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Part I - Linear Equations

In class we first looked at numerically solving the linear advection equation,

ut + cux = 0, u(x, 0) = f(x),

using finite difference schemes. Applying forward differences in both space and
time, we obtained the scheme

uj,n+1 = uj,n − α(uj+1,n − uj,n),

uj,0 = f(xj), (1)

where α = c∆t
∆x . This scheme proved to be unconditionally unstable.

We then used a backward difference approximation in time to obtain

uj,n+1 = (1− α)uj,n + αuj−1,n,

uj,0 = f(xj), (2)

Prob. 1. A MATLAB implementation of this scheme is given in Table 1. Copy
this code into MATLAB and call the file advec1.m. Run the program to
make sure it runs and then change the number of time steps to determine
when the scheme becomes unstable. Record alpha. [Note, typing alpha
in the command window will give its value.] Also, you can play the save
movie by typing movie(M) in the command window.

Prob. 2. We had used fixed boundary conditions in the above, but periodic
boundary conditions (u(a, t) = u(b, t)) are sometimes employed. How
would you change the line u(1,n+1)=0; so as to have periodic boundary
conditions? Implement these conditions and discuss your observations.

Prob. 3. The Leapfrog scheme is given by

uj,n+1 = uj,n−1 − α(uj+1,n − uj−1,n)

Answer the following and carry out the scheme in MATLAB as indicated.

1. What type of approximations of the derivatives were used to obtain
this scheme?
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% First Order - Advection Backward Difference in Time

clear

% Specify grid

a=-5;

b=10;

Tmax=2;

Nx=50;

Nt=25;

dx=(b-a)/Nx;

dt=Tmax/Nt;

x=linspace(a,b,Nx);

c=2;

alpha=c*dt/dx;

% Initial profile

u0=exp(-(x-.5).^2);

u=zeros(Nx,Nt);

u(:,1)=u0;

plot(x,u0)

M(1)=getframe;

hold

for n=1:Nt-1;

for j=2:Nx

u(j,n+1)=(1-alpha)*u(j,n)+alpha*u(j-1,n);

end

u(1,n+1)=0;

plot(x,u(:,n+1))

M(n+1)=getframe;

end

hold

Table 1: Numerical solution of the linear advection equation using backward
difference in time and forward difference in space.
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2. What is α?

3. Determine the leading or truncation error terms.

4. Modify the code in Table 1 to implement the Leapfrog scheme. Change
the the number of time steps to determine if the scheme becomes un-
stable. The scheme takes the form

for j=2:Nx

u(j,n+1)=u(j,n-1)-alpha*(u(j+1,n) - u(j-1,n));

end

This scheme cannot be started using the initial condition alone. One
also needs to find the solution at t = ∆t. This can be accomplished
by using a previous scheme for one time step such as

for j=2:Nx

u(j,2)=u(j,1)-alpha*(u(j,1) - u(j-1,1));

end

u(1,2)=0;

Prob. 4. Consider the Linearized KdV equation,

ut + aux + uxxx = 0.

1. Create a scheme to solve the linearized KdV. Try a forward difference
in time and centered difference in space for the first derivatives and

uxxx ≈
uj+2,n − 2uj+1,n + 2uj−1,n − uj−2,n

2(∆x)3
.

2. Find the local truncation error for this scheme.

3. Find the stability criterion for this scheme.

4. Modify the MATLAB advection file to numerically solve the lin-
earized KdV using periodic boundary conditions.

Part II - KdV Solitons Solutions

We are now ready to tackle the nonlinear KdV equation. Zabusky and Kruskal
(1965, Phys. Rev. Lett. 15, 240) numerically investigated the KdV equation

ut + uux + δ2uxxx = 0

with initial condition u(x, 0) = cosπx, 0 ≤ x ≤ 2, and δ = 0.022. The initial
condition and emergence of solitons are shown in Figure 1. In this part of the
project you will take the ZK scheme and test it on several initial conditions.

It is well known that the KdV equation has soliton solutions of the form
u(x, t) = A sech2(kx − ωt − η0), where A = 2k2, ω = 4k3 and η0 is a con-
stant. Other methods have also been used to study. A recent analysis of sev-
eral schemes is given in Applying Explicit Schemes to the Korteweg-de Vries
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Figure 1: Zabusky and Kruskal demonstration of recurrence.

Equation by Masitah Shahrill, Maureen Siew Fang Chong, Hajah Norhakimah
Haji Mohd Nor. See www.ccsenet.org/journal/index.php/mas/article/

download/46132/24929. The Zabusky-Kruskal scheme is provided in Equation
(4.10) in that paper.

um+1
n = um−1

n − 1

3

∆t

∆x

(
umn+1 + umn + umn−1

) (
umn+1 − umn−1

)
− δ2∆t

(∆x)3

(
umn+2 − 2umn+1 + 2umn−1 − umn−2

)
, n = 0, 1, . . . , N. (3)

This is carried out using periodic boundary conditions.
Use the above scheme to answer the following:

a. Determine the local truncation error for this scheme.

b. Numerically solve the KdV equation using an initial condition of the form
u(x, 0) = A sech2(x), |x| ≤ 20, for A = 1.

c. Increase the amplitude of the initial condition and note what happens.
Can you see the development of two or three solitons?

d. Apply the scheme for the condition u(x, 0) = cosπx, 0 ≤ x ≤ 2 , and see
if you can find the behavior as shown in Figure 1.
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