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More Numerical Methods

If we walk in the woods, we must feed mosquitoes.- Ralph Waldo Emerson (1803-
1882), ‘Prudence’, Essays,

In this chapter we will build on Chapter 3 and also discuss other nu-
merical methods for solving partial differential equations. We begin with
the advection equation.

11.1 The Finite Difference Method for the Advection Equation

We recall the advection equation from Section 7.4.2. We will
develop a finite difference scheme for solving the linear advection equation
ut + cux = 0 given u(x, 0) = f (x). We approximate the derivatives using the
forward difference approximation.

∂u
∂t
≈ u(x, t + ∆t)− u(x, t)

∆t
. (11.1)

The domain of the solution is x ∈ [a, b] and t ≥ 0 and we seek approx-
imate values of u(x, t) at specific positions and times. We create a grid in
the xt-plane by first dividing the interval [a, b] into N subintervals of width
∆x = (b− a)/N. Then, the endpoints of the subintervals are given by

xi = a + i∆x, i = 0, 1, . . . , N.

Note that x0 = a and xN = b. Similarly, we take time steps of ∆t, at times

tj = j∆t, j = 0, 1, 2, . . . .

This gives a grid of points (xi, tj) in the domain as shown in Figure 11.1.
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Figure 11.1: The grid of points (xi , tj)
used to discretize the xt domain, where
xi = a + i∆x, i = 0, 1, . . . , N and tj =
j∆t, j = 0, 1, 2, . . . .

Next, we want to approximate the derivatives in the advection equation.
We recall the discussion in Chapter 3. Recall that the partial derivative, ut,
is defined by

∂u
∂t

= lim
∆t→∞

u(x, t + ∆t)− u(x, t)
∆t

.

Therefore, we can use the approximation

∂u
∂t
≈ u(x, t + ∆t)− u(x, t)

∆t
. (11.2)
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This is called a forward difference approximation.
Other approximations can be found using Taylor series expansions of

u(x, t) about x or t. For example, we know that

u(x, t + ∆t) = u(x, t) + ut(x, t)∆t +
1
2!

utt(x, t)∆t2 +
1
3!

uttt(x, t)∆t3 + · · · .
(11.3)

Then,

u(x, t + ∆t)− u(x, t)
∆t

= ut(x, t) +
1
2!

utt(x, t)∆t +
1
3!

uttt(x, t)∆t2 + · · · .
(11.4)

Then, we can write

ut(x, t) =
u(x, t + ∆t)− u(x, t)

∆t
+ O(∆t). (11.5)

Thus, the forward difference approximation in first order in ∆t.
Similarly, we have

u(x, t− ∆t) = u(x, t)− ut(x, t)∆t +
1
2!

utt(x, t)∆t2 − 1
3!

uttt(x, t)∆t3 + · · · .
(11.6)

ut(x, t) =
u(x, t)− u(x, t− ∆t)

∆t
+ O(∆t). (11.7)

This the backward difference approximation.
We can use both expansions to find

u(x, t + ∆t)− u(x, t− ∆t) = 2ut(x, t)∆t +
2
3!

uttt∆t3 + · · · .

Solving for ut, we arrive at the central difference approximation,

ut(x, t) =
u(x, t + ∆t)− u(x, t− ∆t)

2∆t
+ O(∆t2). (11.8)

Notice that it is second order in ∆t.
Now we turn to the advection equation, ut + cux = 0. We have a num-

ber of choices for how to approximate the derivatives. Let’s use forward
difference in space and time. Then,

u(x, t + ∆t)− u(x, t)
∆t

+ c
u(x + ∆x, t)− u(x, t)

∆x
= 0.
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Figure 11.2: Stencil for the scheme for
the advection equation in Equation 11.9.

At each grid point in the domain we seek an approximate solution to the
advection equation, ui,j ≈ u(xi, tj). So, we can rewrite the approximations

uj,n+1 − uj,n

∆t
+ c

uj+1,n − uj,n

∆x
.

This is an equation involving only three points, uj,n, uj+1,n, and uj,n+1. In
Figure 11.3 we show these points. This provides a stencil that we can use to
solve the advection equation. Notice that if we know the solution at the two
points at time tn, then we can approximate the solution uj,n+1. So, we solve
the scheme for

ui,j+1 ≈ ui,j + α
[
ui+1,j − 2ui,j + ui−1,j

]
, (11.9)
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where we have defined α = c∆t
∆x .

Next, we apply the initial condition, u(x, 0) = f (x). This provides us with
exact values along the x-axis. Name;y, we have

uj,0 = f (xj).

In Figure ??(a) we indicate that we know these values using red dots. Laying
the stencil on the far left of these dots and sliding to the right points to the
row t = ∆t and we place black dots where we can predict new solution
approximations.

Continuing this process results in knowing the solution at the indicated
points in Figure ??(b). Notice how the whole domain is not filled. This
means we need more data. One way to provide more data is to provide
boundary conditions. In Table 11.1 we provide MATLAB code for imple-
menting this scheme with fixed boundary conditions, u(0, t) = 0, u(b, t) = 0.
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Figure 11.3: Applying the stencil for ad-
vection equation in Equation ??. (a) The
solution is known initially (red dots) and
the stencil is used to find solutions at the
next time step (black dots). (b) Continu-
ing this process results in knowing the
solution at the indicated points.
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% First Order - Advection Backward Difference in Time

clear

% Specify grid

a=-5;

b=10;

Tmax=2;

Nx=50;

Nt=25;

dx=(b-a)/Nx;

dt=Tmax/Nt;

x=linspace(a,b,Nx);

c=2;

alpha=c*dt/dx;

% Initial profile

u0=exp(-(x-.5).^2);

u=zeros(Nx,Nt);

u(:,1)=u0;

plot(x,u0)

M(1)=getframe;

hold

for n=1:Nt-1;

for j=2:Nx

u(j,n+1)=(1-alpha)*u(j,n)+alpha*u(j-1,n);

end

u(1,n+1)=0;

plot(x,u(:,n+1))

M(n+1)=getframe;

end

hold

Table 11.1: Numerical solution of the lin-
ear advection equation using backward
difference in time and forward differ-
ence in space.
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