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Non-sinusoidal Harmonics and Special Functions

“To the pure geometer the radius of curvature is an incidental characteristic - like the grin of the Cheshire cat. To the
physicist it is an indispensable characteristic. It would be going too far to say that to the physicist the cat is merely
incidental to the grin. Physics is concerned with interrelatedness such as the interrelatedness of cats and grins. In this
case the "cat without a grin" and the "grin without a cat" are equally set aside as purely mathematical phantasies.”
Sir Arthur Stanley Eddington (1882-1944)

In this chapter we provide a glimpse into generalized Fourier series
in which the normal modes of oscillation are not sinusoidal. In particu-
lar, we will explore Legendre polynomials and Bessel functions which
will later arise in problems having cylindrical or spherical symmetry.
For vibrating strings, we saw that the harmonics were sinusoidal basis
functions for a large, infinite dimensional, function space. Now, we
will extend these ideas to non-sinusoidal harmonics and explore the
underlying structure behind these ideas.

The background for the study of generalized Fourier series is that of
function spaces. We begin by exploring the general context in which
one finds oneself when discussing Fourier series and (later) Fourier
transforms. We can view the sine and cosine functions in the Fourier
trigonometric series representations as basis vectors in an infinite di-
mensional function space. A given function in that space may then be
represented as a linear combination over this infinite basis. With this
in mind, we might wonder

• Do we have enough basis vectors for the function space?

• Are the infinite series expansions convergent?

• For other other bases, what functions can be represented by
such expansions?

In the context of the boundary value problems which typically ap-
pear in physics, one is led to the study of boundary value problems
in the form of Sturm-Liouville eigenvalue problems. These lead to
an appropriate set of basis vectors for the function space under con-
sideration. We will touch a little on these ideas, leaving some of the
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deeper results for more advanced courses in mathematics. For now,
we will turn to the ideas of functions spaces and explore some typ-
ical basis functions who origins lie deep in physical problems. The
common basis functions are often referred to as special functions in
physics. Examples are the classical orthogonal polynomials (Legen-
dre, Hermite, Laguerre, Tchebychef) and Bessel functions. But first we
will introduce function spaces.

5.1 Function Spaces

Earlier we studied finite dimensional vector spaces. Given a set
of basis vectors, {ak}n

k=1, in vector space V, we showed that we can
expand any vector v ∈ V in terms of this basis, v = ∑n

k=1 vkak. We
then spent some time looking at the simple case of extracting the com-
ponents vk of the vector. The keys to doing this simply were to have
a scalar product and an orthogonal basis set. These are also the key
ingredients that we will need in the infinite dimensional case. In fact,
we had already done this when we studied Fourier series.

Recall when we found Fourier trigonometric series representations
of functions, we started with a function (vector?) that we wanted to
expand in a set of trigonometric functions (basis?) and we sought the
Fourier coefficients (components?). In this section we will extend our We note that the above determination

of vector components for finite dimen-
sional spaces is precisely what we had
done to compute the Fourier coefficients
using trigonometric bases. Reading fur-
ther, you will see how this works.

notions from finite dimensional spaces to infinite dimensional spaces
and we will develop the needed background in which to think about
more general Fourier series expansions. This conceptual framework is
very important in other areas in mathematics (such as ordinary and
partial differential equations) and physics (such as quantum mechan-
ics and electrodynamics).

We will consider various infinite dimensional function spaces. Func-
tions in these spaces would differ by what properties they satisfy. For
example, we could consider the space of continuous functions on [0,1],
the space of differentiably continuous functions, or the set of functions
integrable from a to b. As you can see that there are many types of
function spaces . In order to view these spaces as vector spaces, we
will need to be able to add functions and multiply them by scalars in
such as way that they satisfy the definition of a vector space as defined
in Chapter 3.

We will also need a scalar product defined on this space of func-
tions. There are several types of scalar products, or inner products,
that we can define. For a real vector space, we define

Definition 5.1. An inner product <,> on a real vector space V is a
mapping from V × V into R such that for u, v, w ∈ V and α ∈ R one
has
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1. < v, v >≥ 0 and < v, v >= 0 iff v = 0.

2. < v, w >=< w, v > .

3. < αv, w >= α < v, w > .

4. < u + v, w >=< u, w > + < v, w > .

A real vector space equipped with the above inner product leads to
what is called a real inner product space. A more general definition
with the third property replaced with < v, w >= < w, v > is needed
for complex inner product spaces.

For the time being, we will only deal with real valued functions
and, thus, we will need an inner product appropriate for such spaces.
One such definition is the following. Let f (x) and g(x) be functions
defined on [a, b] and introduce the weight function σ(x) > 0. Then, we
define the inner product, if the integral exists, as

< f , g >=
∫ b

a
f (x)g(x)σ(x) dx. (5.1)

Spaces in which < f , f >< ∞ under this inner product are called The space of square integrable functions.

the space of square integrable functions on (a, b) under weight σ and
denoted as L2

σ(a, b). In what follows, we will assume for simplicity that
σ(x) = 1. This is possible to do by using a change of variables.

Now that we have functions spaces equipped with an inner product,
we seek a basis for the space? For an n-dimensional space we need n
basis vectors. For an infinite dimensional space, how many will we
need? How do we know when we have enough? We will provide
some answers to these questions later.

Let’s assume that we have a basis of functions {φn(x)}∞
n=1. Given a

function f (x), how can we go about finding the components of f in
this basis? In other words, let

f (x) =
∞

∑
n=1

cnφn(x).

How do we find the cn’s? Does this remind you of the problem we
had earlier for finite dimensional spaces? [You may want to review the
discussion at the end of Section 3.1 as you read the next derivation.]

Formally, we take the inner product of f with each φj and use the
properties of the inner product to find

< φj, f > = < φj,
∞

∑
n=1

cnφn >

=
∞

∑
n=1

cn < φj, φn > . (5.2)

If the basis is an orthogonal basis, then we have

< φj, φn >= Njδjn, (5.3)
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where δjn is the Kronecker delta. Recall from Chapter 3 that the Kro-
necker delta is defined as

δij =

{
0, i 6= j
1, i = j.

(5.4)

Continuing with the derivation, we have For the generalized Fourier series expan-
sion f (x) = ∑∞

n=1 cnφn(x), we have de-
termined the generalized Fourier coeffi-

cients to be cj =
<φj , f>
<φj ,φj>

.
< φj, f > =

∞

∑
n=1

cn < φj, φn >

=
∞

∑
n=1

cnNjδjn

= c1Njδj1 + c2Njδj2 + . . . + cjNjδjj + . . .

= cjNj. (5.5)

So, the expansion coefficients are

cj =
< φj, f >

Nj
=

< φj, f >

< φj, φj >
j = 1, 2, . . . .

We summarize this important result:

Generalized Basis Expansion

Let f (x) be represented by an expansion over a basis of orthogo-
nal functions, {φn(x)}∞

n=1,

f (x) =
∞

∑
n=1

cnφn(x).

Then, the expansion coefficients are formally determined as

cn =
< φn, f >

< φn, φn >
.

This will be referred to as the general Fourier series expansion
and the cj’s are called the Fourier coefficients. Technically, equal-
ity only holds when the infinite series converges to the given
function on the interval of interest.

Example 5.1. Find the coefficients of the Fourier sine series expansion of
f (x), given by

f (x) =
∞

∑
n=1

bn sin nx, x ∈ [−π, π].

In the last chapter we already established that the set of functions φn(x) =
sin nx for n = 1, 2, . . . is orthogonal on the interval [−π, π]. Recall that
using trigonometric identities, we have for n 6= m

< φn, φm > =
∫ π

−π
sin nx sin mx dx
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=
1
2

∫ π

−π
[cos(n−m)x− cos(n + m)x] dx

=
1
2

[
sin(n−m)x

n−m
− sin(n + m)x

n + m

]π

−π

= 0. (5.6)

1 So, we have determined that the set φn(x) = sin nx for n = 1, 2, . . . is 1 There are many types of norms. The
norm defined here is the natural, or in-
duced, norm on the inner product space.
Norms are a generalization of the con-
cept of lengths of vectors. Denoting ‖v‖
the norm of v, it needs to satisfy the
properties

1. ‖v‖ ≥ 0. ‖v‖ = 0 if and only if v = 0.

2. ‖αv‖ = |α|‖v‖.
3. ‖u + v‖ ≤ ‖u‖+ ‖v‖.
Examples of common norms are

1. Euclidean norm: ‖v‖ =√
v2

1 + · · ·+ v2
n.

2. Taxicab norm: ‖v‖ = |v1| + · · · +
|vn|.

3. Lp norm: ‖ f ‖ =
(∫

[ f (x)]p dx
) 1

p .

an orthogonal set of functions on the interval [−π, π]. Just as with vectors
in three dimensions, we can normalize these basis functions to arrive at an
orthonormal basis. This is simply done by dividing by the length of the vector.
Recall that the length of a vector is obtained as v =

√
v · v. In the same way,

we define the norm of a function by

‖ f ‖ =
√
< f , f >.

Note, there are many types of norms, but this induced norm will be sufficient
for us.

For the above basis of sine functions, we want to first compute the norm of
each function. Then we find a new basis from the original basis such that each
new basis function has unit length. Of course, this is just an orthonormal
basis. We first compute

‖φn‖2 =
∫ π

−π
sin2 nx dx

=
1
2

∫ π

−π
[1− cos 2nx] dx

=
1
2

[
x− sin 2nx

2n

]π

−π

= π. (5.7)

We have found for our example that

< φj, φn >= πδjn (5.8)

and that ‖φn‖ =
√

π. Defining ψn(x) = 1√
π

φn(x), we have normalized the
φn’s and have obtained an orthonomal basis of functions on [−π, π].

Now, we can determine the expansion coefficients using

bn =
< φn, f >

Nn
=

< φn, f >

< φn, φn >
=

1
π

∫ π

−π
f (x) sin nx dx.

Does this result look familiar?

5.2 Classical Orthogonal Polynomials

For completeness, we will next discuss series representations of
functions using different bases. In this section we introduce the clas-
sical orthogonal polynomials. We begin by noting that the sequence
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of functions {1, x, x2, . . .} is a basis of linearly independent functions.
In fact, by the Stone-Weierstraß Approximation Theorem2 this set is 2 Stone-Weierstraß Approximation The-

orem Suppose f is a continuous function
defined on the interval [a, b]. For every
ε > 0, there exists a polynomial func-
tion P(x) such that for all x ∈ [a, b], we
have | f (x)− P(x)| < ε. Therefore, every
continuous function defined on [a, b] can
be uniformly approximated as closely as
we wish by a polynomial function.

a basis of L2
σ(a, b), the space of square integrable functions over the

interval [a, b] relative to weight σ(x). However, we will show that the
sequence of functions {1, x, x2, . . .} does not provide an orthogonal
basis for these spaces. We will then proceed to find an appropriate
orthogonal basis of functions.

We are familiar with being able to expand functions over the basis
{1, x, x2, . . .}, since these expansions are just power series representa-
tion of the functions,3 3 The reader may recognize this series

expansion as a Maclaurin series expan-
sion, or Taylor series expansion about
x = 0. For a review of Taylor series, see
the Appendix.

f (x) ∼
∞

∑
n=0

cnxn.

However, this basis is not an orthogonal set of basis functions. One
can easily see this by integrating the product of two even, or two odd,
basis functions with σ(x) = 1 and (a, b)=(−1, 1). For example,∫ 1

−1
x0x2 dx =

2
3

.

Since we have found that orthogonal bases have been useful in deter-
mining the coefficients for expansions of given functions, we might ask
if it is possible to obtain an orthogonal basis involving powers of x. Of
course, finite combinations of these basis elements are just polynomi-
als!

OK, we will ask. “Given a set of linearly independent basis vectors,
can one find an orthogonal basis of the given space?" The answer is
yes. We recall from introductory linear algebra, which mostly covers
finite dimensional vector spaces, that there is a method for carrying
this out called the Gram-Schmidt Orthogonalization Process. We will
review this process for finite dimensional vectors and then generalize
to function spaces.

Figure 5.1: The basis a1, a2, and a3, of
R3.

Let’s assume that we have three vectors that span R3, given by a1,
a2, and a3 and shown in Figure 5.1. We seek an orthogonal basis e1,
e2, and e3, beginning one vector at a time.

First we take one of the original basis vectors, say a1, and define

e1 = a1.

It is sometimes useful to normalize these basis vectors, denoting such
a normalized vector with a ’hat’:

ê1 =
e1

e1
,

where e1 =
√

e1 · e1.
Next, we want to determine an e2 that is orthogonal to e1. We take

another element of the original basis, a2. In Figure 5.2 we show the
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orientation of the vectors. Note that the desired orthogonal vector is
e2. We can now write a2 as the sum of e2 and the projection of a2 on
e1. Denoting this projection by pr1a2, we then have

e2 = a2 − pr1a2. (5.9)

Recall the projection of one vector onto another from your vector
calculus class.

pr1a2 =
a2 · e1

e2
1

e1. (5.10)

This is easily proven by writing the projection as a vector of length
a2 cos θ in direction ê1, where θ is the angle between e1 and a2. Us-
ing the definition of the dot product, a · b = ab cos θ, the projection
formula follows.

Figure 5.2: A plot of the vectors e1, a2,
and e2 needed to find the projection of
a2, on e1.

Combining Equations (5.9)-(5.10), we find that

e2 = a2 −
a2 · e1

e2
1

e1. (5.11)

It is a simple matter to verify that e2 is orthogonal to e1:

e2 · e1 = a2 · e1 −
a2 · e1

e2
1

e1 · e1

= a2 · e1 − a2 · e1 = 0. (5.12)

Next, we seek a third vector e3 that is orthogonal to both e1 and
e2. Pictorially, we can write the given vector a3 as a combination of
vector projections along e1 and e2 with the new vector. This is shown
in Figure 5.3. Thus, we can see that

e3 = a3 −
a3 · e1

e2
1

e1 −
a3 · e2

e2
2

e2. (5.13)

Again, it is a simple matter to compute the scalar products with e1 and
e2 to verify orthogonality.

Figure 5.3: A plot of vectors for deter-
mining e3.

We can easily generalize this procedure to the N-dimensional case.
Let an, n = 1, ..., N be a set of linearly independent vectors in RN .
Then, an orthogonal basis can be found by setting e1 = a1 and for
n > 1,

en = an −
n−1

∑
j=1

an · ej

e2
j

ej. (5.14)

Now, we can generalize this idea to (real) function spaces. Let fn(x),
n ∈ N0 = {0, 1, 2, . . .}, be a linearly independent sequence of contin-
uous functions defined for x ∈ [a, b]. Then, an orthogonal basis of
functions, φn(x), n ∈ N0 can be found and is given by

φ0(x) = f0(x)

and
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φn(x) = fn(x)−
n−1

∑
j=0

< fn, φj >

‖φj‖2 φj(x), n = 1, 2, . . . . (5.15)

Here we are using inner products relative to weight σ(x),

< f , g >=
∫ b

a
f (x)g(x)σ(x) dx. (5.16)

Note the similarity between the orthogonal basis in (5.15) and the ex-
pression for the finite dimensional case in Equation (5.14).

Example 5.2. Apply the Gram-Schmidt Orthogonalization process to the set
fn(x) = xn, n ∈ N0, when x ∈ (−1, 1) and σ(x) = 1.

First, we have φ0(x) = f0(x) = 1. Note that∫ 1

−1
φ2

0(x) dx = 2.

We could use this result to fix the normalization of our new basis, but we will
hold off on doing that for now.

Now, we compute the second basis element:

φ1(x) = f1(x)− < f1, φ0 >

‖φ0‖2 φ0(x)

= x− < x, 1 >

‖1‖2 1 = x, (5.17)

since < x, 1 > is the integral of an odd function over a symmetric interval.
For φ2(x), we have

φ2(x) = f2(x)− < f2, φ0 >

‖φ0‖2 φ0(x)− < f2, φ1 >

‖φ1‖2 φ1(x)

= x2 − < x2, 1 >

‖1‖2 1− < x2, x >

‖x‖2 x

= x2 −
∫ 1
−1 x2 dx∫ 1
−1 dx

= x2 − 1
3

. (5.18)

So far, we have the orthogonal set {1, x, x2 − 1
3}. If one chooses to nor-

malize these by forcing φn(1) = 1, then one obtains the classical Legendre4

4 Adrien-Marie Legendre (1752-1833)
was a French mathematician who made
many contributions to analysis and
algebra.

polynomials, Pn(x). Thus,

P2(x) =
1
2
(3x2 − 1).

Note that this normalization is different than the usual one. In fact, we see
the P2(x) does not have a unit norm,

‖P2‖2 =
∫ 1

−1
P2

2 (x) dx =
2
5

.
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The set of Legendre polynomials is just one set of classical orthogo-
nal polynomials that can be obtained in this way. Many of these special
functions had originally appeared as solutions of important boundary
value problems in physics. They all have similar properties and we
will just elaborate some of these for the Legendre functions in the next
section. Others in this group are shown in Table 5.1.

Polynomial Symbol Interval σ(x)
Hermite Hn(x) (−∞, ∞) e−x2

Laguerre Lα
n(x) [0, ∞) e−x

Legendre Pn(x) (-1,1) 1

Gegenbauer Cλ
n (x) (-1,1) (1− x2)λ−1/2

Tchebychef of the 1st kind Tn(x) (-1,1) (1− x2)−1/2

Tchebychef of the 2nd kind Un(x) (-1,1) (1− x2)−1/2

Jacobi P(ν,µ)
n (x) (-1,1) (1− x)ν(1− x)µ

Table 5.1: Common classical orthogo-
nal polynomials with the interval and
weight function used to define them.

5.3 Fourier-Legendre Series

In the last chapter we saw how useful Fourier series expansions
were for solving the heat and wave equations. In Chapter 9 we will
investigate partial differential equations in higher dimensions and find
that problems with spherical symmetry may lead to the series repre-
sentations in terms of a basis of Legendre polynomials. For example,
we could consider the steady state temperature distribution inside a
hemispherical igloo, which takes the form

φ(r, θ) =
∞

∑
n=0

AnrnPn(cos θ)

in spherical coordinates. Evaluating this function at the surface r =

a as φ(a, θ) = f (θ), leads to a Fourier-Legendre series expansion of
function f :

f (θ) =
∞

∑
n=0

cnPn(cos θ),

where cn = Anan

In this section we would like to explore Fourier-Legendre series ex-
pansions of functions f (x) defined on (−1, 1):

f (x) ∼
∞

∑
n=0

cnPn(x). (5.19)
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As with Fourier trigonometric series, we can determine the expansion
coefficients by multiplying both sides of Equation (5.19) by Pm(x) and
integrating for x ∈ [−1, 1]. Orthogonality gives the usual form for the
generalized Fourier coefficients,

cn =
< f , Pn >

‖Pn‖2 , n = 0, 1, . . . .

We will later show that

‖Pn‖2 =
2

2n + 1
.

Therefore, the Fourier-Legendre coefficients are

cn =
2n + 1

2

∫ 1

−1
f (x)Pn(x) dx. (5.20)

Rodrigues Formula
We can do examples of Fourier-Legendre expansions given just a

few facts about Legendre polynomials. The first property that the Leg-
endre polynomials have is the Rodrigues formula:

Pn(x) =
1

2nn!
dn

dxn (x2 − 1)n, n ∈ N0. (5.21)

From the Rodrigues formula, one can show that Pn(x) is an nth degree
polynomial. Also, for n odd, the polynomial is an odd function and
for n even, the polynomial is an even function.

Example 5.3. Determine P2(x) from Rodrigues formula:

P2(x) =
1

222!
d2

dx2 (x2 − 1)2

=
1
8

d2

dx2 (x4 − 2x2 + 1)

=
1
8

d
dx

(4x3 − 4x)

=
1
8
(12x2 − 4)

=
1
2
(3x2 − 1). (5.22)

Note that we get the same result as we found in the last section using orthog-
onalization.

The first several Legendre polynomials are given in Table 5.2. In
Figure 5.4 we show plots of these Legendre polynomials.

Three Term Recursion Formula
All of the classical orthogonal polynomials satisfy a three term re-

cursion formula (or, recurrence relation or formula). In the case of the
Legendre polynomials, we have

(n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x), n = 1, 2, . . . . (5.23)
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n (x2 − 1)n dn

dxn (x2 − 1)n 1
2nn! Pn(x)

0 1 1 1 1

1 x2 − 1 2x 1
2 x

2 x4 − 2x2 + 1 12x2 − 4 1
8

1
2 (3x2 − 1)

3 x6 − 3x4 + 3x2 − 1 120x3 − 72x 1
48

1
2 (5x3 − 3x)

Table 5.2: Tabular computation of the
Legendre polynomials using the Ro-
drigues formula.

–1

–0.5

0.5

1

–1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1

x

Figure 5.4: Plots of the Legendre poly-
nomials P2(x), P3(x), P4(x), and P5(x).

This can also be rewritten by replacing n with n− 1 as

(2n− 1)xPn−1(x) = nPn(x) + (n− 1)Pn−2(x), n = 1, 2, . . . . (5.24)

Example 5.4. Use the recursion formula to find P2(x) and P3(x), given that
P0(x) = 1 and P1(x) = x.

We first begin by inserting n = 1 into Equation (5.23):

2P2(x) = 3xP1(x)− P0(x) = 3x2 − 1.

So, P2(x) = 1
2 (3x2 − 1).

For n = 2, we have

3P3(x) = 5xP2(x)− 2P1(x)

=
5
2

x(3x2 − 1)− 2x

=
1
2
(15x3 − 9x). (5.25)

This gives P3(x) = 1
2 (5x3 − 3x). These expressions agree with the earlier

results.

We will prove the three term recursion formula in two ways. First The first proof of the three term recur-
sion formula is based upon the nature of
the Legendre polynomials as an orthog-
onal basis, while the second proof is de-
rived using generating functions.

we use the orthogonality properties of Legendre polynomials and the
following lemma.
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Lemma 5.1. The leading coefficient of xn in Pn(x) is 1
2nn!

(2n)!
n! .

Proof. We can prove this using Rodrigues formula. first, we focus on
the leading coefficient of (x2 − 1)n, which is x2n. The first derivative
of x2n is 2nx2n−1. The second derivative is 2n(2n − 1)x2n−2. The jth
derivative is

djx2n

dxj = [2n(2n− 1) . . . (2n− j + 1)]x2n−j.

Thus, the nth derivative is given by

dnx2n

dxn = [2n(2n− 1) . . . (n + 1)]xn.

This proves that Pn(x) has degree n. The leading coefficient of Pn(x)
can now be written as

1
2nn!

[2n(2n− 1) . . . (n + 1)] =
1

2nn!
[2n(2n− 1) . . . (n + 1)]

n(n− 1) . . . 1
n(n− 1) . . . 1

=
1

2nn!
(2n)!

n!
. (5.26)

Theorem 5.1. Legendre polynomials satisfy the three term recursion formula

(2n− 1)xPn−1(x) = nPn(x) + (n− 1)Pn−2(x), n = 1, 2, . . . . (5.27)

Proof. In order to prove the three term recursion formula we consider
the expression (2n− 1)xPn−1(x)− nPn(x). While each term is a poly-
nomial of degree n, the leading order terms cancel. We need only look
at the coefficient of the leading order term first expression. It is

(2n− 1)
1

2n−1(n− 1)!
(2n− 2)!
(n− 1)!

=
1

2n−1(n− 1)!
(2n− 1)!
(n− 1)!

=
(2n− 1)!

2n−1 [(n− 1)!]2
.

The coefficient of the leading term for nPn(x) can be written as

n
1

2nn!
(2n)!

n!
= n

(
2n
2n2

)(
1

2n−1(n− 1)!

)
(2n− 1)!
(n− 1)!

(2n− 1)!

2n−1 [(n− 1)!]2
.

It is easy to see that the leading order terms in (2n − 1)xPn−1(x) −
nPn(x) cancel.

The next terms will be of degree n − 2. This is because the Pn’s
are either even or odd functions, thus only containing even, or odd,
powers of x. We conclude that

(2n− 1)xPn−1(x)− nPn(x) = polynomial of degree n− 2.

Therefore, since the Legendre polynomials form a basis, we can write
this polynomial as a linear combination of of Legendre polynomials:

(2n− 1)xPn−1(x)− nPn(x) = c0P0(x) + c1P1(x) + . . . + cn−2Pn−2(x).
(5.28)
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Multiplying Equation (5.28) by Pm(x) for m = 0, 1, . . . , n − 3, inte-
grating from −1 to 1, and using orthogonality, we obtain

0 = cm‖Pm‖2, m = 0, 1, . . . , n− 3.

[Note:
∫ 1
−1 xkPn(x) dx = 0 for k ≤ n− 1. Thus,

∫ 1
−1 xPn−1(x)Pm(x) dx =

0 for m ≤ n− 3.]
Thus, all of these cm’s are zero, leaving Equation (5.28) as

(2n− 1)xPn−1(x)− nPn(x) = cn−2Pn−2(x).

The final coefficient can be found by using the normalization condi-
tion, Pn(1) = 1. Thus, cn−2 = (2n− 1)− n = n− 1.

Generating Functions
A second proof of the three term recursion formula can be obtained

from the generating function of the Legendre polynomials. Many spe-
cial functions have such generating functions. In this case it is given
by

g(x, t) =
1√

1− 2xt + t2
=

∞

∑
n=0

Pn(x)tn, |x| ≤ 1, |t| < 1. (5.29)

Figure 5.5: The position vectors used to
describe the tidal force on the Earth due
to the moon.

This generating function occurs often in applications. In particular,
it arises in potential theory, such as electromagnetic or gravitational
potentials. These potential functions are 1

r type functions. For ex-
ample, the gravitational potential between the Earth and the moon is
proportional to the reciprocal of the magnitude of the difference be-
tween their positions relative to some coordinate system. An even
better example, would be to place the origin at the center of the Earth
and consider the forces on the non-pointlike Earth due to the moon.
Consider a piece of the Earth at position r1 and the moon at position
r2 as shown in Figure 5.5. The tidal potential Φ is proportional to

Φ ∝
1

|r2 − r1|
=

1√
(r2 − r1) · (r2 − r1)

=
1√

r2
1 − 2r1r2 cos θ + r2

2

,

where θ is the angle between r1 and r2.
Typically, one of the position vectors is much larger than the other.

Let’s assume that r1 � r2. Then, one can write

Φ ∝
1√

r2
1 − 2r1r2 cos θ + r2

2

=
1
r2

1√
1− 2 r1

r2
cos θ +

(
r1
r2

)2
.

Now, define x = cos θ and t = r1
r2

. We then have that the tidal potential
is proportional to the generating function for the Legendre polynomi-
als! So, we can write the tidal potential as

Φ ∝
1
r2

∞

∑
n=0

Pn(cos θ)

(
r1

r2

)n
.
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The first term in the expansion, 1
r2

, is the gravitational potential that
gives the usual force between the Earth and the moon. [Recall that
the gravitational potential for mass m at distance r from M is given
by Φ = −GMm

r and that the force is the gradient of the potential,

F = −∇Φ ∝ ∇
(

1
r

)
.] The next terms will give expressions for the tidal

effects.
Now that we have some idea as to where this generating function

might have originated, we can proceed to use it. First of all, the gen-
erating function can be used to obtain special values of the Legendre
polynomials.

Example 5.5. Evaluate Pn(0) using the generating function. Pn(0) is found
by considering g(0, t). Setting x = 0 in Equation (5.29), we have

g(0, t) =
1√

1 + t2

=
∞

∑
n=0

Pn(0)tn

= P0(0) + P1(0)t + P2(0)t2 + P3(0)t3 + . . . . (5.30)

We can use the binomial expansion to find the final answer. [See Chapter 1
for a review of the binomial expansion.] Namely, we have

1√
1 + t2

= 1− 1
2

t2 +
3
8

t4 + . . . .

Comparing these expansions, we have the Pn(0) = 0 for n odd and for even
integers one can show (see Problem 12) that5 5 This example can be finished by first

proving that

(2n)!! = 2nn!

and

(2n− 1)!! =
(2n)!
(2n)!!

=
(2n)!
2nn!

.

P2n(0) = (−1)n (2n− 1)!!
(2n)!!

, (5.31)

where n!! is the double factorial,

n!! =


n(n− 2) . . . (3)1, n > 0, odd,
n(n− 2) . . . (4)2, n > 0, even,
1 n = 0,−1

.

Example 5.6. Evaluate Pn(−1). This is a simpler problem. In this case we
have

g(−1, t) =
1√

1 + 2t + t2
=

1
1 + t

= 1− t + t2 − t3 + . . . .

Therefore, Pn(−1) = (−1)n.

Second proof of the three term recursion formula. Proof of the three term recursion for-
mula using ∂g

∂t .
Proof. We can also use the generating function to find recurrence re-
lations. To prove the three term recursion (5.23) that we introduced
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above, then we need only differentiate the generating function with
respect to t in Equation (5.29) and rearrange the result. First note that

∂g
∂t

=
x− t

(1− 2xt + t2)3/2 =
x− t

1− 2xt + t2 g(x, t).

Combining this with

∂g
∂t

=
∞

∑
n=0

nPn(x)tn−1,

we have

(x− t)g(x, t) = (1− 2xt + t2)
∞

∑
n=0

nPn(x)tn−1.

Inserting the series expression for g(x, t) and distributing the sum on
the right side, we obtain

(x− t)
∞

∑
n=0

Pn(x)tn =
∞

∑
n=0

nPn(x)tn−1−
∞

∑
n=0

2nxPn(x)tn +
∞

∑
n=0

nPn(x)tn+1.

Multiplying out the x − t factor and rearranging, leads to three sepa-
rate sums:

∞

∑
n=0

nPn(x)tn−1 −
∞

∑
n=0

(2n + 1)xPn(x)tn +
∞

∑
n=0

(n + 1)Pn(x)tn+1 = 0.

(5.32)
Each term contains powers of t that we would like to combine into

a single sum. This is done by reindexing. For the first sum, we could
use the new index k = n− 1. Then, the first sum can be written

∞

∑
n=0

nPn(x)tn−1 =
∞

∑
k=−1

(k + 1)Pk+1(x)tk.

Using different indices is just another way of writing out the terms.
Note that

∞

∑
n=0

nPn(x)tn−1 = 0 + P1(x) + 2P2(x)t + 3P3(x)t2 + . . .

and

∞

∑
k=−1

(k + 1)Pk+1(x)tk = 0 + P1(x) + 2P2(x)t + 3P3(x)t2 + . . .

actually give the same sum. The indices are sometimes referred to as
dummy indices because they do not show up in the expanded expres-
sion and can be replaced with another letter.

If we want to do so, we could now replace all of the k’s with n’s.
However, we will leave the k’s in the first term and now reindex the
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next sums in Equation (5.32). The second sum just needs the replace-
ment n = k and the last sum we reindex using k = n + 1. Therefore,
Equation (5.32) becomes

∞

∑
k=−1

(k + 1)Pk+1(x)tk −
∞

∑
k=0

(2k + 1)xPk(x)tk +
∞

∑
k=1

kPk−1(x)tk = 0.

(5.33)
We can now combine all of the terms, noting the k = −1 term is
automatically zero and the k = 0 terms give

P1(x)− xP0(x) = 0. (5.34)

Of course, we know this already. So, that leaves the k > 0 terms:

∞

∑
k=1

[(k + 1)Pk+1(x)− (2k + 1)xPk(x) + kPk−1(x)] tk = 0. (5.35)

Since this is true for all t, the coefficients of the tk’s are zero, or

(k + 1)Pk+1(x)− (2k + 1)xPk(x) + kPk−1(x) = 0, k = 1, 2, . . . .

While this is the standard form for the three term recurrence relation,
the earlier form is obtained by setting k = n− 1.

There are other recursion relations which we list in the box below.
Equation (5.36) was derived using the generating function. Differen-
tiating it with respect to x, we find Equation (5.37). Equation (5.38)
can be proven using the generating function by differentiating g(x, t)
with respect to x and rearranging the resulting infinite series just as
in this last manipulation. This will be left as Problem 4. Combining
this result with Equation (5.36), we can derive Equations (5.39)-(5.40).
Adding and subtracting these equations yields Equations (5.41)-(5.42).

Recursion Formulae for Legendre Polynomials for n = 1, 2, . . . .

(n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x) (5.36)

(n + 1)P′n+1(x) = (2n + 1)[Pn(x) + xP′n(x)]− nP′n−1(x)

(5.37)

Pn(x) = P′n+1(x)− 2xP′n(x) + P′n−1(x) (5.38)

P′n−1(x) = xP′n(x)− nPn(x) (5.39)

P′n+1(x) = xP′n(x) + (n + 1)Pn(x) (5.40)

P′n+1(x) + P′n−1(x) = 2xP′n(x) + Pn(x). (5.41)

P′n+1(x)− P′n−1(x) = (2n + 1)Pn(x). (5.42)

(x2 − 1)P′n(x) = nxPn(x)− nPn−1(x) (5.43)
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Finally, Equation (5.43) can be obtained using Equations (5.39) and
(5.40). Just multiply Equation (5.39) by x,

x2P′n(x)− nxPn(x) = xP′n−1(x).

Now use Equation (5.40), but first replace n with n− 1 to eliminate the
xP′n−1(x) term:

x2P′n(x)− nxPn(x) = P′n(x)− nPn−1(x).

Rearranging gives the result.
Legendre Polynomials as Solutions of a Differential Equation
The Legendre polynomials satisfy a second order linear differential

equation. This differential equation occurs naturally in the solution
of initial-boundary value problems in three dimensions which possess
some spherical symmetry. We will see this in the last chapter. There
are two approaches we could take in showing that the Legendre poly-
nomials satisfy a particular differential equation. Either we can write
down the equations and attempt to solve it, or we could use the above
properties to obtain the equation. For now, we will seek the differential
equation satisfied by Pn(x) using the above recursion relations.

We begin by differentiating Equation (5.43) and using Equation (5.39)
to simplify:

d
dx

(
(x2 − 1)P′n(x)

)
= nPn(x) + nxP′n(x)− nP′n−1(x)

= nPn(x) + n2Pn(x)

= n(n + 1)Pn(x). (5.44)

Therefore, Legendre polynomials, or Legendre functions of the first
kind, are solutions of the differential equation

(1− x2)y′′ − 2xy′ + n(n + 1)y = 0.

As this is a linear second order differential equation, we expect two A generalization of the Legendre equa-
tion is given by (1 − x2)y′′ − 2xy′ +[

n(n + 1)− m2

1−x2

]
y = 0. Solutions to

this equation, Pm
n (x) and Qm

n (x), are
called the associated Legendre functions
of the first and second kind.

linearly independent solutions. The second solution, called the Leg-
endre function of the second kind, is given by Qn(x) and is not well
behaved at x = ±1. For example,

Q0(x) =
1
2

ln
1 + x
1− x

.

We will not need these for physically interesting examples in this book.
Normalization Constant Another use of the generating function is

to obtain the normalization constant. Namely, we want to evaluate

‖Pn‖2 =
∫ 1

−1
Pn(x)Pn(x) dx.
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This can be done by first squaring the generating function in order to
get the products Pn(x)Pm(x), and then integrating over x.

Squaring the generating function has to be done with care, as we
need to make proper use of the dummy summation index. So, we first
write

1
1− 2xt + t2 =

[
∞

∑
n=0

Pn(x)tn

]2

=
∞

∑
n=0

∞

∑
m=0

Pn(x)Pm(x)tn+m. (5.45)

Integrating from -1 to 1 and using the orthogonality of the Legendre
polynomials, we have∫ 1

−1

dx
1− 2xt + t2 =

∞

∑
n=0

∞

∑
m=0

tn+m
∫ 1

−1
Pn(x)Pm(x) dx

=
∞

∑
n=0

t2n
∫ 1

−1
P2

n(x) dx. (5.46)

However, one can show that6 6 You will need the integral∫ dx
a + bx

=
1
b

ln(a + bx) + C.
∫ 1

−1

dx
1− 2xt + t2 =

1
t

ln
(

1 + t
1− t

)
.

Expanding this expression about t = 0, we obtain7 7 From Appendix A you will need the se-
ries expansion

ln(1 + x) =
∞

∑
n=1

(−1)n+1 xn

n

= x− x2

2
+

x3

3
− · · · .

1
t

ln
(

1 + t
1− t

)
=

∞

∑
n=0

2
2n + 1

t2n.

Comparing this result with Equation (5.46), we find that

‖Pn‖2 =
∫ 1

−1
P2

n(x) dx =
2

2n + 1
. (5.47)

Fourier-Legendre Series
With these properties of Legendre functions we are now prepared

to compute the expansion coefficients for the Fourier-Legendre series
representation of a given function.

Example 5.7. Expand f (x) = x3 in a Fourier-Legendre series.
We simply need to compute

cn =
2n + 1

2

∫ 1

−1
x3Pn(x) dx. (5.48)

We first note that ∫ 1

−1
xmPn(x) dx = 0 for m < n.

As a result, we will have for this example that cn = 0 for n > 3. We could just
compute

∫ 1
−1 x3Pm(x) dx for m = 0, 1, 2, . . . outright by looking up Legendre
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polynomials. But, note that x3 is an odd function, c0 = 0 and c2 = 0. This
leaves us with only two coefficients to compute. We refer to Table 5.2 and find
that

c1 =
3
2

∫ 1

−1
x4 dx =

3
5

c3 =
7
2

∫ 1

−1
x3
[

1
2
(5x3 − 3x)

]
dx =

2
5

.

Thus,

x3 =
3
5

P1(x) +
2
5

P3(x).

Of course, this is simple to check using Table 5.2:

3
5

P1(x) +
2
5

P3(x) =
3
5

x +
2
5

[
1
2
(5x3 − 3x)

]
= x3.

Well, maybe we could have guessed this without doing any integration. Let’s
see,

x3 = c1x +
1
2

c2(5x3 − 3x)

= (c1 −
3
2

c2)x +
5
2

c2x3. (5.49)

Equating coefficients of like terms, we have that c2 = 2
5 and c1 = 3

2 c2 = 3
5 .

Example 5.8. Expand the Heaviside8 function in a Fourier-Legendre series. 8 Oliver Heaviside (1850-1925) was an
English mathematician, physicist and
engineer who used complex analysis to
study circuits and was a co-founder of
vector analysis. The Heaviside function
is also called the step function.

The Heaviside function is defined as

H(x) =

{
1, x > 0,
0, x < 0.

(5.50)

In this case, we cannot find the expansion coefficients without some integra-
tion. We have to compute

cn =
2n + 1

2

∫ 1

−1
f (x)Pn(x) dx

=
2n + 1

2

∫ 1

0
Pn(x) dx. (5.51)

We can make use of the identity

P′n+1(x)− P′n−1(x) = (2n + 1)Pn(x), n > 1. (5.52)

We have for n > 0

cn =
1
2

∫ 1

0
[P′n+1(x)− P′n−1(x)] dx =

1
2
[Pn−1(0)− Pn+1(0)].

For n = 0, we have

c0 =
1
2

∫ 1

0
dx =

1
2

.
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This leads to the expansion

f (x) ∼ 1
2
+

1
2

∞

∑
n=1

[Pn−1(0)− Pn+1(0)]Pn(x).

We still need to evaluate the Fourier-Legendre coefficients. Since Pn(0) =
0 for n odd, the cn’s vanish for n even. Letting n = 2k− 1, we can re-index
the sum,

f (x) ∼ 1
2
+

1
2

∞

∑
k=1

[P2k−2(0)− P2k(0)]P2k−1(x).

We can compute the Fourier coefficients, c2k−1 = 1
2 [P2k−2(0)− P2k(0)],

using a result from Problem 12:

P2k(0) = (−1)k (2k− 1)!!
(2k)!!

. (5.53)

Namely, we have

c2k−1 =
1
2
[P2k−2(0)− P2k(0)]

=
1
2

[
(−1)k−1 (2k− 3)!!

(2k− 2)!!
− (−1)k (2k− 1)!!

(2k)!!

]
= −1

2
(−1)k (2k− 3)!!

(2k− 2)!!

[
1 +

2k− 1
2k

]
= −1

2
(−1)k (2k− 3)!!

(2k− 2)!!
4k− 1

2k
. (5.54)

Figure 5.6: Sum of first 21 terms for
Fourier-Legendre series expansion of
Heaviside function.

Thus, the Fourier-Legendre series expansion for the Heaviside function is
given by

f (x) ∼ 1
2
− 1

2

∞

∑
n=1

(−1)n (2n− 3)!!
(2n− 2)!!

4n− 1
2n

P2n−1(x). (5.55)

The sum of the first 21 terms of this series are shown in Figure 5.6. We note
the slow convergence to the Heaviside function. Also, we see that the Gibbs
phenomenon is present due to the jump discontinuity at x = 0. [See Section
4.12.]

5.4 Gamma Function
The name and symbol for the Gamma
function were first given by Legendre in
1811. However, the search for a gener-
alization of the factorial extends back to
the 1720’s when Euler provided the first
representation of the factorial as an infi-
nite product, later to be modified by oth-
ers like Gauß, Weierstraß, and Legendre.

A function that often occurs in the study of special functions
is the Gamma function. We will need the Gamma function in the next
section on Fourier-Bessel series.

For x > 0 we define the Gamma function as

Γ(x) =
∫ ∞

0
tx−1e−t dt, x > 0. (5.56)



non-sinusoidal harmonics and special functions 231

The Gamma function is a generalization of the factorial function and a
plot is shown in Figure 5.7. In fact, we have

Γ(1) = 1

and
Γ(x + 1) = xΓ(x).

The reader can prove this identity by simply performing an integration
by parts. (See Problem 7.) In particular, for integers n ∈ Z+, we then
have

Γ(n + 1) = nΓ(n) = n(n− 1)Γ(n− 2) = n(n− 1) · · · 2Γ(1) = n!.

Figure 5.7: Plot of the Gamma function.

We can also define the Gamma function for negative, non-integer
values of x. We first note that by iteration on n ∈ Z+, we have

Γ(x + n) = (x + n− 1) · · · (x + 1)xΓ(x), x + n > 0.

Solving for Γ(x), we then find

Γ(x) =
Γ(x + n)

(x + n− 1) · · · (x + 1)x
, −n < x < 0

Note that the Gamma function is undefined at zero and the negative
integers.

Example 5.9. We now prove that

Γ
(

1
2

)
=
√

π.

This is done by direct computation of the integral:

Γ
(

1
2

)
=
∫ ∞

0
t−

1
2 e−t dt.

Letting t = z2, we have

Γ
(

1
2

)
= 2

∫ ∞

0
e−z2

dz.

Due to the symmetry of the integrand, we obtain the classic integral

Γ
(

1
2

)
=
∫ ∞

−∞
e−z2

dz,

which can be performed using a standard trick.9 Consider the integral 9 In Example 7.4 we show the more gen-
eral result:∫ ∞

−∞
e−βy2

dy =

√
π

β
.I =

∫ ∞

−∞
e−x2

dx.

Then,
I2 =

∫ ∞

−∞
e−x2

dx
∫ ∞

−∞
e−y2

dy.
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Note that we changed the integration variable. This will allow us to write this
product of integrals as a double integral:

I2 =
∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2) dxdy.

This is an integral over the entire xy-plane. We can transform this Cartesian
integration to an integration over polar coordinates. The integral becomes

I2 =
∫ 2π

0

∫ ∞

0
e−r2

rdrdθ.

This is simple to integrate and we have I2 = π. So, the final result is found
by taking the square root of both sides:

Γ
(

1
2

)
= I =

√
π.

In Problem 12 the reader will prove the identity

Γ(n +
1
2
) =

(2n− 1)!!
2n

√
π.

Another useful relation, which we only state, is

Γ(x)Γ(1− x) =
π

sin πx
.

The are many other important relations, including infinite products,
which we will not need at this point. The reader is encouraged to read
about these elsewhere. In the meantime, we move on to the discussion
of another important special function in physics and mathematics.

5.5 Fourier-Bessel Series

Bessel functions arise in many problems in physics possessing The history of Bessel functions, does not
originate in the study of partial differ-
ential equations. These solutions origi-
nally came up in the study of the Ke-
pler problem, describing planetary mo-
tion. According to G. N. Watson in
his Treatise on Bessel Functions, the for-
mulation and solution of Kepler’s Prob-
lem was discovered by Joseph-Louis La-
grange (1736-1813), in 1770. Namely, the
problem was to express the radial coor-
dinate and what is called the eccentric
anomaly, E, as functions of time. La-
grange found expressions for the coef-
ficients in the expansions of r and E in
trigonometric functions of time. How-
ever, he only computed the first few
coefficients. In 1816 Friedrich Wilhelm
Bessel (1784-1846) had shown that the
coefficients in the expansion for r could
be given an integral representation. In
1824 he presented a thorough study of
these functions, which are now called
Bessel functions.

cylindrical symmetry such as the vibrations of circular drumheads and
the radial modes in optical fibers. They provide us with another or-
thogonal set of functions. You might have seen in a course on differ-
ential equations that Bessel functions are solutions of the differential
equation

x2y′′ + xy′ + (x2 − p2)y = 0. (5.57)

Solutions to this equation are obtained in the form of series expan-
sions. Namely, one seeks solutions of the form

y(x) =
∞

∑
j=0

ajxj+n

by determining the for the coefficients must take. We will leave this
for a homework exercise and simply report the results.
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One solution of the differential equation is the Bessel function of the
first kind of order p, given as

y(x) = Jp(x) =
∞

∑
n=0

(−1)n

Γ(n + 1)Γ(n + p + 1)

( x
2

)2n+p
. (5.58)

J1(x)

J3(x)
J2(x)

J0(x)
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Figure 5.8: Plots of the Bessel functions
J0(x), J1(x), J2(x), and J3(x).

In Figure 5.8 we display the first few Bessel functions of the first
kind of integer order. Note that these functions can be described as
decaying oscillatory functions.

A second linearly independent solution is obtained for p not an
integer as J−p(x). However, for p an integer, the Γ(n + p + 1) factor
leads to evaluations of the Gamma function at zero, or negative inte-
gers, when p is negative. Thus, the above series is not defined in these
cases.

Another method for obtaining a second linearly independent solu-
tion is through a linear combination of Jp(x) and J−p(x) as

Np(x) = Yp(x) =
cos πpJp(x)− J−p(x)

sin πp
. (5.59)

These functions are called the Neumann functions, or Bessel functions
of the second kind of order p.

In Figure 5.9 we display the first few Bessel functions of the sec-
ond kind of integer order. Note that these functions are also decaying
oscillatory functions. However, they are singular at x = 0.

In many applications one desires bounded solutions at x = 0. These
functions do not satisfy this boundary condition. For example, we will
later study one standard problem is to describe the oscillations of a
circular drumhead. For this problem one solves the two dimensional
wave equation using separation of variables in cylindrical coordinates.
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Figure 5.9: Plots of the Neumann func-
tions N0(x), N1(x), N2(x), and N3(x).

The r equation leads to a Bessel equation. The Bessel function solu-
tions describe the radial part of the solution and one does not expect
a singular solution at the center of the drum. The amplitude of the
oscillation must remain finite. Thus, only Bessel functions of the first
kind can be used.

Bessel functions satisfy a variety of properties, which we will only
list at this time for Bessel functions of the first kind. The reader will
have the opportunity to prove these for homework.

Derivative Identities These identities follow directly from the ma-
nipulation of the series solution.

d
dx
[
xp Jp(x)

]
= xp Jp−1(x). (5.60)

d
dx
[
x−p Jp(x)

]
= −x−p Jp+1(x). (5.61)

Recursion Formulae The next identities follow from adding, or sub-
tracting, the derivative identities.

Jp−1(x) + Jp+1(x) =
2p
x

Jp(x). (5.62)

Jp−1(x)− Jp+1(x) = 2J′p(x). (5.63)

Orthogonality As we will see in the next chapter, one can recast the
Bessel equation into an eigenvalue problem whose solutions form
an orthogonal basis of functions on L2

x(0, a). Using Sturm-Liouville
theory, one can show that
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∫ a

0
xJp(jpn

x
a
)Jp(jpm

x
a
) dx =

a2

2
[

Jp+1(jpn)
]2

δn,m, (5.64)

where jpn is the nth root of Jp(x), Jp(jpn) = 0, n = 1, 2, . . . . A list of
some of these roots are provided in Table 5.3.

n p = 0 p = 1 p = 2 p = 3 p = 4 p = 5
1 2.405 3.832 5.135 6.379 7.586 8.780

2 5.520 7.016 8.147 9.760 11.064 12.339

3 8.654 10.173 11.620 13.017 14.373 15.700

4 11.792 13.323 14.796 16.224 17.616 18.982

5 14.931 16.470 17.960 19.410 20.827 22.220

6 18.071 19.616 21.117 22.583 24.018 25.431

7 21.212 22.760 24.270 25.749 27.200 28.628

8 24.353 25.903 27.421 28.909 30.371 31.813

9 27.494 29.047 30.571 32.050 33.512 34.983

Table 5.3: The zeros of Bessel Functions

Generating Function

ex(t− 1
t )/2 =

∞

∑
n=−∞

Jn(x)tn, x > 0, t 6= 0. (5.65)

Integral Representation

Jn(x) =
1
π

∫ π

0
cos(x sin θ − nθ) dθ, x > 0, n ∈ Z. (5.66)

Fourier-Bessel Series

Since the Bessel functions are an orthogonal set of functions of a
Sturm-Liouville problem,10 we can expand square integrable func- 10 In the study of boundary value prob-

lems in differential equations, Sturm-
Liouville problems are a bountiful
source of basis functions for the space
of square integrable functions as will be
seen in the next section.

tions in this basis. In fact, the Sturm-Liouville problem is given in
the form

x2y′′ + xy′ + (λx2 − p2)y = 0, x ∈ [0, a], (5.67)

satisfying the boundary conditions: y(x) is bounded at x = 0 and
y(a) = 0. The solutions are then of the form Jp(

√
λx), as can be

shown by making the substitution t =
√

λx in the differential equa-
tion. Namely, we let y(x) = u(t) and note that

dy
dx

=
dt
dx

du
dt

=
√

λ
du
dt

.

Then,
t2u′′ + tu′ + (t2 − p2)u = 0,

which has a solution u(t) = Jp(t).
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Using Sturm-Liouville theory, one can show that Jp(jpn
x
a ) is a ba-

sis of eigenfunctions and the resulting Fourier-Bessel series expansion
of f (x) defined on x ∈ [0, a] is

f (x) =
∞

∑
n=1

cn Jp(jpn
x
a
), (5.68)

where the Fourier-Bessel coefficients are found using the orthogo-
nality relation as

cn =
2

a2
[

Jp+1(jpn)
]2 ∫ a

0
x f (x)Jp(jpn

x
a
) dx. (5.69)

Example 5.10. Expand f (x) = 1 for 0 < x < 1 in a Fourier-Bessel series
of the form

f (x) =
∞

∑
n=1

cn J0(j0nx)

.
We need only compute the Fourier-Bessel coefficients in Equation (5.69):

cn =
2

[J1(j0n)]
2

∫ 1

0
xJ0(j0nx) dx. (5.70)

From the identity

d
dx
[
xp Jp(x)

]
= xp Jp−1(x). (5.71)

we have ∫ 1

0
xJ0(j0nx) dx =

1
j20n

∫ j0n

0
yJ0(y) dy

=
1

j20n

∫ j0n

0

d
dy

[yJ1(y)] dy

=
1

j20n
[yJ1(y)]

j0n
0

=
1

j0n
J1(j0n). (5.72)

As a result, the desired Fourier-Bessel expansion is given as

1 = 2
∞

∑
n=1

J0(j0nx)
j0n J1(j0n)

, 0 < x < 1. (5.73)

In Figure 5.10 we show the partial sum for the first fifty terms of this series.
Note once again the slow convergence due to the Gibbs phenomenon.

Figure 5.10: Plot of the first 50 terms
of the Fourier-Bessel series in Equation
(5.73) for f (x) = 1 on 0 < x < 1.
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5.6 Sturm-Liouville Eigenvalue Problems

In the last chapter we explored the solutions of differential equa-
tions that led to solutions in the form of trigonometric functions and
special functions. Such solutions can be used to represent functions
in generalized Fourier series expansions. We would like to generalize
some of those techniques we had first used to solve the heat equation
in order to solve other boundary value problems. A class of problems
to which our previous examples belong and which have eigenfunctions
with similar properties are the Sturm-Liouville Eigenvalue Problems.
These problems involve self-adjoint (differential) operators which play
an important role in the spectral theory of linear operators and the
existence of the eigenfunctions. These ideas will be introduced in this
section.

5.6.1 Sturm-Liouville Operators

In physics many problems arise in the form of boundary value
problems involving second order ordinary differential equations. For
example, we will explore the wave equation and the heat equation in
three dimensions. Separating out the time dependence leads to a three
dimensional boundary value problem in both cases. Further separa-
tion of variables leads to a set of boundary value problems involving
second order ordinary differential equations.

In general, we might obtain equations of the form

a2(x)y′′ + a1(x)y′ + a0(x)y = f (x) (5.74)

subject to boundary conditions. We can write such an equation in
operator form by defining the differential operator

L = a2(x)
d2

dx2 + a1(x)
d

dx
+ a0(x).

Then, Equation (5.74) takes the form

Ly = f .

Recall that we had solved such nonhomogeneous differential equa-
tions in Chapter 2. In this chapter we will show that these equations
can be solved using eigenfunction expansions. Namely, we seek solu-
tions to the eigenvalue problem

Lφ = λφ
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with homogeneous boundary conditions on φ and then seek a solution
of the nonhomogeneous problem, Ly = f , as an expansion over these
eigenfunctions. Formally, we let

y(x) =
∞

∑
n=1

cnφn(x).

However, we are not guaranteed a nice set of eigenfunctions. We need
an appropriate set to form a basis in the function space. Also, it would
be nice to have orthogonality so that we can easily solve for the expan-
sion coefficients.

It turns out that any linear second order differential operator can be
turned into an operator that possesses just the right properties (self-
adjointedness) to carry out this procedure. The resulting operator is
referred to as a Sturm-Liouville operator. We will highlight some of
the properties of such operators and prove a few key theorems, though
this will not be an extensive review of Sturm-Liouville theory. The
interested reader can review the literature and advanced texts for a
more in depth analysis.

We define the Sturm-Liouville operator as The Sturm-Liouville operator.

L =
d

dx
p(x)

d
dx

+ q(x). (5.75)

The Sturm-Liouville eigenvalue problem is given by the differential equa-
tion The Sturm-Liouville eigenvalue prob-

lem.Ly = −λσ(x)y,

or
d

dx

(
p(x)

dy
dx

)
+ q(x)y + λσ(x)y = 0, (5.76)

for x ∈ (a, b), y = y(x), plus boundary conditions. The functions p(x),
p′(x), q(x) and σ(x) are assumed to be continuous on (a, b) and p(x) >
0, σ(x) > 0 on [a, b]. If the interval is finite and these assumptions on
the coefficients are true on [a, b], then the problem is said to be regular.
Otherwise, it is called singular.

We also need to impose the set of homogeneous boundary condi-
tions Types of boundary conditions.

α1y(a) + β1y′(a) = 0,

α2y(b) + β2y′(b) = 0. (5.77)

The α’s and β’s are constants. For different values, one has special
types of boundary conditions. For βi = 0, we have what are called
Dirichlet boundary conditions. Namely, y(a) = 0 and y(b) = 0. For
αi = 0, we have Neumann boundary conditions. In this case, y′(a) = 0
and y′(b) = 0. In terms of the heat equation example, Dirichlet con-
ditions correspond to maintaining a fixed temperature at the ends of
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the rod. The Neumann boundary conditions would correspond to no
heat flow across the ends, or insulating conditions, as there would be
no temperature gradient at those points. The more general boundary
conditions allow for partially insulated boundaries.

Another type of boundary condition that is often encountered is the
periodic boundary condition. Consider the heated rod that has been bent
to form a circle. Then the two end points are physically the same. So,
we would expect that the temperature and the temperature gradient
should agree at those points. For this case we write y(a) = y(b) and
y′(a) = y′(b). Boundary value problems using these conditions have to
be handled differently than the above homogeneous conditions. These
conditions leads to different types of eigenfunctions and eigenvalues.

As previously mentioned, equations of the form (5.74) occur often.
We now show that Equation (5.74) can be turned into a differential equa-
tion of Sturm-Liouville form:

d
dx

(
p(x)

dy
dx

)
+ q(x)y = F(x). (5.78)

Another way to phrase this is provided in the theorem:

Theorem 5.2. Any second order linear operator can be put into the form of
the Sturm-Liouville operator (5.76).

The proof of this is straight forward, as we shall soon show. Con-
sider the equation (5.74). If a1(x) = a′2(x), then we can write the
equation in the form

f (x) = a2(x)y′′ + a1(x)y′ + a0(x)y

= (a2(x)y′)′ + a0(x)y. (5.79)

This is in the correct form. We just identify p(x) = a2(x) and q(x) =
a0(x).

However, consider the differential equation

x2y′′ + xy′ + 2y = 0.

In this case a2(x) = x2 and a′2(x) = 2x 6= a1(x). The linear differential
operator in this equation is not of Sturm-Liouville type. But, we can
change it to a Sturm Liouville operator.

Proof. In the Sturm Liouville operator the derivative terms are gath-
ered together into one perfect derivative. This is similar to what we
saw in the Chapter 2 when we solved linear first order equations. In
that case we sought an integrating factor. We can do the same thing
here. We seek a multiplicative function µ(x) that we can multiply
through (5.74) so that it can be written in Sturm-Liouville form. We
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first divide out the a2(x), giving

y′′ +
a1(x)
a2(x)

y′ +
a0(x)
a2(x)

y =
f (x)

a2(x)
.

Now, we multiply the differential equation by µ :

µ(x)y′′ + µ(x)
a1(x)
a2(x)

y′ + µ(x)
a0(x)
a2(x)

y = µ(x)
f (x)

a2(x)
.

The first two terms can now be combined into an exact derivative
(µy′)′ if µ(x) satisfies

dµ

dx
= µ(x)

a1(x)
a2(x)

.

This is formally solved to give

µ(x) = e
∫ a1(x)

a2(x) dx
.

Thus, the original equation can be multiplied by factor

µ(x)
a2(x)

=
1

a2(x)
e
∫ a1(x)

a2(x) dx

to turn it into Sturm-Liouville form.

In summary, Conversion of a linear second order
differential equation to Sturm Liouville
form.Equation (5.74),

a2(x)y′′ + a1(x)y′ + a0(x)y = f (x), (5.80)

can be put into the Sturm-Liouville form

d
dx

(
p(x)

dy
dx

)
+ q(x)y = F(x), (5.81)

where

p(x) = e
∫ a1(x)

a2(x) dx
,

q(x) = p(x)
a0(x)
a2(x)

,

F(x) = p(x)
f (x)

a2(x)
. (5.82)

Example 5.11. For the example above,

x2y′′ + xy′ + 2y = 0.

We need only multiply this equation by

1
x2 e

∫ dx
x =

1
x

,
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to put the equation in Sturm-Liouville form:

0 = xy′′ + y′ +
2
x

y

= (xy′)′ +
2
x

y. (5.83)

5.6.2 Properties of Sturm-Liouville Eigenvalue Problems

There are several properties that can be proven for the (regular)
Sturm-Liouville eigenvalue problem in (5.76). However, we will not
prove them all here. We will merely list some of the important facts
and focus on a few of the properties.

Real, countable eigenvalues.

1. The eigenvalues are real, countable, ordered and there is a
smallest eigenvalue. Thus, we can write them as λ1 < λ2 <

. . . . However, there is no largest eigenvalue and n→ ∞, λn →
∞. Oscillatory eigenfunctions.

2. For each eigenvalue λn there exists an eigenfunction φn with
n− 1 zeros on (a, b). Orthogonality of eigenfunctions.

3. Eigenfunctions corresponding to different eigenvalues are or-
thogonal with respect to the weight function, σ(x). Defining
the inner product of f (x) and g(x) as

< f , g >=
∫ b

a
f (x)g(x)σ(x) dx, (5.84)

then the orthogonality of the eigenfunctions can be written in
the form

< φn, φm >=< φn, φn > δnm, n, m = 1, 2, . . . . (5.85)
Complete basis of eigenfunctions.

4. The set of eigenfunctions is complete; i.e., any piecewise
smooth function can be represented by a generalized Fourier
series expansion of the eigenfunctions,

f (x) ∼
∞

∑
n=1

cnφn(x),

where
cn =

< f , φn >

< φn, φn >
.

Actually, one needs f (x) ∈ L2
σ(a, b), the set of square integrable

functions over [a, b] with weight function σ(x). By square in-
tegrable, we mean that < f , f >< ∞. One can show that
such a space is isomorphic to a Hilbert space, a complete inner
product space. Hilbert spaces play a special role in quantum
mechanics. Rayleigh Quotient.
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5. Multiply the eigenvalue problem

Lφn = −λnσ(x)φn

by φn and integrate. Solve this result for λn, to find the
Rayleigh Quotient

λn =

−pφn
dφn
dx |

b
a −
∫ b

a

[
p
(

dφn
dx

)2
− qφ2

n

]
dx

< φn, φn >

The Rayleigh quotient is useful for getting estimates of
eigenvalues and proving some of the other properties.

Example 5.12. We seek the eigenfunctions of the operator found in Example
5.11. Namely, we want to solve the eigenvalue problem

Ly = (xy′)′ +
2
x

y = −λσy (5.86)

subject to a set of homogeneous boundary conditions. Let’s use the boundary
conditions

y′(1) = 0, y′(2) = 0.

[Note that we do not know σ(x) yet, but will choose an appropriate function
to obtain solutions.]

Expanding the derivative, we have

xy′′ + y′ +
2
x

y = −λσy.

Multiply through by x to obtain

x2y′′ + xy′ + (2 + λxσ) y = 0.

Notice that if we choose σ(x) = x−1, then this equation can be made a
Cauchy-Euler type equation. Thus, we have

x2y′′ + xy′ + (λ + 2) y = 0.

The characteristic equation is

r2 + λ + 2 = 0.

For oscillatory solutions, we need λ + 2 > 0. Thus, the general solution is

y(x) = c1 cos(
√

λ + 2 ln |x|) + c2 sin(
√

λ + 2 ln |x|). (5.87)

Next we apply the boundary conditions. y′(1) = 0 forces c2 = 0. This
leaves

y(x) = c1 cos(
√

λ + 2 ln x).
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The second condition, y′(2) = 0, yields

sin(
√

λ + 2 ln 2) = 0.

This will give nontrivial solutions when
√

λ + 2 ln 2 = nπ, n = 0, 1, 2, 3 . . . .

In summary, the eigenfunctions for this eigenvalue problem are

yn(x) = cos
( nπ

ln 2
ln x

)
, 1 ≤ x ≤ 2

and the eigenvalues are λn =
( nπ

ln 2

)2 − 2 for n = 0, 1, 2, . . . .
Note: We include the n = 0 case because y(x) = constant is a solution

of the λ = −2 case. More specifically, in this case the characteristic equation
reduces to r2 = 0. Thus, the general solution of this Cauchy-Euler equation
is

y(x) = c1 + c2 ln |x|.

Setting y′(1) = 0, forces c2 = 0. y′(2) automatically vanishes, leaving the
solution in this case as y(x) = c1.

We note that some of the properties listed in the beginning of the section
hold for this example. The eigenvalues are seen to be real, countable and
ordered. There is a least one, λ0 = −2. Next, one can find the zeros of each
eigenfunction on [1,2]. Then the argument of the cosine, nπ

ln 2 ln x, takes values
0 to nπ for x ∈ [1, 2]. The cosine function has n− 1 roots on this interval.

Orthogonality can be checked as well. We set up the integral and use the
substitution y = π ln x/ ln 2. This gives

< yn, ym > =
∫ 2

1
cos

( nπ

ln 2
ln x

)
cos

(mπ

ln 2
ln x

) dx
x

=
ln 2
π

∫ π

0
cos ny cos my dy

=
ln 2

2
δn,m. (5.88)

5.6.3 Adjoint Operators

In the study of the spectral theory of matrices, one learns
about the adjoint of the matrix, A†, and the role that self-adjoint, or
Hermitian, matrices play in diagonalization. Also, one needs the con-
cept of adjoint to discuss the existence of solutions to the matrix prob-
lem y = Ax. In the same spirit, one is interested in the existence of
solutions of the operator equation Lu = f and solutions of the cor-
responding eigenvalue problem. The study of linear operators on a
Hilbert space is a generalization of what the reader had seen in a lin-
ear algebra course.
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Just as one can find a basis of eigenvectors and diagonalize Her-
mitian, or self-adjoint, matrices (or, real symmetric in the case of real
matrices), we will see that the Sturm-Liouville operator is self-adjoint.
In this section we will define the domain of an operator and introduce
the notion of adjoint operators. In the last section we discuss the role
the adjoint plays in the existence of solutions to the operator equation
Lu = f .

We first introduce some definitions.

Definition 5.2. The domain of a differential operator L is the set of all
u ∈ L2

σ(a, b) satisfying a given set of homogeneous boundary condi-
tions.

The adjoint, L†, of operator L.

Definition 5.3. The adjoint, L†, of operator L satisfies

< u, Lv >=< L†u, v >

for all v in the domain of L and u in the domain of L†.

Example 5.13. As an example, we find the adjoint of second order linear
differential operator L = a2(x) d2

dx2 + a1(x) d
dx + a0(x).

In order to find the adjoint, we place the operator under an integral. So,
we consider the inner product

< u, Lv >=
∫ b

a
u(a2v′′ + a1v′ + a0v) dx.

We have to move the operator L from v and determine what operator is acting
on u in order to formally preserve the inner product. For a simple operator
like L = d

dx , this is easily done using integration by parts. For the given
operator, we will need to apply several integrations by parts to the individual
terms. We will consider the individual terms.

First we consider the a1v′ term. Integration by parts yields∫ b

a
u(x)a1(x)v′(x) dx = a1(x)u(x)v(x)

∣∣∣b
a
−
∫ b

a
(u(x)a1(x))′v(x) dx.

(5.89)
Now, we consider the a2v′′ term. In this case it will take two integrations

by parts:∫ b

a
u(x)a2(x)v′′(x) dx = a2(x)u(x)v′(x)

∣∣∣b
a
−
∫ b

a
(u(x)a2(x))′v(x)′ dx

=
[
a2(x)u(x)v′(x)− (a2(x)u(x))′v(x)

] ∣∣∣b
a

+
∫ b

a
(u(x)a2(x))′′v(x) dx. (5.90)

Combining these results, we obtain

< u, Lv > =
∫ b

a
u(a2v′′ + a1v′ + a0v) dx
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=
[
a1(x)u(x)v(x) + a2(x)u(x)v′(x)− (a2(x)u(x))′v(x)

] ∣∣∣b
a

+
∫ b

a

[
(a2u)′′ − (a1u)′ + a0u

]
v dx. (5.91)

Inserting the boundary conditions for v, one has to determine boundary
conditions for u such that[

a1(x)u(x)v(x) + a2(x)u(x)v′(x)− (a2(x)u(x))′v(x)
] ∣∣∣b

a
= 0.

This leaves

< u, Lv >=
∫ b

a

[
(a2u)′′ − (a1u)′ + a0u

]
v dx ≡< L†u, v > .

Therefore,

L† =
d2

dx2 a2(x)− d
dx

a1(x) + a0(x). (5.92)
Self-adjoint operators.

When L† = L, the operator is called formally self-adjoint. When the
domain of L is the same as the domain of L†, the term self-adjoint is
used. As the domain is important in establishing self-adjointness, we
need to do a complete example in which the domain of the adjoint is
found.

Example 5.14. Determine L† and its domain for operator Lu = du
dx where u

satisfies the boundary conditions u(0) = 2u(1) on [0, 1].
We need to find the adjoint operator satisfying < v, Lu >=< L†v, u > .

Therefore, we rewrite the integral

< v, Lu >=
∫ 1

0
v

du
dx

dx = uv|10 −
∫ 1

0
u

dv
dx

dx =< L†v, u > .

From this we have the adjoint problem consisting of an adjoint operator and
the associated boundary condition:

1. L† = − d
dx .

2. uv
∣∣∣1
0
= 0⇒ 0 = u(1)[v(1)− 2v(0)]⇒ v(1) = 2v(0).

5.6.4 Lagrange’s and Green’s Identities

Before turning to the proofs that the eigenvalues of a Sturm-
Liouville problem are real and the associated eigenfunctions orthogo-
nal, we will first need to introduce two important identities. For the
Sturm-Liouville operator,

L =
d

dx

(
p

d
dx

)
+ q,

we have the two identities:
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Lagrange’s Identity: uLv− vLu = [p(uv′ − vu′)]′.
Green’s Identity:

∫ b
a (uLv− vLu) dx = [p(uv′ − vu′)]|ba.

Proof. The proof of Lagrange’s identity follows by a simple manipula-
tions of the operator:

uLv− vLu = u
[

d
dx

(
p

dv
dx

)
+ qv

]
− v

[
d

dx

(
p

du
dx

)
+ qu

]
= u

d
dx

(
p

dv
dx

)
− v

d
dx

(
p

du
dx

)
= u

d
dx

(
p

dv
dx

)
+ p

du
dx

dv
dx
− v

d
dx

(
p

du
dx

)
− p

du
dx

dv
dx

=
d

dx

[
pu

dv
dx
− pv

du
dx

]
. (5.93)

Green’s identity is simply proven by integrating Lagrange’s identity.

5.6.5 Orthogonality and Reality

We are now ready to prove that the eigenvalues of a Sturm-Liouville
problem are real and the corresponding eigenfunctions are orthogonal.
These are easily established using Green’s identity, which in turn is a
statement about the Sturm-Liouville operator being self-adjoint.

Theorem 5.3. The eigenvalues of the Sturm-Liouville problem (5.76) are real.

Proof. Let φn(x) be a solution of the eigenvalue problem associated
with λn:

Lφn = −λnσφn.

The complex conjugate of this equation is

Lφn = −λnσφn.

Now, multiply the first equation by φn and the second equation by φn

and then subtract the results. We obtain

φnLφn − φnLφn = (λn − λn)σφnφn.

Integrate both sides of this equation:∫ b

a

(
φnLφn − φnLφn

)
dx = (λn − λn)

∫ b

a
σφnφn dx.

Apply Green’s identity to the left hand side to find

[p(φnφ′n − φnφ
′
n)]|

b
a = (λn − λn)

∫ b

a
σφnφn dx.
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Using the homogeneous boundary conditions (5.77) for a self-adjoint
operator, the left side vanishes to give

0 = (λn − λn)
∫ b

a
σ‖φn‖2 dx.

The integral is nonnegative, so we must have λn = λn. Therefore, the
eigenvalues are real.

Theorem 5.4. The eigenfunctions corresponding to different eigenvalues of
the Sturm-Liouville problem (5.76) are orthogonal.

Proof. This is proven similar to the last theorem. Let φn(x) be a solu-
tion of the eigenvalue problem associated with λn,

Lφn = −λnσφn,

and let φm(x) be a solution of the eigenvalue problem associated with
λm 6= λn,

Lφm = −λmσφm,

Now, multiply the first equation by φm and the second equation by φn.
Subtracting the results, we obtain

φmLφn − φnLφm = (λm − λn)σφnφm

Similar to the previous proof, we integrate both sides of the equation
and use Green’s identity and the boundary conditions for a self-adjoint
operator. This leaves

0 = (λm − λn)
∫ b

a
σφnφm dx.

Since the eigenvalues are distinct, we can divide by λm − λn, leaving
the desired result, ∫ b

a
σφnφm dx = 0.

Therefore, the eigenfunctions are orthogonal with respect to the weight
function σ(x).

5.6.6 The Rayleigh Quotient - optional

The Rayleigh quotient is useful for getting estimates of eigenval-
ues and proving some of the other properties associated with Sturm-
Liouville eigenvalue problems. We begin by multiplying the eigen-
value problem

Lφn = −λnσ(x)φn
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by φn and integrating. This gives

∫ b

a

[
φn

d
dx

(
p

dφn

dx

)
+ qφ2

n

]
dx = −λ

∫ b

a
φ2

n dx.

One can solve the last equation for λ to find

λ =
−
∫ b

a

[
φn

d
dx

(
p dφn

dx

)
+ qφ2

n

]
dx∫ b

a φ2
nσ dx

.

It appears that we have solved for the eigenvalue and have not needed
the machinery we had developed in Chapter 4 for studying boundary
value problems. However, we really cannot evaluate this expression
because we do not know the eigenfunctions, φn(x) yet. Nevertheless,
we will see what we can determine.

One can rewrite this result by performing an integration by parts
on the first term in the numerator. Namely, pick u = φn and dv =
d

dx

(
p dφn

dx

)
dx for the standard integration by parts formula. Then, we

have∫ b

a
φn

d
dx

(
p

dφn

dx

)
dx = pφn

dφn

dx

∣∣∣b
a
−
∫ b

a

[
p
(

dφn

dx

)2
− qφ2

n

]
dx.

Inserting the new formula into the expression for λ, leads to the Rayleigh
Quotient

λn =

−pφn
dφn
dx

∣∣∣b
a
+
∫ b

a

[
p
(

dφn
dx

)2
− qφ2

n

]
dx∫ b

a φ2
nσ dx

. (5.94)

In many applications the sign of the eigenvalue is important. As we
had seen in the solution of the heat equation, T′ + kλT = 0. Since we
expect the heat energy to diffuse, the solutions should decay in time.
Thus, we would expect λ > 0. In studying the wave equation, one
expects vibrations and these are only possible with the correct sign of
the eigenvalue (positive again). Thus, in order to have nonnegative
eigenvalues, we see from (5.94) that

a. q(x) ≤ 0, and

b. −pφn
dφn
dx |

b
a ≥ 0.

Furthermore, if λ is a zero eigenvalue, then q(x) ≡ 0 and α1 =

α2 = 0 in the homogeneous boundary conditions. This can be seen by
setting the numerator equal to zero. Then, q(x) = 0 and φ′n(x) = 0.
The second of these conditions inserted into the boundary conditions
forces the restriction on the type of boundary conditions.

One of the (unproven here) properties of Sturm-Liouville eigen-
value problems with homogeneous boundary conditions is that the
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eigenvalues are ordered, λ1 < λ2 < . . . . Thus, there is a smallest
eigenvalue. It turns out that for any continuous function, y(x),

λ1 = min
y(x)

−py dy
dx |

b
a +
∫ b

a

[
p
(

dy
dx

)2
− qy2

]
dx∫ b

a y2σ dx
(5.95)

and this minimum is obtained when y(x) = φ1(x). This result can
be used to get estimates of the minimum eigenvalue by using trial
functions which are continuous and satisfy the boundary conditions,
but do not necessarily satisfy the differential equation.

Example 5.15. We have already solved the eigenvalue problem φ′′+λφ = 0,
φ(0) = 0, φ(1) = 0. In this case, the lowest eigenvalue is λ1 = π2. We can
pick a nice function satisfying the boundary conditions, say y(x) = x− x2.
Inserting this into Equation (5.95), we find

λ1 ≤
∫ 1

0 (1− 2x)2 dx∫ 1
0 (x− x2)2 dx

= 10.

Indeed, 10 ≥ π2.

5.6.7 The Eigenfunction Expansion Method - optional

In this section we show how one can solve the nonhomogeneous
problem Ly = f using expansions over the basis of Sturm-Liouville
eigenfunctions. In this chapter we have seen that Sturm-Liouville
eigenvalue problems have the requisite set of orthogonal eigenfunc-
tions. In this section we will apply the eigenfunction expansion method
to solve a particular nonhomogenous boundary value problem.

Recall that one starts with a nonhomogeneous differential equation

Ly = f ,

where y(x) is to satisfy given homogeneous boundary conditions. The
method makes use of the eigenfunctions satisfying the eigenvalue prob-
lem

Lφn = −λnσφn

subject to the given boundary conditions. Then, one assumes that y(x)
can be written as an expansion in the eigenfunctions,

y(x) =
∞

∑
n=1

cnφn(x),

and inserts the expansion into the nonhomogeneous equation. This
gives

f (x) = L
(

∞

∑
n=1

cnφn(x)

)
= −

∞

∑
n=1

cnλnσ(x)φn(x).
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The expansion coefficients are then found by making use of the or-
thogonality of the eigenfunctions. Namely, we multiply the last equa-
tion by φm(x) and integrate. We obtain

∫ b

a
f (x)φm(x) dx = −

∞

∑
n=1

cnλn

∫ b

a
φn(x)φm(x)σ(x) dx.

Orthogonality yields

∫ b

a
f (x)φm(x) dx = −cmλm

∫ b

a
φ2

m(x)σ(x) dx.

Solving for cm, we have

cm = −
∫ b

a f (x)φm(x) dx

λm
∫ b

a φ2
m(x)σ(x) dx

.

Example 5.16. As an example, we consider the solution of the boundary
value problem

(xy′)′ +
y
x
=

1
x

, x ∈ [1, e], (5.96)

y(1) = 0 = y(e). (5.97)

This equation is already in self-adjoint form. So, we know that the associ-
ated Sturm-Liouville eigenvalue problem has an orthogonal set of eigenfunc-
tions. We first determine this set. Namely, we need to solve

(xφ′)′ +
φ

x
= −λσφ, φ(1) = 0 = φ(e). (5.98)

Rearranging the terms and multiplying by x, we have that

x2φ′′ + xφ′ + (1 + λσx)φ = 0.

This is almost an equation of Cauchy-Euler type. Picking the weight function
σ(x) = 1

x , we have

x2φ′′ + xφ′ + (1 + λ)φ = 0.

This is easily solved. The characteristic equation is

r2 + (1 + λ) = 0.

One obtains nontrivial solutions of the eigenvalue problem satisfying the
boundary conditions when λ > −1. The solutions are

φn(x) = A sin(nπ ln x), n = 1, 2, . . . .

where λn = n2π2 − 1.
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It is often useful to normalize the eigenfunctions. This means that one
chooses A so that the norm of each eigenfunction is one. Thus, we have

1 =
∫ e

1
φn(x)2σ(x) dx

= A2
∫ e

1
sin(nπ ln x)

1
x

dx

= A2
∫ 1

0
sin(nπy) dy =

1
2

A2. (5.99)

Thus, A =
√

2.
We now turn towards solving the nonhomogeneous problem, Ly = 1

x . We
first expand the unknown solution in terms of the eigenfunctions,

y(x) =
∞

∑
n=1

cn
√

2 sin(nπ ln x).

Inserting this solution into the differential equation, we have

1
x
= Ly = −

∞

∑
n=1

cnλn
√

2 sin(nπ ln x)
1
x

.
Figure 5.11: Plots of the first five eigen-
functions, y(x) =

√
2 sin(nπ ln x).

Next, we make use of orthogonality. Multiplying both sides by φm(x) =√
2 sin(mπ ln x) and integrating, gives

λmcm =
∫ e

1

√
2 sin(mπ ln x)

1
x

dx =

√
2

mπ
[(−1)m − 1].

Solving for cm, we have

cm =

√
2

mπ

[(−1)m − 1]
m2π2 − 1

.

Finally, we insert our coefficients into the expansion for y(x). The solution
is then

y(x) =
∞

∑
n=1

2
nπ

[(−1)n − 1]
n2π2 − 1

sin(nπ ln(x)).

Figure 5.12: Plot of the solution in Exam-
ple 5.16.

5.7 Appendix: The Least Squares Approximation

In the first section of this chapter we showed that we can expand
functions over an infinite set of basis functions as

f (x) =
∞

∑
n=1

cnφn(x)

and that the generalized Fourier coefficients are given by

cn =
< φn, f >

< φn, φn >
.
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In this section we turn to a discussion of approximating f (x) by the
partial sums ∑N

n=1 cnφn(x) and showing that the Fourier coefficients
are the best coefficients minimizing the deviation of the partial sum
from f (x). This will lead us to a discussion of the convergence of
Fourier series.

More specifically, we set the following goal:

Goal

To find the best approximation of f (x) on [a, b] by SN(x) =
N
∑

n=1
cnφn(x) for a set of fixed functions φn(x); i.e., to find the cn’s

such that SN(x) approximates f (x) in the least squares sense.

We want to measure the deviation of the finite sum from the given
function. Essentially, we want to look at the error made in the approx-
imation. This is done by introducing the mean square deviation:

EN =
∫ b

a
[ f (x)− SN(x)]2ρ(x) dx,

where we have introduced the weight function ρ(x) > 0. It gives us a
sense as to how close the Nth partial sum is to f (x).

We want to minimize this deviation by choosing the right cn’s. We
begin by inserting the partial sums and expand the square in the inte-
grand:

EN =
∫ b

a
[ f (x)− SN(x)]2ρ(x) dx

=
∫ b

a

[
f (x)−

N

∑
n=1

cnφn(x)

]2

ρ(x) dx

=

b∫
a

f 2(x)ρ(x) dx− 2
b∫

a

f (x)
N

∑
n=1

cnφn(x)ρ(x) dx

+

b∫
a

N

∑
n=1

cnφn(x)
N

∑
m=1

cmφm(x)ρ(x) dx (5.100)

Looking at the three resulting integrals, we see that the first term is
just the inner product of f with itself. The other integrations can be
rewritten after interchanging the order of integration and summation.
The double sum can be reduced to a single sum using the orthogonal-
ity of the φn’s. Thus, we have

EN = < f , f > −2
N

∑
n=1

cn < f , φn > +
N

∑
n=1

N

∑
m=1

cncm < φn, φm >

= < f , f > −2
N

∑
n=1

cn < f , φn > +
N

∑
n=1

c2
n < φn, φn > . (5.101)
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We are interested in finding the coefficients, so we will complete the
square in cn. Focusing on the last two terms, we have

EN− < f , f > = −2
N

∑
n=1

cn < f , φn > +
N

∑
n=1

c2
n < φn, φn >

=
N

∑
n=1

< φn, φn > c2
n − 2 < f , φn > cn

=
N

∑
n=1

< φn, φn >

[
c2

n −
2 < f , φn >

< φn, φn >
cn

]

=
N

∑
n=1

< φn, φn >

[(
cn −

< f , φn >

< φn, φn >

)2
−
(

< f , φn >

< φn, φn >

)2
]

.

(5.102)

To this point we have shown that the mean square deviation is given
as

EN =< f , f > +
N

∑
n=1

< φn, φn >

[(
cn −

< f , φn >

< φn, φn >

)2
−
(

< f , φn >

< φn, φn >

)2
]

.

So, EN is minimized by choosing cn = < f ,φn>
<φn ,φn>

. However, these are the
Fourier Coefficients. This minimization is often referred to as Mini-
mization in Least Squares Sense.

Inserting the Fourier coefficients into the mean square deviation
yields

0 ≤ EN =< f , f > −
N

∑
n=1

c2
n < φn, φn > .

Thus, we obtain Bessel’s Inequality:

< f , f >≥
N

∑
n=1

c2
n < φn, φn > .

For convergence, we next let N get large and see if the partial sums
converge to the function. In particular, we say that the infinite series
converges in the mean if∫ b

a
[ f (x)− SN(x)]2ρ(x) dx → 0 as N → ∞.

Letting N get large in Bessel’s inequality shows that ∑N
n=1 c2

n <

φn, φn > converges if

(< f , f >=
∫ b

a
f 2(x)ρ(x) dx < ∞.

The space of all such f is denoted L2
ρ(a, b), the space of square inte-

grable functions on (a, b) with weight ρ(x).
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From the nth term divergence theorem we know that ∑ an converges
implies that an → 0 as n → ∞. Therefore, in this problem the terms
c2

n < φn, φn > approach zero as n gets large. This is only possible if the
cn’s go to zero as n gets large. Thus, if ∑N

n=1 cnφn converges in the mean
to f , then

∫ b
a [ f (x) − ∑N

n=1 cnφn]2ρ(x) dx approaches zero as N → ∞.
This implies from the above derivation of Bessel’s inequality that

< f , f > −
N

∑
n=1

c2
n(φn, φn)→ 0.

This leads to Parseval’s equality:

< f , f >=
∞

∑
n=1

c2
n < φn, φn > .

Parseval’s equality holds if and only if

lim
N→∞

b∫
a

( f (x)−
N

∑
n=1

cnφn(x))2ρ(x) dx = 0.

If this is true for every square integrable function in L2
ρ(a, b), then the

set of functions {φn(x)}∞
n=1 is said to be complete. One can view

these functions as an infinite dimensional basis for the space of square
integrable functions on (a, b) with weight ρ(x) > 0.

One can extend the above limit cn → 0 as n→ ∞, by assuming that

φn(x)
‖φn‖ is uniformly bounded and that

b∫
a
| f (x)|ρ(x) dx < ∞. This is the

Riemann-Lebesque Lemma, but will not be proven now.

5.8 Appendix: The Fredholm Alternative Theorem

Given that Ly = f , when can one expect to find a solution? Is it
unique? These questions are answered by the Fredholm Alternative
Theorem. This theorem occurs in many forms from a statement about
solutions to systems of algebraic equations to solutions of boundary
value problems and integral equations. The theorem comes in two
parts, thus the term “alternative”. Either the equation has exactly one
solution for all f , or the equation has many solutions for some f ’s and
none for the rest.

The reader is familiar with the statements of the Fredholm Alter-
native for the solution of systems of algebraic equations. One seeks
solutions of the system Ax = b for A an n× m matrix. Defining the
matrix adjoint, A∗ through < Ax, y >=< x, A∗y > for all x, y,∈ Cn,
then either
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Theorem 5.5. First Alternative
The equation Ax = b has a solution if and only if < b, v >= 0 for all v

such that A∗v = 0.

or

Theorem 5.6. Second Alternative
A solution of Ax = b, if it exists, is unique if and only if x = 0 is the only

solution of Ax = 0.

The second alternative is more familiar when given in the form: The
solution of a nonhomogeneous system of n equations and n unknowns
is unique if the only solution to the homogeneous problem is the zero
solution. Or, equivalently, A is invertible, or has nonzero determinant.

Proof. We prove the second theorem first. Assume that Ax = 0 for
x 6= 0 and Ax0 = b. Then A(x0 + αx) = b for all α. Therefore, the
solution is not unique. Conversely, if there are two different solutions,
x1 and x2, satisfying Ax1 = b and Ax2 = b, then one has a nonzero
solution x = x1 − x2 such that Ax = A(x1 − x2) = 0.

The proof of the first part of the first theorem is simple. Let A∗v = 0
and Ax0 = b. Then we have

< b, v >=< Ax0, v >=< x0, A∗v >= 0.

For the second part we assume that < b, v >= 0 for all v such that
A∗v = 0. Write b as the sum of a part that is in the range of A and a
part that in the space orthogonal to the range of A, b = bR + bO. Then,
0 =< bO, Ax >=< A∗b, x > for all x. Thus, A∗bO. Since < b, v >= 0
for all v in the nullspace of A∗, then < b, bO >= 0.

Therefore, < b, v >= 0 implies that

0 =< b, bO >=< bR + bO, bO >=< bO, bO > .

This means that bO = 0, giving b = bR is in the range of A. So, Ax = b
has a solution.

Example 5.17. Determine the allowed forms of b for a solution of Ax = b
to exist, where

A =

(
1 2
3 6

)
.

First note that A∗ = AT . This is seen by looking at

< Ax, y > = < x, A∗y >
n

∑
i=1

n

∑
j=1

aijxjȳi =
n

∑
j=1

xj

n

∑
j=1

aijȳi

=
n

∑
j=1

xj

n

∑
j=1

(āT)ji yi. (5.103)
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For this example,

A∗ =

(
1 3
2 6

)
.

We next solve A∗v = 0. This means, v1 + 3v2 = 0. So, the nullspace of A∗

is spanned by v = (3,−1)T . For a solution of Ax = b to exist, b would have
to be orthogonal to v. Therefore, a solution exists when

b = α

(
1
3

)
.

So, what does this say about solutions of boundary value problems?
We need a more general theory for linear operators. A more general
statement would be

Theorem 5.7. If L is a bounded linear operator on a Hilbert space, then
Ly = f has a solution if and only if < f , v >= 0 for every v such that
L†v = 0.

The statement for boundary value problems is similar. However, we
need to be careful to treat the boundary conditions in our statement.
As we have seen, after several integrations by parts we have that

< Lu, v >= S(u, v)+ < u,L†v >,

where S(u, v) involves the boundary conditions on u and v. Note that
for nonhomogeneous boundary conditions, this term may no longer
vanish.

Theorem 5.8. The solution of the boundary value problem Lu = f with
boundary conditions Bu = g exists if and only if

< f , v > −S(u, v) = 0

for all v satisfying L†v = 0 and B†v = 0.

Example 5.18. Consider the problem

u′′ + u = f (x), u(0)− u(2π) = α, u′(0)− u′(2π) = β.

Only certain values of α and β will lead to solutions. We first note that

L = L† =
d2

dx2 + 1.

Solutions of

L†v = 0, v(0)− v(2π) = 0, v′(0)− v′(2π) = 0

are easily found to be linear combinations of v = sin x and v = cos x.
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Next one computes

S(u, v) =
[
u′v− uv′

]2π
0

= u′(2π)v(2π)− u(2π)v′(2π)− u′(0)v(0) + u(0)v′(0).

(5.104)

For v(x) = sin x, this yields

S(u, sin x) = −u(2π) + u(0) = α.

Similarly,
S(u, cos x) = β.

Using < f , v > −S(u, v) = 0, this leads to the conditions that we were
seeking, ∫ 2π

0
f (x) sin x dx = α,

∫ 2π

0
f (x) cos x dx = β.

Problems

1. Consider the set of vectors (−1, 1, 1), (1,−1, 1), (1, 1,−1).

a. Use the Gram-Schmidt process to find an orthonormal basis
for R3 using this set in the given order.

b. What do you get if you do reverse the order of these vectors?

2. Use the Gram-Schmidt process to find the first four orthogonal
polynomials satisfying the following:

a. Interval: (−∞, ∞) Weight Function: e−x2
.

b. Interval: (0, ∞) Weight Function: e−x.

3. Find P4(x) using

a. The Rodrigues Formula in Equation (5.21).

b. The three term recursion formula in Equation (5.23).

4. In Equations (5.36)-(5.43) we provide several identities for Legendre
polynomials. Derive the results in Equations (5.37)-(5.43) as decribed
in the text. Namely,

a. Differentiating Equation (5.36) with respect to x, derive Equa-
tion (5.37).

b. Derive Equation (5.38) by differentiating g(x, t) with respect
to x and rearranging the resulting infinite series.
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c. Combining the last result with Equation (5.36), derive Equa-
tions (5.39)-(5.40).

d. Adding and subtracting Equations (5.39)-(5.40), obtain Equa-
tions (5.41)-(5.42).

e. Derive Equation (5.43) using some of the other identities.

5. Use the recursion relation (5.23) to evaluate
∫ 1
−1 xPn(x)Pm(x) dx,

n ≤ m.

6. Expand the following in a Fourier-Legendre series for x ∈ (−1, 1).

a. f (x) = x2.

b. f (x) = 5x4 + 2x3 − x + 3.

c. f (x) =

{
−1, −1 < x < 0,
1, 0 < x < 1.

d. f (x) =

{
x, −1 < x < 0,
0, 0 < x < 1.

7. Use integration by parts to show Γ(x + 1) = xΓ(x).

8. Prove the double factorial identities:

(2n)!! = 2nn!

and

(2n− 1)!! =
(2n)!
2nn!

.

9. Express the following as Gamma functions. Namely, noting the
form Γ(x + 1) =

∫ ∞
0 txe−t dt and using an appropriate substitution,

each expression can be written in terms of a Gamma function.

a.
∫ ∞

0 x2/3e−x dx.

b.
∫ ∞

0 x5e−x2
dx

c.
∫ 1

0

[
ln
(

1
x

)]n
dx

10. The coefficients Cp
k in the binomial expansion for (1 + x)p are

given by

Cp
k =

p(p− 1) · · · (p− k + 1)
k!

.

a. Write Cp
k in terms of Gamma functions.

b. For p = 1/2 use the properties of Gamma functions to write
C1/2

k in terms of factorials.

c. Confirm you answer in part b by deriving the Maclaurin se-
ries expansion of (1 + x)1/2.
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11. The Hermite polynomials, Hn(x), satisfy the following:

i. < Hn, Hm >=
∫ ∞
−∞ e−x2

Hn(x)Hm(x) dx =
√

π2nn!δn,m.

ii. H′n(x) = 2nHn−1(x).

iii. Hn+1(x) = 2xHn(x)− 2nHn−1(x).

iv. Hn(x) = (−1)nex2 dn

dxn

(
e−x2

)
.

Using these, show that

a. H′′n − 2xH′n + 2nHn = 0. [Use properties ii. and iii.]

b.
∫ ∞
−∞ xe−x2

Hn(x)Hm(x) dx =
√

π2n−1n! [δm,n−1 + 2(n + 1)δm,n+1] .
[Use properties i. and iii.]

c. Hn(0) =

{
0, n odd,

(−1)m (2m)!
m! , n = 2m.

[Let x = 0 in iii. and

iterate. Note from iv. that H0(x) = 1 and H1(x) = 2x. ]

12. In Maple one can type simplify(LegendreP(2*n-2,0)-LegendreP(2*n,0));
to find a value for P2n−2(0) − P2n(0). It gives the result in terms of
Gamma functions. However, in Example 5.8 for Fourier-Legendre se-
ries, the value is given in terms of double factorials! So, we have

P2n−2(0)− P2n(0) =
√

π(4n− 1)
2Γ(n + 1)Γ

( 3
2 − n

) = (−1)n (2n− 3)!!
(2n− 2)!!

4n− 1
2n

.

You will verify that both results are the same by doing the following:

a. Prove that P2n(0) = (−1)n (2n−1)!!
(2n)!! using the generating func-

tion and a binomial expansion.

b. Prove that Γ
(

n + 1
2

)
= (2n−1)!!

2n
√

π using Γ(x) = (x− 1)Γ(x−
1) and iteration.

c. Verify the result from Maple that P2n−2(0)− P2n(0) =
√

π(4n−1)
2Γ(n+1)Γ( 3

2−n)
.

d. Can either expression for P2n−2(0)− P2n(0) be simplified fur-
ther?

13. A solution Bessel’s equation, x2y′′ + xy′ + (x2 − n2)y = 0, , can be
found using the guess y(x) = ∑∞

j=0 ajxj+n. One obtains the recurrence
relation aj =

−1
j(2n+j) aj−2. Show that for a0 = (n!2n)−1 we get the Bessel

function of the first kind of order n from the even values j = 2k:

Jn(x) =
∞

∑
k=0

(−1)k

k!(n + k)!

( x
2

)n+2k
.

14. Use the infinite series in the last problem to derive the derivative
identities (5.71) and (5.61):

a. d
dx [x

n Jn(x)] = xn Jn−1(x).
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b. d
dx [x

−n Jn(x)] = −x−n Jn+1(x).

15. Prove the following identities based on those in the last problem.

a. Jp−1(x) + Jp+1(x) = 2p
x Jp(x).

b. Jp−1(x)− Jp+1(x) = 2J′p(x).

16. Use the derivative identities of Bessel functions,(5.71)-(5.61), and
integration by parts to show that∫

x3 J0(x) dx = x3 J1(x)− 2x2 J2(x) + C.

17. Use the generating function to find Jn(0) and J′n(0).

18. Bessel functions Jp(λx) are solutions of x2y′′+ xy′+(λ2x2− p2)y =

0. Assume that x ∈ (0, 1) and that Jp(λ) = 0 and Jp(0) is finite.

a. Show that this equation can be written in the form

d
dx

(
x

dy
dx

)
+ (λ2x− p2

x
)y = 0.

This is the standard Sturm-Liouville form for Bessel’s equa-
tion.

b. Prove that ∫ 1

0
xJp(λx)Jp(µx) dx = 0, λ 6= µ

by considering∫ 1

0

[
Jp(µx)

d
dx

(
x

d
dx

Jp(λx)
)
− Jp(λx)

d
dx

(
x

d
dx

Jp(µx)
)]

dx.

Thus, the solutions corresponding to different eigenvalues (λ,
µ) are orthogonal.

c. Prove that∫ 1

0
x
[

Jp(λx)
]2 dx =

1
2

J2
p+1(λ) =

1
2

J′2p (λ).

19. We can rewrite Bessel functions, Jν(x), in a form which will allow
the order to be non-integer by using the gamma function. You will

need the results from Problem 12b for Γ
(

k + 1
2

)
.

a. Extend the series definition of the Bessel function of the first
kind of order ν, Jν(x), for ν ≥ 0 by writing the series solution
for y(x) in Problem 13 using the gamma function.

b. Extend the series to J−ν(x), for ν ≥ 0. Discuss the resulting
series and what happens when ν is a positive integer.
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c. Use these results to obtain the closed form expressions

J1/2(x) =

√
2

πx
sin x,

J−1/2(x) =

√
2

πx
cos x.

d. Use the results in part c with the recursion formula for Bessel
functions to obtain a closed form for J3/2(x).

20. In this problem you will derive the expansion

x2 =
c2

2
+ 4

∞

∑
j=2

J0(αjx)
α2

j J0(αjc)
, 0 < x < c,

where the α′js are the positive roots of J1(αc) = 0, by following the
below steps.

a. List the first five values of α for J1(αc) = 0 using the Table
5.3 and Figure 5.8. [Note: Be careful determining α1.]

b. Show that ‖J0(α1x)‖2 = c2

2 . Recall,

‖J0(αjx)‖2 =
∫ c

0
xJ2

0 (αjx) dx.

c. Show that ‖J0(αjx)‖2 = c2

2
[

J0(αjc)
]2 , j = 2, 3, . . . . (This is the

most involved step.) First note from Problem 18 that y(x) =
J0(αjx) is a solution of

x2y′′ + xy′ + α2
j x2y = 0.

i. Verify the Sturm-Liouville form of this differential equa-
tion: (xy′)′ = −α2

j xy.

ii. Multiply the equation in part i. by y(x) and integrate from
x = 0 to x = c to obtain∫ c

0
(xy′)′y dx = −α2

j

∫ c

0
xy2 dx

= −α2
j

∫ c

0
xJ2

0 (αjx) dx. (5.105)

iii. Noting that y(x) = J0(αjx), integrate the left hand side
by parts and use the following to simplify the resulting
equation.

1. J′0(x) = −J1(x) from Equation (5.61).

2. Equation (5.64).

3. J2(αjc) + J0(αjc) = 0 from Equation (5.62).

iv. Now you should have enough information to complete
this part.
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d. Use the results from parts b and c to derive the expansion
coefficients for

x2 =
∞

∑
j=1

cj J0(αjx)

in order to obtain the desired expansion.

21. Prove the if u(x) and v(x) satisfy the general homogeneous bound-
ary conditions

α1u(a) + β1u′(a) = 0,

α2u(b) + β2u′(b) = 0 (5.106)

at x = a and x = b, then

p(x)[u(x)v′(x)− v(x)u′(x)]x=b
x=a = 0.

22. Prove Green’s Identity
∫ b

a (uLv − vLu) dx = [p(uv′ − vu′)]|ba for
the general Sturm-Liouville operator L.

23. Find the adjoint operator and its domain for Lu = u′′ + 4u′ − 3u,
u′(0) + 4u(0) = 0, u′(1) + 4u(1) = 0.

24. Show that a Sturm-Liouville operator with periodic boundary con-
ditions on [a, b] is self-adjoint if and only if p(a) = p(b). [Recall, peri-
odic boundary conditions are given as u(a) = u(b) and u′(a) = u′(b).]

25. The Hermite differential equation is given by y′′ − 2xy′ + λy = 0.
Rewrite this equation in self-adjoint form. From the Sturm-Liouville
form obtained, verify that the differential operator is self adjoint on
(−∞, ∞). Give the integral form for the orthogonality of the eigen-
functions.

26. Find the eigenvalues and eigenfunctions of the given Sturm-Liouville
problems.

a. y′′ + λy = 0, y′(0) = 0 = y′(π).

b. (xy′)′ + λ
x y = 0, y(1) = y(e2) = 0.

27. The eigenvalue problem x2y′′− λxy′+ λy = 0 with y(1) = y(2) =
0 is not a Sturm-Liouville eigenvalue problem. Show that none of the
eigenvalues are real by solving this eigenvalue problem.

28. In Example 5.15 we found a bound on the lowest eigenvalue for
the given eigenvalue problem.

a. Verify the computation in the example.

b. Apply the method using

y(x) =

{
x, 0 < x < 1

2
1− x, 1

2 < x < 1.

Is this an upper bound on λ1
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c. Use the Rayleigh quotient to obtain a good upper bound for
the lowest eigenvalue of the eigenvalue problem: φ′′ + (λ−
x2)φ = 0, φ(0) = 0, φ′(1) = 0.

29. Use the method of eigenfunction expansions to solve the problem:

y′′ + 4y = x2, y(0) = y(1) = 0.

30. Determine the solvability conditions for the nonhomogeneous
boundary value problem: u′′ + 4u = f (x), u(0) = α, u′(1) = β.
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