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We want to use Green’s functions to solve Poisson’s equation with
boundary conditions. After all, Poisson’s equation is a nonhomoge-
neous Laplace equation.

Viu=f inD,
u=g onC, (1)

where D is the disk shown in Figure 1. The Green’s function should
satisfy

V2G=06(E—xn—y) inD,
G=0 onC. (2)

Recall that in the Method of Images G(x, y; ¢, 17) represents a point
charge (or impulse) at (x,y) giving a response at (¢, 7). For each
point charge we employ the two-dimensional infinite space Green’s
function in Cartesian coordinates,

G(r,r/):%1n|r—r’| :iln {(x—(;‘)z—i-(y—n)z}. (3)

We introduce a negative point charge (the mirror charge) at (x,y")
for each positive charge at (x,y) € D so as to make the Green’s
function vanish on C. We depict these charges in Figure 2. The points
(x,y) and (&, 7) have radial coordinates p = /x2+y2, and p’ =
/€2 + 52, [Later we show that the mirror charge is a distance a%/p
from the origin and has charge Q = —¢4.]

=V

u(a,0) = g(6)

Figure 1: We solve Poisson’s equation
on a disk of radius a.

Figure 2: Applying the Method of
Images in the construction of the
Green'’s function.
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We now construct the Green’s function using the infinite space
Green’s function (3) for the contributions from the two charges,

Gt yiEn) = g [(r =8P+ y—n)?] = 5 Inr

1 1
G-(x,y;&n) = —3-In [ =+ (¥ = )] = =5 In"’

Here wesetg =1and Q = —a/p.

The distances between the charges and (¢, 7) are given by r =
V(E=x)2+(—y)?and ¥ = /(& —x')2+ (7 — y')?. We can rewrite
r and 7’ in the polar coordinates p and p’ using the Law of Cosines on

the small shaded triangle and the larger triangle with sides r and »/
opposite the angle 6’ — 6 [See Figures 2-3]:

2 = >+ p? 200 cos(8' —8),
"2 = d®+p” —2pdcos(6' —6).

The location of the mirror charge is shown later to be

2
d = /x/2+y/2 — %'

Therefore,

4 2.1
2= Loy 0fP cos(8’ —0)
2 F P

= plz <a4 + p?0"? — 200’ a* cos (0’ — 9))

Note that for a fixed point (x,y),
p? +a*—2pacos(0' —0)  p?

1’2

72

o'=a - pl—z (a* + p2a2 — 2pa3 cos(8' — 0)) 4>

is constant on the boundary p’ = a. Then, we can take the Green’s
function as
1 ra
. - _— ln—
G(x,y:611) 27
1 In a%(0% + p'? — 2pp’ cos(6' — 0))

4t at + p2p"2 — 2pp'a% cos(0' — 6)
Note that G is symmetric in p = \/x? + y2, and p’ = /&% + 2.

Once we have the Green’s function, then using Green’s Second

Theorem, we obtain the solution of Poisson’s equation as

u(x,y) = [ Gl yi&mf(&n) dedy+ [[(4V,G —GVyu) - nds'
For the special case that the domain is a unit disk, a = 1, then

1 In P2 + p'% — 200" cos (6’ — 6)
4t 1+ p?p’? —2pp’ cos(6' — 0)

G(x,y;6m) =
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and

_1 1-p?
p=1  2m1+p2—2pcos(f—0')
Then, the solution on the unit disk is given by

1 m ot 92402 200" cos(0 —0) L sy
uxy) = - f /01n1+p2p,2_pr,cos(g,_e)f(e)pdpde

V,/G-n’

R
27t Jo 1+p2—2pcos(0—6’)g ’
We see that the boundary contribution contains the Poisson kernel.
Fora #1,
1 a*(p* +p” — 2pp" cos (6’ — 0))
; 1
Glxyiém) = gzn at + p%p’% — 2a%pp’ cos(8’ — 6)
and s
1 ac—p
VrG-n o=a 2maa?+p?—2pacos(0—0')
Then, the solution on the unit disk is given by 4
27T / /
_ 2(0* +p” =200 cos(0' = 6)) iy sy
uxy) = 41 / / a* +p 202 — 2a2pp’ cos (0’ — 9>f(9 )prdp'df Cme

a —p ! / a
+27r/o a2 + p? —2pacos(9—9’)g(9)d9'

Mirror Charge

Figure 3: Locating the mirror charge Q
) ) ) ) ] ) a distance d from the origin along the
tial” vanish on the boundary. Essentially, the potential outside a point line connecting both charges.

We need to locate the mirror image in order to have the total “poten-

charge g is given by V = 1 for a sphere and qInr for a disk. In Figure
3 we place the mirror charge Q a distance d from the origin along the
line connecting both charges.

Sphere
For an arbitrary point (¢, 7) on the boundary, o’ = 4, the total poten-
tial is given by

q Q
+ .
V% + a2 —2pacos(0’ —0)  \/d?+a? —2adcos(0’ —0)

Vtot =

These will cancel if at first we let d = %2 Then the second potential
function becomes

Q Q
\/d? + a2 —2ad cos(0' — 0) \/’LZ cos(@ 6)
4 Q
a /a2 + p2 — 2ap cos(0’ — 0)
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So, if we set Q = —%q, then the total potential vanishes on the surface

of the disk.

Disk

In the case of a disk, the two dimensional potential is of the form

q

—_ 1 — 1 2 2 _ / o
V= oy Inr in In [p + 0" —2pp’ cos(0 9)} + By,

where B is a constant independent of p.

We need a second solution corresponding to the image charge

placed along a line connecting the origin with the point (x,y) at a

distance d from the origin such that the total potential is a constant

for p’ = a. Thus, we consider

Viot (0" = a)

now, we let d

Vtot(Pl =a)

9 2, 2 r 9 2, 2 1 B
4ﬂln[p + a” — 2pa cos(6 9)} 47T1n{d + a“ — 2ad cos(6 9)}+Bl B,

2, 2 /
q , p~+a-—2pacos(6’ —0)
—1 B1 — B,.
47t nd2+a2—2adcos(9’—9)+ 12

%, to obtain

9 1n p? +a? —2pacos(0' — 0)
4t d? + a2 — 2ad cos (6’ — 0)
(6"~ 6)

2 2 /
9 1nP +a~ —2pacos(0’ — 0

—|—B1 — B,.

4 Z—i +a2 — 2a3 cos(6" — 6)

+ By — B,.

q 0% (0% + a? — 2pacos(6' — 0))

Letting « = a? and g = 1,

4m P24a?  a ,
a2 ( o ZEP cos (6’ — 9))
1 2
Vtot(P/ = a) = Hh‘l% + B1 — Bz.

Setting By = % Inaand By = % In p, we have V(0" = a) = 0. This

gives the Green’s function as

1 ra
G(x,y;6m) =51
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