Name_____

	Score
Instructions:	3. Problems (14 pts)
1. Do all of your work on this sheet.	a. A +2.0 μ C charge is placed at (4.0 cm, 0 cm) and a
2. Show all of your steps in problems for full credit.	-2.0μ charge is placed at the point (0 cm, 2.0 cm). Find
3. Be clear and neat in your work. Any illegible work, or	the total electric potential at point A.
scribbling in the margins, will not be graded.	y↑ v
4. Place your answers in a box .	$q_1 \blacklozenge$
5. If you need more space, you may use the back of the	
page and write On back in the problem space.	
1 Multiple Guess (3 pts) Find the answer which best fits the	$q_2 x$
question and write it in the space provided.	
a. Equipotential lines are lines of	
a) force; b) equal charge; c) constant electric potential;	b. The temperature of a 250.0 Ω resistor is increased 125 °C.
d) equal electric fields; e) none of these.	If the thermal coefficient of resistivity is 0.0035 (°C) ⁻¹ ,
b. Which of the below configurations is the correct way	what is the new resistance?
to place the voltmeter and ammeter for measuring the	
voltage and current across R ₂ ?	
│ └॑॑॑॑॑॑॑	
	c. An electron is released from the negative plate of a parallel
, d ^v	plate capacitor. Find the electron's speed at the positive
	plate if the potential difference across the plates is 12.0 V.
V	
sectional area of another copper wire. How do the	
resistances compare?	
a) The longer wire has twice the resistance.	d. A 12.0 V battery is connected to a 350 Ω resistor. What is
b) Both wires have the same resistance.	the power loss across the resistor?
c) The longer wire has four times the resistance.	
d) None of the above.	
2 Definition (Deinsinle (2 mts)	
2. Definition/Principle (3 pts) a. For the AC voltage $V = 17.0 \sin 157t$ find (with units)	e. For the below circuit
a. For the AC voltage $V = 17.0 \sin 157t$ find (with thirds)	i. Find the equivalent resistance of the network.
i The rms-voltage	$2 \mathrm{k}\Omega$ $3 \mathrm{k}\Omega$
ii. The frequency	
b. Give the <i>exact expression</i> for the capacitance for a	354
capacitor with a dielectric constant κ , separation d, and	
area A.	
Constants: $\varepsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/\text{N-m}^2$ $m_z = 9.11 \times 10^{-31} \text{ kg}$	ii. Find the currents across the 2 k Ω and 6 k Ω resistors.
Bonus : How much work is done moving a 7.5×10^{-6} C charge	
from a point at a potential of $+150.0$ V to a point at a	
potential of -50.0 V?	