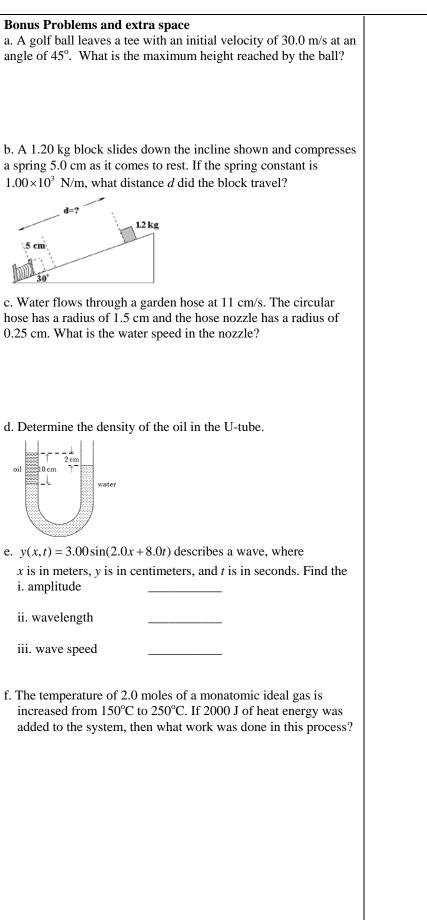
Name _____

1.	ructions: Do all of your work in this booklet.	Page Score
2.	Show all of your steps in problems for full credit.	
	Be clear and neat in your work. Any illegible work, or	1 20 pts
	scribbling in the margins, will not be graded.	2 60 pts
	Place your answers in a box .	
	If you need more space, you may use the back of the page	3 60 pts
	and write On back in the problem space.	4 60 pts
1. N	Iultiple Guess (20 pts) Find the answer which best fits the	Total 200 pts
	stion and write it in the space provided.	k. As an ambulance drives away from an observer, the siren
	oubling the intensity increases the intensity level	frequency will
	3 dB b) 5 dB c) 10 dB d) 20 dB	a) stay the same. b) increase. c) decrease.
μv	ou are told that a car completes one lop on a sircular track in	l. Car J moves twice as fast as car K, and car J has half the
	ou are told that a car completes one lap on a circular track in 8.9 s. From this information one can find	mass of car K. The kinetic energy of car J is the
) the tangential velocity; b) the angular velocity;	kinetic energy of car K.
	the angular acceleration; d) the radius of the track;	a) the same as; b) twice; c) four times; d) half;
C) the angular acceleration; d) the radius of the track;	a) the same as, b) twice, c) four times, d) han,
	he average and instantaneous speeds of an object are equal	m. A baseball player follows through with his swing to
	hen the object	a) conserve momentum; b) ensure an elastic collision;
) has uniform velocity. b) has uniform acceleration.	c) make the contact time with the ball as short as possible;
) moves in a straight line. d) covers twice as much	d) increase the impulse imparted to the ball; e) none of the
d	istance in each second. e) none of the above.	above.
d. Ir	creasing the mass at the end of a simple pendulum will	n. Pressure applied to an enclosed fluid is transmitted in all
a)) increase the frequency b) decrease the period c) increase	directions to every portion of the fluid. This effect is know
th	he period d) have no effect on the period or frequency.	a) Bernoulli's Principle; b) Pascal's Principle;
		c) Archimedes' Principle; d) Newton's Principle
e. A	s a general rule, friction	
	depends on the surface area; b) is proportional to the	o. The constant G in Newton's Law of Gravitation
	ormal force; c) depends on the sliding speed; d) is	a) depends upon the acceleration due to gravity; b) applies
g	reater for smoother surfaces; e) none of the above.	only if the Earth is one of the masses; c) is fixed by the
f C		mass of the moon; d) is a universal constant of nature.
	ars moving on a properly banked track remain on the ack because of the	n When a person riding on a Ferris wheel makes one comp
) friction. b) centripetal force. c) normal force.	p. When a person, riding on a Ferris wheel, makes one comp revolution from the bottom and back, the net work done by
) gravitational force between the road and the car.	gravitational force is
u,	gravitational force between the foad and the car.	a) positive b) zero c) negative.
σΔ	hoop, a solid cylinder and a sphere of equal radii are	
	laced at the top of an incline. They are released at the	q. The first harmonic in a stretched string of length L has a
	ame time. Which one reaches the bottom last?	wavelength of
) hoop; b) cylinder; c) sphere; d) One cannot tell.	a) $L/2$ b) L c) 2L d) 3L d) 4L
አ ጥ	he superposition of ways are dusing a supervise such that	r. On which of the following is the moment of inertia of a
	he superposition of waves producing a composite wave of reater amplitude than any of the individual waves is	r. On which of the following is the moment of inertia of a body not dependent?
) constructive interference b) destructive interference	a) its shape; b) its velocity c) the distribution of mass;
) reflection d) harmonic motion	d) its rotation axis; e) none of these.
U,	reneedon dy narmonic motion	
	pontaneous heat flow from a colder body to a warmer body	s. If an object displaces an amount of liquid of greater
	in violation of the	weight than its own, the object will
a)) first law b) second law c) third law d) zeroth law	a) float b) sink c) remain in equilibrium for any
		submerged position.
	an inelastic collision what is conserved?	t. If the length of a simple pendulum is doubled, then its period
	energy b) mass c) velocity d) momentum	a) doubles. b) halves. c) is less by a factor of $\sqrt{2}$.
		d) is greater by a factor of $\sqrt{2}$. e. remains the same.
		$\sqrt{15}$ greater by a factor of $\sqrt{2}$. c. femalis the same.

Name _____

~	
Constants: $R = 8.31 J/(mol K); \sigma = 5.67 \times 10^{-8} J/(s m^2 K^4); 1 kcal = 4186 J;$ Water: $L_f = 80 cal/g; L_v = 540 cal/g;$ Density of Ice = 917 kg/m ³ ; 6.67×10 ⁻¹¹ Nm ² /kg ² ; $M_E = 5.98 \times 10^{24} kg;$	g. A 3.0 g penny is dropped from the top of the Sears Tower, a height of 443.0 m above the ground. How fast is it moving when it hits the ground?
$R_E = 6.38 \times 10^3$ km; Formula masses: C:12, O:16.	
a. Let the force exerted on a body be given as $F(x) = 2x + 5$ N. Determine the work done by this force to move the body from $x = 1.0$ m to $x = 3.0$ m.	h. Two forces act on a 10.0 kg block as shown below. The magnitudes of the forces are $F_1 = 30.0$ N and $F_2 = 20.0$ N. What is the horizontal acceleration of the block?
b. How much ice at 0.0 °C must be added to 300 g of water at 100.0°C so as to end up with all liquid at 50.0°C?	i. In a hydraulic system the input area is 3.0 cm^2 and the output is 15.0 cm^2 . If the input force is 50.0 N, what is the output force?
c. A motor lifts a 500.0 kg elevator at a constant speed through a distance of 20.0 m in a time of 30.0 seconds. What is the average power expended by the motor?	j. Consider $\mathbf{r} = (-2.5t + 1.5)\mathbf{i} + (3.1t^2 - 2.2t + 1.3)\mathbf{j}$ in meters. i. Find \mathbf{r}_0 and \mathbf{v}_0 .
d. A car sitting in the sun heats up and radiates 952 watts per square meter of surface area. Assuming that it behaves like a blackbody, find its temperature.	ii. What is the acceleration?
e. A 30.0 cm long piece of wire lengthens 1.62 mm when heated from 20°C to 300°C. What is the coefficient of linear thermal expansion for the material of the wire?	k. The second harmonic of a string held firmly at its two ends resonates at 150.0 Hz. If the string is 30.0 cm long, then what is wave speed of the vibration in the string?
f. Find the pivot position at which to balance a system consisting of a 150 g uniform meter stick with a 200 g block tied to the stick at the 20.0 cm mark.	1. A 100.0N force is applied tangentially to the edge of a solid disk with mass 30.0 kg and radius 0.200 m. What is the resulting angular acceleration?


Name _____

a. What is the pressure on a diver 20.0 m below the surface of a lake at sea level? (Give the answer in atmospheres.)	i. What is its mass in kilograms?
	ii. What is its average speed at 20 °C?
b The PV diagram (m ³ vs kPa) is shown below for a particular ideal gas. How much work was done in the process i. A to B? ii. Over cycle the ABCA?	h. A figure skater is spinning with an angular velocity of 15 rad/s. She then comes to a stop over a brief period of time. During this time, her angular displacement is 5.1 rad. How long did it take her to stop.
iii. How much heat energy was exchanged during the cycle?	i. An inventor claims to have developed a heat engine that, on each cycle, takes in 120 kcal of heat from a high-temperature reservoir at 400°C and exhausts 50 kcal to the surroundings at 25°C. Compute the efficiency and Carnot efficiency to answer. Would you invest your money in the production of this engine?
c. Convert 20.0 m/s to miles per hour. (1 mi = 1.609 km)	
d. A ball begins to roll up an inclined plane without slipping at a translational speed of 5.0 m/s. How high does the ball get before turning around? Assume there is no energy loss.	j. A 62.0 kg person dives straight down into the water. Just before striking the water, her speed is 5.50 m/s. During a time of 1.65 s her speed in the water is reduced to 1.10 m/s. What is the average net force on her when she hits the water?
e. A student, in a hurry to go home after, leaves her book on top of the car. She drives around a flat curve with a 70 m radius. If the coefficient of static friction between the book and the car is 0.10, what is the maximum speed the car can have without the book sliding off?	k. A jetliner lands with a speed of 69.0 m/s. What average acceleration is needed for it to land on a 750.0 m runway while reducing its speed to 6.10 m/s?
f. A 12000 kg railroad car traveling at 10 m/s strikes and couples with a 6000 kg caboose at rest. What is the speed of the final combination?	1. A simple pendulum has a length of 25.0 cm. What is the period of oscillation?
g. Consider a CO ₂ molecule.	

Name

Name ___

