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Figure 1: We solve Poisson’s equation
on a disk of radius a.

We want to use Green’s functions to solve Poisson’s equation with
boundary conditions. After all, Poisson’s equation is a nonhomoge-
neous Laplace equation.

∇2u = f in D,

u = g on C, (1)

where D is the disk shown in Figure 1. The Green’s function should
satisfy

∇2G = δ(ξ − x, η − y) in D,

G ≡ 0 on C. (2)

Recall that in the Method of Images G(x, y; ξ, η) represents a point
charge (or impulse) at (x, y) giving a response at (ξ, η). For each
point charge we employ the two-dimensional infinite space Green’s
function in Cartesian coordinates,

G(r, r′) =
1

2π
ln
∣∣r− r′

∣∣ = 1
4π

ln
[
(x− ξ)2 + (y− η)2

]
. (3)

We introduce a negative point charge (the mirror charge) at (x′, y′)
for each positive charge at (x, y) ∈ D so as to make the Green’s
function vanish on C. We depict these charges in Figure 2. The points
(x, y) and (ξ, η) have radial coordinates ρ =

√
x2 + y2, and ρ′ =√

ξ2 + η2. [Later we show that the mirror charge is a distance a2/ρ

from the origin and has charge Q = −q.]
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Figure 2: Applying the Method of
Images in the construction of the
Green’s function.
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We now construct the Green’s function using the infinite space
Green’s function (3) for the contributions from the two charges,

G+(x, y; ξ, η) =
1

4π
ln
[
(x− ξ)2 + (y− η)2

]
=

1
2π

ln r

G−(x, y; ξ, η) = − 1
4π

ln
[
(x′ − ξ)2 + (y′ − η)2

]
= − 1

2π
ln r′

Here we set q = 1 and Q = −a/ρ.
The distances between the charges and (ξ, η) are given by r =√
(ξ − x)2 + (η − y)2 and r′ =

√
(ξ − x′)2 + (η − y′)2. We can rewrite

r and r′ in the polar coordinates ρ and ρ′ using the Law of Cosines on
the small shaded triangle and the larger triangle with sides r and r′

opposite the angle θ′ − θ [See Figures 2-3]:

r2 = ρ2 + ρ′2 − 2ρρ′ cos(θ′ − θ),

r′2 = d2 + ρ′2 − 2ρd cos(θ′ − θ).

The location of the mirror charge is shown later to be

d =
√

x′2 + y′2 =
a2

ρ
.

Therefore,

r′2 =
a4

ρ2 + ρ′2 − 2
a2ρ′

ρ
cos(θ′ − θ)

=
1
ρ2

(
a4 + ρ2ρ′2 − 2ρρ′a2 cos(θ′ − θ)

)
Note that for a fixed point (x, y),

r2

r′2

∣∣∣
ρ′=a

=
ρ2 + a2 − 2ρa cos(θ′ − θ)

1
ρ2 (a4 + ρ2a2 − 2ρa3 cos(θ′ − θ))

=
ρ2

a2

is constant on the boundary ρ′ = a. Then, we can take the Green’s
function as

G(x, y; ξ, η) =
1

2π
ln

ra
r′ρ

=
1

4π
ln

a2(ρ2 + ρ′2 − 2ρρ′ cos(θ′ − θ))

a4 + ρ2ρ′2 − 2ρρ′a2 cos(θ′ − θ)
.

Note that G is symmetric in ρ =
√

x2 + y2, and ρ′ =
√

ξ2 + η2.
Once we have the Green’s function, then using Green’s Second

Theorem, we obtain the solution of Poisson’s equation as

u(x, y) =
∫

D
G(x, y; ξ, η) f (ξ, η) dξdη +

∫
C
(u∇r′G− G∇r′u) · n ds′.

For the special case that the domain is a unit disk, a = 1, then

G(x, y; ξ, η) =
1

4π
ln

ρ2 + ρ′2 − 2ρρ′ cos(θ′ − θ)

1 + ρ2ρ′2 − 2ρρ′ cos(θ′ − θ)
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and

∇r′G · n
∣∣∣
ρ′=1

=
1

2π

1− ρ2

1 + ρ2 − 2ρ cos(θ − θ′)
.

Then, the solution on the unit disk is given by

u(x, y) =
1

4π

∫ 2π

0

∫ 1

0
ln

ρ2 + ρ′2 − 2ρρ′ cos(θ′ − θ)

1 + ρ2ρ′2 − 2ρρ′ cos(θ′ − θ)
f (θ′) ρ′dρ′dθ′

+
1

2π

∫ 2π

0

1− ρ2

1 + ρ2 − 2ρ cos(θ − θ′)
g(θ′) dθ′.

We see that the boundary contribution contains the Poisson kernel.
For a 6= 1,

G(x, y; ξ, η) =
1

4π
ln

a2(ρ2 + ρ′2 − 2ρρ′ cos(θ′ − θ))

a4 + ρ2ρ′2 − 2a2ρρ′ cos(θ′ − θ)

and

∇r′G · n
∣∣∣
ρ′=a

=
1

2πa
a2 − ρ2

a2 + ρ2 − 2ρa cos(θ − θ′)
.

Then, the solution on the unit disk is given by

u(x, y) =
1

4π

∫ 2π

0

∫ a

0
ln

a2(ρ2 + ρ′2 − 2ρρ′ cos(θ′ − θ))

a4 + ρ2ρ′2 − 2a2ρρ′ cos(θ′ − θ)
f (θ′) ρ′dρ′dθ′

+
1

2π

∫ 2π

0

a2 − ρ2

a2 + ρ2 − 2ρa cos(θ − θ′)
g(θ′) dθ′.
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Figure 3: Locating the mirror charge Q
a distance d from the origin along the
line connecting both charges.

Mirror Charge

We need to locate the mirror image in order to have the total “poten-
tial” vanish on the boundary. Essentially, the potential outside a point
charge q is given by V = q

r for a sphere and q ln r for a disk. In Figure
3 we place the mirror charge Q a distance d from the origin along the
line connecting both charges.

Sphere

For an arbitrary point (ξ, η) on the boundary, ρ′ = a, the total poten-
tial is given by

Vtot =
q√

ρ2 + a2 − 2ρa cos(θ′ − θ)
+

Q√
d2 + a2 − 2ad cos(θ′ − θ)

.

These will cancel if at first we let d = a2

ρ . Then the second potential
function becomes

Q√
d2 + a2 − 2ad cos(θ′ − θ)

=
Q√

a4

ρ2 + a2 − 2 a3

ρ cos(θ′ − θ)

=
ρ

a
Q√

a2 + ρ2 − 2aρ cos(θ′ − θ)
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So, if we set Q = − aq
ρ , then the total potential vanishes on the surface

of the disk.

Disk

In the case of a disk, the two dimensional potential is of the form

V =
q

2π
ln r =

q
4π

ln
[
ρ2 + ρ′2 − 2ρρ′ cos(θ′ − θ)

]
+ B1,

where B1 is a constant independent of ρ.
We need a second solution corresponding to the image charge

placed along a line connecting the origin with the point (x, y) at a
distance d from the origin such that the total potential is a constant
for ρ′ = a. Thus, we consider

Vtot(ρ
′ = a) =

q
4π

ln
[
ρ2 + a2 − 2ρa cos(θ′ − θ)

]
− q

4π
ln
[
d2 + a2 − 2ad cos(θ′ − θ)

]
+ B1 − B2

=
q

4π
ln

ρ2 + a2 − 2ρa cos(θ′ − θ)

d2 + a2 − 2ad cos(θ′ − θ)
+ B1 − B2.

now, we let d = α
ρ , to obtain

Vtot(ρ
′ = a) =

q
4π

ln
ρ2 + a2 − 2ρa cos(θ′ − θ)

d2 + a2 − 2ad cos(θ′ − θ)
+ B1 − B2.

=
q

4π
ln

ρ2 + a2 − 2ρa cos(θ′ − θ)
α2

ρ2 + a2 − 2a α
ρ cos(θ′ − θ)

+ B1 − B2.

=
q

4π
ln

ρ2(ρ2 + a2 − 2ρa cos(θ′ − θ))

a2
(

ρ2 + α2

a2 − 2
α

a
ρ cos(θ′ − θ)

) + B1 − B2.

Letting α = a2 and q = 1,

Vtot(ρ
′ = a) =

1
4π

ln
ρ2

a2 + B1 − B2.

Setting B1 = 1
2π ln a and B2 = 1

2π ln ρ, we have Vtot(ρ′ = a) = 0. This
gives the Green’s function as

G(x, y; ξ, η) =
1

2π
ln

ra
r′ρ

.
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