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Integral Transforms

“There is no branch of mathematics, however abstract, which may not some day be
applied to phenomena of the real world.”, Nikolai Lobatchevsky (1792-1856)

10.1 Introduction

Some of the most powerful tools for solving problems in physics are In this chapter we will explore the use
of integral transforms. Given a function
f (x), we define an integral transform to
a new function F(k) as

F(k) =
∫ b

a
f (x)K(x, k) dx.

Here K(x, k) is called the kernel of the
transform. We will concentrate specifi-
cally on Fourier transforms,

f̂ (k) =
∫ ∞

−∞
f (x)eikx dx,

and Laplace transforms

F(s) =
∫ ∞

0
f (t)e−st dt.

transform methods. The idea is that one can transform the problem at hand
to a new problem in a different space, hoping that the problem in the new
space is easier to solve. Such transforms appear in many forms.

As we had seen in Chapter 1 and will see later in the book, the solutions
of linear partial differential equations can be found by using the method
of separation of variables to reduce solving partial differential equations
(PDEs) to solving ordinary differential equations (ODEs). We can also use
transform methods to transform the given PDE into ODEs or algebraic equa-
tions. Solving these equations, we then construct solutions of the PDE (or,
the ODE) using an inverse transform. A schematic of these processes is
shown below and we will describe in this chapter how one can use Fourier
and Laplace transforms to this effect.

PDE

ODE

AlgEq

Transforms

Inverse Transforms

Figure 10.1: Schematic indicating that
PDEs and ODEs can be transformed to
simpler problems, solved in the new
space and transformed back to the origi-
nal space.
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10.1.1 Example 1 - The Linearized KdV Equation

As a relatively simple example, we consider the linearized Korteweg-
de Vries (KdV) equation:

ut + cux + βuxxx = 0, −∞ < x < ∞. (10.1)

This equation governs the propagation of some small amplitude water waves.
Its nonlinear counterpart has been at the center of attention in the last 40

years as a generic nonlinear wave equation.The nonlinear counterpart to this equa-
tion is the Korteweg-de Vries (KdV)
equation: ut + 6uux + uxxx = 0. This
equation was derived by Diederik Jo-
hannes Korteweg (1848-1941) and his
student Gustav de Vries (1866-1934).
This equation governs the propagation
of traveling waves called solitons. These
were first observed by John Scott Rus-
sell (1808-1882) and were the source of
a long debate on the existence of such
waves. The history of this debate is in-
teresting and the KdV turned up as a
generic equation in many other fields in
the latter part of the last century leading
to many papers on nonlinear evolution
equations.

We seek solutions that oscillate in space. So, we assume a solution of the
form

u(x, t) = A(t)eikx. (10.2)

Such behavior was seen in Chapters 3 and 6 for the wave equation for vi-
brating strings. In that case, we found plane wave solutions of the form
eik(x±ct), which we could write as ei(kx±ωt) by defining ω = kc. We further
note that one often seeks complex solutions as a linear combination of such
forms and then takes the real part in order to obtain physical solutions. In
this case, we will find plane wave solutions for which the angular frequency
ω = ω(k) is a function of the wavenumber.

Inserting the guess (10.2) into the linearized KdV equation, we find that

dA
dt

+ i(ck− βk3)A = 0. (10.3)

Thus, we have converted the problem of seeking a solution of the partial dif-
ferential equation into seeking a solution to an ordinary differential equa-
tion. This new problem is easier to solve. In fact, given an initial value,
A(0), we have

A(t) = A(0)e−i(ck−βk3)t. (10.4)

Therefore, the solution of the partial differential equation is

u(x, t) = A(0)eik(x−(c−βk2)t). (10.5)

We note that this solution takes the form ei(kx−ωt), where

ω = ck− βk3.

In general, the equation ω = ω(k) gives the angular frequency as aA dispersion relation is an expression
giving the angular frequency as a func-
tion of the wave number, ω = ω(k).

function of the wave number, k, and is called a dispersion relation. For
β = 0, we see that c is nothing but the wave speed. For β 6= 0, the wave
speed is given as

v =
ω

k
= c− βk2.

This suggests that waves with different wave numbers will travel at different
speeds. Recalling that wave numbers are related to wavelengths, k = 2π

λ ,
this means that waves with different wavelengths will travel at different
speeds. For example, an initial localized wave packet will not maintain its
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shape. It is said to disperse, as the component waves of differing wave-
lengths will tend to part company.

For a general initial condition, we write the solutions to the linearized
KdV as a superposition of plane waves. We can do this since the partial
differential equation is linear. This should remind you of what we had done
when using separation of variables. We first sought product solutions and
then took a linear combination of the product solutions to obtain the general
solution.

For this problem, we will sum over all wave numbers. The wave numbers
are not restricted to discrete values. We instead have a continuous range of
values. Thus, “summing” over k means that we have to integrate over the
wave numbers. Thus, we have the general solution1

1 The extra 2π has been introduced to
be consistent with the definition of the
Fourier transform which is given later in
the chapter.

u(x, t) =
1

2π

∫ ∞

−∞
A(k, 0)eik(x−(c−βk2)t) dk. (10.6)

Note that we have indicated that A is a function of k. This is similar to
introducing the An’s and Bn’s in the series solution for waves on a string.

How do we determine the A(k, 0)’s? We introduce as an initial condition
the initial wave profile u(x, 0) = f (x). Then, we have

f (x) = u(x, 0) =
1

2π

∫ ∞

−∞
A(k, 0)eikx dk. (10.7)

Thus, given f (x), we seek A(k, 0). In this chapter we will see that

A(k, 0) =
∫ ∞

−∞
f (x)e−ikx dx.

This is what is called the Fourier transform of f (x). It is just one of the
so-called integral transforms that we will consider in this chapter.

In Figure 10.2 we summarize the transform scheme. One can use methods
like separation of variables to solve the partial differential equation directly,
evolving the initial condition u(x, 0) into the solution u(x, t) at a later time.

u(x, 0)

PDE

u(x, t)

A(k, 0)

ODE

A(k, t)

Fourier Transform

Inverse Fourier Transform

Figure 10.2: Schematic of using Fourier
transforms to solve a linear evolution
equation.

The transform method works as follows. Starting with the initial condi-
tion, one computes its Fourier Transform (FT) as2 2 Note: The Fourier transform as used

in this section and the next section are
defined slightly differently than how we
will define them later. The sign of the
exponentials has been reversed.

A(k, 0) =
∫ ∞

−∞
f (x)e−ikx dx.
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Applying the transform on the partial differential equation, one obtains an
ordinary differential equation satisfied by A(k, t) which is simpler to solve
than the original partial differential equation. Once A(k, t) has been found,
then one applies the Inverse Fourier Transform (IFT) to A(k, t) in order to
get the desired solution:

u(x, t) =
1

2π

∫ ∞

−∞
A(k, t)eikx dk

=
1

2π

∫ ∞

−∞
A(k, 0)eik(x−(c−βk2)t) dk. (10.8)

10.1.2 Example 2 - The Free Particle Wave Function

A more familiar example in physics comes from quantum mechanics.
The Schrödinger equation gives the wave function Ψ(x, t) for a particle un-
der the influence of forces, represented through the corresponding potential
function V(x). The one dimensional time dependent Schrödinger equation
is given byThe one dimensional time dependent

Schrödinger equation.
ih̄Ψt = −

h̄2

2m
Ψxx + VΨ. (10.9)

We consider the case of a free particle in which there are no forces, V = 0.
Then we have

ih̄Ψt = −
h̄2

2m
Ψxx. (10.10)

Taking a hint from the study of the linearized KdV equation, we will
assume that solutions of Equation (10.10) take the form

Ψ(x, t) =
1

2π

∫ ∞

−∞
φ(k, t)eikx dk.

[Here we have opted to use the more traditional notation, φ(k, t) instead of
A(k, t) as above.]

Inserting the expression for Ψ(x, t) into (10.10), we have

ih̄
∫ ∞

−∞

dφ(k, t)
dt

eikx dk = − h̄2

2m

∫ ∞

−∞
φ(k, t)(ik)2eikx dk.

Since this is true for all t, we can equate the integrands, giving

ih̄
dφ(k, t)

dt
=

h̄2k2

2m
φ(k, t).

As with the last example, we have obtained a simple ordinary differential
equation. The solution of this equation is given by

φ(k, t) = φ(k, 0)e−i h̄k2
2m t.

Applying the inverse Fourier transform, the general solution to the time
dependent problem for a free particle is found as

Ψ(x, t) =
1

2π

∫ ∞

−∞
φ(k, 0)eik(x− h̄k

2m t) dk.
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We note that this takes the familiar form

Ψ(x, t) =
1

2π

∫ ∞

−∞
φ(k, 0)ei(kx−ωt) dk,

where the dispersion relation is found as

ω =
h̄k2

2m
.

The wave speed is given as

v =
ω

k
=

h̄k
2m

.

As a special note, we see that this is not the particle velocity! Recall that the
momentum is given as p = h̄k.3 So, this wave speed is v = p

2m , which is only 3 Since p = h̄k, we also see that the dis-
persion relation is given by

ω =
h̄k2

2m
=

p2

2mh̄
=

E
h̄

.

half the classical particle velocity! A simple manipulation of this result will
clarify the “problem.”

We assume that particles can be represented by a localized wave function.
This is the case if the major contributions to the integral are centered about
a central wave number, k0. Thus, we can expand ω(k) about k0:

ω(k) = ω0 + ω′0(k− k0)t + . . . . (10.11)

Here ω0 = ω(k0) and ω′0 = ω′(k0). Inserting this expression into the inte-
gral representation for Ψ(x, t), we have

Ψ(x, t) =
1

2π

∫ ∞

−∞
φ(k, 0)ei(kx−ω0t−ω′0(k−k0)t−...) dk,

We now make the change of variables, s = k− k0, and rearrange the result-
ing factors to find

Ψ(x, t) ≈ 1
2π

∫ ∞

−∞
φ(k0 + s, 0)ei((k0+s)x−(ω0+ω′0s)t) ds

=
1

2π
ei(−ω0t+k0ω′0t)

∫ ∞

−∞
φ(k0 + s, 0)ei(k0+s)(x−ω′0t) ds

= ei(−ω0t+k0ω′0t)Ψ(x−ω′0t, 0). (10.12)
Group and phase velocities, vg = dω

dk ,
vp = ω

k .Summarizing, for an initially localized wave packet, Ψ(x, 0) with wave
numbers grouped around k0 the wave function,Ψ(x, t), is a translated ver-
sion of the initial wave function up to a phase factor. In quantum mechanics
we are more interested in the probability density for locating a particle, so
from

|Ψ(x, t)|2 = |Ψ(x−ω′0t, 0)|2

we see that the “velocity of the wave packet” is found to be

ω′0 =
dω

dk

∣∣∣
k=k0

=
h̄k
m

.

This corresponds to the classical velocity of the particle (vpart = p/m).
Thus, one usually defines ω′0 to be the group velocity,

vg =
dω

dk
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and the former velocity as the phase velocity,

vp =
ω

k
.

10.1.3 Transform Schemes

These examples have illustrated one of the features of transform the-
ory. Given a partial differential equation, we can transform the equation
from spatial variables to wave number space, or time variables to frequency
space. In the new space the time evolution is simpler. In these cases, the
evolution was governed by an ordinary differential equation. One solves the
problem in the new space and then transforms back to the original space.
This is depicted in Figure 10.3 for the Schrödinger equation and was shown
in Figure 10.2 for the linearized KdV equation.

Figure 10.3: The scheme for solving
the Schrödinger equation using Fourier
transforms. The goal is to solve for
Ψ(x, t) given Ψ(x, 0). Instead of a direct
solution in coordinate space (on the left
side), one can first transform the initial
condition obtaining φ(k, 0) in wave num-
ber space. The governing equation in the
new space is found by transforming the
PDE to get an ODE. This simpler equa-
tion is solved to obtain φ(k, t). Then an
inverse transform yields the solution of
the original equation.

Ψ(x, 0)

Ψ(x, t)

φ(k, 0)

φ(k, t)

Fourier Transform

Inverse Fourier Transform

Schrödinger
Equation

for Ψ(x, t)

ODE for
φ(k, t)

This is similar to the solution of the system of ordinary differential equa-
tions in Chapter 3, ẋ = Ax. In that case we diagonalized the system using
the transformation x = Sy. This lead to a simpler system ẏ = Λy, where
Λ = S−1 AS. Solving for y, we inverted the solution to obtain x. Similarly,
one can apply this diagonalization to the solution of linear algebraic systems
of equations. The general scheme is shown in Figure 10.4.

Figure 10.4: This shows the scheme for
solving the linear system of ODEs ẋ =
Ax. One finds a transformation between
x and y of the form x = Sy which diago-
nalizes the system. The resulting system
is easier to solve for y. Then, one uses
the inverse transformation to obtain the
solution to the original problem.

A

x(t)

Λ

y(t)

Transform: x = Sy, Λ = S−1 AS

Inverse Transform: x = S−1y

ODE
ẋ = Ax

ODE
ẏ = Λy

Similar transform constructions occur for many other type of problems.
We will end this chapter with a study of Laplace transforms, which are
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useful in the study of initial value problems, particularly for linear ordinary
differential equations with constant coefficients. A similar scheme for using
Laplace transforms is depicted in Figure 10.30.

In this chapter we will begin with the study of Fourier transforms. These
will provide an integral representation of functions defined on the real line.
Such functions can also represent analog signals. Analog signals are con-
tinuous signals which can be represented as a sum over a continuous set of
frequencies, as opposed to the sum over discrete frequencies, which Fourier
series were used to represent in an earlier chapter. We will then investi-
gate a related transform, the Laplace transform, which is useful in solving
initial value problems such as those encountered in ordinary differential
equations.

10.2 Complex Exponential Fourier Series

Before deriving the Fourier transform, we will need to rewrite
the trigonometric Fourier series representation as a complex exponential
Fourier series. We first recall from Chapter 2 the trigonometric Fourier se-
ries representation of a function defined on [−π, π] with period 2π. The
Fourier series is given by

f (x) ∼ a0

2
+

∞

∑
n=1

(an cos nx + bn sin nx) , (10.13)

where the Fourier coefficients were found as

an =
1
π

∫ π

−π
f (x) cos nx dx, n = 0, 1, . . . ,

bn =
1
π

∫ π

−π
f (x) sin nx dx, n = 1, 2, . . . . (10.14)

In order to derive the exponential Fourier series, we replace the trigono-
metric functions with exponential functions and collect like exponential
terms. This gives

f (x) ∼ a0

2
+

∞

∑
n=1

[
an

(
einx + e−inx

2

)
+ bn

(
einx − e−inx

2i

)]
=

a0

2
+

∞

∑
n=1

(
an − ibn

2

)
einx +

∞

∑
n=1

(
an + ibn

2

)
e−inx. (10.15)

The coefficients of the complex exponentials can be rewritten by defining

cn =
1
2
(an + ibn), n = 1, 2, . . . . (10.16)

This implies that

c̄n =
1
2
(an − ibn), n = 1, 2, . . . . (10.17)

So far the representation is rewritten as

f (x) ∼ a0

2
+

∞

∑
n=1

c̄neinx +
∞

∑
n=1

cne−inx.



388 partial differential equations

Re-indexing the first sum, by introducing k = −n, we can write

f (x) ∼ a0

2
+
−∞

∑
k=−1

c̄−ke−ikx +
∞

∑
n=1

cne−inx.

Since k is a dummy index, we replace it with a new n as

f (x) ∼ a0

2
+
−∞

∑
n=−1

c̄−ne−inx +
∞

∑
n=1

cne−inx.

We can now combine all of the terms into a simple sum. We first define
cn for negative n’s by

cn = c̄−n, n = −1,−2, . . . .

Letting c0 = a0
2 , we can write the complex exponential Fourier series repre-

sentation as

f (x) ∼
∞

∑
n=−∞

cne−inx, (10.18)

where

cn =
1
2
(an + ibn), n = 1, 2, . . .

cn =
1
2
(a−n − ib−n), n = −1,−2, . . .

c0 =
a0

2
. (10.19)

Given such a representation, we would like to write out the integral forms
of the coefficients, cn. So, we replace the an’s and bn’s with their integral
representations and replace the trigonometric functions with complex expo-
nential functions. Doing this, we have for n = 1, 2, . . . .

cn =
1
2
(an + ibn)

=
1
2

[
1
π

∫ π

−π
f (x) cos nx dx +

i
π

∫ π

−π
f (x) sin nx dx

]
=

1
2π

∫ π

−π
f (x)

(
einx + e−inx

2

)
dx +

i
2π

∫ π

−π
f (x)

(
einx − e−inx

2i

)
dx

=
1

2π

∫ π

−π
f (x)einx dx. (10.20)

It is a simple matter to determine the cn’s for other values of n. For n = 0,
we have that

c0 =
a0

2
=

1
2π

∫ π

−π
f (x) dx.

For n = −1,−2, . . ., we find that

cn = c̄n =
1

2π

∫ π

−π
f (x)e−inx dx =

1
2π

∫ π

−π
f (x)einx dx.

Therefore, we have obtained the complex exponential Fourier series coeffi-
cients for all n. Now we can define the complex exponential Fourier series
for the function f (x) defined on [−π, π] as shown below.
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Complex Exponential Series for f (x) defined on [−π, π].

f (x) ∼
∞

∑
n=−∞

cne−inx, (10.21)

cn =
1

2π

∫ π

−π
f (x)einx dx. (10.22)

We can easily extend the above analysis to other intervals. For example,
for x ∈ [−L, L] the Fourier trigonometric series is

f (x) ∼ a0

2
+

∞

∑
n=1

(
an cos

nπx
L

+ bn sin
nπx

L

)
with Fourier coefficients

an =
1
L

∫ L

−L
f (x) cos

nπx
L

dx, n = 0, 1, . . . ,

bn =
1
L

∫ L

−L
f (x) sin

nπx
L

dx, n = 1, 2, . . . .

This can be rewritten as an exponential Fourier series of the form

Complex Exponential Series for f (x) defined on [−L, L].

f (x) ∼
∞

∑
n=−∞

cne−inπx/L, (10.23)

cn =
1

2L

∫ L

−L
f (x)einπx/L dx. (10.24)

We can now use this complex exponential Fourier series for function de-
fined on [−L, L] to derive the Fourier transform by letting L get large. This
will lead to a sum over a continuous set of frequencies, as opposed to the
sum over discrete frequencies, which Fourier series represent.

10.3 Exponential Fourier Transform

Both the trigonometric and complex exponential Fourier series
provide us with representations of a class of functions of finite period in
terms of sums over a discrete set of frequencies. In particular, for functions
defined on x ∈ [−L, L], the period of the Fourier series representation is
2L. We can write the arguments in the exponentials, e−inπx/L, in terms of
the angular frequency, ωn = nπ/L, as e−iωnx. We note that the frequencies,
νn, are then defined through ωn = 2πνn = nπ

L . Therefore, the complex
exponential series is seen to be a sum over a discrete, or countable, set of
frequencies.

We would now like to extend the finite interval to an infinite interval,
x ∈ (−∞, ∞), and to extend the discrete set of (angular) frequencies to a
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continuous range of frequencies, ω ∈ (−∞, ∞). One can do this rigorously.
It amounts to letting L and n get large and keeping n

L fixed.
We first define ∆ω = π

L , so that ωn = n∆ω. Inserting the Fourier coeffi-
cients (10.24) into Equation (10.23), we have

f (x) ∼
∞

∑
n=−∞

cne−inπx/L

=
∞

∑
n=−∞

(
1

2L

∫ L

−L
f (ξ)einπξ/L dξ

)
e−inπx/L

=
∞

∑
n=−∞

(
∆ω

2π

∫ L

−L
f (ξ)eiωnξ dξ

)
e−iωnx. (10.25)

Now, we let L get large, so that ∆ω becomes small and ωn approaches
the angular frequency ω. Then,

f (x) ∼ lim
∆ω→0,L→∞

1
2π

∞

∑
n=−∞

(∫ L

−L
f (ξ)eiωnξ dξ

)
e−iωnx∆ω

=
1

2π

∫ ∞

−∞

(∫ ∞

−∞
f (ξ)eiωξ dξ

)
e−iωx dω. (10.26)

Looking at this last result, we formally arrive at the definition of theDefinitions of the Fourier transform and
the inverse Fourier transform. Fourier transform. It is embodied in the inner integral and can be written

as

F[ f ] = f̂ (ω) =
∫ ∞

−∞
f (x)eiωx dx. (10.27)

This is a generalization of the Fourier coefficients (10.24).
Once we know the Fourier transform, f̂ (ω), then we can reconstruct the

original function, f (x), using the inverse Fourier transform, which is given
by the outer integration,

F−1[ f̂ ] = f (x) =
1

2π

∫ ∞

−∞
f̂ (ω)e−iωx dω. (10.28)

We note that it can be proven that the Fourier transform exists when f (x) is
absolutely integrable, i.e.,

∫ ∞

−∞
| f (x)| dx < ∞.

Such functions are said to be L1.
We combine these results below, defining the Fourier and inverse Fourier

transforms and indicating that they are inverse operations of each other. We
will then prove the first of the equations, (10.31). [The second equation,
(10.32), follows in a similar way.]
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The Fourier transform and inverse Fourier transform are inverse opera-
tions. Defining the Fourier transform as

F[ f ] = f̂ (ω) =
∫ ∞

−∞
f (x)eiωx dx. (10.29)

and the inverse Fourier transform as

F−1[ f̂ ] = f (x) =
1

2π

∫ ∞

−∞
f̂ (ω)e−iωx dω. (10.30)

then
F−1[F[ f ]] = f (x) (10.31)

and
F[F−1[ f̂ ]] = f̂ (ω). (10.32)

Proof. The proof is carried out by inserting the definition of the Fourier
transform, (10.29), into the inverse transform definition, (10.30), and then
interchanging the orders of integration. Thus, we have

F−1[F[ f ]] =
1

2π

∫ ∞

−∞
F[ f ]e−iωx dω

=
1

2π

∫ ∞

−∞

[∫ ∞

−∞
f (ξ)eiωξ dξ

]
e−iωx dω

=
1

2π

∫ ∞

−∞

∫ ∞

−∞
f (ξ)eiω(ξ−x) dξdω

=
1

2π

∫ ∞

−∞

[∫ ∞

−∞
eiω(ξ−x) dω

]
f (ξ) dξ. (10.33)

In order to complete the proof, we need to evaluate the inside integral,
which does not depend upon f (x). This is an improper integral, so we first
define

DΩ(x) =
∫ Ω

−Ω
eiωx dω

and compute the inner integral as∫ ∞

−∞
eiω(ξ−x) dω = lim

Ω→∞
DΩ(ξ − x).

x

y

−5 5

−2

8

Figure 10.5: A plot of the function DΩ(x)
for Ω = 4.

We can compute DΩ(x). A simple evaluation yields

DΩ(x) =
∫ Ω

−Ω
eiωx dω

=
eiωx

ix

∣∣∣∣Ω
−Ω

=
eixΩ − e−ixΩ

2ix

=
2 sin xΩ

x
. (10.34)

A plot of this function is in Figure 10.5 for Ω = 4. For large Ω the peak
grows and the values of DΩ(x) for x 6= 0 tend to zero as shown in Figure
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10.6. In fact, as x approaches 0, DΩ(x) approaches 2Ω. For x 6= 0, the DΩ(x)
function tends to zero.

We further note that

lim
Ω→∞

DΩ(x) = 0, x 6= 0,

and limΩ→∞ DΩ(x) is infinite at x = 0. However, the area is constant for
each Ω. In fact, ∫ ∞

−∞
DΩ(x) dx = 2π.

We can show this by recalling the computation in Example 9.42,∫ ∞

−∞

sin x
x

dx = π.

Then,

x

y

−3 3

−20

80

Figure 10.6: A plot of the function DΩ(x)
for Ω = 40.

∫ ∞

−∞
DΩ(x) dx =

∫ ∞

−∞

2 sin xΩ
x

dx

=
∫ ∞

−∞
2

sin y
y

dy

= 2π. (10.35)
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8
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Figure 10.7: A plot of the functions fn(x)
for n = 2, 4, 8.

Another way to look at DΩ(x) is to consider the sequence of functions
fn(x) = sin nx

πx , n = 1, 2, . . . . Then we have shown that this sequence of
functions satisfies the two properties,

lim
n→∞

fn(x) = 0, x 6= 0,

∫ ∞

−∞
fn(x) dx = 1.

This is a key representation of such generalized functions. The limiting
value vanishes at all but one point, but the area is finite.

Such behavior can be seen for the limit of other sequences of functions.
For example, consider the sequence of functions

fn(x) =

{
0, |x| > 1

n ,
n
2 , |x| <≤ f rac1n.

This is a sequence of functions as shown in Figure 10.7. As n→ ∞, we find
the limit is zero for x 6= 0 and is infinite for x = 0. However, the area under
each member of the sequences is one. Thus, the limiting function is zero at
most points but has area one.

The limit is not really a function. It is a generalized function. It is called
the Dirac delta function, which is defined by

1. δ(x) = 0 for x 6= 0.

2.
∫ ∞
−∞ δ(x) dx = 1.
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Before returning to the proof that the inverse Fourier transform of the
Fourier transform is the identity, we state one more property of the Dirac
delta function, which we will prove in the next section. Namely, we will
show that ∫ ∞

−∞
δ(x− a) f (x) dx = f (a).

Returning to the proof, we now have that∫ ∞

−∞
eiω(ξ−x) dω = lim

Ω→∞
DΩ(ξ − x) = 2πδ(ξ − x).

Inserting this into (10.33), we have

F−1[F[ f ]] =
1

2π

∫ ∞

−∞

[∫ ∞

−∞
eiω(ξ−x) dω

]
f (ξ) dξ.

=
1

2π

∫ ∞

−∞
2πδ(ξ − x) f (ξ) dξ.

= f (x). (10.36)

Thus, we have proven that the inverse transform of the Fourier transform of
f is f .

10.4 The Dirac Delta Function

In the last section we introduced the Dirac delta function, δ(x). P. A. M. Dirac (1902-1984) introduced
the δ function in his book, The Principles
of Quantum Mechanics, 4th Ed., Oxford
University Press, 1958, originally pub-
lished in 1930, as part of his orthogonal-
ity statement for a basis of functions in
a Hilbert space, < ξ ′|ξ ′′ >= cδ(ξ ′ − ξ ′′)
in the same way we introduced discrete
orthogonality using the Kronecker delta.

As noted above, this is one example of what is known as a generalized
function, or a distribution. Dirac had introduced this function in the 1930’s
in his study of quantum mechanics as a useful tool. It was later studied
in a general theory of distributions and found to be more than a simple
tool used by physicists. The Dirac delta function, as any distribution, only
makes sense under an integral.

Two properties were used in the last section. First one has that the area
under the delta function is one,∫ ∞

−∞
δ(x) dx = 1.

Integration over more general intervals gives

∫ b

a
δ(x) dx =

{
1, 0 ∈ [a, b],
0, 0 6∈ [a, b].

(10.37)

The other property that was used was the sifting property:∫ ∞

−∞
δ(x− a) f (x) dx = f (a).

This can be seen by noting that the delta function is zero everywhere except
at x = a. Therefore, the integrand is zero everywhere and the only contribu-
tion from f (x) will be from x = a. So, we can replace f (x) with f (a) under
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the integral. Since f (a) is a constant, we have that∫ ∞

−∞
δ(x− a) f (x) dx =

∫ ∞

−∞
δ(x− a) f (a) dx

= f (a)
∫ ∞

−∞
δ(x− a) dx = f (a). (10.38)

Properties of the Dirac δ-function:∫ ∞

−∞
δ(x− a) f (x) dx = f (a).

∫ ∞

−∞
δ(ax) dx =

1
|a|

∫ ∞

−∞
δ(y) dy.

∫ ∞

−∞
δ( f (x)) dx =

∫ ∞

−∞

n

∑
j=1

δ(x− xj)

| f ′(xj)|
dx.

(For n simple roots.)
These and other properties are often

written outside the integral:

δ(ax) =
1
|a| δ(x).

δ(−x) = δ(x).

δ((x− a)(x− b)) =
[δ(x− a) + δ(x− a)]

|a− b| .

δ( f (x)) = ∑
j

δ(x− xj)

| f ′(xj)|
,

for f (xj) = 0, f ′(xj) 6= 0.

Another property results from using a scaled argument, ax. In this case
we show that

δ(ax) = |a|−1δ(x). (10.39)

As usual, this only has meaning under an integral sign. So, we place δ(ax)
inside an integral and make a substitution y = ax:∫ ∞

−∞
δ(ax) dx = lim

L→∞

∫ L

−L
δ(ax) dx

= lim
L→∞

1
a

∫ aL

−aL
δ(y) dy. (10.40)

If a > 0 then ∫ ∞

−∞
δ(ax) dx =

1
a

∫ ∞

−∞
δ(y) dy.

However, if a < 0 then∫ ∞

−∞
δ(ax) dx =

1
a

∫ −∞

∞
δ(y) dy = −1

a

∫ ∞

−∞
δ(y) dy.

The overall difference in a multiplicative minus sign can be absorbed into
one expression by changing the factor 1/a to 1/|a|. Thus,∫ ∞

−∞
δ(ax) dx =

1
|a|

∫ ∞

−∞
δ(y) dy. (10.41)

Example 10.1. Evaluate
∫ ∞
−∞(5x + 1)δ(4(x − 2)) dx. This is a straight

forward integration:∫ ∞

−∞
(5x + 1)δ(4(x− 2)) dx =

1
4

∫ ∞

−∞
(5x + 1)δ(x− 2) dx =

11
4

.

The first strep is to write δ(4(x − 2)) = 1
4 δ(x − 2). Then, the final

evaluation is given by

1
4

∫ ∞

−∞
(5x + 1)δ(x− 2) dx =

1
4
(5(2) + 1) =

11
4

.

Even more general than δ(ax) is the delta function δ( f (x)). The integral
of δ( f (x)) can be evaluated depending upon the number of zeros of f (x). If
there is only one zero, f (x1) = 0, then one has that∫ ∞

−∞
δ( f (x)) dx =

∫ ∞

−∞

1
| f ′(x1)|

δ(x− x1) dx.

This can be proven using the substitution y = f (x) and is left as an exercise
for the reader. This result is often written as

δ( f (x)) =
1

| f ′(x1)|
δ(x− x1),

again keeping in mind that this only has meaning when placed under an
integral.
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Example 10.2. Evaluate
∫ ∞
−∞ δ(3x− 2)x2 dx.

This is not a simple δ(x − a). So, we need to find the zeros of
f (x) = 3x− 2. There is only one, x = 2

3 . Also, | f ′(x)| = 3. Therefore,
we have∫ ∞

−∞
δ(3x− 2)x2 dx =

∫ ∞

−∞

1
3

δ(x− 2
3
)x2 dx =

1
3

(
2
3

)2
=

4
27

.

Note that this integral can be evaluated the long way by using the
substitution y = 3x− 2. Then, dy = 3 dx and x = (y + 2)/3. This gives

∫ ∞

−∞
δ(3x− 2)x2 dx =

1
3

∫ ∞

−∞
δ(y)

(
y + 2

3

)2
dy =

1
3

(
4
9

)
=

4
27

.

More generally, one can show that when f (xj) = 0 and f ′(xj) 6= 0 for
j = 1, 2, . . . , n, (i.e.; when one has n simple zeros), then

δ( f (x)) =
n

∑
j=1

1
| f ′(xj)|

δ(x− xj).

Example 10.3. Evaluate
∫ 2π

0 cos x δ(x2 − π2) dx.
In this case the argument of the delta function has two simple roots.

Namely, f (x) = x2 − π2 = 0 when x = ±π. Furthermore, f ′(x) = 2x.
Therefore, | f ′(±π)| = 2π. This gives

δ(x2 − π2) =
1

2π
[δ(x− π) + δ(x + π)].

Inserting this expression into the integral and noting that x = −π is
not in the integration interval, we have∫ 2π

0
cos x δ(x2 − π2) dx =

1
2π

∫ 2π

0
cos x [δ(x− π) + δ(x + π)] dx

=
1

2π
cos π = − 1

2π
. (10.42)

H(x)

x

1

0

Figure 10.8: The Heaviside step function,
H(x).

Example 10.4. Show H′(x) = δ(x), where the Heaviside function (or,
step function) is defined as

H(x) =

{
0, x < 0
1, x > 0

and is shown in Figure 10.8.
Looking at the plot, it is easy to see that H′(x) = 0 for x 6= 0. In

order to check that this gives the delta function, we need to compute
the area integral. Therefore, we have∫ ∞

−∞
H′(x) dx = H(x)

∣∣∣∞
−∞

= 1− 0 = 1.

Thus, H′(x) satisfies the two properties of the Dirac delta function.
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10.5 Properties of the Fourier Transform

We now return to the Fourier transform. Before actually comput-
ing the Fourier transform of some functions, we prove a few of the proper-
ties of the Fourier transform.

First we note that there are several forms that one may encounter for the
Fourier transform. In applications functions can either be functions of time,
f (t), or space, f (x). The corresponding Fourier transforms are then written
as

f̂ (ω) =
∫ ∞

−∞
f (t)eiωt dt, (10.43)

or

f̂ (k) =
∫ ∞

−∞
f (x)eikx dx. (10.44)

ω is called the angular frequency and is related to the frequency ν by ω =

2πν. The units of frequency are typically given in Hertz (Hz). Sometimes
the frequency is denoted by f when there is no confusion. k is called the
wavenumber. It has units of inverse length and is related to the wavelength,
λ, by k = 2π

λ .
We explore a few basic properties of the Fourier transform and use them

in examples in the next section.

1. Linearity: For any functions f (x) and g(x) for which the Fourier
transform exists and constant a, we have

F[ f + g] = F[ f ] + F[g]

and

F[a f ] = aF[ f ].

These simply follow from the properties of integration and establish
the linearity of the Fourier transform.

2. Transform of a Derivative: F
[

d f
dx

]
= −ik f̂ (k)

Here we compute the Fourier transform (10.29) of the derivative by
inserting the derivative in the Fourier integral and using integration
by parts.

F
[

d f
dx

]
=

∫ ∞

−∞

d f
dx

eikx dx

= lim
L→∞

[
f (x)eikx

]L

−L
− ik

∫ ∞

−∞
f (x)eikx dx.

(10.45)

The limit will vanish if we assume that limx→±∞ f (x) = 0. The last
integral is recognized as the Fourier transform of f , proving the given
property.
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3. Higher Order Derivatives: F
[

dn f
dxn

]
= (−ik)n f̂ (k)

The proof of this property follows from the last result, or doing several
integration by parts. We will consider the case when n = 2. Noting
that the second derivative is the derivative of f ′(x) and applying the
last result, we have

F
[

d2 f
dx2

]
= F

[
d

dx
f ′
]

= −ikF
[

d f
dx

]
= (−ik)2 f̂ (k). (10.46)

This result will be true if

lim
x→±∞

f (x) = 0 and lim
x→±∞

f ′(x) = 0.

The generalization to the transform of the nth derivative easily fol-
lows.

4. Multiplication by x: F [x f (x)] = −i d
dk f̂ (k)

This property can be shown by using the fact that d
dk eikx = ixeikx and

the ability to differentiate an integral with respect to a parameter.

F[x f (x)] =
∫ ∞

−∞
x f (x)eikx dx

=
∫ ∞

−∞
f (x)

d
dk

(
1
i

eikx
)

dx

= −i
d
dk

∫ ∞

−∞
f (x)eikx dx

= −i
d
dk

f̂ (k). (10.47)

This result can be generalized to F [xn f (x)] as an exercise.

5. Shifting Properties: For constant a, we have the following shifting
properties:

f (x− a)↔ eika f̂ (k), (10.48)

f (x)e−iax ↔ f̂ (k− a). (10.49)

Here we have denoted the Fourier transform pairs using a double
arrow as f (x)↔ f̂ (k). These are easily proven by inserting the desired
forms into the definition of the Fourier transform (10.29), or inverse
Fourier transform (10.30). The first shift property (10.48) is shown by
the following argument. We evaluate the Fourier transform.

F[ f (x− a)] =
∫ ∞

−∞
f (x− a)eikx dx.

Now perform the substitution y = x− a. Then,

F[ f (x− a)] =
∫ ∞

−∞
f (y)eik(y+a) dy

= eika
∫ ∞

−∞
f (y)eiky dy

= eika f̂ (k). (10.50)
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The second shift property (10.49) follows in a similar way.

6. Convolution of Functions: We define the convolution of two func-
tions f (x) and g(x) as

( f ∗ g)(x) =
∫ ∞

−∞
f (t)g(x− t) dx. (10.51)

Then, the Fourier transform of the convolution is the product of the
Fourier transforms of the individual functions:

F[ f ∗ g] = f̂ (k)ĝ(k). (10.52)

We will return to the proof of this property in Section 10.6.

10.5.1 Fourier Transform Examples

In this section we will compute the Fourier transforms of several func-
tions.

Example 10.5. Find the Fourier transform of a Gaussian, f (x) = e−ax2/2.x

e−ax2/2

Figure 10.9: Plots of the Gaussian func-
tion f (x) = e−ax2/2 for a = 1, 2, 3. This function, shown in Figure 10.9 is called the Gaussian func-

tion. It has many applications in areas such as quantum mechanics,
molecular theory, probability and heat diffusion. We will compute the
Fourier transform of this function and show that the Fourier transform
of a Gaussian is a Gaussian. In the derivation we will introduce classic
techniques for computing such integrals.

We begin by applying the definition of the Fourier transform,

f̂ (k) =
∫ ∞

−∞
f (x)eikx dx =

∫ ∞

−∞
e−ax2/2+ikx dx. (10.53)

The first step in computing this integral is to complete the square
in the argument of the exponential. Our goal is to rewrite this integral
so that a simple substitution will lead to a classic integral of the form∫ ∞
−∞ eβy2

dy, which we can integrate. The completion of the square
follows as usual:

− a
2

x2 + ikx = − a
2

[
x2 − 2ik

a
x
]

= − a
2

[
x2 − 2ik

a
x +

(
− ik

a

)2
−
(
− ik

a

)2
]

= − a
2

(
x− ik

a

)2
− k2

2a
. (10.54)

We now put this expression into the integral and make the substi-
tutions y = x− ik

a and β = a
2 .

f̂ (k) =
∫ ∞

−∞
e−ax2/2+ikx dx
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= e−
k2
2a

∫ ∞

−∞
e−

a
2 (x− ik

a )
2

dx

= e−
k2
2a

∫ ∞− ik
a

−∞− ik
a

e−βy2
dy. (10.55)

One would be tempted to absorb the − ik
a terms in the limits of

integration. However, we know from our previous study that the in-
tegration takes place over a contour in the complex plane as shown in
Figure 10.10. x

y

z = x− ik
a

Figure 10.10: Simple horizontal contour.

In this case we can deform this horizontal contour to a contour
along the real axis since we will not cross any singularities of the inte-
grand. So, we now safely write

f̂ (k) = e−
k2
2a

∫ ∞

−∞
e−βy2

dy.

The resulting integral is a classic integral and can be performed
using a standard trick. Define I by4

4 Here we show∫ ∞

−∞
e−βy2

dy =

√
π

β
.

Note that we solved the β = 1 case in
Example 5.11, so a simple variable trans-
formation z =

√
βy is all that is needed

to get the answer. However, it cannot
hurt to see this classic derivation again.

I =
∫ ∞

−∞
e−βy2

dy.

Then,

I2 =
∫ ∞

−∞
e−βy2

dy
∫ ∞

−∞
e−βx2

dx.

Note that we needed to change the integration variable so that we can
write this product as a double integral:

I2 =
∫ ∞

−∞

∫ ∞

−∞
e−β(x2+y2) dxdy.

This is an integral over the entire xy-plane. We now transform to polar
coordinates to obtain

I2 =
∫ 2π

0

∫ ∞

0
e−βr2

rdrdθ

= 2π
∫ ∞

0
e−βr2

rdr

= −π

β

[
e−βr2

]∞

0
=

π

β
. (10.56)

The final result is gotten by taking the square root, yielding

I =
√

π

β
.

We can now insert this result to give the Fourier transform of the
Gaussian function:

f̂ (k) =

√
2π

a
e−k2/2a. (10.57)

Therefore, we have shown that the Fourier transform of a Gaussian is The Fourier transform of a Gaussian is a
Gaussian.a Gaussian.
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Example 10.6. Find the Fourier transform of the Box, or Gate, Func-
tion,

f (x) =

{
b, |x| ≤ a
0, |x| > a

.

This function is called the box function, or gate function. It is shown
in Figure 10.11. The Fourier transform of the box function is relatively
easy to compute. It is given by

y

x

b

a−a

Figure 10.11: A plot of the box function
in Example 10.6. f̂ (k) =

∫ ∞

−∞
f (x)eikx dx

=
∫ a

−a
beikx dx

=
b
ik

eikx
∣∣∣a
−a

=
2b
k

sin ka. (10.58)

We can rewrite this as

f̂ (k) = 2ab
sin ka

ka
≡ 2ab sinc ka.

Here we introduced the sinc function,

sinc x =
sin x

x
.

A plot of this function is shown in Figure 10.12. This function appears
often in signal analysis and it plays a role in the study of diffraction.

x

y

−20 −10 10 20

−0.5

0.5

1

Figure 10.12: A plot of the Fourier trans-
form of the box function in Example
10.6. This is the general shape of the sinc
function.

We will now consider special limiting values for the box function
and its transform. This will lead us to the Uncertainty Principle for
signals, connecting the relationship between the localization proper-
ties of a signal and its transform.

1. a→ ∞ and b fixed.

In this case, as a gets large the box function approaches the constant
function f (x) = b. At the same time, we see that the Fourier transform
approaches a Dirac delta function. We had seen this function earlier
when we first defined the Dirac delta function. Compare Figure 10.12

with Figure 10.5. In fact, f̂ (k) = bDa(k). [Recall the definition of
DΩ(x) in Equation (10.34).] So, in the limit we obtain f̂ (k) = 2πbδ(k).
This limit implies fact that the Fourier transform of f (x) = 1 is f̂ (k) =
2πδ(k). As the width of the box becomes wider, the Fourier transform
becomes more localized. In fact, we have arrived at the important
result that

∫ ∞

−∞
eikx = 2πδ(k). (10.59)
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2. b→ ∞, a→ 0, and 2ab = 1.

In this case the box narrows and becomes steeper while maintaining a
constant area of one. This is the way we had found a representation of
the Dirac delta function previously. The Fourier transform approaches
a constant in this limit. As a approaches zero, the sinc function ap-
proaches one, leaving f̂ (k)→ 2ab = 1. Thus, the Fourier transform of
the Dirac delta function is one. Namely, we have

∫ ∞

−∞
δ(x)eikx = 1. (10.60)

In this case we have that the more localized the function f (x) is, the
more spread out the Fourier transform, f̂ (k), is. We will summarize
these notions in the next item by relating the widths of the function
and its Fourier transform.

3. The Uncertainty Principle, ∆x∆k = 4π.

The widths of the box function and its Fourier transform are related
as we have seen in the last two limiting cases. It is natural to define
the width, ∆x of the box function as

∆x = 2a.

The width of the Fourier transform is a little trickier. This function
actually extends along the entire k-axis. However, as f̂ (k) became
more localized, the central peak in Figure 10.12 became narrower. So,
we define the width of this function, ∆k as the distance between the
first zeros on either side of the main lobe as shown in Figure 10.13.
This gives

∆k =
2π

a
.

x

y
2ab

π

a
−π

a

Figure 10.13: The width of the function
2ab sin ka

ka is defined as the distance be-
tween the smallest magnitude zeros.

Combining these two relations, we find that

∆x∆k = 4π.

Thus, the more localized a signal, the less localized its transform and
vice versa. This notion is referred to as the Uncertainty Principle.
For general signals, one needs to define the effective widths more
carefully, but the main idea holds:

∆x∆k ≥ c > 0.

More formally, the uncertainty principle
for signals is about the relation between
duration and bandwidth, which are de-
fined by ∆t = ‖t f ‖2

‖ f ‖2
and ∆ω = ‖ω f̂ ‖2

‖ f̂ ‖2
, re-

spectively, where ‖ f ‖2 =
∫ ∞
−∞ | f (t)|

2 dt
and ‖ f̂ ‖2 = 1

2π

∫ ∞
−∞ | f̂ (ω)|2 dω. Under

appropriate conditions, one can prove
that ∆t∆ω ≥ 1

2 . Equality holds for Gaus-
sian signals. Werner Heisenberg (1901-
1976) introduced the uncertainty princi-
ple into quantum physics in 1926, relat-
ing uncertainties in the position (∆x) and
momentum (∆px) of particles. In this
case, ∆x∆px ≥ 1

2 h̄. Here, the uncertain-
ties are defined as the positive square
roots of the quantum mechanical vari-
ances of the position and momentum.

We now turn to other examples of Fourier transforms.

Example 10.7. Find the Fourier transform of f (x) =

{
e−ax, x ≥ 0

0, x < 0
,

a > 0.
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The Fourier transform of this function is

f̂ (k) =
∫ ∞

−∞
f (x)eikx dx

=
∫ ∞

0
eikx−ax dx

=
1

a− ik
. (10.61)

Next, we will compute the inverse Fourier transform of this result
and recover the original function.

Example 10.8. Find the inverse Fourier transform of f̂ (k) = 1
a−ik .

The inverse Fourier transform of this function is

f (x) =
1

2π

∫ ∞

−∞
f̂ (k)e−ikx dk =

1
2π

∫ ∞

−∞

e−ikx

a− ik
dk.

This integral can be evaluated using contour integral methods. We
evaluate the integral

I =
∫ ∞

−∞

e−ixz

a− iz
dz,

using Jordan’s Lemma from Section 9.5.8. According to Jordan’s Lemma,
we need to enclose the contour with a semicircle in the upper half
plane for x < 0 and in the lower half plane for x > 0 as shown in
Figure 10.14.

The integrations along the semicircles will vanish and we will have

f (x) =
1

2π

∫ ∞

−∞

e−ikx

a− ik
dk

= ± 1
2π

∮
C

e−ixz

a− iz
dz

=

{
0, x < 0

− 1
2π 2πi Res [z = −ia], x > 0

=

{
0, x < 0

e−ax, x > 0
. (10.62)

R−R x

y

CR

−ia

R−R
x

y

CR

−ia

Figure 10.14: Contours for inverting
f̂ (k) = 1

a−ik .

Note that without paying careful attention to Jordan’s Lemma one
might not retrieve the function from the last example.

Example 10.9. Find the inverse Fourier transform of f̂ (ω) = πδ(ω +

ω0) + πδ(ω−ω0).
We would like to find the inverse Fourier transform of this func-

tion. Instead of carrying out any integration, we will make use of the
properties of Fourier transforms. Since the transforms of sums are
the sums of transforms, we can look at each term individually. Con-
sider δ(ω−ω0). This is a shifted function. From the shift theorems in
Equations (10.48)-(10.49) we have the Fourier transform pair

eiω0t f (t)↔ f̂ (ω−ω0).
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Recalling from Example 10.6 that∫ ∞

−∞
eiωt dt = 2πδ(ω),

we have from the shift property that

F−1[δ(ω−ω0)] =
1

2π
e−iω0t.

The second term can be transformed similarly. Therefore, we have

F−1[πδ(ω + ω0) + πδ(ω−ω0] =
1
2

eiω0t +
1
2

e−iω0t = cos ω0t.

Example 10.10. Find the Fourier transform of the finite wave train.

f (t) =

{
cos ω0t, |t| ≤ a

0, |t| > a
.

For the last example, we consider the finite wave train, which will
reappear in the last chapter on signal analysis. In Figure 10.15 we
show a plot of this function.

a0
t

f (t)

Figure 10.15: A plot of the finite wave
train.

A straight forward computation gives

f̂ (ω) =
∫ ∞

−∞
f (t)eiωt dt

=
∫ a

−a
[cos ω0t + i sin ω0t]eiωt dt

=
∫ a

−a
cos ω0t cos ωt dt + i

∫ a

−a
sin ω0t sin ωt dt

=
1
2

∫ a

−a
[cos((ω + ω0)t) + cos((ω−ω0)t)] dt

=
sin((ω + ω0)a)

ω + ω0
+

sin((ω−ω0)a)
ω−ω0

. (10.63)

10.6 The Convolution Operation

In the list of properties of the Fourier transform, we defined the
convolution of two functions, f (x) and g(x) to be the integral

( f ∗ g)(x) =
∫ ∞

−∞
f (t)g(x− t) dt. (10.64)

In some sense one is looking at a sum of the overlaps of one of the functions
and all of the shifted versions of the other function. The German word
for convolution is faltung, which means “folding” and in old texts this is
referred to as the Faltung Theorem. In this section we will look into the
convolution operation and its Fourier transform.

Before we get too involved with the convolution operation, it should be
noted that there are really two things you need to take away from this dis-
cussion. The rest is detail. First, the convolution of two functions is a new
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functions as defined by 10.64 when dealing wit the Fourier transform. The
second and most relevant is that the Fourier transform of the convolution of
two functions is the product of the transforms of each function. The rest is
all about the use and consequences of these two statements. In this section
we will show how the convolution works and how it is useful.

First, we note that the convolution is commutative: f ∗ g = g ∗ f . This is
easily shown by replacing x− t with a new variable, y = x− t and dy = −dt.

(g ∗ f )(x) =
∫ ∞

−∞
g(t) f (x− t) dt

= −
∫ −∞

∞
g(x− y) f (y) dy

=
∫ ∞

−∞
f (y)g(x− y) dy

= ( f ∗ g)(x). (10.65)

The convolution is commutative.

The best way to understand the folding of the functions in the convolu-
tion is to take two functions and convolve them. The next example gives
a graphical rendition followed by a direct computation of the convolution.
The reader is encouraged to carry out these analyses for other functions.

Example 10.11. Graphical Convolution of the box function and a tri-
angle function.

In order to understand the convolution operation, we need to apply
it to specific functions. We will first do this graphically for the box
function

f (x) =

{
1, |x| ≤ 1,
0, |x| > 1

and the triangular function

g(x) =

{
x, 0 ≤ x ≤ 1,
0, otherwise

as shown in Figure 10.16.

x

f (x)

1−1

1

x

g(x)

1−1

1

Figure 10.16: A plot of the box function
f (x) and the triangle function g(x).

t

g(−t)

1−1

1

Figure 10.17: A plot of the reflected tri-
angle function, g(−t).

Next, we determine the contributions to the integrand. We consider
the shifted and reflected function g(t− x) in Equation 10.64 for various
values of t. For t = 0, we have g(x − 0) = g(−x). This function is a
reflection of the triangle function, g(x), as shown in Figure 10.17.

We then translate the triangle function performing horizontal shifts
by t. In Figure 10.18 we show such a shifted and reflected g(x) for
t = 2, or g(2− x).

t

g(2− t)

1−1

1

2

Figure 10.18: A plot of the reflected tri-
angle function shifted by 2 units, g(2−
t).

In Figure 10.18 we show several plots of other shifts, g(x − t), su-
perimposed on f (x).

The integrand is the product of f (t) and g(x − t) and the integral
of the product f (t)g(x− t) is given by the sum of the shaded areas for
each value of x.

In the first plot of Figure 10.19 the area is zero, as there is no overlap
of the functions. Intermediate shift values are displayed in the other
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plots in Figure 10.19. The value of the convolution at x is shown by
the area under the product of the two functions for each value of x.

Plots of the areas of the convolution of the box and triangle func-
tions for several values of x are given in Figure 10.18. We see that the
value of the convolution integral builds up and then quickly drops
to zero as a function of x. In Figure 10.20 the values of these areas is
shown as a function of x.

t

y

t

y

t

y

t

y

t

y

t

y

t

y

t

y

t

y

Figure 10.19: A plot of the box and trian-
gle functions with the overlap indicated
by the shaded area.The plot of the convolution in Figure 10.20 is not easily determined using

the graphical method. However, we can directly compute the convolution
as shown in the next example.

Example 10.12. Analytically find the convolution of the box function
and the triangle function.

x

( f ∗ g)(x)

1−1

0.5

2

Figure 10.20: A plot of the convolution
of the box and triangle functions.

The nonvanishing contributions to the convolution integral are when
both f (t) and g(x − t) do not vanish. f (t) is nonzero for |t| ≤ 1,
or −1 ≤ t ≤ 1. g(x − t) is nonzero for 0 ≤ x − t ≤ 1, or x − 1 ≤
t ≤ x. These two regions are shown in Figure 10.21. On this region,
f (t)g(x− t) = x− t.

x

t

−1

−1

1

1

2

2

g(x)

f (x)

Figure 10.21: Intersection of the support
of g(x) and f (x).

Isolating the intersection in Figure 10.22, we see in Figure 10.22 that
there are three regions as shown by different shadings. These regions
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lead to a piecewise defined function with three different branches of
nonzero values for −1 < x < 0, 0 < x < 1, and 1 < x < 2.

Figure 10.22: Intersection of the support
of g(x) and f (x) showing the integration
regions.

x

t

−1

−1

1

1

2

2

g(x)

f (x)

The values of the convolution can be determined through careful
integration. The resulting integrals are given as

( f ∗ g)(x) =
∫ ∞

−∞
f (t)g(x− t) dt

=


∫ x
−1(x− t) dt, −1 < x < 0∫ x

x−1(x− t) dt, 0 < x < 1∫ 1
x−1(x− t) dt, 1 < x < 2

=


1
2 (x + 1)2, −1 < x < 0

1
2 , 0 < x < 1

1
2
[
1− (x− 1)2] 1 < x < 2

(10.66)

A plot of this function is shown in Figure 10.20.

10.6.1 Convolution Theorem for Fourier Transforms

In this section we compute the Fourier transform of the convolution in-
tegral and show that the Fourier transform of the convolution is the product
of the transforms of each function,

F[ f ∗ g] = f̂ (k)ĝ(k). (10.67)

First, we use the definitions of the Fourier transform and the convolution
to write the transform as

F[ f ∗ g] =
∫ ∞

−∞
( f ∗ g)(x)eikx dx

=
∫ ∞

−∞

(∫ ∞

−∞
f (t)g(x− t) dt

)
eikx dx

=
∫ ∞

−∞

(∫ ∞

−∞
g(x− t)eikx dx

)
f (t) dt. (10.68)
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We now substitute y = x− t on the inside integral and separate the integrals:

F[ f ∗ g] =
∫ ∞

−∞

(∫ ∞

−∞
g(x− t)eikx dx

)
f (t) dt

=
∫ ∞

−∞

(∫ ∞

−∞
g(y)eik(y+t) dy

)
f (t) dt

=
∫ ∞

−∞

(∫ ∞

−∞
g(y)eiky dy

)
f (t)eikt dt.

=

(∫ ∞

−∞
f (t)eikt dt

)(∫ ∞

−∞
g(y)eiky dy

)
. (10.69)

We see that the two integrals are just the Fourier transforms of f and g.
Therefore, the Fourier transform of a convolution is the product of the
Fourier transforms of the functions involved:

F[ f ∗ g] = f̂ (k)ĝ(k).

Example 10.13. Compute the convolution of the box function of height
one and width two with itself.

Let f̂ (k) be the Fourier transform of f (x). Then, the Convolution
Theorem says that F[ f ∗ f ](k) = f̂ 2(k), or

( f ∗ f )(x) = F−1[ f̂ 2(k)].

For the box function, we have already found that

f̂ (k) =
2
k

sin k.

So, we need to compute

( f ∗ f )(x) = F−1[
4
k2 sin2 k]

=
1

2π

∫ ∞

−∞

(
4
k2 sin2 k

)
e−ikx dk. (10.70)

One way to compute this integral is to extend the computation into
the complex k-plane. We first need to rewrite the integrand. Thus,

( f ∗ f )(x) =
1

2π

∫ ∞

−∞

4
k2 sin2 ke−ikx dk

=
1
π

∫ ∞

−∞

1
k2 [1− cos 2k]e−ikx dk

=
1
π

∫ ∞

−∞

1
k2

[
1− 1

2
(eik + e−ik)

]
e−ikx dk

=
1
π

∫ ∞

−∞

1
k2

[
e−ikx − 1

2
(e−i(1−k) + e−i(1+k))

]
dk. (10.71)

We can compute the above integrals if we know how to compute
the integral

I(y) =
1
π

∫ ∞

−∞

e−iky

k2 dk.
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Then, the result can be found in terms of I(y) as

( f ∗ f )(x) = I(x)− 1
2
[I(1− k) + I(1 + k)].

We consider the integral

∮
C

e−iyz

πz2 dz

over the contour in Figure 10.23. We can see that there is a double pole
at z = 0. The pole is on the real axis. So, we will need to cut out the
pole as we seek the value of the principal value integral.

ε R−R −ε x

y

Cε

ΓR

Figure 10.23: Contour for computing
P
∫ ∞
−∞

e−iyz

πz2 dz.

Recall from Chapter 9 that

∮
CR

e−iyz

πz2 dz =
∫

ΓR

e−iyz

πz2 dz +
∫ −ε

−R

e−iyz

πz2 dz +
∫

Cε

e−iyz

πz2 dz +
∫ R

ε

e−iyz

πz2 dz.

The integral
∮

CR
e−iyz

πz2 dz vanishes since there are no poles enclosed in
the contour! The sum of the second and fourth integrals gives the
integral we seek as ε → 0 and R → ∞. The integral over ΓR will
vanish as R gets large according to Jordan’s Lemma provided y < 0.
That leaves the integral over the small semicircle.

As before, we can show that

lim
ε→0

∫
Cε

f (z) dz = −πi Res[ f (z); z = 0].

Therefore, we find

I(y) = P
∫ ∞

−∞

e−iyz

πz2 dz = πi Res
[

e−iyz

πz2 ; z = 0
]

.

A simple computation of the reside gives I(y) = −y, for y < 0.
When y > 0, we need to close the contour in the lower half plane

in order to apply Jordan’s Lemma. Carrying out the computation, one
finds I(y) = y, for y > 0. Thus,

I(y) =

{
−y, y > 0,
y, y < 0,

(10.72)

We are now ready to finish the computation of the convolution.
We have to combine the integrals I(y), I(y + 1), and I(y − 1), since
( f ∗ f )(x) = I(x)− 1

2 [I(1− k) + I(1 + k)]. This gives different results
in four intervals:

( f ∗ f )(x) = x− 1
2
[(x− 2) + (x + 2)] = 0, x < −2,

= x− 1
2
[(x− 2)− (x + 2)] = 2 + x − 2 < x < 0,

= −x− 1
2
[(x− 2)− (x + 2)] = 2− x, 0 < x < 2,

= −x− 1
2
[−(x− 2)− (x + 2)] = 0, x > 2. (10.73)
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A plot of this solution is the triangle function,

( f ∗ f )(x) =


0, x < −2

2 + x, −2 < x < 0
2− x, 0 < x < 2

0, x > 2,

(10.74)

which was shown in the last example.

Example 10.14. Find the convolution of the box function of height one
and width two with itself using a direct computation of the convolu-
tion integral.

The nonvanishing contributions to the convolution integral are when
both f (t) and f (x − t) do not vanish. f (t) is nonzero for |t| ≤ 1, or
−1 ≤ t ≤ 1. f (x − t) is nonzero for |x − t| ≤ 1, or x − 1 ≤ t ≤
x + 1. These two regions are shown in Figure 10.25. On this region,
f (t)g(x− t) = 1.

x

t

−1
−1

1

1

2

2

−2

−2

3

−3

t = x + 1

t = x− 1

t = −1

t = 1
f (x− t)

f (t)

Figure 10.24: Plot of the regions of sup-
port for f (t) and f (x− t)..

Thus, the nonzero contributions to the convolution are

( f ∗ f )(x) =

{ ∫ x+1
−1 dt, 0 ≤ x ≤ 2,∫ 1
x−1 dt, −2 ≤ x ≤ 0,

=

{
2 + x, 0 ≤ x ≤ 2,
2− x, −2 ≤ x ≤ 0.

Once again, we arrive at the triangle function.

In the last section we showed the graphical convolution. For complete-
ness, we do the same for this example. In figure 10.25 we show the results.
We see that the convolution of two box functions is a triangle function.

Example 10.15. Show the graphical convolution of the box function of
height one and width two with itself.

Let’s consider a slightly more complicated example, the convolution of
two Gaussian functions.

Example 10.16. Convolution of two Gaussian functions f (x) = e−ax2
.

In this example we will compute the convolution of two Gaussian
functions with different widths. Let f (x) = e−ax2

and g(x) = e−bx2
. A

direct evaluation of the integral would be to compute

( f ∗ g)(x) =
∫ ∞

−∞
f (t)g(x− t) dt =

∫ ∞

−∞
e−at2−b(x−t)2

dt.
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t

f (x− t) f (t)

t

t

t

t

t

t

t

t

x1-1 2-2

2
( f ∗ g)(x)

Figure 10.25: A plot of the convolution
of a box function with itself. The areas
of the overlaps of as f (x− t) is translated
across f (t) are shown as well. The result
is the triangular function.

This integral can be rewritten as

( f ∗ g)(x) = e−bx2
∫ ∞

−∞
e−(a+b)t2+2bxt dt.

One could proceed to complete the square and finish carrying out
the integration. However, we will use the Convolution Theorem to
evaluate the convolution and leave the evaluation of this integral to
Problem 12.

Recalling the Fourier transform of a Gaussian from Example 10.5,
we have

f̂ (k) = F[e−ax2
] =

√
π

a
e−k2/4a (10.75)

and

ĝ(k) = F[e−bx2
] =

√
π

b
e−k2/4b.

Denoting the convolution function by h(x) = ( f ∗ g)(x), the Convolu-
tion Theorem gives

ĥ(k) = f̂ (k)ĝ(k) =
π√
ab

e−k2/4ae−k2/4b.

This is another Gaussian function, as seen by rewriting the Fourier
transform of h(x) as

ĥ(k) =
π√
ab

e−
1
4 (

1
a +

1
b )k2

=
π√
ab

e−
a+b
4ab k2

. (10.76)

In order to complete the evaluation of the convolution of these two
Gaussian functions, we need to find the inverse transform of the Gaus-
sian in Equation (10.76). We can do this by looking at Equation (10.75).
We have first that

F−1
[√

π

a
e−k2/4a

]
= e−ax2

.
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Moving the constants, we then obtain

F−1[e−k2/4a] =

√
a
π

e−ax2
.

We now make the substitution α = 1
4a ,

F−1[e−αk2
] =

√
1

4πα
e−x2/4α.

This is in the form needed to invert (10.76). Thus, for α = a+b
4ab we find

( f ∗ g)(x) = h(x) =
√

π

a + b
e−

ab
a+b x2

.

10.6.2 Application to Signal Analysis

f (t)

t

f̂ (ω)

ω

Figure 10.26: Schematic plot of a signal
f (t) and its Fourier transform f̂ (ω).

There are many applications of the convolution operation. One of
these areas is the study of analog signals. An analog signal is a continuous
signal and may contain either a finite, or continuous, set of frequencies.
Fourier transforms can be used to represent such signals as a sum over the
frequency content of these signals. In this section we will describe how
convolutions can be used in studying signal analysis. Filtering signals.

The first application is filtering. For a given signal there might be some
noise in the signal, or some undesirable high frequencies. For example, a
device used for recording an analog signal might naturally not be able to
record high frequencies. Let f (t) denote the amplitude of a given analog
signal and f̂ (ω) be the Fourier transform of this signal such the example
provided in Figure 10.26. Recall that the Fourier transform gives the fre-
quency content of the signal.

f̂ (ω)

ω

(a)

pω0 (ω)

ω-ω0 ω0

(b)

ĝ(ω)

ω

(c)

Figure 10.27: (a) Plot of the Fourier
transform f̂ (ω) of a signal. (b) The gate
function pω0 (ω) used to filter out high
frequencies. (c) The product of the func-
tions, ĝ(ω) = f̂ (ω)pω0 (ω), in (a) and (b)
shows how the filters cuts out high fre-
quencies, |ω| > ω0.

There are many ways to filter out unwanted frequencies. The simplest
would be to just drop all of the high (angular) frequencies. For example,
for some cutoff frequency ω0 frequencies |ω| > ω0 will be removed. The
Fourier transform of the filtered signal would then be zero for |ω| > ω0.
This could be accomplished by multiplying the Fourier transform of the
signal by a function that vanishes for |ω| > ω0. For example, we could use
the gate function

pω0(ω) =

{
1, |ω| ≤ ω0

0, |ω| > ω0
, (10.77)

as shown in Figure 10.27.
In general, we multiply the Fourier transform of the signal by some fil-

tering function ĥ(t) to get the Fourier transform of the filtered signal,

ĝ(ω) = f̂ (ω)ĥ(ω).

The new signal, g(t) is then the inverse Fourier transform of this product,
giving the new signal as a convolution:

g(t) = F−1[ f̂ (ω)ĥ(ω)] =
∫ ∞

−∞
h(t− τ) f (τ) dτ. (10.78)



412 partial differential equations

Such processes occur often in systems theory as well. One thinks of
f (t) as the input signal into some filtering device which in turn produces
the output, g(t). The function h(t) is called the impulse response. This is
because it is a response to the impulse function, δ(t). In this case, one has∫ ∞

−∞
h(t− τ)δ(τ) dτ = h(t).

Windowing signals.
Another application of the convolution is in windowing. This represents

what happens when one measures a real signal. Real signals cannot be
recorded for all values of time. Instead data is collected over a finite time
interval. If the length of time the data is collected is T, then the resulting
signal is zero outside this time interval. This can be modeled in the same
way as with filtering, except the new signal will be the product of the old
signal with the windowing function. The resulting Fourier transform of the
new signal will be a convolution of the Fourier transforms of the original
signal and the windowing function.

Example 10.17. Finite Wave Train, Revisited.
We return to the finite wave train in Example 10.10 given by

h(t) =

{
cos ω0t, |t| ≤ a

0, |t| > a
.

a0
t

f (t)

Figure 10.28: A plot of the finite wave
train.

We can view this as a windowed version of f (t) = cos ω0t obtained
by multiplying f (t) by the gate function

ga(t) =

{
1, |x| ≤ a
0, |x| > a

. (10.79)

This is shown in Figure 10.28. Then, the Fourier transform is given as
a convolution,The convolution in spectral space is de-

fined with an extra factor of 1/2π so
as to preserve the idea that the inverse
Fourier transform of a convolution is the
product of the corresponding signals.

ĥ(ω) = ( f̂ ∗ ĝa)(ω)

=
1

2π

∫ ∞

−∞
f̂ (ω− ν)ĝa(ν) dν. (10.80)

Note that the convolution in frequency space requires the extra factor
of 1/(2π).

We need the Fourier transforms of f and ga in order to finish the
computation. The Fourier transform of the box function was found in
Example 10.6 as

ĝa(ω) =
2
ω

sin ωa.

The Fourier transform of the cosine function, f (t) = cos ω0t, is

f̂ (ω) =
∫ ∞

−∞
cos(ω0t)eiωt dt

=
∫ ∞

−∞

1
2

(
eiω0t + e−iω0t

)
eiωt dt

=
1
2

∫ ∞

−∞

(
ei(ω+ω0)t + ei(ω−ω0)t

)
dt

= π [δ(ω + ω0) + δ(ω−ω0)] . (10.81)
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Note that we had earlier computed the inverse Fourier transform of
this function in Example 10.9.

Inserting these results in the convolution integral, we have

ĥ(ω) =
1

2π

∫ ∞

−∞
f̂ (ω− ν)ĝa(ν) dν

=
1

2π

∫ ∞

−∞
π [δ(ω− ν + ω0) + δ(ω− ν−ω0)]

2
ν

sin νa dν

=
sin(ω + ω0)a

ω + ω0
+

sin(ω−ω0)a
ω−ω0

. (10.82)

This is the same result we had obtained in Example 10.10.

10.6.3 Parseval’s Equality
The integral/sum of the (modulus)
square of a function is the integral/sum
of the (modulus) square of the trans-
form.

As another example of the convolution theorem, we derive Par-
seval’s Equality (named after Marc-Antoine Parseval (1755-1836)):∫ ∞

−∞
| f (t)|2 dt =

1
2π

∫ ∞

−∞
| f̂ (ω)|2 dω. (10.83)

This equality has a physical meaning for signals. The integral on the left
side is a measure of the energy content of the signal in the time domain.
The right side provides a measure of the energy content of the transform
of the signal. Parseval’s equality, is simply a statement that the energy is
invariant under the Fourier transform. Parseval’s equality is a special case
of Plancherel’s formula (named after Michel Plancherel, 1885-1967).

Let’s rewrite the Convolution Theorem in its inverse form

F−1[ f̂ (k)ĝ(k)] = ( f ∗ g)(t). (10.84)

Then, by the definition of the inverse Fourier transform, we have∫ ∞

−∞
f (t− u)g(u) du =

1
2π

∫ ∞

−∞
f̂ (ω)ĝ(ω)e−iωt dω.

Setting t = 0,∫ ∞

−∞
f (−u)g(u) du =

1
2π

∫ ∞

−∞
f̂ (ω)ĝ(ω) dω. (10.85)

Now, let g(t) = f (−t), or f (−t) = g(t). We note that the Fourier transform
of g(t) is related to the Fourier transform of f (t) :

ĝ(ω) =
∫ ∞

−∞
f (−t)eiωt dt

= −
∫ −∞

∞
f (τ)e−iωτ dτ

=
∫ ∞

−∞
f (τ)eiωτ dτ = f̂ (ω). (10.86)

So, inserting this result into Equation (10.85), we find that∫ ∞

−∞
f (−u) f (−u) du =

1
2π

∫ ∞

−∞
| f̂ (ω)|2 dω
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which yields Parseval’s Equality in the form (10.83) after substituting t =

−u on the left.
As noted above, the forms in Equations (10.83) and (10.85) are often re-

ferred to as the Plancherel formula or Parseval formula. A more commonly
defined Parseval equation is that given for Fourier series. For example, for a
function f (x) defined on [−π, π], which has a Fourier series representation,
we have

a2
0

2
+

∞

∑
n=1

(a2
n + b2

n) =
1
π

∫ π

−π
[ f (x)]2 dx.

In general, there is a Parseval identity for functions that can be expanded
in a complete sets of orthonormal functions, {φn(x)}, n = 1, 2, . . . , which is
given by

∞

∑
n=1

< f , φn >2= ‖ f ‖2.

Here ‖ f ‖2 =< f , f > . The Fourier series example is just a special case of
this formula.

10.7 The Laplace Transform
The Laplace transform is named af-
ter Pierre-Simon de Laplace (1749-1827).
Laplace made major contributions, espe-
cially to celestial mechanics, tidal analy-
sis, and probability.

Up to this point we have only explored Fourier exponential trans-
forms as one type of integral transform. The Fourier transform is useful
on infinite domains. However, students are often introduced to another
integral transform, called the Laplace transform, in their introductory dif-
ferential equations class. These transforms are defined over semi-infinite
domains and are useful for solving initial value problems for ordinary dif-
ferential equations.Integral transform on [a, b] with respect

to the integral kernel, K(x, k). The Fourier and Laplace transforms are examples of a broader class of
transforms known as integral transforms . For a function f (x) defined on
an interval (a, b), we define the integral transform

F(k) =
∫ b

a
K(x, k) f (x) dx,

where K(x, k) is a specified kernel of the transform. Looking at the Fourier
transform, we see that the interval is stretched over the entire real axis and
the kernel is of the form, K(x, k) = eikx. In Table 10.1 we show several types
of integral transforms.

Table 10.1: A table of common integral
transforms.

Laplace Transform F(s) =
∫ ∞

0 e−sx f (x) dx
Fourier Transform F(k) =

∫ ∞
−∞ eikx f (x) dx

Fourier Cosine Transform F(k) =
∫ ∞

0 cos(kx) f (x) dx
Fourier Sine Transform F(k) =

∫ ∞
0 sin(kx) f (x) dx

Mellin Transform F(k) =
∫ ∞

0 xk−1 f (x) dx
Hankel Transform F(k) =

∫ ∞
0 xJn(kx) f (x) dx
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It should be noted that these integral transforms inherit the linearity of
integration. Namely. let h(x) = α f (x) + βg(x), where α and β are constants.
Then,

H(k) =
∫ b

a
K(x, k)h(x) dx,

=
∫ b

a
K(x, k)(α f (x) + βg(x)) dx,

= α
∫ b

a
K(x, k) f (x) dx + β

∫ b

a
K(x, k)g(x) dx,

= αF(x) + βG(x). (10.87)

Therefore, we have shown linearity of the integral transforms. We have seen
the linearity property used for Fourier transforms and we will use linearity
in the study of Laplace transforms. The Laplace transform of f , F = L[ f ].

We now turn to Laplace transforms. The Laplace transform of a function
f (t) is defined as

F(s) = L[ f ](s) =
∫ ∞

0
f (t)e−st dt, s > 0. (10.88)

This is an improper integral and one needs

lim
t→∞

f (t)e−st = 0

to guarantee convergence.
Laplace transforms also have proven useful in engineering for solving cir-

cuit problems and doing systems analysis. In Figure 10.29 it is shown that
a signal x(t) is provided as input to a linear system, indicated by h(t). One
is interested in the system output, y(t), which is given by a convolution
of the input and system functions. By considering the transforms of x(t)
and h(t), the transform of the output is given as a product of the Laplace
transforms in the s-domain. In order to obtain the output, one needs to
compute a convolution product for Laplace transforms similar to the convo-
lution operation we had seen for Fourier transforms earlier in the chapter.
Of course, for us to do this in practice, we have to know how to compute
Laplace transforms.

x(t)

Laplace
Transform

X(s)

h(t)

H(s)

y(t) = h(t) ∗ x(t)

Inverse Laplace
Transform

Y(s) = H(s)X(s)

Figure 10.29: A schematic depicting the
use of Laplace transforms in systems
theory.



416 partial differential equations

10.7.1 Properties and Examples of Laplace Transforms

It is typical that one makes use of Laplace transforms by referring to
a Table of transform pairs. A sample of such pairs is given in Table 10.2.
Combining some of these simple Laplace transforms with the properties of
the Laplace transform, as shown in Table 10.3, we can deal with many ap-
plications of the Laplace transform. We will first prove a few of the given
Laplace transforms and show how they can be used to obtain new trans-
form pairs. In the next section we will show how these transforms can be
used to sum infinite series and to solve initial value problems for ordinary
differential equations.

Table 10.2: Table of selected Laplace
transform pairs.

f (t) F(s) f (t) F(s)

c
c
s

eat 1
s− a

, s > a

tn n!
sn+1 , s > 0 tneat n!

(s− a)n+1

sin ωt
ω

s2 + ω2 eat sin ωt ω
(s−a)2+ω2

cos ωt
s

s2 + ω2 eat cos ωt
s− a

(s− a)2 + ω2

t sin ωt
2ωs

(s2 + ω2)2 t cos ωt
s2 −ω2

(s2 + ω2)2

sinh at
a

s2 − a2 cosh at
s

s2 − a2

H(t− a)
e−as

s
, s > 0 δ(t− a) e−as, a ≥ 0, s > 0

We begin with some simple transforms. These are found by simply using
the definition of the Laplace transform.

Example 10.18. Show that L[1] = 1
s .

For this example, we insert f (t) = 1 into the definition of the
Laplace transform:

L[1] =
∫ ∞

0
e−st dt.

This is an improper integral and the computation is understood by
introducing an upper limit of a and then letting a → ∞. We will not
always write this limit, but it will be understood that this is how one
computes such improper integrals. Proceeding with the computation,
we have

L[1] =
∫ ∞

0
e−st dt

= lim
a→∞

∫ a

0
e−st dt

= lim
a→∞

(
−1

s
e−st

)a

0

= lim
a→∞

(
−1

s
e−sa +

1
s

)
=

1
s

. (10.89)
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Thus, we have found that the Laplace transform of 1 is 1
s . This result

can be extended to any constant c, using the linearity of the transform,
L[c] = cL[1]. Therefore,

L[c] = c
s

.

Example 10.19. Show that L[eat] = 1
s−a , for s > a.

For this example, we can easily compute the transform. Again, we
only need to compute the integral of an exponential function.

L[eat] =
∫ ∞

0
eate−st dt

=
∫ ∞

0
e(a−s)t dt

=

(
1

a− s
e(a−s)t

)∞

0

= lim
t→∞

1
a− s

e(a−s)t − 1
a− s

=
1

s− a
. (10.90)

Note that the last limit was computed as limt→∞ e(a−s)t = 0. This
is only true if a− s < 0, or s > a. [Actually, a could be complex. In
this case we would only need s to be greater than the real part of a,
s > Re(a).]

Example 10.20. Show that L[cos at] = s
s2+a2 and L[sin at] = a

s2+a2 .
For these examples, we could again insert the trigonometric func-

tions directly into the transform and integrate. For example,

L[cos at] =
∫ ∞

0
e−st cos at dt.

Recall how one evaluates integrals involving the product of a trigono-
metric function and the exponential function. One integrates by parts
two times and then obtains an integral of the original unknown in-
tegral. Rearranging the resulting integral expressions, one arrives at
the desired result. However, there is a much simpler way to compute
these transforms.

Recall that eiat = cos at + i sin at. Making use of the linearity of the
Laplace transform, we have

L[eiat] = L[cos at] + iL[sin at].

Thus, transforming this complex exponential will simultaneously pro-
vide the Laplace transforms for the sine and cosine functions!

The transform is simply computed as

L[eiat] =
∫ ∞

0
eiate−st dt =

∫ ∞

0
e−(s−ia)t dt =

1
s− ia

.

Note that we could easily have used the result for the transform of an
exponential, which was already proven. In this case s > Re(ia) = 0.
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We now extract the real and imaginary parts of the result using the
complex conjugate of the denominator:

1
s− ia

=
1

s− ia
s + ia
s + ia

=
s + ia

s2 + a2 .

Reading off the real and imaginary parts, we find the sought trans-
forms,

L[cos at] =
s

s2 + a2

L[sin at] =
a

s2 + a2 . (10.91)

Example 10.21. Show that L[t] = 1
s2 .

For this example we evaluate

L[t] =
∫ ∞

0
te−st dt.

This integral can be evaluated using the method of integration by
parts: ∫ ∞

0
te−st dt = −t

1
s

e−st
∣∣∣∞
0
+

1
s

∫ ∞

0
e−st dt

=
1
s2 . (10.92)

Example 10.22. Show that L[tn] = n!
sn+1 for nonnegative integer n.

We have seen the n = 0 and n = 1 cases: L[1] = 1
s and L[t] = 1

s2 .
We now generalize these results to nonnegative integer powers, n > 1,
of t. We consider the integral

L[tn] =
∫ ∞

0
tne−st dt.

Following the previous example, we again integrate by parts:55 This integral can just as easily be done
using differentiation. We note that(
− d

ds

)n ∫ ∞

0
e−st dt =

∫ ∞

0
tne−st dt.

Since ∫ ∞

0
e−st dt =

1
s

,∫ ∞

0
tne−st dt =

(
− d

ds

)n 1
s
=

n!
sn+1 .

∫ ∞

0
tne−st dt = −tn 1

s
e−st

∣∣∣∞
0
+

n
s

∫ ∞

0
t−ne−st dt

=
n
s

∫ ∞

0
t−ne−st dt. (10.93)

We could continue to integrate by parts until the final integral is
computed. However, look at the integral that resulted after one inte-
gration by parts. It is just the Laplace transform of tn−1. So, we can
write the result as

L[tn] =
n
s
L[tn−1].

We compute
∫ ∞

0 tne−st dt by turning it
into an initial value problem for a first
order difference equation and finding
the solution using an iterative method.

This is an example of a recursive definition of a sequence. In this
case we have a sequence of integrals. Denoting

In = L[tn] =
∫ ∞

0
tne−st dt

and noting that I0 = L[1] = 1
s , we have the following:

In =
n
s

In−1, I0 =
1
s

. (10.94)



integral transforms 419

This is also what is called a difference equation. It is a first order
difference equation with an “initial condition,” I0. The next step is to
solve this difference equation.

Finding the solution of this first order difference equation is easy to
do using simple iteration. Note that replacing n with n− 1, we have

In−1 =
n− 1

s
In−2.

Repeating the process, we find

In =
n
s

In−1

=
n
s

(
n− 1

s
In−2

)
=

n(n− 1)
s2 In−2

=
n(n− 1)(n− 2)

s3 In−3. (10.95)

We can repeat this process until we get to I0, which we know. We
have to carefully count the number of iterations. We do this by iter-
ating k times and then figure out how many steps will get us to the
known initial value. A list of iterates is easily written out:

In =
n
s

In−1

=
n(n− 1)

s2 In−2

=
n(n− 1)(n− 2)

s3 In−3

= . . .

=
n(n− 1)(n− 2) . . . (n− k + 1)

sk In−k. (10.96)

Since we know I0 = 1
s , we choose to stop at k = n obtaining

In =
n(n− 1)(n− 2) . . . (2)(1)

sn I0 =
n!

sn+1 .

Therefore, we have shown that L[tn] = n!
sn+1 .

Such iterative techniques are useful in obtaining a variety of inte-
grals, such as In =

∫ ∞
−∞ x2ne−x2

dx.

As a final note, one can extend this result to cases when n is not an
integer. To do this, we use the Gamma function, which was discussed in
Section 5.4. Recall that the Gamma function is the generalization of the
factorial function and is defined as

Γ(x) =
∫ ∞

0
tx−1e−t dt. (10.97)

Note the similarity to the Laplace transform of tx−1 :

L[tx−1] =
∫ ∞

0
tx−1e−st dt.
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For x− 1 an integer and s = 1, we have that

Γ(x) = (x− 1)!.

Thus, the Gamma function can be viewed as a generalization of the factorial
and we have shown that

L[tp] =
Γ(p + 1)

sp+1

for p > −1.
Now we are ready to introduce additional properties of the Laplace trans-

form in Table 10.3. We have already discussed the first property, which is a
consequence of linearity of the integral transforms. We will prove the other
properties in this and the following sections.

Table 10.3: Table of selected Laplace
transform properties.

Laplace Transform Properties
L[a f (t) + bg(t)] = aF(s) + bG(s)

L[t f (t)] = − d
ds

F(s)

L
[

d f
dt

]
= sF(s)− f (0)

L
[

d2 f
dt2

]
= s2F(s)− s f (0)− f ′(0)

L[eat f (t)] = F(s− a)
L[H(t− a) f (t− a)] = e−asF(s)

L[( f ∗ g)(t)] = L[
∫ t

0
f (t− u)g(u) du] = F(s)G(s)

Example 10.23. Show that L
[

d f
dt

]
= sF(s)− f (0).

We have to compute

L
[

d f
dt

]
=
∫ ∞

0

d f
dt

e−st dt.

We can move the derivative off f by integrating by parts. This is sim-
ilar to what we had done when finding the Fourier transform of the
derivative of a function. Letting u = e−st and v = f (t), we have

L
[

d f
dt

]
=

∫ ∞

0

d f
dt

e−st dt

= f (t)e−st
∣∣∣∞
0
+ s

∫ ∞

0
f (t)e−st dt

= − f (0) + sF(s). (10.98)

Here we have assumed that f (t)e−st vanishes for large t.
The final result is that

L
[

d f
dt

]
= sF(s)− f (0).

Example 6: Show that L
[

d2 f
dt2

]
= s2F(s)− s f (0)− f ′(0).
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We can compute this Laplace transform using two integrations by
parts, or we could make use of the last result. Letting g(t) = d f (t)

dt , we
have

L
[

d2 f
dt2

]
= L

[
dg
dt

]
= sG(s)− g(0) = sG(s)− f ′(0).

But,

G(s) = L
[

d f
dt

]
= sF(s)− f (0).

So,

L
[

d2 f
dt2

]
= sG(s)− f ′(0)

= s [sF(s)− f (0)]− f ′(0)

= s2F(s)− s f (0)− f ′(0). (10.99)

We will return to the other properties in Table 10.3 after looking at a few
applications.

10.8 Applications of Laplace Transforms

Although the Laplace transform is a very useful transform, it
is often encountered only as a method for solving initial value problems
in introductory differential equations. In this section we will show how to
solve simple differential equations. Along the way we will introduce step
and impulse functions and show how the Convolution Theorem for Laplace
transforms plays a role in finding solutions. However, we will first explore
an unrelated application of Laplace transforms. We will see that the Laplace
transform is useful in finding sums of infinite series.

10.8.1 Series Summation Using Laplace Transforms

We saw in Chapter 2 that Fourier series can be used to sum series.
For example, in Problem 2.13, one proves that

∞

∑
n=1

1
n2 =

π2

6
.

In this section we will show how Laplace transforms can be used to sum
series.6 There is an interesting history of using integral transforms to sum 6 Albert D. Wheelon, Tables of Summable

Series and Integrals Involving Bessel Func-
tions, Holden-Day, 1968.

series. For example, Richard Feynman7 (1918-1988) described how one can

7 R. P. Feynman, 1949, Phys. Rev. 76, p.
769

use the convolution theorem for Laplace transforms to sum series with de-
nominators that involved products. We will describe this and simpler sums
in this section.

We begin by considering the Laplace transform of a known function,

F(s) =
∫ ∞

0
f (t)e−st dt.
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Inserting this expression into the sum ∑n F(n) and interchanging the sum
and integral, we find

∞

∑
n=0

F(n) =
∞

∑
n=0

∫ ∞

0
f (t)e−nt dt

=
∫ ∞

0
f (t)

∞

∑
n=0

(
e−t)n dt

=
∫ ∞

0
f (t)

1
1− e−t dt. (10.100)

The last step was obtained using the sum of a geometric series. The key is
being able to carry out the final integral as we show in the next example.

Example 10.24. Evaluate the sum ∑∞
n=1

(−1)n+1

n .
Since, L[1] = 1/s, we have

∞

∑
n=1

(−1)n+1

n
=

∞

∑
n=1

∫ ∞

0
(−1)n+1e−nt dt

=
∫ ∞

0

e−t

1 + e−t dt

=
∫ 2

1

du
u

= ln 2. (10.101)

Example 10.25. Evaluate the sum ∑∞
n=1

1
n2 .

This is a special case of the Riemann zeta function

ζ(s) =
∞

∑
n=1

1
ns . (10.102)

The Riemann zeta function8 is important in the study of prime num-8 A translation of Riemann, Bernhard
(1859), “Über die Anzahl der Primzahlen
unter einer gegebenen Grösse” is in H.
M. Edwards (1974). Riemann’s Zeta Func-
tion. Academic Press. Riemann had
shown that the Riemann zeta function
can be obtained through contour in-
tegral representation, 2 sin(πs)Γζ(s) =

i
∮

C
(−x)s−1

ex−1 dx, for a specific contour C.

bers and more recently has seen applications in the study of dynamical
systems. The series in this example is ζ(2). We have already seen in
2.13 that

ζ(2) =
π2

6
.

Using Laplace transforms, we can provide an integral representation
of ζ(2).

The first step is to find the correct Laplace transform pair. The sum
involves the function F(n) = 1/n2. So, we look for a function f (t)
whose Laplace transform is F(s) = 1/s2. We know by now that the
inverse Laplace transform of F(s) = 1/s2 is f (t) = t. As before, we
replace each term in the series by a Laplace transform, exchange the
summation and integration, and sum the resulting geometric series:

∞

∑
n=1

1
n2 =

∞

∑
n=1

∫ ∞

0
te−nt dt

=
∫ ∞

0

t
et − 1

dt. (10.103)

So, we have that∫ ∞

0

t
et − 1

dt =
∞

∑
n=1

1
n2 = ζ(2).
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Integrals of this type occur often in statistical mechanics in the form
of Bose-Einstein integrals. These are of the form

Gn(z) =
∫ ∞

0

xn−1

z−1ex − 1
dx.

Note that Gn(1) = Γ(n)ζ(n).

In general the Riemann zeta function has to be tabulated through other
means. In some special cases, one can closed form expressions. For exam-
ple,

ζ(2n) =
22n−1π2n

(2n)!
Bn,

where the Bn’s are the Bernoulli numbers. Bernoulli numbers are defined
through the Maclaurin series expansion

x
ex − 1

=
∞

∑
n=0

Bn

n!
xn.

The first few Riemann zeta functions are

ζ(2) =
π2

6
, ζ(4) =

π4

90
, ζ(6) =

π6

945
.

We can extend this method of using Laplace transforms to summing se-
ries whose terms take special general forms. For example, from Feynman’s
1949 paper we note that

1
(a + bn)2 = − ∂

∂a

∫ ∞

0
e−s(a+bn) ds.

This identity can be shown easily by first noting

∫ ∞

0
e−s(a+bn) ds =

[
−e−s(a+bn)

a + bn

]∞

0

=
1

a + bn
.

Now, differentiate the result with respect to a and the result follows.
The latter identity can be generalized further as

1
(a + bn)k+1 =

(−1)k

k!
∂k

∂ak

∫ ∞

0
e−s(a+bn) ds.

In Feynman’s 1949 paper, he develops methods for handling several other
general sums using the convolution theorem. Wheelon gives more examples
of these. We will just provide one such result and an example. First, we note
that

1
ab

=
∫ 1

0

du
[a(1− u) + bu]2

.

However,
1

[a(1− u) + bu]2
=
∫ ∞

0
te−t[a(1−u)+bu] dt.

So, we have
1
ab

=
∫ 1

0
du
∫ ∞

0
te−t[a(1−u)+bu] dt.

We see in the next example how this representation can be useful.
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Example 10.26. Evaluate ∑∞
n=0

1
(2n+1)(2n+2) .

We sum this series by first letting a = 2n + 1 and b = 2n + 2 in the
formula for 1/ab. Collecting the n-dependent terms, we can sum the
series leaving a double integral computation in ut-space. The details
are as follows:

∞

∑
n=0

1
(2n + 1)(2n + 2)

=
∞

∑
n=0

∫ 1

0

du
[(2n + 1)(1− u) + (2n + 2)u]2

=
∞

∑
n=0

∫ 1

0
du
∫ ∞

0
te−t(2n+1+u) dt

=
∫ 1

0
du
∫ ∞

0
te−t(1+u)

∞

∑
n=0

e−2nt dt

=
∫ ∞

0

te−t

1− e−2t

∫ 1

0
e−tu du dt

=
∫ ∞

0

te−t

1− e−2t
1− e−t

t
dt

=
∫ ∞

0

e−t

1 + e−t dt

= − ln(1 + e−t)
∣∣∣∞
0
= ln 2. (10.104)

10.8.2 Solution of ODEs Using Laplace Transforms

One of the typical applications of Laplace transforms is the so-
lution of nonhomogeneous linear constant coefficient differential equations.
In the following examples we will show how this works.

The general idea is that one transforms the equation for an unknown
function y(t) into an algebraic equation for its transform, Y(t). Typically,
the algebraic equation is easy to solve for Y(s) as a function of s. Then,
one transforms back into t-space using Laplace transform tables and the
properties of Laplace transforms. The scheme is shown in Figure 10.30.

Figure 10.30: The scheme for solving
an ordinary differential equation using
Laplace transforms. One transforms the
initial value problem for y(t) and obtains
an algebraic equation for Y(s). Solve for
Y(s) and the inverse transform give the
solution to the initial value problem.

L[y] = g

y(t)

F(Y) = G

Y(s)

Laplace Transform

Inverse Laplace Transform

ODE
for y(t)

Algebraic

Equation

Y(s)

Example 10.27. Solve the initial value problem y′ + 3y = e2t, y(0) = 1.

The first step is to perform a Laplace transform of the initial value
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problem. The transform of the left side of the equation is

L[y′ + 3y] = sY− y(0) + 3Y = (s + 3)Y− 1.

Transforming the right hand side, we have

L[e2t] =
1

s− 2
.

Combining these two results, we obtain

(s + 3)Y− 1 =
1

s− 2
.

The next step is to solve for Y(s) :

Y(s) =
1

s + 3
+

1
(s− 2)(s + 3)

.

Now, we need to find the inverse Laplace transform. Namely, we
need to figure out what function has a Laplace transform of the above
form. We will use the tables of Laplace transform pairs. Later we
will show that there are other methods for carrying out the Laplace
transform inversion.

The inverse transform of the first term is e−3t. However, we have not
seen anything that looks like the second form in the table of transforms
that we have compiled; but, we can rewrite the second term by using
a partial fraction decomposition. Let’s recall how to do this.

The goal is to find constants, A and B, such that

1
(s− 2)(s + 3)

=
A

s− 2
+

B
s + 3

. (10.105)

We picked this form because we know that recombining the two terms This is an example of carrying out a par-
tial fraction decomposition.into one term will have the same denominator. We just need to make

sure the numerators agree afterwards. So, adding the two terms, we
have

1
(s− 2)(s + 3)

=
A(s + 3) + B(s− 2)

(s− 2)(s + 3)
.

Equating numerators,

1 = A(s + 3) + B(s− 2).

There are several ways to proceed at this point.

a. Method 1.

We can rewrite the equation by gathering terms with common powers
of s, we have

(A + B)s + 3A− 2B = 1.

The only way that this can be true for all s is that the coefficients of the
different powers of s agree on both sides. This leads to two equations
for A and B:

A + B = 0

3A− 2B = 1. (10.106)
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The first equation gives A = −B, so the second equation becomes
−5B = 1. The solution is then A = −B = 1

5 .

b. Method 2.

Since the equation 1
(s−2)(s+3) =

A
s−2 + B

s+3 is true for all s, we can pick

specific values. For s = 2, we find 1 = 5A, or A = 1
5 . For s = −3, we

find 1 = −5B, or B = − 1
5 . Thus, we obtain the same result as Method

1, but much quicker.

1 2

2

4

6

8

t

y(t)

Figure 10.31: A plot of the solution to
Example 10.27.

c. Method 3.

We could just inspect the original partial fraction problem. Since the
numerator has no s terms, we might guess the form

1
(s− 2)(s + 3)

=
1

s− 2
− 1

s + 3
.

But, recombining the terms on the right hand side, we see that

1
s− 2

− 1
s + 3

=
5

(s− 2)(s + 3)
.

Since we were off by 5, we divide the partial fractions by 5 to obtain

1
(s− 2)(s + 3)

=
1
5

[
1

s− 2
− 1

s + 3

]
,

which once again gives the desired form.

Returning to the problem, we have found that

Y(s) =
1

s + 3
+

1
5

(
1

s− 2
− 1

s + 3

)
.

We can now see that the function with this Laplace transform is given
by

y(t) = L−1
[

1
s + 3

+
1
5

(
1

s− 2
− 1

s + 3

)]
= e−3t +

1
5

(
e2t − e−3t

)
works. Simplifying, we have the solution of the initial value problem

y(t) =
1
5

e2t +
4
5

e−3t.

We can verify that we have solved the initial value problem.

y′ + 3y =
2
5

e2t − 12
5

e−3t + 3(
1
5

e2t +
4
5

e−3t) = e2t

and y(0) = 1
5 + 4

5 = 1.

Example 10.28. Solve the initial value problem y′′ + 4y = 0, y(0) = 1,
y′(0) = 3.

We can probably solve this without Laplace transforms, but it is a
simple exercise. Transforming the equation, we have

0 = s2Y− sy(0)− y′(0) + 4Y

= (s2 + 4)Y− s− 3. (10.107)
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Solving for Y, we have

Y(s) =
s + 3
s2 + 4

.

We now ask if we recognize the transform pair needed. The denom-
inator looks like the type needed for the transform of a sine or cosine.
We just need to play with the numerator. Splitting the expression into
two terms, we have

Y(s) =
s

s2 + 4
+

3
s2 + 4

.

The first term is now recognizable as the transform of cos 2t. The
second term is not the transform of sin 2t. It would be if the numerator
were a 2. This can be corrected by multiplying and dividing by 2:

3
s2 + 4

=
3
2

(
2

s2 + 4

)
.

The solution is then found as

y(t) = L−1
[

s
s2 + 4

+
3
2

(
2

s2 + 4

)]
= cos 2t +

3
2

sin 2t.

The reader can verify that this is the solution of the initial value prob-
lem. The solution is shown in Figure 10.32. 2 4 6 8

−2

2

t

y(t)

Figure 10.32: A plot of the solution to
Example 10.28.

10.8.3 Step and Impulse Functions

Often the initial value problems that one faces in differential
equations courses can be solved using either the Method of Undetermined
Coefficients or the Method of Variation of Parameters. However, using the
latter can be messy and involves some skill with integration. Many circuit
designs can be modeled with systems of differential equations using Kir-
choff’s Rules. Such systems can get fairly complicated. However, Laplace
transforms can be used to solve such systems and electrical engineers have
long used such methods in circuit analysis.

In this section we add a couple of more transform pairs and transform
properties that are useful in accounting for things like turning on a driving
force, using periodic functions like a square wave, or introducing impulse
forces.

We first recall the Heaviside step function, given by

H(t) =

{
0, t < 0,
1, t > 0.

(10.108)

t

H(t− a)

1

a

Figure 10.33: A shifted Heaviside func-
tion, H(t− a).

A more general version of the step function is the horizontally shifted
step function, H(t− a). This function is shown in Figure 10.33. The Laplace
transform of this function is found for a > 0 as

L[H(t− a)] =
∫ ∞

0
H(t− a)e−st dt
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=
∫ ∞

a
e−st dt

=
e−st

s

∣∣∣∞
a
=

e−as

s
. (10.109)

Just like the Fourier transform, the Laplace transform has two shift the-
orems involving the multiplication of the function, f (t), or its transform,
F(s), by exponentials. The first and second shifting properties/theorems
are given by

L[eat f (t)] = F(s− a) (10.110)

L[ f (t− a)H(t− a)] = e−asF(s). (10.111)

The Shift Theorems.
We prove the First Shift Theorem and leave the other proof as an exercise

for the reader. Namely,

L[eat f (t)] =
∫ ∞

0
eat f (t)e−st dt

=
∫ ∞

0
f (t)e−(s−a)t dt = F(s− a). (10.112)

Example 10.29. Compute the Laplace transform of e−at sin ωt.
This function arises as the solution of the underdamped harmonic

oscillator. We first note that the exponential multiplies a sine function.
The shift theorem tells us that we first need the transform of the sine
function. So, for f (t) = sin ωt, we have

F(s) =
ω

s2 + ω2 .

Using this transform, we can obtain the solution to this problem as

L[e−at sin ωt] = F(s + a) =
ω

(s + a)2 + ω2 .

More interesting examples can be found using piecewise defined func-
tions. First we consider the function H(t)− H(t− a). For t < 0 both terms
are zero. In the interval [0, a] the function H(t) = 1 and H(t− a) = 0. There-
fore, H(t)− H(t− a) = 1 for t ∈ [0, a]. Finally, for t > a, both functions are
one and therefore the difference is zero. The graph of H(t) − H(t − a) is
shown in Figure 10.34.t

1

0 a

Figure 10.34: The box function, H(t) −
H(t− a).

We now consider the piecewise defined function

g(t) =

{
f (t), 0 ≤ t ≤ a,
0, t < 0, t > a.

This function can be rewritten in terms of step functions. We only need to
multiply f (t) by the above box function,

g(t) = f (t)[H(t)− H(t− a)].

We depict this in Figure 10.35.
t

1

0 a

Figure 10.35: Formation of a piecewise
function, f (t)[H(t)− H(t− a)].
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Even more complicated functions can be written in terms of step func-
tions. We only need to look at sums of functions of the form f (t)[H(t −
a) − H(t − b)] for b > a. This is similar to a box function. It is nonzero
between a and b and has height f (t).

We show as an example the square wave function in Figure 10.36. It can
be represented as a sum of an infinite number of boxes,

f (t) =
∞

∑
n=−∞

[H(t− 2na)− H(t− (2n + 1)a)],

for a > 0.

Example 10.30. Find the Laplace Transform of a square wave “turned
on” at t = 0. .

t
-2a 0 a 2a 4a 6a

Figure 10.36: A square wave, f (t) =

∑∞
n=−∞[H(t− 2na)− H(t− (2n + 1)a)].

We let

f (t) =
∞

∑
n=0

[H(t− 2na)− H(t− (2n + 1)a)], a > 0.

Using the properties of the Heaviside function, we have

L[ f (t)] =
∞

∑
n=0

[L[H(t− 2na)]−L[H(t− (2n + 1)a)]]

=
∞

∑
n=0

[
e−2nas

s
− e−(2n+1)as

s

]

=
1− e−as

s

∞

∑
n=0

(
e−2as

)n

=
1− e−as

s

(
1

1− e−2as

)
=

1− e−as

s(1− e−2as)
. (10.113)

Note that the third line in the derivation is a geometric series. We
summed this series to get the answer in a compact form since e−2as <

1.

f (x)

x
a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

Figure 10.37: Plot representing im-
pulse forces of height f (ai). The sum
∑n

i=1 f (ai)δ(x − ai) describes a general
impulse function.

Other interesting examples are provided by the delta function. The Dirac
delta function can be used to represent a unit impulse. Summing over a
number of impulses, or point sources, we can describe a general function as
shown in Figure 10.37. The sum of impulses located at points ai, i = 1, . . . , n
with strengths f (ai) would be given by

f (x) =
n

∑
i=1

f (ai)δ(x− ai).
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A continuous sum could be written as

f (x) =
∫ ∞

−∞
f (ξ)δ(x− ξ) dξ.

This is simply an application of the sifting property of the delta function.
We will investigate a case when one would use a single impulse. While a
mass on a spring is undergoing simple harmonic motion, we hit it for an
instant at time t = a. In such a case, we could represent the force as a
multiple of δ(t− a).L[δ(t− a)] = e−as.

One would then need the Laplace transform of the delta function to solve
the associated initial value problem. Inserting the delta function into the
Laplace transform, we find that for a > 0

L[δ(t− a)] =
∫ ∞

0
δ(t− a)e−st dt

=
∫ ∞

−∞
δ(t− a)e−st dt

= e−as. (10.114)

Example 10.31. Solve the initial value problem y′′ + 4π2y = δ(t− 2),
y(0) = y′(0) = 0.

This initial value problem models a spring oscillation with an im-
pulse force. Without the forcing term, given by the delta function, this
spring is initially at rest and not stretched. The delta function models
a unit impulse at t = 2. Of course, we anticipate that at this time the
spring will begin to oscillate. We will solve this problem using Laplace
transforms.

First, we transform the differential equation:

s2Y− sy(0)− y′(0) + 4π2Y = e−2s.

Inserting the initial conditions, we have

(s2 + 4π2)Y = e−2s.

Solving for Y(s), we obtain

Y(s) =
e−2s

s2 + 4π2 .

We now seek the function for which this is the Laplace transform.
The form of this function is an exponential times some Laplace trans-
form, F(s). Thus, we need the Second Shift Theorem since the solution
is of the form Y(s) = e−2sF(s) for

F(s) =
1

s2 + 4π2 .

We need to find the corresponding f (t) of the Laplace transform
pair. The denominator in F(s) suggests a sine or cosine. Since the
numerator is constant, we pick sine. From the tables of transforms, we
have

L[sin 2πt] =
2π

s2 + 4π2 .
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So, we write

F(s) =
1

2π

2π

s2 + 4π2 .

This gives f (t) = (2π)−1 sin 2πt.
We now apply the Second Shift Theorem, L[ f (t − a)H(t − a)] =

e−asF(s), or

y(t) = L−1
[
e−2sF(s)

]
= H(t− 2) f (t− 2)

=
1

2π
H(t− 2) sin 2π(t− 2). (10.115)

This solution tells us that the mass is at rest until t = 2 and then begins
to oscillate at its natural frequency. A plot of this solution is shown in
Figure 10.38

5 10 15 20

−0.2

0.2

t

y(t)

Figure 10.38: A plot of the solution to
Example 10.31 in which a spring at rest
experiences an impulse force at t = 2.

Example 10.32. Solve the initial value problem

y′′ + y = f (t), y(0) = 0, y′(0) = 0,

where

f (t) =

{
cosπt, 0 ≤ t ≤ 2,

0, otherwise.

We need the Laplace transform of f (t). This function can be writ-
ten in terms of a Heaviside function, f (t) = cos πtH(t − 2). In or-
der to apply the Second Shift Theorem, we need a shifted version
of the cosine function. We find the shifted version by noting that
cos π(t− 2) = cos πt. Thus, we have

f (t) = cos πt [H(t)− H(t− 2)]

= cos πt− cos π(t− 2)H(t− 2), t ≥ 0. (10.116)

The Laplace transform of this driving term is

F(s) = (1− e−2s)L[cos πt] = (1− e−2s)
s

s2 + π2 .

Now we can proceed to solve the initial value problem. The Laplace
transform of the initial value problem yields

(s2 + 1)Y(s) = (1− e−2s)
s

s2 + π2 .

Therefore,

Y(s) = (1− e−2s)
s

(s2 + π2)(s2 + 1)
.

We can retrieve the solution to the initial value problem using the
Second Shift Theorem. The solution is of the form Y(s) = (1 −
e−2s)G(s) for

G(s) =
s

(s2 + π2)(s2 + 1)
.
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Then, the final solution takes the form

y(t) = g(t)− g(t− 2)H(t− 2).

We only need to find g(t) in order to finish the problem. This is
easily done by using the partial fraction decomposition

G(s) =
s

(s2 + π2)(s2 + 1)
=

1
π2 − 1

[
s

s2 + 1
− s

s2 + π2

]
.

Then,

g(t) = L−1
[

s
(s2 + π2)(s2 + 1)

]
=

1
π2 − 1

(cos t− cos πt) .

The final solution is then given by

y(t) =
1

π2 − 1
[cos t− cos πt− H(t− 2)(cos(t− 2)− cos πt)] .

A plot of this solution is shown in Figure 10.39
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Figure 10.39: A plot of the solution to
Example 10.32 in which a spring at rest
experiences an piecewise defined force.

10.9 The Convolution Theorem

Finally, we consider the convolution of two functions. Often we
are faced with having the product of two Laplace transforms that we know
and we seek the inverse transform of the product. For example, let’s say
we have obtained Y(s) = 1

(s−1)(s−2) while trying to solve an initial value
problem. In this case we could find a partial fraction decomposition. But,
are other ways to find the inverse transform, especially if we cannot perform
a partial fraction decomposition. We could use the Convolution Theorem for
Laplace transforms or we could compute the inverse transform directly. We
will look into these methods in the next two sections.We begin with defining
the convolution.

We define the convolution of two functions defined on [0, ∞) much the
same way as we had done for the Fourier transform. The convolution f ∗ g
is defined as

( f ∗ g)(t) =
∫ t

0
f (u)g(t− u) du. (10.117)

Note that the convolution integral has finite limits as opposed to the Fourier
transform case.

The convolution operation has two important properties:
The convolution is commutative.

1. The convolution is commutative: f ∗ g = g ∗ f

Proof. The key is to make a substitution y = t− u in the integral. This
makes f a simple function of the integration variable.

(g ∗ f )(t) =
∫ t

0
g(u) f (t− u) du

= −
∫ 0

t
g(t− y) f (y) dy
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=
∫ t

0
f (y)g(t− y) dy

= ( f ∗ g)(t). (10.118)

The Convolution Theorem for Laplace
transforms.

2. The Convolution Theorem: The Laplace transform of a convolution is
the product of the Laplace transforms of the individual functions:

L[ f ∗ g] = F(s)G(s)

Proof. Proving this theorem takes a bit more work. We will make
some assumptions that will work in many cases. First, we assume that
the functions are causal, f (t) = 0 and g(t) = 0 for t < 0. Secondly,
we will assume that we can interchange integrals, which needs more
rigorous attention than will be provided here. The first assumption
will allow us to write the finite integral as an infinite integral. Then
a change of variables will allow us to split the integral into the prod-
uct of two integrals that are recognized as a product of two Laplace
transforms.

Carrying out the computation, we have

L[ f ∗ g] =
∫ ∞

0

(∫ t

0
f (u)g(t− u) du

)
e−st dt

=
∫ ∞

0

(∫ ∞

0
f (u)g(t− u) du

)
e−st dt

=
∫ ∞

0
f (u)

(∫ ∞

0
g(t− u)e−st dt

)
du (10.119)

Now, make the substitution τ = t− u. We note that

int∞
0 f (u)

(∫ ∞

0
g(t− u)e−st dt

)
du =

∫ ∞

0
f (u)

(∫ ∞

−u
g(τ)e−s(τ+u) dτ

)
du

However, since g(τ) is a causal function, we have that it vanishes for
τ < 0 and we can change the integration interval to [0, ∞). So, after a
little rearranging, we can proceed to the result.

L[ f ∗ g] =
∫ ∞

0
f (u)

(∫ ∞

0
g(τ)e−s(τ+u) dτ

)
du

=
∫ ∞

0
f (u)e−su

(∫ ∞

0
g(τ)e−sτ dτ

)
du

=

(∫ ∞

0
f (u)e−su du

)(∫ ∞

0
g(τ)e−sτ dτ

)
= F(s)G(s). (10.120)

We make use of the Convolution Theorem to do the following examples.
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Example 10.33. Find y(t) = L−1
[

1
(s−1)(s−2)

]
.

We note that this is a product of two functions

Y(s) =
1

(s− 1)(s− 2)
=

1
s− 1

1
s− 2

= F(s)G(s).

We know the inverse transforms of the factors: f (t) = et and g(t) =

e2t.
Using the Convolution Theorem, we find y(t) = ( f ∗ g)(t). We com-

pute the convolution:

y(t) =
∫ t

0
f (u)g(t− u) du

=
∫ t

0
eue2(t−u) du

= e2t
∫ t

0
e−u du

= e2t[−et + 1] = e2t − et. (10.121)

One can also confirm this by carrying out a partial fraction decompo-
sition.

Example 10.34. Consider the initial value problem, y′′ + 9y = 2 sin 3t,
y(0) = 1, y′(0) = 0.

The Laplace transform of this problem is given by

(s2 + 9)Y− s =
6

s2 + 9
.

Solving for Y(s), we obtain

Y(s) =
6

(s2 + 9)2 +
s

s2 + 9
.

The inverse Laplace transform of the second term is easily found as
cos(3t); however, the first term is more complicated.

We can use the Convolution Theorem to find the Laplace transform
of the first term. We note that

6
(s2 + 9)2 =

2
3

3
(s2 + 9)

3
(s2 + 9)

is a product of two Laplace transforms (up to the constant factor).
Thus,

L−1
[

6
(s2 + 9)2

]
=

2
3
( f ∗ g)(t),

where f (t) = g(t) = sin3t. Evaluating this convolution product, we
have

L−1
[

6
(s2 + 9)2

]
=

2
3
( f ∗ g)(t)

=
2
3

∫ t

0
sin 3u sin 3(t− u) du
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=
1
3

∫ t

0
[cos 3(2u− t)− cos 3t] du

=
1
3

[
1
6

sin(6u− 3t)− u cos 3t
]t

0

=
1
9

sin 3t− 1
3

t cos 3t. (10.122)
2 4 6 8
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Figure 10.40: Plot of the solution to Ex-
ample 10.34 showing a resonance.

Combining this with the inverse transform of the second term of
Y(s), the solution to the initial value problem is

y(t) = −1
3

t cos 3t +
1
9

sin 3t + cos 3t.

Note that the amplitude of the solution will grow in time from the first
term. You can see this in Figure 10.40. This is known as a resonance.

Example 10.35. Find L−1[ 6
(s2+9)2 ] using partial fraction decomposi-

tion.
If we look at Table 10.2, we see that the Laplace transform pairs

with the denominator (s2 + ω2)2 are

L[t sin ωt] =
2ωs

(s2 + ω2)2 ,

and

L[t cos ωt] =
s2 −ω2

(s2 + ω2)2 .

So, we might consider rewriting a partial fraction decomposition as

6
(s2 + 9)2 =

A6s
(s2 + 9)2 +

B(s2 − 9)
(s2 + 9)2 +

Cs + D
s2 + 9

.

Combining the terms on the right over a common denominator, we
find

6 = 6As + B(s2 − 9) + (Cs + D)(s2 + 9).

Collecting like powers of s, we have

Cs3 + (D + B)s2 + 6As + (D− B) = 6.

Therefore, C = 0, A = 0, D + B = 0, and D− B = 2
3 . Solving the last

two equations, we find D = −B = 1
3 .

Using these results, we find

6
(s2 + 9)2 = −1

3
(s2 − 9)
(s2 + 9)2 +

1
3

1
s2 + 9

.

This is the result we had obtained in the last example using the Con-
volution Theorem.

10.10 The Inverse Laplace Transform

Until this point we have seen that the inverse Laplace transform can be
found by making use of Laplace transform tables and properties of Laplace
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transforms. This is typically the way Laplace transforms are taught and
used in a differential equations course. One can do the same for Fourier
transforms. However, in the case of Fourier transforms we introduced an
inverse transform in the form of an integral. Does such an inverse integral
transform exist for the Laplace transform? Yes, it does! In this section we
will derive the inverse Laplace transform integral and show how it is used.

We begin by considering a causal function f (t) which vanishes for t < 0
and define the function g(t) = f (t)e−ct with c > 0. For g(t) absolutely
integrable,A function f (t) is said to be of exponen-

tial order if
∫ ∞

0 | f (t)|e
−ct dt < ∞

∫ ∞

−∞
|g(t)| dt =

∫ ∞

0
| f (t)|e−ct dt < ∞,

we can write the Fourier transform,

ĝ(ω) =
∫ ∞

−∞
g(t)eiωtdt =

∫ ∞

0
f (t)eiωt−ctdt

and the inverse Fourier transform,

g(t) = f (t)e−ct =
1

2π

∫ ∞

−∞
ĝ(ω)e−iωt dω.

Multiplying by ect and inserting ĝ(ω) into the integral for g(t), we find

f (t) =
1

2π

∫ ∞

−∞

∫ ∞

0
f (τ)e(iω−c)τdτe−(iω−c)t dω.

Letting s = c− iω (so dω = ids), we have

f (t) =
i

2π

∫ c−i∞

c+i∞

∫ ∞

0
f (τ)e−sτdτest ds.

Note that the inside integral is simply F(s). So, we have

f (t) =
1

2πi

∫ c+i∞

c−i∞
F(s)est ds. (10.123)

The integral in the last equation is the inverse Laplace transform, called
the Bromwich integral and is named after Thomas John I’Anson Bromwich
(1875-1929) . This inverse transform is not usually covered in differen-
tial equations courses because the integration takes place in the complex
plane. This integral is evaluated along a path in the complex plane called
the Bromwich contour. The typical way to compute this integral is to first
chose c so that all poles are to the left of the contour. This guarantees that
f (t) is of exponential type. The contour is closed a semicircle enclosing all
of the poles. One then relies on a generalization of Jordan’s lemma to the
second and third quadrants.9

9 Closing the contour to the left of the
contour can be reasoned in a manner
similar to what we saw in Jordan’s
Lemma. Write the exponential as est =
e(sR+isI )t = esR teisI t. The second factor is
an oscillating factor and the growth in
the exponential can only come from the
first factor. In order for the exponential
to decay as the radius of the semicircle
grows, sRt < 0. Since t > 0, we need
s < 0 which is done by closing the con-
tour to the left. If t < 0, then the contour
to the right would enclose no singulari-
ties and preserve the causality of f (t).

c + iR

c− iR

x

y

CR

-1 c

Figure 10.41: The contour used for ap-
plying the Bromwich integral to the
Laplace transform F(s) = 1

s(s+1) .

Example 10.36. Find the inverse Laplace transform of F(s) = 1
s(s+1) .

The integral we have to compute is

f (t) =
1

2πi

∫ c+i∞

c−i∞

est

s(s + 1)
ds.

This integral has poles at s = 0 and s = −1. The contour we will use
is shown in Figure 10.41. We enclose the contour with a semicircle
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to the left of the path in the complex s-plane. One has to verify that
the integral over the semicircle vanishes as the radius goes to infinity.
Assuming that we have done this, then the result is simply obtained
as 2πi times the sum of the residues. The residues in this case are:

Res
[

ezt

z(z + 1)
; z = 0

]
= lim

z→0

ezt

(z + 1)
= 1

and

Res
[

ezt

z(z + 1)
; z = −1

]
= lim

z→−1

ezt

z
= −e−t.

Therefore, we have

f (t) = 2πi
[

1
2πi

(1) +
1

2πi
(−e−t)

]
= 1− e−t.

We can verify this result using the Convolution Theorem or using a
partial fraction decomposition. The latter method is simplest. We note
that

1
s(s + 1)

=
1
s
− 1

s + 1
.

The first term leads to an inverse transform of 1 and the second term
gives e−t. So,

L−1
[

1
s
− 1

s + 1

]
= 1− e−t.

Thus, we have verified the result from doing contour integration.

Example 10.37. Find the inverse Laplace transform of F(s) = 1
s(1+es)

.
In this case, we need to compute

f (t) =
1

2πi

∫ c+i∞

c−i∞

est

s(1 + es)
ds.

This integral has poles at complex values of s such that 1 + es = 0, or
es = −1. Letting s = x + iy, we see that

es = ex+iy = ex(cos y + i sin y) = −1.

We see x = 0 and y satisfies cos y = −1 and sin y = 0. Therefore,
y = nπ for n an odd integer. Therefore, the integrand has an infinite
number of simple poles at s = nπi, n = ±1,±3, . . . . It also has a
simple pole at s = 0.

c + iR

c− iR
−7π

−5π

−3π

3π

5π

7π

π

−π
x

y

CR

c

Figure 10.42: The contour used for ap-
plying the Bromwich integral to the
Laplace transform F(s) = 1

1+es .

In Figure 10.42 we indicate the poles. We need to compute the
resides at each pole. At s = nπi we have

Res
[

est

s(1 + es)
; s = nπi

]
= lim

s→nπi
(s− nπi)

est

s(1 + es)

= lim
s→nπi

est

ses

= − enπit

nπi
, n odd. (10.124)
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At s = 0, the residue is

Res
[

est

s(1 + es)
; s = 0

]
= lim

s→0

est

1 + es =
1
2

.

Summing the residues and noting the exponentials for ±n can be
combined to form sine functions, we arrive at the inverse transform.

f (t) =
1
2
− ∑

n odd

enπit

nπi

=
1
2
− 2

∞

∑
k=1

sin (2k− 1)πt
(2k− 1)π

. (10.125)

Figure 10.43: Plot of the square wave re-
sult as the inverse Laplace transform of
F(s) = 1

s(1+es with 50 terms.

The series in this example might look familiar. It is a Fourier sine
series with odd harmonics whose amplitudes decay like 1/n. It is a
vertically shifted square wave. In fact, we had computed the Laplace
transform of a general square wave in Example 10.30.

In that example we found

L
[

∞

∑
n=0

[H(t− 2na)− H(t− (2n + 1)a)]

]
=

1− e−as

s(1− e−2as)

=
1

s(1 + e−as)
. (10.126)

In this example, one can show that

f (t) =
∞

∑
n=0

[H(t− 2n + 1)− H(t− 2n)].

The reader should verify that this result is indeed the square wave
shown in Figure 10.43.

10.11 Transforms and Partial Differential Equations

As another application of the transforms, we will see that we
can use transforms to solve some linear partial differential equations. We
will first solve the one dimensional heat equation and the two dimensional
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Laplace equations using Fourier transforms. The transforms of the partial
differential equations lead to ordinary differential equations which are eas-
ier to solve. The final solutions are then obtained using inverse transforms.

We could go further by applying a Fourier transform in space and a
Laplace transform in time to convert the heat equation into an algebraic
equation. We will also show that we can use a finite sine transform to
solve nonhomogeneous problems on finite intervals. Along the way we will
identify several Green’s functions.

10.11.1 Fourier Transform and the Heat Equation

We will first consider the solution of the heat equation on
an infinite interval using Fourier transforms. The basic scheme has been
discussed earlier and is outlined in Figure 10.44.

u(x, 0)

ut = αuxx

u(x, t)

û(k, 0)

ût = −αk2û

û(k, t)

Fourier Transform

Inverse Fourier Transform

Figure 10.44: Using Fourier transforms
to solve a linear partial differential equa-
tion.

Consider the heat equation on the infinite line,

ut = αuxx, −∞ < x < ∞, t > 0.

u(x, 0) = f (x), −∞ < x < ∞. (10.127)

We can Fourier transform the heat equation using the Fourier transform of
u(x, t),

F [u(x, t)] = û(k, t) =
∫ ∞

−∞
u(x, t)eikx dx.

We need to transform the derivatives in the equation. First we note that

F [ut] =
∫ ∞

−∞

∂u(x, t)
∂t

eikx dx

=
∂

∂t

∫ ∞

−∞
u(x, t)eikx dx

=
∂û(k, t)

∂t
. (10.128)

Assuming that lim|x|→∞ u(x, t) = 0 and lim|x|→∞ ux(x, t) = 0, then we
also have that

F [uxx] =
∫ ∞

−∞

∂2u(x, t)
∂x2 eikx dx

= −k2û(k, t). (10.129)
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Therefore, the heat equation becomes

∂û(k, t)
∂t

= −αk2û(k, t).

This is a first order differential equation which is readily solved asThe transformed heat equation.

û(k, t) = A(k)e−αk2t,

where A(k) is an arbitrary function of k. The inverse Fourier transform is

u(x, t) =
1

2π

∫ ∞

−∞
û(k, t)e−ikx dk.

=
1

2π

∫ ∞

−∞
Â(k)e−αk2te−ikx dk. (10.130)

We can determine A(k) using the initial condition. Note that

F [u(x, 0)] = û(k, 0) =
∫ ∞

−∞
f (x)eikx dx.

But we also have from the solution,

u(x, 0) =
1

2π

∫ ∞

−∞
Â(k)e−ikx dk.

Comparing these two expressions for û(k, 0), we see that

A(k) = F [ f (x)].

We note that û(k, t) is given by the product of two Fourier transforms,
û(k, t) = A(k)e−αk2t. So, by the Convolution Theorem, we expect that u(x, t)
is the convolution of the inverse transforms,

u(x, t) = ( f ∗ g)(x, t) =
1

2π

∫ ∞

−∞
f (ξ, t)g(x− ξ, t) dξ,

where
g(x, t) = F−1[e−αk2t].

In order to determine g(x, t), we need only recall example 10.5. In that
example we saw that the Fourier transform of a Gaussian is a Gaussian.
Namely, we found that

F [e−ax2/2] =

√
2π

a
e−k2/2a,

or,

F−1[

√
2π

a
e−k2/2a] = e−ax2/2.

Applying this to the current problem, we have

g(x) = F−1[e−αk2t] =

√
π

αt
e−x2/4t.

Finally, we can write down the solution to the problem:

u(x, t) = ( f ∗ g)(x, t) =
∫ ∞

−∞
f (ξ, t)

e−(x−ξ)2/4t
√

4παt
dξ,



integral transforms 441

The function in the integrand,

K(x, t) =
e−x2/4t
√

4παt

is called the heat kernel. K(x, t) is called the heat kernel.

10.11.2 Laplace’s Equation on the Half Plane

We consider a steady state solution in two dimensions. In particular,
we look for the steady state solution, u(x, y), satisfying the two-dimensional
Laplace equation on a semi-infinite slab with given boundary conditions as
shown in Figure 10.45. The boundary value problem is given as

uxx + uyy = 0, −∞ < x < ∞, y > 0,

u(x, 0) = f (x), −∞ < x < ∞

lim
y→∞

u(x, y) = 0, lim
|x|→∞

u(x, y) = 0. (10.131)
x

y

∇2u = 0

u(x, 0) = f (x)

Figure 10.45: This is the domain
for a semi-infinite slab with boundary
value u(x, 0) = f (x) and governed by
Laplace’s equation.

This problem can be solved using a Fourier transform of u(x, y) with
respect to x. The transform scheme for doing this is shown in Figure 10.46.
We begin by defining the Fourier transform

û(k, y) = F [u] =
∫ ∞

−∞
u(x, y)eikx dx.

We can transform Laplace’s equation. We first note from the properties
of Fourier transforms that

F
[

∂2u
∂x2

]
= −k2û(k, y),

if lim|x|→∞ u(x, y) = 0 and lim|x|→∞ ux(x, y) = 0. Also,

F
[

∂2u
∂y2

]
=

∂2û(k, y)
∂y2 .

Thus, the transform of Laplace’s equation gives ûyy = k2û.

u(x, 0)

uxx + uyy = 0

u(x, y)

û(k, 0)

ûyy = k2û

û(k, y)

Fourier Transform

Inverse Fourier Transform

Figure 10.46: The transform scheme
used to convert Laplace’s equation to an
ordinary differential equation which is
easier to solve.

This is a simple ordinary differential equation. We can solve this equation
using the boundary conditions. The general solution is The transformed Laplace equation.
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û(k, y) = a(k)eky + b(k)e−ky.

Since limy→∞ u(x, y) = 0 and k can be positive or negative, we have that
û(k, y) = a(k)e−|k|y. The coefficient a(k) can be determined using the re-
maining boundary condition, u(x, 0) = f (x). We find that a(k) = f̂ (k) since

a(k) = û(k, 0) =
∫ ∞

−∞
u(x, 0)eikx dx =

∫ ∞

−∞
f (x)eikx dx = f̂ (k).

We have found that û(k, y) = f̂ (k)e−|k|y. We can obtain the solution using
the inverse Fourier transform,

u(x, t) = F−1[ f̂ (k)e−|k|y].

We note that this is a product of Fourier transforms and use the Convolution
Theorem for Fourier transforms. Namely, we have that a(k) = F [ f ] and
e−|k|y = F [g] for g(x, y) = 2y

x2+y2 . This last result is essentially proven in
Problem 6.

Then, the Convolution Theorem gives the solution

u(x, y) =
1

2π

∫ ∞

−∞
f (ξ)g(x− ξ) dξ

=
1

2π

∫ ∞

−∞
f (ξ)

2y
(x− ξ)2 + y2 dξ. (10.132)

We note for future use, that this solution is in the form

u(x, y) =
∫ ∞

−∞
f (ξ)G(x, ξ; y, 0) dξ,

where
G(x, ξ; y, 0) =

2y
π((x− ξ)2 + y2)

is the Green’s function for this problem.The Green’s function for the Laplace
equation.

10.11.3 Heat Equation on Infinite Interval, Revisited

We will reconsider the initial value problem for the heat equation
on an infinite interval,

ut = uxx, −∞ < x < ∞, t > 0,

u(x, 0) = f (x), −∞ < x < ∞. (10.133)

We can apply both a Fourier and a Laplace transform to convert this to an
algebraic problem. The general solution will then be written in terms of an
initial value Green’s function as

u(x, t) =
∫ ∞

−∞
G(x, t; ξ, 0) f (ξ) dξ.

For the time dependence we can use the Laplace transform and for the
spatial dependence we use the Fourier transform. These combined trans-
forms lead us to define

û(k, s) = F [L[u]] =
∫ ∞

−∞

∫ ∞

0
u(x, t)e−steikx dtdx.
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Applying this to the terms in the heat equation, we have

F [L[ut]] = sû(k, s)−F [u(x, 0)]

= sû(k, s)− f̂ (k)

F [L[uxx]] = −k2û(k, s). (10.134)

Here we have assumed that

lim
t→∞

u(x, t)e−st = 0, lim
|x|→∞

u(x, t) = 0, lim
|x|→∞

ux(x, t) = 0.

Therefore, the heat equation can be turned into an algebraic equation for
the transformed solution,

(s + k2)û(k, s) = f̂ (k),

or

û(k, s) =
f̂ (k)

s + k2 .

The transformed heat equation.

The solution to the heat equation is obtained using the inverse transforms
for both the Fourier and Laplace transform. Thus, we have

u(x, t) = F−1[L−1[û]]

=
1

2π

∫ ∞

−∞

(
1

2πi

∫ c+∞

c−i∞

f̂ (k)
s + k2 est ds

)
e−ikx dk. (10.135)

Since the inside integral has a simple pole at s = −k2, we can compute
the Bromwich integral by choosing c > −k2. Thus,

1
2πi

∫ c+∞

c−i∞

f̂ (k)
s + k2 est ds = Res

[
f̂ (k)

s + k2 est; s = −k2

]
= e−k2t f̂ (k).

Inserting this result into the solution, we have

u(x, t) = F−1[L−1[û]]

=
1

2π

∫ ∞

−∞
f̂ (k)e−k2te−ikx dk. (10.136)

This solution is of the form

u(x, t) = F−1[ f̂ ĝ]

for ĝ(k) = e−k2t. So, by the Convolution Theorem for Fourier transforms,the
solution is a convolution,

u(x, t) =
∫ ∞

−∞
f (ξ)g(x− ξ) dξ.

All we need is the inverse transform of ĝ(k).
We note that ĝ(k) = e−k2t is a Gaussian. Since the Fourier transform of a

Gaussian is a Gaussian, we need only recall Example 10.5,

F [e−ax2/2] =

√
2π

a
e−k2/2a.
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Setting a = 1/2t, this becomes

F [e−x2/4t] =
√

4πte−k2t.

So,

g(x) = F−1[e−k2t] =
e−x2/4t
√

4πt
.

Inserting g(x) into the solution, we have

u(x, t) =
1√
4πt

∫ ∞

−∞
f (ξ)e−(x−ξ)2/4t dξ

=
∫ ∞

−∞
G(x, t; ξ, 0) f (ξ) dξ. (10.137)

Here we have identified the initial value Green’s function

G(x, t; ξ, 0) =
1√
4πt

e−(x−ξ)2/4t.

The initial value Green’s function for the
heat equation.

10.11.4 Nonhomogeneous Heat Equation

We now consider the nonhomogeneous heat equation with homo-
geneous boundary conditions defined on a finite interval.

ut − kuxx = h(x, t), 0 ≤ x ≤ L, t > 0.

u(0, t) = 0, u(L, t) = 0, t > 0,

u(x, 0) = f (x), 0 ≤ x ≤ . (10.138)

We know that when h(x, t) ≡ 0 the solution takes the form

u(x, t) =
∞

∑
n=1

bn sin
nπx

L
.

So, when h(x, t) 6= 0, we might assume that the solution takes the form

u(x, t) =
∞

∑
n=1

bn(t) sin
nπx

L

where the bn’s are the finite Fourier sine transform of the desired solution,

bn(t) = Fs[u] =
2
L

∫ L

0
u(x, t) sin

nπx
L

dx

Note that the finite Fourier sine transform is essentially the Fourier sine
transform which we encountered in Section 2.4.

The idea behind using the finite Fourier Sine Transform is to solve the
given heat equation by transforming the heat equation to a simpler equation
for the transform, bn(t), solve for bn(t), and then do an inverse transform,
i.e., insert the bn(t)’s back into the series representation. This is depicted
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u(x, 0)

ut − uxx = h(x, t)

u(x, t)

A(k, 0)

dbn
dt + ω2

nbb = Bn(t)

A(k, t)

Finite Fourier Sine Transform

Inverse Finite Fourier Sine Transform

Figure 10.47: Using finite Fourier trans-
forms to solve the heat equation by solv-
ing an ODE instead of a PDE.

in Figure 10.47. Note that we had explored similar diagram earlier when
discussing the use of transforms to solve differential equations.

First, we need to transform the partial differential equation. The finite
transforms of the derivative terms are given by

Fs[ut] =
2
L

∫ L

0

∂u
∂t

(x, t) sin
nπx

L
dx

=
d
dt

(
2
L

∫ L

0
u(x, t) sin

nπx
L

dx
)

=
dbn

dt
. (10.139)

Fs[uxx] =
2
L

∫ L

0

∂2u
∂x2 (x, t) sin

nπx
L

dx

=
[
ux sin

nπx
L

]L

0
−
(nπ

L

) 2
L

∫ L

0

∂u
∂x

(x, t) cos
nπx

L
dx

= −
[nπ

L
u cos

nπx
L

]L

0
−
(nπ

L

)2 2
L

∫ L

0
u(x, t) sin

nπx
L

dx

=
nπ

L
[u(0, t)− u(L, 0) cos nπ]−

(nπ

L

)2
b2

n

= −ω2
nb2

n, (10.140)

where ωn = nπ
L .

Furthermore, we define

Hn(t) = Fs[h] =
2
L

∫ L

0
h(x, t) sin

nπx
L

dx.

Then, the heat equation is transformed to

dbn

dt
+ ω2

nbn = Hn(t), n = 1, 2, 3, . . . .

This is a simple linear first order differential equation. We can supple-
ment this equation with the initial condition

bn(0) =
2
L

∫ L

0
u(x, 0) sin

nπx
L

dx.

The differential equation for bn is easily solved using the integrating factor,
µ(t) = eω2

nt. Thus,
d
dt

(
eω2

ntbn(t)
)
= Hn(t)eω2

nt
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and the solution is

bn(t) = bn(0)e−ω2
nt +

∫ t

0
Hn(τ)e−ω2

n(t−τ) dτ.

The final step is to insert these coefficients (finite Fourier sine transform)
into the series expansion (inverse finite Fourier sine transform) for u(x, t).
The result is

u(x, t) =
∞

∑
n=1

bn(0)e−ω2
nt sin

nπx
L

+
∞

∑
n=1

[∫ t

0
Hn(τ)e−ω2

n(t−τ) dτ

]
sin

nπx
L

.

This solution can be written in a more compact form in order to identify
the Green’s function. We insert the expressions for bn(0) and Hn(t) in terms
of the initial profile and source term and interchange sums and integrals.
This leads to

u(x, t) =
∞

∑
n=1

(
2
L

∫ L

0
u(ξ, 0) sin

nπξ

L
dξ

)
e−ω2

nt sin
nπx

L

+
∞

∑
n=1

[∫ t

0

(
2
L

∫ L

0
h(ξ, τ) sin

nπξ

L
dξ

)
e−ω2

n(t−τ) dτ

]
sin

nπx
L

=
∫ L

0
u(ξ, 0)

[
2
L

∞

∑
n=1

sin
nπx

L
sin

nπξ

L
e−ω2

nt

]
dξ

+
∫ t

0

∫ L

0
h(ξ, τ)

[
2
L

∞

∑
n=1

sin
nπx

L
sin

nπξ

L
e−ω2

n(t−τ)

]

=
∫ L

0
u(ξ, 0)G(x, ξ; t, 0)dξ +

∫ t

0

∫ L

0
h(ξ, τ)G(x, ξ; t, τ) dξdτ.

(10.141)

Here we have defined the Green’s function

G(x, ξ; t, τ) =
2
L

∞

∑
n=1

sin
nπx

L
sin

nπξ

L
e−ω2

n(t−τ).

We note that G(x, ξ; t, 0) gives the initial value Green’s function.
Note that at t = τ,

G(x, ξ; t, t) =
2
L

∞

∑
n=1

sin
nπx

L
sin

nπξ

L
.

This is actually the series representation of the Dirac delta function. The
Fourier sine transform of the delta function is

Fs[δ(x− ξ)] =
2
L

∫ L

0
δ(x− ξ) sin

nπx
L

dx =
2
L

sin
nπξ

L
.

Then, the representation becomes

δ(x− ξ) =
2
L

∞

∑
n=1

sin
nπx

L
sin

nπξ

L
.

Also, we note that
∂G
∂t

= −ω2
nG
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∂2G
∂x2 = −

(nπ

L

)2
G.

Therefore, Gt = Gxx at least for τ 6= t and ξ 6= x.
We can modify this problem by adding nonhomogeneous boundary con-

ditions.

ut − kuxx = h(x, t), 0 ≤ x ≤ L, t > 0,

u(0, t) = A, u(L, t) = B, t > 0,

u(x, 0) = f (x), 0 ≤ x ≤ L. (10.142)

One way to treat these conditions is to assume u(x, t) = w(x)+ v(x, t) where
vt − kvxx = h(x, t) and wxx = 0. Then, u(x, t) = w(x) + v(x, t) satisfies the
original nonhomogeneous heat equation.

If v(x, t) satisfies v(0, t) = v(L, t) = 0 and w(x) satisfies w(0) = A and
w(L) = B, then u(0, t) = w(0) + v(0, t) = A u(L, t) = w(L) + v(L, t) = B

Finally, we note that

v(x, 0) = u(x, 0)− w(x) = f (x)− w(x).

Therefore, u(x, t) = w(x) + v(x, t) satisfies the original problem if

vt − kvxx = h(x, t), 0 ≤ x ≤ L, t > 0,

v(0, t) = 0, v(L, t) = 0, t > 0,

v(x, 0) = f (x)− w(x), 0 ≤ x ≤ L. (10.143)

and

wxx = 0, 0 ≤ x ≤ L,

w(0) = A, w(L) = B. (10.144)

We can solve the last problem to obtain w(x) = A + B−A
L x. The solution

to the problem for v(x, t) is simply the problem we had solved already in
terms of Green’s functions with the new initial condition, f (x)− A− B−A

L x.

10.11.5 Solution of the 3D Poisson Equation

We recall from electrostatics that the gradient of the elec-
tric potential gives the electric field, E = −∇φ. However, we also have
from Gauss’ Law for electric fields ∇ · E = ρ

ε0
, where ρ(r) is the charge dis-

tribution at position r. Combining these equations, we arrive at Poisson’s
equation for the electric potential, Poisson’s equation for the electric poten-

tial.

∇2φ = − ρ

ε0
.

We note that Poisson’s equation also arises in Newton’s theory of gravitation
for the gravitational potential in the form ∇2φ = −4πGρ where ρ is the
matter density. Poisson’s equation for the gravitational

potential.
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We consider Poisson’s equation in the form

∇2φ(r) = −4π f (r)

for r defined throughout all space. We will seek a solution for the potential
function using a three dimensional Fourier transform. In the electrostatic
problem f = ρ(r)/4πε0 and the gravitational problem has f = Gρ(r)

The Fourier transform can be generalized to three dimensions as

φ̂(k) =
∫

V
φ(r)eik·r d3r,

where the integration is over all space, V, d3r = dxdydz, and k is a three di-
mensional wavenumber, k = kxi + kyj + kzk. The inverse Fourier transform
can then be written as

φ(r) =
1

(2π)3

∫
Vk

φ̂(k)e−ik·r d3k,

where d3k = dkxdkydkz and Vk is all of k-space.Three dimensional Fourier transform.

The Fourier transform of the Laplacian follows from computing Fourier
transforms of any derivatives that are present. Assuming that φ and its
gradient vanish for large distances, then

F [∇2φ] = −(k2
x + k2

y + k2
z)φ̂(k).

Defining k2 = k2
x + k2

y + k2
z, then Poisson’s equation becomes the algebraic

equation
k2φ̂(k) = 4π f̂ (k).

Solving for φ̂(k), we have

φ(k) =
4π

k2 f̂ (k).

The solution to Poisson’s equation is then determined from the inverse
Fourier transform,

φ(r) =
4π

(2π)3

∫
Vk

f̂ (k)
e−ik·r

k2 d3k. (10.145)

First we will consider an example of a point charge (or mass in the grav-
itational case) at the origin. We will set f (r) = f0δ3(r) in order to represent
a point source. For a unit point charge, f0 = 1/4πε0.The three dimensional Dirac delta func-

tion, δ3(r− r0). Here we have introduced the three dimensional Dirac delta function
which, like the one dimensional case, vanishes outside the origin and satis-
fies a unit volume condition, ∫

V
δ3(r) d3r = 1.

Also, there is a sifting property, which takes the form∫
V

δ3(r− r0) f (r) d3r = f (r0).
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In Cartesian coordinates,

δ3(r) = δ(x)δ(y)δ(z),∫
V

δ3(r) d3r =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
δ(x)δ(y)δ(z) dxdydz = 1,

and∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
δ(x− x0)δ(y− y0)δ(z− z0) f (x, y, z) dxdydz = f (x0, y0, z0).

One can define similar delta functions operating in two dimensions and n
dimensions.

We can also transform the Cartesian form into curvilinear coordinates.
From Section 6.9 we have that the volume element in curvilinear coordinates
is

d3r = dxdydz = h1h2h3du1du2du3,

where .
This gives ∫

V
δ3(r) d3r =

∫
V

δ3(r) h1h2h3du1du2du3 = 1.

Therefore,

δ3(r) =
δ(u1)∣∣ ∂r

∂u1

∣∣ δ(u2)∣∣ ∂r
∂u2

∣∣ δ(u3)∣∣ ∂r
∂u2

∣∣
=

1
h1h2h3

δ(u1)δ(u2)δ(u3). (10.146)

So, for cylindrical coordinates,

δ3(r) =
1
r

δ(r)δ(θ)δ(z).

Example 10.38. Find the solution of Poisson’s equation for a point
source of the form f (r) = f0δ3(r).

The solution is found by inserting the Fourier transform of this
source into Equation (10.145) and carrying out the integration. The
transform of f (r) is found as

f̂ (k) =
∫

V
f0δ3(r)eik·r d3r = f0.

Inserting f̂ (k) into the inverse transform in Equation (10.145) and
carrying out the integration using spherical coordinates in k-space, we
find

φ(r) =
4π

(2π)3

∫
Vk

f0
e−ik·r

k2 d3k

=
f0

2π2

∫ 2π

0

∫ π

0

∫ ∞

0

e−ikx cos θ

k2 k2 sin θ dkdθdφ

=
f0

π

∫ π

0

∫ ∞

0
e−ikx cos θ sin θ dkdθ

=
f0

π

∫ ∞

0

∫ 1

−1
e−ikxy dkdy, y = cos θ,

=
2 f0

πr

∫ ∞

0

sin z
z

dz =
f0

r
. (10.147)
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If the last example is applied to a unit point charge, then f0 = 1/4πε0.
So, the electric potential outside a unit point charge located at the origin
becomes

φ(r) =
1

4πε0r
.

This is the form familiar from introductory physics.
Also, by setting f0 = 1, we have also shown in the last example that

∇2
(

1
r

)
= −4πδ3(r).

Since ∇
(

1
r

)
= − r

r3 , then we have also shown that

∇ ·
( r

r3

)
= 4πδ3(r).

Problems

1. In this problem you will show that the sequence of functions

fn(x) =
n
π

(
1

1 + n2x2

)
approaches δ(x) as n→ ∞. Use the following to support your argument:

a. Show that limn→∞ fn(x) = 0 for x 6= 0.

b. Show that the area under each function is one.

2. Verify that the sequence of functions { fn(x)}∞
n=1, defined by fn(x) =

n
2 e−n|x|, approaches a delta function.

3. Evaluate the following integrals:

a.
∫ π

0 sin xδ
(
x− π

2
)

dx.

b.
∫ ∞
−∞ δ

( x−5
3 e2x) (3x2 − 7x + 2

)
dx.

c.
∫ π

0 x2δ
(
x + π

2
)

dx.

d.
∫ ∞

0 e−2xδ(x2 − 5x + 6) dx. [See Problem 4.]

e.
∫ ∞
−∞(x2 − 2x + 3)δ(x2 − 9) dx. [See Problem 4.]

4. For the case that a function has multiple roots, f (xi) = 0, i = 1, 2, . . . , it
can be shown that

δ( f (x)) =
n

∑
i=1

δ(x− xi)

| f ′(xi)|
.

Use this result to evaluate
∫ ∞
−∞ δ(x2 − 5x− 6)(3x2 − 7x + 2) dx.

5. Find a Fourier series representation of the Dirac delta function, δ(x), on
[−L, L].

6. For a > 0, find the Fourier transform, f̂ (k), of f (x) = e−a|x|.

7. Use the result from the last problem plus properties of the Fourier trans-
form to find the Fourier transform, of f (x) = x2e−a|x| for a > 0.
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8. Find the Fourier transform, f̂ (k), of f (x) = e−2x2+x.

9. Prove the second shift property in the form

F
[
eiβx f (x)

]
= f̂ (k + β).

10. A damped harmonic oscillator is given by

f (t) =

{
Ae−αteiω0t, t ≥ 0,

0, t < 0.

.

a. Find f̂ (ω) and

b. the frequency distribution | f̂ (ω)|2.

c. Sketch the frequency distribution.

11. Show that the convolution operation is associative: ( f ∗ (g ∗ h))(t) =

(( f ∗ g) ∗ h)(t).

12. In this problem you will directly compute the convolution of two Gaus-
sian functions in two steps.

a. Use completing the square to evaluate∫ ∞

−∞
e−αt2+βt dt.

b. Use the result from part a to directly compute the convolution in
example 10.16:

( f ∗ g)(x) = e−bx2
∫ ∞

−∞
e−(a+b)t2+2bxt dt.

13. You will compute the (Fourier) convolution of two box functions of the
same width. Recall the box function is given by

fa(x) =

{
1, |x| ≤ a
0, |x| > a.

Consider ( fa ∗ fa)(x) for different intervals of x. A few preliminary sketches
would help. In Figure 10.48 the factors in the convolution integrand are
show for one value of x. The integrand is the product of the first two func-
tions. The convolution at x is the area of the overlap in the third figure.
Think about how these pictures change as you vary x. Plot the resulting
areas as a function of x. This is the graph of the desired convolution.

14. Define the integrals In =
∫ ∞
−∞ x2ne−x2

dx. Noting that I0 =
√

π,

a. Find a recursive relation between In and In−1.

b. Use this relation to determine I1, I2 and I3.

c. Find an expression in terms of n for In.
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Figure 10.48: Sketch used to compute the
convolution of the box function with it-
self. In the top figure is the box function.
The second figure shows the box shifted
by x. The last figure indicates the over-
lap of the functions.

fa(t)

b

a−a

fa(x− t)

b

a + x−a + x

fa(t) fa(x− t)

a−a

x

15. Find the Laplace transform of the following functions.

a. f (t) = 9t2 − 7.

b. f (t) = e5t−3.

c. f (t) = cos 7t.

d. f (t) = e4t sin 2t.

e. f (t) = e2t(t + cosh t).

f. f (t) = t2H(t− 1).

g. f (t) =

{
sin t, t < 4π,

sin t + cos t, t > 4π
.

h. f (t) =
∫ t

0 (t− u)2 sin u du.

i. f (t) = (t + 5)2 + te2t cos 3t and write the answer in the simplest
form.

16. Find the inverse Laplace transform of the following functions using the
properties of Laplace transforms and the table of Laplace transform pairs.

a. F(s) =
18
s3 +

7
s

.

b. F(s) =
1

s− 5
− 2

s2 + 4
.

c. F(s) =
s + 1
s2 + 1

.

d. F(s) =
3

s2 + 2s + 2
.

e. F(s) =
1

(s− 1)2 .
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f. F(s) =
e−3s

s2 − 1
.

g. F(s) =
1

s2 + 4s− 5
.

h. F(s) =
s + 3

s2 + 8s + 17
.

17. Compute the convolution ( f ∗ g)(t) (in the Laplace transform sense) and
its corresponding Laplace transform L[ f ∗ g] for the following functions:

a. f (t) = t2, g(t) = t3.

b. f (t) = t2, g(t) = cos 2t.

c. f (t) = 3t2 − 2t + 1, g(t) = e−3t.

d. f (t) = δ
(
t− π

4
)

, g(t) = sin 5t.

18. For the following problems draw the given function and find the Laplace
transform in closed form.

a. f (t) = 1 + ∑∞
n=1(−1)n H(t− n).

b. f (t) = ∑∞
n=0[H(t− 2n + 1)− H(t− 2n)].

c. f (t) = ∑∞
n=0(t− 2n)[H(t− 2n)−H(t− 2n− 1)]+ (2n+ 2− t)[H(t−

2n− 1)− H(t− 2n− 2)].

19. Use the convolution theorem to compute the inverse transform of the
following:

a. F(s) =
2

s2(s2 + 1)
.

b. F(s) =
e−3s

s2 .

c. F(s) =
1

s(s2 + 2s + 5)
.

20. Find the inverse Laplace transform two different ways: i) Use Tables.
ii) Use the Bromwich Integral.

a. F(s) =
1

s3(s + 4)2 .

b. F(s) =
1

s2 − 4s− 5
.

c. F(s) =
s + 3

s2 + 8s + 17
.

d. F(s) =
s + 1

(s− 2)2(s + 4)
.

e. F(s) =
s2 + 8s− 3

(s2 + 2s + 1)(s2 + 1)
.

21. Use Laplace transforms to solve the following initial value problems.
Where possible, describe the solution behavior in terms of oscillation and
decay.
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a. y′′ − 5y′ + 6y = 0, y(0) = 2, y′(0) = 0.

b. y′′ − y = te2t, y(0) = 0, y′(0) = 1.

c. y′′ + 4y = δ(t− 1), y(0) = 3, y′(0) = 0.

d. y′′ + 6y′ + 18y = 2H(π − t), y(0) = 0, y′(0) = 0.

22. Use Laplace transforms to convert the following system of differential
equations into an algebraic system and find the solution of the differential
equations.

x′′ = 3x− 6y, x(0) = 1, x′(0) = 0,

y′′ = x + y, y(0) = 0, y′(0) = 0.

23. Use Laplace transforms to convert the following nonhomogeneous sys-
tems of differential equations into an algebraic system and find the solutions
of the differential equations.

a.

x′ = 2x + 3y + 2 sin 2t, x(0) = 1,

y′ = −3x + 2y, y(0) = 0.

b.

x′ = −4x− y + e−t, x(0) = 2,

y′ = x− 2y + 2e−3t, y(0) = −1.

c.

x′ = x− y + 2 cos t, x(0) = 3,

y′ = x + y− 3 sin t, y(0) = 2.

−
+V(t)

L R
C

Figure 10.49: Series LRC Circuit.

24. Consider the series circuit in Problem 2.20 and in Figure 10.49 with
L = 1.00 H, R = 1.00× 102 Ω, C = 1.00× 10−4 F, and V0 = 1.00× 103 V.

a. Write the second order differential equation for this circuit.

b. Suppose that no charge is present and no current is flowing at
time t = 0 when V0 is applied. Use Laplace transforms to find the
current and the charge on the capacitor as functions of time.

b. Replace the battery with the alternating source V(t) = V0 sin 2π f t
with V0 = 1.00× 103 V and f = 150Hz. Again, suppose that no
charge is present and no current is flowing at time t = 0 when the
AC source is applied. Use Laplace transforms to find the current
and the charge on the capacitor as functions of time.

d. Plot your solutions and describe how the system behaves over
time.

25. Use Laplace transforms to sum the following series.
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a.
∞

∑
n=0

(−1)n

1 + 2n
.

b.
∞

∑
n=1

1
n(n + 3)

.

c.
∞

∑
n=1

(−1)n

n(n + 3)
.

d.
∞

∑
n=0

(−1)n

n2 − a2 .

e.
∞

∑
n=0

1
(2n + 1)2 − a2 .

f.
∞

∑
n=1

1
n

e−an.

26. Use Laplace transforms to prove

∞

∑
n=1

1
(n + a)(n + b)

=
1

b− a

∫ 1

0

ua − ub

1− u
du.

Use this result to evaluate the sums

a.
∞

∑
n=1

1
n(n + 1)

.

b.
∞

∑
n=1

1
(n + 2)(n + 3)

.

27. Do the following.

a. Find the first four nonvanishing terms of the Maclaurin series ex-

pansion of f (x) =
x

ex − 1
.

b. Use the result in part a. to determine the first four nonvanishing
Bernoulli numbers, Bn.

c. Use these results to compute ζ(2n) for n = 1, 2, 3, 4.

28. Given the following Laplace transforms, F(s), find the function f (t).
Note that in each case there are an infinite number of poles, resulting in an
infinite series representation.

a. F(s) =
1

s2(1 + e−s)
.

b. F(s) =
1

s sinh s
.

c. F(s) =
sinh s

s2 cosh s
.

d. F(s) =
sinh(β

√
sx)

s sinh(β
√

sL)
.

29. Consider the initial boundary value problem for the heat equation:

ut = 2uxx, 0 < t, 0 ≤ x ≤ 1,
u(x, 0) = x(1− x), 0 < x < 1,

u(0, t) = 0, t > 0,
u(1, t) = 0, t > 0.
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Use the finite transform method to solve this problem. Namely, assume
that the solution takes the form u(x, t) = ∑∞

n=1 bn(t) sin nπx and obtain an
ordinary differential equation for bn and solve for the bn’s for each n.

30. The telegraph equation is given by

utt + 2βut + αu = c2uxx, |x| < ∞, t > 0.

Use the Fourier transform to solve this problem for α = β2, satisfying the
initial conditions u(x, 0) = f (x) and ut(x, 0) = 0.

31. Use Fourier transforms to express the solution of the following problem
as a simple integral involving the initial condition.

ut = t2uxx, |x| < ∞, t > 0,

u(x, 0) = f (x), |x| < ∞.

32. Consider the linear first order problem

ut + ux + u = 0, x, t > 0

with the conditions u(0, t) = 0, t > 0, and u(x, 0) = sin x, x > 0.

a. Solve this problem using the Laplace transform U(x, s) = L[u(x, t)].

b. In Example 1.2 we used the Method of Characteristics to solve a
similar problem. By modifying that example, show that the general
solution is given by u(x, y) = G(y− x)e−x. Use this solution to find
the particular solution satisfying the given conditions. Show that
these solutions are the same.

33. The wave equation for a flat profile, semi-infinite string that is at rest is
given by

utt = uxx, 0 < x < ∞, t > 0,

u(x, 0) = 0, ut(x, 0) = 0.

Now, send a pulse down the string by imposing the time dependent bound-
ary condition (t > 0)

u(0, t) =

{
sin t, 0 ≤ t ≤ π

0, otherwise.

Assuming that the solution remains bounded, use Laplace transforms to
find the solution. For c = 1, plot the solution at several times to show the
evolution of the pulse.

34. Simultaneously apply the Fourier and Laplace transforms to solve the
inhomogeneous heat equation

ut − kuxx = f (x)δ(t), |x| < ∞, t > 0,
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with the boundary conditions u(x, 0) = 0, |x| < ∞, and lim|x|→0 u(x, t) = 0.
First obtain an algebraic equation for

Û(k, s) =
∫ ∞

0

∫ ∞

−∞
u(x, t)eikx−st dxdt.

Solve for Û(k, s), and invert the transform of the solution, using the Con-
volution Theorem for Fourier transforms, to obtain a solution in a form in
which one can identify a Green’s function.
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