

Well, this is our first really new concept (apart from some mathe-
matical tricks) and it is probably a mystery as to its importance. It
also seems a bit abstract. However, this is the basis for some of the
proverbial "back of the envelope calculations" which you might have
heard about. So, let’s see how it can be used.

Example 1.21. Using dimensional analysis to obtain the period of a simple
pendulum.

Let’s consider the period of a simple pendulum; e.g., a point mass hanging Formula for the period of a pendulum.

on a massless string. The period, T, of the pendulum’s swing could depend
upon the the string length, `, the mass of the “pendulum bob”, m, and gravity
in the form of the acceleration due to gravity, g. These are the qi’s in the
theorem. We have four physical variables. The only units involved are length,
mass and time. So, m = 3. This means that there are k = n − m = 1
dimensionless variables, call it π. So, there must be an equation of the form

F(π) = 0

in terms of the dimensionless variable

π = `k1 mk2 Tk3 gk4 .

We just need to find the ki’s. This could be done by inspection, or we could
write out the dimensions of each factor and determine how π can be dimen-
sionless. Thus,

[π] = [`]k1 [m]k2 [T]k3 [g]k4

= [L]k1 [M]k2 [T]k3

(
[L]
[T]2

)k4

= [L]k1+k4 [M]k2 [T]k3−2k4 . (1.95)

π will be dimensionless when

k1 + k4 = 0,

k2 = 0,

k3 − 2k4 = 0. (1.96)

This is a linear homogeneous system of three equations and four unknowns.
We can satisfy these equations by setting k1 = −k4, k2 = 0, and k3 = 2k4.
Therefore, we have

π = `−k4 T2k4 gk4 =
(
`−1T2g

)k4
.
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k4 is arbitrary, so we can pick the simplest value, k4 = 1. Then,

F
(

T2g
`

)
= 0.

Assuming that this equation has one zero, z, which has to be verified by
other means, we have that

gT2

`
= z = const.

Thus, we have determined that the period is independent of the mass and
proportional to the square root of the length. The constant can be determined
by experiment as z = 4π2. Thus,

T = 2π

√
`

g
.

Figure 1.1: A photograph of the first
atomic bomb test. This image was found
at http://www.atomicarchive.com.

Example 1.22. Estimating the energy of an atomic bomb.
A more interesting example was provided by Sir Geoffrey Taylor in 1941 Energy release in the first atomic bomb.

for determining the energy release of an atomic bomb. Let’s assume that the
energy is released in all directions from a single point. Possible physical vari-
ables are the time since the blast, t, the energy, E, the distance from the blast,
r, the atmospheric density ρ and the atmospheric pressure, p. We have five
physical variables and only three units. So, there should be two dimensionless
quantities. Let’s determine these.

We set
π = Ek1 tk2 rk3 pk4 ρk5 .

http://www.atomicarchive.com/Photos/Trinity/image7.shtml
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Inserting the respective units, we find that

[π] = [E]k1 [t]k2 [r]k3 [p]k4 [ρ]k5

=
(
[M][L]2[T]−2

)k1
[T]k2 [L]k3

(
[M][L]−1[T]−2

)k4
(
[M][L]−3

)k5

= [M]k1+k4+k5 [L]2k1+k3−k4−3k5 [T]−2k1+k2−2k4 . (1.97)

Note: You should verify the units used. For example, the units of force can
be found using F = ma and work (energy) is force times distance. Similarly,
you need to know that pressure is force per area.

For π to be dimensionless, we have to solve the system:

k1 + k4 + k5 = 0,

2k1 + k3 − k4 − 3k5 = 0,

−2k1 + k2 − 2k4 = 0. (1.98)

This is a set of three equations and five unknowns. The only way to solve this
system is to solve for three unknowns in term of the remaining two. (In linear
algebra one learns how to solve this using matrix methods.) Let’s solve for
k1, k2, and k5 in terms of k3 and k4. The system can be written as

k1 + k5 = −k4,

2k1 − 3k5 = k4 − k3,

2k1 − k2 = −2k4. (1.99)

These can be solved by solving for k1 and k4 using the first two equations and
then finding k2 from the last one. Solving this system yields:

k1 = −1
5
(2k4 + k3) k2 =

2
5
(3k4 − k3) k5 =

1
5
(k3 − 3k4).

We have the freedom to pick values for k3 and k4. Two independent sets
of simple values are obtained by picking one variable as zero and the other as
one. This will give the following two cases:

Case I. k3 = 1 and k4 = 0.

In this case we then have k1 = − 1
5 , k2 = − 2

5 , and k5 = 1
5 . This gives

π1 = E−1/5t−2/5rρ1/5 = r
( ρ

Et2

)1/5
.

Case II. k3 = 0 and k4 = 1.

In this case we then have k1 = − 2
5 , k2 = 6

5 , and k5 = − 3
5 .

π2 = E−2/5t6/5 pρ−3/5 = p
(

t6

ρ3E2

)1/5

.
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Thus, we have that the relation between the energy and the other variables
is of the form

F

(
r
( ρ

Et2

)1/5
, p
(

t6

ρ3E2

)1/5)
= 0.

Of course, this is not enough to determine the explicit equation. However,
Taylor was able to use this information to get an energy estimate.

Note that π1 is dimensionless. It can be represented as a function of the
dimensionless variable π2. So, assuming that π1 = h(π2), we have that

h(π2) = r
( ρ

Et2

)1/5
.

Note that for t = 1 second, the energy is expected to be huge, so π2 ≈ 0.
Thus,

r
( ρ

Et2

)1/5
≈ h(0).

Simple experiments suggest that h(0) is of order one, so

r ≈
(

Et2

ρ

)1/5

.

In 1947 Taylor applied his earlier analysis to movies of the first atomic
bomb test in 1945 and his results were close to the actual values. How can
one do this? You can find pictures of the first atomic bomb test with a super-
imposed length scale online.

We can rewrite the above result to get the energy estimate:

E ≈ r5ρ

t2 .

As an exercise, you can estimate the radius of the explosion at the given time
and determine the energy of the blast in so many tons of TNT.

Problems

1. Prove the following identities using only the definitions of the
trigonometric functions, the Pythagorean identity, or the identities for
sines and cosines of sums of angles.

a. cos 2x = 2 cos2 x− 1.

b. sin 3x = A sin3 x + B sin x, for what values of A and B?

2. Do the following.

a. Write (cosh x− sinh x)6 in terms of exponentials.

b. Prove cosh 2x = cosh2 x + sinh2 x.

c. If cosh x = 13
12 and x < 0, find sinh x and tanh x.

http://www.atomicarchive.com/Photos/Trinity/image7.shtml
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d. Find the exact value of sinh(arccosh 3)

3. Compute the following integrals

a.
∫

xe2x2
dx.

b.
∫ 3

0
5x√

x2+16
dx.

c.
∫

x3 sin 3x dx. (Do this using integration by parts, the Tabular
Method, and differentiation under the integral sign.)

d.
∫

cos4 3x dx.

e.
∫ π/2

0 sec3 x dx.

f.
∫ √

9− x2 dx

g.
∫ dx

(4−x2)2 , using the substitution x = 2 tanh u.

h.
∫ dx

(x+4)3/2 , using the substitutions

• x = 2 tan u and

• x = 2 sinh u.

4. Find the sum for each of the series:

a. ∑∞
n=0

(−1)n3
4n .

b. ∑∞
n=2

2
5n .

c. ∑∞
n=0

(
5

2n + 1
3n

)
.

d. ∑∞
n=1

3
n(n+3) .

5. Evaluate the following expressions at the given point. Use your cal-
culator or your computer (such as Maple). Then use series expansions
to find an approximation to the value of the expression to as many
places as you trust.

a. f (x) = 1√
1+2x2 − 1 + x2 at x = 5.00× 10−3.

b. f (R, h) = R−
√

R2 + h2 for R = 1.374× 103 km and h = 1.00
m.

c. f (x) = 1− 1√
1−x

for x = 2.5× 10−13.

6. Use dimensional analysis to derive a possible expression for the
drag force FD on a soccer ball of diameter D moving at speed v through
air of density ρ and viscosity µ. [Hint: Assuming viscosity has units
[M]
[L][T] , there are two possible dimensionless combinations: π1 = µDαρβvγ

and π2 = FDDαρβvγ. Determine α, β, and γ for each case and interpret
your results.]

7. Challenge: Read the section on dimensional analysis. In particular,
look at the results of Example 1.22. Using measurements in/on Figure
1.1, obtain an estimate of the energy of the blast in tons of TNT. Explain
your work. Does your answer make sense? Why?
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