Score

Instructions:

- Do all of your work on this sheet.
- 2. Show all of your steps in problems for full credit.
- Be clear and neat in your work. Any illegible work, or scribbling in the margins, will not be graded.
- Place your answers in a box.
- If you need more space, you may use the back of the page and write On back in the problem space.
- 1. Multiple Guess (3 pts) Find the answer which best fits the question and write it in the space provided.
- a. One connects a voltmeter in with a resistor. a) series. b) parallel.
- b. The length, width, and the spacing between the plates of a parallel plate capacitor are doubled. The capacitance
 - a) increases by a factor of 2. b) increases by a factor of 4.
 - c) increases by a factor of 8. d) decreases by a factor of 4.
 - e) decreases by a factor of 2

- c. The resistance of a wire is directly proportional to the a) length. b) emf. c) current. d) area. e) none of these.
- 2. AC Circuits (3 pts) A voltage of $V = 25.0 \sin(1256t)$ volts runs through a 75.0Ω resistor. Including units, what is
- a. The peak voltage?

b. The frequency?

c. The rms-current?

Bonus: A 24.0 V battery with an internal resistance of 5.0Ω is connected to a 75.0 Ω resistor. How much energy is lost in the resistor in one second?

$$W = Pt = I^2R = V/R$$
 $V = 24 - Ir$
 $I = \frac{24}{80} = .3A$
 $W = I^2R = 6.75$

Constants:

$$\varepsilon_0 = 8.85 \times 10^{-12} \,\mathrm{C}^2/\mathrm{N} \cdot \mathrm{m}$$

$$\varepsilon_0 = 8.85 \times 10^{-12} \,\text{C}^2/\text{N-m}^2$$
 $m_e = 9.11 \times 10^{-31} \,\text{kg}$

3. Problems (14 pts)

a. Find the total electric potential at point A.

b. An electron at rest moves from point A (at 100.0V) to from point B (at 50.0 V). How fast is it moving at point B?

c. The temperature of a 0.50 Tresistor wire is increased by 30°C. If the coefficient of thermal resistance is 5.0×10^{-3} (°C)⁻¹, then what is the new resistance?

d. Use the circuit below for the remaining questions.

i. What equivalent resistance can replace the 4 resistors?

$$R_{p} = \frac{1}{\frac{1}{10 + \frac{1}{10}}} = 5.0 \Omega$$

ii. Determine the currents in the 5.0Ω and 10.0Ω

resistors.
$$I_1 = \frac{12.0V}{12.0R} = 1.0 \text{ A}$$