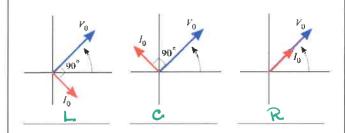
Score

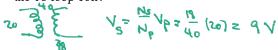
Instructions:


- Do all of your work on this sheet.
- Show all of your steps in problems for full credit. 2.
- Be clear and neat in your work. Any illegible work, or scribbling in the margins, will not be graded.
- Place your answers in a box.
- If you need more space, you may use the back of the page and write On back in the problem space.
- 1. Multiple Guess (3 pts) Find the answer which best fits the question and write it in the space provided.
- a. In an RC circuit the voltage
 - a) lags; b) leads.
- c) is in phase with;

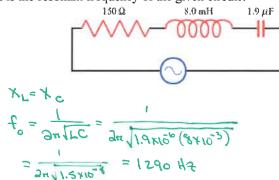
- b. The impedance has units of
 - a) farads; b) ohms; c) hertz d) henries e) none of these
- c. According to Faraday's Law, the induced emf is a result of a) capacitance; b) voltage; c) change in flux; C d) none of these.

2. Definition/Principle (4 pts)

a. Indicate which phasor diagrams below are for a resistor, a capacitor, and an inductor.



b. Give the exact expression for the inductive reactance in terms of the inductance and frequency.


Bonus. A 25cm×15cm coil rotates in a 1.60 T field at 75 Hz. If the generated emf has peak value of 56.59 V, then how many loops are in the coil?

3. Problems (13 pts)

a. On the same bar of iron are wound two coils, one with 40 loops and the other with 18. If a 20.0V alternating voltage is connected to the 40 loop coil, what will be the voltage in the 18 loop coil?

b. What is the resonant frequency of the given circuit?

5

3

3

5

c. What peak voltage is needed to create an rms current of 29.0 A in a circuit containing only a 5.65 µF capacitor. when the frequency of the source is 2.60 kHz?

Vins = Ims Xc = 29 2017-6x13/(5.65x10) = .314 x10 = 314 V V = 314 TZ = 444V

- d. A series LRC circuit includes a resistance of 160 Ω , an inductive reactance of 357 Ω , and a capacitive reactance of 257 Ω . If the voltage source has an rms voltage of 50.0 V, operating at 1.50 kHz. Determine the following:
 - i. Impedance $Z = \sqrt{160^2 + 100^2} = 189\Omega$
 - ii. Rms Current Irms = 7 = 0.26A
 - iii. Phase for \$ = 100 => = 320
- iv. Does the current lead, or lag, the voltage? \(\lambda_{\scrt{q}} \)