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Vector Analysis and EM Waves

“From a long view of the history of mankind seen from, say, ten thousand years from now, there can be little doubt that
the most significant event of the 19th century will be judged as Maxwell’s discovery of the laws of electrodynamics.”
The Feynman Lectures on Physics (1964), Richard Feynman (1918-1988)

Up to this point we have mainly been confined to problems in-
volving only one or two independent variables. In particular, the heat
equation and the wave equation involved one time and one space di-
mension. However, we live in a world of three spatial dimensions.
(Though, some theoretical physicists live in worlds of many more di-
mensions, or at least they think so.) We will need to extend the study
of the heat equation and the wave equation to three spatial dimensions.

Recall that the one-dimensional wave equation takes the form

∂2u
∂t2 = c2 ∂2u

∂x2 . (8.1)

For higher dimensional problems we will need to generalize the ∂2u
∂x2

term. For the case of electromagnetic waves in a source-free environ-
ment, we will derive a three dimensional wave equation for the electric
and magnetic fields: It is given by

∂2u
∂t2 = c2

(
∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2

)
. (8.2)

This is the generic form of the linear wave equation in Cartesian coor-
dinates. It can be written a more compact form using the Laplacian,
∇2,

∂2u
∂t2 = c2∇2u. (8.3)

The introduction of the Laplacian is common when generalizing to
higher dimensions. In fact, we have already presented some generic
one and three dimensional equations in Table 4.1, which we reproduce
in Table 8.1. We have studied the one dimensional wave equation,
heat equation, and Schrödinger equation. For steady-state, or equi-
librium, heat flow problems, the heat equation no longer involves the
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time derivative. What is left is called Laplace’s equation, which we
have also seen in relation to complex functions. Adding an external
heat source, Laplace’s equation becomes what is known as Poisson’s
equation.

Name 2 Vars 3 D
Heat Equation ut = kuxx ut = k∇2u
Wave Equation utt = c2uxx utt = c2∇2u

Laplace’s Equation uxx + uyy = 0 ∇2u = 0
Poisson’s Equation uxx + uyy = F(x, y) ∇2u = F(x, y, z)

Schrödinger’s Equation iut = uxx + F(x, t)u iut = ∇2u + F(x, y, z, t)u

Table 8.1: List of generic partial differen-
tial equations.

Using the Laplacian allows us not only to write these equations
in a more compact form, but also in a coordinate-free representation.
Many problems are more easily cast in other coordinate systems. For
example, the propagation of electromagnetic waves in an optical fiber
are naturally described in terms of cylindrical coordinates. The heat
flow inside a hemispherical igloo can be described using spherical co-
ordinates. The vibrations of a circular drumhead can be described
using polar coordinates. In each of these cases the Laplacian has to be
written in terms of the needed coordinate systems.

The solution of these partial differential equations can be handled
using separation of variables or transform methods. In the next chap-
ter we will look at several examples of applying the separation of vari-
ables in higher dimensions. This will lead to the study of ordinary
differential equations, which in turn leads to new sets of functions,
other than the typical sine and cosine solutions.

In this chapter we will review some of the needed vector analysis for
the derivation of the three dimensional wave equation from Maxwell’s
equations. We will review the basic vector operations (the dot and
cross products), define the gradient, curl, and divergence and intro-
duce standard vector identities that are often seen in physics courses.
Equipped with these vector operations, we will derive the three di-
mensional waves equation for electromagnetic waves from Maxwell’s
equations. We will conclude this chapter with a section on curvilinear
coordinates and provide the vector differential operators for different
coordinate systems.

8.1 Vector Analysis

8.1.1 A Review of Vector Products

At this point you might want to reread the first section of Chapter
3. In that chapter we introduced the formal definition of a vector space
and some simple properties of vectors. We also discussed one of the
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common vector products, the dot product, which is defined as

u · v = uv cos θ. (8.4)

There is also a component form, which we write as

u · v = u1v1 + u2v2 + u3v3 =
3

∑
k=1

ukvk. (8.5)

One of the first physical examples using a cross product is the defi-
nition of work. The work done on a body by a constant force F during
a displacement d is

W = F · d.

In the case of a nonconstant force, we have to add up the incremental
contributions to the work, dW = F · dr to obtain

W =
∫

C
dW =

∫
C

F · dr (8.6)

over the path C. Note how much this looks like a complex path inte-
gral. It is a path integral, but the path lies in a real three dimensional
space.

Another application of the dot product is the proof of the Law of
Cosines. Recall that this law gives the side opposite a given angle in
terms of the angle and the other two sides of the triangle:

c2 = a2 + b2 − 2ab cos θ. (8.7)

Figure 8.1: v = rω. The Law of Cosines
can be derived using vectors.

Consider the triangle in Figure 8.1. We draw the sides of the triangle
as vectors. Note that b = c + a. Also, recall that the square of the
length any vector can be written as the dot product of the vector with
itself. Therefore, we have

c2 = c · c
= (b− a) · (b− a)

= a · a + b · b− 2a · b
= a2 + b2 − 2ab cos θ. (8.8)

We note that this also comes up in writing out inverse square laws
in many applications. Namely, the vector a can locate a mass, or
charge, and vector b points to an observation point. Then the in-
verse square law would involve vector c, whose length is obtained
as
√

a2 + b2 − 2ab cos θ. Typically, one does not have a’s and b’s, but
something like r1 and r2, or r and R. For these problems one is typi-
cally interested in approximating the expression of interest in terms of
ratios like r

R for R� r.
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Another important vector product is the cross product. The cross
product produces a vector, unlike the dot product that results in a
scalar. The magnitude of the cross product is given as

|a× b| = ab sin θ. (8.9)

Figure 8.2: The cross product is shown.
The direction is obtained using the right
hand rule: Curl fingers from a through
to b. The thumb will point in the direc-
tion of a× b.

Being a vector, we also have to specify the direction. The cross
product produces a vector that is perpendicular to both vectors a and
b. Thus, the vector is normal to the plane in which these vectors live.
There are two possible directions. The direction taken is given by the
right hand rule. This is shown in Figure 8.2. The direction can also be
determined using your right hand. Curl your fingers from a through
to b. The thumb will point in the direction of a× b.

Figure 8.3: A force applied at a point lo-
cated at r from the axis of rotation pro-
duces a torque τ= r× F with respect to
the axis.

One of the first occurrences of the cross product in physics is in
the definition of the torque, τ= r × F. Recall that the torque is the
analogue to the force. A net torque will cause an angular acceleration.
Consider a rigid body in which a force is applied to to the body at a
position r from the axis of rotation. (See Figure 8.3.) Then this force
produces a torque with respect to the axis. The direction of the torque
is given by the right hand rule. Point your fingers in the direction of
r and rotate them towards F. In the figure this would be out of the
page. This indicates that the bar would rotate in a counter clockwise
direction if this were the only force acting on the bar.

Figure 8.4: A mass rotates at an angular
velocity ωabout a fixed axis of rotation.
The tangential velocity with respect to a
given origin is given by v =ω×r.

Another example is that of a body rotating about an axis as shown in
Figure 8.4. We locate the body with a position vector pointing from the
origin of the coordinate system to the body. The tangential velocity of
the body is related to the angular velocity by a cross product v =ω×r.
The direction of the angular velocity is given be a right hand rule. Curl
the fingers of your right hand in the direction of the motion of the
rotating mass. Your thumb will point in the direction of ω. Counter
clockwise motion produces a positive angular velocity and clockwise
will give a negative angular velocity. Note that for the origin at the
center of rotation of the mass, we obtain the familiar expression v =

rω.
There is also a geometric interpretation of the cross product. Con-

sider the vectors a and b in Figure 8.5. Now draw a perpendicular
from the tip of b to vector a. This forms a triangle of height h. Slide
the triangle over to form a rectangle of base a and height h. The area
of this triangle is

A = ah

= a(b sin θ)

= |a× b|. (8.10)

Therefore, the magnitude of the cross product is the area of the triangle
formed by the vectors a and b.

Figure 8.5: The magnitudes of the cross
product gives the area of the parallelo-
gram defined by a and b.
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The dot product was shown to have a simple form in terms of the
components of the vectors. Similarly, we can write the cross product
in component form. Recall that we can expand any vector v as

v =
n

∑
k=1

vkek, (8.11)

where the ek’s are the standard basis vectors.
We would like to expand the cross product of two vectors,

u× v =

(
n

∑
k=1

ukek

)
×
(

n

∑
k=1

vkek

)
.

In order to do this we need a few properties of the cross product.
First of all, the cross product is not commutative. In fact, it is Properties of the cross product.

anticommutative:
u× v = −v× u.

A simple consequence of this is that v× v = 0. Just replace u with v in
the anticommutativity rule and you have v× v = −v× v. Something
that is its negative must be zero.

The cross product also satisfies distributive properties:

u× (v + w) = u× v + u×w),

and
u× (av) = (au)× v = au× v.

Thus, we can expand the cross product in terms of the components
of the given vectors. A simple computation shows that u× v can be
expressed in terms of sums over ei × ej :

u× v =

(
n

∑
i=1

uiei

)
×
(

n

∑
j=1

vjej

)

=
n

∑
i=1

n

∑
j=1

uivjei × ej. (8.12)

ij

k

+

ij

k

−

Figure 8.6: The sign for the cross product
for basis vectors can be determined from
a simple diagram. Arrange the vectors
on a circle as above. If the needed com-
putation goes counterclockwise, then the
sign is positive. Thus, j × k = i and
k× j = −i.

The cross products of basis vectors are simple to compute. First of
all, the cross products ei × ej vanish when i = j by anticommutativity
of the cross product. For i 6= j, it is not much more difficult. For the
typical basis, {i, j, k}, this is simple. Imagine computing i × j. This
is a vector of length |i × j| = |i||j| sin 90◦ = 1. The vector i × j is
perpendicular to both vectors, i and j. Thus, the cross product is either
k or −k. Using the right hand rule, we have i× j = k. Similarly, we
find the following

i× j = k, j× k = i, k× i = j,

j× i = −k, k× j = −i, i× k = −j. (8.13)
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Inserting these results into the cross product for vectors in R3, we
have

u× v = (u2v3 − u3v2)i + (u3v1 − u1v3)j + (u1v2 − u2v1)k. (8.14)

While this form for the cross product is correct and useful, there are
other forms that help in verifying identities or making computation
simpler with less memorization. However, some of these new expres-
sions can lead to problems for the novice as dealing with indices can
be daunting at first sight.

One expression that is useful for computing cross products is the
familiar computation using determinants. Namely, we have that

u× v =

∣∣∣∣∣∣∣
i j k

u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣∣
=

∣∣∣∣∣ u2 u3

v2 v3

∣∣∣∣∣ i−
∣∣∣∣∣ u1 u3

v1 v3

∣∣∣∣∣ j +

∣∣∣∣∣ u1 u2

v1 v2

∣∣∣∣∣ k

= (u2v3 − u3v2)i + (u3v1 − u1v3)j + (u1v2 − u2v1)k.

(8.15)

A more compact form for the cross product is obtained by introduc-
ing the completely antisymmetric symbol, εijk. This symbol is defined The completely antisymmetric symbol,

or permutation symbol, εijk .by the relations
ε123 = ε231 = ε312 = 1,

and
ε321 = ε213 = ε132 = −1,

and all other combinations, like ε113, vanish. Note that all indices must
differ. Also, if the order is a cyclic permutation of {1, 2, 3}, then the
value is +1. For this reason εijk is also called the permutation symbol
or the Levi-Civita symbol. We can also indicate the index permutation
more generally using the following identities:

εijk = εjki = εkij = −εjik = −εikj = −εkji.

12

3

+

12

3

−

Figure 8.7: The sign for the permuta-
tion symbol can be determined from a
simple cyclic diagram similar to that for
the cross product. Arrange the num-
bers from 1 to 3 on a circle. If the
needed computation goes counterclock-
wise, then the sign is positive, otherwise
it is negative.

Returning to the cross product, we can introduce the standard basis
e1 = i, e2 = j, and e3 = k. With this notation, we have that

ei × ej =
3

∑
k=1

εijkek. (8.16)

Example 8.1. Compute the cross product of the basis vectors e2 × e1 using
the permutation symbol. A straight forward application of the definition of
the cross product,

e2 × e1 =
3

∑
k=1

ε21kek



vector analysis and em waves 379

= ε211e1 + ε212e2 + ε213e3

= −e3. (8.17)

It is helpful to write out enough terms in these sums until you get familiar
with manipulating the indices. Note that the first two terms vanished because
of repeated indices. In the last term we used ε213 = −1.

We now write out the general cross product as

u× v =
3

∑
i=1

3

∑
j=1

uivjei × ej

=
3

∑
i=1

3

∑
j=1

uivj

(
3

∑
k=1

εijkek

)

=
3

∑
i,j,k=1

εijkuivjek. (8.18)

Note that the last sum is a triple sum over the indices i, j, and k.

Example 8.2. Let u = 2i− 3j and v = i + 5j + 4k. Compute u× v. We
can compute this easily using determinants.

u× v =

∣∣∣∣∣∣∣
i j k
2 −3 0
1 5 4

∣∣∣∣∣∣∣
=

∣∣∣∣∣ −3 0
5 4

∣∣∣∣∣ i−
∣∣∣∣∣ 2 0

1 4

∣∣∣∣∣ j +

∣∣∣∣∣ 2 −3
1 5

∣∣∣∣∣ k

= −12i− 8j + 13k.

(8.19)

Using the permutation symbol to compute this cross product, we have

u× v = ε123u1v2k + ε231u2v3i + ε312u3v1j

+ε213u2v1k + ε132u1v3j + ε321u3v2i

= 2(5)k + (−3)4i + (0)1j− (−3)1k− (2)4j− (0)5i

= −12i− 8j + 13k. (8.20)

Sometimes it is useful to note that the kth component of the cross
product is given by

(u× v)k =
3

∑
i,j=1

εijkuivj.

In more advanced texts, or in the case of relativistic computations
with tensors, the summation symbol is suppressed. For this case, one
writes

(u× v)k = εijkuivj,
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where it is understood that summation is performed over repeated
indices. This is called the Einstein summation convention. Einstein summation convention is used

to suppress summation notation. In gen-
eral relativity, one also needs to em-
ploy raised indices, so that vector com-
ponents are written in the form ui . The
convention then requires that one only
sums over a combination of one lower
and one upper index. Thus, we would
write εijkuivj. We will forgo the need for
raised indices.

Since the cross product can be written as both a determinant,

u× v =

∣∣∣∣∣∣∣
i j k

u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣∣
= εij1uivji + εij2uivjj + εij3uivjk. (8.21)

and using the permutation symbol,

u× v = εijkuivjek,

we can define the determinant as∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣ =
3

∑
i,j,k=1

εijka1ia2ja3k. (8.22)

Here we added the triple sum in order to emphasize the hidden sum-
mations.

Example 8.3. Compute the determinant

∣∣∣∣∣∣∣
1 0 2
0 −3 4
2 4 −1

∣∣∣∣∣∣∣ .

We insert the components of each row into the expression for the determi-
nant:∣∣∣∣∣∣∣

1 0 2
0 −3 4
2 4 −1

∣∣∣∣∣∣∣ = ε123(1)(−3)(−1) + ε231(0)(4)(2) + ε312(2)(0)(4)

+ε213(0)(0)(−1) + ε132(1)(4)(4) + ε321(2)(−3)(2)

= 3 + 0 + 0− 0− 14− (−12)

= 15. (8.23)

Note that if one adds copies of the first two columns, as shown in Fig-
ure 8.8, then the products of the first three diagonals, downward to the right
(blue), give the positive terms in the determinant computation and the prod-
ucts of the last three diagonals, downward to the left (red), give the negative
terms.

1 0 2 1 0

0 -3 4 0 -3
2 4 -1 2 4

Figure 8.8: Diagram for computing de-
terminants.

One useful identity is
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εjkiεj`m = δk`δim − δkmδi`,

Product identity satisfied by the permu-
tation symbol, εijk .

where δij is the Kronecker delta. Note that the Einstein summation
convention is used in this identity; i.e., summing over j is understood.
So, the left side is really a sum of three terms:

εjkiεj`m = ε1kiε1`m + ε2kiε2`m + ε3kiε3`m.

This identity is simple to understand. For nonzero values of the
Levi-Civita symbol, we have to require that all indices differ for each
factor on the left side of the equation: j 6= k 6= i and j 6= ` 6= m. Since
the first two slots are the same j, and the indices only take values 1, 2,
or 3, then either k = ` or k = m. This will give terms with factors of δk`

or δkm. If the former is true, then there is only one possibility for the
third slot, i = m. Thus, we have a term δk`δim. Similarly, the other case
yields the second term on the right side of the identity. We just need
to get the signs right. Obviously, changing the order of ` and m will
introduce a minus sign. A little care will show that the identity gives
the correct ordering.

Other identities involving the permutation symbol are

εmjkεnjk = 2δmn,

εijkεijk = 6.

We will end this section by recalling triple products. There are only
two ways to construct triple products. Starting with the cross product
b× c, which is a vector, we can multiply the cross product by a a to
either obtain a scalar or a vector.

In the first case we have the triple scalar product, a · (b× c). Actu-
ally, we do not need the parentheses. Writing a ·b× c could only mean
one thing. If we computed a · b first, we would get a scalar. Then the
result would be a multiple of c, which is not a scalar. So, leaving off
the parentheses would mean that we want the triple scalar product by
convention.

Let’s consider the component form of this product. We will use
the Einstein summation convention and the fact that the permutation
symbol is cyclic in ijk. Using εjki = εijk,

a · (b× c) = ai(b× c)i

= εjkiaibjck

= εijkaibjck

= (a× b)kck

= (a× b) · c. (8.24)

We have proven that

a · (b× c) = (a× b) · c.
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Now, imagine how much writing would be involved if we had ex-
panded everything out in terms of all of the components.

Note that this result suggests that the triple scalar product can be
computed by just computing a determinant:

a · (b× c) = εijkaibjck

=

∣∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣∣ . (8.25)

Figure 8.9: Three non-coplanar vectors
define a parallelepiped. The volume is
given by the triple scalar product, a · b×
c.

There is a geometric interpretation of the scalar triple product. Con-
sider the three vectors drawn as in Figure 8.9. If they do not all lie in
a plane, then they form the sides of a parallelepiped. The cross prod-
uct a× b gives the area of the base as we had seen earlier. The cross
product is perpendicular to this base. The dot product of c with this
cross product gives the height of the parallelepiped. So, the volume
of the parallelepiped is the height times the base, or the triple scalar
product. In general, one gets a signed volume, as the cross product
could be pointing below the base.

The second type of triple product is the triple cross product,

a× (b× c) = εmnjεijkaibmcnek.

In this case we cannot drop the parentheses as this would lead to a
real ambiguity. Lets think a little about this product. The vector b× c
is a vector that is perpendicular to both b and c. Computing the triple
cross product would then produce a vector perpendicular to a and
b × c. But the later vector is perpendicular to both b and c already.
Therefore, the triple cross product must lie in the plane spanned by
these vectors. In fact, there is an identity that tells us exactly the right
combination of vectors b and c. It is given by The BAC-CAB rule.

a× (b× c) = b(a · c)− c(a · b). (8.26)

This rule is called the BAC-CAB rule because of the order of the right
side of this equation.

Example 8.4. Prove that a× (b× c) = b(a · c)− c(a · b).
We can prove the BAC-CAB rule the permutation symbol and some identi-

ties. We first use the cross products ei× ej = εijkek and b× c = εmnjbmcnej :

a× (b× c) = (aiei)× ((b× c)jej)

= ai(b× c)j(ei × ej)

= ai(b× c)jεijkek

= εmnjεijkaibmcnek (8.27)
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Now, we use the identity

εmnjεijk = δmkδni − δmiδnk,

the properties of the Kronecker delta functions, and then rearrange the results
to finish the proof:

a× (b× c) = εmnjεijkaibmcnek

= aibmcn (δmkδni − δmiδnk) ek

= anbmcnem − ambmcnen

= (bmem)(cnan)− (cnen)(ambm)

= b(a · c)− c(a · b). (8.28)

8.1.2 Differentiation and Integration of Vectors

You have already been introduced to the idea that vectors can
be differentiated and integrated in your introductory physics course.
These ideas are also the major theme encountered in a multivariate cal-
culus class, or Calculus III. We review some of these topics in the next
sections. We first recall the differentiation and integration of vector
functions.

v(t)

r(t)

O

Figure 8.10: Position and velocity vectors
of moving particle.

The position vector can change in time, r(t) = x(t)i + y(t)j + x(t)k.
The rate of change of this vector is the velocity,

v(t) =
dr
dt

= lim
∆t→0

r(t + ∆t)− r(t)
∆t

=
dx
dt

i +
dy
dt

j +
dz
dt

k

= vxi + vyk + vzk. (8.29)

The velocity vector is tangent to the path, r(t), as seen in Figure 8.1.2.
The magnitude of this vector gives the speed,

|v| =

√(
dx
dt

)2
+

(
dy
dt

)2
+

(
dz
dt

)2
.

Moreover, differentiating this vector gives the acceleration, a(t) =

v′(t).
In general, one can differentiate an arbitrary time-dependent vector

v(t) = f (t)i + g(t)j + h(t)k as

dv
dt

=
d f
dt

i +
dg
dt

j +
dh
dt

k. (8.30)
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Example 8.5. A simple example is given by the motion on a circle. A circle
in the xy-plane can be parametrized as r(t) = r cos(ωt)i + r sin(ωt)j. Then
the velocity is found as

v(t) = −rω sin(ωt)i + rω cos(ωt)j.

Its speed is v = rω, which is easily recognized as the tangential speed. The
acceleration is

a(t) = −ω2r cos(ωt)i−ω2r sin(ωt)j.

The magnitude gives the centripetal acceleration, a = ω2r and the accelera-
tion vector is pointing towards the center of the circle.

v(t)

r(t)
O

Figure 8.11: Particle on circular path.

Once one can differentiate time-dependent vectors, one can prove
some standard properties.

a.
d
dt

[u + v] =
du
dt

+
dv
dt

.

b.
d
dt

[cu] = c
du
dt

.

c.
d
dt

[ f (t)u] = f ′(t)u + f (t)
du
dt

.

d.
d
dt

[u · v] = du
dt
· v + u · dv

dt
.

e.
d
dt

[u× v] =
du
dt
× v + u× dv

dt
.

f.
d
dt

[u( f (t))] =
du
d f

d f
dt

.

Example 8.6. Let |r(t)| =const. Then, r′(t) is perpendicular r(t).
Since |r| =const, |r|2 = r · r =const. Differentiating this expression, one

has d
dt (r · r) = 2r · dr

dt = 0. Therefore, r · dr
dt = 0, as was to be shown.

In this discussion, we have referred to t as the time. However, when
parametrizing spacecurves, t could represent any parameter. For ex-
ample, the circle could be parametrized for t the angle swept out along
any arc of the circle, r(t) = r cos ti + r sin tj, for t1 ≤ t ≤ t2. We can
still differentiate with respect to this parameter. It not longer has the
meaning of velocity. another standard parameter is that of arclength.
The arclength of a path is the distance along the path from some start-
ing point. In deriving an expression for arclength, one first considers
incremental distances along paths. Moving from point (x, y, z) to point
(x + ∆x, y + ∆y, z + ∆z), one has gone a distance of

∆s =
√
(∆x)2 + (∆y)2 + (∆z)2.

Given a curve parametrized by t, such as the time, one can rewrite this
as

∆s =

√(
∆x
∆t

)2
+

(
∆y
∆t

)2
+

(
∆z
∆t

)2
∆t.
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Letting ∆t get small, as well as the other increments, we are led to

ds =

√(
dx
dt

)2
+

(
dy
dt

)2
+

(
dz
dt

)2
dt. (8.31)

We note that the square root is |r′(t)|. So,

ds = |r′(t)|dt,

or
ds
dt

= |r′(t)|.

In order to find the total arclength, we need only integrate over the
parameter range,

s =
∫ t2

t1

|r′(t)| dt.

If t is time and r(t) is the position vector of a particle, then |r′(t)| is
the particle speed and we have that the distance traveled is simply an
integral of the speed,

s =
∫ t2

t1

v dt.

If one is interested in knowing the distance traveled from point r(t1)

to an arbitrary point r(t), one can define the arclength function

s(t) =
∫ t

t1

|r′(τ)| dτ.

Example 8.7. Determine the length of the parabolic path described by r =

ti + t2j, t ∈ [0, 1].
We want to determine the length, L =

∫ 1
0 |r
′(t)| dt, of a path. First, we

have r′(t) = i + 2tj. Then, |r′(t)| =
√

1 + 4t2. Using∫ √
t2 + a2 dt =

1
2

(
t
√

t2 + a2 + a2 ln(t +
√

t2 + a2)
)

,

s =
∫ 1

0
|r′(t)| dt

=
∫ 1

0

√
1 + 4t2 dt

=

[
x

√
x2 +

1
4
+

1
4

ln

(
x +

√
x2 +

1
4

)]1

0

=

√
5

2
+

1
4

ln(2 +
√

5). (8.32)

Line integrals are defined as integrals of functions along a path, or
curve, in space. Let f (x, y, z) be the function, and C a parametrized
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path. Then we are interested in computing
∫

C f (x, y, z) ds, where s
is the arclength parameter. This integral looks similar to the contour
integrals that we had studied in Chapter 5. We can compute such
integrals in a similar manner by introducing the parametrization:∫

C
f (x, y, z) ds =

∫
C

f (x(t), y(t), z(t))|r′(t)| dt.

Example 8.8. Compute
∫

C(x2 + y2 + z2) ds for the helical path r = (cos t, sin t, t),
t ∈ [0, 2π].

In order to do this integral, we have to integrate over the given range of t
values. So, we replace ds with |r′(t)|dt. In this problem |r′(t)| =

√
2. Also,

we insert the parametric forms for x(t) = cos t, y(t) = sin t, and z = t into
f (x, y, z). Thus,

∫
C
(x2 + y2 + z2) ds =

∫ 2π

0
(1 + t2)

√
2 dt = 2

√
2π

(
1 +

4π2

3

)
. (8.33)

One can also integrate vector functions. Given the vector function
v(t) = f (t)i+ g(t)j+ h(t)k, we can do a straight forward term by term
integration,

∫ b

a
v(t) dt =

∫ b

a
f (t) dti +

∫ b

a
g(t) dtj +

∫ b

a
h(t) dtk.

If v(t) is the velocity and t is the time, then

∫ b

a
v(t) dt =

∫ b

a

dr
dt

dt = r(b)− r(a).

We can thus interpret this integral as giving the displacement of a
particle between times t = a and t = b.

At the beginning of this chapter we had recalled the work done on
a body by a nonconstant force F over a path C,

W =
∫

C
F · dr (8.34)

If the path is parametrized by t, then we can write dr = dr
dt dt. Thus the

prescription for computing line integrals such as this is

∫
C

F · dr =
∫

C
F · dr

dt
dt.

There are other forms that such line integrals can take. Let F =

P(x, y, z)i + Q(x, y, z)j + R(x, y, z)k. Noting that dr = dxi + dyy + dzk,
then we can write∫

C
F · dr =

∫
C

P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz.
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Example 8.9. Compute the work done by the force F = yi− xj on a particle
as it moves around the circle r = (cos t)i + (sin t)j, for 0 ≤ t ≤ π.

W =
∫

C
F · dr =

∫
C

y dx− x dy.

One way to complete this is to note that dx = − sin t dt and dy = cos t dt.
Then ∫

C
y dx− x dy =

∫ π

0
(− sin2 t− cos2 t) dt = −π.

8.1.3 Div, Grad, Curl

Throughout physics we see functions which vary in both space
and time. A function f (x, y, z, t) is called a scalar function when the
output is a scalar, or number. An example of such a function is the
temperature. A function F(x, y, z, t) is called a vector (or vector val-
ued) function if the output of the function is a vector. Let v(x, y, z, t)
represent the velocity of a fluid at position (x, y, z) at time t. This is an
example of a vector function. Typically when we assign a number, or a
vector, to every point in a domain, we refer to this as a scalar, or vector,
field. In this section we discuss how fields change from one point in
space to another. Namely, we look at derivatives of multivariate func-
tions with respect to their independent variables and the meanings of
these derivatives in a physical context.

In studying functions of one variable in calculus, one is introduced
to the derivative, d f

dx : The derivative has several meanings. The stan-
dard mathematical meaning is that the derivative gives the slope of
the graph of f (x) at x. The derivative also tells us how rapidly f (x)
varies when x is changed by dx. Recall that dx is called a differential.
We can think of the differential dx as an infinitesimal increment in x.
Then changing x by an amount dx results in a change in f (x) by

d f =
d f
dx

dx.

We can extend this idea to functions of several variables. Consider
the temperature T(x, y, z) at a point in space. The change in tempera-
ture depends on the direction in which one moves in space. Extending
the above relation between differentials of the dependent and indepen-
dent variables, we have

dT =
∂T
∂x

dx +
∂T
∂y

dy +
∂T
∂z

dz. (8.35)

Note that if we only changed x, keeping y and z fixed, then we recover
the form dT = dT

dx dx.
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Introducing the vectors,

dr = dxi + dyj + dzk, (8.36)

The gradient of a function,

∇T =
∂T
∂x

i +
∂T
∂y

j +
∂T
∂z

k, .
∇T ≡ ∂T

∂x
i +

∂T
∂y

j +
∂T
∂z

k, (8.37)

we can write Equation (8.35) as

dT = ∇T · dr (8.38)

Equation (8.37) defines the gradient of a scalar function, T. Equation
(8.38) gives the change in T as one moves in the direction dr.

Using the definition of the dot product, we also have

dT = |∇T||dr| cos θ.

Note that by fixing |dr| and varying θ, the maximum value of dT is
obtained when cos θ = 1. Thus, the maximum value of dT is in the
direction of the gradient. Similarly, since cos π = −1, the minimum
value of dT is in a direction 180◦ from the gradient. The greatest change is a function is in the

direction of its gradient.
Example 8.10. Let f (x, y, z) = x2y + zexy. Compute ∇ f .

∇ f =
∂ f
∂x

i +
∂ f
∂y

j +
∂ f
∂z

k,

= (2xy + yzexy)i + (x2 + xzexy)j + exyk. (8.39)

From this analysis, we see that the rate of change of a function, such
as T(x, y, z, ), depends on the direction one heads away from a given
point. So, if one moves an infinitesimal distance ds in some direction
dr, then how does T change with respect to s? Another way to ask
this is to ask what is the directional derivative of T in direction n? We
define this directional derivative as The directional derivative of a function,

DnT = dT
ds = ∇T · n.

DnT =
dT
ds

. (8.40)

We can develop an operational definition of the directional deriva-
tive. From Equation (8.38) we have

dT
ds

= ∇T · dr
ds

. (8.41)

We note that
dr
ds

=

(
dx
ds

)
i +
(

dy
ds

)
j +
(

dz
ds

)
k

and ∣∣∣∣dr
ds

∣∣∣∣ =
√(

dx
ds

)2
+

(
dy
ds

)2
+

(
dz
ds

)2
= 1.

Thus, n = dr
ds is a unit vector pointing in the direction of interest and

the directional derivative of T(x, y, z) in direction n can be written as

DnT = ∇T · n. (8.42)
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Example 8.11. Let the temperature in a rectangular plate be given by T(x, y) =
5.0 sin 3πx

2 sin πy
2 . Determine the directional derivative at (x, y) = (1, 1) in

the following directions: (a) i, (b) 3i + 4j.
In part (a) we have

DiT = ∇T · i = ∂T
∂x

.

So,

DiT
∣∣∣∣
(1,1)

=
15
2

cos
3π

2
sin

π

2
= 0.

In part (b) the direction given is not a unit vector, |3i + 4j| = 5. Dividing
by the length of the vector, we obtain a unit normal vector, n = 3

5 i + 4
5 j. The

directional derivative can now be computed:

DnT = ∇T · n

=
3
5

∂T
∂x

+
4
5

∂T
∂y

=
9π

2
cos

3πx
2

sin
πy
2

+ 2π sin
3πx

2
cos

πy
2

. (8.43)

Evaluating this result at (x, y) = (1, 1), we have

DnT
∣∣∣∣
(1,1)

=
9π

2
cos

3π

2
sin

π

2
+ 2π sin

3π

2
cos

π

2
= 0.

We can write the gradient in the form

∇T =

(
∂

∂x
i +

∂

∂y
j +

∂

∂z
k
)

T. (8.44)

Thus, we see that the gradient can be viewed as an operator acting on
T. The operator,

∇ =
∂

∂x
i +

∂

∂y
j +

∂

∂z
k,

is called the del, or gradient, operator. It is a differential vector operator.
It can act on scalar functions to produce a vector field. Recall, if the
gravitational potential is given by Φ(r), then the gravitational force is
found as F = −∇Φ.

We can also allow the del operator to act on vector fields. Recall
that a vector field is simply a vector valued function. For example, a
force field is a function defined at points in space indicating the force
that would act on a mass placed at that location. We could denote it as
F(x, y, z). Again, think about the gravitational force above. The force
acting on a mass in the Earth’s gravitational field is a given by a vector
field. At each point in space one would see that the force vector takes
on different magnitudes and directions depending upon the location
of the mass in space.

How can we combine the (vector) del operator and a vector field?
Well, we could “multiply” them. We could either compute the dot
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product, ∇ · F, or we could compute the cross product ∇× F. The first
expression is called the divergence of the vector field and the second is
called the curl of the vector field. These are typically encountered in a
third semester calculus course. In some texts they are denoted by div
F and curl F.

The divergence is computed the same as any other dot product. The divergence, div F = ∇ · F.

Writing the vector field in component form,

F = F1(x, y, z)i + F2(x, y, z)j + F3(x, y, z)k,

we find the divergence is simply given as

∇ · F =

(
∂

∂x
i +

∂

∂y
j +

∂

∂z
k
)
· (F1i + F2j + F3k)

=
∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z
(8.45)

Similarly, we can compute the curl of F. Using the determinant The curl F = ∇× F.

form, we have

∇× F =

(
∂

∂x
i +

∂

∂y
j +

∂

∂z
k
)
× (F1i + F2j + F3k)

=

∣∣∣∣∣∣∣
i j k
∂

∂x
∂

∂y
∂

∂y

F1 F2 F3

∣∣∣∣∣∣∣
=

(
∂F3

∂y
− ∂F2

∂z

)
i +
(

∂F1

∂z
− ∂F3

∂x

)
j +
(

∂F2

∂x
− ∂F1

∂y

)
k.

(8.46)

Example 8.12. Compute the divergence and curl of the vector field: F =

yi− xj.

∇ · F =
∂y
∂x
− ∂x

∂y
= 0.

∇× F =

∣∣∣∣∣∣∣
i j k
∂

∂x
∂

∂y
∂

∂y

y −x 0

∣∣∣∣∣∣∣
=

(
−∂x

∂x
− ∂y

∂y

)
k = −2. (8.47)

These operations also have interpretations. The divergence mea-
sures how much the vector field F spreads from a point. When the
divergence of a vector field is nonzero around a point, that is an in-
dication that there is a source (div F > 0) or a sink (div F < 0). For
example, ∇ · E = ρ

ε0
indicates that there are sources contributing to the

electric ŕled. For a single charge, the field lines are radially pointing
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towards (sink) or away from (source) the charge. A field in which the
divergence is zero is called divergenceless or solenoidal.

The curl is an indication of a rotational field. It is a measure of how
much a field curls around a point. Consider the flow of a stream. The
velocity of each element of fluid can be represented by a velocity field.
If the curl of the field is nonzero, then when we drop a leaf into the
stream we will see it begin to rotate about some point. A field that has
zero curl is called irrotational.

The last common differential operator is the Laplace operator. This The Laplace operator, ∇2 f = ∂2 f
∂x2 +

∂2 f
∂y2 + ∂2 f

∂z2 .is the common second derivative operator, the divergence of the gra-
dient,

∇2 f = ∇ · ∇ f .

It is easily computed as

∇2 f = ∇ · ∇ f

= ∇ ·
(

∂ f
∂x

i +
∂ f
∂y

j +
∂ f
∂z

k
)

=
∂2 f
∂x2 +

∂2 f
∂y2 +

∂2 f
∂z2 . (8.48)

8.1.4 The Integral Theorems

Maxwell’s equations are given later in this chapter in dif-
ferential form and only describe electric and magnetic fields locally.
At times we would like to also provide global information, or informa-
tion over an finite region. In this case one can derive various integral
theorems. These are the finale in a three semester calculus sequence.
We will not delve into these theorems here, as this will take us away
from our goal of deriving a three dimensional wave equation. How-
ever, these integral theorems are important and useful in deriving local
conservation laws.

These theorems are all different versions of a generalized Funda-
mental Theorem of Calculus:

(a)
∫ b

a
d f
dx dx = f (b)− f (a), The Fundamental Theorem of

Calculus in 1D.

(b)
∫ b

a ∇T · dr = T(b)− T(a), The Fundamental Theorem
of Calculus for Vector Fields.

(c)
∮

C (P dx + Q dy) =
∫

D

(
∂Q
∂x −

∂P
∂y

)
dxdy, Green’s Theo-

rem in the Plane.

(d)
∫

V ∇ · F dV =
∮

S F · da, Gauss’ Divergence Theorem.

(e)
∫

S(∇× F) · da =
∮

C F · dr, Stoke’s Theorem.
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The connections between these integral theorems are probably more
easily seen by thinking in terms of fluids. Consider a fluid with mass
density ρ(x, y, z) and fluid velocity v(x, y, z, t). We define (Q) = ρv as
the mass flow rate. [Note the units are kg/m2/s indicating the mass
per area per time.]

Now consider the fluid flowing through an imaginary rectangular
box. Let the fluid flow into the left face and out the right face. The
rate at which the fluid mass flows through a face can be represented
by Q · dσ, where dσ = ndσ represents the differential area element
normal to the face. The rate of flow across the left face is

Q · dσ = −Qy dxdz
∣∣∣
y

and that flowing across the right face is

Q · dσ = Qy dxdz
∣∣∣
y+dy

.

The net flow rate is the sum of these

Qydxdz
∣∣∣
y+dy
−Qydxdz

∣∣∣
y
=

∂Qy

∂y
dxdydz.

A similar computation can be done for the other faces, leading to
the result that the total rate of flow is ∇ ·Q dτ, where dτ = dxdydz is
the volume element. So, the rate of flow per volume from the volume
element gives

∇ ·Q = −∂ρ

∂t
.

Note that if more fluid is flowing out the right face than is flowing into Conservation of mass equation,

∂ρ

∂t
+∇ ·Q = 0.

the left face, then the amount of fluid inside the region will decrease.
That is why the right hand side of this equation has the negative sign.

If the fluid is incompressible, i.e., ρ =const., then ∇ ·Q = 0, which
implies ∇ · v = 0 assuming there are no sinks or sources. If there
were a sink in the rectangular box, then there would be a loss of fluid
not accounted for. Likewise, is a hose were inserted and fluid were
supplied, then one would have a source.

If there are sinks, or sources, then the net mass due to these would
contribute to an overall flow through the surrounding surface. This is
captured by the equation Gauss’ Divergence Theorem∫

V
∇ ·Q dτ︸ ︷︷ ︸

Net mass due to sink/sources

=
∮

S
Q · n dσ︸ ︷︷ ︸

Net flow outward from S

. (8.49)

Dividing out the constant mass density, since Q = ρv, this becomes

∫
V
∇ · v dτ =

∮
S

v · n dσ. (8.50)
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The surface integral on the right had side is called the flux of the vector
field through surface S. This is nothing other than Gauss’ Divergence
Theorem.1 1 We should note that the Divergence

Theorem holds provided v is a continu-
ous vector field and has continuous par-
tial derivatives in a domain containing
V. Also, n is the outward normal to the
surface S.

The unit normal can be written in terms of the direction cosines,

n = cos αi + cos βj + cos γk,

where the angles are the directions between n and the coordinate axes.
For example, n · i = cos α. For vector v = v1i + v2j + v3k, we have∫

S
v · n dσ =

∫
S
(v1 cos α + v2 cos β + v3 cos γ) dσ

=
∫

S
(u1dydz + u2dzdx + u3dxdy). (8.51)

Example 8.13. Use the Divergence Theorem to compute∫
S
(x2dydz + y2dzdx + z2dxdy)

for S the surface of the unit cube, [0, 1]× [0, 1]× [0, 1].
We first compute the divergence of the vector v = x2i + y2j + z2k, which

we obtained from the coefficients in the given integral. Then

∇ · v =
∂x2

∂x
+

∂y2

∂y
+

∂z2

∂z
= 2(x + y + z).

Then,∫
S
(x2dydz + y2dzdx + z2dxdy) =

∫
V

2(x + y + z) dτ

= 2
∫ 1

0

∫ 1

0

∫ 1

0
(x + y + z) dxdydz

= 2
∫ 1

0

∫ 1

0
(

1
2
+ y + z) dydz

= 2
∫ 1

0
(

1
2
+

1
2
+ z) dz

= 2(1 +
1
2
) = 3. (8.52)

The other integral theorem’s are just a variation of the divergence
theorem. For example, a two dimensional version of this obtained
by considering a simply connected region, D, bounded by a simple
closed curve, C. One could think of the laminar flow of a thin sheet of
fluid. Then the total mass in contained in D and the net mass would be
related to the next flow through the boundary, C. The integral theorem
for this situation is given as∫

D
∇ · v dA =

∮
C

v · n ds. (8.53)

The tangent vector to the curve at point r on the curve C, is

dr
ds

=
dx
ds

i +
dy
ds

j.
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Therefore, the outward normal at that point is given by

n =
dy
ds

i− dx
ds

j.

Letting v = Q(x, y)i − P(x, y)j, the two dimensional version of the
Divergence Theorem becomes Green’s Theorem in the Plane, which is

a special case of Stoke’s Theorem.∮
C
(P dx + Q dy) =

∫
D

(
∂Q
∂x
− ∂P

∂y

)
dxdy. (8.54)

This is just Green’s Theorem in the Plane.

Example 8.14. Evaluate
∫

C(e
x − 3y) dx + (ey + 6x) dy for C given by x2 +

4y2 = 4.
Green’s Theorem in the Plane gives

∫
C
(ex − 3y) dx + (ey + 6x) dy =

∫
S

(
∂

∂x
(ey + 6x)− ∂

∂y
(ex − 3y)

)
dxdy

=
∫

S
(6 + 3) dxdy

= 9
∫

S
dxdy. (8.55)

The integral that we need to compute is simply the area of the ellipse
x2 + 4y2 = 4. Recall that the area of an ellipse with semimajor axis a and
semiminor axis b is πab. For this ellipse a = 2 and b = 1. So,∫

C
(ex − 3y) dx + (ey + 6x) dy = 18π.

We can obtain Stoke’s Theorem by applying the Divergence Theo-
rem to the vector v× n.∫

V
∇ · (v× n) dτ =

∮
S

ns · (v× n) dσ. (8.56)

Here ns = u× n where u is tangent to the curve C, and n is normal to
the domain D. Noting that (u× n)× (v× n) = v · u and ∇ · (v× n) =
n · ∇ × v, then∫ h

0

(∫
D

n · ∇ × v dσ

)
dh =

∫ h

0

(∮
C

v · u ds
)

dh. (8.57)

Since h is arbitrary, then we obtain Stoke’s Theorem: Stoke’s Theorem.

∫
D

n · ∇ × v dσ =
∮

C
v · u ds. (8.58)

Example 8.15. Evaluate
∫

C(z dx + x dy + y dz) for C the boundary of the
triangle with vertices (1,0,0), (0,1,0), (0,0,1) using Stoke’s Theorem.
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We first identify the vector v = zi + xj + yk. Then, we compute the curl,

∇× v =

∣∣∣∣∣∣∣
i j k
∂

∂x
∂

∂y
∂

∂y

z x y

∣∣∣∣∣∣∣
= i + j + k. (8.59)

Stoke’s Theorem then gives∫
C
(z dx + x dy + y dz) =

∫
D

n · (i + j + k) dσ,

where n is the outward normal to the surface of the triangle. For a surface
defined by φ(x, y, z) =const, the normal is in the direction of∇φ. In this case
the triangle lives in the plane x + y + z = 1. Thus, φ(x, y, z) = x + y + z
and ∇φ = i + j + k. Thus,∫

C
(z dx + x dy + y dz) = 3

∫
D

dσ.

The remaining integral is just the area of the triangle. We can determine
this area as follows. Imagine the vectors a and b pointing from (1,0,0) to
(0,1,0) and from (1,0,0) to (0,0,1), respectively. So, a = j− i and b = k− i.

These vectors are the sides of a parallelogram whose area is twice that of
the triangle. The area of the parallelogram is given by |a× b|. The area of the
triangle is thus ∫

D
dσ =

1
2
|a× b|

=
1
2
|(j− i)× (k− i)|

=
1
2
|i + j + k| = 3

2
. (8.60)

Finally, we have ∫
C
(z dx + x dy + y dz) =

9
2

.

8.1.5 Vector Identities

In this section we will list some common vector identities and show
how to prove a few of them. We will introduce two triple products and
list first derivative and second derivative identities. These are useful
in reducing some equations into simpler forms.

Proving these identities can be straight forward, though sometimes
tedious in the more complicated cases. You should try to prove these
yourself. Sometimes it is useful to write out the components on each
side of the identity and see how one can fill in the needed arguments
which would provide the proofs. We will provide a couple of examples
of this process.
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1. Triple Products

(a) A · (B× C) = B · (C×A) = C · (A× B)

(b) A× (B× C) = B(A · C)− C(A · B)

2. First Derivatives

(a) ∇( f g) = f∇g + g∇ f

(b) ∇(A · B) = A× (∇× B) + B× (∇×A) + (A · ∇)B + (B · ∇)A
(c) ∇ · ( f A) = f∇ ·A + A · ∇ f

(d) ∇ · (A× B) = B · (∇×A)−A · (∇× B)

(e) ∇× ( f A) = f∇×A−A×∇ f

(f) ∇× (A× B) = (B · ∇)A− (A · ∇)B + A(∇ · B)− B(∇ ·A)

3. Second Derivatives

(a) ∇ · (∇×A) = 0 div curl = 0.

(b) ∇× (∇ f ) = 0 curl grad= 0.

(c) ∇ · (∇ f ×∇g) = 0

(d) ∇2( f g) = f∇2g + 2∇ f · ∇g + g∇2 f
(e) ∇ · ( f∇g− g∇ f ) = f∇2g− g∇2 f
(f) ∇× (∇×A) = ∇(∇ ·A)−∇2A

Example 8.16. Prove A · (B× C) = B · (C×A).
In such problems one can write out the components on both sides of the

identity. Using the determinant form of the triple scalar, the left hand side
becomes

A · (B× C) =

∣∣∣∣∣∣∣
A1 A2 A3

B1 B2 B3

C1 C2 C3

∣∣∣∣∣∣∣
= A1(B2C3 − B3C2)− A2(B1C3 − B3C1) + A3(B1C2 − B2C1).

(8.61)

Similarly, the right hand side is given as

B · (C×A) =

∣∣∣∣∣∣∣
B1 B2 B3

C1 C2 C3

A1 A2 A3

∣∣∣∣∣∣∣
= B1(C2 A3 − C3 A2)− B2(C1 A3 − C3 A1) + B3(C1 A2 − C2 A1).

(8.62)

We can rearrange this result by separating out the components of A.

B1(C2 A3 − C3 A2)− B2(C1 A3 − C3 A1) + B3(C1 A2 − C2 A1)

= A1(B2C3 − B3C2) + A2(B3C1 − B1C3) + A3(B1C2 − B2C1).

(8.63)
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Upon inspection, we see that we obtain the same result as we had for the left
hand side.

This problem can also be solved using the completely antisymmetric sym-
bol, εijk. Recall that the scalar triple product is given by

A · (B× C) = εijk AiBjCk.

(We have employed the Einstein summation convention.) Since εijk = εjki,
we have

εijk AiBjCk = εjki AiBjCk = εjkiBjCk Ai.

But,
εjkiBjCk Ai = B · (C×A).

So, we have once again proven the identity. However, it took a little less work
and an understanding of the antisymmetric symbol. Furthermore, you should
note that this identity was proven earlier in the chapter.

Example 8.17. Prove∇( f g) = f∇g + g∇ f . In this problem we compte the
gradient of f g. Then we note that each derivative is the derivative of a product
and apply the Product Rule. Carefully writing out the terms, we obtain the
desired result.

∇( f g) =
∂ f g
∂x

i +
∂ f g
∂y

j +
∂ f g
∂z

k

=

(
∂ f
∂x

i +
∂ f
∂y

j +
∂ f
∂z

k
)

g + f
(

∂g
∂x

i +
∂g
∂y

j +
∂g
∂z

k
)

= f∇g + g∇ f . (8.64)

8.2 Electromagnetic Waves

8.2.1 Maxwell’s Equations

There are many applications leading to the equations in Table
8.1. One goal of this chapter is to derive the three dimensional wave
equation for electromagnetic waves. This derivation was first carried
out by James Clerk Maxwell in 1860. At the time much was known
about the relationship between electric and magnetic fields through
the work of of such people as Hans Christian Ørstead (1777-1851),
Michael Faraday (1791-1867), and André-Marie Ampère. Maxwell pro-
vided a mathematical formalism for these relationships consisting of
twenty partial differential equations in twenty unknowns. Later these
equations were put into more compact notations, namely in terms of
quaternions, only later to be cast in vector form.

Quaternions were introduced in 1843

by William Rowan Hamilton (1805-1865)
as a four dimensional generalization of
complex numbers.

In vector form, the original Maxwell’s equations are given as

∇ ·D = ρ
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∇×H = µ0Jtot
D = εE

J = σE

Jtot = J
∂D
∂t

∇ · J = −∂ρ

∂t

E = −∇φ− ∂A
∂t

µH = ∇×A. (8.65)

Note that Maxwell expressed the electric and magnetic fields in terms
of the scalar and vector potentials, φ and A, respectively, as defined in
the last two equation. Here H is the magnetic field, D is the electric
displacement field, E is the electric field, J is the current density, ρ is
the charge density, and σ is the conductivity.

This set of equations differs from what we typically present in physics
courses. Several of these equations are defining quantities. While the
potentials are part of a course in electrodynamics, they are not cast as
the core set of equations now referred to as Maxwell’s equations. Also,
several equations are given as defining relations between the various
variables, though they have some physical significance of their own,
such as the continuity equation, given by ∇ · J = − ∂ρ

∂t .
Furthermore, the distinction between the magnetic field strength,

H, and the magnetic flux density, B, only becomes important in the
presence of magnetic materials. Students are typically first introduced
to B in introductory physics classes. In general, B = µH, where µ is
the magnetic permeability of a material. In the absence of magnetic
materials, µ = µ0. In fact, in many applications of the propagation of
electromagnetic waves, µ ≈ µ0.

These equations can be written in a more familiar form. The equa-
tions that we will refer to as Maxwell’s equations from now on are

∇ · E =
ρ

ε0
, (Gauss’ Law)

∇ · B = 0

∇× E = −∂B
∂t

, (Faraday’s Law)

∇× B = µ0J + µ0ε0
∂E
∂t

, (Maxwell-Ampère Law) (8.66)

We have noted the common names attributed to each law. There are
corresponding integral forms of these laws, which are often presented
in introductory physics class. The first law is Gauss’ law. It allows one
to determine the electric field due to specific charge distributions. The
second law typically has no name attached to it, but in some cases is
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called Gauss’ law for magnetic fields. It simply states that there are
no free magnetic poles. The third law is Faraday’s law, indicating that
changing magnetic flux induces electric potential differences. Lastly,
the fourth law is a modification of Ampere’s law that states that electric
currents produce magnetic fields.

It should be noted that the last term in the fourth equation was
introduced by Maxwell. As we have seen, the divergence of the curl of
any vector is zero, The divergence of the curl of any vector

is zero.
∇ · (∇×V) = 0.

Computing the divergence of the curl of the electric field, we find from
Maxwell’s equations that

∇ · (∇× E) = −∇ · ∂B
∂t

= − ∂

∂t
∇ · B = 0. (8.67)

Thus, the relation works here.
However, before Maxwell, Ampère’s law in differential form would Ampère’s law in differential form.

have been written as

∇× B = µ0J.

Computing the divergence of the curl of the magnetic field, we have The introduction of the displacement
current makes Maxwell’s equations
mathematically consistent.∇ · (∇× B) = µ0∇ · J

= −µ0
∂ρ

∂t
. (8.68)

Here we made use of the continuity equation,

µ0
∂ρ

∂t
+ µ0∇ · J = 0.

As you can see, the vector identity, div curl = 0, does not work
here! Maxwell argued that we need to account for a changing charge
distribution. He introduced what he called the displacement current,
µ0ε0

∂E
∂t into the Ampère Law. Now, we have

∇ · (∇× B) = µ0∇ ·
(

J + µ0ε0
∂E
∂t

)
= −µ0

∂ρ

∂t
+ µ0ε0

∂

∂t
∇ · E

= −µ0
∂ρ

∂t
+ µ0ε0

∂

∂t

(
ρ

ε0

)
= 0. (8.69)

So, Maxwell’s introduction of the displacement current was not only
physically important, it made the equations mathematically consistent.
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8.2.2 Electromagnetic Wave Equation

We are now ready to derive the wave equation for electromagnetic
waves. We will consider the case of free space in which there are no
free charges or currents and the waves propagate in a vacuum. We
then have Maxwell’s equations in the form Maxwell’s equations in a vacuum.

∇ · E = 0,

∇ · B = 0,

∇× E = −∂B
∂t

,

∇× B = µ0ε0
∂E
∂t

. (8.70)

We will derive the wave equation for the electric field. You should
confirm that a similar result can be obtained for the magnetic field.
Consider the expression ∇× (∇× E). We note that the identities give

∇× (∇× E) = ∇(∇ · E)−∇2E.

However, the divergence of E is zero, so we have

∇× (∇× E) = −∇2E. (8.71)

We can also use Faraday’s Law on the right side of this equation to
obtain

∇× (∇× E) = −∇×
(

∂B
∂t

)
.

Interchanging the time and space derivatives, and using the Ampere-
Maxwell Law, we find

∇× (∇× E) = − ∂

∂t
(∇× B)

= − ∂

∂t

(
ε0µ0

∂E
∂t

)
= −ε0µ0

∂2E
∂t2 . (8.72)

The three dimensional wave equations
for electric and magnetic fields in a vac-
uum.

Combining the two expressions for∇× (∇×E), we have the sought
result:

ε0µ0
∂2E
∂t2 = ∇2E.

This is the three dimensional equation for an oscillating electric
field. A similar equation can be found for the magnetic field,

ε0µ0
∂2B
∂t2 = ∇2B.

Recalling that ε0 = 8.85 × 10−12 C2/Nm2 and µ0 = 4π × 10−7

N/A2, one finds that c = 3× 108 m/s.
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One can derive more general equations. For example, we could
look for waves in what are called linear media. In this case one has
D = εE and B = µH. Here ε is called the electric permittivity and µ is
the magnetic permeability of the material. Then, the wave speed in a
vacuum, c, is replaced by the wave speed in the medium, v. It is given
by

v =
1
√

εµ
=

c
n

.

Here, n is the index of refraction, n =
√

εµ
ε0µ0

. In many materials µ ≈
µ0. Introducing the dielectric constant, κ = ε

ε0
, one finds that n ≈

√
κ.

The wave equations lead to many of the properties of the elec-
tric and magnetic fields. We can also study systems in which these
waves are confined, such as waveguides. In such cases we can impose
boundary conditions and determine what modes are allowed to prop-
agate within certain structures, such as optical fibers. However, these
equation involve unknown vector fields. We have to solve for several
inter-related component functions. In the next chapter we will look
at simpler models in order to get some ideas as to how one can solve
scalar wave equations in higher dimensions. However, we will first ex-
plore how the differential operators introduced in this chapter appear
in different coordinate systems.

8.2.3 Potential Functions and Helmholtz’s Theorem

Another application of the use of vector analysis for study-
ing electromagnetism is that of potential theory. In this section we de-
scribe the use of a scalar potential, φ(r, t) and a vector potential, A(r, t)
to solve problems in electromagnetic theory. Helmholtz’s theorem says

Hermann Ludwig Ferdinand von
Helmholtz (1821-1894) made many
contributions to physics. There are
several theorems named after him.

that a vector field is uniquely determined by knowing its divergence
and its curl. Combining this result with the definitions of the electric
and magnetic potentials, we will show that Maxwell’s equations will
the electric and magnetic fields can be found by simply solving a set
of Poisson equations, ∇2u = f , for the potential functions. A vector field is uniquely determined by

knowing its divergence and its curl.In the case of static fields, we have from Maxwell’s equations
Electric and magnetic potentials.

∇ · B = 0, ∇× E = 0.

We saw earlier in this chapter that the curl of a gradient is zero and
the divergence of a curl is zero. This suggests that E is the gradient of
a scalar function and B is the curl of a vector function:

E = −∇φ,

B = ∇×A.
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φ is called the electric potential and A is called the magnetic potential.
The remaining Maxwell equations are

∇ · E =
ρ

ε0
, ∇× B = µ0J.

Inserting the potential functions, we have

∇2φ = − ρ

ε0
, ∇× (∇×A) = µ0J.

Thus, φ satisfies a Poisson equation, which is a simple partial differ-
ential equation which can be solved using separation of variables, or
other techniques.

The equation satisfied by the magnetic potential looks a little more
complicated. However, we can use the identity

∇× (∇×A) = ∇(∇ ·A)−∇2A.

If ∇ ·A = 0, then we find that

∇2A = −µ0J.

Thus, the components of the magnetic potential also satisfy Poisson
equations!

It turns out that requiring ∇ · A = 0 is not as restrictive as one
might first think. Potential functions are not unique. For example,
adding a constant to a potential function will still give the same fields.
For example

∇(φ + c) = ∇φ = −E.

This is not too alarming because it is the field that is physical and
not the potential. In the case of the magnetic potential, adding the
gradient of some field gives the same magnetic field, ∇× (A +∇ψ) =

∇×A = B. So, we can choose ψ such that the new magnetic potential
is divergenceless, ∇ · A = 0. A particular choice of the scalar and
vector potentials is a called a gauge and the process is called fixing,
or choosing, a gauge. The choice of ∇ · A = 0 is called the Coulomb
gauge. Coulomb gauge: ∇ ·A = 0.

If the fields are dynamic, i.e., functions of time, then the magnetic
potential also contributes to the electric field. In this case, we have

E = −∇φ− ∂A
∂t

,

B = ∇×A.

Thus, two of Maxwell’s equations are automatically satisfied,

∇ · B = 0, ∇× E = −∂B
∂t

.
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The other two equations become

∇ · E =
ρ

ε0
⇒ ∇2φ +

∂

∂t
∇ ·A = − ρ

ε0
,

and
∇× B = µ0J + µ0ε0

∂E
∂t
⇒

∇(∇ ·A)−∇2A = µ0J− 1
c2

∂

∂t

(
∇φ +

∂A
∂t

)
.

Rearranging, we have(
∇2 − 1

c2
∂2

∂t2

)
A−∇

(
∇ ·A +

1
c2

∂φ

∂t

)
= −µ0J.

If we choose the Lorentz gauge, by requiring Lorentz gauge: ∇ ·A + 1
c2

∂φ
∂t = 0.

∇ ·A +
1
c2

∂φ

∂t
,

then In relativity, one defines the
d’Alembertian by � ≡ 1

c2
∂2

∂t2 − ∇2.
Then, the equations for the potentials
become

�φ =
ρ

ε0
,

and
�A = µ0J.

(
∇2 − 1

c2
∂2

∂t2

)
φ = − ρ

ε0
,(

∇2 − 1
c2

∂2

∂t2

)
A = −µ0J.

Thus, the potential satisfy nonhomogeneous wave equations, which
can be solved with standard methods as one will see in a course in
electrodynamics.

The above introduction of potentials to describe the electric and
magnetic fields is a special case of Helmholtz’s Theorem for vectors.
This theorem states that “any sufficiently smooth, rapidly decaying
vector field in three dimensions can be resolved into the sum of an irro-
tational (curl-free) vector field and a solenoidal (divergence-free) vec-
tor field.”2 This is known as the Helmholtz decomposition. Namely, 2 Wikipedia entry for the Helmholtz de-

composition.given any nice vector field v, we can write it as

v = −∇φ︸ ︷︷ ︸
irrotational

+ ∇×A︸ ︷︷ ︸
solenoidal

.

Given
∇ · v = ρ, ∇× v = F,

then one has
∇2φ = ρ

and
∇(∇ ·A)−∇2A = F.

Forcing ∇ ·A = 0,
∇2A = −F.

Thus, one obtains Poisson equations for φ and A. This is just repeating
the above procedure which we had seen in the special case of static
electromagnetic fields.
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8.3 Curvilinear Coordinates

In order to study solutions of the wave equation, the heat
equation, or even Schrödinger’s equation in different geometries, we
need to see how differential operators, such as the Laplacian, appear
in these geometries. The most common coordinate systems arising in
physics are polar coordinates, cylindrical coordinates, and spherical
coordinates. These reflect the common geometrical symmetries often
encountered in physics.

In such systems it is easier to describe boundary conditions and
to make use of these symmetries. For example, specifying that the
electric potential is 10.0 V on a spherical surface of radius one, we
would say φ(x, y, z) = 10 for x2 + y2 + z2 = 1. However, if we use
spherical coordinates, (r, θ, φ), then we would say φ(r, θ, φ) = 10 for
r = 1, or φ(1, θ, φ) = 10. This is a much simpler representation of the
boundary condition.

However, this simplicity in boundary conditions leads to a more
complicated looking partial differential equation in spherical coordi-
nates. In this section we will consider general coordinate systems and
how the differential operators are written in the new coordinate sys-
tems. In the next chapter we will solve some of these new problems.

We begin by introducing the general coordinate transformations be-
tween Cartesian coordinates and the more general curvilinear coordi-
nates. Let the Cartesian coordinates be designated by (x1, x2, x3) and
the new coordinates by (u1, u2, u3). We will assume that these are re-
lated through the transformations

x1 = x1(u1, u2, u3),

x2 = x2(u1, u2, u3),

x3 = x3(u1, u2, u3). (8.73)

Thus, given the curvilinear coordinates (u1, u2, u3) for a specific point
in space, we can determine the Cartesian coordinates, (x1, x2, x3), of
that point. We will assume that we can invert this transformation:
Given the Cartesian coordinates, one can determine the corresponding
curvilinear coordinates. Need to insert figures depicting this.

In the Cartesian system we can assign an orthogonal basis, {i, j, k}.
As a particle traces out a path in space, one locates its position by
the coordinates (x1, x2, x3). Picking x2 and x3 constant, the particle lies
on the curve x1 = value of the x1 coordinate. This line lies in the
direction of the basis vector i. We can do the same with the other co-
ordinates and essentially map out a grid in three dimensional space.
All of the xi-curves intersect at each point orthogonally and the basis
vectors {i, j, k} lie along the grid lines and are mutually orthogonal.
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We would like to mimic this construction for general curvilinear co-
ordinates. Requiring the orthogonality of the resulting basis vectors
leads to orthogonal curvilinear coordinates.

As for the Cartesian case, we consider u2 and u3 constant. This
leads to a curve parametrized by u1 : r = x1(u1)i + x2(u1)j + x3(u1)k.
We call this the u1-curve. Similarly, when u1 and u3 are constant we
obtain a u2-curve and for u1 and u2 constant we obtain a u3-curve. We
will assume that these curves intersect such that each pair of curves
intersect orthogonally. Furthermore, we will assume that the unit tan-
gent vectors to these curves form a right handed system similar to the
{i, j, k} systems for Cartesian coordinates. We will denote these as
{û1, û2, û3}.

We can quantify all of this. Consider the position vector as a func-
tion of the new coordinates,

r(u1, u2, u3) = x1(u1, u2, u3)i + x2(u1, u2, u3)j + x3(u1, u2, u3)k.

Then the infinitesimal change in position is given by

dr =
∂r

∂u1
du1 +

∂r
∂u2

du2 +
∂r

∂u3
du3 =

3

∑
i=1

∂r
∂ui

dui.

We note that the vectors ∂r
∂ui

are tangent to the ui-curves. Thus, we
define the unit tangent vectors

ûi =

∂r
∂ui∣∣∣ ∂r
∂ui

∣∣∣ .
Solving for the tangent vector, we have

∂r
∂ui

= hiûi,

where The scale factors, hi ≡
∣∣∣ ∂r

∂ui

∣∣∣ .

hi ≡
∣∣∣∣ ∂r
∂ui

∣∣∣∣
are called the scale factors for the transformation.

Example 8.18. Determine the scale factors for the polar coordinate transfor-
mation. Show an annotated polar plot here.

The transformation for polar coordinates is

x = r cos θ, y = r sin θ.

Here we note that x1 = x, y1 = y, u1 = r, and u2 = θ. The u1-curves
are curves with θ = const. Thus, these curves are radial lines. Similarly,
the u2-curves have r = const. These curves are concentric circles about the
origin.
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The unit vectors are easily found. We will denote them by ûr and ûθ . We
can determine these unit be first computing ∂r

∂ui
. Let

r = x(r, θ)i + y(r, θ)j = r cos θi + r sin θj.

Then,

∂r
∂r

= cos θi + sin θj

∂r
∂θ

= −r sin θi + r cos θj. (8.74)

The first vector already is a unit vector. So,

ûr = cos θi + sin θj.

The second vector has length r since | − r sin θi + r cos θj| = r. Dividing ∂r
∂θ

by r, we have
ûθ = − sin θi + cos θj.

We can see these vectors are orthogonal and form a right hand system. That
they form a right hand system can be seen by either drawing the vectors, or
computing the cross product,

(cos θi + sin θj)× (− sin θi + cos θj) = k.

Since

∂r
∂r

= ûr,

∂r
∂θ

= rûθ ,

The scale factors are hr = 1 and hθ = r.

We have determined that once we know the scale factors, we have
that

dr =
3

∑
i=1

hiduiûi.

The infinitesimal arclength is then given by

ds2 = dr · dr =
3

∑
i=1

h2
i du2

i

when the system is orthogonal. Also, along the ui-curves,

dr = hiduiûi, (no summation).

So, we consider at a given point (u1, u2, u3) an infinitesimal paral-
lelepiped of sides hidui, i = 1, 2, 3. This infinitesimal parallelepiped
has a volume of size

dV =

∣∣∣∣ ∂r
∂u1
· ∂r

∂u2
× ∂r

∂u3

∣∣∣∣ du1du2du3.
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The triple scalar product can be computed using determinants and the
resulting determinant is call the Jacobian, and is given by

J =

∣∣∣∣ ∂(x1, x2, x3)

∂(u1, u2, u3)

∣∣∣∣
=

∣∣∣∣ ∂r
∂u1
· ∂r

∂u2
× ∂r

∂u3

∣∣∣∣
=

∣∣∣∣∣∣∣
∂x1
∂u1

∂x2
∂u1

∂x3
∂u1

∂x1
∂u2

∂x2
∂u2

∂x3
∂u2

∂x1
∂u3

∂x2
∂u3

∂x3
∂u3

∣∣∣∣∣∣∣ . (8.75)

Therefore, the volume element can be written as

dV = J du1du2du3 =

∣∣∣∣ ∂(x1, x2, x3)

∂(u1, u2, u3)

∣∣∣∣ du1du2du3.

Example 8.19. Determine the volume element for cylindrical coordinates
(r, θ, z), given by

x = r cos θ, (8.76)

y = r sin θ, (8.77)

z = z. (8.78)

Here, we have (u1, u2, u3) = (r, θ, z). Then, the Jacobian is given by

J =

∣∣∣∣∂(x, y, z)
∂(r, θ, z)

∣∣∣∣
=

∣∣∣∣∣∣∣
∂x
∂r

∂y
∂r

∂z
∂r

∂x
∂θ

∂y
∂θ

∂z
∂θ

∂x
∂z

∂y
∂z

∂z
∂z

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
cos θ sin θ 0
−r sin θ r cos θ 0

0 0 1

∣∣∣∣∣∣∣
= r (8.79)

Thus, the volume element is given as

dV = rdrdθdz.

This result should be familiar from multivariate calculus.

Next we will derive the forms of the gradient, divergence, and curl
in curvilinear coordinates. The results are given here for quick refer-
ence. Gradient, divergence and curl in orthog-

onal curvilinear coordinates.
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∇φ =
3

∑
i=1

ûi
hi

∂φ

∂ui

=
û1

h1

∂φ

∂u1
+

û2

h2

∂φ

∂u2
+

û3

h3

∂φ

∂u3
. (8.80)

∇ · F =
1

h1h2h3

(
∂

∂u1
(h2h3F1) +

∂

∂u2
(h1h3F2) +

∂

∂u3
(h1h2F3)

)
.

(8.81)

∇× F =
1

h1h2h3

∣∣∣∣∣∣∣
h1û1 h2û2 h3û3

∂
∂u1

∂
∂u2

∂
∂u3

F1h1 F2h2 F3h3

∣∣∣∣∣∣∣ . (8.82)

∇2φ =
1

h1h2h3

(
∂

∂u1

(
h2h3

h1

∂φ

∂u1

)
+

∂

∂u2

(
h1h3

h2

∂φ

∂u2

)
+

∂

∂u3

(
h1h2

h3

∂φ

∂u3

))
(8.83)

(8.84)

We begin the derivations of these formulae by looking at the gradi-
ent, ∇φ, of the scalar function φ(u1, u2, u3). We recall that the gradient Derivation of the gradient form.

operator appears in the differential change of a scalar function,

dφ = ∇φ · dr =
3

∑
i=1

∂φ

∂ui
dui.

Since

dr =
3

∑
i=1

hiduiûi,

we also have that

dφ = ∇φ · dr =
3

∑
i=1

(∇φ)i hidui.

Comparing these two expressions for dφ, we determine that the com-
ponents of the del operator can be written as

(∇φ)i =
1
hi

∂φ

∂ui

and thus the gradient is given by

∇φ =
û1

h1

∂φ

∂u1
+

û2

h2

∂φ

∂u2
+

û3

h3

∂φ

∂u3
.

Next we compute the divergence, Derivation of the divergence form.

∇ · F =
3

∑
i=1
∇ · (Fiûi) .

We can do this by computing the individual terms in the sum. We will
compute ∇ · (F1û1) .
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We first note that the gradients of the coordinate functions are found

as ∇ui =
ûi
hi

. (This results from a direct application of the gradient

operator form just derived.) Then

∇u2 ×∇u3 =
û2 × û3

h2h3
=

û1

h2h3
.

This gives

∇ · (F1û1) = ∇ · (F1h2h3∇u2 ×∇u3)

= ∇ (F1h2h3) · ∇u2 ×∇u3 + F1h2h2∇ · (∇u2 ×∇u3).

(8.85)

Here we used the vector identity

∇ · ( f A) = f∇ ·A + A · ∇ f

The second term can be handled using the identity

∇ · (A× B) = B · (∇×A)−A · (∇× B),

where A and B are gradients. However, each term the curl of a gradi-
ent, which are identically zero! Or, you could just use the third identity
in the previous list of second derivative identities,

∇ · (∇ f ×∇g) = 0.

Using the expression ∇u2 ×∇u3 = û1
h2h3

and the expression for the
gradient operator in curvilinear coordinates, we have

∇ · (F1û1) = ∇ (F1h2h3) ·
û1

h2h3
=

1
h1h2h3

∂

∂u1
(F1h2h3) .

Similar computations can be done for the remaining components,
leading to the sought expression for the divergence in curvilinear co-
ordinates:

∇ · F =
1

h1h2h3

(
∂

∂u1
(h2h3F1) +

∂

∂u2
(h1h3F2) +

∂

∂u2
(h1h2F3)

)
.

We now turn to the curl operator. In this case, we need to simplify Derivation of the curl form.

∇× F =
3

∑
i=1
∇× (Fiûi) .

Using the identity

∇× ( f A) = f∇×A−A×∇ f ,

we have

∇× (F1û1) = ∇× (F1h1∇u1)

= ∇ (F1h1)×∇u1 + F1h1∇×∇u1. (8.86)
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Again, the curl of the gradient vanishes, leaving

∇× (F1û1) = ∇ (F1h1)×∇u1.

Since ∇u1 = û1
h1

, we have

∇× (F1û1) = ∇ (F1h1)×
û1

h1

=

(
3

∑
i=1

ûi
hi

∂ (F1h1)

∂ui

)
× û1

h1

=
û2

h3h1

∂ (F1h1)

∂u3
− û3

h1h2

∂ (F1h1)

∂u2
. (8.87)

The other terms can be handled in a similar manner. The overall
result is that

∇× F =
û1

h2h3

(
∂ (h3F3)

∂u2
− ∂ (h2F2)

∂u3

)
+

û2

h1h3

(
∂ (h1F1)

∂u3
− ∂ (h3F3)

∂u1

)
+

û3

h1h2

(
∂ (h2F2)

∂u1
− ∂ (h1F1)

∂u2

)
(8.88)

This can be written more compactly as

∇× F =
1

h1h2h3

∣∣∣∣∣∣∣
h1û1 h2û2 h3û3

∂
∂u1

∂
∂u2

∂
∂u3

F1h1 F2h2 F3h3

∣∣∣∣∣∣∣ (8.89)

Finally, we turn to the Laplacian. In the next chapter we will solve
higher dimensional problems in various geometric settings such as the
wave equation, the heat equation, and Laplace’s equation. These all
involve knowing how to write the Laplacian in different coordinate
systems. Since ∇2φ = ∇ ·∇φ, we need only combine the above results
for the gradient and the divergence in curvilinear coordinates. This is
straight forward and gives

∇2φ =
1

h1h2h3

(
∂

∂u1

(
h2h3

h1

∂φ

∂u1

)
+

∂

∂u2

(
h1h3

h2

∂φ

∂u2

)
+

∂

∂u3

(
h1h2

h3

∂φ

∂u3

))
. (8.90)

The results of rewriting the standard differential operators in cylin-
drical and spherical coordinates are shown in Problems 28 and 29. In
particular, the Laplacians are given as
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Cylindrical Coordinates:

∇2 f =
1
r

∂

∂r

(
r

∂ f
∂r

)
+

1
r2

∂2 f
∂θ2 +

∂2 f
∂z2 . (8.91)

Spherical Coordinates:

∇2 f =
1
ρ2

∂

∂ρ

(
ρ2 ∂ f

∂ρ

)
+

1
ρ2 sin θ

∂

∂θ

(
sin θ

∂ f
∂θ

)
+

1
ρ2 sin2 θ

∂2 f
∂φ2 .

(8.92)

These forms will be used in the next chapter for the solution of
Laplace’s equation, the heat equation, and the wave equation in these
coordinate systems.

Problems

1. Compute u× v using the permutation symbol. Verify your answer
by computing these products using traditional methods.

a. u = 2i− 3k, v = 3i− 2j.

b. u = i + j + k, v = i− k.

c. u = 5i + 2j− 3k, v = i− 4j + 2k.

2. Compute the following determinants using the permutation sym-
bol. Verify your answer.

a.

∣∣∣∣∣∣∣
3 2 0
1 4 −2
−1 4 3

∣∣∣∣∣∣∣
b.

∣∣∣∣∣∣∣
1 2 2
4 −6 3
2 3 1

∣∣∣∣∣∣∣
3. For the given expressions, write out all values for i, j = 1, 2, 3.

a. εi2j.

b. εi13.

c. εij1εi32.

4. Show that

a. δii = 3.

b. δijεijk = 0

c. εimnεjmn = 2δij.

d. εijkεijk = 6.
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5. Show that the vector (a×b)× (c×d) lies on the line of intersection
of the two planes: (1) the plane containing a and b and (2) the plane
containing c and d.

6. Prove the following vector identities:

a. (a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c).
b. (a× b)× (c× d) = (a · b× d)c− (a · b× c)d.

7. Use problem 6a to prove that |a× b| = ab sin θ.

8. A particle moves on a straight line, r = tu, from the center of a
disk. If the disk is rotating with angular velocity ω, then u rotates. Let
u = (cos ωt)i + (sin ωt)j.

a. Determine the velocity, v.

b. Determine the acceleration, a.

c. Describe the resulting acceleration terms identifying the cen-
tripetal acceleration and Coriolis acceleration.

9. Compute the gradient of the following:

a. f (x, y) = x2 − y2.

b. f (x, y, z) = yz + xy + xz.

c. f (x, y) = tan−1 ( y
x
)

.

d. f (x, y, z) =

10. Find the directional derivative of the given function at the indi-
cated point in the given direction.

a. f (x, y) = x2 − y2, (3, 2), u = i + j.

b. f (x, y) = y
x , (2, 1), u = 3i + 4j.

c. f (x, y, z) = x2 + y2 + z2, (1, 0, 2), u = 2i− j.

11. Zaphod Beeblebrox was in trouble after the infinite improbability
drive caused the Heart of Gold, the spaceship Zaphod had stolen when
he was President of the Galaxy, to appear between a small insignificant
planet and its hot sun. The temperature of the ship’s hull is given by
T(x, y, z) = e−k(x2+y2+z2) Nivleks. He is currently at (1, 1, 1), in units of
globs, and k = 2 globs−2. (Check the Hitchhikers Guide for the current
conversion of globs to kilometers and Nivleks to Kelvins.)

a. In what direction should he proceed so as to decrease the
temperature the quickest?

b. If the Heart of Gold travels at e6 globs per second, then how
fast will the temperature decrease in the direction of fastest
decline?
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12. For the given vector field, find the divergence and curl of the field.

a. F = xi + yj.

b. F = y
r i− x

r j, for r =
√

x2 + y2.

c. F = x2yi + zj + xyzk.

13. Write the following using εijk notation and simplify if possible.

a. C× (A× (A× C)).

b. ∇ · (∇×A).

c. ∇×∇φ.

14. Prove the identities:

a. ∇ · (∇×A) = 0.

b. ∇ · ( f∇g− g∇ f ) = f∇2g− g∇2 f .

c. ∇rn = nrn−2r, n ≥ 2.

15. For r = xi + yj + zk and r = |r|, simplify the following.

a. ∇× (k× r).

b. ∇ ·
( r

r
)

.

c. ∇×
( r

r
)

.

d. ∇ ·
(

r
r3

)
.

16. Newton’s Law of Gravitation gives the gravitational force between
two masses as

F = −GmM
r3 r.

a. Prove that F is irrotational.

b. Find a scalar potential for F.

17. Consider an electric dipole moment p at the origin. It produces
an electric potential of φ = p·r

4πε0r3 outside the dipole. Noting that
E = −∇φ, find the electric field at r.

18. In fluid dynamics the Euler equations govern inviscid fluid flow
and provide quantitative statements on the conservation of mass, mo-
mentum and energy. The continuity equation is given by

∂ρ

∂t
+∇ · (ρv) = 0,

where ρ(x, y, z, t) is the mass density and v(x, y, z, t) is the fluid veloc-
ity. The momentum equations are given by

∂ρv
∂t

+ v · ∇(ρv) = f−∇p.

Here p(x, y, z, t) is the pressure and F is the external force per volume.
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a. Show that the continuity equation can be rewritten as

∂ρ

∂t
+ ρ∇ · (v) + v · ∇ρ = 0.

b. Prove the identity 1
2∇v2 = v · ∇v for irrotational v.

c. Assume that

• the external forces are conservative (F = −∇φ),

• the velocity field is irrotational (∇× v = 0).

• the fluid is incompressible (ρ =const), and

• the flow is steady, ∂v
∂t = 0.

Under these assumptions, prove Bernoulli’s Principle:

1
2

v2 + φ +
p
ρ
= const.

19. Find the lengths of the following curves:

a. y(x) = x for x ∈ [0, 2].

b. (x, y, z) = (t, ln t, 2
√

2t) for 1 ≤ t ≤ 2.

c. y(x) = 2 cosh 3x, x ∈ [−2, 2]. (Recall the hanging chain ex-
ample from classical dynamics.)

20. Consider the integral
∫

C y2 dx − 2x2 dy. Evaluate this integral for
the following curves:

a. C is a straight line from (0,2) to (1,1).

b. C is the parabolic curve y = x2 from (0,0) to (2,4).

c. C is the circular path from (1,0) to (0,1) in a clockwise direc-
tion.

21. Evaluate
∫

C(x2 − 2xy + y2) ds for the curve x(t) = 2 cos t, y(t) =
2 sin t, 0 ≤ t ≤ π.

22. Prove that the magnetic flux density, B, satisfies the wave equation.

23. Prove the identity∫
C

φ∇φ · n ds =
∫

D
(φ∇2φ +∇ · ∇φ) dA.

24. Compute the work done by the force F = (x2− y2)i+ 2xyj in mov-
ing a particle counterclockwise around the boundary of the rectangle
R = [0, 3]× [0, 5].

25. Compute the following integrals:

a.
∫

C(x2 + y) dx + (3x + y3) dy for C the ellipse x2 + 4y2 = 4.
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b.
∫

S(x− y) dydz + (y2 + z2) dzdx + (y− x2) dxdy for S the pos-
itively oriented unit sphere.

c.
∫

C(y− z) dx + (3x + z) dy + (x + 2y) dz, where C is the curve
of intersection between z = 4− x2− y2 and the plane x + y +
z = 0.

d.
∫

C x2y dx − xy2 dy for C a circle of radius 2 centered about
the origin.

e.
∫

S x2y dydz + 3y2 dzdx− 2xz2 dxdy, where S is the surface of
the cube [−1, 1]× [−1, 1]× [−1, 1].

26. Use Stoke’s theorem to evaluate the integral∫
C
−y3 dx + x3 dy− z3 dz

for C the (positively oriented) curve of intersection between the cylin-
der x2 + y2 = 1 and the plane x + y + z = 1.

27. Use Stoke’s theorem to derive the integral form of Faraday’s law,∫
C

E · ds = − ∂

∂t

∫ ∫
S

H · dS

from the differential form of Maxwell’s equations.

28. For cylindrical coordinates,

x = r cos θ,

y = r sin θ,

z = z. (8.93)

find the scale factors and derive the following expressions: Note that it is customary to write the ba-
sis as {er , eθ , ez} instead of {û1, û2, û3}.

∇ f =
∂ f
∂r

er +
1
r

∂ f
∂θ

eθ +
∂ f
∂z

ez. (8.94)

∇ · F =
1
r

∂(rFr)

∂r
+

1
r

∂Fθ

∂θ
+

∂Fz

∂z
. (8.95)

∇× F =

(
1
r

∂Fz

∂θ
− ∂Fθ

∂z

)
er +

(
∂Fr

∂z
− ∂Fz

∂r

)
eθ +

1
r

(
∂(rFθ)

∂r
− ∂Fr

∂θ

)
ez

(8.96)

∇2 f =
1
r

∂

∂r

(
r

∂ f
∂r

)
+

1
r2

∂2 f
∂θ2 +

∂2 f
∂z2 . (8.97)

29. For spherical coordinates,

x

y

z

ρ

φ

θ

Figure 8.12: Definition of spherical coor-
dinates for Problem 29.

x = ρ sin θ cos φ,

y = ρ sin θ sin φ,

z = ρ cos θ. (8.98)
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find the scale factors and derive the following expressions:

∇ f =
∂ f
∂ρ

eρ +
1
ρ

∂ f
∂θ

eθ +
1

ρ sin θ

∂ f
∂φ

eφ. (8.99)

∇ · F =
1
ρ2

∂(ρ2Fρ)

∂ρ
+

1
ρ sin θ

∂(sin θFθ)

∂θ
+

1
ρ sin θ

∂Fφ

∂φ
. (8.100)

∇× F =
1

ρ sin θ

(
∂(sin θFφ)

∂θ
− ∂Fθ

∂φ

)
eρ +

1
ρ

(
1

sin θ

∂Fρ

∂φ
−

∂(ρFφ)

∂ρ

)
eθ

+
1
ρ

(
∂(ρFθ)

∂ρ
−

∂Fρ

∂θ

)
eφ (8.101)

∇2 f =
1
ρ2

∂

∂ρ

(
ρ2 ∂ f

∂ρ

)
+

1
ρ2 sin θ

∂

∂θ

(
sin θ

∂ f
∂θ

)
+

1
ρ2 sin2 θ

∂2 f
∂φ2 .

(8.102)
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