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Free Fall and Harmonic Oscillators

“Mathematics began to seem too much like puzzle solving. Physics is puzzle solving, too, but of puzzles created by
nature, not by the mind of man.” Maria Goeppert-Mayer (1906-1972)

2.1 Free Fall and Terminal Velocity

In this chapter we will study some common differential equations
that appear in physics. We will begin with the simplest types of equa-
tions and standard techniques for solving them We will end this part
of the discussion by returning to the problem of free fall with air re-
sistance. We will then turn to the study of oscillations, which are
modeled by second order differential equations.

Let us begin with a simple example from introductory physics. Free fall example.

Recall that free fall is the vertical motion of an object solely under
the force of gravity. It has been experimentally determined that an
object at near the surface of the Earth falls at a constant acceleration
in the absence of other forces, such as air resistance. This constant
acceleration is denoted by −g, where g is called the acceleration due
to gravity. The negative sign is an indication that we have chosen a
coordinate system in which up is positive.

We are interested in determining the position, y(t), of the falling
body as a function of time. From the definition of free fall, we have

ÿ(t) = −g. (2.1)

Note that we will occasionally use a dot to indicate time differenti- Differentiation with respect to time is of-
ten denoted by dots instead of primes.ation. This notation is standard in physics and we will begin to in-

troduce you to this notation, though at times we might use the more
familiar prime notation to indicate spatial differentiation, or general
differentiation.

In Equation (2.1) we know g. It is a constant. Near the Earth’s
surface it is about 9.81 m/s2 or 32.2 ft/s2. What we do not know
is y(t). This is our first differential equation. In fact it is natural to
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see differential equations appear in physics ofteh through Newton’s
Second Law, F = ma, as it plays an important role in classical physics.
We will return to this point later.

So, how does one solve the differential equation in (2.1)? We can
do so by using what we know about calculus. It might be easier to
see when we put in a particular number instead of g. You might still
be getting used to the fact that some letters are used to represent con-
stants. We will come back to the more general form after we see how
to solve the differential equation.

Consider
ÿ(t) = 5. (2.2)

Recalling that the second derivative is just the derivative of a deriva-
tive, we can rewrite this equation as

d
dt

(
dy
dt

)
= 5. (2.3)

This tells us that the derivative of dy/dt is 5. Can you think of a
function whose derivative is 5? (Do not forget that the independent
variable is t.) Yes, the derivative of 5t with respect to t is 5. Is this the
only function whose derivative is 5? No! You can also differentiate
5t + 1, 5t + π, 5t− 6, etc. In general, the derivative of 5t + C is 5.

So, the equation can be reduced to

dy
dt

= 5t + C. (2.4)

Now we ask if you know a function whose derivative is 5t + C. Well,
you might be able to do this one in your head, but we just need to
recall the Fundamental Theorem of Calculus, which relates integrals
and derivatives. Thus, we have

y(t) =
5
2

t2 + Ct + D,

where D is a second integration constant.
This is a solution to the original equation. That means the solution is

a function that when placed into the differential equation makes both
sides of the equal sign the same. You can always check your answer by
showing that the solution satisfies the equation. In this case we have

ÿ(t) =
d2

dt2

(
5
2

t2 + Ct + D
)
=

d
dt
(5t + C) = 5.

So, it is a solution.
We also see that there are two arbitrary constants, C and D. Picking

any values for these gives a whole family of solutions. As we will see,
the equation ÿ(t) = 5 is a linear second order ordinary differential
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equation. The general solution of such an equation always has two
arbitrary constants.

Let’s return to the free fall problem. We solve it the same way. The
only difference is that we can replace the constant 5 with the constant
−g. So, we find that

dy
dt

= −gt + C, (2.5)

and
y(t) = −1

2
gt2 + Ct + D. (2.6)

Once you get down the process, it only takes a line or two to solve.
There seems to be a problem. Imagine dropping a ball that then un-

dergoes free fall. We just determined that there are an infinite number
of solutions to where the ball is at any time! Well, that is not possible.
Experience tells us that if you drop a ball you expect it to behave the
same way every time. Or does it? Actually, you could drop the ball
from anywhere. You could also toss it up or throw it down. So, there
are many ways you can release the ball before it is in free fall. That is
where the constants come in. They have physical meanings.

If you set t = 0 in the equation, then you have that y(0) = D. Thus,
D gives the initial position of the ball. Typically, we denote initial
values with a subscript. So, we will write y(0) = y0. Thus, D = y0.

That leaves us to determine C. It appears at first in Equation (2.5).
Recall that dy

dt , the derivative of the position, is the vertical velocity,
v(t). It is positive when the ball moves upward. We will denote the
initial velocity v(0) = v0. Inserting t = 0 in Equation (2.5), we find that
ẏ(0) = C. This implies that C = v(0) = v0.

Putting this all together, we have the physical form of the solution
for free fall as

y(t) = −1
2

gt2 + v0t + y0. (2.7)

Doesn’t this equation look familiar? Now we see that the infinite fam-
ily of solutions consists of free fall resulting from initially dropping a
ball at position y0 with initial velocity v0. The conditions y(0) = y0 and
ẏ(0) = v0 are called the initial conditions. A solution of a differential
equation satisfying a set of initial conditions is often called a particular
solution.

So, we have solved the free fall equation. Along the way we have
begun to see some of the features that will appear in the solutions of
other problems that are modeled with differential equation. Through-
out the book we will see several applications of differential equations.
We will extend our analysis to higher dimensions, in which we case
will be faced with so-called partial differential equations, which in-
volve the partial derivatives of functions of more that one variable.

But are we done with free fall? Not at all! We can relax some of the
conditions that we have imposed. We can add air resistance. We will
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visit this problem later in this chapter after introducing some more
techniques.

Finally, we should also note that free fall at constant g only takes
place near the surface of the Earth. What if a tile falls off the shuttle
far from the surface? It will also fall to the Earth. Actually, it may
undergo projectile motion, which you may recall is a combination of
horizontal motion and free fall.

To look at this problem we need to go to the origins of the accel-
eration due to gravity. This comes out of Newton’s Law of Gravita-
tion. Consider a mass m at some distance h(t) from the surface of the
(spherical) Earth. Letting M and R be the Earth’s mass and radius,
respectively, Newton’s Law of Gravitation states that Newton’s Law of
Gravitation

ma = F

m
d2h(t)

dt2 = G
mM

(R + h(t))2 . (2.8)

Thus, we arrive at a differential equation

d2h(t)
dt2 =

GM
(R + h(t))2 . (2.9)

This equation is not as easy to solve. We will leave it as a homework
exercise for the reader.

Figure 2.1: Free fall far from the Earth
from a height h(t) from the surface.

2.2 First Order Differential Equations

Before moving on, we first define an n-th order ordinary differential
equation is an equation for an unknown function y(x) that expresses a
relationship between the unknown function and its first n derivatives.
One could write this generally as

F(y(n)(x), y(n−1)(x), . . . , y′(x), y(x), x) = 0. (2.10)
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Here y(n)(x) represents the nth derivative of y(x).
An initial value problem consists of the differential equation plus the

values of the first n − 1 derivatives at a particular value of the inde-
pendent variable, say x0:

y(n−1)(x0) = yn−1, y(n−2)(x0) = yn−2, . . . , y(x0) = y0. (2.11)

A linear nth order differential equation takes the form

an(x)y(n)(x)+ an−1(x)y(n−1)(x)+ . . .+ a1(x)y′(x)+ a0(x)y(x)) = f (x).
(2.12)

If f (x) ≡ 0, then the equation is said to be homogeneous, otherwise it is
nonhomogeneous.

Typically, the first differential equations encountered are first order
equations. A first order differential equation takes the form

F(y′, y, x) = 0. (2.13)

There are two general forms for which one can formally obtain a so-
lution. The first is the separable case and the second is a first order
equation. We indicate that we can formally obtain solutions, as one
can display the needed integration that leads to a solution. However,
the resulting integrals are not always reducible to elementary functions
nor does one obtain explicit solutions when the integrals are doable.

2.2.1 Separable Equations

A first order equation is separable if it can be written the form

dy
dx

= f (x)g(y). (2.14)

Special cases result when either f (x) = 1 or g(y) = 1. In the first case
the equation is said to be autonomous.

The general solution to equation (2.14) is obtained in terms of two
integrals: Separable equations.

∫ dy
g(y)

=
∫

f (x) dx + C, (2.15)

where C is an integration constant. This yields a 1-parameter family of
solutions to the differential equation corresponding to different values
of C. If one can solve (2.15) for y(x), then one obtains an explicit so-
lution. Otherwise, one has a family of implicit solutions. If an initial
condition is given as well, then one might be able to find a member of
the family that satisfies this condition, which is often called a particular
solution.



50 mathematical physics

Example 2.1. y′ = 2xy, y(0) = 2.
Applying (2.15), one has∫ dy

y
=
∫

2x dx + C.

Integrating yields
ln |y| = x2 + C.

Exponentiating, one obtains the general solution,

y(x) = ±ex2+C = Aex2
.

Here we have defined A = ±eC. Since C is an arbitrary constant, A is an
arbitrary constant. Several solutions in this 1-parameter family are shown in
Figure 2.2.

Next, one seeks a particular solution satisfying the initial condition. For
y(0) = 2, one finds that A = 2. So, the particular solution satisfying the
initial condition is y(x) = 2ex2

.
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Figure 2.2: Plots of solutions from the 1-
parameter family of solutions of Exam-
ple 2.1 for several initial conditions.

Example 2.2. yy′ = −x.
Following the same procedure as in the last example, one obtains:∫

y dy = −
∫

x dx + C ⇒ y2 = −x2 + A, where A = 2C.

Thus, we obtain an implicit solution. Writing the solution as x2 + y2 = A,
we see that this is a family of circles for A > 0 and the origin for A = 0.
Plots of some solutions in this family are shown in Figure 2.3.
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Figure 2.3: Plots of solutions of Example
2.2 for several initial conditions.

2.2.2 Linear First Order Equations

The second type of first order equation encountered is the lin-
ear first order differential equation in the standard form

Linear first order differential equations.

y′(x) + p(x)y(x) = q(x). (2.16)

In this case one seeks an integrating factor, µ(x), which is a function that
one can multiply through the equation making the left side a perfect
derivative. Thus, obtaining,

d
dx

[µ(x)y(x)] = µ(x)q(x). (2.17)

The integrating factor that works is µ(x) = exp(
∫ x p(ξ) dξ). One

can derive µ(x) by expanding the derivative in Equation (2.17),

µ(x)y′(x) + µ′(x)y(x) = µ(x)q(x), (2.18)
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and comparing this equation to the one obtained from multiplying
(2.16) by µ(x) :

µ(x)y′(x) + µ(x)p(x)y(x) = µ(x)q(x). (2.19)

Note that these last two equations would be the same if

dµ(x)
dx

= µ(x)p(x).

This is a separable first order equation whose solution is the above
given form for the integrating factor, Integrating factor.

µ(x) = exp
(∫ x

p(ξ) dξ

)
. (2.20)

Equation (2.17) is now easily integrated to obtain the solution

y(x) =
1

µ(x)

[∫ x
µ(ξ)q(ξ) dξ + C

]
. (2.21)

Example 2.3. xy′ + y = x, x > 0, y(1) = 0.
One first notes that this is a linear first order differential equation. Solving

for y′, one can see that the equation is not separable. Furthermore, it is not in
the standard form (2.16). So, we first rewrite the equation as

dy
dx

+
1
x

y = 1. (2.22)

Noting that p(x) = 1
x , we determine the integrating factor

µ(x) = exp
[∫ x dξ

ξ

]
= eln x = x.

Multiplying equation (2.22) by µ(x) = x, we actually get back the original
equation! In this case we have found that xy′ + y must have been the deriva-
tive of something to start. In fact, (xy)′ = xy′ + x. Therefore, the differential
equation becomes

(xy)′ = x.

Integrating, one obtains

xy =
1
2

x2 + C,

or
y(x) =

1
2

x +
C
x

.

Inserting the initial condition into this solution, we have 0 = 1
2 + C.

Therefore, C = − 1
2 . Thus, the solution of the initial value problem is

y(x) =
1
2
(x− 1

x
).
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Example 2.4. (sin x)y′ + (cos x)y = x2.
Actually, this problem is easy if you realize that

d
dx

((sin x)y) = (sin x)y′ + (cos x)y.

But, we will go through the process of finding the integrating factor for prac-
tice.

First, rewrite the original differential equation in standard form:

y′ + (cot x)y = x2 csc x.

Then, compute the integrating factor as

µ(x) = exp
(∫ x

cot ξ dξ

)
= eln(sin x) = sin x.

Using the integrating factor, the original equation becomes

d
dx

((sin x)y) = x2.

Integrating, we have

y sin x =
1
3

x3 + C.

So, the solution is

y =

(
1
3

x3 + C
)

csc x.

There are other first order equations that one can solve for closed
form solutions. However, many equations are not solvable, or one is
simply interested in the behavior of solutions. In such cases one turns
to direction fields. We will return to a discussion of the qualitative
behavior of differential equations later.

2.2.3 Terminal Velocity

Now let’s return to free fall. What if there is air resistance? We first
need to model the air resistance. As an object falls faster and faster,
the drag force becomes greater. So, this resistive force is a function of
the velocity. There are a couple of standard models that people use to
test this. The idea is to write F = ma in the form

mÿ = −mg + f (v), (2.23)

where f (v) gives the resistive force and mg is the weight. Recall that
this applies to free fall near the Earth’s surface. Also, for it to be
resistive, f (v) should oppose the motion. If the body is falling, then
f (v) should be positive. If it is rising, then f (v) would have to be
negative to indicate the opposition to the motion.
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One common determination derives from the drag force on an ob-
ject moving through a fluid. This force is given by

f (v) =
1
2

CAρv2, (2.24)

where C is the drag coefficient, A is the cross sectional area and ρ is
the fluid density. For laminar flow the drag coefficient is constant.

Unless you are into aerodynamics, you do not need to get into the
details of the constants. So, it is best to absorb all of the constants into
one to simplify the computation. So, we will write f (v) = bv2. The
differential equation including drag can then be rewritten as

v̇ = kv2 − g, (2.25)

where k = b/m. Note that this is a first order equation for v(t). It is
separable too!

Formally, we can separate the variables and integrate over time to
obtain

t + K =
∫ v dz

kz2 − g
. (2.26)

(Note: We used an integration constant of K since C is the drag co-
efficient in this problem.) If we can do the integral, then we have a
solution for v. In fact, we can do this integral. You need to recall This is the first use of Partial Fraction

Decomposition. We will explore this
method further in the section on Laplace
Transforms.

another common method of integration, which we have not reviewed
yet. Do you remember Partial Fraction Decomposition? It involves fac-
toring the denominator in the integral. Of course, this is ugly because
the constants are represented by letters and are not specific numbers.
Letting α2 = g/k, we can write the integrand as

1
kz2 − g

=
1
k

1
z2 − α2 =

1
2αk

[
1

z− α
− 1

z + α

]
. (2.27)

Now, the integrand can be easily integrated giving

t + K =
1

2αk
ln
∣∣∣∣v− α

v + α

∣∣∣∣ . (2.28)

Solving for v, we have

v(t) =
1− Be2αkt

1 + Be2αkt α, (2.29)

where B ≡ eK. B can be determined using the initial velocity.
There are other forms for the solution in terms of a tanh function,

which the reader can determine as an exercise. One important con-
clusion is that for large times, the ratio in the solution approaches −1.

Thus, v → −α = −
√

g
k . This means that the falling object will reach a

terminal velocity.
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As a simple computation, we can determine the terminal velocity.
We will take an 80 kg skydiver with a cross sectional area of about
0.093 m2. (The skydiver is falling head first.) Assume that the air
density is a constant 1.2 kg/m3 and the drag coefficient is C = 2.0. We
first note that

vterminal = −
√

g
k
= −

√
2mg
CAρ

.

So,

vterminal = −

√
2(70)(9.8)

(2.0)(0.093)(1.2)
= 78m/s.

This is about 175 mph, which is slightly higher than the actual terminal
velocity of a sky diver. One would need a more accurate determination
of C for a more realistic answer.

2.3 The Simple Harmonic Oscillator

The next physical problem of interest is that of simple harmonic
motion. Such motion comes up in many places in physics and provides
a generic first approximation to models of oscillatory motion. This is
the beginning of a major thread running throughout this course. You
have seen simple harmonic motion in your introductory physics class.
We will review SHM (or SHO in some texts) by looking at springs and
pendula (the plural of pendulum). We will use this as our jumping
board into second order differential equations and later see how such
oscillatory motion occurs in AC circuits.

2.3.1 Mass-Spring Systems

We begin with the case of a single block on a spring as shown in
Figure 2.4. The net force in this case is the restoring force of the spring
given by Hooke’s Law,

Fs = −kx,

where k > 0 is the spring constant. Here x is the elongation, or dis-
placement of the spring from equilibrium. When the displacement is
positive, the spring force is negative and when the displacement is
negative the spring force is positive. We have depicted a horizontal
system sitting on a frictionless surface. A similar model can be pro-
vided for vertically oriented springs. However, you need to account
for gravity to determine the location of equilibrium. Otherwise, the
oscillatory motion about equilibrium is modeled the same.
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From Newton’s Second Law, F = mẍ, we obtain the equation for
the motion of the mass on the spring:

mẍ + kx = 0.

m

k

x
Figure 2.4: Spring-Mass system.

We will later derive solutions of such equations in a methodical way.
For now we note that two solutions of this equation are given by

x(t) = A cos ωt,

x(t) = A sin ωt, (2.30)

where

ω =

√
k
m

is the angular frequency, measured in rad/s. It is related to the fre-
quency by

ω = 2π f ,

where f is measured in cycles per second, or Hertz. Furthermore, this
is related to the period of oscillation, the time it takes the mass to go
through one cycle:

T = 1/ f .

Finally, A is called the amplitude of the oscillation.

2.3.2 The Simple Pendulum

L

m

θ

Figure 2.5: A simple pendulum consists
of a point mass m attached to a string of
length L. It is released from an angle θ0.

The simple pendulum consists of a point mass m hanging on a string
of length L from some support. [See Figure 2.5.] One pulls the mass
back to some stating angle, θ0, and releases it. The goal is to find the
angular position as a function of time.

There are a couple of possible derivations. We could either use
Newton’s Second Law of Motion, F = ma, or its rotational analogue
in terms of torque, τ = Iα. We will use the former only to limit the
amount of physics background needed.

There are two forces acting on the point mass. The first is gravity.
This points downward and has a magnitude of mg, where g is the
standard symbol for the acceleration due to gravity. The other force
is the tension in the string. In Figure 2.6 these forces and their sum
are shown. The magnitude of the sum is easily found as F = mg sin θ

using the addition of these two vectors.

T

mg

θ

mg sin θ

Figure 2.6: There are two forces act-
ing on the mass, the weight mg and the
tension T. The net force is found to be
F = mg sin θ.

Now, Newton’s Second Law of Motion tells us that the net force is
the mass times the acceleration. So, we can write

mẍ = −mg sin θ.
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Next, we need to relate x and θ. x is the distance traveled, which is the
length of the arc traced out by the point mass. The arclength is related
to the angle, provided the angle is measure in radians. Namely, x = rθ

for r = L. Thus, we can write

mLθ̈ = −mg sin θ.

Canceling the masses, this then gives us the nonlinear pendulum equa-
tion Nonlinear pendulum equation.

Lθ̈ + g sin θ = 0. (2.31)

There are several variations of Equation (2.31) which will be used
in this text. The first one is the linear pendulum. This is obtained by
making a small angle approximation. For small angles we know that
sin θ ≈ θ. Under this approximation (2.31) becomes Linear pendulum equation.

Lθ̈ + gθ = 0. (2.32)
The equation for a compound pendu-
lum takes a similar form. We start
with the rotational form of Newton’s
second law τ = Iα. Noting that the
torque due to gravity acts at the center
of mass position `, the torque is given by
τ = −mg` sin θ. Since α = θ̈, we have
Iθ̈ = −mg` sin θ. Then, for small angles
θ̈ + ω2θ = 0, where ω = mg`

I . for a point
mass, ` = L and I = mL2, leading to the
result in the text.

We note that this equation is of the same form as the mass-spring
system. We define ω =

√
g/L and obtain the equation for simple

harmonic motion,
θ̈ + ω2θ = 0.

2.4 Second Order Linear Differential Equations

In the last section we saw how second order differential equations
naturally appear in the derivations for simple oscillating systems. In
this section we will look at more general second order linear differen-
tial equations.

Second order differential equations are typically harder than first
order. In most cases students are only exposed to second order linear
differential equations. A general form for a second order linear differen-
tial equation is given by

a(x)y′′(x) + b(x)y′(x) + c(x)y(x) = f (x). (2.33)

One can rewrite this equation using operator terminology. Namely,
one first defines the differential operator L = a(x)D2 + b(x)D + c(x),
where D = d

dx . Then equation (2.33) becomes

Ly = f . (2.34)

The solutions of linear differential equations are found by making
use of the linearity of L. Namely, we consider the vector space1 consist-

1 We assume that the reader has been in-
troduced to concepts in linear algebra.
Later in the text we will recall the def-
inition of a vector space and see that lin-
ear algebra is in the background of the
study of many concepts in the solution
of differential equations.

ing of real-valued functions over some domain. Let f and g be vectors
in this function space. L is a linear operator if for two vectors f and g
and scalar a, we have that
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a. L( f + g) = L f + Lg

b. L(a f ) = aL f .

One typically solves (2.33) by finding the general solution of the
homogeneous problem,

Lyh = 0

and a particular solution of the nonhomogeneous problem,

Lyp = f .

Then the general solution of (2.33) is simply given as y = yh + yp. This
is true because of the linearity of L. Namely,

Ly = L(yh + yp)

= Lyh + Lyp

= 0 + f = f . (2.35)

There are methods for finding a particular solution of a differential
equation. These range from pure guessing to the Method of Undeter-
mined Coefficients, or by making use of the Method of Variation of
Parameters. We will review some of these methods later.

Determining solutions to the homogeneous problem, Lyh = 0, is
not always easy. However, others have studied a variety of second
order linear equations and have saved us the trouble for some of the
differential equations that often appear in applications.

Again, linearity is useful in producing the general solution of a ho-
mogeneous linear differential equation. If y1 and y2 are solutions of
the homogeneous equation, then the linear combination y = c1y1 + c2y2

is also a solution of the homogeneous equation. In fact, if y1 and y2

are linearly independent,2 then y = c1y1 + c2y2 is the general solution of 2 Recall, a set of functions {yi(x)}n
i=1 is a

linearly independent set if and only if

c1y(1(x) + . . . + cnyn(x) = 0

implies ci = 0, for i = 1, . . . , n.

the homogeneous problem. As you may recall, linear independence is
established if the Wronskian of the solutions in not zero. In this case,
we have

W(y1, y2) = y1(x)y′2(x)− y′1(x)y2(x) 6= 0. (2.36)

2.4.1 Constant Coefficient Equations

The simplest and most seen second order differential equations
are those with constant coefficients. The general form for a homoge-
neous constant coefficient second order linear differential equation is
given as

ay′′(x) + by′(x) + cy(x) = 0, (2.37)

where a, b, and c are constants.



58 mathematical physics

Solutions to (2.37) are obtained by making a guess of y(x) = erx.
Inserting this guess into (2.37) leads to the characteristic equation The characteristic equation for ay′′ +

by′ + cy = 0 is ar2 + br + c = 0. Solu-
tions of this quadratic equation lead to
solutions of the differential equation.

ar2 + br + c = 0. (2.38)

Namely, we compute the derivatives of y(x) = erx, to get y(x) = rerx,
and y(x) = r2erx. Inserting into (2.37), we have

0 = ay′′(x) + by′(x) + cy(x) = (ar2 + br + c)erx.

Since the exponential is never zero, we find that ar2 + br + c = 0. Two real, distinct roots, r1 and r2, give
solutions of the form y(x) = c1er1x +
c2er2x .

The roots of this equation, r1, r2, in turn lead to three types of solu-
tion depending upon the nature of the roots. In general, we have two
linearly independent solutions, y1(x) = er1x and y2(x) = er2x, and the
general solution is given by a linear combination of these solutions,

y(x) = c1er1x + c2er2x.

For two real distinct roots, we are done. However, when the roots are
real, but equal, or complex conjugate roots, we need to do a little more
work to obtain usable solutions. Repeated roots, r1 = r2 = r, give solu-

tions of the form

y(x) = (c1 + c2x)erx .
In the case when there is a repeated real root, one has only one

independent solution, y1(x) = erx. The question is how does one
obtain the second solution? Since the solutions are independent, we
must have that the ratio y2(x)/y1(x) is not a constant. So, we guess
the form y2(x) = v(x)y1(x) = v(x)erx. For constant coefficient second
order equations, we can write the equation as

(D− r)2y = 0,

where D = d
dx .

We now insert y2(x) into this equation. First we compute

(D− r)verx = v′erx.

Then,
(D− r)2verx = (D− r)v′erx = v′′erx.

So, if y2(x) is to be a solution to the differential equation, (D− r)2y2 =

0, then v′′(x)erx = 0 for all x. So, v′′(x) = 0, which implies that

v(x) = ax + b.

So,
y2(x) = (ax + b)erx.

Without loss of generality, we can take b = 0 and a = 1 to obtain the
second linearly independent solution, y2(x) = xerx.

Complex roots, r = α± iβ, give solutions
of the form

y(x) = eαx(c1 cos βx + c2 sin βx).
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When one has complex roots in the solution of constant coefficient
equations, one needs to look at the solutions

y1,2(x) = e(α±iβ)x.

We make use of Euler’s formula

eiβx = cos βx + i sin βx. (2.39)

Then the linear combination of y1(x) and y2(x) becomes

Ae(α+iβ)x + Be(α−iβ)x = eαx
[

Aeiβx + Be−iβx
]

= eαx [(A + B) cos βx + i(A− B) sin βx]

≡ eαx(c1 cos βx + c2 sin βx). (2.40)

Thus, we see that we have a linear combination of two real, linearly
independent solutions, eαx cos βx and eαx sin βx.

The three cases are summarized below followed by several exam-
ples.

Classification of Roots of the Characteristic Equation
for Second Order Constant Coefficient ODEs

1. Real, distinct roots r1, r2. In this case the solutions correspond-
ing to each root are linearly independent. Therefore, the gen-
eral solution is simply y(x) = c1er1x + c2er2x.

2. Real, equal roots r1 = r2 = r. In this case the solutions corre-
sponding to each root are linearly dependent. To find a second
linearly independent solution, one uses the Method of Reduction
of Order. This gives the second solution as xerx. Therefore, the
general solution is found as y(x) = (c1 + c2x)erx. [This is cov-
ered in the appendix to this chapter.]

3. Complex conjugate roots r1, r2 = α ± iβ. In this case the so-
lutions corresponding to each root are linearly independent.
Making use of Euler’s identity, eiθ = cos(θ) + i sin(θ), these
complex exponentials can be rewritten in terms of trigonomet-
ric functions. Namely, one has that eαx cos(βx) and eαx sin(βx)
are two linearly independent solutions. Therefore, the general
solution becomes y(x) = eαx(c1 cos(βx) + c2 sin(βx)). [This is
covered in the appendix to this chapter.]

Example 2.5. y′′ − y′ − 6y = 0 y(0) = 2, y′(0) = 0.
The characteristic equation for this problem is r2 − r− 6 = 0. The roots of

this equation are found as r = −2, 3. Therefore, the general solution can be
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quickly written down:

y(x) = c1e−2x + c2e3x.

Note that there are two arbitrary constants in the general solution. There-
fore, one needs two pieces of information to find a particular solution. Of
course, we have the needed information in the form of the initial conditions.

One also needs to evaluate the first derivative

y′(x) = −2c1e−2x + 3c2e3x

in order to attempt to satisfy the initial conditions. Evaluating y and y′ at
x = 0 yields

2 = c1 + c2

0 = −2c1 + 3c2 (2.41)

These two equations in two unknowns can readily be solved to give c1 = 6/5
and c2 = 4/5. Therefore, the solution of the initial value problem is obtained
as y(x) = 6

5 e−2x + 4
5 e3x.

Example 2.6. y′′ + 6y′ + 9y = 0.
In this example we have r2 + 6r + 9 = 0. There is only one root, r = −3.

Again, the solution is easily obtained as y(x) = (c1 + c2x)e−3x.

Example 2.7. y′′ + 4y = 0.
The characteristic equation in this case is r2 + 4 = 0. The roots are pure

imaginary roots, r = ±2i and the general solution consists purely of sinu-
soidal functions: y(x) = c1 cos(2x) + c2 sin(2x).

Example 2.8. y′′ + 2y′ + 4y = 0.
The characteristic equation in this case is r2 + 2r + 4 = 0. The roots are

complex, r = −1±
√

3i and the general solution can be written as y(x) =[
c1 cos(

√
3x) + c2 sin(

√
3x)
]

e−x.

Example 2.9. y′′ + 4y = sin x.
This is an example of a nonhomogeneous problem. The homogeneous prob-

lem was actually solved in Example 2.7. According to the theory, we need
only seek a particular solution to the nonhomogeneous problem and add it to
the solution of the last example to get the general solution.

The particular solution can be obtained by purely guessing, making an
educated guess, or using the Method of Variation of Parameters. We will
not review all of these techniques at this time. Due to the simple form of
the driving term, we will make an intelligent guess of yp(x) = A sin x and
determine what A needs to be. Recall, this is the Method of Undetermined
Coefficients which we review in later in the chapter. Inserting our guess in the
equation gives (−A + 4A) sin x = sin x. So, we see that A = 1/3 works.
The general solution of the nonhomogeneous problem is therefore y(x) =

c1 cos(2x) + c2 sin(2x) + 1
3 sin x.
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As we have seen, one of the most important applications of such
equations is in the study of oscillations. Typical systems are a mass
on a spring, or a simple pendulum. For a mass m on a spring with
spring constant k > 0, one has from Hooke’s law that the position as a
function of time, x(t), satisfies the equation

mẍ + kx = 0.

This constant coefficient equation has pure imaginary roots (α = 0)
and the solutions are pure sines and cosines. This is called simple
harmonic motion. Adding a damping term and periodic forcing com-
plicates the dynamics, but is nonetheless solvable. We will return to
damped oscillations later and also investigate nonlinear oscillations.

2.5 LRC Circuits

Another typical problem often encountered in a first year physics
class is that of an LRC series circuit. This circuit is pictured in Figure
2.7. The resistor is a circuit element satisfying Ohm’s Law. The capac-
itor is a device that stores electrical energy and an inductor, or coil,
store magnetic energy.

The physics for this problem stems from Kirchoff’s Rules for cir-
cuits. Namely, the sum of the drops in electric potential are set equal
to the rises in electric potential. The potential drops across each circuit
element are given by

1. Resistor: V = IR.

2. Capacitor: V = q
C .

3. Inductor: V = L dI
dt .

R C L

V(t)

Figure 2.7: Series LRC Circuit.

Furthermore, we need to define the current as I = dq
dt . where q is the

charge in the circuit. Adding these potential drops, we set them equal
to the voltage supplied by the voltage source, V(t). Thus, we obtain

IR +
q
C
+ L

dI
dt

= V(t).

Since both q and I are unknown, we can replace the current by its
expression in terms of the charge to obtain

Lq̈ + Rq̇ +
1
C

q = V(t).

This is a second order equation for q(t).
More complicated circuits are possible by looking at parallel con-

nections, or other combinations, of resistors, capacitors and inductors.
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This will result in several equations for each loop in the circuit, lead-
ing to larger systems of differential equations. An example of another
circuit setup is shown in Figure 2.8. This is not a problem that can be
covered in the first year physics course. One can set up a system of
second order equations and proceed to solve them. We will see how
to solve such problems later in the text.

R

C LV(t)

R1 2

Figure 2.8: Parallel LRC Circuit.

2.5.1 Special Cases

In this section we will look at special cases that arise for the series
LRC circuit equation. These include RC circuits, solvable by first order
methods and LC circuits, leading to oscillatory behavior.

Case I. RC Circuits

We first consider the case of an RC circuit in which there is no
inductor. Also, we will consider what happens when one charges a
capacitor with a DC battery (V(t) = V0) and when one discharges a
charged capacitor (V(t) = 0).

For charging a capacitor, we have the initial value problem Charging a capacitor.

R
dq
dt

+
q
C

= V0, q(0) = 0. (2.42)

This equation is an example of a linear first order equation for q(t).
However, we can also rewrite it and solve it as a separable equa-
tion, since V0 is a constant. We will do the former only as another
example of finding the integrating factor.

We first write the equation in standard form:

dq
dt

+
q

RC
=

V0

R
. (2.43)

The integrating factor is then

µ(t) = e
∫ dt

RC = et/RC.

Thus,
d
dt

(
qet/RC

)
=

V0

R
et/RC. (2.44)

Integrating, we have

qet/RC =
V0

R

∫
et/RC dt = CV0et/RC + K. (2.45)

Note that we introduced the integration constant, K. Now divide
out the exponential to get the general solution:

q = CV0 + Ke−t/RC. (2.46)
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(If we had forgotten the K, we would not have gotten a correct so-
lution for the differential equation.)

Next, we use the initial condition to get the particular solution.
Namely, setting t = 0, we have that

0 = q(0) = CV0 + K.

So, K = −CV0. Inserting this into the solution, we have

q(t) = CV0(1− e−t/RC). (2.47)

Now we can study the behavior of this solution. For large times
the second term goes to zero. Thus, the capacitor charges up,
asymptotically, to the final value of q0 = CV0. This is what we ex-
pect, because the current is no longer flowing over R and this just
gives the relation between the potential difference across the capac-
itor plates when a charge of q0 is established on the plates.

Figure 2.9: The charge as a function of
time for a charging capacitor with R =
2.00 kΩ, C = 6.00 mF, and V0 = 12 V.

Let’s put in some values for the parameters. We let R = 2.00 kΩ,
C = 6.00 mF, and V0 = 12 V. A plot of the solution is given in Figure
2.9. We see that the charge builds up to the value of CV0 = 0.072 C.
If we use a smaller resistance, R = 200 Ω, we see in Figure 2.10 that
the capacitor charges to the same value, but much faster.

The rate at which a capacitor charges, or discharges, is governed
by the time constant, τ = RC. This is the constant factor in the
exponential. The larger it is, the slower the exponential term decays.
If we set t = τ, we find that

q(τ) = CV0(1− e−1) = (1− 0.3678794412 . . .)q0 ≈ 0.63q0.

Thus, at time t = τ, the capacitor has almost charged to two thirds
of its final value. For the first set of parameters, τ = 12s. For the
second set, τ = 1.2s.
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Figure 2.10: The charge as a function of
time for a charging capacitor with R =
200 Ω, C = 6.00 mF, and V0 = 12 V.

Now, let’s assume the capacitor is charged with charge ±q0 on Discharging a capacitor.

its plates. If we disconnect the battery and reconnect the wires to
complete the circuit, the charge will then move off the plates, dis-
charging the capacitor. The relevant form of the initial value prob-
lem becomes

R
dq
dt

+
q
C

= 0, q(0) = q0. (2.48)

This equation is simpler to solve. Rearranging, we have

dq
dt

= − q
RC

. (2.49)

This is a simple exponential decay problem, which you can solve
using separation of variables. However, by now you should know
how to immediately write down the solution to such problems of
the form y′ = ky. The solution is

q(t) = q0e−t/τ , τ = RC.

We see that the charge decays exponentially. In principle, the ca-
pacitor never fully discharges. That is why you are often instructed
to place a shunt across a discharged capacitor to fully discharge it.

In Figure 2.11 we show the discharging of the two previous RC
circuits. Once again, τ = RC determines the behavior. At t = τ we
have

q(τ) = q0e−1 = (0.3678794412 . . .)q0 ≈ 0.37q0.

So, at this time the capacitor only has about a third of its original
value.

Case II. LC Circuits
Another simple result comes from studying LC circuits. We will LC Oscillators.

now connect a charged capacitor to an inductor. In this case, we
consider the initial value problem

Lq̈ +
1
C

q = 0, q(0) = q0, q̇(0) = I(0) = 0. (2.50)



free fall and harmonic oscillators 65

Figure 2.11: The charge as a function
of time for a discharging capacitor with
R = 2.00 kΩ or R = 200 Ω, and C = 6.00
mF, and q0 = 0.072 C.

Dividing out the inductance, we have

q̈ +
1

LC
q = 0. (2.51)

This equation is a second order, constant coefficient equation. It
is of the same form as the ones for simple harmonic motion of a
mass on a spring or the linear pendulum. So, we expect oscillatory
behavior. The characteristic equation is

r2 +
1

LC
= 0.

The solutions are
r1,2 = ± i√

LC
.

Thus, the solution of (2.51) is of the form

q(t) = c1 cos(ωt) + c2 sin(ωt), ω = (LC)−1/2. (2.52)

Inserting the initial conditions yields

q(t) = q0 cos(ωt). (2.53)

The oscillations that result are understandable. As the charge
leaves the plates, the changing current induces a changing magnetic
field in the inductor. The stored electrical energy in the capacitor
changes to stored magnetic energy in the inductor. However, the
process continues until the plates are charged with opposite polarity
and then the process begins in reverse. The charged capacitor then
discharges and the capacitor eventually returns to its original state
and the whole system repeats this over and over.

The frequency of this simple harmonic motion is easily found. It
is given by

f =
ω

2π
=

1
2π

1√
LC

. (2.54)



66 mathematical physics

This is called the tuning frequency because of its role in tuning
circuits.

Of course, this is an ideal situation. There is always resistance
in the circuit, even if only a small amount from the wires. So, we
really need to account for resistance, or even add a resistor. This
leads to a slightly more complicated system in which damping will
be present.

2.6 Damped Oscillations

As we have indicated, simple harmonic motion is an ideal situa-
tion. In real systems we often have to contend with some energy loss
in the system. This leads to the damping of the oscillations. This en-
ergy loss could be in the spring, in the way a pendulum is attached to
its support, or in the resistance to the flow of current in an LC circuit.
The simplest models of resistance are the addition of a term in first
derivative of the dependent variable. Thus, our three main examples
with damping added look like:

mẍ + bẋ + kx = 0. (2.55)

Lθ̈ + bθ̇ + gθ = 0. (2.56)

Lq̈ + Rq̇ +
1
C

q = 0. (2.57)

These are all examples of the general constant coefficient equation

ay′′(x) + by′(x) + cy(x) = 0. (2.58)

We have seen that solutions are obtained by looking at the character-
istic equation ar2 + br + c = 0. This leads to three different behaviors
depending on the discriminant in the quadratic formula:

r =
−b±

√
b2 − 4ac

2a
. (2.59)

We will consider the example of the damped spring. Then we have

r =
−b±

√
b2 − 4mk

2m
. (2.60)

For b > 0, there are three types of damping. Damped oscillator cases.

I. Overdamped, b2 > 4mk
In this case we obtain two real root. Since this is Case I for con-

stant coefficient equations, we have that

x(t) = c1er1t + c2er2t.
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We note that b2 − 4mk < b2. Thus, the roots are both negative. So,
both terms in the solution exponentially decay. The damping is so
strong that there is no oscillation in the system.

II. Critically Damped, b2 = 4mk
In this case we obtain one real root. This is Case II for constant

coefficient equations and the solution is given by

x(t) = (c1 + c2t)ert,

where r = −b/2m. Once again, the solution decays exponentially.
The damping is just strong enough to hinder any oscillation. If it
were any weaker the discriminant would be negative and we would
need the third case.

Underdamped Oscillation

–2

–1

0

1

2

x

2 4 6 8 10 12 14 16 18 20

t

Figure 2.12: A plot of underdamped os-
cillation given by x(t) = 2e0.1t cos 3t. The
dashed lines are given by x(t) = ±2e0.1t,
indicating the bounds on the amplitude
of the motion.

III. Underdamped, b2 < 4mk
In this case we have complex conjugate roots. We can write α =

−b/2m and β =
√

4mk− b2/2m. Then the solution is

x(t) = eαt(c1 cos βt + c2 sin βt).

These solutions exhibit oscillations due to the trigonometric func-
tions, but we see that the amplitude may decay in time due the the
overall factor of eαt when α < 0. Consider the case that the initial
conditions give c1 = A and c2 = 0. (When is this?) Then, the
solution, x(t) = Aeαt cos βt, looks like the plot in Figure 2.12.

2.7 Forced Systems

All of the systems presented at the beginning of the last section ex-
hibit the same general behavior when a damping term is present. An
additional term can be added that can cause even more complicated
behavior. In the case of LRC circuits, we have seen that the voltage
source makes the system nonhomogeneous. It provides what is called
a source term. Such terms can also arise in the mass-spring and pendu-
lum systems. One can drive such systems by periodically pushing the
mass, or having the entire system moved, or impacted by an outside
force. Such systems are called forced, or driven.

Typical systems in physics can be modeled by nonhomogenous sec-
ond order equations. Thus, we want to find solutions of equations of
the form

Ly(x) = a(x)y′′(x) + b(x)y′(x) + c(x)y(x) = f (x). (2.61)

Recall, that one solves this equation by finding the general solution of
the homogeneous problem,

Lyh = 0
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and a particular solution of the nonhomogeneous problem,

Lyp = f .

Then the general solution of (2.33) is simply given as y = yh + yp.
To date, we only know how to solve constant coefficient, homoge-

neous equations. So, by adding a nonhomogeneous to such equations
we need to figure out what to do with the extra term. In other words,
how does one find the particular solution?

You could guess a solution, but that is not usually possible without
a little bit of experience. So we need some other methods. There are
two main methods. In the first case, the Method of Undetermined
Coefficients, one makes an intelligent guess based on the form of f (x).
In the second method, one can systematically developed the particular
solution. We will come back to this method the Method of Variation
of Parameters, later in this section.

2.7.1 Method of Undetermined Coefficients

Let’s solve a simple differential equation highlighting how we can
handle nonhomogeneous equations.

Example 2.10. Consider the equation

y′′ + 2y′ − 3y = 4. (2.62)

The first step is to determine the solution of the homogeneous equation.
Thus, we solve

y′′h + 2y′h − 3yh = 0. (2.63)

The characteristic equation is r2 + 2r− 3 = 0. The roots are r = 1,−3. So,
we can immediately write the solution

yh(x) = c1ex + c2e−3x.

The second step is to find a particular solution of (2.62). What possible
function can we insert into this equation such that only a 4 remains? If we
try something proportional to x, then we are left with a linear function after
inserting x and its derivatives. Perhaps a constant function you might think.
y = 4 does not work. But, we could try an arbitrary constant, y = A.

Let’s see. Inserting y = A into (2.62), we obtain

−3A = 4.

Ah ha! We see that we can choose A = − 4
3 and this works. So, we have a

particular solution, yp(x) = − 4
3 . This step is done.
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Combining the two solutions, we have the general solution to the original
nonhomogeneous equation (2.62). Namely,

y(x) = yh(x) + yp(x) = c1ex + c2e−3x − 4
3

.

Insert this solution into the equation and verify that it is indeed a solution. If
we had been given initial conditions, we could now use them to determine the
arbitrary constants.

Example 2.11. What if we had a different source term? Consider the equation

y′′ + 2y′ − 3y = 4x. (2.64)

The only thing that would change is the particular solution. So, we need a
guess.

We know a constant function does not work by the last example. So, let’s
try yp = Ax. Inserting this function into Equation (2.64), we obtain

2A− 3Ax = 4x.

Picking A = −4/3 would get rid of the x terms, but will not cancel every-
thing. We still have a constant left. So, we need something more general.

Let’s try a linear function, yp(x) = Ax+ B. Then we get after substitution
into (2.64)

2A− 3(Ax + B) = 4x.

Equating the coefficients of the different powers of x on both sides, we find a
system of equations for the undetermined coefficients:

2A− 3B = 0

−3A = 4. (2.65)

These are easily solved to obtain

A = −4
3

B =
2
3

A = −8
9

. (2.66)

So, the particular solution is

yp(x) = −4
3

x− 8
9

.

This gives the general solution to the nonhomogeneous problem as

y(x) = yh(x) + yp(x) = c1ex + c2e−3x − 4
3

x− 8
9

.

There are general forms that you can guess based upon the form
of the driving term, f (x). Some examples are given in Table 2.7.1.
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More general applications are covered in a standard text on differ-
ential equations. However, the procedure is simple. Given f (x) in a
particular form, you make an appropriate guess up to some unknown
parameters, or coefficients. Inserting the guess leads to a system of
equations for the unknown coefficients. Solve the system and you
have the solution. This solution is then added to the general solution
of the homogeneous differential equation.

f (x) Guess
anxn + an−1xn−1 + · · ·+ a1x + a0 Anxn + An−1xn−1 + · · ·+ A1x + A0

aebx Aebx

a cos ωx + b sin ωx A cos ωx + B sin ωx

Example 2.12. As a final example, let’s consider the equation

y′′ + 2y′ − 3y = 2e−3x. (2.67)

According to the above, we would guess a solution of the form yp = Ae−3x.
Inserting our guess, we find

0 = 2e−3x.

Oops! The coefficient, A, disappeared! We cannot solve for it. What went
wrong?

The answer lies in the general solution of the homogeneous problem. Note
that ex and e−3x are solutions to the homogeneous problem. So, a multiple
of e−3x will not get us anywhere. It turns out that there is one further mod-
ification of the method. If the driving term contains terms that are solutions
of the homogeneous problem, then we need to make a guess consisting of the
smallest possible power of x times the function which is no longer a solution of
the homogeneous problem. Namely, we guess yp(x) = Axe−3x. We compute
the derivative of our guess, y′p = A(1− 3x)e−3x and y′′p = A(9x− 6)e−3x.
Inserting these into the equation, we obtain

[(9x− 6) + 2(1− 3x)− 3x]Ae−3x = 2e−3x,

or
−4A = 2.

So, A = −1/2 and yp(x) = − 1
2 xe−3x.

Modified Method of Undetermined Coefficients

In general, if any term in the guess yp(x) is a solution of the
homogeneous equation, then multiply the guess by xk, where k
is the smallest positive integer such that no term in xkyp(x) is a
solution of the homogeneous problem.
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2.7.2 Forced Oscillations

As an example of a simple forced system, we can consider forced linear
oscillations. For example one can force the mass-spring system. In
general, such as system would satisfy the equation

mẍ + b(̇x) + kx = F(t), (2.68)

where m is the mass, b is the damping constant, k is the spring con-
stant, and F(t) is the driving force. If F(t) is of simple form, then we
can employ the Method of Undetermined Coefficients. As the damp-
ing term only complicates the solution we will assume that b = 0.
Furthermore, we will introduce a sinusoidal driving force, F(t) =

F0 cos ωt. Then, the simple driven system becomes

mẍ + kx = F0 cos ωt. (2.69)

As we have seen, one first determines the solution to the homoge-
neous problem,

xh = c1 cos ω0t + c2 sin ω0t,

where ω0 =
√

k
m . In order to apply the Method of Undetermined

Coefficients, one has to make a guess which is not a solution of the
homogeneous solution. The first guess would be to use xp = A cos ωt.
This is fine if ω 6= ω0. Otherwise, one would need to use the Modified
Method of Undetermined Coefficients as described in the last section.
The details will be left to the reader.

The general solution to the problem is thus

x(t) = c1 cos ω0t + c2 sin ω0t +

{ F0
m(ω2

0−ω2)
cos ωt, ω 6= ω0,

F0
2mω0

t sin ω0t, ω = ω0.
(2.70)

The case of resonance.
Special cases of these solutions provide interesting physics, which

can be explored by the reader in the homework. In the case that ω =

ω0, we see that the solution tends to grow as t gets large. This is
what is called a resonance. Essentially, one is driving the system at its
natural frequency. As the system is moving to the left, one pushes it
to the left. If it is moving to the right, one is adding energy in that
direction. This forces the amplitude of oscillation to continue to grow
until the system breaks.

In the case that ω 6= ω0, one can rewrite the solution in a simple
form. Let’s choose the initial conditions as x(0) = 0, ẋ(0) = 0. Then
one has (see Problem 13)

x(t) =
2F0

m(ω2
0 −ω2)

sin
(ω0 −ω)t

2
sin

(ω0 + ω)t
2

. (2.71)
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For values of ω near ω0, one finds the solution consists of a rapid
oscillation, due to the sin (ω0+ω)t

2 factor, with a slowly varying am-

plitude, 2F0
m(ω2

0−ω2)
sin (ω0−ω)t

2 . The reader can investigate this solution.

This leads to what are called beats.

2.7.3 Cauchy-Euler Equations

Another class of solvable linear differential equations that is of
interest are the Cauchy-Euler type of equations. These are given by

ax2y′′(x) + bxy′(x) + cy(x) = 0. (2.72)

Note that in such equations the power of x in each of the coefficients
matches the order of the derivative in that term. These equations are
solved in a manner similar to the constant coefficient equations. The solutions of Cauchy-Euler equations

can be found using the characteristic
equation ar(r− 1) + br + c = 0.

One begins by making the guess y(x) = xr. Inserting this function
and its derivatives,

y′(x) = rxr−1, y′′(x) = r(r− 1)xr−2,

into Equation (2.72), we have

[ar(r− 1) + br + c] xr = 0.

Since this has to be true for all x in the problem domain, we obtain the
characteristic equation

ar(r− 1) + br + c = 0. (2.73)
For two real, distinct roots, the general
solution takes the form

y(x) = c1xr1 + c2xr2 .

Just like the constant coefficient differential equation, we have a
quadratic equation and the nature of the roots again leads to three
classes of solutions. If there are two real, distinct roots, then the gen-
eral solution takes the form y(x) = c1xr1 + c2xr2 . For one root, r1 = r2 = r, the general

solution is of the form

y(x) = (c1 + c2 ln |x|)xr .
Deriving the solution for Case 2 for the Cauchy-Euler equations

works in the same way as the second for constant coefficient equations,
but it is a bit messier. First note that for the real root, r = r1, the
characteristic equation has to factor as (r − r1)

2 = 0. Expanding, we
have

r2 − 2r1r + r2
1 = 0.

The general characteristic equation is

ar(r− 1) + br + c = 0.

Rewriting this, we have

r2 + (
b
a
− 1)r +

c
a
= 0.
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Comparing equations, we find

b
a
= 1− 2r1,

c
a
= r2

1.

So, the general Cauchy-Euler equation in this case takes the form

x2y′′ + (1− 2r1)xy′ + r2
1y = 0.

Now we seek the second linearly independent solution in the form
y2(x) = v(x)xr1 . We first list this function and its derivatives,

y2(x) = vxr1 ,

y′2(x) = (xv′ + r1v)xr1−1,

y′′2 (x) = (x2v′′ + 2r1xv′ + r1(r1 − 1)v)xr1−2.

(2.74)

Inserting these forms into the differential equation, we have

0 = x2y′′ + (1− 2r1)xy′ + r2
1y

= (xv′′ + v′)xr1+1. (2.75)

Thus, we need to solve the equation

xv′′ + v′ = 0,

or
v′′

v′
= − 1

x
.

Integrating, we have

ln |v′| = − ln |x|+ C.

Exponentiating, we have one last differential equation to solve,

v′ =
A
x

.

Thus,
v(x) = A ln |x|+ k.

So, we have found that the second linearly independent equation can
be written as

y2(x) = xr1 ln |x|.
For complex conjugate roots, r = α± iβ,
the general solution takes the form

y(x) = xα(c1 cos(β ln |x|)+ c2 sin(β ln |x|)).

We now turn to the case of complex conjugate roots, r = α ± iβ.
When dealing with the Cauchy-Euler equations, we have solutions of
the form y(x) = xα+iβ. The key to obtaining real solutions is to first
recall that

xy = eln xy
= ey ln x.
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Thus, a power can be written as an exponential and the solution can
be written as

y(x) = xα+iβ = xαeiβ ln x, x > 0.

We can now find two real, linearly independent solutions, xα cos(β ln |x|)
and xα sin(β ln |x|) following the same steps as earlier for the constant
coefficient case.

The results are summarized in the table below followed by exam-
ples.

Classification of Roots of the Characteristic Equation
for Cauchy-Euler Differential Equations

1. Real, distinct roots r1, r2. In this case the solutions correspond-
ing to each root are linearly independent. Therefore, the gen-
eral solution is simply y(x) = c1xr1 + c2xr2 .

2. Real, equal roots r1 = r2 = r. In this case the solutions corre-
sponding to each root are linearly dependent. To find a second
linearly independent solution, one uses the Method of Reduc-
tion of Order. This gives the second solution as xr ln |x|. There-
fore, the general solution is found as y(x) = (c1 + c2 ln |x|)xr.

3. Complex conjugate roots r1, r2 = α ± iβ. In this case the
solutions corresponding to each root are linearly indepen-
dent. These complex exponentials can be rewritten in
terms of trigonometric functions. Namely, one has that
xα cos(β ln |x|) and xα sin(β ln |x|) are two linearly indepen-
dent solutions. Therefore, the general solution becomes y(x) =
xα(c1 cos(β ln |x|) + c2 sin(β ln |x|)).

Example 2.13. x2y′′ + 5xy′ + 12y = 0
As with the constant coefficient equations, we begin by writing down the

characteristic equation. Doing a simple computation,

0 = r(r− 1) + 5r + 12

= r2 + 4r + 12

= (r + 2)2 + 8,

−8 = (r + 2)2, (2.76)

one determines the roots are r = −2± 2
√

2i. Therefore, the general solution
is y(x) =

[
c1 cos(2

√
2 ln |x|) + c2 sin(2

√
2 ln |x|)

]
x−2

Example 2.14. t2y′′ + 3ty′ + y = 0, y(1) = 0, y′(1) = 1.
For this example the characteristic equation takes the form

r(r− 1) + 3r + 1 = 0,
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or
r2 + 2r + 1 = 0.

There is only one real root, r = −1. Therefore, the general solution is

y(t) = (c1 + c2 ln |t|)t−1.

However, this problem is an initial value problem. At t = 1 we know the
values of y and y′. Using the general solution, we first have that

0 = y(1) = c1.

Thus, we have so far that y(t) = c2 ln |t|t−1. Now, using the second condition
and

y′(t) = c2(1− ln |t|)t−2,

we have
1 = y(1) = c2.

Therefore, the solution of the initial value problem is y(t) = ln |t|t−1.

Nonhomogeneous Cauchy-Euler Equations We can also solve some
nonhomogeneous Cauchy-Euler equations using the Method of Un-
determined Coefficients. We will demonstrate this with a couple of
examples.

Example 2.15. Find the solution of x2y′′ − xy′ − 3y = 2x2.
First we find the solution of the homogeneous equation. The characteristic

equation is r2 − 2r− 3 = 0. So, the roots are r = −1, 3 and the solution is
yh(x) = c1x−1 + c2x3.

We next need a particular solution. Let’s guess yp(x) = Ax2. Inserting
the guess into the nonhomogeneous differential equation, we have

2x2 = x2y′′ − xy′ − 3y = 2x2

= 2Ax2 − 2Ax2 − 3Ax2

= −3Ax2. (2.77)

So, A = −2/3. Therefore, the general solution of the problem is

y(x) = c1x−1 + c2x3 − 2
3

x2.

Example 2.16. Find the solution of x2y′′ − xy′ − 3y = 2x3.
In this case the nonhomogeneous term is a solution of the homogeneous

problem, which we solved in the last example. So, we will need a modification
of the method. We have a problem of the form

ax2y′′ + bxy′ + cy = dxr,

where r is a solution of ar(r− 1) + br + c = 0. Let’s guess a solution of the
form y = Axr ln x. Then one finds that the differential equation reduces to
Axr(2ar− a + b) = dxr. [You should verify this for yourself.]
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With this in mind, we can now solve the problem at hand. Let yp =

Ax3 ln x. Inserting into the equation, we obtain 4Ax3 = 2x3, or A = 1/2.
The general solution of the problem can now be written as

y(x) = c1x−1 + c2x3 +
1
2

x3 ln x.

2.7.4 Method of Variation of Parameters

A more systematic way to find particular solutions is through the
use of the Method of Variation of Parameters. The derivation is a little
detailed and the solution is sometimes messy, but the application of
the method is straight forward if you can do the required integrals.
We will first derive the needed equations and then do some examples.

We begin with the nonhomogeneous equation. Let’s assume it is of
the standard form

a(x)y′′(x) + b(x)y′(x) + c(x)y(x) = f (x). (2.78)

We know that the solution of the homogeneous equation can be writ-
ten in terms of two linearly independent solutions, which we will call
y1(x) and y2(x) :

yh(x) = c1y1(x) + c2y2(x).

Replacing the constants with functions, then we now longer have
a solution to the homogeneous equation. Is it possible that we could
stumble across the right functions with which to replace the constants
and somehow end up with f (x) when inserted into the left side of the
differential equation? It turns out that we can.

So, let’s assume that the constants are replaced with two unknown
functions, which we will call c1(x) and c2(x). This change of the pa-
rameters is where the name of the method derives. Thus, we are as-
suming that a particular solution takes the form We assume the nonhomogeneous equa-

tion has a particular solution of the form

yp(x) = c1(x)y1(x) + c2(x)y2(x).yp(x) = c1(x)y1(x) + c2(x)y2(x). (2.79)

If this is to be a solution, then insertion into the differential equation
should make it true. To do this we will first need to compute some
derivatives.

The first derivative is given by

y′p(x) = c1(x)y′1(x) + c2(x)y′2(x) + c′1(x)y1(x) + c′2(x)y2(x). (2.80)

Next we will need the second derivative. But, this will give use eight
terms. So, we will first make an assumption. Let’s assume that the last
two terms add to zero:

c′1(x)y1(x) + c′2(x)y2(x) = 0. (2.81)
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It turns out that we will get the same results in the end if we did not
assume this. The important thing is that it works!

So, we now have the first derivative as

y′p(x) = c1(x)y′1(x) + c2(x)y′2(x). (2.82)

The second derivative is then only four terms:

y′p(x) = c1(x)y′′1 (x) + c2(x)y′′2 (x) + c′1(x)y′1(x) + c′2(x)y′2(x). (2.83)

Now that we have the derivatives, we can insert the guess into the
differential equation. Thus, we have

f (x) = a(x)(c1(x)y′′1 (x) + c2(x)y′′2 (x) + c′1(x)y′1(x) + c′2(x)y′2(x))

+b(x)(c1(x)y′1(x) + c2(x)y′2(x))

+c(x)(c1(x)y1(x) + c2(x)y2(x)). (2.84)

Regrouping the terms, we obtain

f (x) = c1(x)(a(x)y′′1 (x) + b(x)y′1(x) + c(x)y1(x))

c2(x)(a(x)y′′2 (x) + b(x)y′2(x) + c(x)y2(x))

+a(x)(c′1(x)y′1(x) + c′2(x)y′2(x)). (2.85)

Note that the first two rows vanish since y1 and y2 are solutions of the
homogeneous problem. This leaves the equation

c′1(x)y′1(x) + c′2(x)y′2(x) =
f (x)
a(x)

. (2.86)

In summary, we have assumed a particular solution of the form

yp(x) = c1(x)y1(x) + c2(x)y2(x).

This is only possible if the unknown functions c1(x) and c2(x) satisfy
the system of equations To solve the differential equation Ly =

f , we assume yp(x) = c1(x)y1(x) +
c2(x)y2(x), for Ly1,2 = 0. Then, one need
only solve a simple system of equations.

c′1(x)y1(x) + c′2(x)y2(x) = 0

c′1(x)y′1(x) + c′2(x)y′2(x) =
f (x)
a(x)

. (2.87)

System (2.87) can be solved as

c′1(x) = − f y2

aW(y1, y2)
,

c′1(x) =
f y1

aW(y1, y2)
,

where W(y1, y2) = y1y′2 − y′1y2 is the
Wronskian.

It is standard to solve this system for the derivatives of the unknown
functions and then present the integrated forms. However, one could
just start from here.

Example 2.17. Consider the problem: y′′ − y = e2x. We want the general
solution of this nonhomogeneous problem.
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The general solution to the homogeneous problem y′′h − yh = 0 is

yh(x) = c1ex + c2e−x.

In order to use the Method of Variation of Parameters, we seek a solution
of the form

yp(x) = c1(x)ex + c2(x)e−x.

We find the unknown functions by solving the system in (2.87), which in this
case becomes

c′1(x)ex + c′2(x)e−x = 0

c′1(x)ex − c′2(x)e−x = e2x. (2.88)

Adding these equations we find that

2c′1ex = e2x → c′1 =
1
2

ex.

Solving for c1(x) we find

c1(x) =
1
2

∫
ex dx =

1
2

ex.

Subtracting the equations in the system yields

2c′2e−x = −e2x → c′2 = −1
2

e3x.

Thus,

c2(x) = −1
2

∫
e3x dx = −1

6
e3x.

The particular solution is found by inserting these results into yp:

yp(x) = c1(x)y1(x) + c2(x)y2(x)

= (
1
2

ex)ex + (−1
6

e3x)e−x

=
1
3

e2x. (2.89)

Thus, we have the general solution of the nonhomogeneous problem as

y(x) = c1ex + c2e−x +
1
3

e2x.

Example 2.18. Now consider the problem: y′′ + 4y = sin x.
The solution to the homogeneous problem is

yh(x) = c1 cos 2x + c2 sin 2x. (2.90)

We now seek a particular solution of the form

yh(x) = c1(x) cos 2x + c2(x) sin 2x.
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We let y1(x) = cos 2x and y2(x) = sin 2x, a(x) = 1, f (x) = sin x in
system (2.87):

c′1(x) cos 2x + c′2(x) sin 2x = 0

−2c′1(x) sin 2x + 2c′2(x) cos 2x = sin x. (2.91)

Now, use your favorite method for solving a system of two equations and
two unknowns. In this case, we can multiply the first equation by 2 sin 2x and
the second equation by cos 2x. Adding the resulting equations will eliminate
the c′1 terms. Thus, we have

c′2(x) =
1
2

sin x cos 2x =
1
2
(2 cos2 x− 1) sin x.

Inserting this into the first equation of the system, we have

c′1(x) = −c′2(x)
sin 2x
cos 2x

= −1
2

sin x sin 2x = − sin2 x cos x.

These can easily be solved:

c2(x) =
1
2

∫
(2 cos2 x− 1) sin x dx =

1
2
(cos x− 2

3
cos3 x).

c1(x) = −
∫

sinx cos x dx = −1
3

sin3 x.

The final step in getting the particular solution is to insert these functions
into yp(x). This gives

yp(x) = c1(x)y1(x) + c2(x)y2(x)

= (−1
3

sin3 x) cos 2x + (
1
2

cos x− 1
3

cos3 x) sin x

=
1
3

sin x. (2.92)

So, the general solution is

y(x) = c1 cos 2x + c2 sin 2x +
1
3

sin x. (2.93)

2.8 Numerical Solutions of ODEs

So far we have seen some of the standard methods for solving first
and second order differential equations. However, we have had to
restrict ourselves to very special cases in order to get nice analytical
solutions to our initial value problems. While these are not the only
equations for which we can get exact results (see Section 2.7.3 for an-
other common class of second order differential equations), there are
many cases in which exact solutions are not possible. In such cases
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we have to rely on approximation techniques, including the numerical
solution of the equation at hand.

The use of numerical methods to obtain approximate solutions of
differential equations and systems of differential equations has been
known for some time. However, with the advent of powerful comput-
ers and desktop computers, we can now solve many of these problems
with relative ease. The simple ideas used to solve first order differen-
tial equations can be extended to the solutions of more complicated
systems of partial differential equations, such as the large scale prob-
lems of modeling ocean dynamics, weather systems and even cosmo-
logical problems stemming from general relativity.

In this section we will look at the simplest method for solving first
order equations, Euler’s Method. While it is not the most efficient
method, it does provide us with a picture of how one proceeds and
can be improved by introducing better techniques, which are typically
covered in a numerical analysis text.

Let’s consider the class of first order initial value problems of the
form

dy
dx

= f (x, y), y(x0) = y0. (2.94)

We are interested in finding the solution y(x) of this equation which
passes through the initial point (x0, y0) in the xy-plane for values of x
in the interval [a, b], where a = x0. We will seek approximations of the
solution at N points, labeled xn for n = 1, . . . , N. For equally spaced
points we have ∆x = x1 − x0 = x2 − x1, etc. Then, xn = x0 + n∆x. In
Figure 2.13 we show three such points on the x-axis.

Figure 2.13: The basics of Euler’s
Method are shown. An interval of the
x axis is broken into N subintervals.
The approximations to the solutions are
found using the slope of the tangent to
the solution, given by f (x, y). Knowing
previous approximations at (xn−1, yn−1),
one can determine the next approxima-
tion, yn.

We will develop a simple numerical method, called Euler’s Method.
We rely on Figure 2.13 to do this. As already noted, we first break
the interval of interest into N subintervals with N + 1 points xn. We
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already know a point on the solution (x0, y(x0)) = (x0, y0). How do
we find the solution for other x values?

We first note that the differential equation gives us the slope of the
tangent line at (x, y(x)) of the solution y(x). The slope is f (x, y(x)).
Referring to Figure 2.13, we see the tangent line drawn at (x0, y0). We
look now at x = x1. A vertical line intersects both the solution curve
and the tangent line. While we do not know the solution, we can
determine the tangent line and find the intersection point. As seen in
the figure, this intersection point is in theory close to the point on the
solution curve. So, we will designate y1 as the approximation of the
solution y(x1). We just need to determine y1.

The idea is simple. We approximate the derivative in the differential
equation by its difference quotient:

dy
dx
≈ y1 − y0

x1 − x0
=

y1 − y0

∆x
. (2.95)

But, we have by the differential equation that the slope of the tangent
to the curve at (x0, y0) is

y′(x0) = f (x0, y0).

Thus,
y1 − y0

∆x
≈ f (x0, y0). (2.96)

So, we can solve this equation for y1 to obtain

y1 = y0 + ∆x f (x0, y0). (2.97)

This give y1 in terms of quantities that we know.
We now proceed to approximate y(x2). Referring to Figure 2.13,

we see that this can be done by using the slope of the solution curve
at (x1, y1). The corresponding tangent line is shown passing though
(x1, y1) and we can then get the value of y2. Following the previous
argument, we find that

y2 = y1 + ∆x f (x1, y1). (2.98)

Continuing this procedure for all xn, we arrive at the following nu-
merical scheme for determining a numerical solution to Euler’s equa-
tion:

y0 = y(x0),

yn = yn−1 + ∆x f (xn−1, yn−1), n = 1, . . . , N. (2.99)

Example 2.19. We will consider a standard example for which we know the
exact solution. This way we can compare our results. The problem is given
that

dy
dx

= x + y, y(0) = 1, (2.100)
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find an approximation for y(1).
First, we will do this by hand. We will break up the interval [0, 1], since we

want the solution at x = 1 and the initial value is at x = 0. Let ∆x = 0.50.
Then, x0 = 0, x1 = 0.5 and x2 = 1.0. Note that N = b−a

∆x = 2.
We can carry out Euler’s Method systematically. We set up a table for the

needed values. Such a table is shown in Table 2.1.

n xn yn = yn−1 + ∆x f (xn−1, yn−1 = 0.5xn−1 + 1.5yn−1

0 0 1

1 0.5 0.5(0) + 1.5(1.0) = 1.5
2 1.0 0.5(0.5) + 1.5(1.5) = 2.5

Table 2.1: Application of Euler’s Method
for y′ = x + y, y(0) = 1 and ∆x = 0.5.

Note how the table is set up. There is a column for each xn and yn. The
first row is the initial condition. We also made use of the function f (x, y)
in computing the yn’s. This sometimes makes the computation easier. As a
result, we find that the desired approximation is given as y2 = 2.5.

Is this a good result? Well, we could make the spatial increments
smaller. Let’s repeat the procedure for ∆x = 0.2, or N = 5. The results
are in Table 2.2.

n xn yn = 0.2xn−1 + 1.2yn−1

0 0 1

1 0.2 0.2(0) + 1.2(1.0) = 1.2
2 0.4 0.2(0.2) + 1.2(1.2) = 1.48
3 0.6 0.2(0.4) + 1.2(1.48) = 1.856
4 0.8 0.2(0.6) + 1.2(1.856) = 2.3472
5 1.0 0.2(0.8) + 1.2(2.3472) = 2.97664

Table 2.2: Application of Euler’s Method
for y′ = x + y, y(0) = 1 and ∆x = 0.2.

Now we see that our approximation is y1 = 2.97664. So, it looks
like the value is near 3, but we cannot say much more. Decreasing ∆x
more shows that we are beginning to converge to a solution. We see
this in Table 2.3.

∆x yN ≈ y(1)
0.5 2.5
0.2 2.97664

0.1 3.187484920

0.01 3.409627659

0.001 3.433847864

0.0001 3.436291854

Table 2.3: Results of Euler’s Method for
y′ = x + y, y(0) = 1 and varying ∆x

Of course, these values were not done by hand. The last computa-
tion would have taken 1000 lines in the table, or at least 40 pages! One
could use a computer to do this. A simple code in Maple would look
like the following:



free fall and harmonic oscillators 83

> restart:

> f:=(x,y)->y+x;

> a:=0: b:=1: N:=100: h:=(b-a)/N;

> x[0]:=0: y[0]:=1:

for i from 1 to N do

y[i]:=y[i-1]+h*f(x[i-1],y[i-1]):

x[i]:=x[0]+h*(i):

od:

evalf(y[N]);

In this case we could simply use the exact solution. The exact solu-
tion is easily found as

y(x) = 2ex − x− 1.

(The reader can verify this.) So, the value we are seeking is

y(1) = 2e− 2 = 3.4365636 . . . .

Thus, even the last numerical solution was off by about 0.00027.

Sol

2.5

1.5

0.0

t

3.0

2.0

1.0

0.5

0.750.25 1.00.50.0

Figure 2.14: A comparison of the results
Euler’s Method to the exact solution for
y′ = x + y, y(0) = 1 and N = 10.

Adding a few extra lines for plotting, we can visually see how well
the approximations compare to the exact solution. The Maple code for
doing such a plot is given below.

> with(plots):

> Data:=[seq([x[i],y[i]],i=0..N)]:

> P1:=pointplot(Data,symbol=DIAMOND):

> Sol:=t->-t-1+2*exp(t);

> P2:=plot(Sol(t),t=a..b,Sol=0..Sol(b)):

> display({P1,P2});
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We show in Figures 2.14-2.15 the results for N = 10 and N = 100.
In Figure 2.14 we can see how quickly the numerical solution diverges
from the exact solution. In Figure 2.15 we can see that visually the
solutions agree, but we note that from Table 2.3 that for ∆x = 0.01, the
solution is still off in the second decimal place with a relative error of
about 0.8%.

2.5

0.5

2.0

0.0

t

0.25

3.0

1.0

1.00.50.0

1.5

Sol

0.75

Figure 2.15: A comparison of the results
Euler’s Method to the exact solution for
y′ = x + y, y(0) = 1 and N = 100.

Why would we use a numerical method when we have the exact so-
lution? Exact solutions can serve as test cases for our methods. We can
make sure our code works before applying them to problems whose
solution is not known.

There are many other methods for solving first order equations.
One commonly used method is the fourth order Runge-Kutta method.
This method has smaller errors at each step as compared to Euler’s
Method. It is well suited for programming and comes built-in in many
packages like Maple and MATLAB. Typically, it is set up to handle
systems of first order equations.

In fact, it is well known that nth order equations can be written as
a system of n first order equations. Consider the simple second order
equation

y′′ = f (x, y).

This is a larger class of equations than the second order constant co-
efficient equation. We can turn this into a system of two first or-
der differential equations by letting u = y and v = y′ = u′. Then,
v′ = y′′ = f (x, u). So, we have the first order system

u′ = v,

v′ = f (x, u). (2.101)

We will not go further into the Runge-Kutta Method here. You can
find more about it in a numerical analysis text. However, we will
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see that systems of differential equations do arise naturally in physics.
Such systems are often coupled equations and lead to interesting be-
haviors.

2.9 Linear Systems

2.9.1 Coupled Oscillators

In the last section we saw that the numerical solution of second
order equations, or higher, can be cast into systems of first order equa-
tions. Such systems are typically coupled in the sense that the solution
of at least one of the equations in the system depends on knowing one
of the other solutions in the system. In many physical systems this
coupling takes place naturally. We will introduce a simple model in
this section to illustrate the coupling of simple oscillators. However,
we will reserve solving the coupled system of oscillators until the next
chapter after exploring the needed mathematics.

There are many problems in physics that result in systems of equa-
tions. This is because the most basic law of physics is given by New-
ton’s Second Law, which states that if a body experiences a net force,
it will accelerate. Thus,

∑ F = ma.

Since a = ẍ we have a system of second order differential equations in
general for three dimensional problems, or one second order differen-
tial equation for one dimensional problems.

We have already seen the simple problem of a mass on a spring
as shown in Figure 2.4. Recall that the net force in this case is the
restoring force of the spring given by Hooke’s Law,

Fs = −kx,

where k > 0 is the spring constant and x is the elongation of the spring.
When it is positive, the spring force is negative and when it is negative
the spring force is positive. The equation for simple harmonic motion
for the mass-spring system was found to be given by

mẍ + kx = 0.
m

k

x
Figure 2.16: Spring-Mass system.

This second order equation can be written as a system of two first
order equations in terms of the unknown position and velocity. We
first set y = ẋ and then rewrite the second order equation in terms of
x and y. Thus, we have

ẋ = y

ẏ = − k
m

x. (2.102)



86 mathematical physics

The coefficient matrix for this system is

(
0 1
−ω2 0

)
, where ω2 = k

m .

One can look at more complicated spring-mass systems. Consider
two blocks attached with two springs as in Figure 2.17. In this case
we apply Newton’s second law for each block. We will designate the
elongations of each spring from equilibrium as x1 and x2. These are
shown in Figure 2.17.

m

k

x

m

k

1 2

21

1 x2

Figure 2.17: Spring-Mass system.

For mass m1, the forces acting on it are due to each spring. The
first spring with spring constant k1 provides a force on m1 of −k1x1.
The second spring is stretched, or compressed, based upon the relative
locations of the two masses. So, it will exert a force on m1 of k2(x2 −
x1).

Similarly, the only force acting directly on mass m2 is provided by
the restoring force from spring 2. So, that force is given by −k2(x2 −
x1). The reader should think about the signs in each case.

Putting this all together, we apply Newton’s Second Law to both
masses. We obtain the two equations

m1 ẍ1 = −k1x1 + k2(x2 − x1)

m2 ẍ2 = −k2(x2 − x1). (2.103)

Thus, we see that we have a coupled system of two second order dif-
ferential equations.

One can rewrite this system of two second order equations as a
system of four first order equations by letting x3 = ẋ1 and x4 = ẋ2.
This leads to the system

ẋ1 = x3

ẋ2 = x4

ẋ3 = − k1

m1
x1 +

k2

m1
(x2 − x1)

ẋ4 = − k2

m2
(x2 − x1). (2.104)

As we will see, this system can be written more compactly in matrix
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form:

d
dt


x1

x2

x3

x4

 =


0 0 1 0
0 0 0 1

− k1+k2
m1

k2
m1

0 0
k2
m2

− k2
m2

0 0




x1

x2

x3

x4

 (2.105)

However, before we can solve this system of first order equations, we
need to recall a few things from linear algebra. This will be done in the
next chapter. For now, we will return to simpler systems and explore
the behavior of typical solutions in these planar systems.

2.9.2 Planar Systems

We now consider examples of solving a coupled system of first or-
der differential equations in the plane. We will focus on the theory of
linear systems with constant coefficients. Understanding these simple
systems helps in future studies of nonlinear systems, which contain
much more interesting behaviors, such as the onset of chaos. In the
next chapter we will return to these systems and describe a matrix
approach to obtaining the solutions.

A general form for first order systems in the plane is given by a
system of two equations for unknowns x(t) and y(t) :

x′(t) = P(x, y, t)

y′(t) = Q(x, y, t). (2.106)

An autonomous system is one in which there is no explicit time depen-
dence:

x′(t) = P(x, y)

y′(t) = Q(x, y). (2.107)

Otherwise the system is called nonautonomous.
A linear system takes the form

x′ = a(t)x + b(t)y + e(t)

y′ = c(t)x + d(t)y + f (t). (2.108)

A homogeneous linear system results when e(t) = 0 and f (t) = 0.
A linear, constant coefficient system of first order differential equations

is given by

x′ = ax + by + e

y′ = cx + dy + f . (2.109)

We will focus on linear, homogeneous systems of constant coeffi-
cient first order differential equations:
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x′ = ax + by

y′ = cx + dy. (2.110)

As we will see later, such systems can result by a simple translation
of the unknown functions. These equations are said to be coupled if
either b 6= 0 or c 6= 0.

We begin by noting that the system (2.110) can be rewritten as a
second order constant coefficient linear differential equation, which
we already know how to solve. We differentiate the first equation in
system system (2.110) and systematically replace occurrences of y and
y′, since we also know from the first equation that y = 1

b (x′ − ax).
Thus, we have

x′′ = ax′ + by′

= ax′ + b(cx + dy)

= ax′ + bcx + d(x′ − ax). (2.111)

Rewriting the last line, we have

x′′ − (a + d)x′ + (ad− bc)x = 0. (2.112)

This is a linear, homogeneous, constant coefficient ordinary differ-
ential equation. We know that we can solve this by first looking at the
roots of the characteristic equation

r2 − (a + d)r + ad− bc = 0 (2.113)

and writing down the appropriate general solution for x(t). Then we
can find y(t) using Equation (2.110):

y =
1
b
(x′ − ax).

We now demonstrate this for a specific example.

Example 2.20. Consider the system of differential equations

x′ = −x + 6y

y′ = x− 2y. (2.114)

Carrying out the above outlined steps, we have that x′′ + 3x′ − 4x = 0. This
can be shown as follows:

x′′ = −x′ + 6y′

= −x′ + 6(x− 2y)

= −x′ + 6x− 12
(

x′ + x
6

)
= −3x′ + 4x (2.115)



free fall and harmonic oscillators 89

The resulting differential equation has a characteristic equation of r2 +

3r − 4 = 0. The roots of this equation are r = 1,−4. Therefore, x(t) =

c1et + c2e−4t. But, we still need y(t). From the first equation of the system
we have

y(t) =
1
6
(x′ + x) =

1
6
(2c1et − 3c2e−4t).

Thus, the solution to the system is

x(t) = c1et + c2e−4t,

y(t) = 1
3 c1et − 1

2 c2e−4t. (2.116)

Sometimes one needs initial conditions. For these systems we would
specify conditions like x(0) = x0 and y(0) = y0. These would allow
the determination of the arbitrary constants as before.

Example 2.21. Solve

x′ = −x + 6y

y′ = x− 2y. (2.117)

given x(0) = 2, y(0) = 0.
We already have the general solution of this system in (2.116). Inserting

the initial conditions, we have

2 = c1 + c2,

0 = 1
3 c1 − 1

2 c2. (2.118)

Solving for c1 and c2 gives c1 = 6/5 and c2 = 4/5. Therefore, the solution
of the initial value problem is

x(t) = 2
5
(
3et + 2e−4t) ,

y(t) = 2
5
(
et − e−4t) . (2.119)

2.9.3 Equilibrium Solutions and Nearby Behaviors

In studying systems of differential equations, it is often useful to
study the behavior of solutions without obtaining an algebraic form
for the solution. This is done by exploring equilibrium solutions and
solutions nearby equilibrium solutions. Such techniques will be seen
to be useful later in studying nonlinear systems.

We begin this section by studying equilibrium solutions of system
(2.109). For equilibrium solutions the system does not change in time.
Therefore, equilibrium solutions satisfy the equations x′ = 0 and y′ =
0. Of course, this can only happen for constant solutions. Let x0 and y0
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be the (constant) equilibrium solutions. Then, x0 and y0 must satisfy
the system

0 = ax0 + by0 + e,

0 = cx0 + dy0 + f . (2.120)

This is a linear system of nonhomogeneous algebraic equations.
One only has a unique solution when the determinant of the system
is not zero, i.e., ad − bc 6= 0. Using Cramer’s (determinant) Rule for
solving such systems, we have

x0 = −

∣∣∣∣∣ e b
f d

∣∣∣∣∣∣∣∣∣∣ a b
c d

∣∣∣∣∣
, y0 = −

∣∣∣∣∣ a e
c f

∣∣∣∣∣∣∣∣∣∣ a b
c d

∣∣∣∣∣
. (2.121)

If the system is homogeneous, e = f = 0, then we have that the
origin is the equilibrium solution; i.e., (x0, y0) = (0, 0). Often we will
have this case since one can always make a change of coordinates from
(x, y) to (u, v) by u = x− x0 and v = y− y0. Then, u0 = v0 = 0.

Next we are interested in the behavior of solutions near the equilib-
rium solutions. Later this behavior will be useful in analyzing more
complicated nonlinear systems. We will look at some simple systems
that are readily solved.

Example 2.22. Stable Node (sink)
Consider the system

x′ = −2x

y′ = −y. (2.122)

This is a simple uncoupled system. Each equation is simply solved to give

x(t) = c1e−2t and y(t) = c2e−t.

In this case we see that all solutions tend towards the equilibrium point, (0, 0).
This will be called a stable node, or a sink.

Before looking at other types of solutions, we will explore the stable
node in the above example. There are several methods of looking at the
behavior of solutions. We can look at solution plots of the dependent
versus the independent variables, or we can look in the xy-plane at the
parametric curves (x(t), y(t)).
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Figure 2.18: Plots of solutions of Exam-
ple 2.22 for several initial conditions.

Solution Plots: One can plot each solution as a function of t given
a set of initial conditions. Examples are are shown in Figure 2.18 for
several initial conditions. Note that the solutions decay for large t.
Special cases result for various initial conditions. Note that for t = 0,
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x(0) = c1 and y(0) = c2. (Of course, one can provide initial conditions
at any t = t0. It is generally easier to pick t = 0 in our general expla-
nations.) If we pick an initial condition with c1=0, then x(t) = 0 for all
t. One obtains similar results when setting y(0) = 0.

Phase Portrait: There are other types of plots which can provide
additional information about the solutions even if we cannot find the
exact solutions as we can for these simple examples. In particular,
one can consider the solutions x(t) and y(t) as the coordinates along
a parameterized path, or curve, in the plane: r = (x(t), y(t)) Such
curves are called trajectories or orbits. The xy-plane is called the phase
plane and a collection of such orbits gives a phase portrait for the family
of solutions of the given system.

One method for determining the equations of the orbits in the phase
plane is to eliminate the parameter t between the known solutions to
get a relationship between x and y. In the above example we can do
this, since the solutions are known. In particular, we have

x = c1e−2t = c1

(
y
c2

)2
≡ Ay2.

Another way to obtain information about the orbits comes from
noting that the slopes of the orbits in the xy-plane are given by dy/dx.
For autonomous systems, we can write this slope just in terms of x and
y. This leads to a first order differential equation, which possibly could
be solved analytically, solved numerically, or just used to produce a
direction field. We will see that direction fields are useful in determining
qualitative behaviors of the solutions without actually finding explicit
solutions.
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Figure 2.19: Orbits for Example 2.22.

First we will obtain the orbits for Example 2.22 by solving the cor-
responding slope equation. First, recall that for trajectories defined
parametrically by x = x(t) and y = y(t), we have from the Chain Rule
for y = y(x(t)) that

dy
dt

=
dy
dx

dx
dt

.

Therefore,

dy
dx

=
dy
dt
dx
dt

. (2.123)

For the system in (2.122) we use Equation (2.123) to obtain the equation
for the slope at a point on the orbit:

dy
dx

=
y

2x
.

The general solution of this first order differential equation is found
using separation of variables as x = Ay2 for A an arbitrary constant.
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Plots of these solutions in the phase plane are given in Figure 2.19.
[Note that this is the same form for the orbits that we had obtained
above by eliminating t from the solution of the system.]

Once one has solutions to differential equations, we often are inter-
ested in the long time behavior of the solutions. Given a particular ini-
tial condition (x0, y0), how does the solution behave as time increases?
For orbits near an equilibrium solution, do the solutions tend towards,
or away from, the equilibrium point? The answer is obvious when one
has the exact solutions x(t) and y(t). However, this is not always the
case.

Let’s consider the above example for initial conditions in the first
quadrant of the phase plane. For a point in the first quadrant we have
that

dx/dt = −2x < 0,

meaning that as t→ ∞, x(t) get more negative. Similarly,

dy/dt = −y < 0,

indicates that y(t) is also getting smaller for this problem. Thus, these
orbits tend towards the origin as t → ∞. This qualitative information
was obtained without relying on the known solutions to the problem.

Direction Fields: Another way to determine the behavior of our
system is to draw the direction field. Recall that a direction field is
a vector field in which one plots arrows in the direction of tangents
to the orbits. This is done because the slopes of the tangent lines are
given by dy/dx. For the system (2.110), the slope is

dy
dx

=
cx + dy
ax + by

.

In general, for nonautonomous systems, we obtain a first order differ-
ential equation of the form

dy
dx

= F(x, y).

This particular equation can be solved by the reader.

Figure 2.20: Sketch of tangent vectors for
Example 2.22.

Example 2.23. Draw the direction field for Example 2.22.
We can use software to draw direction fields. However, one can sketch these

fields by hand. we have that the slope of the tangent at this point is given by

dy
dx

=
−y
−2x

=
y

2x
.

For each point in the plane one draws a piece of tangent line with this slope. In
Figure 2.20 we show a few of these. For (x, y) = (1, 1) the slope is dy/dx =

1/2. So, we draw an arrow with slope 1/2 at this point. From system (2.122),
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we have that x′ and y′ are both negative at this point. Therefore, the vector
points down and to the left.

We can do this for several points, as shown in Figure 2.20. Sometimes one
can quickly sketch vectors with the same slope. For this example, when y = 0,
the slope is zero and when x = 0 the slope is infinite. So, several vectors can
be provided. Such vectors are tangent to curves known as isoclines in which
dy
dx =constant.

It is often difficult to provide an accurate sketch of a direction field. Com-
puter software can be used to provide a better rendition. For Example 2.22
the direction field is shown in Figure 2.21. Looking at this direction field, one
can begin to “see” the orbits by following the tangent vectors.
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Direction Field Figure 2.21: Direction field for Example
2.22.

Of course, one can superimpose the orbits on the direction field. This is
shown in Figure 2.22. Are these the patterns you saw in Figure 2.21?

In this example we see all orbits “flow” towards the origin, or equilibrium
point. Again, this is an example of what is called a stable node or a sink.
(Imagine what happens to the water in a sink when the drain is unplugged.)
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Figure 2.22: Phase portrait for Example
2.22.
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Example 2.24. Saddle
Consider the system

x′ = −x

y′ = y. (2.124)
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Figure 2.23: Plots of solutions of Exam-
ple 2.24 for several initial conditions.

This is another uncoupled system. The solutions are again simply gotten
by integration. We have that x(t) = c1e−t and y(t) = c2et. Here we have
that x decays as t gets large and y increases as t gets large. In particular, if
one picks initial conditions with c2 = 0, then orbits follow the x-axis towards
the origin. For initial points with c1 = 0, orbits originating on the y-axis
will flow away from the origin. Of course, in these cases the origin is an
equilibrium point and once at equilibrium, one remains there.

In fact, there is only one line on which to pick initial conditions such that
the orbit leads towards the equilibrium point. No matter how small c2 is,
sooner, or later, the exponential growth term will dominate the solution. One
can see this behavior in Figure 2.23.
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Figure 2.24: Phase portrait for Example
2.24, a saddle.
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Figure 2.25: Plots of solutions of Exam-
ple 2.25 for several initial conditions.

Similar to the first example, we can look at a variety of plots. These
are given by Figures 2.23-2.24. The orbits can be obtained from the
system as

dy
dx

=
dy/dt
dx/dt

= − y
x

.

The solution is y = A
x . For different values of A 6= 0 we obtain a family

of hyperbolae. These are the same curves one might obtain for the level
curves of a surface known as a saddle surface, z = xy. Thus, this type
of equilibrium point is classified as a saddle point. From the phase
portrait we can verify that there are many orbits that lead away from
the origin (equilibrium point), but there is one line of initial conditions
that leads to the origin and that is the x-axis. In this case, the line of
initial conditions is given by the x-axis.
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Example 2.25. Unstable Node (source)

x′ = 2x

y′ = y. (2.125)

This example is similar to Example 2.22. The solutions are obtained by
replacing t with −t. The solutions, orbits and direction fields can be seen in
Figures 2.25-2.26. This is once again a node, but all orbits lead away from
the equilibrium point. It is called an unstable node or a source.
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Figure 2.26: Phase portrait for Example
2.25, an unstable node or source.

Example 2.26. Center

x′ = y

y′ = −x. (2.126)

This system is a simple, coupled system. Neither equation can
be solved without some information about the other unknown func-
tion. However, we can differentiate the first equation and use the
second equation to obtain

x′′ + x = 0.

We recognize this equation from the last chapter as one that appears
in the study of simple harmonic motion. The solutions are pure
sinusoidal oscillations:

x(t) = c1 cos t + c2 sin t, y(t) = −c1 sin t + c2 cos t.
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Figure 2.27: Plots of solutions of Exam-
ple 2.26 for several initial conditions.

In the phase plane the trajectories can be determined either by
looking at the direction field, or solving the first order equation

dy
dx

= − x
y

.
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Performing a separation of variables and integrating, we find that

x2 + y2 = C.

Thus, we have a family of circles for C > 0. (Can you prove this
using the general solution?) Looking at the results graphically in
Figures 2.27-2.28 confirms this result. This type of point is called a
center.
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Figure 2.28: Phase portrait for Example
2.26, a center.

Example 2.27. Focus (spiral)

x′ = αx + y

y′ = −x. (2.127)
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Figure 2.29: Plots of solutions of Ex-
ample 2.27 for several initial conditions,
α = −0.2.

In this example, we will see an additional set of behaviors of
equilibrium points in planar systems. We have added one term,
αx, to the system in Example 2.26. We will consider the effects for
two specific values of the parameter: α = 0.1,−0.2. The resulting
behaviors are shown in the remaining graphs. We see orbits that
look like spirals. These orbits are stable and unstable spirals (or foci,
the plural of focus.)

We can understand these behaviors by once again relating the sys-
tem of first order differential equations to a second order differen-
tial equation. Using the usual method for obtaining a second order
equation form a system, we find that x(t) satisfies the differential
equation

x′′ − αx′ + x = 0.

We recall from our first course that this is a form of damped simple
harmonic motion. We will explore the different types of solutions that
will result for various α’s.
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Figure 2.30: Plots of solutions of Ex-
ample 2.27 for several initial conditions,
α = 0.1.
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The characteristic equation is r2 − αr + 1 = 0. The solution of this
quadratic equation is

r =
α±
√

α2 − 4
2

.

There are five special cases to consider as shown below.

Classification of Solutions of x′′ − αx′ + x = 0

1. α = −2. There is one real solution. This case is called critical
damping since the solution r = −1 leads to exponential decay.
The solution is x(t) = (c1 + c2t)e−t.

2. α < −2. There are two real, negative solutions, r = −µ,−ν,
µ, ν > 0. The solution is x(t) = c1e−µt + c2e−νt. In this case
we have what is called overdamped motion. There are no os-
cillations

3. −2 < α < 0. There are two complex conjugate solutions
r = α/2± iβ with real part less than zero and β =

√
4−α2

2 . The
solution is x(t) = (c1 cos βt + c2 sin βt)eαt/2. Since α < 0, this
consists of a decaying exponential times oscillations. This is
often called an underdamped oscillation.

4. α = 0. This leads to simple harmonic motion.

5. 0 < α < 2. This is similar to the underdamped case, except
α > 0. The solutions are growing oscillations.

6. α = 2. There is one real solution. The solution is x(t) =

(c1 + c2t)et. It leads to unbounded growth in time.

7. For α > 2. There are two real, positive solutions r = µ, ν > 0.
The solution is x(t) = c1eµt + c2eνt, which grows in time.

For α < 0 the solutions are losing energy, so the solutions can
oscillate with a diminishing amplitude. (See Figure 2.29.) For α > 0,
there is a growth in the amplitude, which is not typical. (See Figure
2.30.) Of course, there can be overdamped motion if the magnitude
of α is too large.

Example 2.28. Degenerate Node For this example, we will write out the
solutions. It is a coupled system for which only the second equation is coupled.

x′ = −x

y′ = −2x− y. (2.128)

There are two possible approaches:
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α=0.1 Figure 2.31: Phase portrait for Example
2.27 with α = 0.1. This is an unstable
focus, or spiral.
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α=−0.2 Figure 2.32: Phase portrait for Example
2.27 with α = −0.2. This is a stable fo-
cus, or spiral.

a. We could solve the first equation to find x(t) = c1e−t. Inserting this
solution into the second equation, we have

y′ + y = −2c1e−t.

This is a relatively simple linear first order equation for y = y(t). The inte-
grating factor is µ = et. The solution is found as y(t) = (c2 − 2c1t)e−t.

b. Another method would be to proceed to rewrite this as a second order
equation. Computing x′′ does not get us very far. So, we look at

y′′ = −2x′ − y′

= 2x− y′

= −2y′ − y. (2.129)

Therefore, y satisfies
y′′ + 2y′ + y = 0.

The characteristic equation has one real root, r = −1. So, we write

y(t) = (k1 + k2t)e−t.
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This is a stable degenerate node. Combining this with the solution x(t) =

c1e−t, we can show that y(t) = (c2 − 2c1t)e−t as before.
In Figure 2.33 we see several orbits in this system. It differs from the stable

node show in Figure 2.19 in that there is only one direction along which the
orbits approach the origin instead of two. If one picks c1 = 0, then x(t) = 0
and y(t) = c2e−t. This leads to orbits running along the y-axis as seen in the
figure. x

K0.10 K0.05 0 0.05 0.10

y

K0.10

K0.05

0.05

0.10

Figure 2.33: Plots of solutions of Exam-
ple 2.28 for several initial conditions.

Example 2.29. A Line of Equilibria, Zero Root

x′ = 2x− y

y′ = −2x + y. (2.130)

In this last example, we have a coupled set of equations. We rewrite it as a
second order differential equation:

x′′ = 2x′ − y′

= 2x′ − (−2x + y)

= 2x′ + 2x + (x′ − 2x) = 3x′. (2.131)

So, the second order equation is

x′′ − 3x′ = 0

and the characteristic equation is 0 = r(r− 3). This gives the general solution
as

x(t) = c1 + c2e3t

and thus

y = 2x− x′ = 2(c1 + c3
2t)− (3c2e3t) = 2c1 − c2e3t.

In Figure 2.34 we show the direction field. The constant slope field seen in
this example is confirmed by a simple computation:

dy
dx

=
−2x + y
2x− y

= −1.

Furthermore, looking at initial conditions with y = 2x, we have at t = 0,

2c1 − c2 = 2(c1 + c2) ⇒ c2 = 0.

Therefore, points on this line remain on this line forever, (x, y) = (c1, 2c1).
This line of fixed points is called a line of equilibria.

x
K3 K2 K1 0 1 2 3

y

K3

K2

K1

1

2

3

Figure 2.34: Plots of direction field of Ex-
ample 2.29.
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2.9.4 Polar Representation of Spirals

In the examples with a center or a spiral, one might be able to write
the solutions in polar coordinates. Recall that a point in the plane
can be described by either Cartesian (x, y) or polar (r, θ) coordinates.
Given the polar form, one can find the Cartesian components using

x = r cos θ and y = r sin θ.

Given the Cartesian coordinates, one can find the polar coordinates
using

r2 = x2 + y2 and tan θ =
y
x

. (2.132)

Since x and y are functions of t, then naturally we can think of r
and θ as functions of t. The equations that they satisfy are obtained by
differentiating the above relations with respect to t.

Differentiating the first equation in (2.132) gives

rr′ = xx′ + yy′.

Inserting the expressions for x′ and y′ from system 2.110, we have

rr′ = x(ax + by) + y(cx + dy).

In some cases this may be written entirely in terms of r’s. Similarly,
we have that

θ′ =
xy′ − yx′

r2 ,

which the reader can prove for homework.
In summary, when converting first order equations from rectangular

to polar form, one needs the relations below.

Time Derivatives of Polar Variables

r′ =
xx′ + yy′

r
,

θ′ =
xy′ − yx′

r2 . (2.133)

Example 2.30. Rewrite the following system in polar form and solve the
resulting system.

x′ = ax + by

y′ = −bx + ay. (2.134)

We first compute r′ and θ′:

rr′ = xx′ + yy′ = x(ax + by) + y(−bx + ay) = ar2.
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r2θ′ = xy′ − yx′ = x(−bx + ay)− y(ax + by) = −br2.

This leads to simpler system

r′ = ar

θ′ = −b. (2.135)

This system is uncoupled. The second equation in this system indicates that
we traverse the orbit at a constant rate in the clockwise direction. Solving
these equations, we have that r(t) = r0eat, θ(t) = θ0 − bt. Eliminating t
between these solutions, we finally find the polar equation of the orbits:

r = r0e−a(θ−θ0)t/b.

If you graph this for a 6= 0, you will get stable or unstable spirals.

Example 2.31. Consider the specific system

x′ = −y + x

y′ = x + y. (2.136)

In order to convert this system into polar form, we compute

rr′ = xx′ + yy′ = x(−y + x) + y(x + y) = r2.

r2θ′ = xy′ − yx′ = x(x + y)− y(−y + x) = r2.

This leads to simpler system

r′ = r

θ′ = 1. (2.137)

Solving these equations yields

r(t) = r0et, θ(t) = t + θ0.

Eliminating t from this solution gives the orbits in the phase plane, r(θ) =

r0eθ−θ0 .

A more complicated example arises for a nonlinear system of dif-
ferential equations. Consider the following example.

Example 2.32.

x′ = −y + x(1− x2 − y2)

y′ = x + y(1− x2 − y2). (2.138)

Transforming to polar coordinates, one can show that in order to
convert this system into polar form, we compute

r′ = r(1− r2), θ′ = 1.

This uncoupled system can be solved and this is left to the reader.
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2.10 Appendix: The Nonlinear Pendulum

We can also make the simple pendulum more realistic by adding
damping. This could be due to energy loss in the way the string is
attached to the support or due to the drag on the mass, etc. Assum-
ing that the damping is proportional to the angular velocity, we have
equations for the damped nonlinear and damped linear pendula:

Lθ̈ + bθ̇ + g sin θ = 0. (2.139)

Lθ̈ + bθ̇ + gθ = 0. (2.140)

Finally, we can add forcing. Imagine that the support is attached to
a device to make the system oscillate horizontally at some frequency.
Then we could have equations such as

Lθ̈ + bθ̇ + g sin θ = F cos ωt. (2.141)

We will look at these and other oscillation problems later in our dis-
cussion.

Before returning to studying the equilibrium solutions of the non-
linear pendulum, we will look at how far we can get at obtaining ana-
lytical solutions. First, we investigate the simple linear pendulum.

The linear pendulum equation (2.32) is a constant coefficient sec-
ond order linear differential equation. The roots of the characteristic

equations are r = ±
√

g
L i. Thus, the general solution takes the form

θ(t) = c1 cos(
√

g
L

t) + c2 sin(
√

g
L

t). (2.142)

We note that this is usually simplified by introducing the angular fre-
quency

ω ≡
√

g
L

. (2.143)

One consequence of this solution, which is used often in introduc-
tory physics, is an expression for the period of oscillation of a simple
pendulum. The period is found to be

T =
2π

ω
= 2π

√
g
L

. (2.144)

As we have seen, this value for the period of a simple pendulum
was derived assuming a small angle approximation. How good is this
approximation? What is meant by a small angle? We could recall from
calculus that the Taylor series approximation of sin θ about θ = 0 :

sin θ = θ − θ3

3!
+

θ5

5!
+ . . . . (2.145)
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One can obtain a bound on the error when truncating this series to one
term after taking a numerical analysis course. But we can just simply
plot the relative error, which is defined as

Relative Error =
sin θ − θ

sin θ
.

A plot of the relative error is given in Figure 2.35. Thus for θ ≈ 0.4
radians (or, degrees) we have that the relative error is about 4%.

Relative Error

0

1

2

3

4

Relative Error (%)

–0.4 –0.2 0.2 0.4

Angle (Radians)

Figure 2.35: The relative error in percent
when approximating sin θ by θ.

We would like to do better than this. So, we now turn to the non-
linear pendulum. We first rewrite Equation (2.141) is the simpler form

θ̈ + ω2θ = 0. (2.146)

We next employ a technique that is useful for equations of the form

θ̈ + F(θ) = 0

when it is easy to integrate the function F(θ). Namely, we note that

d
dt

[
1
2

θ̇2 +
∫ θ(t)

F(φ) dφ

]
= (θ̈ + F(θ))θ̇.

For our problem, we multiply Equation (2.146) by θ̇,

θ̈θ̇ + ω2θθ̇ = 0

and note that the left side of this equation is a perfect derivative. Thus,

d
dt

[
1
2

θ̇2 −ω2 cos θ

]
= 0.

Therefore, the quantity in the brackets is a constant. So, we can write

1
2

θ̇2 −ω2 cos θ = c. (2.147)

Solving for θ̇, we obtain

dθ

dt
=
√

2(c + ω2 cos θ).

This equation is a separable first order equation and we can rearrange
and integrate the terms to find that

t =
∫

dt =
∫ dθ√

2(c + ω2 cos θ)
.

Of course, one needs to be able to do the integral. When one gets
a solution in this implicit form, one says that the problem has been
solved by quadratures. Namely, the solution is given in terms of some
integral.
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In fact, the above integral can be transformed into what is know
as an elliptic integral of the first kind. We will rewrite our result and
then use it to obtain an approximation to the period of oscillation of the
nonlinear pendulum, leading to corrections to the linear result found
earlier.

We will first rewrite the constant found in (2.147). This requires a
little physics. The swinging of a mass on a string, assuming no energy
loss at the pivot point, is a conservative process. Namely, the total
mechanical energy is conserved. Thus, the total of the kinetic and
gravitational potential energies is a constant. The kinetic energy of the
masses on the string is given as

T =
1
2

mv2 =
1
2

mL2θ̇2.

The potential energy is the gravitational potential energy. If we set the
potential energy to zero at the bottom of the swing, then the potential
energy is U = mgh, where h is the height that the mass is from the
bottom of the swing. A little trigonometry gives that h = L(1− cos θ).
So,

U = mgL(1− cos θ).

So, the total mechanical energy is

E =
1
2

mL2θ̇2 + mgL(1− cos θ). (2.148)

We note that a little rearranging shows that we can relate this to Equa-
tion (2.147):

1
2

θ̇2 −ω2 cos θ =
1

mL2 E−ω2 = c.

We can use Equation (2.148) to get a value for the total energy. At
the top of the swing the mass is not moving, if only for a moment.
Thus, the kinetic energy is zero and the total energy is pure potential
energy. Letting θ0 denote the angle at the highest position, we have
that

E = mgL(1− cos θ0) = mL2ω2(1− cos θ0).

Therefore, we have found that

1
2

θ̇2 −ω2 cos θ = ω2(1− cos θ0). (2.149)

Using the half angle formula,

sin2 θ

2
=

1
2
(1− cos θ),

we can rewrite Equation (2.149) as

1
2

θ̇2 = 2ω2
[

sin2 θ0

2
− sin2 θ

2

]
. (2.150)
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Solving for θ′, we have

dθ

dt
= 2ω

[
sin2 θ0

2
− sin2 θ

2

]1/2
. (2.151)

One can now apply separation of variables and obtain an integral
similar to the solution we had obtained previously. Noting that a mo-
tion from θ = 0 to θ = θ0 is a quarter of a cycle, we have that

T =
2
ω

∫ θ0

0

dφ√
sin2 θ0

2 − sin2 θ
2

. (2.152)

This result is not much different than our previous result, but we
can now easily transform the integral into an elliptic integral. 3 We 3 Elliptic integrals were first studied by

Leonhard Euler and Giulio Carlo de’
Toschi di Fagnano (1682-1766) , who
studied the lengths of curves such as the
ellipse and the lemniscate, (x2 + y2)2 =
x2 − y2.

define

z =
sin θ

2

sin θ0
2

and
k = sin

θ0

2
.

Then Equation (2.152) becomes

T =
4
ω

∫ 1

0

dz√
(1− z2)(1− k2z2)

. (2.153)

This is done by noting that dz = 1
2k cos θ

2 dθ = 1
2k (1− k2z2)1/2 dθ and

that sin2 θ0
2 − sin2 θ

2 = k2(1− z2). The integral in this result is an elliptic
integral of the first kind. In particular, the elliptic integral of the first
kind is defined as

F(φ, k) ≡
∫ φ

0

dθ√
1− k2 sin2 θ

=
∫ sin φ

0

dz√
(1− z2)(1− k2z2)

.

In some contexts, this is known as the incomplete elliptic integral of
the first kind and K(k) = F(π

2 , k) is called the complete integral of the
first kind.

There are table of values for elliptic integrals and now one can use
a computer algebra system to compute values of such integrals. For
small angles, we have that k is small. So, we can develop a series
expansion for the period, T, for small k. This is simply done by first
expanding

(1− k2z2)−1/2 = 1 +
1
2

k2z2 +
3
8

k2z4 + O((kz)6)

using the binomial expansion which we review later in the text. In-
serting the expansion in the integrand and integrating term by term,
one finds that

T = 2π

√
L
g

[
1 +

1
4

k2 +
9

64
k4 + . . .

]
. (2.154)
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This expression gives further corrections to the linear result, which
only provides the first term. In Figure 2.36 we show the relative errors
incurred when keeping the k2 and k4 terms versus not keeping them.
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Figure 2.36: The relative error in percent
when approximating the exact period of
a nonlinear pendulum with one, two, or
three terms in Equation (2.154).

Problems

1. Find all of the solutions of the first order differential equations.
When an initial condition is given, find the particular solution satisfy-
ing that condition.

a. dy
dx = ex

2y .

b. dy
dt = y2(1 + t2), y(0) = 1.

c. dy
dx =

√
1−y2

x .

d. xy′ = y(1− 2y), y(1) = 2.

e. y′ − (sin x)y = sin x.

f. xy′ − 2y = x2, y(1) = 1.

g. ds
dt + 2s = st2, , s(0) = 1.

h. x′ − 2x = te2t.

i. dy
dx + y = sin x, y(0) = 0.

j. dy
dx −

3
x y = x3, y(1) = 4.

2. Find all of the solutions of the second order differential equations.
When an initial condition is given, find the particular solution satisfy-
ing that condition.

a. y′′ − 9y′ + 20y = 0.
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b. y′′ − 3y′ + 4y = 0, y(0) = 0, y′(0) = 1.

c. x2y′′ + 5xy′ + 4y = 0, x > 0.

d. x2y′′ − 2xy′ + 3y = 0, x > 0.

3. Consider the differential equation

dy
dx

=
x
y
− x

1 + y
.

a. Find the 1-parameter family of solutions (general solution) of
this equation.

b. Find the solution of this equation satisfying the initial condi-
tion y(0) = 1. Is this a member of the 1-parameter family?

4. The initial value problem

dy
dx

=
y2 + xy

x2 , y(1) = 1

does not fall into the class of problems considered in our review. How-
ever, if one substitutes y(x) = xz(x) into the differential equation, one
obtains an equation for z(x) which can be solved. Use this substitution
to solve the initial value problem for y(x).

5. Consider the nonhomogeneous differential equation x′′ − 3x′ +
2x = 6e3t.

a. Find the general solution of the homogenous equation.

b. Find a particular solution using the Method of Undetermined
Coefficients by guessing xp(t) = Ae3t.

c. Use your answers in the previous parts to write down the
general solution for this problem.

6. Find the general solution of the given equation by the method
given.

a. y′′ − 3y′ + 2y = 10. Method of Undetermined Coefficients.

b. y′′ + y′ = 3x2. Variation of Parameters.

7. Find the general solution of each differential equation. When an
initial condition is given, find the particular solution satisfying that
condition.

a. y′′ − 3y′ + 2y = 20e−2x, y(0) = 0, y′(0) = 6.

b. y′′ + y = 2 sin 3x.

c. y′′ + y = 1 + 2 cos x.

d. x2y′′ − 2xy′ + 2y = 3x2 − x, x > 0.
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8. Verify that the given function is a solution and use Reduction of
Order to find a second linearly independent solution.

a. x2y′′ − 2xy′ − 4y = 0, y1(x) = x4.

b. xy′′ − y′ + 4x3y = 0, y1(x) = sin(x2).

9. A ball is thrown upward with an initial velocity of 49 m/s from 539

m high. How high does the ball get and how long does in take before
it hits the ground? [Use results from first problem done in class, free
fall, y′′ = −g.]

10. Consider the solution of a simple growth and decay problem,y(t) =
y0ekt , to solve this typical radioactive decay problem: Forty percent of
a radioactive substance disappears in 100 years.

a. What is the half-life of the substance?

b. After how many years will 90% be gone?

11. A spring fixed at its upper end is stretched six inches by a 10-
pound weight attached at its lower end. The spring-mass system is
suspended in a viscous medium so that the system is subjected to a
damping force of 5 dx

dt lbs. Describe the motion of the system if the
weight is drawn down an additional 4 inches and released. What
would happen if you changed the coefficient “5” to “4”? [You may
need to consult your introductory physics text.]

12. Consider an LRC circuit with L = 1.00 H, R = 1.00 × 102 Ω,
C = 1.00× 10−4 f, and V = 1.00× 103 V. Suppose that no charge is
present and no current is flowing at time t = 0 when a battery of
voltage V is inserted. Find the current and the charge on the capacitor
as functions of time. Describe how the system behaves over time.

13. Consider the problem of forced oscillations as described in section
2.7.2.

a. Derive the general solution in Equation (2.70).

b. Use a CAS to plot the general solution in Equation (2.70) for
the following cases:

c. Derive the form in Equation (2.71).

d. Use a CAS to plot the solution in Equation (2.71) for the
following cases:

14. A certain model of the motion of a tossed whiffle ball is given by

mx′′ + cx′ + mg = 0, x(0) = 0, x′(0) = v0.

Here m is the mass of the ball, g=9.8 m/s2 is the acceleration due to
gravity and c is a measure of the damping. Since there is no x term,
we can write this as a first order equation for the velocity v(t) = x′(t) :

mv′ + cv + mg = 0.
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a. Find the general solution for the velocity v(t) of the linear
first order differential equation above.

b. Use the solution of part a to find the general solution for the
position x(t).

c. Find an expression to determine how long it takes for the ball
to reach it’s maximum height?

d. Assume that c/m = 10 s−1. For v0 = 5, 10, 15, 20 m/s, plot
the solution, x(t), versus the time.

e. From your plots and the expression in part c, determine the
rise time. Do these answers agree?

f. What can you say about the time it takes for the ball to fall as
compared to the rise time?

15. Consider the system

x′ = −4x− y

y′ = x− 2y.

a. Determine the second order differential equation satisfied by
x(t).

b. Solve the differential equation for x(t).

c. Using this solution, find y(t).

d. Verify your solutions for x(t) and y(t).

e. Find a particular solution to the system given the initial con-
ditions x(0) = 1 and y(0) = 0.

16. Use the transformations relating polar and Cartesian coordinates
to prove that

dθ

dt
=

1
r2

[
x

dy
dt
− y

dx
dt

]
.

17. Consider the following systems. Determine the families of or-
bits for each system and sketch several orbits in the phase plane and
classify them by their type (stable node, etc.)

a.

x′ = 3x

y′ = −2y.

b.

x′ = −y

y′ = −5x.
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c.

x′ = 2y

y′ = −3x.

d.

x′ = x− y

y′ = y.

e.

x′ = 2x + 3y

y′ = −3x + 2y.

18. In example 2.32 a conversion to polar coordinates lead to the equa-
tion r′ = r(1 − r2). Solve this equation for initial values of r(0) =

0, 0.5, 1.0, 2.0. Based upon these solutions, describe the behavior of all
solutions to the original system in Cartesian coordinates.
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