
9
Oscillations in Higher Dimensions

“Equations of such complexity as are the equations of the gravitational field can be found only through the discovery of
a logically simple mathematical condition that determines the equations completely or at least almost completely.”

“What I have to say about this book can be found inside this book.” Albert Einstein (1879-1955)

In this chapter we will explore several generic examples of the
solution of initial-boundary value problems involving higher spatial
dimensions. These are described by higher dimensional partial dif-
ferential equations, such as the ones presented in Table 8.1 in the last
chapter. We will solve these problems for different geometries, using
rectangular, polar, cylindrical, or spherical coordinates.

We will solve these problems using the method of separation of
variables, though there are other methods which we will not consider
in this text. Using separation of variables will result in a system of
ordinary differential equations for each problem. Adding the bound-
ary conditions, we will need to solve a variety of eigenvalue problems.
The product solutions that result will involve trigonometric or some of
the special functions that we had encountered in Chapter 5.

As you go through the examples in this chapter, you will see some
common features. For example, the two key equations that we have
studied are the heat equation and the wave equation. For higher di-
mensional problems these take the form

ut = k∇2u, (9.1)

utt = c2∇2u. (9.2)

One can first separate out the time dependence. Let u(r, t) = φ(r)T(t).
Inserting u into the heat and wave equations, we have

T′φ = kT∇2φ, (9.3)

T′′φ = c2T∇2φ. (9.4)

Separating out the time and space dependence, we find

1
k

T′

T
=
∇2φ

φ
= −λ, (9.5)
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1
c2

T′′

T
=
∇2φ

φ
= −λ. (9.6)

Note that in each case we have that a function of time equals a function
of the spatial variables. Thus, they must be constant functions. We
set these equal to the constant −λ. The sign of λ is chosen because we
expect decaying solutions in time for the heat equation and oscillations
in time for the wave equation and will pick λ > 0.

First, we look at the time dependence. The respective set of equa-
tions for T(t) are given by

T′ = −λkT, (9.7)

T′′ + c2λT = 0. (9.8)

These are easily solved. We have

T(t) = T(0)e−λkt, (9.9)

T(t) = a cos ωt + b sin ωt, ω = c
√

λ. (9.10)

In both cases the spatial equation becomes The Helmholtz equation.

∇2φ + λφ = 0. (9.11)

This is called the Helmholtz equation. For one dimensional problems,
which we have already solved, the Helmholtz equation takes the form
φ′′ + λφ = 0. We had to impose the boundary conditions and found
that there were a discrete set of eigenvalues, λn, and associated eigen-
functions, φn.

In higher dimensional problems we need to further separate out the
spatial dependence. We will again use the boundary conditions and
find the eigenvalues and eigenfunctions for the Helmholtz equation,
though the eigenfunctions will be labeled with more than one index.
The resulting boundary value problems are often second order ordi-
nary differential equations, which can be set up as Sturm-Liouville
problems. We know from Chapter 5 that such problems possess an
orthogonal set of eigenfunctions. These can then be used to construct
a general solution out of product solutions consisting of elementary or
special functions, such as Legendre functions or Bessel functions.

We will begin our study of higher dimensional problems by con-
sidering the vibrations of two dimensional membranes. First we will
solve the problem of a vibrating rectangular membrane and then we
turn out attention to a vibrating circular membranes. The rest of the
chapter will be devoted to the study of three dimensional problems
possessing cylindrical or spherical symmetry.
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9.1 Vibrations of Rectangular Membranes

Our first example will be the study of the vibrations of a rectan-
gular membrane. You can think of this as a drum with a rectangular
cross section as shown in Figure 9.1. We stretch the membrane over
the drumhead and fasten the material to the boundary of the rectan-
gle. The height of the vibrating membrane is described by its height
from equilibrium, u(x, y, t). This problem is a much simpler example
of higher dimensional vibrations than that possessed by the oscillating
electric and magnetic fields in the last chapter.

Figure 9.1: The rectangular membrane of
length L and width H. There are fixed
boundary conditions along the edges.

The problem is given by the two dimensional wave equation in
Cartesian coordinates,

utt = c2(uxx + uyy), t > 0, 0 < x < L, 0 < y < H, (9.12)

a set of boundary conditions,

u(0, y, t) = 0, u(L, y, t) = 0, t > 0, 0 < y < H,

u(x, 0, t) = 0, u(x, H, t) = 0, t > 0, 0 < x < L, (9.13)

and a pair of initial conditions (since the equation is second order in
time),

u(x, y, 0) = f (x, y), ut(x, y, 0) = g(x, y). (9.14)

The first step is to separate the variables: u(x, y, t) = X(x)Y(y)T(t).
Inserting the guess, u(x, y, t) into the wave equation, we have

X(x)Y(y)T′′(t) = c2 (X′′(x)Y(y)T(t) + X(x)Y′′(y)T(t)
)

.

Dividing by both u(x, y, t) and c2, we obtain

1
c2

T′′

T︸ ︷︷ ︸
Function of t

=
X′′

X
+

Y′′

Y︸ ︷︷ ︸
Function of x and y

= −λ. (9.15)

We see that we have a function of t equals a function of x and y.
Thus, both expressions are constant. We expect oscillations in time,
so we chose the constant λ to be positive, λ > 0. (Note: As usual,
the primes mean differentiation with respect to the specific dependent
variable. So, there should be no ambiguity.)

These lead to two equations:

T′′ + c2λT = 0, (9.16)

and
X′′

X
+

Y′′

Y
= −λ. (9.17)
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The first equation is easily solved. We have

T(t) = a cos ωt + b sin ωt, (9.18)

where
ω = c

√
λ. (9.19)

This is the angular frequency in terms of the separation constant, or
eigenvalue. It leads to the frequency of oscillations for the various
harmonics of the vibrating membrane as

ν =
ω

2π
=

c
2π

√
λ. (9.20)

Once we know λ, we can compute these frequencies.
Now we solve the spatial equation. Again, we need to do a separa-

tion of variables. Rearranging the spatial equation, we have

X′′

X︸︷︷︸
Function of x

= −Y′′

Y
− λ︸ ︷︷ ︸

Function of y

= −µ. (9.21)

Here we have a function of x equals a function of y. So, the two
expressions are constant, which we indicate with a second separation
constant, −µ < 0. We pick the sign in this way because we expect
oscillatory solutions for X(x). This leads to two equations:

X′′ + µX = 0,

Y′′ + (λ− µ)Y = 0. (9.22)

We now need to use the boundary conditions. We have u(0, y, t) = 0
for all t > 0 and 0 < y < H. This implies that X(0)Y(y)T(t) = 0 for
all t and y in the domain. This is only true if X(0) = 0. Similarly,
from the other boundary conditions we find that X(L) = 0, Y(0) = 0,
and Y(H) = 0. We note that homogeneous boundary conditions are
important in carrying out this process. Nonhomogeneous boundary
conditions could be imposed, but the techniques are a bit more com-
plicated and we will not discuss these techniques here.

The boundary values problems we need to solve are:

X′′ + µX = 0, X(0) = 0, X(L) = 0.

Y′′ + (λ− µ)Y = 0, Y(0) = 0, Y(H) = 0. (9.23)

We have seen the first of these problems before, except with a λ

instead of a µ. The solutions of the eigenvalue problem are

X(x) = sin
nπx

L
, λ =

(nπ

L

)2
, n = 1, 2, 3, . . . .

The second equation is solved in the same way. The differences are
that the “eigenvalue" is λ− µ, the independent variable is y, and the
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interval is [0, H]. Thus, we can quickly write down the solutions of the
eigenvalue problem as

Y(y) = sin
mπx

H
, λ− µ =

(mπ

H

)2
, m = 1, 2, 3, . . . .

We have successfully carried out the separation of variables for the
wave equation for the vibrating rectangular membrane. The product
solutions can be written as

unm = (a cos ωnmt + b sin ωnmt) sin
nπx

L
sin

mπy
H

. (9.24)

Recall that ω is given in terms of λ. We have that The harmonics for the vibrating rectan-
gular membrane are given by

νnm =
c
2

√( n
L

)2
+
(m

H

)2
,

for n, m = 1, 2, . . . .

λmn − µn =
(mπ

H

)2

and
µn =

(nπ

L

)2
.

Therefore,

λnm =
(nπ

L

)2
+
(mπ

H

)2
. (9.25)

So,

ωnm = c

√(nπ

L

)2
+
(mπ

H

)2
. (9.26)

The most general solution can now be written as a linear combi-
nation of the product solutions and we can solve for the expansion
coefficients that will lead to a solution satisfying he initial conditions.
However, we will first concentrate on the two dimensional harmonics
of this membrane.

For the vibrating string the nth harmonic corresponded to the func-
tion sin nπx

L . The various harmonics corresponded to the pure tones
supported by the string. These then lead to the corresponding fre-
quencies that one would hear. The actual shapes of the harmonics
could be sketched by locating the nodes, or places on the string that
did not move.

In the same way, we can explore the shapes of the harmonics of the
vibrating membrane. These are given by the spatial functions

φnm(x, y) = sin
nπx

L
sin

mπy
H

. (9.27)

Instead of nodes, we will look for the nodal curves, or nodal lines. These A discussion of the nodal lines.

are the points (x, y) at which φnm(x, y) = 0. Of course, these depend
on the indices, n and m.

For example, when n = 1 and m = 1, we have

sin
πx
L

sin
πy
H

= 0.
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Figure 9.2: The first few modes of the
vibrating rectangular membrane. The
dashed lines show the nodal lines indi-
cating the points that do not move for
the particular mode. Compare these the
nodal lines to the 3D view in Figure 9.3

These are zero when either

sin
πx
L

= 0, or sin
πy
H

= 0.

Of course, this can only happen for x = 0, L and y = 0, H. Thus, there
are no interior nodal lines.

When n = 2 and m = 1, we have y = 0, H and

sin
2πx

L
= 0,

or, x = 0, L
2 , L. Thus, there is one interior nodal line at x = L

2 . These
points stay fixed during the oscillation and all other points oscillate
on either side of this line. A similar solution shape results for the
(1,2)-mode; i.e., n = 1 and m = 2.

In Figure 9.2 we show the nodal lines for several modes for n, m =

1, 2, 3 The blocked regions appear to vibrate independently. A better
view is the three dimensional view depicted in Figure 9.3 . The fre-
quencies of vibration are easily computed using the formula for ωnm.

For completeness, we now see how one satisfies the initial condi-
tions. The general solution is given by a linear superposition of the
product solutions. There are two indices to sum over. Thus, the gen-
eral solution is The general solution for the vibrating

rectangular membrane.

u(x, y, t) =
∞

∑
n=1

∞

∑
m=1

(anm cos ωnmt + bnm sin ωnmt) sin
nπx

L
sin

mπy
H

,

(9.28)
where

ωnm = c

√(nπ

L

)2
+
(mπ

H

)2
. (9.29)

The first initial condition is u(x, y, 0) = f (x, y). Setting t = 0 in the
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Figure 9.3: A three dimensional view of
the vibrating rectangular membrane for
the lowest modes. Compare these im-
ages with the nodal lines in Figure 9.2

general solution, we obtain

f (x, y) =
∞

∑
n=1

∞

∑
m=1

anm sin
nπx

L
sin

mπy
H

. (9.30)

This is a double Fourier sine series. The goal is to find the unknown
coefficients anm. This can be done knowing what we already know
about Fourier sine series. We can write the initial condition as the
single sum

f (x, y) =
∞

∑
n=1

An(y) sin
nπx

L
, (9.31)

where

An(y) =
∞

∑
m=1

anm sin
mπy

H
. (9.32)

These are two Fourier sine series. Recalling that the coefficients of
Fourier sine series can be computed as integrals, we have

An(y) =
2
L

∫ L

0
f (x, y) sin

nπx
L

dx,

anm =
2
H

∫ H

0
An(y) sin

mπy
H

dy. (9.33)

Inserting the integral for An(y) into that for anm, we have an integral
representation for the Fourier coefficients in the double Fourier sine
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series,

anm =
4

LH

∫ H

0

∫ L

0
f (x, y) sin

nπx
L

sin
mπy

H
dxdy. (9.34)

The Fourier coefficients for the double
Fourier sine series.We can carry out the same process for satisfying the second initial

condition, ut(x, y, 0) = g(x, y) for the initial velocity of each point.
Inserting this into the general solution, we have

g(x, y) =
∞

∑
n=1

∞

∑
m=1

bnmωnm sin
nπx

L
sin

mπy
H

. (9.35)

Again, we have a double Fourier sine series. But, now we can write
down Fourier coefficients quickly using the above expression for anm:

bnm =
4

ωnmLH

∫ H

0

∫ L

0
g(x, y) sin

nπx
L

sin
mπy

H
dxdy. (9.36)

This completes the full solution of the vibrating rectangular mem-
brane problem. Namely, we have obtained the solution The full solution of the vibrating rectan-

gular membrane.

u(x, y, t) =
∞

∑
n=1

∞

∑
m=1

(anm cos ωnmt+ bnm sin ωnmt) sin
nπx

L
sin

mπy
H

,

(9.37)
where

anm =
4

LH

∫ H

0

∫ L

0
f (x, y) sin

nπx
L

sin
mπy

H
dxdy, (9.38)

bnm =
4

ωnmLH

∫ H

0

∫ L

0
g(x, y) sin

nπx
L

sin
mπy

H
dxdy, (9.39)

and the angular frequencies are given by

ωnm = c

√(nπ

L

)2
+
(mπ

H

)2
. (9.40)

9.2 Vibrations of a Kettle Drum
x

y

a

r

θ

Figure 9.4: The circular membrane of ra-
dius a. A general point on the mem-
brane is given by the distance from the
center, r, and the angle, . There are fixed
boundary conditions along the edge at
r = a.

In this section we consider the vibrations of a circular membrane of
radius a as shown in Figure 9.4. Again we are looking for the harmon-
ics of the vibrating membrane, but with the membrane fixed around
the circular boundary given by x2 + y2 = a2. However, expressing the
boundary condition in Cartesian coordinates is awkward. Namely, we
can only write u(x, y, t) = 0 for x2 + y2 = a2. It is more natural to
use polar coordinates as indicated in Figure 9.4. Let the height of the
membrane be given by u = u(r, θ, t) at time t and position (r, θ). Now
the boundary condition is given as u(a, θ, t) = 0 for all t > 0 and
θ ∈ [0, 2π].
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Before solving the initial-boundary value problem, we have to cast
the full problem in polar coordinates. This means that we need to
rewrite the Laplacian in r and θ. To do so would require that we know
how to transform derivatives in x and y into derivatives with respect to
r and θ. Using the results from Section 8.3 on curvilinear coordinates,
we know that the Laplacian can be written in polar coordinates. In fact,
we could use the results from Problem 28 for cylindrical coordinates
for functions which are z-independent, f = f (r, θ). Then we would
have

∇2 f =
1
r

∂

∂r

(
r

∂ f
∂r

)
+

1
r2

∂2 f
∂θ2 .

We can obtain this result using a more direct approach, namely
applying the Chain Rule in higher dimensions. First recall the trans-
formation between polar and Cartesian coordinates:

x = r cos θ, y = r sin θ

and
r =

√
x2 + y2, tan θ =

y
x

.

Now, consider a function f = f (x(r, θ), y(r, θ)) = g(r, θ). (Technically,
once we transform a given function of Cartesian coordinates we obtain
a new function g of the polar coordinates. Many texts do not rigor-
ously distinguish between the two functions.) Thinking of x = x(r, θ)

and y = y(r, θ), we have from the chain rule for functions of two vari-
ables:

∂ f
∂x

=
∂g
∂r

∂r
∂x

+
∂g
∂θ

∂θ

∂x

=
∂g
∂r

x
r
− ∂g

∂θ

y
r2

= cos θ
∂g
∂r
− sin θ

r
∂g
∂θ

. (9.41)

Here we have used
∂r
∂x

=
x√

x2 + y2
=

x
r

;

and
∂θ

∂x
=

d
dx

(
tan−1 y

x

)
=
−y/x2

1 +
( y

x
)2 = − y

r2 .

Similarly,

∂ f
∂y

=
∂g
∂r

∂r
∂y

+
∂g
∂θ

∂θ

∂y

=
∂g
∂r

y
r
+

∂g
∂θ

x
r2

= sin θ
∂g
∂r

+
cos θ

r
∂g
∂θ

. (9.42)
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The 2D Laplacian can now be computed as

∂2 f
∂x2 +

∂2 f
∂y2 = cos θ

∂

∂r

(
∂ f
∂x

)
− sin θ

r
∂

∂θ

(
∂ f
∂x

)
+ sin θ

∂

∂r

(
∂ f
∂y

)
+

cos θ

r
∂

∂θ

(
∂ f
∂y

)
= cos θ

∂

∂r

(
cos θ

∂g
∂r
− sin θ

r
∂g
∂θ

)
− sin θ

r
∂

∂θ

(
cos θ

∂g
∂r
− sin θ

r
∂g
∂θ

)
+ sin θ

∂

∂r

(
sin θ

∂g
∂r

+
cos θ

r
∂g
∂θ

)
+

cos θ

r
∂

∂θ

(
sin θ

∂g
∂r

+
cos θ

r
∂g
∂θ

)
= cos θ

(
cos θ

∂2g
∂r2 +

sin θ

r2
∂g
∂θ
− sin θ

r
∂2g
∂r∂θ

)
− sin θ

r

(
cos θ

∂2g
∂θ∂r

− sin θ

r
∂2g
∂θ2 − sin θ

∂g
∂r
− cos θ

r
∂g
∂θ

)
+ sin θ

(
sin θ

∂2g
∂r2 +

cos θ

r
∂2g
∂r∂θ

− cos θ

r2
∂g
∂θ

)
+

cos θ

r

(
sin θ

∂2g
∂θ∂r

+
cos θ

r
∂2g
∂θ2 + cos θ

∂g
∂r
− sin θ

r
∂g
∂θ

)
=

∂2g
∂r2 +

1
r

∂g
∂r

+
1
r2

∂2g
∂θ2

=
1
r

∂

∂r

(
r

∂g
∂r

)
+

1
r2

∂2g
∂θ2 . (9.43)

The last form often occurs in texts because it is in the form of a Sturm-
Liouville operator. Also, it agrees with the result from using the Lapla-
cian written in cylindrical coordinates as given in Problem 28.

Now that we have written the Laplacian in polar coordinates we
can pose the problem of a vibrating circular membrane. It is given by
a partial differential equation,1 1 Here we state the problem of a vibrat-

ing circular membrane. We have chosen
−π < θ < π, but could have just as eas-
ily used 0 < θ < 2π. The symmetric in-
terval about θ = 0 will make the use of
boundary conditions simpler.

utt = c2
[

1
r

∂

∂r

(
r

∂u
∂r

)
+

1
r2

∂2u
∂θ2

]
, (9.44)

t > 0, 0 < r < a, −π < θ < π,

the boundary condition,

u(a, θ, t) = 0, t > 0, −π < θ < π, (9.45)

and the initial conditions,

u(r, θ, 0) = f (r, θ), ut(r, θ, 0) = g(r, θ). (9.46)

Now we are ready to solve this problem using separation of vari-
ables. As before, we can separate out the time dependence. Let
u(r, θ, t) = T(t)φ(r, θ). As usual, T(t) can be written in terms of sines
and cosines. This leads to the Helmholtz equation,

∇2φ + λφ = 0.
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We now separate the Helmholtz equation by letting φ(r, θ) = R(r)Θ(θ).
This gives

1
r

∂

∂r

(
r

∂RΘ
∂r

)
+

1
r2

∂2RΘ
∂θ2 + λRΘ = 0. (9.47)

Dividing by u = RΘ, as usual, leads to

1
rR

d
dr

(
r

dR
dr

)
+

1
r2Θ

d2Θ
dθ2 + λ = 0. (9.48)

The last term is a constant. The first term is a function of r. How-
ever, the middle term involves both r and θ. This can be remedied by
multiplying the equation by r2. Rearranging the resulting equation,
we can separate out the θ-dependence from the radial dependence.
Letting µ be the separation constant, we have

r
R

d
dr

(
r

dR
dr

)
+ λr2 = − 1

Θ
d2Θ
dθ2 = µ. (9.49)

This gives us two ordinary differential equations:

d2Θ
dθ2 + µΘ = 0,

r
d
dr

(
r

dR
dr

)
+ (λr2 − µ)R = 0. (9.50)

Let’s consider the first of these equations. It should look familiar by
now. For µ > 0, the general solution is

Θ(θ) = a cos
√

µθ + b sin
√

µθ.

The next step typically is to apply the boundary conditions in θ. How-
ever, when we look at the given boundary conditions in the problem,
we do not see anything involving θ. This is a case for which the bound-
ary conditions that are needed are implied and not stated outright.

We can determine the hidden boundary conditions by making some
observations. Let’s consider the solution corresponding to the end-
points θ = ±π, noting that at these values for any r < a we are at
the same physical point. So, we would expect the solution to have the
same value at θ = −π as it has at θ = π. Namely, the solution is
continuous at these physical points. Similarly, we expect the slope of
the solution to be the same at these points. This tells us that The boundary conditions in θ are peri-

odic boundary conditions.

Θ(π) = Θ(−π) Θ′(π) = Θ′(−π).

Such boundary conditions are called periodic boundary conditions.
Let’s apply these conditions to the general solution for Θ(θ). First,

we set Θ(π) = Θ(−π) and use the symmetries of the sine and cosine
functions:

a cos
√

µπ + b sin
√

µπ = a cos
√

µπ − b sin
√

µπ.
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This implies that
sin
√

µπ = 0.

This can only be true for
√

µ = m, m = 0, 1, 2, 3, . . . . Therefore, the
eigenfunctions are given by

Θm(θ) = a cos mθ + b sin mθ, m = 0, 1, 2, 3, . . . .

For the other half of the periodic boundary conditions, Θ′(π) =

Θ′(−π), we have that

−am sin mπ + bm cos mπ = am sin mπ + bm cos mπ.

But, this gives no new information.
To summarize so far, we have found the general solutions to the

temporal and angular equations. The product solutions will have var-
ious products of {cos ωt, sin ωt} and {cos mθ, sin mθ}∞

m=0. We also
know that µ = m2 and ω = c

√
λ.

That leaves us with the radial equation. Inserting µ = m2, we have

r
d
dr

(
r

dR
dr

)
+ (λr2 −m2)R = 0. (9.51)

A little rewriting,

r2R′′(r) + rR′(r) + (λr2 −m2)R(r) = 0. (9.52)

The reader should recognize this differential equation from Equation
??. It is a Bessel equation with bounded solutions R(r) = Jm(

√
λr).

Recall there are two linearly independent solutions of this second
order equation: Jm(

√
λr), the Bessel function of the first kind of or-

der m, and Nm(
√

λr), the Bessel function of the second kind of order
m. Plots of these functions are shown in Figures 5.8 and 5.9. Some-
times the Nm’s are called Neumann functions. So, we have the general
solution of the radial equation is

R(r) = c1 Jm(
√

λr) + c2Nm(
√

λr).

Now we are ready to apply the boundary conditions to the radial
factor in the product solutions. Looking at the original problem we
find only one condition: u(a, θ, t) = 0 for t > 0 and −π < < π. This
implies that R(0) = 0. But where is the second condition?

This is another unstated boundary condition. Look again at the
plots of the Bessel functions. Notice that the Neumann functions are
not well behaved at the origin. Do you expect that the solution will
become infinite at the center of the drum? No, the solutions should be
finite at the center. So, this observation leads to the second boundary
condition. Namely, |R(0)| < ∞. This implies that c2 = 0.
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Now we are left with

R(r) = Jm(
√

λr).

We have set c1 = 1 for simplicity. We can apply the vanishing condition
at r = a. This gives

Jm(
√

λa) = 0.

Looking again at the plots of Jm(x), we see that there are an infinite
number of zeros, but they are not as easy as π! In Table 9.1 we list the
nth zeros of Jm, which were first seen in Table 5.3.

n m = 0 m = 1 m = 2 m = 3 m = 4 m = 5
1 2.405 3.832 5.136 6.380 7.588 8.771

2 5.520 7.016 8.417 9.761 11.065 12.339

3 8.654 10.173 11.620 13.015 14.373 15.700

4 11.792 13.324 14.796 16.223 17.616 18.980

5 14.931 16.471 17.960 19.409 20.827 22.218

6 18.071 19.616 21.117 22.583 24.019 25.430

7 21.212 22.760 24.270 25.748 27.199 28.627

8 24.352 25.904 27.421 28.908 30.371 31.812

9 27.493 29.047 30.569 32.065 33.537 34.989

Table 9.1: The zeros of Bessel Functions,
Jm(jmn) = 0.

Let’s denote the nth zero of Jm(x) by jmn. Then the boundary con-
dition tells us that √

λa = jmn.

This gives us the eigenvalue as

λmn =

(
jmn

a

)2
.

Thus, the radial function satisfying the boundary conditions is

R(r) = Jm(
jmn

a
r).

We are finally ready to write out the product solutions for the vi-
brating circular membrane. They are given by Product solutions for the vibrating circu-

lar membrane.

u(r, θ, t) =

{
cos ωmnt
sin ωmnt

}{
cos mθ

sin mθ

}
Jm(

jmn

a
r). (9.53)

Here we have indicated choices with the braces, leading to four differ-
ent types of product solutions. Also, m = 0, 1, 2, . . . , and

ωmn =
jmn

a
c.
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Figure 9.5: The first few modes of the vi-
brating circular membrane. The dashed
lines show the nodal lines indicating the
points that do not move for the partic-
ular mode. Compare these nodal lines
with the three dimensional images in
Figure 9.6.

As with the rectangular membrane, we are interested in the shapes
of the harmonics. So, we consider the spatial solution (t = 0)

φ(r, θ) = (cos mθ)Jm

(
jmn

a
r
)

.

Including the solutions involving sin mθ will only rotate these modes.
The nodal curves are given by φ(r, θ) = 0. This can be satisfied if
cos mθ = 0, or Jm(

jmn
a r) = 0. The various nodal curves which result are

shown in Figure 9.5.
For the angular part, we easily see that the nodal curves are radial

lines, θ =const. For m = 0, there are no solutions, since cos mθ = 1
and sin mθ = 1 for m = 0. in Figure 9.5 this is seen by the absence of
radial lines in the first column.

For m = 1, we have cos θ = 0. This implies that θ = ±π
2 . These

values give the vertical line as shown in the second column in Figure
9.5. For m = 2, cos 2θ = 0 implies that θ = π

4 , 3π
4 . This results in the

two lines shown in the last column of Figure 9.5.
We can also consider the nodal curves defined by the Bessel func-

tions. We seek values of r for which jmn
a r is a zero of the Bessel function

and lies in the interval [0, a]. Thus, we have

jmn

a
r = jmj,

or

r =
jmj

jmn
a.

These will give circles of this radius with jmj ≤ jmn, or j ≤ n. The
zeros can be found in Table 9.1. For m = 0 and n = 1, there is only one
zero and r = a. In fact, for all n = 1 modes, there is only one zero and
r = a. Thus, the first row in Figure 9.5 shows no interior nodal circles.
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Figure 9.6: A three dimensional view of
the vibrating circular membrane for the
lowest modes. Compare these images
with the nodal line plots in Figure 9.5.

For n = 2 modes, we have two circles, r = a and r = jm1
jm2

as shown
in the second row of Figure 9.5. For m = 0,

r =
2.405
5.520

a ≈ 0.436a

for the inner circle. For m = 1,

r =
3.832
7.016

a ≈ 0.546a,

and for m = 2,

r =
5.135
8.147

a ≈ 0.630a.

For n = 3 we obtain circles of radii r = a,

r =
jm1

jm3
, and r =

jm2

jm3
.

For m = 0,

r = a,
5.520
8.654

a ≈ 0.638a,
2.405
8.654

a ≈ 0.278a.

Similarly, for m = 1,

r = a,
3.832

10.173
0.377a ≈ a,

7.016
10.173

a ≈ 0.0.690a
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and for m = 2,

r = a,
5.135
11.620

a ≈ 0.442a,
8.417

11.620
a ≈ 0.724a.

For a three dimensional view, one can look at Figure 9.6. Imag-
ine that the various regions are oscillating independently and that the
points on the nodal curves are not moving.

Example 9.1. Vibrating Annulus

x

y

a

b

Figure 9.7: An annular membrane with
radii a and b > a. There are fixed bound-
ary conditions along the edges at r = a
and r = b.

More complicated vibrations can be dreamt up for this geometry. We could
consider an annulus in which the drum is formed from two concentric circular
cylinders and the membrane is stretch between the two with an annular cross
section as shown in Figure 9.7. The separation would follow as before except
now the boundary conditions are that the membrane is fixed around the two
circular boundaries. In this case we cannot toss out the Neumann functions
because the origin is not part of the drum head.

With this in mind, we have that the product solutions take the form

u(r, θ, t) =

{
cos ωmnt
sin ωmnt

}{
cos mθ

sin mθ

}
Rm(r), (9.54)

where
Rm(r) = c1 Jm(

√
λr) + c2Nm(

√
λr)

and ω = c
√

λ.
For this problem the radial boundary conditions are that the membrane is

fixed at r = a and r = b. Taking b < a, we then have to satisfy the conditions

R(a) = c1 Jm(
√

λa) + c2Nm(
√

λa) = 0,

R(b) = c1 Jm(
√

λb) + c2Nm(
√

λb) = 0. (9.55)

This leads to two homogeneous equations for c1 and c2. The coefficient de-
terminant of this system has to vanish if there are to be nontrivial solutions.
This gives the eigenvalue equation λ :

Jm(
√

λa)Nm(
√

λb)− Jm(
√

λb)Nm(
√

λa) = 0.

This eigenvalue equation needs to be solved numerically. Choosing a = 2 and
b = 4, we have for the first few modes√

λmn ≈ 1.562, 3.137, 4.709, m = 0

≈ 1.598, 3.156, 4.722, m = 1

≈ 1.703, 3.214, 4.761, m = 2. (9.56)

Note, since
√

λmn = ωmn
c , these numbers essentially give us the frequencies

of oscillation.
For these particular roots, we then solve for c1 and c2 by setting c2 = −1

and determining

c1 =
Nm(
√

λmnb)
Jm(
√

λmnb)
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(This selection is not unique. We could replace the b’s in c1 with a’s and that
would work as well.) This leads to the basic modes of vibration,

Rmn(r)Θm(θ) = cos mθ

(
Nm(
√

λmnb)
Jm(
√

λmnb)
Jm(
√

λmnr)− Nm(
√

λmnr)
)

.

In Figure 9.8 we show various modes for the particular choice of membrane
dimensions, a = 2 and b = 4.

Figure 9.8: A three dimensional view of
the vibrating annular membrane for the
lowest modes.

9.3 Laplace’s Equation in 2D

Another of the generic partial differential equations is
Laplace’s equation, ∇2u = 0. This equation first appeared in the chap-
ter on complex variables when we discussed harmonic functions. An-
other example is the electric potential for electrostatics. As we de-
scribed in the last chapter, for static electromagnetic fields, ∇ · E =

ρ/ε0. Also, E = ∇φ. In regions devoid of charge, we have ∇2φ = 0.
Another example comes from studying temperature distributions.

Consider a thin rectangular plate with the boundaries set at fixed tem-
peratures. One can solve the heat equation. The solution is time de-
pendent. However, if one wait a long time, the plate reaches ther-
mal equilibrium. If the boundary temperature is zero, then the plate
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temperatures decays to zero. However, keeping the boundaries at a
nonzero temperature, which means energies is being put into the sys-
tem to maintain the boundary conditions, the internal temperature
may reach a nonzero equilibrium temperature. Reaching thermal equi-
librium means that asymptotically in time the solution becomes time
independent. Thus, the equilibrium state is a solution of the time in-
dependent heat equation, which is ∇2u = 0.

Finally, we could look at fluid flow. For an incompressible flow,
∇ · v = 0. If the flow is irrotational, then ∇× v = 0. We can introduce
a velocity potential, v = ∇φ. Thus, ∇× v vanishes by a vector identity
and ∇ · v = 0 implies ∇2φ = 0. So, once again we obtain Laplace’s
equation.

In this section we will look at a couple examples of Laplace’s equa-
tion in two dimensions. The solutions could be examples of any of the
above physical situations and can be determined appropriately.

Example 9.2. Equilibrium Temperature Distribution for a Rectangular Plate

Let’s consider Laplace’s equation in Cartesian coordinates,

uxx + uyy = 0, 0 < x < L, 0 < y < H

with the boundary conditions

u(0, y) = 0, u(L, y) = 0, u(x, 0) = f (x), u(x, H) = 0.

The boundary conditions are shown in Figure 9.9
x

y

u(x, 0) = f (x)

u(x, H) = 0

u(0, y) = 0 u(L, y) = 0

Figure 9.9: In this figure we show the
domain and boundary conditions for the
example of determining the equilibrium
temperature distribution for a rectangu-
lar plate.

As usual, we solve this equation using the method of separation of vari-
ables. Let u(x, y) = X(x)Y(y). Then Laplace’s equation becomes

X′′

X
= −Y′′

Y
= −λ. (9.57)

This leads to two differential equations,

X′′ + λX = 0,

Y′′ − λY = 0. (9.58)

We next turn to the boundary conditions. Since u(0, y) = 0, u(L, y) = 0,
we have X(0) = 0, X(L) = 0. So, we have an eigenvalue problem for X(x),

X′′ + λX = 0, X(0) = 0, X(L) = 0.

We can easily write down the solution to this problem,

Xn(x) = sin
nπx

L
, λn =

(nπ

L

)2
, n = 1, 2, · · · .

The general solution of the equation for Y(y) is given by

Y(y) = c1e
√

λy + c2e−
√

λy.
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The boundary condition u(x, H) = 0 implies Y(H) = 0. So, we have

c1e
√

λH + c2e−
√

λH = 0.

Thus,
c2 = −c1e2

√
λH .

Inserting this result into the expression for Y(y), we have Note: Having carried out this computa-
tion, we can now see that it would be
better to guess at this form in the fu-
ture. So, for Y(H) = 0, one would
guess a solution Y(y) = sinh

√
λ(H− y).

For Y(0) = 0, one would guess a so-
lution Y(y) = sinh

√
λy. Similarly, if

Y′(H) = 0, one would guess a solution
Y(y) = cosh

√
λ(H − y).

Y(y) = c1e
√

λy − c1e2
√

λHe−
√

λy

= c1e2
√

λH
(

e−
√

λHe
√

λy − e
√

λHe−
√

λy
)

= −c1e2
√

λH
(

e−
√

λ(H−y) − e
√

λ(H−y)
)

= −2c1e2
√

λH sinh
√

λ(H − y). (9.59)

Since we already know the values of the eigenvalues λn from the eigenvalue
problem for X(x), we have that

Yn(y) = sinh
nπ(H − y)

L
.

So, the product solutions are given by

un(x, y) = sin
nπx

L
sinh

nπ(H − y)
L

, n = 1, 2, · · · .

These solutions satisfy the three homogeneous boundary conditions in the
problem.

The remaining boundary condition, u(x, 0) = f (x), still needs to be sat-
isfied. Inserting y = 0 in the product solutions does not satisfy the boundary
condition unless f (x) is proportional to one of the eigenfunctions Xn(x). So,
we first need to write the general solution, which is a linear combination of
the product solutions,

u(x, y) =
∞

∑
n=1

an sin
nπx

L
sinh

nπ(H − y)
L

. (9.60)

Now we apply the boundary condition to find that

f (x) =
∞

∑
n=1

an sinh
nπH

L
sin

nπx
L

. (9.61)

Defining bn = an sinh nπH
L , this becomes

f (x) =
∞

∑
n=1

bn sin
nπx

L
. (9.62)

We see that the determination of the unknown coefficients, bn, is simply done
by recognizing that this is a Fourier sine series. The Fourier coefficients are
easily found as

bn =
2
L

∫ L

0
f (x) sin

nπx
L

dx. (9.63)
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Finally, we have the solution to this problem,

u(x, y) =
∞

∑
n=1

an sin
nπx

L
sinh

nπ(H − y)
L

, (9.64)

where

an =
2

L sinh nπH
L

∫ L

0
f (x) sin

nπx
L

dx. (9.65)

Example 9.3. Equilibrium Temperature Distribution for a Rectangular Plate
for General Boundary Conditions

Now we consider Laplace’s equation in Cartesian coordinates,

uxx + uyy = 0, 0 < x < L, 0 < y < H

with the non-zero boundary conditions on more than one side,

u(0, y) = g1(y), u(L, y) = g2(y), u(x, 0) = f1(x), u(x, H) = f2(x).

The boundary conditions are shown in Figure 9.10
x

y

u(x, 0) = f1(x)

u(x, H) = f2(x)

u(0, y) = g1(y) u(L, y) = g2(y)

Figure 9.10: In this figure we show the
domain and general boundary condi-
tions for the example of determining the
equilibrium temperature distribution for
a rectangular plate.

The problem with this example is that none of the boundary conditions are
homogeneous, so we cannot specify the boundary conditions for the eigenvalue
problems. However, we can express this problem as in terms of four problems
with nonhomogeneous boundary conditions on only one side of the rectangle.
In Figure 9.11 we show how the problem can be broken up into four separate
problems. Since the boundary conditions and Laplace’s equation are linear,
the solution to the general problem is simply the sum of the solutions to these
four problems.

x

y

u = f1(x)

u = 0

u = 0 u = 0

x

y

u) = 0

u = f2(x)

u = 0 u = 0

x

y

u = 0

u = 0

u = g1(y) u = 0

x

y

u = 0

u = 0

u = 0 u = g2(y)

Figure 9.11: Breaking up the general
boundary value problem for a rectangu-
lar plate.

We can solve each of the problems quickly, based on the solution obtained
in the last example. The solution for boundary conditions

u(0, y) = 0, u(L, y) = 0, u(x, 0) = f1(x), u(x, H) = 0.
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is the easiest to write down:

u(x, y) =
∞

∑
n=1

an sin
nπx

L
sinh

nπ(H − y)
L

. (9.66)

where

an =
2

L sinh nπH
L

∫ L

0
f1(x) sin

nπx
L

dx. (9.67)

For the boundary conditions

u(0, y) = 0, u(L, y) = 0, u(x, 0) = 0, u(x, H) = f2(x),

the boundary conditions for X(x) are X(0) = 0 and X(L) = 0. So, we get
the same form for the eigenvalues and eigenfunctions as before:

Xn(x) = sin
nπx

L
, λn =

(nπ

L

)2
, n = 1, 2, · · · .

However, the remaining homogeneous boundary condition is now Y(0) = 0.
Recalling the equation satisfied by Y(y) is

Y′′ − λY = 0,

we can write the general solution as

Y(y) = c1 cosh
√

λy + c2 sinh
√

λy.

Requiring Y(0) = 0, we have c1 = 0, or

Y(y) = c2 sinh
√

λy.

Then the general solution is

u(x, y) =
∞

∑
n=1

bn sin
nπx

L
sinh

nπy
L

. (9.68)

We now force the nonhomogenous boundary condition, u(x, H) = f2(x),

f2(x) =
∞

∑
n=1

bn sin
nπx

L
sinh

nπH
L

. (9.69)

Once again we have a Fourier sine series. The Fourier coefficients are given
by

bn =
2

L sinh nπH
L

∫ L

0
f2(x) sin

nπx
L

dx. (9.70)

Now we turn to the problem with the boundary conditions

u(0, y) = g1(y), u(L, y) = 0, u(x, 0) = 0, u(x, H) = 0.

In this case the pair of homogeneous boundary conditions u(x, 0) = 0, u(x, H) =

0. lead to solutions

Yn(y) = sin
nπy

H
, λn = −

(nπ

H

)2
, n = 1, 2 · · · .
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The condition u(L, 0) = 0 gives X(x) = sinh nπ(L−x)
H . The general solution

is

u(x, y) =
∞

∑
n=1

cn sin
nπy

H
sinh

nπ(L− x)
H

. (9.71)

We now force the nonhomogenous boundary condition, u(0, y) = g1(y),

g1(y) =
∞

∑
n=1

cn sin
nπy

H
sinh

nπL
H

. (9.72)

The Fourier coefficients are given by

cn =
2

H sinh nπL
H

∫ H

0
g1(y) sin

nπy
H

dy. (9.73)

Finally, we can find the solution for

u(0, y) = 0, u(L, y) = g2(y), u(x, 0) = 0, u(x, H) = 0.

Following the above analysis, we find the general solution

u(x, y) =
∞

∑
n=1

dn sin
nπy

H
sinh

nπx
H

. (9.74)

We now force the nonhomogenous boundary condition, u(L, y) = g2(y),

g2(y) =
∞

∑
n=1

dn sin
nπy

H
sinh

nπL
H

. (9.75)

The Fourier coefficients are given by

dn =
2

H sinh nπL
H

∫ H

0
g1(y) sin

nπy
H

dy. (9.76)

The solution to the general problem is given by the sum of these four solu-
tions.

u(x, y) =
∞

∑
n=1

[(
an sinh

nπ(H − y)
L

+ bn sinh
nπy

L

)
sin

nπx
L

+

(
cn sinh

nπ(L− x)
H

+ dn sinh
nπx

H

)
sin

nπy
H

]
,

(9.77)

where the coefficients are given by the above Fourier integrals.

Example 9.4. Laplace’s Equation on a Disk
We now turn to solving Laplace’s equation on a disk of radius a as shown

in Figure 9.12. Laplace’s equation in polar coordinates is given by

1
r

∂

∂r

(
r

∂u
∂r

)
+

1
r2

∂2u
∂θ2 = 0, 0 < r < a, −π < θ < π. (9.78)
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The boundary conditions are given as

u(a, θ) = f (θ), −π < θ < π, (9.79)

plus periodic boundary conditions in θ.

x

y

a

u(a, θ) = f (θ)

Figure 9.12: The circular plate of radius a
with boundary condition along the edge
at r = a.

Separation of variable proceeds as usual. Let u(r, θ) = R(r)Θ(θ). Then

1
r

∂

∂r

(
r

∂(RΘ)

∂r

)
+

1
r2

∂2(RΘ)

∂θ2 = 0, (9.80)

or
Θ

1
r
(rR′)′ +

1
r2 RΘ′′ = 0. (9.81)

Diving by u(r, θ) = R(r)Θ(θ) and rearranging, we have

r
R
(rR′)′ = −Θ′′

θ
= λ. (9.82)

Since this equation gives a function of r equal to a function of θ, we set
the equation equal to a constant. Thus, we have obtained two differential
equations, which can be written as

r(rR′)′ − λR = 0, (9.83)

Θ′′ + λΘ = 0. (9.84)

We can solve the second equation, using periodic boundary conditions. The
reader should be able to confirm that

Θ(θ) = an cos nθ + bn sin nθ, λ = n2, n = 0, 1, 2, · · ·

is the solution. Note that the n = 0 case just leads to a constant solution.
Inserting λ = n2 into the radial equation, we find

r2R′′ + rR′ − n2R = 0.

This is a Cauchy-Euler type of ordinary differential equation. Recall that we
solve such equations by guessing a solution of the form R(r) = rm. This leads
to the characteristic equation m2 − n2 = 0. Therefore, m = ±n. So,

R(r) = c1rn + c2r−n.

Since we expect finite solutions at the origin, r = 0, we can set c2 = 0. Thus,
the general solution is

u(r, θ) =
a0

2
+

∞

∑
n=1

(an cos nθ + bn sin nθ) rn. (9.85)

Note that we have taken the constant term out of the sum and put it into a
familiar form.

Now were are ready to impose the remaining boundary condition, u(a, θ) =

f (θ). This gives

f (θ) =
a0

2
+

∞

∑
n=1

(an cos nθ + bn sin nθ) an. (9.86)



440 mathematical physics

This is a Fourier trigonometric series. The Fourier coefficients can be deter-
mined using the results from Chapter 4:

an =
1

πan

∫ π

−π
f (θ) cos nθ dθ, n = 0, 1, · · · , (9.87)

bn =
1

πan

∫ π

−π
f (θ) sin nθ dθ n = 1, 2 · · · . (9.88)

We can put the solution from the last example in a more compact
form by inserting these coefficients into the general solution. Doing
this, we have

u(r, θ) =
a0

2
+

∞

∑
n=1

(an cos nθ + bn sin nθ) rn

=
1

2π

∫ π

−π
f (φ) dφ

+
1
π

∫ π

−π

∞

∑
n=1

[cos nφ cos nθ + sin nφ sin nθ]
( r

a

)n
f (φ) dφ

=
1
π

∫ π

−π

[
1
2
+

∞

∑
n=1

cos n(θ − φ)
( r

a

)n
]

f (φ) dφ. (9.89)

The term in the brackets can be summed. We note that cos n(θ −
φ) = Re(ein(θ−φ)). Then

cos n(θ − φ)
( r

a

)n
= Re

(
ei(θ−φ)

( r
a

)n)
= Re

( r
a

ei(θ−φ)
)n

. (9.90)

Therefore,

∞

∑
n=1

cos n(θ − φ)
( r

a

)n
= Re

(
∞

∑
n=1

( r
a

ei(θ−φ)
)n
)

The right hand side of this equation is a geometric series with common

ratio r
a ei(θ−φ). Since

∣∣∣ r
a ei(θ−φ)

∣∣∣ = r
a < 1, the series converges. Summing

the series, we obtain

∞

∑
n=1

( r
a

ei(θ−φ)
)n

=
r
a ei(θ−φ)

1− r
a ei(θ−φ)

=
rei(θ−φ)

a− rei(θ−φ)

=
rei(θ−φ)

a− rei(θ−φ)

a− re−i(θ−φ)

a− re−i(θ−φ)

=
are−i(θ−φ) − r2

a2 + r2 − 2ar cos(θ − φ)
. (9.91)

We have rewritten this sum so that we can easily take the real part,

Re

(
∞

∑
n=1

( r
a

ei(θ−φ)
)n
)

=
ar cos(θ − φ)− r2

a2 + r2 − 2ar cos(θ − φ)
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Therefore, the factor in the brackets under the integral in Equation
(9.89) is

1
2
+

∞

∑
n=1

cos n(θ − φ)
( r

a

)n
=

1
2
+

ar cos(θ − φ)− r2

a2 + r2 − 2ar cos(θ − φ)

=
a2 − r2

2(a2 + r2 − 2ar cos(θ − φ))
.(9.92)

Thus, we have shown that the solution of Laplace’s equation on a
disk of radius a with boundary condition u(a, θ) = f (θ) can be written
in the closed form Poisson Integral Formula

u(r, θ) =
1

2π

∫ π

−π

a2 − r2

a2 + r2 − 2ar cos(θ − φ)
f (φ) dφ. (9.93)

This result is called the Poisson Integral Formula and

K(θ, φ) =
a2 − r2

a2 + r2 − 2ar cos(θ − φ)

is called the Poisson kernel.

9.4 Three Dimensional Cake Baking

In the rest of the chapter we will extend our studies to three
dimensions. In this section we will solve the heat equation as we look
at examples of baking cakes. We consider cake batter, which is at This discussion of cake baking is

adapted from R. Wilkinson’s thesis
work. That in turn was inspired by work
done by Dr. Olszewski.

room temperature of Ti = 80◦F. It is placed into an oven, also at a
fixed temperature, Tb = 350◦F. For simplicity, we will assume that the
thermal conductivity and cake density are constant. Of course, this
is not quite true. However, it is an approximation which simplifies
the model. We will consider two cases, one in which the cake is a
rectangular solid (0 ≤ x ≤W, 0 ≤ y ≤ L, 0 ≤ z ≤ H), such as baking it
in a 13′′ × 9′′ × 2′′ baking pan. The other case will lead to a cylindrical
cake, such as you would obtain from a round cake pan.

Assuming that the heat constant k is indeed constant and the tem-
perature is given by T(r, t), we begin with the heat equation in three
dimensions,

∂T
∂t

= k∇2T. (9.94)

We will need to specify initial and boundary conditions. Let Ti be the
initial batter temperature, and write the initial condition as

T(x, y, z, 0) = Ti.

We choose the boundary conditions to be fixed at the oven temperature
Tb. However, these boundary conditions are not homogeneous and
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would lead to problems when carrying out separation of variables.
This is easily remedied by subtracting the oven temperature from all
temperatures involved and defining u(x, y, z, t) = T(x, y, z, t)− Tb. The
heat equation then becomes

∂u
∂t

= k∇2u (9.95)

with initial condition
u(r, 0) = Ti − Tb.

The boundary conditions are now that u = 0 on the boundary. We
cannot be any more specific than this until we specify the geometry.

Example 9.5. Temperature of a Rectangular Cake
For this problem, we seek solutions of the heat equation plus the conditions

u(x, y, z, 0) = Ti − Tb,

u(0, y, z, t) = u(W, y, z, t) = 0,

u(x, 0, z, t) = u(x, L, z, t) = 0,

u(x, y, 0, t) = u(x, y, H, t) = 0.

Using the method of separation of variables, we seek solutions of the form

u(x, y, z, t) = X(x)Y(y)Z(z)G(t). (9.96)

Substituting this form into the heat equation, we get

1
k

G′

G
=

X′′

X
+

Y′′

Y
+

Z′′

Z
. (9.97)

Setting these expressions equal to −λ, we get

1
k

G′

G
= −λ and

X′′

X
+

Y′′

Y
+

Z′′

Z
= −λ. (9.98)

Therefore, the equation for G(t) is given by

G′ + kλG = 0.

We further have to separate out the functions of x, y, and z. We anticipate
that the homogeneous boundary conditions will lead to oscillatory solutions
in these variables. Therefore, we expect separation of variable will lead to the
eigenvalue problems

X′′ + µ2X = 0, X(0) = X(W) = 0,

Y′′ + ν2Y = 0, Y(0) = Y(L) = 0,

Z′′ + κ2Z = 0, Z(0) = Z(H) = 0. (9.99)

Noting that
X′′

X
= −µ2,

Y′′

Y
= −ν2,

Z′′

Z
= −κ2,
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we have the relation λ2 = µ2 + ν2 + κ2.
From the boundary conditions, we get product solutions for u(x, y, z, t) in

the form

umn`(x, y, z, t) = sin µmx sin νny sin κ`ze−λmn`kt,

for

λmnl = µ2
m + ν2

n + κ2
` =

(mπ

W

)2
+
(nπ

L

)2
+

(
`π

H

)2
, m, n, ` = 1, 2, . . . .

The general solution is then

u(x, y, z, t) =
∞

∑
m=1

∞

∑
n=1

∞

∑
`=1

Amnl sin µmx sin νny sin κ`ze−λmn`kt, (9.100)

where the Amn`’s are arbitrary constants.
We can use the initial condition u(x, y, z, 0) = Ti − Tb to determine the

Amn`’s. We find

Ti − Tb =
∞

∑
m=1

∞

∑
n=1

∞

∑
`=1

Amnl sin µmx sin νny sin κ`z. (9.101)

This is a triple Fourier sine series. We can determine these coefficients in a
manner similar to how we handled a double Fourier sine series earlier. Defin-
ing

bm(y, z) =
∞

∑
n=1

∞

∑
`=1

Amnl sin νny sin κ`z,

we obtain a simple Fourier sine series:

Ti − Tb =
∞

∑
m=1

bm(y, z) sin µmx. (9.102)

The Fourier coefficients can then be found as

bm(y, z) =
2

W

∫ W

0
(Ti − Tb) sin µmx dx.

Using the same technique for the remaining sine series and noting that
Ti − Tb is constant, we can compute the general coefficient Amnl by carrying
out the needed integrations:

Amnl =
8

WLH

∫ H

0

∫ L

0

∫ W

0
(Ti − Tb) sin µmx sin νny sin κ`z dxdydz

= (Ti − Tb)
8

π3

[
cos (mπx

W )

m

]W

0

[
cos ( nπy

L )

n

]L

0

[
cos ( `πz

H )

`

]H

0

= (Ti − Tb)
8

π3

[
cos mπ − 1

m

] [
cos nπ − 1

n

] [
cos `π − 1

`

]
= (Ti − Tb)

8
π3

{
0, for at least one m, n, ` even,[−2

m
] [−2

n
] [−2

`

]
, for m, n, ` all odd.
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Since only the odd multiples yield non-zero Amn` we let m = 2m′ − 1,
n = 2n′ − 1, and ` = 2`′ − 1. Thus

Amnl =
−64(Ti − Tb)

(2m′ − 1) (2n′ − 1) (2`′ − 1)π3 .

Substituting this result into general solution and dropping the primes, we
find

u(x, y, z, t) =
−64(Ti − Tb)

π3

∞

∑
m=1

∞

∑
n=1

∞

∑
`=1

sin µmx sin νny sin κ`ze−λmn`kt

(2m− 1)(2n− 1)(2`− 1)
,

where

λmn` =

(
(2m− 1)π

W

)2

+

(
(2n− 1)π

L

)2

+

(
(2`− 1)π

H

)2

for m, n, ` = 1, 2, . . ..
Recalling T(x, y, z, t) = u(x, y, z, t)− Tb,

T(x, y, z, t) = Tb−
64(Ti − Tb)

π3

∞

∑
m=1

∞

∑
n=1

∞

∑
`=1

sin µ̂mx sin ν̂ny sin κ̂`ze−λ̂mn`kt

(2m− 1)(2n− 1)(2`− 1)
.

We show some temperature distributions in Figure 9.13. Vertical slices
are taken at the positions and times indicated for a 13′′ × 9′′ × 2′′ cake. Ob-
viously, this is not accurate because the cake consistency is changing and
this will affect the parameter k. A more realistic model would be to allow
k = k(T(x, y, z, t)). however, such problems are beyond the simple methods
described in this book.

Example 9.6. Circular Cakes
In this case the geometry is cylindrical. Therefore, we need to express the

boundary conditions and heat equation in cylindrical coordinates.
We assume u(r, z, t) = T(r, z, t)− Tb is independent of θ due to symme-

try. This gives the heat equation in cylindrical coordinates as

∂u
∂t

= k
(

1
r

∂

∂r

(
r

∂u
∂r

)
+

∂2u
∂z2

)
, (9.103)

where 0 ≤ r ≤ a and 0 ≤ z ≤ Z. The initial condition is

u(r, z, 0) = Ti − Tb,

and the homogeneous boundary conditions are

u(a, z, t) = 0,

u(r, 0, t) = u(r, Z, t) = 0.

Again, we seek solutions of the form u(r, z, t) = R(r)H(z)G(t). Separa-
tion of variables leads to

1
k

G′

G
=

1
rR

d
dr
(
rR′
)
+

H′′

H
. (9.104)
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Figure 9.13: Temperature evolution for
a 13′′ × 9′′ × 2′′ cake shown as vertical
slices at the indicated length in feet.Choosing λ as the separation constant, we get

G′ − kλG = 0, (9.105)

and
1

rR
d
dr
(
rR′
)
= −H′′

H
+ λ. (9.106)

Since negative eigenvalues yield the oscillatory solutions we expect, we con-
tinue as before by setting both sides of this equation equal to −µ2. After some
rearrangement, we obtain the needed differential equations:

d
dr
(
rR′
)
+ rµ2R = 0 (9.107)

and

H′′ + ν2H = 0. (9.108)

Here λ = −
(
µ2 + ν2).

We can easily write down the solutions

G(t) = Aeλkt
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and
Hn(z) = sin

(nπz
Z

)
, n = 1, 2, 3, . . . ,

where ν = nπ
Z . Recalling from the rectangular case that only odd terms arise

in the Fourier sine series coefficients for the constant initial condition, we
proceed by rewriting H(z) as

Hn(z) = sin
(
(2n− 1)πz

Z

)
, n = 1, 2, 3, . . . (9.109)

with ν = (2n−1)π
Z .

The radial equation can be written in the form

r2R′′ + rR′ + r2µ2R = 0.

This is a Bessel equation of the first kind of order zero and the general solution
is a linear combination of Bessel functions of the first and second kind,

R(r) = c1 J0(µr) + c2N0(µr). (9.110)

Since we wish to have u(r, z, t) bounded at r = 0 and N0(µr) is not well
behaved at r = 0, we set c2 = 0. Up to a constant factor, the solution
becomes

R(r) = J0(µr). (9.111)

The boundary condition R(a) = 0 gives J0(µa) = 0 and thus µm = j0m
a ,

for m = 1, 2, 3, . . .. Here the j0m’s are the mth roots of the zeroth-order Bessel
function, J0(j0m) = 0, which are given in Table 9.1. This suggests that

Rm(r) = J0

( r
a

j0m

)
, m = 1, 2, 3, . . . . (9.112)

Thus, we have found that the general solution is given as

u(r, z, t) =
∞

∑
n=1

∞

∑
m=1

Anm sin
(
(2n− 1)πz

Z

)
J0

( r
a

j0m

)
e−λnmkt (9.113)

with

λnm =

((
(2n− 1)π

Z

)2

+

(
j0m

a

)2
)

,

for n, m = 1, 2, 3, . . . .
Using the constant initial condition to find the Anm’s, we have

Ti − Tb =
∞

∑
n=1

∞

∑
m=1

Anm sin
[
(2n− 1)πz

Z

]
J0

( r
a

j0m

)
.

If we let bn(r) = ∑∞
m=1 Anm J0

( r
a j0m

)
, we have

Ti − Tb =
∞

∑
n=1

bn(r) sin
(
(2n− 1)πz

Z

)
.
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As seen previously, this is a Fourier sine series and the Fourier coefficients are
given by

bn(r) =
2
Z

∫ Z

0
(Ti − Tb) sin

(
(2n− 1)πz

Z

)
dz

=
2(Ti − Tb)

Z

[
− Z
(2n− 1)π

cos
(
(2n− 1)πz

Z

)]Z

0

=
4(Ti − Tb)

(2n− 1)π
.

Then, we have

bn(r) =
4(Ti − Tb)

(2n− 1)π
=

∞

∑
m=1

Anm J0

( r
a

j0m

)
.

This is a Fourier-Bessel series. Given bn(r) =
4(Ti−Tb)
(2n−1)π , we seek to find the

Fourier coefficients Anm. Recall from Chapter 5 that the Fourier-Bessel series
is given by

f (x) =
∞

∑
n=1

cn Jp(jpn
x
a
), (9.114)

where the Fourier-Bessel coefficients are found as

cn =
2

a2
[

Jp+1(jpn)
]2 ∫ a

0
x f (x)Jp(jpn

x
a
) dx. (9.115)

For this problem, we have

Anm =
2

a2 J2
1 (j0m)

4(Ti − Tb)

(2n− 1)π

∫ a

0
J0(µmr)r dr. (9.116)

In order to evaluate
∫ a

0 J0(µkr)r dr, we let y = µkr and get∫ a

0
J0(µkr)rdr =

∫ µka

0
J0(y)

y
µk

dy
µk

=
1

µ2
k

∫ µka

0
J0(y)y dy

=
1

µ2
k

∫ µka

0

d
dy

(yJ1(y)) dy

=
1

µ2
k
(µka)J1(µka) =

a2

j0k
J1(j0k). (9.117)

Here we have made use of the identity d
dx (xJ1(x)) = J0(x).

Substituting the result of this integral computation into the expression for
Anm, we find

Anm =
8(Ti − Tb)

(2n− 1)π
1

j0m J1(j0m)
.

Substituting Anm into the original expression for u(r, z, t), gives

u(r, z, t) =
8(Ti − Tb)

π

∞

∑
n=1

∞

∑
m=1

sin
(
(2n−1)πz

Z

)
(2n− 1)

J0(
r
a j0m)eλnmDt

j0m J1(j0m)
.
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Therefore, T(r, z, t) can be found as

T(r, z, t) = Tb +
8(Ti − Tb)

π

∞

∑
n=1

∞

∑
m=1

sin
(
(2n−1)πz

Z

)
(2n− 1)

J0(
r
a j0m)eλnmkt

j0m J1(j0m)
.

We have therefore found the general solution for the three-dimensional heat
equation in cylindrical coordinates with constant diffusivity. Similar to the
solutions shown in Figure 9.13 of the previous section, we show in Figure
9.14 the temperature temperature evolution throughout a standard 9′′ round
cake pan.

Figure 9.14: Temperature evolution for a
standard 9′′ cake shown as vertical slices
through the center.

9.5 Laplace’s Equation and Spherical Symmetry

We have seen that Laplace’s equation, ∇2u = 0, arises in elec-
trostatics as an equation for electric potential outside a charge distribu-
tion and it occurs as the equation governing equilibrium temperature
distributions. As we had seen in the last chapter, Laplace’s equation
generally occurs in the study of potential theory, which also includes
the study of gravitational and fluid potentials. The equation is named
after Pierre-Simon Laplace (1749-1827) who had studied the properties
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of this equation. solutions of Laplace’s equation are called harmonic
functions.

Laplace’s equation in spherical coordinates is given by2 2 The Laplacian in spherical coordinates
is given in Problem 29 in Chapter 8.

1
ρ2

∂

∂ρ

(
ρ2 ∂u

∂ρ

)
+

1
ρ2 sin θ

∂

∂θ

(
sin θ

∂u
∂θ

)
+

1
ρ2 sin2 θ

∂2u
∂φ2 = 0, (9.118)

where u = u(ρ, θ, φ).

Figure 9.15: A sphere of radius r with
the boundary condition u(r, θ, φ) =
g(θ, φ).

We seek solutions of this equation inside a sphere of radius r subject
to the boundary condition u(r, θ, φ) = g(θ, φ) as shown in Figure 9.15.

As before, we perform a separation of variables by seeking product
solutions of the form u(ρ, θ, φ) = R(ρ)Θ(θ)Φ(φ). Inserting this form
into the Laplace equation, we obtain

x

y

z

ρ

φ

θ

Figure 9.16: Definition of spherical coor-
dinates (ρ, θ, φ). Note that there are dif-
ferent conventions for labeling spherical
coordinates. This labeling is used often
in physics.

ΘΦ
ρ2

d
dρ

(
ρ2 dR

dρ

)
+

RΦ
ρ2 sin θ

d
dθ

(
sin θ

dΘ
dθ

)
+

RΘ
ρ2 sin2 θ

d2Φ
dφ2 = 0. (9.119)

Multiplying this equation by ρ2 and dividing by RΘΦ, yields

1
R

d
dρ

(
ρ2 dR

dρ

)
+

1
sin θΘ

d
dθ

(
sin θ

dΘ
dθ

)
+

1
sin2 θΦ

d2Φ
dφ2 = 0. (9.120)

Note that the first term is the only term depending upon ρ. Thus, we
can separate out the radial part. However, there is still more work to
do on the other two terms, which give the angular dependence. Thus,
we have

− 1
R

d
dρ

(
ρ2 dR

dρ

)
=

1
sin θΘ

d
dθ

(
sin θ

dΘ
dθ

)
+

1
sin2 θΦ

d2Φ
dφ2 = −λ,

(9.121)
where we have introduced the first separation constant. This leads to
two equations:

d
dρ

(
ρ2 dR

dρ

)
− λR = 0 (9.122)

and Equation (9.123) is a key equation which
occurs when studying problems possess-
ing spherical symmetry. It is an eigen-
value problem for Y(θ, φ) = Θ(θ)Φ(φ),
LY = −λY, where

L =
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂φ2 .

The eigenfunctions of this operator are
referred to as spherical harmonics.

1
sin θΘ

d
dθ

(
sin θ

dΘ
dθ

)
+

1
sin2 θΦ

d2Φ
dφ2 = −λ. (9.123)

The final separation can be performed by multiplying the last equa-
tion by sin2 θ, rearranging the terms, and introducing a second sepa-
ration constant:

sin θ

Θ
d
dθ

(
sin θ

dΘ
dθ

)
+ λ sin2 θ = − 1

Φ
d2Φ
dφ2 = µ. (9.124)

From this expression we can determine the differential equations sat-
isfied by Θ(θ) and Φ(φ):

sin θ
d
dθ

(
sin θ

dΘ
dθ

)
+ (λ sin2 θ − µ)Θ = 0, (9.125)
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and
d2Φ
dφ2 + µΦ = 0. (9.126)

We now have three ordinary differential equations to solve. These
are the radial equation (9.122) and the two angular equations (9.125)-
(9.126). We note that all three are in Sturm-Liouville form. We will
solve each eigenvalue problem subject to appropriate boundary condi-
tions.

The simplest of these differential equations is the one for Φ(φ),
Equation (9.126). We have seen equations of this form many times
and the general solution is a linear combination of sines and cosines.
As argues in such problems, we have to impose periodic boundary
conditions. For example, we expect that

u(ρ, θ, 0) = u(ρ, θ, 2π), uφ(ρ, θ, 0) = uφ(ρ, θ, 2π).

Since these conidtions hold for all ρ and θ, we must require that

Φ(0) = Φ(2π), Φ′(0) = Φ′(2π).

As we have seen before, the eigenfunctions and eigenvalues are then
found as

Φ(φ) = {cos mφ, sin mφ} , µ = m2, m = 0, 1, . . . . (9.127)

Next we turn to solving equation, (9.126). We first transform this
equation in order to identify the solutions. Let x = cos θ. Then the
derivatives with respect to θ transform as

d
dθ

=
dx
dθ

d
dx

= sin θ
d

dx
.

Letting y(x) = Θ(θ) and noting that sin2 θ = 1− x2, Equation (9.126)
becomes

d
dx

(
(1− x2)

dy
dx

)
+

(
λ− m2

1− x2

)
y = 0. (9.128)

We further note that x ∈ [−1, 1], as can be easily confirmed by the
reader.

This is a Sturm-Liouville eigenvalue problem. The solutions consist
of a set of orthogonal eigenfunctions. For the special case that m = 0
Equation (9.128) becomes

d
dx

(
(1− x2)

dy
dx

)
+ λy = 0. (9.129)

In a course in differential equations one learns to seek solutions of this
equation in the form

y(x) =
∞

∑
n=0

anxn.
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This leads to the recursion relation

an+2 =
n(n + 1)− λ

(n + 2)(n + 1)
an.

Setting n = 0 and seeking a series solution, one finds that the resulting
series does not converge for x = ±1. This is remedied by choosing
λ = `(`+ 1) for ` = 0, 1, . . . , leading to the differential equation

d
dx

(
(1− x2)

dy
dx

)
+ `(`+ 1)y = 0. (9.130)

We saw this equation in Chapter 5. The solutions of this Legendre
differential equation are the Legendre polynomials, denoted by P`(x).

For the more general case, m 6= 0, the differential equation (9.128)
with λ = `(`+ 1) becomes Associated Legendre Functions

d
dx

(
(1− x2)

dy
dx

)
+

(
`(`+ 1)− m2

1− x2

)
y = 0. (9.131)

The solutions of this equation are called the associated Legendre func-
tions. The two linearly independent solutions are denoted by Pm

` (x)
and Qm

` (x). The latter functions are not well behaved at x = ±1, cor-
responding to the north and south poles of the original problem. So,
we can throw out these solutions, leaving

Θ(θ) = Pm
` (cos θ)

as the needed solutions. In Table 9.2 we list a few of these.

Pm
n (x) Pm

n (cos θ)

P0
1 (x) x cos θ

P1
1 (x) (1− x2)

1
2 sin θ

P0
2 (x) 1

2 (3x2 − 1) 1
2 (cos2 θ − 1)

P1
2 (x) 3x(1− x2)

1
2 3 cos θ sin θ

P2
2 (x) 3(1− x2) 3 sin2 θ

P0
3 (x) 1

2 (5x3 − 32x) 1
2 (5 cos3 θ − 3 cos θ)

P1
3 (x) 3

2 (5x2 − 1)(1− x2)
1
2 3

2 (5 cos2 θ − 1) sin θ

P2
3 (x) 15x(1− x2) 15 cos θ sin2 θ

P3
3 (x) 15(1− x2)

3
2 15 sin3 θ

Table 9.2: Associated Legendre Func-
tions, Pm

n (x).

The associated Legendre functions are related to the Legendre poly-
nomials by3 3 Some definitions do not include the

(−1)m factor.

Pm
` (x) = (−1)m(1− x2)m/2 dm

dxm P`(x), (9.132)

for ` = 0, 1, 2, , . . . and m = 0, 1, . . . , `. We further note that P0
` (x) =

P`(x), as one can see in the table. Since P`(x) is a polynomial of degree
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`, then for m > `, dm

dxm P`(x) = 0 and Pm
` (x) = 0. Furthermore, since

the differential equation only depends on m2, P−m
` (x) is proportional

to Pm
` (x). One normalization is given by

P−m
` (x) = (−1)m (`−m)!

(`+ m)!
Pm
` (x).

The associated Legendre functions also satisfy the orthogonality
condition ∫ 1

−1
Pm
` (x)Pm

`′ (x) dx =
2

2`+ 1
(`+ m)!
(`−m)!

δ``′ . (9.133)

The last differential equation we need to solve is the radial equation.
With λ = `(` + 1), ` = 0, 1, 2, . . . , the radial equation (9.122) can be
written as

ρ2R′′ + 2ρR′ − `(`+ 1)R = 0. (9.134)

The radial equation is a Cauchy-Euler type of equation. So, we can
guess the form of the solution to be R(ρ) = ρs, where s is a yet to be
determined constant. Inserting this guess, we obtain the characteristic
equation

s(s + 1) = `(`+ 1).

Solving for s, we have

s = `,−(`+ 1).

Thus, the general solution of the radial equation is

R(ρ) = aρ` + bρ−(`+1). (9.135)

We would normally apply boundary conditions at this point. Recall
that we gave that for ρ = r, u(r, θ, φ) = g(θ, φ). This is not a homoge-
neous boundary condition, so we will need to hold off using it until we
have the general solution to the three dimensional problem. However,
we do have a hidden condition. Since we are interested in solutions in-
side the sphere, we need to consider what happens at ρ = 0. Note that
ρ−(`+1) is not defined at the origin. Since the solution is expected to
be bounded at the origin, we can set b = 0. So, in the current problem
we have established that

R(ρ) = aρ`.

We have carried out the full separation of Laplace’s equation in
spherical coordinates. The product solutions consist of the forms

u(ρ, θ, φ) = ρ`Pm
` (cos θ) cos mφ

and

u(ρ, θ, φ) = ρ`Pm
` (cos θ) sin mφ
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for ` = 0, 1, 2, . . . and m = 0,±1, , . . . ,±`. These solutions can be
combined to give a complex representation of the product solutions as

u(ρ, θ, φ) = ρ`Pm
` (cos θ)eimφ.

The general solution is then given as a linear combination of these
product solutions. As there are two indices, we have a double sum:4 4 While this appears to be a complex-

valued solution, it can be rewritten as
a sum over real functions. The inner
sum contains terms for both m = k and
m = −k. Adding these contributions, we
have that

a`kρ`Pk
` (cos θ)eikφ + a`(−k)ρ

`P−k
` (cos θ)e−ikφ

can be rewritten as

(A`k cos kφ + B`k sin kφ)ρ`Pk
` (cos θ).

u(ρ, θ, φ) =
∞

∑
`=0

`

∑
m=−`

a`mρ`Pm
` (cos θ)eimφ. (9.136)

The solutions of the angular parts of the problem are often com-
bined into one function of two variables, as problems with spherical
symmetry arise often, leaving the main differences between such prob-
lems confined to the radial equation. These functions are referred to
as spherical harmonics, Y`m(θ, φ), which are defined with a special Y`m(θ, φ), are the spherical harmonics.

Spherical harmonics are important in
applications from atomic electron con-
figurations to gravitational fields, plane-
tary magnetic fields, and the cosmic mi-
crowave background radiation.

normalization as

Y`m(θ, φ) =

√
2`+ 1

4π

(`−m)!
(`+ m)!

Pm
` eimφ. (9.137)

These satisfy the simple orthogonality relation∫ π

0

∫ 2π

0
Y`m(θ, φ)Y∗`′m′(θ, φ) sin θ dφ dθ = δ``′δmm′ .

As noted in an earlier side note, the spherical harmonics are eigen-
functions of the eigenvalue problem LY = −λY, where

L =
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂φ2 .

This operator appears in many problems in which there is spherical
symmetry, such as obtaining the solution of Schrödinger’s equation
for the hydrogen atom as we will see later. Therefore, it is customary
to plot spherical harmonics. Because the Y`m’s are complex functions,
one typically plots either the real part or the modulus squared. One
rendition of |Y`m(θ, φ)|2 is shown in Figure 9.17.

We could also look for the nodal curves of the spherical harmonics
like we had for vibrating membranes. Such surface plots on a sphere
are shown in Figure 9.18. The colors provide for the amplitude of
the |Y`m(θ, φ)|2. We can match these with the shapes in Figure 9.17

by coloring the plots with some of the same colors. This is shown
in Figure 9.19. However, by plotting just the sign of the spherical
harmonics, as in Figure 9.20, we can pick out the nodal curves much
easier.
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Figure 9.17: The first few spherical har-
monics, |Y`m(θ, φ)|2

Figure 9.18: Spherical harmonic con-
tours for |Y`m(θ, φ)|2.
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Figure 9.19: The first few spherical har-
monics, |Y`m(θ, φ)|2

Figure 9.20: In these figures we show the
nodal curves of |Y`m(θ, φ)|2
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Figure 9.21: Zonal harmonics, ` = 1,
m = 0.

Figure 9.22: Zonal harmonics, ` = 2,
m = 0.

Figure 9.23: Sectoral harmonics, ` = 2,
m = 2.

Spherical, or surface, harmonics can be further grouped into zonal,
sectoral, and tesseral harmonics. Zonal harmonics correspond to the
m = 0 modes. In this case, one seeks nodal curves for which P`(cos θ) =

0. These lead to constant θ values such that cos θ is a zero of the Legen-
dre polynomial, P`(x). These correspond to the first column in Figure
9.20. Since P`(x) is a polynomial of degree `, the zonal harmonics
consist of ` latitudinal circles.

Sectoral, or meridional, harmonics result for the case that m = ±`.
For this case, we note that P±`` (x) ∝ (1 − x2)m/2. This vanishes for
x = ±1, or θ = 0, π. Therefore, the spherical harmonics can only
produce nodal curves for eimφ = 0. Thus, one obtains the meridians
corresponding to solutions of A cos mφ + B sin mφ = 0. Such solutions
are constant values of φ. These can be seen in Figure 9.20 in the top
diagonal and can be described as m circles passing through the poles,
or longitudinal circles.

Tesseral harmonics are all of the rest, which typically look like a
checker board glued to the surface of a sphere. Examples can be seen
in the pictures of nodal curves, such as Figure 9.20. Looking in Figure
9.20 along the diagonals going downward from left to right, one can
see the same number of latitudinal circles. In fact, there are ` − m
latitudinal nodal curves in these figures

Figure 9.24: Tesseral harmonics, ` = 3,
m = 1.

Figure 9.25: Sectoral harmonics, ` = 3,
m = 3.

Figure 9.26: Tesseral harmonics, ` = 4,
m = 3.

In summary, the spherical harmonics have several representations,
as show in Figures 9.17-9.20. Note that there are ` nodal lines, m
meridional curves, and `− m horizontal curves in these figures. The
plots in Figures 9.17 and 9.19 are the typical plots shown in physics for
discussion of the wavefunctions of the hydrogen atom. Those in 9.18

are useful for describing gravitational or electric potential functions,
temperature distributions, or wave modes on a spherical surface. The
relationships between these pictures and the nodal curves can be bet-
ter understood by comparing respective plots. Several modes were
separated out in Figures 9.21-9.26 to make this comparison easier.

Example 9.7. Laplace’s Equation with Azimuthal Symmetry
As a simple example we consider the solution of Laplace’s equation in which

there is azimuthal symmetry. Let

u(r, θ, φ) = g(θ) = 1− cos 2θ.

This function is zero at the poles and has a maximum at the equator. So, this
could be a crude model of the temperature distribution of the Earth with zero
temperature at the poles and a maximum near the equator.

In problems in which there is no φ-dependence, only the m = 0 term of the
general solution survives. Thus, we have that

u(ρ, θ, φ) =
∞

∑
`=0

a`ρ`P`(cos θ). (9.138)
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Here we have used the fact that P0
` (x) = P`(x). We just need to determine

the unknown expansion coefficients, a`. Imposing the boundary condition at
ρ = r, we are lead to

g(θ) =
∞

∑
`=0

a`r`P`(cos θ). (9.139)

This is a Fourier-Legendre series representation of g(θ). Since the Legen-
dre polynomials are an orthogonal set of eigenfunctions, we can extract the
coefficients. In Chapter 5 we had proven that∫ π

0
Pn(cos θ)Pm(cos θ) sin θ dθ =

∫ 1

−1
Pn(x)Pm(x) dx =

2
2n + 1

δnm.

So, multiplying the expression for g(θ) by Pm(cos θ) sin θ and integrating,
we obtain the expansion coefficients:

a` =
2`+ 1

2r`

∫ π

0
g(θ)P`(cos θ) sin θ dθ. (9.140)

Sometimes it is easier to rewrite g(θ) as a polynomial in cos θ and avoid
the integration. For this example we see that

g(θ) = 1− cos 2θ

= 2 sin2 θ

= 2− 2 cos2 θ. (9.141)

Thus, setting x = cos θ, we have g(θ) = 2− 2x2. We seek the form

g(θ) = c0P0(x) + c1P1(x) + c2P2(x),

where P0(x) = 1, P1(x) = x, and P2(x) = 1
2 (3x2 − 1). Since g(θ) =

2− 2x2 does not have any x terms, we know that c1 = 0. So,

2− 2x2 = c0(1) + c2
1
2
(3x2 − 1) = c0 −

1
2

c2 +
3
2

c2x2.

By observation we have c2 = − 4
3 and thus, c0 = 2 + 1

2 c2 = 4
3 . This gives

the sought expansion for g(θ):

g(θ) =
4
3

P0(cos θ)− 4
3

P2(cos θ). (9.142)

Therefore, the nonzero coefficients in the general solution become

a0 =
4
3

, a2 =
4
3

1
r2 ,

and the rest of the coefficients are zero. Inserting these into the general solu-
tion, we have

u(ρ, θ, φ) =
4
3

P0(cos θ)− 4
3

(ρ

r

)2
P2(cos θ)

=
4
3
− 2

3

(ρ

r

)2
(3 cos2 θ − 1). (9.143)
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9.6 Schrödinger Equation in Spherical Coordinates

Another important eigenvalue problem in physics is the Schrödinger
equation. The time-dependent Schrödinger equation is given by

ih̄
∂Ψ
∂t

= − h̄2

2m
∇2Ψ + VΨ. (9.144)

Here Ψ(r, t) is the wave function, which is determines the quantum
state of a particle of mass m subject to a (time independent) potential,
V(r). h̄ = h

2π , where h is Planck’s constant. The probability of finding
the particle in an infinitesimal volume, dV, is given by |Ψ(r, t)|2 dV,
assuming the wave function is normalized,∫

all space
|Ψ(r, t)|2 dV = 1.

One can separate out the time dependence by assuming a special
form, Ψ(r, t) = ψ(r)e−iEt/h̄, where E is the energy of the particular
stationary state solution, or product solution. Inserting this form into
the time-dependent equation, one finds that ψ(r) satisfies

− h̄2

2m
∇2ψ + Vψ = Eψ. (9.145)

Assuming that the potential depends only on distance from the ori-
gin, V = V(ρ), we can further separate out the radial part of this solu-
tion using spherical coordinates. Recall that the Laplacian in spherical
coordinates is given by

∇2 =
1
ρ2

∂

∂ρ

(
ρ2 ∂

∂ρ

)
+

1
ρ2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
ρ2 sin2 θ

∂2

∂φ2 . (9.146)

Then, the time-independent Schrödinger equation can be written as

− h̄2

2m

[
1
ρ2

∂

∂ρ

(
ρ2 ∂ψ

∂ρ

)
+

1
ρ2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1
ρ2 sin2 θ

∂2ψ

∂φ2

]
= [E−V(ρ)]ψ. (9.147)

Let’s continue with the separation of variables. Assuming that the
wave function takes the form ψ(ρ, θ, φ) = R(ρ)Y(θ, φ), we obtain

− h̄2

2m

[
Y
ρ2

d
dρ

(
ρ2 dR

dρ

)
+

R
ρ2 sin θ

d
dθ

(
sin θ

dY
dθ

)
+

R
ρ2 sin2 θ

d2Y
dφ2

]
= RY[E−V(ρ)]ψ. (9.148)

Now dividing by ψ = RY, multiplying by − 2mρ2

h̄2 , and rearranging,
we have

1
R

d
dρ

(
ρ2 dR

dρ

)
− 2mρ2

h̄2 [V(ρ)− E] = − 1
Y

[
1

sin θ

d
dθ

(
sin θ

dY
dθ

)
+

1
sin2 θ

d2Y
dφ2

]
.
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We have a function of ρ equal to a function of the angular variables.
So, we set each side equal to a constant. We will judiciously set the
constant equal to `(`+ 1). The resulting equations are

d
dρ

(
ρ2 dR

dρ

)
− 2mρ2

h̄2 [V(ρ)− E] R = `(`+ 1)R, (9.149)

1
sin θ

∂

∂θ

(
sin θ

∂Y
∂θ

)
+

1
sin2 θ

∂2Y
∂φ2 = −`(`+ 1)Y. (9.150)

The second of these equations should look familiar from the last
section. This is the equation for spherical harmonics,

Y`m(θ, φ) =

√
2`+ 1

2
(`−m)!
(`+ m)!

Pm
` eimφ. (9.151)

So, any further analysis of the problem depends upon the choice of
potential, V(ρ), and the solution of the radial equation. For this, we
turn to the determination of the wave function for an electron in orbit
about a proton.

Example 9.8. The Hydrogen Atom - ` = 0 States
Historically, the first test of the Schrödinger equation was the determina-

tion of the energy levels in a hydrogen atom. This is modeled by an electron
orbiting a proton. The potential energy is provided by the Coulomb potential,

V(ρ) = − e2

4πε0ρ
.

Thus, the radial equation becomes

d
dρ

(
ρ2 dR

dρ

)
+

2mρ2

h̄2

[
e2

4πε0ρ
+ E

]
R = `(`+ 1)R. (9.152)

Before looking for solutions, we need to simplify the equation by absorbing
some of the constants. One way to do this is to make an appropriate change
of variables. Let ρ = ar. Then by the Chain Rule we have

d
dρ

=
dr
dρ

d
dr

=
1
a

d
dr

.

Under this transformation, the radial equation becomes

d
dr

(
r2 du

dr

)
+

2ma2r2

h̄2

[
e2

4πε0ar
+ E

]
u = `(`+ 1)u, (9.153)

where u(r) = R(ρ). Expanding the second term,

2ma2r2

h̄2

[
e2

4πε0ar
+ E

]
u =

[
mae2

2πε0h̄2 r +
2mEa2

h̄2 r2
]

u,
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we see that we can define

a =
2πε0h̄2

me2 , (9.154)

ε = −2mEa2

h̄2

= −2(2πε0)
2h̄2

me4 E. (9.155)

Using these constants, the radial equation becomes

d
dr

(
r2 du

dr

)
+ ru− `(`+ 1)u = εr2u. (9.156)

Expanding the derivative and dividing by r2,

u′′ +
2
r

u′ +
1
r

u− `(`+ 1)
r2 u = εu. (9.157)

The first two terms in this differential equation came from the Laplacian. The
third term came from the Coulomb potential. The next term can be thought
to contribute to the potential and is attributed to angular momentum. Thus,
` is called the angular momentum quantum number. This is an eigenvalue
problem for the radial eigenfunctions u(r) and energy eigenvalues ε.

The solutions of this equation are determined in a quantum mechanics
course. In order to get a feeling for the solutions, we will consider the zero
angular momentum case, ` = 0 :

u′′ +
2
r

u′ +
1
r

u = εu. (9.158)

Even this equation is one we have not encountered in this book. Let’s see if
we can find some of the solutions.

First, we consider the behavior of the solutions for large r. For large r the
second and third terms on the left hand side of the equation are negligible. So,
we have the approximate equation

u′′ − εu = 0. (9.159)

The solutions thus behave like u(r) = e±
√

εr. For bounded solutions, we
choose the decaying solution.

This suggests that solutions take the form u(r) = v(r)e−
√

εr for some
unknown function, v(r). Inserting this guess into Equation (9.158), gives an
equation for v(r) :

rv′′ + 2
(
1−
√

εr
)

v′ + (1− 2
√

ε)v = 0. (9.160)

Next we seek a series solution to this equation. Let

v(r) =
∞

∑
k=0

ckrk.
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Inserting this series into Equation (9.160), we have

∞

∑
k=1

[k(k− 1) + 2k]ckrk−1 +
∞

∑
k=1

[1− 2
√

ε(k + 1)]ckrk = 0.

We can re-index the dummy variable in each sum. Let k = m in the first sum
and k = m− 1 in the second sum. We then find that

∞

∑
k=1

[m(m + 1)cm+[ 1− 2m
√

ε]cm−1]rm−1 = 0.

Since this has to hold for all m ≥ 1,

cm =
2m
√

ε− 1
m(m + 1)

cm−1.

Further analysis indicates that the resulting series leads to unbounded so-
lutions unless the series terminates. This is only possible if the numerator,
2m
√

ε− 1, vanishes for m = n, n = 1, 2 . . . . Thus,

ε =
1

4n2 .

Since ε is related to the energy eigenvalue, E, we have

En = − me4

2(4πε0)2h̄2n2
.

Inserting the values for the constants, this gives

En = −13.6 eV
n2 .

This is the well known set of energy levels for the hydrogen atom.
The corresponding eigenfunctions are polynomials, since the infinite series

was forced to terminate. We could obtain these polynomials by iterating the
recursion equation for the cm’s. However, we will instead rewrite the radial
equation (9.160).

Let x = 2
√

εr and define y(x) = v(r). Then

d
dr

= 2
√

ε
d

dx
.

This gives
2
√

εxy′′ + (2− x)2
√

εy′ + (1− 2
√

ε)y = 0.

Rearranging, we have

xy′′ + (2− x)y′ +
1

2
√

ε
(1− 2

√
ε)y = 0.

Noting that 2
√

ε = 1
n , this becomes

xy′′ + (2− x)y′ + (n− 1)y = 0. (9.161)
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The resulting equation is well known. It takes the form

xy′′ + (α + 1− x)y′ + ny = 0. (9.162)

Solutions of this equation are the associated Laguerre polynomials. The The associated Laguerre polynomials are
named after the French mathematician
Edmond Laguerre (1834-1886).

solutions are denoted by Lα
n(x). They can be defined in terms of the Laguerre

polynomials,

Ln(x) = ex
(

d
dx

)n
(e−xxn).

The associated Laguerre polynomials are defined as

Lm
n−m(x) = (−1)m

(
d

dx

)m
Ln(x).

Note: The Laguerre polynomials were first encountered in Problem 2 in Chap-
ter 5 as an example of a classical orthogonal polynomial defined on [0, ∞) with
weight w(x) = e−x. Some of these polynomials are listed in Table 9.3.

Comparing Equation (9.161) with Equation (9.162), we find that y(x) =
L1

n−1(x).

Lm
n (x)

L0
0(x) 1

L0
1(x) 1− x

L0
2(x) x2 − 4x + 2

L1
0(x) 1

L1
1(x) 4− 2x

L1
2(x) 3x2 − 18x + 18

L2
0(x) 2

L2
1(x) −6x + 18

L2
2(x) 12x2 − 96x + 144

L3
0(x) 6

L3
1(x) −24x + 96

L3
2(x) 60x2 − 600x + 1200

Table 9.3: Associated Laguerre Func-
tions, Lm

n (x).

In summary, we have made the following transformations: In most derivation in quantum mechan-

ics a = a0
2 . where a0 = 4πε0 h̄2

me2 is the Bohr
radius and a0 = 5.2917× 10−11m.1. R(ρ) = u(r), ρ = ar.

2. u(r) = v(r)e−
√

εr.

3. v(r) = y(x) = L1
n−1(x), x = 2

√
εr.

Therefore,
R(ρ) = e−

√
ερ/aL1

n−1(2
√

ερ/a).

However, we also found that 2
√

ε = 1/n. So,

R(ρ) = e−ρ/2naL1
n−1(ρ/na).
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For the general case, for all ` ≥ 0, we need to solve the differential
equation

u′′ +
2
r

u′ +
1
r

u− `(`+ 1)
r2 u = εu. (9.163)

Instead of letting u(r) = v(r)e−
√

εr, we let

u(r) = v(r)r`e−
√

εr.

This lead to the differential equation

rv′′ + 2(`+ 1−
√

εr)v′ + (1− 2(`+ 1)
√

ε)v = 0. (9.164)

as before, we let x = 2
√

εr to obtain

xy′′ + 2
[
`+ 1− x

2

]
v′ +

[
1

2
√

ε
− `(`+ 1)

]
v = 0.

Noting that 2
√

ε = 1/n, we have

xy′′ + 2 [2(`+ 1)− x] v′ + (n− `(`+ 1))v = 0.

We see that this is once again in the form of the associate Laguerre
equation and the solutions are

y(x) = L2`+1
n−`−1(x).

So, the solution to the radial equation for the hydrogen atom is given
by

R(ρ) = r`e−
√

εrL2`+1
n−`−1(2

√
εr)

=
( ρ

2na

)`
e−ρ/2naL2`+1

n−`−1

( ρ

na

)
. (9.165)

Interpretations of these solutions will be left for your quantum me-
chanics course.

Problems

1. Consider Laplace’s equation on the unit square, uxx + uyy = 0,
0 ≤ x, y ≤ 1. Let u(0, y) = 0, u(1, y) = 0 for 0 < y < 1 and uy(x, 0) = 0
for 0 < y < 1. Carry out the needed separation of variables and write
down the product solutions satisfying these boundary conditions.

2. Consider a cylinder of height H and radius a.

a. Write down LaplaceŠs Equation for this cylinder in cylindri-
cal coordinates.

b. Carry out the separation of variables and obtain the three
ordinary differential equations that result from this problem.
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c. What kind of boundary conditions could be satisfied in this
problem in the independent variables?

3. Consider a square drum of side s and a circular drum of radius a.

a. Rank the modes corresponding to the first 6 frequencies for
each.

b. Write each frequency (in Hz) in terms of the fundamental
(i.e., the lowest frequency.)

c. What would the lengths of the sides of the square drum have
to be to have the same fundamental frequency? (Assume that
c = 1.0 for each one.)

4. A copper cube 10.0 cm on a side is heated to 100◦ C. The block
is placed on a surface that is kept at 0◦ C. The sides of the block are
insulated, so the normal derivatives on the sides are zero. Heat flows
from the top of the block to the air governed by the gradient uz =

−10◦C/m. Determine the temperature of the block at its center after
1.0 minutes. Note that the thermal diffusivity is given by k = K

ρcp
,

where K is the thermal conductivity, ρ is the density, and cp is the
specific heat capacity.

5. Consider a spherical balloon of radius a. Small deformations on the
surface can produce waves on the balloon’s surface.

a. Write the wave equation in spherical polar coordinates. (Note:
ρ is constant!)

b. Carry out a separation of variables and find the product so-
lutions for this problem.

c. Describe the nodal curves for the first six modes.

d. For each mode determine the frequency of oscillation in Hz
assuming c = 1.0 m/s.

6. Consider a circular cylinder of radius R = 4.00 cm and height
H = 20.0 cm which obeys the steady state heat equation

urr +
1
r

ur + uzz.

Find the temperature distribution, u(r, z), given that u(r, 0) = 0, u(r, 20) =
20, and heat is lost through the sides due to Newton’s Law of Cooling

[ur + hu]r=4 = 0,

for h = 1.0 cm−1.
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