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Prologue

“How can it be that mathematics, being after all a product of human thought inde-
pendent of experience, is so admirably adapted to the objects of reality?.” - Albert
Einstein (1879-1955)

Introduction

THIS SET OF NOTES IS BEING COMPILED for use in a two semester course
on mathematical methods for the solution of partial differential equations
typically taken by majors in mathematics, the physical sciences, and engi-
neering. Partial differential equations often arise in the study of problems
in applied mathematics, mathematical physics, physical oceanography, me-
teorology, engineering, and biology, economics, and just about everything
else. However, many of the key methods for studying such equations ex-
tend back to problems in physics and geometry. In this course we will
investigate analytical, graphical, and approximate solutions of some stan-
dard partial differential equations. We will study the theory, methods of
solution and applications of partial differential equations.

We will first introduce partial differential equations and a few models.
A PDE, for short, is an equation involving the derivatives of some unknown
multivariable function. It is a natural extenson of ordinary differential equa-
tions (ODEs), which are differential equations for an unknown function one
one variable. We will begin by classifying some of these equations.

While it is customary to begin the study of PDEs with the one dimen-
sional heat and wave equations, we will begin with first order PDEs and
then proceed to the other second order equations. This will allow for an un-
derstanding of characteristics and also open the door to the study of some
nonlinear equations related to some current research in the evolution of
wave equations.

There are different methods for solving partial differential and these will
be explored throughout the course. As we progress through the course, we
will introduce standard numerical methods since knowing how to numer-
ically solve differential equations can be useful in research. We will also
look into the standard solutions, including separation of variables, starting
in one dimension and then proceeding to higher dimensions. This naturally
leads to finding solutions as Fourier series and special functions, such as
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Legendre polynomials and Bessel functions.

The specific topics to be studied and approximate number of lectures

will include

First Semester: (26 lectures)

Introduction (1)

First Order PDEs (2)

Traveling Waves (1)

Shock and Rarefaction Waves (2)

Second Order PDEs (1)

1D Heat Equation (1)

1D Wave Equation - d’Alembert Solution (2)
Separation of Variables (1)

Fourier Series (4)

Equations in 2D - Laplace’s Equation, Vibrating Membranes (4)
Numerical Solutions (2)

Special Functions (3)

Sturm-Liouville Theory (2)
Second semester: (25 lectures)

Nonhomogeneous Equations (2)
Green'’s Functions - ODEs (2)
Green’s Functions - PDEs (2)
Complex Variables (4)

Fourier Transforms (3)
Nonlinear PDEs (2)

Other - numerical, conservation laws, symmetries (10)

An appendix is provided for reference, especially to basic calculus tech-

niques, differential equations, and (maybe later) linear algebra.
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1

First Order Partial Differential Equations

“The profound study of nature is the most fertile source of mathematical discover-
ies.” - Joseph Fourier (1768-1830)

1.1 Introduction

WE BEGIN OUR STUDY OF PARTIAL DIFFERENTIAL EQUATIONS with first
order partial differential equations. Before doing so, we need to define a few
terms.

Recall (see the appendix on differential equations) that an n-th order
ordinary differential equation is an equation for an unknown function y(x)
that expresses a relationship between the unknown function and its first n
derivatives. One could write this generally as

F(y™ (x),y" D (x),...,9/ (x),y(x),x) = 0. (11)

Here y(")(x) represents the nth derivative of y(x). Furthermore, and initial
value problem consists of the differential equation plus the values of the
first n — 1 derivatives at a particular value of the independent variable, say
X0

Yy (x0) = yac1, YD (x0) =yu—2, .., y(x0) = Y0 (1.2)

If conditions are instead provided at more than one value of the indepen-
dent variable, then we have a boundary value problem. .

If the unknown function is a function of several variables, then the deriva-
tives are partial derivatives and the resulting equation is a partial differen-
tial equation. Thus, if u = u(x,y,...), a general partial differential equation
might take the form

ou Ju o%u
> =0. (1.3)

F(x,y,...,u,ax,ay,...,axz,...

Since the notation can get cumbersome, there are different ways to write
the partial derivatives. First order derivatives could be written as
ou

g/ Uy, a){u/ Dxu-

n-th order ordinary differential equation

Initial value problem.
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Linear first order partial differential
equation.

Quasilinear first order partial differential
equation.

Semilinear first order partial differential
equation.

Second order partial derivatives could be written in the forms

%u
ﬁ/ uXX/ axxu/ Djzcu
o2u o%u
dxay  ayax s Oyt DyDiit

Note, we are assuming that u(x,y,...) has continuous partial derivatives.
Then, according to Clairaut’s Theorem (Alexis Claude Clairaut, 1713-1765) ,
mixed partial derivatives are the same.

Examples of some of the partial differential equation treated in this book
are shown in Table 2.1. However, being that the highest order derivatives in
these equation are of second order, these are second order partial differential
equations. In this chapter we will focus on first order partial differential
equations. Examples are given by

ur+u, = 0
ur+uu, = 0.

U + Ully u

Buy —2uy+u = x.

For function of two variables, which the above are examples, a general
first order partial differential equation for u = u(x,y) is given as

F(x,y,u,ux,uy) =0, (x,y)eDC R2. (1.4)

This equation is too general. So, restrictions can be placed on the form,
leading to a classification of first order equations. A linear first order partial
differential equation is of the form

a(x,y)ux +b(x,y)uy +c(x, y)u = f(x,y). (1.5)

Note that all of the coefficients are independent of u and its derivatives and
each term in linear in u, uy, or uy,.

We can relax the conditions on the coefficients a bit. Namely, we could as-
sume that the equation is linear only in u, and u,,. This gives the quasilinear
first order partial differential equation in the form

a(x,y,u)uy +b(x,y,u)uy = f(x,y,u). (1.6)

Note that the u-term was absorbed by f(x,y, u).
In between these two forms we have the semilinear first order partial
differential equation in the form

a(x,y)ux +b(x,y)uy = f(x,y,u). (1.7)

Here the left side of the equation is linear in u, uy and u,. However, the right
hand side can be nonlinear in u.

For the most part, we will introduce the Method of Characteristics for
solving quasilinear equations. But, let us first consider the simpler case of
linear first order constant coefficient partial differential equations.
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1.2 Linear Constant Coefficient Equations

LET’S CONSIDER THE LINEAR FIRST ORDER CONSTANT COEFFICIENT par-
tial differential equation

auy + buy +cu = f(x,y), (1.8)

for a, b, and ¢ constants with a2 + b?> > 0. We will consider how such equa-
tions might be solved. We do this by considering two cases, b = 0 and

b #0.

For the first case, b = 0, we have the equation
auy +cu = f.

We can view this as a first order linear (ordinary) differential equation with
y a parameter. Recall that the solution of such equations can be obtained
using an integrating factor. [See the discussion after Equation (B.7).] First
rewrite the equation as

c
ux—l—fu:z.
a a

Introducing the integrating factor

X c Cy
p) =exp( [ S de) =i,
the differential equation can be written as

(pu)x = g#-

Integrating this equation and solving for u(x,y), we have

putny) = o [ FEynE) e +3)
ePuny) = o [ FEyeitds+g(y)
uoy) = - [fEEtVdi gy o)

Here g(y) is an arbitrary function of y.
For the second case, b # 0, we have to solve the equation

auy +buy +cu = f.

It would help if we could find a transformation which would eliminate one
of the derivative terms reducing this problem to the previous case. That is
what we will do.

We first note that

auy +buy, = (ai+0bj) - (uxi + uyj)
= (ai+10bj)-Vu. (1.10)

3
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ai + bj

w=bx —ay

Figure 1.1: Coordinate systems for trans-
forming auy + buy, +cu = f into bv, +
cv = f using the transformation w =
bx —ayand z =y.

Recall from multivariable calculus that the last term is nothing but a direc-
tional derivative of u(x,y) in the direction ai + bj. [Actually, it is propor-
tional to the directional derivative if ai + bj is not a unit vector.]

Therefore, we seek to write the partial differential equation as involving a
derivative in the direction ai + bj but not in a directional orthogonal to this.
In Figure 1.1 we depict a new set of coordinates in which the w direction is
orthogonal to ai + bj.

We consider the transformation

w = bx—ay,

z = . (1.11)

We first note that this transformation is invertible,
1
x = (w +az),
y = z (1.12)

Next we consider how the derivative terms transform. Let u(x,y) =
v(w, z). Then, we have

auy +buy, = a%v(w,z) + baayv(w,z),

[, 2]
Jw dx  dz dx
Jdv ow  dv dz
|yt 5
= a[bvy +0-v;] + b[—avy, + v;]
= bo,. (1.13)

Therefore, the partial differential equation becomes

bu,+cvo=f (2(w+az),z) .

This is now in the same form as in the first case and can be solved using an
integrating factor.

Example 1.1. Find the general solution of the equation 3uy — 2uy +u = x.
First, we transform the equation into new coordinates.

w =bx —ay = —2x — 3y,
and z = y. The,

Uy —2uy = 3[—20yp +0-v;] —2[-3vy + v;]
= —20,. (1.14)

The new partial differential equation for v(w,z) is

v 1
_27 == = — = .
. +v=x 5 (w+3z)
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Rewriting this equation,

we identify the integrating factor

u(z) =exp [— /Z ;d{} = e %2,

Using this integrating factor, we can solve the differential equation for v(w, z).

% (e*Z/Zv) = %(w +3z)e7%/2,
V4
e ?0(w,z) = i / (w+30)e%%dg
= —%(w+6+3z)e_‘2/2+c(w)
v(w,z) = —%(w+6+32) + c(w)e*’?
u(x,y) = x—3+c(—2x—3y)e’/?

(1.15)

1.3 Quasilinear Equations: The Method of Characteristics

1.3.1  Geometric Interpretation

WE CONSIDER THE QUASILINEAR PARTIAL DIFFERENTIAL EQUATION in
two independent variables,

a(x,y,u)uy +b(x,y,u)uy —c(x,y,u) = 0. (1.16)
Let u = u(x,y) be a solution of this equation. Then,
fxyu) =u(xy) —u=0

describes the solution surface, or integral surface,
We recall from multivariable, or vector, calculus that the normal to the
integral surface is given by the gradient function,

Vf= (ux,uy, —1).

Now consider the vector of coefficients, v = (a,b,c) and the dot product
with the gradient above:

v-Vf =auy+bu, —c.

This is the left hand side of the partial differential equation. Therefore, for
the solution surface we have

v-Vf=0,

or v is perpendicular to V f. Since Vf is normal to the surface, v = (a,b,¢)
is tangent to the surface. Geometrically, v defines a direction field, called
the characteristic field. These are shown in Figure 1.2.

Integral surface.

The characteristic field.

5



6 PARTIAL DIFFERENTIAL EQUATIONS

1.3.2  Characteristics

WE SEEK THE FORMS OF THE CHARACTERISTIC CURVES such as the one
shown in Figure 1.2. Recall that one can parametrize space curves,

c(t) = (x(t),y(t), u(t)), te [h,ta].

The tangent to the curve is then

_ de(t) _ (dx dy du
vit) = =5 (dt’dt’dt)'

However, in the last section we saw that v(t) = (a,b,c) for the partial dif-

ferential equation a(x,y, u)uyx + b(x,y,u)uy — c(x,y,u) = 0. This gives the
parametric form of the characteristic curves as

dx dy . du
E_a'ﬂ_ 'E_C' (1.17)

Another form of these equations is found by relating the differentials, dx,
dy, du, to the coefficients in the differential equation. Since x = x(t) and

y = y(t), we have
dy _dy/dt b

dx  dx/dt  a

Similarly, we can show that

du ¢ du c

dx a’ dy b

All of these relations can be summarized in the form

_dx _dy _du

dt p b e

(1.18)

How do we use these characteristics to solve quasilinear partial differen-
tial equations? Consider the next example.

Example 1.2. Find the general solution: uy + uy —u = 0.
We first identify a = 1, b = 1, and ¢ = u. The relations between the differentials
is

1 1 u
We can pair the differentials in three ways:

dr _dy _du

d—y—l du du

=1, —_ = ],[, —_— =
dx dx dy
Only two of these relations are independent. We focus on the first pair.
The first equation gives the characteristic curves in the xy-plane. This equation
is easily solved to give
y=x+cq.

The second equation can be solved to give u = cpe*.
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The goal is to find the general solution to the differential equation. Since u =
u(x,y), the integration “constant” is not really a constant, but is constant with
respect to x. It is in fact an arbitrary constant function. In fact, we could view it
as a function of c1, the constant of integration in the first equation. Thus, we let
co = G(cq) for G and arbitrary function. Since ¢; = y — x, we can write the
general solution of the differential equation as

u(x,y) = G(y — x)e*.

Example 1.3. Solve the advection equation, u; + cuy = 0, for ¢ a constant, and
u=u(x,t),|x| <oo,t>0.
The characteristic equations are
dt  dx du

dT:TZTZF (1.19)

and the parametric equations are given by

dx du
P 0. (1.20)

These equations imply that
® uy = const. =cq.
® x = ct+ const. = ct+ cp.

As before, we can write ¢y as an arbitrary function of c;. However, before doing
s0, let’s replace c1 with the variable ¢ and then we have that

E=x—ct, ulxt)=f(&)=flx—ct)

where f is an arbitrary function. Furthermore, we see that u(x,t) = f(x — ct)
indicates that the solution is a wave moving in one direction in the shape of the
initial function, f(x). This is known as a traveling wave. A typical traveling wave
is shown in Figure 1.3.

Note that since u = u(x,t), we have

0 = up+cuy

ou dxdu
o Tarax
du(x(t),t

= (1.21)

This implies that u(x,t) = constant along the characteristics, ’fi—’t‘ =c.

As with ordinary differential equations, the general solution provides an
infinite number of solutions of the differential equation. If we want to pick
out a particular solution, we need to specify some side conditions. =~ We
investigate this by way of examples.

Example 1.4. Find solutions of uy + uy — u = 0 subject to u(x,0) = 1.

Traveling waves.

Figure 1.3: Depiction of a traveling wave.
u(x,t) = f(x) at t = 0 travels without
changing shape.

Side conditions.
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We found the general solution to the partial differential equation as u(x,y) =
G(y — x)e*. The side condition tells us that u = 1 along y = 0. This requires

1=u(x,0)=G(—x)e".
Thus, G(—x) = e~ *. Replacing x with —z, we find
G(z) = ¢

Thus, the side condition has allowed for the determination of the arbitrary function
G(y — x). Inserting this function, we have

u(x,y) =Gy —x)e* =e/ e =¢v.

Side conditions could be placed on other curves. For the general line,
y = mx +d, we have u(x,mx +d) = g(x) and for x = d, u(d,y) = g(y).
As we will see, it is possible that a given side condition may not yield a
solution. We will see that conditions have to be given on non-characteristic
curves in order to be useful.

Example 1.5. Find solutions of 3uy — 2uy +u = x for a) u(x,x) = x and b)
u(x,y) =00n3y+2x=1.

Before applying the side condition, we find the general solution of the partial
differential equation. Rewriting the differential equation in standard form, we have

Buy —2uy = x = u.

The characteristic equations are

dx_dl_ du

R (1.22)

These equations imply that

o —2dx =3dy

This implies that the characteristic curves (lines) are 2x + 3y = cy.

d 1

o =3 —u).
This is a linear first order differential equation, % + %u = %x. It can be solved
using the integrating factor,

u(x) =exp (; /x d§> = ¢*/3,

d w3\ _ 1 s
E(ue ) = e
l X
ue’3 = 5/ ZeS/3dE 4 ¢

= (x—=3)3 4
u(x,y) = x—3+ce 3. (1.23)
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As before, we write ¢y as an arbitrary function of c¢; = 2x + 3y. This gives the
general solution
u(x,y) = x — 3+ G(2x +3y)e /3.

Note that this is the same answer that we had found in Example 1.1
Now we can look at any side conditions and use them to determine particular
solutions by picking out specific G’s.
a u(x,x)=x
This states that u = x along the line y = x. Inserting this condition into the
general solution, we have

x=x -3+ G(5x)e 3,

or
G(5x) = 3¢*/3.

Letting z = 5x,
G(z) = 3¢*/15.

The particular solution satisfying this side condition is

u(x,y) = x—3+G(Q2x+3y)e 3
— x—3+ 38(2x+3y)/15efx/3
= x—3+43e¥ /5 (1.24)

This surface is shown in Figure 1.5.

In Figure 1.5 we superimpose the values of u(x,y) along the characteristic
curves. The characteristic curves are the red lines and the images of these
curves are the black lines. The side condition is indicated with the blue curve
drawn along the surface.

The values of u(x,y) are found from the side condition as follows. For x =
on the blue curve, we know that y = ¢ and u(g,&) = &. Now, the character-
istic lines are given by 2x + 3y = cy. The constant c; is found on the blue
curve from the point of intersection with one of the black characteristic lines.
For x =y = ¢, we have ¢y = 5¢. Then, the equation of the characteristic
line, which is red in Figure 1.5, is given by y = 1(5¢ — 2x).

Along these lines we need to find u(x,y) = x — 3 4 cpe™/3. First we have
to find cp. We have on the blue curve, that

¢ = u(Gg)
= fj—3+cze_§/3. (1.25)

Therefore, c; = 3¢%/3. Inserting this result into the expression for the solu-
tion, we have
u(x,y) = x —3+el&4/3,

So, for each ¢, one can draw a family of spacecurves
(x, %(5@ —2x),x =3+ e(.:x)/B)

yielding the integral surface.

Figure 1.4: Integral surface found in Ex-
ample 1.5.

Figure 1.5: Integral surface with side
condition and characteristics for Exam-

ple 1.5.
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Figure 1.6: The rate of change of Q be-
tween x = a2 and x = b depends on the
rates of flow through each end.

b u(x,y) =00n3y+2x=1.

For this condition, we have
0=x-3+G(1)e */3,

We note that G is not a function in this expression. We only have one value
for G. So, we cannot solve for G(x). Geometrically, this side condition corre-
sponds to one of the black curves in Figure 1.5.

1.4 Applications

1.4.1 Conservation Laws

THERE ARE MANY APPLICATIONS OF QUASILINEAR EQUATIONS, especially
in fluid dynamics. The advection equation is one such example and gener-
alizations of this example to nonlinear equations leads to some interesting
problems. These equations fall into a category of equations called conser-
vation laws. We will first discuss one-dimensional (in space) conservations
laws and then look at simple examples of nonlinear conservation laws.

Conservation laws are useful in modeling several systems. They can be
boiled down to determining the rate of change of some stuff, Q(f), in a
region, a < x < b, as depicted in Figure 1.6. The simples model is to think
of fluid flowing in one dimension, such as water flowing in a stream. Or,
it could be the transport of mass, such as a pollutant. One could think of
traffic flow down a straight road.

This is an example of a typical mixing problem. The rate of change of
Q(t) is given as

the rate of change of Q = Rate in — Rate Out + source term.

Here the “Rate in” is how much is flowing into the region in Figure 1.6 from
the x = a boundary. Similarly, the “Rate out” is how much is flowing into
the region from the x = b boundary. [Of course, this could be the other way,
but we can imagine for now that g is flowing from left to right.] We can
describe this flow in terms of the flux, ¢(x,t) over the ends of the region.
On the left side we have a gain of ¢(a, ) and on the right side of the region
there is a loss of ¢(b, t).

The source term would be some other means of adding or removing Q
from the region. In terms of fluid flow, there could be a source of fluid
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inside the region such as a faucet adding more water. Or, there could be a
drain letting water escape. We can denote this by the total source over the
interval, [ ab f(x,t)dx. Here f(x,t) is the source density.
In summary, the rate of change of Q(x, t) can be written as
aQ b
S =ela =9+ [ flxy)dx
Ja
We can write this in a slightly different form by noting that ¢(a,t) —
¢(b, 1) can be viewed as the evaluation of antiderivatives in the Fundamental
Theorem of Calculus. Namely, we can recall that

bog(x,t) .
A——a—dx_ﬂhﬂ—ﬁmm

The difference is not exactly in the order that we desire, but it is easy to see

that
d b ag(x, b
7? = _/a %dx—i—/ﬂ f(x,t)dx. (1.26)

This is the integral form of the conservation law.

We can rewrite the conservation law in differential form. First, we intro-
duce the density function, u(x, t), so that the total amount of stuff at a given
time is

Q) = /abu(x,t) dx.

Introducing this form into the integral conservation law, we have

b by b
%/u u(x, t)dx = —/a %daw/a f(x,t) dx. (1.27)

Assuming that a and b are fixed in time and that the integrand is continuous,
we can bring the time derivative inside the integrand and collect the three
terms into one to find

(WWMﬁ+%Qﬁ—ﬂM»M:Q Vx € [a,b].

We cannot simply set the integrant to zero just because the integral van-
ishes. However, if this result holds for every region |4, b], then we can con-
clude the integrand vanishes. So, under that assumption, we have the local
conservation law,

up(x,t) + px(x,t) = f(x,t). (1.28)

This partial differential equation is actually an equation in terms of two

unknown functions, assuming we know something about the source func-
tion. We would like to have a single unknown function. So, we need some
additional information. This added information comes from the constitutive
relation, a function relating the flux to the density function. Namely, we will
assume that we can find the relationship ¢ = ¢(u). If so, then we can write

9 dpdu

ox  duox’
or ¢x = ¢’ (u)uy.

Integral form of conservation law.

Differential form of conservation law.

11
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U

U1

> U
uy

Figure 1.7: Car velocity as a function of
car density.

Example 1.6. Inviscid Burgers’ Equation Find the equation satisfied by u(x, t)
for ¢p(u) = Lu? and f(x,t) = 0.

For this flux function we have ¢y = ¢'(u)uy = uuy. The resulting equation is
then uy + uuy = 0. This is the inviscid Burgers’ equation. We will later discuss
Burgers’ equation.

Example 1.7. Traffic Flow

This is a simple model of one-dimensional traffic flow. Let u(x,t) be the density
of cars. Assume that there is no source term. For example, there is no way for a car
to disappear from the flow by turning off the road or falling into a sinkhole. Also,
there is no source of additional cars.

Let ¢(x, t) denote the number of cars per hour passing position x at time t. Note
that the units are given by cars/mi times mi/hr. Thus, we can write the flux as
¢ = uv, where v is the velocity of the carts at position x and time t.

In order to continue we need to assume a relationship between the car velocity
and the car density. Let’s assume the simplest form, a linear relationship. The more
dense the traffic, we expect the speeds to slow down. So, a function similar to that
in Figure 1.7 is in order. This is a straight line between the two intercepts (0,v1)
and (u11,0). It is easy to determine the equation of this line. Namely the relationship
is given as

9

=0 — —U.
U

2
u
—uww=ouv (u——).
¢ 1( u1)

We can now write the equation for the car density,

This gives the flux as

0

U+ ¢y
2u
= w4 (1 — ) Uy. (1.29)

U

1.4.2 Nonlinear Advection Equations

IN THIS SECTION WE CONSIDER EQUATIONS OF THE FORM u; + ¢(u)uy = 0.
When c(u) is a constant function, we have the advection equation. In the last
two examples we have seen cases in which c(u) is not a constant function.
We will apply the method of characteristics to these equations. First, we will
recall how the method works for the advection equation.

The advection equation is given by u; + cu, = 0. The characteristic equa-

tions are given by

dx du
E—c, E_O'

These are easily solved to give the result that

u(x,t) = constant along the lines x = ct + xo,

where xg is an arbitrary constant.
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The characteristic lines are shown in Figure 1.8. We note that u(x,t) =
u(xp,0) = f(x0). So, if we know u initially, we can determine what u is at a
later time.

ta Figure 1.8: The characteristics lines the
xt-plane.

u(xg + cty,t1) = u(xo,0)

In Figure 1.8 we see that the value of u(xp,) at t = 0 and x = x( propa-
gates along the characteristic to a point at time t = ¢;. From x — ¢t = x(, we
can solve for x in terms of t; and find that u(xg + ct1, 1) = u(xp,0).

Plots of solutions u(x, t) versus x for specific times give traveling waves
as shown in Figure 1.3. In Figure 1.9 we show how each wave profile for
different times are constructed for a given initial condition.

The nonlinear advection equation is given by u; + c(u)uy = 0, |x| < oo. P > X

Let u(x,0) = up(x) be the initial profile. The characteristic equations are Figure 1.9: For each x — xo at  — 0,

given by u(xo +ct, t) = u(xo,0).
dx du

E =C (1/[) 7 E - O
These are solved to give the result that

u(x,t) = constant,

along the characteristic curves x’(t) = c(u). The lines passing though u(xo, ) =
up(xp) have slope 1/c(uo(xp)).

Example 1.8. Solve u; + uu, =0, u(x,0) = e

For this problem u = constant along
dx u
at

Since u is constant, this equation can be integrated to yield x = u(xp,0)t + xo.
Inserting the initial condition, x = e3¢ + xo. Therefore, the solution is

u(x, t) = e % along x = e %0t + xp.

In Figure 1.10 the characteristics a shown. In this case we see that the charac-
teristics intersect. In Figure charlines3 we look more specifically at the intersection
of the characteristic lines for xo = 0 and xo = 1. These are approximately the first
lines to intersect; i.e., there are (almost) no intersections at earlier times. At the
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Figure 1.10:

The characteristics lines

the xf-plane for the nonlinear advection

equation.

Figure 1.11: The characteristics lines for
xp = 0,1 in the xt-plane for the nonlinear
advection equation.

Up
t =0.0
>
Up
t =0.5
N
>
U
t =1.0 /\
>
Un
t=15 /l
N
>
Up
t =2.0 4

S

7

X

Figure 1.12: The development of a gra-
dient catastrophe in Example 1.8 leading
to a multivalued function.

up(§) = u(g,0).

fa

slope = 0
> X
t
u=1
ut
> X

intersection point the function u(x, t) appears to take on more than one value. For
the case shown, the solution wants to take the values u = 0 and u = 1.

In Figure 1.12 we see the development of the solution. This is found using a
parametric plot of the points (xo + te %3, e*"%) for different times. The initial profile
propagates to the right with the higher points traveling faster than the lower points
since X' (t) = u > 0. Around t = 1.0 the wave breaks and becomes multivalued.
The time at which the function becomes multivalued is called the breaking time.

1.4.3 The Breaking Time

IN THE LAST EXAMPLE WE SAW that for nonlinear wave speeds a gradi-
ent catastrophe might occur. The first time at which a catastrophe occurs
is called the breaking time. We will determine the breaking time for the
nonlinear advection equation, u; + c(u)uy, = 0. For the characteristic corre-
sponding to xy = ¢, the wavespeed is given by

F(§) = c(uo(¢))
and the characteristic line is given by
x = ¢ +tF(G).

The value of the wave function along this characteristic is

u(x,t) = u(f+tF(),t)
= . (1.30)

Therefore, the solution is

u(x,t) = ug(¢) along x = ¢ + tF({).
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This means that

uy = up(@)e and up = u(&)é.

We can determine ¢ and ¢; using the characteristic line

&= x—tE(0).

Then, we have

‘;‘x = 1_tF/(§)‘:x
1

1+ tF(§)
G o= o (- tF(E)

= —F(§) - tF(2)&
—F(%)

= TF’(@) (1.31)

Note that ¢y and ¢; are undefined if the denominator in both expressions
vanishes, 1+ tF/(&) = 0, or at time

___1
F'(¢)
The minimum time for this to happen in the breaking time,
t —min{l} (1.32)
’ F'(¢) )~ '

Example 1.9. Find the breaking time for uy + uuy = 0, u(x,0) = e ¥

Since c(u) = u, we have

and
F/(g) = —2ge7*
This gives
1
C2¢e ¢
We need to find the minimum time. Thus, we set the derivative equal to zero and
solve for ¢.
N
g \ 2¢
1) €
= (2 — §2> - (1.33)
Thus, the minimum occurs for 2 — Cl—z =0,0r¢ = 1/+/2. This gives

1 1 e
ty =1t (ﬁ) =— = \/; =~ 1.16. (1.34)

2
V2e-172

The breaking time.

15
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Weak solutions.

> X
u
> X
u
t =2.0 I/<r
> X

Figure 1.13: The shock solution after the
breaking time.

u

|
|
| Us
!
+

N

L > X

Figure 1.14: Depiction of the jump dis-
continuity at the shock position.

1 1 > X
a b

Figure 1.15: Domains on either side of
shock path are denoted as R and R™.

1.4.4 Shock Waves

SOLUTIONS OF NONLINEAR ADVECTION EQUATIONS can become multival-
ued due to a gradient catastrophe. Namely, the derivatives u; and u, become
undefined. We would like to extend solutions past the catastrophe. How-
ever, this leads to the possibility of discontinuous solutions. Such solutions
which may not be differentiable or continuous in the domain are known as
weak solutions. In particular, consider the initial value problem

ur+¢x =0, x€R, t>0, u(x,0)=uy(x).

Then, u(x, t) is a weak solution of this problem if

/Ooo /j:o[uw + ¢pvy] dxdt + /j:o uo(x)o(x,0) dx =0

for all smooth functions v € C®(R x [0,00)) with compact support, i.e.,
v == 0 outside some compact subset of the domain.

Effectively, the weak solution that evolves will be a piecewise smooth
function with a discontinuity, the shock wave, that propagates with shock
speed. It can be shown that the form of the shock will be the discontinuity
shown in Figure 1.13 such that the areas cut from the solutions will cancel
leaving the total area under the solution constant. [See G. B. Whitham's
Linear and Nonlinear Waves, 1973.] We will consider the discontinuity as
shown in Figure 1.14.

We can find the equation for the shock path by using the integral form of
the conservation law,

b
%/a w(x, ) dx = p(a, £) — p(b, £).

Recall that one can differentiate under the integral if u(x,t) and u(x, t) are
continuous in x and t in an appropriate subset of the domain. In particu-
lar, we will integrate over the interval [a,b] as shown in Figure 1.15. The
domains on either side of shock path are denoted as R* and R~ and the
limits of x(t) and u(x,t) as one approaches from the left of the shock are
denoted by x; (t) and u~ = u(x; , t). Similarly, the limits of x(t) and u(x, t)
as one approaches from the right of the shock are denoted by x; () and
ut =u(xt,t).
We need to be careful in differentiating under the integral,

d rb d x5 (t) b
a/a u(x, t)dx = dtl/a u(x,t)dx—o—/x;r(t)u(x,t)dx]

x5 (1) b
/ ur(x, t) dx+/ u(x,t) dx
a X (t)

_dxo dxt
+u(x;,t) d; —u(xf,t) d;

= 9at)—o(bt).

(1.35)
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Taking the limits @ — x; and b — x;, we have that

(1) = 1)) % = 9l 1) = 95, )
Adopting the notation
f] = F(x5) = f(x),

we arrive at the Rankine-Hugonoit jump condition

dxs _ [¢]
T m (1.36)

This gives the equation for the shock path as will be shown in the next

example.

Example 1.10. Consider the problem u; + uuy = 0, |x| < oo, t > 0 satisfying the

initial condition
1 <0,
u(x,0) = rrs
0, x>0.

The characteristics for this partial differential equation are familiar by now. The
initial condition and characteristics are shown in Figure 1.16. From x'(t) = u,
there are two possibilities. If u = 0, then we have a constant. If u = 1 along the
characteristics, the we have straight lines of slope one. Therefore, the characteristics
are given by

x(t):{ X0, x>0,
t+x9, x<O0.

As seen in Figure 1.16 the characteristics intersect immediately at t = 0. The
shock path is found from the Rankine-Hugonoit jump condition. We first note that
¢(u) = Ju?, since ¢x = uu,. Then, we have

dvs 9]
dt [u]
I T T
n ut —u-
_ 14w )t —um)
2 ut —u-
= 1(M++M )
2
1 1

Now we need only solve the ordinary differential equation x.,(t) = % with initial
condition xs(0) = 0. This gives xs(t) = 5. This line separates the characteristics
on the left and right side of the shock solution. The solution is given by

w(x, t) = 1, x<t/2,
Tl 0, x> t/2.

In Figure 1.17 we show the characteristic lines ending at the shock path (in red)
with u = 0 and on the right and u = 1 on the left of the shock path. This is
consistent with the solution. One just sees the initial step function moving to the
right with speed 1/2 without changing shape.

The Rankine-Hugonoit jump condition.

V¥
=

ta

> X
u=1 u=20

Figure 1.16: Initial condition and charac-
teristics for Example 1.10.

> X
u=1 u=0

Figure 1.17: The characteristic lines end

at the shock path (in red). On the left

1 =1 and on the right u = 0.
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A~

> X
u=20 u=1

Figure 1.18: Initial condition and charac-
teristics for Example 1.14.

-€

-€

u=20 u=1

u
7T
> X
€
t
€

> X

Figure 1.19: The function and character-
istics for the smoothed step function.
Characteristics for rarefaction, or expan-
sion, waves are fan-like characteristics.

1.4.5 Rarefaction Waves

SHOCKS ARE NOT THE ONLY TYPE OF SOLUTIONS encountered when the
velocity is a function of u. There may sometimes be regions where the char-
acteristic lines do not appear. A simple example is the following.

Example 1.11. Draw the characteristics for the problem uy + uu, = 0, |x| < oo,
t > 0 satisfying the initial condition

0, x<0,
u(x,O):{ 1, x>0

In this case the solution is zero for negative values of x and positive for positive
values of x as shown in Figure 1.18. Since the wavespeed is given by u, the u = 1
initial values have the waves on the right moving to the right and the values on the
left stay fixed. This leads to the characteristics in Figure 1.18 showing a region in
the xt-plane that has no characteristics. In this section we will discover how to fill
in the missing characteristics and, thus, the details about the solution between the
u = 0and u = 1 values.

As motivation, we consider a smoothed out version of this problem.

Example 1.12. Draw the characteristics for the initial condition

0, x<-—¢
u(x,0) =< ke, x| <e,
1, X > €.

The function is shown in the top graph in Fiqure 1.19. The leftmost and right-
most characteristics are the same as the previous example. The only new part is
determining the equations of the characteristics for |x| < e. These are found using
the method of characteristics as

_ttey

x =& +uo()t, uo(g) %

These characteristics are drawn in Figure 1.19 in red. Note that these lines take on
slopes varying from infinite slope to slope one, corresponding to speeds going from
zero to one.

Comparing the last two examples, we see that as € approaches zero, the
last example converges to the previous example. The characteristics in the
region where there were none become a “fan”. We can see this as follows.
Since |§| < € for the fan region, as € gets small, so does this interval. Let’s
scale & as & = o¢, 0 € [—1,1]. Then,

__o€e+e€

1
x =o€+ ug(oe)t, up(oe) = e tzi((f—i-l)t.

For each ¢ € [—1, 1] there is a characteristic. Letting ¢ — 0, we have

1
x=ct, c= §(0+1)t.
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Thus, we have a family of straight characteristic lines in the xt-plane passing
through (0,0) of the form x = ct for ¢ varying from ¢ = 0 to ¢ = 1. These
are shown as the red lines in Figure 1.20.

The fan characteristics can be written as x/f = constant. So, we can
seek to determine these characteristics analytically and in a straight forward

manner by seeking solutions of the form u(x,t) = g(%).

Example 1.13. Determine solutions of the form u(x,t) = g(3) to us + uuy = 0.
Inserting this quess into the differential equation, we have

0 = ur+uuy
1, X
= 38 <8 - ;) : (1.38)

Thus, either ' = 0 or g = ¥. The first case will not work since this gives constant
solutions. The second solution is exactly what we had obtained before. Recall that
solutions along characteristics give u(x,t) = § = constant. The characteristics
and solutions for t = 0,1,2 are shown in Figure rarefactionfigs. At a specific time
one can draw a line (dashed lines in figure) and follow the characteristics back to

the t = 0 values, u(&,0) in order to construct u(x, t).

Up
1
t=0
> X
Up
1
t=1
> X
Up
1
t=2
> X

As a last example, let’s investigate a nonlinear model which possesses
both shock and rarefaction waves.

Example 1.14. Solve the initial value problem u; + u?uy = 0, |x| < co, t > 0
satisfying the initial condition
0, x <0,

u(x,00=¢ 1, 0<x<2,
0, x> 2.

> X

u=20 u=1
Figure 1.20: The characteristics for Ex-

ample 1.14 showing the “fan” character-
istics.

Seek rarefaction fan waves using
u(x, t) :g(%).

Figure 1.21: The characteristics and so-
lutions for t = 0, 1,2 for Example 1.14
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Figure 1.22: In this example there occurs
a rarefaction and a gradient catastrophe.

The method of characteristics gives

dx 5 du

at "o

Therefore,

u(x,t) = ug(&) = const. along the lines x(t) = u3 (&)t + &.

There are three values of uy(Z),

0, ¢ <0,
u(@=<¢1, 0<&<2,
0, ¢>2.

In Figure 1.22 we see that there is a rarefaction and a gradient catastrophe.

+
=

A

<
=

In order to fill in the fan characteristics, we need to find solutions u(x,t) =
<(x/t). Inserting this guess into the differential equation, we have
0 = up+uuy
1,75 x
= 48 (8 ;)' (1.39)

Thus, either §' = 0 or g = ¥. The first case will not work since this gives constant
solutions. The second solution gives

(G-

. Therefore, along the fan characteristics the solutions are u(x,t) = \/g = con-
stant. These fan characteristics are added in Figure 1.23.

Next, we turn to the shock path. We see that the first intersection occurs at the
point (x,t) = (2,0). The Rankine-Hugonoit condition gives

dvs _[¢]

dt [u]
I VA U
N ut —u-

1(ut - u )Wt +utu +u?)
3 ut —u~
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t&
> X
u=20 u=1 u=20

= %(lﬁz—l—u*u* —O—ufz)
1 1
= §(0+0+ 1) = 3 (1.40)

Thus, the shock path is given by x.(t) = L with initial condition x(0) = 2.
This gives xs(t) = £ + 2. In Figure 1.24 the shock path is shown in red with the
fan characteristics and vertical lines meeting the path. Note that the fan lines and
vertical lines cross the shock path. This leads to a change in the shock path.

The new path is found using the Rankine-Hugonoit condition with u*t = 0 and

u- = /% Thus
5 s

dvs _ [¢]
dt u]
g
N ut —u-
o1t u )Wt +utu +u?)
3 ut —u-
1
= g(uJr +utu +u )

(1.41)

We need to solve the initial value problem

dxs 1 [xs _
9 "3\ sB=s

This can be done using separation of variables. Namely,

[ds 1t
Vi 3Vt

Figure 1.23: The fan characteristics are
added to the other characteristic lines.

Figure 1.24: The shock path is shown in
red with the fan characteristics and ver-
tical lines meeting the path.
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Figure 1.25: The second shock path is
shown in red with the characteristics
shown in all regions.

This gives the solution
1
AV xs = g \/E + C.

Since the second shock solution starts at the point (3,3), we can determine ¢ =
%\@ This gives the shock path as
2

xs(t) = (;\/ﬂ gx@)

In Figure 1.25 we show this shock path and the other characteristics ending on
the path.

It is interesting to construct the solution at different times based on the charac-
teristics. For a given time, t, one draws a horizontal line in the xt-plane and reads
off the values of u(x, t) using the values at t = 0 and the rarefaction solutions. This
is shown in Figure 1.26. The right discontinuity in the initial profile continues as
a shock front until t = 3. At that time the back rarefaction wave has caught up to
the shock. After t = 3, the shock propagates forward slightly slower and the height
of the shock begins to decrease. Due to the fact that the partial differential equation
is a conservation law, the area under the shock remains constant as it stretches and
decays in amplitude.

1.4.6 Traffic Flow

AN INTERESTING APPLICATION IS THAT OF TRAFFIC FLOW. We had al-
ready derived the flux function. Let’s investigate examples with varying
initial conditions that lead to shock or rarefaction waves. As we had seen
earlier in modeling traffic flow, we can consider the flux function

42
¢=uv=v1({u——1|,
U

which leads to the conservation law

2u
ur+v1(1—=—)uy =0.
U
Here u(x,t) represents the density of the traffic and u; is the maximum
density and v, is the initial velocity.
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Figure 1.26: Solutions for the shock-
rarefaction example.
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Figure 1.27: Cars approaching a red
light.

U

Ui

uo

+
=

> X

Up uq

Figure 1.28: Initial condition and charac-
teristics for the red light problem.

up uy

> X
Uo Ui

Figure 1.29: The addition of the shock
path for the red light problem.

First, consider the flow of traffic vas it approaches a red light as shown
in Figure 1.27. The traffic that is stopped has reached the maximum density
1. The incoming traffic has a lower density, ug. For this red light problem,
we consider the initial condition

ug, x<0,
u(x,O):{ 4 x>0

> X

ug < uq cars/mi uq cars/mi

The characteristics for this problem are given by
x = c(u(xo, )t + xo,

where
2u(xp,0)

clu(an 1) = o1 (1 - =

).

Since the initial condition is a piecewise-defined function, we need to con-
sider two cases.
First, for x > 0, we have

c(u(xg, t)) =c(u) =v1(1—=—) = —vq.

Therefore, the slopes of the characteristics, x = —v1t + xg are —1/v;.
For xg < 0, we have

c(u(xo,t)) = c(ug) =v1(1 — —).

So, the characteristics are x = —v1(1 — 2@)1‘ + xg.

5%
In Figure 1.28 we plot the initial condition and the characteristics for
x < 0and x > 0. We see that there are crossing characteristics and the begin
crossing at t = 0. Therefore, the breaking time is ¢, = 0. We need to find the

shock path satisfying xs(0) = 0. The Rankine-Hugonoit conditions give

dvs _[¢]
dt [u]
_ e
N ut —u-
2
2 Uy — Ug
_ g
= vlul. (1.42)

Thus, the shock path is found as x,(t) = —vlz—g.
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In Figure 1.29 we show the shock path. In the top figure the red line
shows the path. In the lower figure the characteristics are stopped on the
shock path to give the complete picture of the characteristics. The picture
was drawn with v1 = 2 and ug/u; = 1/3.

The next problem to consider is stopped traffic as the light turns green.
The cars in Figure 1.30 begin to fan out when the traffic light turns green.
In this model the initial condition is given by

u;, x<0,
”(x’()):{ 0, x>0

Uy cars/mi 0 cars/mi

Again,
clu(ra 1)) = oy (1 — 22000

Inserting the initial values of u into this expression, we obtain constant
speeds, £v;. The resulting characteristics are given by

- t 7 <0/
x(t) = U1t +x9, x <
vit+x9, x>0.

This leads to a rarefaction wave with the solution in the rarefaction region
given by

1 1
u(x,t) =g(x/t) = 5t (1 - x> .
The characteristics are shown in Figure ??. The full solution is then

Ui, X S _Ult/

u(x,t) =< g(x/t), |x| <wvqt,
0, x > vqt.
t
> X
U Uy

1.5 General First Order PDEs

WE HAVE SPENT TIME SOLVING QUASILINEAR first order partial differential
equations. We now turn to nonlinear first order equations of the form

F(x,y,u,uy, uy) =0,

25

Figure 1.30: Cars begin to fan out when
the traffic light turns green.

Figure 1.31: The characteristics for the
green light problem.
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The Charpit equations. These were
named after the French mathematician
Paul Charpit Villecourt, who was proba-
bly the first to present the method in his
thesis the year of his death, 1784. His
work was further extended in 1797 by
Lagrange and given a geometric expla-
nation by Gaspard Monge (1746-1818) in
1808. This method is often called the
Lagrange-Charpit method.

for u = u(x,y).
If we introduce new variables, p = uy and g = uy, then the differential
equation takes the form

F(x,y,u,p,q) = 0.

Note that for u(x, t) a function with continuous derivatives, we have

Py = Uxy = Uyx = Gx-

We can view F = 0 as a surface in a five dimensional space. Since the
arguments are functions of x and y, we have from the multivariable Chain
Rule that

dF ou op oq

This can be rewritten as a quasilinear equation for p(x,y) :
Fppx + Fqu = —F, — pF..

The characteristic equations are

dx_dl_ dp

F, F  FetpR

Similarly, from % = 0 we have that

dx dy dq

F,  F  F+qF
Furthermore, since u = u(x,y),

ou ou

du = adx—i-@dy

= pdx+qdy

Fq

Fy
Fq

= (ptag ) (1.44)
P

= pdx+q—dx

Therefore,
dx du

Fy pEp+qF

Combining these results we have the Charpit Equations

dx _dy _ du ___dp _ dq (1.45)
F, ~ F,  pE+af,  Fet+ph.  F +qF 4

These equations can be used to find solutions of nonlinear first order partial
differential equations as seen in the following examples.
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Example 1.15. Find the general solutio of u% + yu, — u = 0.
First, we introduce u, = p and uy = q. Then,

F(x,y,u,p,q9) = p*+qy —u =0.
Next we identify

szzp, Fq:y, Fu:_l, Fx:O, ,Fy:q.

Then,
pFo+aFy = 2p* +qy,
Fx+PFu = —p
F,+qF, = q—q=0.

The Charpit equations are then

dx dy  du  dp dq

2y 2P +qy p O

The first conclusion is that 4 = c; = constant. So, from the partial differ-
ential equation we have u = p% + c1y.
Since du = pdx + qdy = pdx + c1dy, then

du —cdy = \/u — cry dx.

Therefore,

M—Cly /dx
Vu—ay

/\—ﬁ =x+0C
2\/u—c1y = x +c. (1.46)

Solving for u, we have

u(y) = (et el +ay.

This example required a few tricks to implement the solution. Sometimes
one needs to find parametric solutions. Also, if an initial condition is given,
one needs to find the particular solution. In the next example we show how
parametric solutions are found to the initial value problem.

Example 1.16. Solve the initial value problem u2 + uy +u=0,u(x,0)=
We consider the parametric form of the Charpit equations,

dx dy du dp dq

gr= 2 _ % _ —_ —_ .
Fp Fg phptaby  E+pho Ly+qh

(1.47)

This leads to the system of equations

dx

27
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dy

du 5
I = pr—i—qu:Zp +q.
d

aT}Z = —(F+pk)=-p.
d

The second, fourth, and fifth equations can be solved to obtain

y= t+cq.
p=ce .
q= cze .

Inserting these results into the remaining equations, we have

dx ¢
i 2cpe "
du 5

I 2c3e™ % 4 cze .

These equations can be integrated to find Inserting these results into the remain-
ing equations, we have

x = —2c 4y
u = —ce? —cze !t fos.

This is a parametric set of equations for u(x,t). Since

—t X — C4
¢ - —2C2 !
we have
u(x,y) = —cde 2 —cze”t +os.
2
S (s 2 T (e
2 ( —2¢3 > © ( —2¢3 > e
1
= Zl(x—c4)2—|— Z%(x—q) (1.48)

We can use the initial conditions by first parametrizing the conditions. Let
x(s,0) = s and y(s,0) = 0, Then, u(s,0) = s. Since u(x,0) = x, uy(x,0) =1,
or p(s,0) = 1.

From the partial differential equation, we have p* + q + u = 0. Therefore,

9(s,0) = —p*(s,0) — u(s,0) = —(1 +5).
These relations imply that

y(s,t)t—0=0=c1 =0.
p(s,t)i-o=1=cr=1
q(s,t)t-0 = —(1+s) = c3.
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So,

y(s, ) =t
p(s,t) =e "t
q(s,t) = —(1+s)e”".

The conditions on x and u give
x(s,t) = (s+2) —2¢ 7",

u(s,t) = (s+1)e "t —e 2.

1.6  Modern Nonlinear PDEs

THE STUDY OF NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS is a hot
research topic. We will (eventually) describe some examples of important
evolution equations and discuss their solutions in the last chapter.

Problems

1. Write the following equations in conservation law form, u; + ¢, = 0 by
finding the flux function ¢(u).

a. ur+cuy = 0.

b. Ut ‘|— UUyx — ]/luxx = O.

C. U+ 6UUy + Uyyy = 0.

&

th + uzux ‘I’ uxxx = 0.

2. Consider the Klein-Gordon equation, u — auyy = bu for a and b con-
stants. Find traveling wave solutions u(x, t) = f(x — ct).

3. Find the general solution u(x,y) to the following problems.

a. uy =0.
b. yuy — xu, = 0.
C. 2uy —|—3uy =1.

d. uy+uy =u.
4. Solve the following problems.

a. uy +2uy =0, u(x,0) = sinx.

)
b. uy+4u, =0, u(x,0) =
0

S~—
| |

c. yuy —xuy =0, u(x,

e. yuy+xuy =0, u( ,Y)
f. xup — 2xtuy = 2tu, u(x,O)
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g (y—wuy+(u—x)uy=x—y,u=0onxy =1
h. yuy + xu, = xy, x,y > 0, for u(x,0) = e‘xz,x > 0and u(0,y) =
e’yz,y > 0.
5. Consider the problem u; + uu, = 0, |x| < oo, t > 0 satisfying the initial

condition u(x,0) = ﬁ
a. Find and plot the characteristics.

b. Graphically locate where a gradient catastrophe might occur. Es-
timate from your plot the breaking time.
c. Analytically determine the breaking time.
d. Plot solutions u(x, t) at times before and after the breaking time.
6. Consider the problem u; + wlu, =0, |x| < oo, t > 0 satisfying the initial
condition u(x,0) = ﬁ
a. Find and plot the characteristics.

b. Graphically locate where a gradient catastrophe might occur. Es-
timate from your plot the breaking time.

¢. Analytically determine the breaking time.

d. Plot solutions u(x, t) at times before and after the breaking time.

7. Consider the problem u; + uu, = 0, |x| < co, t > 0 satisfying the initial

2, x<0,
u(x,O)—{ 1, x>0

condition

a. Find and plot the characteristics.

b. Graphically locate where a gradient catastrophe might occur. Es-
timate from your plot the breaking time.

c. Analytically determine the breaking time.

d. Find the shock wave solution.

8. Consider the problem u; + uu, = 0, |x| < oo, t > 0 satisfying the initial

condition
1, x<0,
u(x,0) = r=
2, x>0.

a. Find and plot the characteristics.

b. Graphically locate where a gradient catastrophe might occur. Es-
timate from your plot the breaking time.

¢. Analytically determine the breaking time.

d. Find the shock wave solution.

9. Consider the problem u; + uu, = 0, |x| < co, t > 0 satisfying the initial
condition
0, x<-1,
u(x,0)=<¢ 2, |x|<1,
1, x>1.
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a. Find and plot the characteristics.

b. Graphically locate where a gradient catastrophe might occur. Es-
timate from your plot the breaking time.

c. Analytically determine the breaking time.

d. Find the shock wave solution.

10. Solve the problem u; + uu, = 0, x| < oo, t > 0 satisfying the initial

condition
1, x <0,
u(x,0) =< 1-2, 0<x<a,
0, X >a.

11. Solve the problem u; + uuy = 0, x| < oo, t > 0 satisfying the initial

condition
0, x <0,
— X
u(x,0) =< % 0<x<a,
1, x> a.

12. Consider the problem u; + u?uy = 0, |x| < oo, t > 0 satisfying the initial

2 <
u(x,o):{ 7 X_O/

condition

1, x>0.

a. Find and plot the characteristics.

b. Graphically locate where a gradient catastrophe might occur. Es-
timate from your plot the breaking time.

c. Analytically determine the breaking time.

d. Find the shock wave solution.

13. Consider the problem u; + wuy =0, |x| < oo, t >0 satisfying the initial

1, x<0,
”(x’o)_{ 2 x>0

condition

a. Find and plot the characteristics.
b. Find and plot the fan characteristics.
c. Write out the rarefaction wave solution for all regions of the xf-

plane.

14. Solve the initial-value problem u; + uu, = 0 |x| < oo, t > 0 satisfying

1, x <0,
u(x,0)=¢ 1—x, 0<x<1,
0, x> 1.

15. Consider the stopped traffic problem in a situation where the maximum

car density is 200 cars per mile and the maximum speed is 50 miles per hour.
Assume that the cars are arriving at 30 miles per hour. Find the solution of
this problem and determine the rate at which the traffic is backing up. How
does the answer change if the cars were arriving at 15 miles per hour.

31
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16. Solve the following nonlinear equations where p = uy and g = uy,.
a. P> +g¢*>=1u(xx)=x
b. pqg=u, u(0,y) =y
c. p+q=npq u(x0)=x.
d. pq=u?
e. PP+qy=u.
17. Find the solution of xp + qy — p?>q — u = 0 in parametric form for the

initial conditions at t = 0 :

x(t,s)=s, y(t,s)=2, u(ts)=s+1



2
Second Order Partial Differential Equa-
tions

“Either mathematics is too big for the human mind or the human mind is more than
a machine.” - Kurt Godel (1906-1978)

2.1 Introduction

IN THIS CHAPTER WE WILL INTRODUCE several generic second order linear
partial differential equations and see how such equations lead naturally to
the study of boundary value problems for ordinary differential equations.
These generic differential equation occur in one to three spatial dimensions
and are all linear differential equations. A list is provided in Table 2.1. Here
we have introduced the Laplacian operator, V23U = Uy + Uyy + tzz. Depend-
ing on the types of boundary conditions imposed and on the geometry of
the system (rectangular, cylindrical, spherical, etc.), one encounters many
interesting boundary value problems.

Name 2 Vars 3D
Heat Equation Up = Klyy uy = kVZ2u
Wave Equation U = CClly uy = c2V2u
Laplace’s Equation Uxy +uyy =0 Viu=0
Poisson’s Equation Uy + uyy = F(x,y) V2u = F(x,y,2)
Schrodinger’s Equation | iuy =ty + F(x, H)u | iup = V2u + F(x,y,z,t)u

Let’s look at the heat equation in one dimension. This could describe the
heat conduction in a thin insulated rod of length L. It could also describe
the diffusion of pollutant in a long narrow stream, or the flow of traffic
down a road. In problems involving diffusion processes, one instead calls
this equation the diffusion equation. [See the derivation in Section 2.2.2.]

A typical initial-boundary value problem for the heat equation would be
that initially one has a temperature distribution u#(x,0) = f(x). Placing the
bar in an ice bath and assuming the heat flow is only through the ends of
the bar, one has the boundary conditions u(0,f) = 0 and u(L,t) = 0. Of
course, we are dealing with Celsius temperatures and we assume there is

Table 2.1: List of generic partial differen-
tial equations.
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u(0,0) =0 u(L,0)=0

I
0 L

Figure 2.1: One dimensional heated rod
of length L.

u(x, t)
u(0,0) =0 u(L,0) =0
0 X

Figure 2.2: One dimensional string of
length L.

plenty of ice to keep that temperature fixed at each end for all time as seen
in Figure 2.1. So, the problem one would need to solve is given as [IC =
initial condition(s) and BC = boundary conditions.]

1D Heat Equation

PDE Uy = kityy, O0<t, 0<x<IL,

IC  u(x,0)=f(x), 0<x<L,

BC  u(0,t) =0, t>0,
u(L,t) =0, t>0,

(2.1)

Here, k is the heat conduction constant and is determined using proper-
ties of the bar.

Another problem that will come up in later discussions is that of the
vibrating string. A string of length L is stretched out horizontally with both
ends fixed such as a violin string as shown in Figure 2.2. Let u(x,t) be
the vertical displacement of the string at position x and time ¢t. The motion
of the string is governed by the one dimensional wave equation. [See the
derivation in Section 2.2.1.] The string might be plucked, giving the string
an initial profile, u(x,0) = f(x), and possibly each point on the string has
an initial velocity u;(x,0) = g(x). The initial-boundary value problem for
this problem is given below.

1D Wave Equation

PDE  uy =c*uyy 0<t 0<x<L

IC u(x,0) = f(x) 0<x<L
ui(x,0) = g(x) 0<x<L (2.2)
BC 1u(0,£) =0 t>0
u(L,t) =0 t>0

In this problem c is the wave speed in the string. It depends on the mass

per unit length of the string, u#, and the tension, 7, placed on the string.

There is a rich history on the study of these and other partial differential
equations and much of this involves trying to solve problems in physics.
Consider the one dimensional wave motion in the string. Physically, the
speed of these waves depends on the tension in the string and its mass
density. The frequencies we hear are then related to the string shape, or the
allowed wavelengths across the string. We will be interested the harmonics,
or pure sinusoidal waves, of the vibrating string and how a general wave
on the string can be represented as a sum over such harmonics. This will
take us into the field of spectral, or Fourier, analysis. The solution of the
heat equation also involves the use of Fourier analysis. However, in this
case there are no oscillations in time.

There are many applications that are studied using spectral analysis. At
the root of these studies is the belief that continuous waveforms are com-
prised of a number of harmonics. Such ideas stretch back to the Pythagore-
ans study of the vibrations of strings, which led to their program of a world
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of harmony. This idea was carried further by Johannes Kepler (1571-1630) in
his harmony of the spheres approach to planetary orbits. In the 1700’s oth-
ers worked on the superposition theory for vibrating waves on a stretched
spring, starting with the wave equation and leading to the superposition
of right and left traveling waves. This work was carried out by people
such as John Wallis (1616-1703), Brook Taylor (1685-1731) and Jean le Rond
d’Alembert (1717-1783).

In 1742 d’Alembert solved the wave equation

czaz—y — aiy =0
9x2  of? ’

where y is the string height and c is the wave speed. However, this solution
led him and others, like Leonhard Euler (1707-1783) and Daniel Bernoulli
(1700-1782), to investigate what "functions" could be the solutions of this
equation. In fact, this led to a more rigorous approach to the study of
analysis by first coming to grips with the concept of a function. For example,
in 1749 Euler sought the solution for a plucked string in which case the
initial condition y(x,0) = h(x) has a discontinuous derivative! (We will see
how this led to important questions in analysis.)

In 1753 Daniel Bernoulli viewed the solutions as a superposition of sim-
ple vibrations, or harmonics. Such superpositions amounted to looking at
solutions of the form

k ket
y(x,t) = ;ak sin % cos %,

where the string extends over the interval [0, L] with fixed ends at x = 0 and
x = L.
However, the initial profile for such superpositions is given by

. kmx
ap sin —.

y(x,0) = T

k
It was determined that many functions could not be represented by a finite
number of harmonics, even for the simply plucked string in Figure 2.4 given
by an initial condition of the form

(x,0) = Ax, 0<x<L/2
V=V AL —x), L/2<x<L

Thus, the solution consists generally of an infinite series of trigonometric
functions.

Such series expansions were also of importance in Joseph Fourier’s (1768-
1830) solution of the heat equation. The use of Fourier expansions has be-
come an important tool in the solution of linear partial differential equa-
tions, such as the wave equation and the heat equation. More generally,
using a technique called the Method of Separation of Variables, allowed
higher dimensional problems to be reduced to one dimensional boundary
value problems. However, these studies led to very important questions,
which in turn opened the doors to whole fields of analysis. Some of the
problems raised were

<

Figure 2.3: Plot of the second harmonic
of a vibrating string at different times.

o
NI+
-

Figure 2.4: Plot of an initial condition for
a plucked string.

The one dimensional version of the heat
equation is a partial differential equation
for u(x,t) of the form

P
ot " ox?’
Solutions satisfying boundary condi-
tions u(0,t) = 0 and u(L,t) = 0, are of
the form

oo
u(x,t) =Y bysin L7ere7nznzt/L2.
n=0

In this case, setting u(x,0) = f(x), one
has to satisfy the condition

f(x) =Y bysin nex.
n=0 L

This is another example leading to an in-
finite series of trigonometric functions.
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The wave equation is derived from F =
ma.

1. What functions can be represented as the sum of trigonometric
functions?

2. How can a function with discontinuous derivatives be represented
by a sum of smooth functions, such as the above sums of trigono-
metric functions?

3. Do such infinite sums of trigonometric functions actually converge
to the functions they represent?

There are many other systems for which it makes sense to interpret the
solutions as sums of sinusoids of particular frequencies. For example, we
can consider ocean waves. Ocean waves are affected by the gravitational
pull of the moon and the sun and other numerous forces. These lead to the
tides, which in turn have their own periods of motion. In an analysis of
wave heights, one can separate out the tidal components by making use of
Fourier analysis.

In the Section 2.4 we describe how to go about solving these equations
using the method of separation of variables. We will find that in order
to accommodate the initial conditions, we will need to introduce Fourier
series before we can complete the problems, which will be the subject of the
following chapter. However, we first derive the one-dimensional wave and
heat equations.

2.2 Derivation of Generic 1D Equations

2.2.1 Derivation of Wave Equation for String

THE WAVE EQUATION FOR A ONE DIMENSIONAL STRING is derived based
upon simply looking at Newton’s Second Law of Motion for a piece of the
string plus a few simple assumptions, such as small amplitude oscillations
and constant density.

We begin with F = ma. The mass of a piece of string of length ds is
m = p(x)ds. From Figure (2.5) an incremental length f the string is given by

As? = Ax? + Au?.
2u

E
We will assume that the main force acting on the string is that of tension.

The piece of string undergoes an acceleration of a =

Let T(x, t) be the magnitude of the tension acting on the left end of the piece
of string. Then, on the right end the tension is T(x + Ax, t). At these points
the tension makes an angle to the horizontal of 6(x,t) and 6(x + Ax, t),
respectively.

Assuming that there is no horizontal acceleration, the x-component in the
second law, ma = F, for the string element is given by

0=T(x+ Ax,t)cosO(x + Ax,t) — T(x,t) cos0(x, ).
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T(x + Ax,t)

X
The vertical component is given by
0%u . .
p(x)AsW = T(x+ Ax,t)sin0(x + Ax,t) — T(x,t)sin0(x, t)

The length of the piece of string can be written in terms of Ax,

2
As = VAX2 + Au? = [1+ (i?c) Ax.

and the right hand sides of the component equation can be expanded about
Ax = 0, to obtain

T(x+ Ax,t)cosO(x + Ax,t) — T(x,t) cosO(x,t) =~ @ (x,t)Ax

T(x + Ax, t)sin@(x + Ax, t) — T(x,t)sinf(x,t) =~ @(9{, £)Ax.
Furthermore, we note that
Au  du

tanf = lim — = —.
an A;IBO Ax  ox

Now we can divide these component equations by Ax and let Ax — 0.

This gives the approximations

T(x+ Ax,t)cos0(x + Ax,t) — T(x,t) cos0(x, t)

0 = Ax
. 9(Tcosh)
~ T(x,)f)
( )aiuﬁ ~ T(x+Ax,t)sinf(x + Ax, t) — T(x,t)sin6(x, t)
Yo s ~ Ax
%u ou\? d(T'sinf)
p(x)ﬁ 1 (ax) ~ T(X/t)- (23)

We will assume a small angle approximation, giving

u
ox’

sinf ~ tanf =

Figure 2.5: A small piece of string is un-
der tension.
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1(0,0) =0 u(L,0) =0
I
0 L

Figure 2.6: One dimensional heated rod
of length L.

cosf® ~ 1, and

ou\?
1 — | =L
“(5)
Then, the horizontal component becomes

T (x,t)
S o

ox
Therefore, the magnitude of the tension T(x,t) = T(t) is at most time de-
pendent.

The vertical component equation is now

0%u 9 (u 0%u
p(x)ﬁ = T(f)g (8x> = T(t)@~

Assuming that p and T are constant and defining

we obtain the one dimensional wave equation,

u  ,0%u
— =t —;.
a2 dx?

2.2.2  Derivation of 1D Heat Equation

CONSIDER A ONE DIMENSIONAL ROD of length L as shown in Figure 2.6.
It is heated and allowed to sit. The heat equation is the governing equation
which allows us to determine the temperature of the rod at a later time.
We begin with some simple thermodynamics. Recall that to raise the
temperature of a mass m by AT takes thermal energy given by

Q = mcAT,

assuming the mass does not go through a phase transition. Here c is the
specific heat capacity of the substance. So, we will begin with the heat
content of the rod as

Q = mcT(x,t)

and assume that m and ¢ are constant.

We will also need Fourier’s law of heat transfer or heat conduction . This
law simply states that heat energy flows from warmer to cooler regions and
is written in terms of the heat energy flux, ¢(x,t). The heat energy flux, or
flux density, gives the rate of energy flow per area. Thus, the amount of
heat energy flowing over the left end of the region of cross section A in time
At is given ¢(x,t)AtA. The units of ¢(x,t) are then J/s/m? = W/m?.

Fourier’s law of heat conduction states that the flux density is propor-
tional to the gradient of the temperature,

aT
¢ = K3 .
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Flux in oo Flux out
¢(x,t) —— —— P(x+Ax,t)
I

0 Ax L x

Here K is the thermal conductivity and the negative sign takes into account
the direction of flow from higher to lower temperatures.

Now we make use of the conservation of energy. Consider a small section
of the rod of width Ax as shown in Figure 2.7. The rate of change of the
energy through this section is due to energy flow through the ends. Namely,

Rate of change of heat energy = Heat in — Heat out.
The energy content of the small segment of the rod is given by
AQ = (pAAx)cT(x,t + At) — (0AAx)cT(x, t).
The flow rates across the boundaries are given by the flux.
(pAAX)CT (x, t + At) — (0AAX)cT (x,t) = [¢p(x, 1) — p(x + Ax, )| AtA.

Dividing by Ax and At and letting Ax, At — 0, we obtain
of 199

o cpox’

Using Fourier’s law of heat conduction,

T _ 10 (o
ot cpox \  ox)’
Assuming K, ¢, and p are constant, we have the one dimensional heat
equation as used in the text:
o _ T
ot  ox2’
k .

where k = &

2.3 Boundary Value Problems

YOU MIGHT HAVE ONLY SOLVED INITIAL VALUE PROBLEMS in your under-
graduate differential equations class. For an initial value problem one has to
solve a differential equation subject to conditions on the unknown function
and its derivatives at one value of the independent variable. For example,
for x = x(t) we could have the initial value problem

"+x=2, x(0)=1, x'(0)=0. (2.4)

Typically, initial value problems involve time dependent functions and
boundary value problems are spatial. So, with an initial value problem one

Figure 2.7: A one dimensional rod of
length L. Heat can flow through incre-
ment Ax.
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knows how a system evolves in terms of the differential equation and the
state of the system at some fixed time. Then one seeks to determine the
state of the system at a later time.

Example 2.1. Solve the initial value problem, x" +4x = cost, x(0) =1, «/(0)
0.

Note that the conditions are provided at one time, t = 0. Thus, this an initial
value problem. Recall from your course on differential equations that we need to
find the general solution and then apply the initial conditions. Furthermore, this
is a nonhomogeneous differential equation, so the solution is a sum of a solution of
the homogeneous equation and a particular solution of the nonhomogeneous equa-
tion, x(t) = x,(t) + xp(t). [See the ordinary differential equations review in the
Appendix.]

The solution of x" + 4x = 0 is easily found as

x,(t) = ¢1 cos 2t + ¢p sin 2t.

The particular solution is found using the Method of Undetermined Coefficients.
We quess a solution of the form

xp(t) = Acost + Bsint.
Differentiating twice, we have

x,(t) = —(Acost+ Bsint).

So,
X, +4xp = —(Acost + Bsint) +4(Acost + Bsint).

Comparing the right hand side of this equation with cos t in the original problem,
we are led to setting B = 0and A = % cos t. Thus, the general solution is

1
x(t) = c1.cos 2t + ¢y sin 2t + 3 €08 t.

We now apply the initial conditions to find the particular solution. The first
condition, x(0) = 1, gives

1
1= =
Cl+3

Thus, ¢; = % Using this value for ¢y, the second condition, x'(0) = 0, gives
c2 = 0. Therefore,

1
x(t) = 5(2 cos 2t 4 cos t).

For boundary values problems, one knows how each point responds to
its neighbors, but there are conditions that have to be satisfied at the end-
points. An example would be a horizontal beam supported at the ends, like
a bridge. The shape of the beam under the influence of gravity, or other
forces, would lead to a differential equation and the boundary conditions
at the beam ends would affect the solution of the problem. There are also
a variety of other types of boundary conditions. In the case of a beam, one
end could be fixed and the other end could be free to move. We will explore
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the effects of different boundary conditions in our discussions and exercises.
But, we will first solve a simple boundary value problem which is a slight
modification of the above problem.

Example 2.2. Solve the boundary value problem, x" +x =2, x(0) =1, x(1)=
0.

Note that the conditions at t = 0 and t = 1 make this a boundary value prob-
lem since the conditions are given at two different points. As with initial value
problems, we need to find the general solution and then apply any conditions that
we may have. This is a nonhomogeneous differential equation, so the solution is
a sum of a solution of the homogeneous equation and a particular solution of the
nonhomogeneous equation, x(t) = x;(t) + x,(t). The solution of x" +x = 0 is
easily found as

xp () = cpcost+ cpsint.

The particular solution is found using the Method of Undetermined Coefficients,
xp(t) = 2.
Thus, the general solution is
x(t) =2+ cicost+ cpsint.

We now apply the boundary conditions and see if there are values of c1 and cy
that yield a solution to this boundary value problem. The first condition, x(0) = 0,
gives

0=2+¢.

Thus, ¢; = —2. Using this value for cq, the second condition, x(1) = 1, gives
0=2—2cosl+cpsinl.

This yields
2(cos1—1)
277 sint

We have found that there is a solution to the boundary value problem and it is

given by
x() =2 (1 - costi(cos,1 —1) sin t) .
sinl

Boundary value problems arise in many physical systems, just as the ini-
tial value problems we have seen earlier. We will see in the next sections that
boundary value problems for ordinary differential equations often appear
in the solutions of partial differential equations. However, there is no guar-
antee that we will have unique solutions of our boundary value problems
as we had found in the example above.

Now that we understand simple boundary value problems for ordinary
differential equations, we can turn to initial-boundary value problems for
partial differential equations. We will see that a common method for study-
ing these problems is to use the method of separation of variables. In this
method the problem of solving partial differential equations is to separate

41
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Solution of the 1D heat equation using
the method of separation of variables.

the partial differential equation into several ordinary differential equations
of which several are boundary value problems of the sort seen in this sec-
tion.

2.4 Separation of Variables

SOLVING MANY OF THE LINEAR PARTIAL DIFFERENTIAL EQUATIONS pre-
sented in the first section can be reduced to solving ordinary differential
equations. We will demonstrate this by solving the initial-boundary value
problem for the heat equation as given in (2.1). We will employ a method
typically used in studying linear partial differential equations, called the
Method of Separation of Variables. In the next subsections we describe how
this method works for the one-dimensional heat equation, one-dimensional
wave equation, and the two-dimensional Laplace equation.

2.4.1 The 1D Heat Equation

WE WANT TO SOLVE THE HEAT EQUATION,
ur =kiyy, 0<t, 0<x<L.
subject to the boundary conditions
u(0,£) =0,u(L,t) =0, >0,
and the initial condition
u(x,0) = f(x), 0<x<L.

We begin by assuming that u can be written as a product of single variable
functions of each independent variable,

u(x,t) = X(x)T(¢).
Substituting this guess into the heat equation, we find that
XT' = kX"T.

The prime denotes differentiation with respect to the independent vari-
able and we will suppress the independent variable in the following unless
needed for emphasis.

Dividing both sides of this result by k and u = XT, yields

1 T/ X//
kT~ X
k We have separated the functions of time on one side and space on the

other side. The constant k could be on either side of this expression, but we
moved it to make later computations simpler.



SECOND ORDER PARTIAL DIFFERENTIAL EQUATIONS 43

The only way that a function of t equals a function of x is if the functions
are constant functions. Therefore, we set each function equal to a constant,
A : [For example, if Ae®! = ax? + b is possible for any x or ¢, then this is only
possibleif a =0,c=0and b = A.]

1 T/ X//
AN Y
~ ~ constant
function of ¢+  function of x
This leads to two equations:
T' = kAT, (2.5)
X" = AX. (2.6)

These are ordinary differential equations. The general solutions to these
constant coefficient equations are readily found as

T(t) = AeM, (2.7)

X(x) = c1e¥M 4 e VAT, (2.8)

We need to be a little careful at this point. The aim is to force the final so-
lutions to satisfy both the boundary conditions and initial conditions. Also,
we should note that A is arbitrary and may be positive, zero, or negative.
We first look at how the boundary conditions on u(x,t) lead to conditions
on X(x).

The first boundary condition is #(0,t) = 0. This implies that

X(0)T(t) =0, forallt.

The only way that this is true is if X(0) = 0. Similarly, u(L,t) = 0 for all ¢
implies that X(L) = 0. So, we have to solve the boundary value problem

X"—AX =0, X(0)=0=X(L). (2.9)

An obvious solution is X = 0. However, this implies that u(x,t) = 0, which
is not an interesting solution. We call such solutions, X = 0, trivial solutions
and will seek nontrivial solution for these problems.

There are three cases to consider, depending on the sign of A.

Case. A >0

In this case we have the exponential solutions
X(x) = cleﬁx + cze_ﬁ". (2.10)

For X(0) = 0, we have
0=rc1+cp.

We will take ¢ = —c1. Then,

X(x) = ¢ (VM — e VA¥) = 2¢; sinh VAx.
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Applying the second condition, X(L) = 0 yields
¢1sinh VAL = 0.

This will be true only if c; = 0, since A > 0. Thus, the only solution in
this case is the trivial solution, X(x) = 0.
CaseIl. A =0

For this case it is easier to set A to zero in the differential equation. So,
X" = 0. Integrating twice, one finds

X(x) = c1x + cp.

Setting x = 0, we have ¢; = 0, leaving X(x) = cyx. Setting x = L,
we find ¢c1L = 0. So, ¢; = 0 and we are once again left with a trivial
solution.

CaseIII. A <0

In this case is would be simpler to write A = —u?. Then the differential
equation is
X'+ 2X =0.

The general solution is
X(x) = ¢q cos px + co sin pix.

At x = 0 we get 0 = ¢;. This leaves X(x) = ¢, sin ux.
At x = L, we find
0 =cosinulL.

So, either c; = 0 or sin uL = 0. ¢; = 0 leads to a trivial solution again.
But, there are cases when the sine is zero. Namely,

Note that n = 0 is not included since this leads to a trivial solution.
Also, negative values of n are redundant, since the sine function is an
odd function.

In summary, we can find solutions to the boundary value problem (2.9)

for particular values of A. The solutions are

for

Xp(x) =sin——, n=1,23,...

Ay = —pi2 = — (%)2 n=1,2,3....

We should note that the boundary value problem in Equation (2.9) is an

eigenvalue problem. We can recast the differential equation as

LX = AX,
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where )
>  d
L=D"= Fp
is a linear differential operator. The solutions, X, (x), are called eigenfunc-
tions and the A;’s are the eigenvalues. We will elaborate more on this char-
acterization later in the next chapter.
We have found the product solutions of the heat equation (2.1) satisfying

the boundary conditions. These are

up(x,t) = efnt

sin %, n=123,.... (2.11)

However, these do not necessarily satisfy the initial condition u(x,0) = f(x).
What we do get is

U (%,0) = sinn—zx, n=1,2.3,....

So, if the initial condition is in one of these forms, we can pick out the right
value for n and we are done.

For other initial conditions, we have to do more work. Note, since the
heat equation is linear, the linear combination of the product solutions is
also a solution of the heat equation. The general solution satisfying the
given boundary conditions is given as

u(x,t) =Y by sin chx (2.12)

n=1

The coefficients in the general solution are determined using the initial
condition. Namely, setting ¢ = 0 in the general solution, we have

nritx

x:ux,Ozoobnini.
Fx) = u(x0) = 1 busin ]

So, if we know f(x), can we find the coefficients, b,? If we can, then we will
have the solution to the full initial-boundary value problem.

The expression for f(x) is a Fourier sine series. We will need to digress
into the study of Fourier series in order to see how one can find the Fourier
series coefficients given f(x). Before proceeding, we will show that this pro-
cess is not uncommon by applying the Method of Separation of Variables to
the wave equation in the next section.

2.4.2  The 1D Wave Equation

IN THIS SECTION WE WILL APPLY the Method of Separation of Variables to
the one dimensional wave equation, given by

%u  ,0%u

Frrie c 2y >0, 0<u«iL, (2.13)

Product solutions.

General solution.

45
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Solution of the 1D wave equation using
the Method of Separation of Variables.

subject to the boundary conditions
u(0,t) =0,u(L,t)=0, t>0,
and the initial conditions
u(x,0) = f(x),u:(x,0) =g(x), 0<x<L.

This problem applies to the propagation of waves on a string of length L
with both ends fixed so that they do not move. u(x, t) represents the vertical
displacement of the string over time. The derivation of the wave equation
assumes that the vertical displacement is small and the string is uniform.
The constant c is the wave speed, given by

T

C=\/=

K
where T is the tension in the string and y is the mass per unit length. We can
understand this in terms of string instruments. The tension can be adjusted
to produce different tones and the makeup of the string (nylon or steel, thick
or thin) also has an effect. In some cases the mass density is changed simply
by using thicker strings. Thus, the thicker strings in a piano produce lower
frequency notes.

The uy term gives the acceleration of a piece of the string. The uy, is the
concavity of the string. Thus, for a positive concavity the string is curved
upward near the point of interest. Thus, neighboring points tend to pull
upward towards the equilibrium position. If the concavity is negative, it
would cause a negative acceleration.

The solution of this problem is easily found using separation of variables.
We let u(x,t) = X(x)T(t). Then we find

XT" = 2X'T,
which can be rewritten as L X
2T X
Again, we have separated the functions of time on one side and space on
the other side. Therefore, we set each function equal to a constant, A.

1 TII X//
27 - x - <
~— ~ constant
function of function of x
This leads to two equations:
T = AT, (2.14)
X" = AX. (2.15)

As before, we have the boundary conditions on X(x):

X(0)=0, and X(L)=0,
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giving the solutions, as shown in Figure 2.8,
. NTX n\2
Xn(x):SIHT, /\n:_<f) .

The main difference from the solution of the heat equation is the form of
the time function. Namely, from Equation (2.14) we have to solve

T + (”T”C)ZT:(). (2.16)
This equation takes a familiar form. We let
w, e
n — TI
then we have
T+ wiT = 0.

This is the differential equation for simple harmonic motion and w, is the
angular frequency. The solutions are easily found as

T(t) = A, coswyt + By sinwyt. (2.17)

Therefore, we have found that the product solutions of the wave equation
take the forms sin 7% cos w,t and sin 7= sinw,t. The general solution, a

superposition of all product solutions, is given by

ad t t
u(x, t) =Y Apcos 5 4 B sin P | sin T

I . |sinT (2.18)

n=1
This solution satisfies the wave equation and the boundary conditions.
We still need to satisfy the initial conditions. Note that there are two initial
conditions, since the wave equation is second order in time.
First, we have u(x,0) = f(x). Thus,

f(x) =u(x,0) = i Ay sin ;Lth (2.19)
n=1

In order to obtain the condition on the initial velocity, u;(x,0) = g(x), we
need to differentiate the general solution with respect to ¢:
= nmce nrrct nrct| . nmx

up(x,t) =y I — A, sin + B, cos n—— (2.20)
n=1

Then, we have from the initial velocity

o0
g(x) = us(x,0) = ng:l %Bn sin n—z[x (2.21)
So, applying the two initial conditions, we have found that f(x) and g(x),
are represented as Fourier sine series. In order to complete the problem we
need to determine the coefficients A,, and B, for n = 1,2,3,.... Once we
have these, we have the complete solution to the wave equation. We had
seen similar results for the heat equation. In the next chapter we will find
out how to determine these Fourier coefficients for such series of sinusoidal
functions.

I~ —

Xq(x) = sin 5%

X3(x) = sin 2

Figure 2.8: The first three harmonics of
the vibrating string.

General solution.
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Thermodynamic equilibrium, V2u = 0.

Incompressible, irrotational fluid flow,
V2¢ = 0, for velocity v = V.

u(x,H) =0

u(©y)=0 | V2u=0 | u(Ly)=0

00 T x
u(x,0) = f(x)

Figure 2.9: In this figure we show the
domain and boundary conditions for the
example of determining the equilibrium
temperature distribution for a rectangu-
lar plate.

2.5 Laplace’s Equation in 2D

ANOTHER OF THE GENERIC PARTIAL DIFFERENTIAL EQUATIONS is Laplace’s
equation, VZu = 0. This equation first appeared in the chapter on complex
variables when we discussed harmonic functions. Another example is the
electric potential for electrostatics. As we described Chapter ??, for static
electromagnetic fields,

V-E=p/eg, E=V¢.

In regions devoid of charge, these equations yield the Laplace equation
V2¢ = 0.

Another example comes from studying temperature distributions. Con-
sider a thin rectangular plate with the boundaries set at fixed temperatures.
Temperature changes of the plate are governed by the heat equation. The
solution of the heat equation subject to these boundary conditions is time
dependent. In fact, after a long period of time the plate will reach thermal
equilibrium. If the boundary temperature is zero, then the plate temperature
decays to zero across the plate. However, if the boundaries are maintained
at a fixed nonzero temperature, which means energy is being put into the
system to maintain the boundary conditions, the internal temperature may
reach a nonzero equilibrium temperature. Reaching thermal equilibrium
means that asymptotically in time the solution becomes time independent.
Thus, the equilibrium state is a solution of the time independent heat equa-
tion, which is another Laplace equation, V2u =0.

As another example we could look at fluid flow. For an incompressible
flow, V - v = 0. If the flow is irrotational, then V x v = 0. We can introduce
a velocity potential, v = V¢. Thus, V X v vanishes by a vector identity and
V -v = 0 implies V¢ = 0. So, once again we obtain Laplace’s equation.

In this section we will look at examples of Laplace’s equation in two
dimensions. The solutions in these examples could be examples from any
of the application in the above physical situations and the solutions can be
applied appropriately.

Example 2.3. Equilibrium Temperature Distribution for a Rectangular Plate
Let’s consider Laplace’s equation in Cartesian coordinates,

Uy tuyy =0, 0<x<L O0<y<H
with the boundary conditions
u(0,y) =0, u(Ly)=0, u(x,0)=f(x), u(x,H)=0.

The boundary conditions are shown in Figure 6.8
As with the heat and wave equations, we can solve this problem using the method
of separation of variables. Let u(x,y) = X(x)Y(y). Then, Laplace’s equation be-
comes
X"Y+XY"=0
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and we can separate the x and y dependent functions and introduce a separation

constant, A,

Thus, we are led to two differential equations,

X// Y//

X~ v~ N
X'"+AX = 0,

Y'—AY = 0.

(2.22)

From the boundary condition u(0,y) = 0,u(L,y) = 0, we have X(0) =

0, X(L) = 0. So, we have the usual eigenvalue problem for X(x),

X"+AX =0,

X(0) = 0,X(L) =0.

The solutions to this problem are given by

nritx

X(x) =sin ==, Ay = (@)2 n=1,2,....

L

The general solution of the equation for Y (y) is given by

Y(y) = c1eVM 4 cpe VMY,

The boundary condition u(x, H) = 0 implies Y(H) = 0. So, we have

c1e

Thus,

Inserting this result into the ex
Y(y) = cie
= (1€

= (1€

VAH | pe=VAH = 0,

+ coe

Cp = —cye?VAH,
pression for Y (y), we have
VAy _ ClEZX/XHe*\/Xy
VAH (E—ﬁHeﬁy _ e\FAHe—ﬁy)

VRH (= VA(H-) _ oVNH-))

= —2c;e¥* ginh VA(H —y).

(2.23)

Since we already know the values of the eigenvalues A, from the eigenvalue

problem for X(x), we have that the y-dependence is given by

Yo (

So, the product solutions are gi

n7TX nn(H —y)

ne(H —y)

y) = sinh T

ven by

un(x,y) = sin

inh ,
I sin I

n=12,....

These solutions satisfy Laplace’s equation and the three homogeneous boundary

conditions and in the problem.

The remaining boundary condition, u(x,0) = f(x), still needs to be satisfied.
Inserting y = 0 in the product solutions does not satisfy the boundary condition

Note: Having carried out this compu-
tation, we can now see that it would
be better to guess this form in the fu-
ture. So, for Y(H) = 0, one would
guess a solution Y (y) = sinh vVA(H — y).
For Y(0) = 0, one would guess a so-
lution Y(y) = sinhy/Ay. Similarly, if
Y'(H) = 0, one would guess a solution
Y(y) = coshvVA(H —y).
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unless f(x) is proportional to one of the eigenfunctions X,(x). So, we first write
down the general solution as a linear combination of the product solutions,

= . nnx . nn(H—y)
u(x,y)—n;lansm T sinh i : (2.24)

Now we apply the boundary condition, u(x,0) = f(x), to find that

e H
f(x) =) aysinh % sin L7er (2.25)

n=1

Defining b, = a, sinh "?H , this becomes

flx) = i by sin ? (2.26)
n=1

We see that the determination of the unknown coefficients, by, is simply done by
recognizing that this is a Fourier sine series. We now move on to the study of
Fourier series and provide more complete answers in Chapter 6.

2.6 Classification of Second Order PDEs

WE HAVE STUDIED SEVERAL EXAMPLES of partial differential equations, the
heat equation, the wave equation, and Laplace’s equation. These equations
are examples of parabolic, hyperbolic, and elliptic equations, respectively.
Given a general second order linear partial differential equation, how can
we tell what type it is? This is known as the classification of second order
PDEs.

Let u = u(x,y). Then, the general form of a linear second order partial
differential equation is given by

(3, )t + 25, )ity + (%, )1ty + (%, y)tx + e, ¥ty + F(x, 1) = g(x, ).

(2.27)
In this section we will show that this equation can be transformed into one
of three types of second order partial differential equations.

Let x = x(¢,n7) and y = y¢, 1) be an invertible transformation from co-
ordinates (¢,7) to coordinates (x,y). Furthermore, let u(x(&,7),y(&,n)) =
U(¢,n7). How does the partial differential equation (2.27) transform?

We first need to transform the derivatives of u(x, t). We have

uy = Uglx + Uytx,
uy = Usly + Uyry,
i = (U + Uy,
= Ugeli + 2UgyCarfx + Uy + Ugx + Uy,
Uyy = aay(uégy +Uytry),

2 2
= UgeGy + 2UgyCytty + Uyyiy + Uglyy + Uy iy,
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0
uxy = @(ug§x+uW17x),

= UgeCxGy + UgyCuxtty + Uy Cyttx + Uyytxtty + UeCay + Uytzy.
(2.28)

Inserting these derivatives into Equation (2.27), we have

§—fU = auyy + 2buyy + cuyy + duy + euy

= 0 (UgeG? + 2UzyGurpe + Uy + Ugliax + Uytice)
+2b (UgeCxCy + Ugy Gty + Uy Cytix
+ Uyy1aty + Uelay + Upixy)
+c <u§§§§ + 2UgyCytly + Upyty + Uelyy + UMW)
+d (UgGx + Uytyx)
+e (Ugly + Uyny)

= (a3 +2b5:&y + &) Uge
+(2a8 1% + 2081y + 268y 12 + 2c§y17y)u¢,7
+(a17,2( + 2bnx11y + cnf)u,m
+(aGxx + 2bCxy + clyy + dlx + eGy) Uz
+(anx + 2b1xy + ctpyy + diy +eny ) Uy

= Alg +2BUg; + CUyy + DUz + EUy. (2.29)

Picking the right transformation, we can eliminate some of the second
order derivative terms depending on the type of differential equation. This
leads to three types: elliptic, hyperbolic, or parabolic.

For example, if transformations can be found to make A = 0 and C =0,
then the equation reduces to

Uey = lower order terms.

Such an equation is called hyperbolic. A generic example of a hyperbolic
equation is the wave equation.
The conditions that A = 0 and C = 0 give the conditions

agy +2b& 8y + &y = 0.
an? + 2bnyny + CU; = 0. (2.30)

We seek ¢ and # satisfying these two equations, which are of the same
form. Let’s assume that { = ¢(x,y) is a constant curve in the xy-plane.
Furthermore, if this curve is the graph of a function, y = y(x), then

dg dy
= =Cx+ 28, =0.
Then

dy _ _Gx
dx gy

Hyperbolic case.
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Inserting this expression in A = 0, we have

A = al%42bEEy +
= (a5 sl
= {,‘y(a(cy) +2 gy—i—c)
2
Cﬁ <a (Z]}/C) 2bZZ+C> =0. (2.31)

This equation is satisfied if y(x) satisfies the differential equation
dy _ bE Vb —ac
dx a '
So, for A = 0, we choose ¢ and 7 to be constant on these characteristic

curves.

Example 2.4. Show that uyy — uyy = 0 is hyperbolic.

In this case we have a =1 = —cand b = 0. Then,
dy
< = 41.
dx

This gives y(x) = £x + c. So, we choose ¢ and n constant on these characteristic
curves. Therefore, welet  =x—y, 1 =x+y.

Let’s see if this transformation transforms the differential equation into a canon-
ical form. Let u(x,y) = U(E, ). Then, the needed derivatives become

Uy = U€Cx+uni7x = LI¢+U,7.
0
uxx — a(ug‘l' Uﬂ)

= UgeCx + Ugyifx + Uyela + Upytx
= Ug +2Ugy + Uyy.
0
uy = —(—Us+Uy)
vy gy He
= —Ugely — Ugyty + Uyely + Uyyity
= Uz —2Ugy + Uyy- (2.32)

Inserting these derivatives into the differential equation, we have
O = Uxx — uyy = 4U§,7.

Thus, the transformed equation is Uz, = 0. Thus, showing it is a hyperbolic equa-
tion.

We have seen that A and C vanish for (x,y) and #(x,y) constant along

dl_bi\/bz—ac

dx a

the characteristics

for second order hyperbolic equations. This is possible when b?> — ac > 0
since this leads to two characteristics.
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In general, if we consider the second order operator
L{u] = a(x,y)uxx +2b(x, y)tixy + c(x,y)uyy,
then this operator can be transformed to the new form
L'[U] = BUg,

if b — ac > 0. An example of a hyperbolic equation is the wave equation,

Ut = Uxx.
When b? — ac = 0, then there is only one characteristic solution, % = g
This is the parabolic case. But, % = — g—; So, Parabolic case.
b_ &
a &
or
aly +bg, = 0.

Also, b2 —ac =0 implies that c = b?/a.
Inserting these expression into coefficient B, we have
B = 2alnx+ Zb(:xiyy + 2bGy1x + 2c8yny
= 2(ady +by)nx +2(bCx + cCy)iy

b
= zg(aéx + béy)ﬂy =0. (233)
Therefore, in the parabolic case, A = 0 and B = 0, and L[u] transforms to

when b? — ac = 0. This is the canonical form for a parabolic operator. An
example of a parabolic equation is the heat equation, u; = 1y,.
Finally, when b — ac < 0, we have the elliptic case. In this case we Elliptic case.
cannot force A = 0 or C = 0. However, in this case we can force B = 0. As
we just showed, we can write

B = 2(aly + by)nx +2(bCx + cCy )1y

Letting 77, = 0, we can choose ¢ to satisfy blx + ¢, = 0.

ac — b2

A = al} +2b88y + oGy = aly — c&y = -

&

C=an’+ 2bnxny + 0175 = c;yﬁ

ac—
Cc

. 2
Furthermore, setting %=2"a2 — c17§, we can make A = C and L[u] trans-
forms to

L'[U] = AlUgg + Uy

when b? — ac < 0. This is the canonical form for an elliptic operator. An
example of an elliptic equation is Laplace’s equation, tyy + tyy = 0.
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Classification of Second Order PDEs
The second order differential operator

Liu] = a(x,y)uxx +2b(x, y)tixy + c(x,y)uyy,
can be transformed to one of the following forms:
 b>—ac > 0. Hyperbolic: L[u] = B(x, )y
 b? —ac = 0. Parabolic: L[u] = C(x,y)uy,

o b* —ac < 0. Elliptic: L[u] = A(x,y) [txx + 1tyy]

As a final note, the terminology used in this classification is borrowed
from the general theory of quadratic equations which are the equations for
translated and rotated conics. Recall that the general quadratic equation in
two variable takes the form

ax? +2bxy + cy? +dx +ey + f = 0. (2.34)
One can complete the squares in x and y to obtain the new form
a(x —h)?+2bxy +c(y — k) + f =0.

So, translating points (x,y) using the transformations x’ = x —h and ' =
y —k, we find the simpler form

ax? + 2bxy +cy? + f = 0.

Here we dropped all primes.
We can also introduce transformations to simplify the quadratic terms.
Consider a rotation of the coordinate axes by 6,

/

x' = xcos®+ysinf

Yy = —xsin®+ycosb, (2-35)
or

x = x'cosf—y'sind

y = x'sinf+y coso. (2.36)

The resulting equation takes the form
Ax? 4+ 2Bx'y +Cy?+D =0,
where

= acos®0+ 2bsinfcosf + csin? 6.

S
|

(c —a)sinB cosB + b(cos? 6 — sin®).

C = asin®0 —2bsinfcosb + ccos? 6. (2.37)



SECOND ORDER PARTIAL DIFFERENTIAL EQUATIONS

We can eliminate the x'y’ term by forcing B = 0. Since cos? 0 — sin?§ =
cos 20 and sinf cos 6 = % sin 26, we have

B = (c;a) sin26 + bcos20 = 0.

Therefore, the condition for eliminating the x'y’ term is

a—c
2b

cot(20) =

Furthermore, one can show that b2 — ac = B2 — AC. From the form Ax? +
2Bx'y + Cyl2 + D = 0, the resulting quadratic equation takes one of the
following forms:

e 1% —ac > 0. Hyperbolic: Ax?> — Cy?> +D = 0.
e 1% —ac = 0. Parabolic: Ax*>+ By + D = 0.
e b2 —ac < 0. Elliptic: Ax?> +Cy>+D =0.

Thus, one can see the connection between the classification of quadratic
equations and second order partial differential equations in two indepen-
dent variables.

2.7 d’Alembert’s Solution of the Wave Equation

A GENERAL SOLUTION OF THE ONE-DIMENSIONAL WAVE EQUATION can
be found. This solution was first Jean-Baptiste le Rond d’Alembert (1717-
1783) and is referred to as d’Alembert’s formula. In this section we will
derive d’Alembert’s formula and then use it to arrive at solutions to the
wave equation on infinite, semi-infinite, and finite intervals.

We consider the wave equation in the form u; = 2,y and introduce the
transformation

u(x,t) =U(E, 1), where ¢=x+ctand 5 =x—ct.

Note that ¢, and # are the characteristics of the wave equation.

We also need to note how derivatives transform. For example
u IU(, 1)

ox ox

U(C, i) 98 | IU(E, 1) 9
o¢  ox o ox

ou(&, i) , OU(S, 1)
9% an

Therefore, as an operator, we have

(2.38)

0 0 %)

ax oc Loy
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Similarly, one can show that

d 0 d
=co;—¢

ot ¢ oy
Using these results, the wave equation becomes
0 = up— Puxy

2,02
oz~ “ o))"

<
(33 (33
<

ci—ci%-ci—i-ci ci—ci—ci—ci u
o¢ Iy o¢ oy o¢ Iy o¢ oy

—4C277u- (239)
n
Therefore, the wave equation has transformed into the simpler equation,
Uye = 0.

Not only is this simpler, but we see it is once again a confirmation that
the wave equation is a hyperbolic equation. Of course, it is also easy to

i (3¢) =0

= constant with respect to ¢ = I'(7).

integrate. Since

ou
¢
A further integration gives

U@ = [ T6" dn + F@) = Gl + ).

Therefore, we have as the general solution of the wave equation,
u(x,t) = F(x+ct) + G(x —ct), (2.40)

where F and G are two arbitrary, twice differentiable functions. As ¢ is

increased, we see that F(x + ct) gets horizontally shifted to the left and

G(x — ct) gets horizontally shifted to the right. As a result, we conclude

that the solution of the wave equation can be seen as the sum of left and
u(x,t) = sum of left and right traveling right traveling waves.

waves. Let’s use initial conditions to solve for the unknown functions. We let

u(x,0) = f(x), u(x,0)=g(x), [|x]<oo.

Applying this to the general solution, we have

f(x) = F(x)+G(x) (2.41)
g(x) = c[F(x)-G'(x)). (2.42)
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We need to solve for F(x) and G(x) in terms of f(x) and g(x). Integrating
Equation (2.42), we have

1/Otg(s) ds = F(x) — G(x) — F(0) + G(0).

[

Adding this result to Equation (2.42), gives

F() = 3£(0) + - [ 8(5)ds + 3 [F(0) - G(O)L.

Subtracting from Equation (2.42), gives

Now we can write out the solution u(x, t) = F(x + ct) + G(x — ct), yield-
ing d’Alembert’s solution d’Alembert’s solution

1 1 x—+ct
uGot) = 5lfxre) +fx—cl+5 [ g @a3)

When f(x) and g(x) are defined for all x € R, the solution is well-defined.
However, there are problems on more restricted domains. In the next exam-
ples we will consider the semi-infinite and finite length string problems.In
each case we will need to consider the domain of dependence and the do-
main of influence of specific points. These concepts are shown in Figure
2.10. The domain of dependence of point P is red region. The point P de-
pends on the values of u and u; at points inside the domain. The domain of
influence of P is the blue region. The points in the region are influenced by
the values of u and u; at P.

ta Figure 2.10: The domain of dependence

of point P is red region. The point P de-

pends on the values of 1 and u; at points

P inside the domain. The domain of influ-

ence of P is the blue region. The points

x=¢—ct xX=1n+ct in the region are influenced by the val-
ues of u and u; at P.

Influence

Example 2.5. Use d’Alembert’s solution to solve
Ut = CPllyy, u(x,0) = f(x), u(x,0)=g(x), 0<x<o0.

The d’Alembert solution is not well-defined for this problem because f(x — ct)
is not defined for x — ct < 0 for ¢,t > 0. There are similar problems for g(x). This
can be seen by looking at the characteristics in the xt-plane. In Figure 2.11 there
are characteristics emanating from the points marked by 1o and ¢y that intersect
in the domain x > 0. The point of intersection of the blue lines have a domain of
dependence entirely in the region x,t > 0, however the domain of dependence of
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Figure 2.11: The characteristics for the

semi-infinite string.

Fixed end boundary condition

Free end boundary condition

ta
P x =19+ ct
—"” NN‘
.- SIS
e .
0 "o o

point P reaches outside this region. Only characteristics { = x + ct reach point P,
but characteristics § = x — ct do not. But, we need f(y) and g(x) for x < ct to
form a solution.

This can be remedied if we specified boundary conditions at x = 0. For example,
we will assume the end x = 0 is fixed,

u(0,t) =0, +>0.

Imagine an infinite string with one end (at x = 0) tied to a pole.
Since u(x,t) = F(x + ct) + G(x — ct), we have

u(0,t) = F(ct) + G(—ct) = 0.

Letting { = —ct, this gives G({) = —F(—{), { <O0.
Note that

(2.44)

These relations imply that we can extend the functions into the region x < 0 if we
make them odd functions, or what are called odd extensions. An example is shown
in Figure 2.12.

Another type of boundary condition is if the end x = 0 is free,

ux(0,t) =0, t>0.

In this case we could have an infinite string tied to a ring and that ring is allowed
to slide freely up and down a pole.
One can prove that this leads to

Thus, we can use an even extension of these function to produce solutions.
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Example 2.6. Solve the initial-boundary value problem

Uy = CUyy, 0<x<o00,t>0.
X, 0<x<1,
u(x,0) = 2—x, 1<x<2, 0<x<o
{ 0, x> 2,
u(x,0) = 0, 0<x<oo.
u(0,t) = 0, t>0. (2.45)

This is a semi-infinite string with a fixed end. Initially it is plucked to produce
a nonzero triangular profile for 0 < x < 2. Since the initial velocity is zero, the
general solution is found from d’Alembert’s solution,

u(x, ) = Slfolx+ct) + folx — )]

where f,(x) is the odd extension of f(x) = u(x,0). In Figure 2.12 we show the
initial condition and its odd extension. The odd extension is obtained through
reflection of f(x) about the origin.

f(x) = u(x,0)

+
=

fo(x)

=

The next step is to look at the horizontal shifts of fo(x). Several examples are
shown in Figure 2.13.These show the left and right traveling waves.

In Figure 2.14 we show superimposed plots of f,(x + ct) and f,(x — ct) for
given times. The initial profile in at the bottom. By the time ct = 2 the full
traveling wave has emerged. The solution to the problem emerges on the right side
of the figure by averaging each plot.

Example 2.7. Use d’Alembert’s solution to solve
U = gy, u(x,0) = f(x), wu(x,0)=g(x), 0<x<~L
The general solution of the wave equation was found in the form

u(x,t) = F(x+ct) + G(x —ct).

Figure 2.12: The initial condition and its
odd extension. The odd extension is ob-
tained through reflection of f(x) about
the origin.
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Figure 2.13: Examples of f,(x + ct) and
fo(x —ct).

N fo(x+2)

v

\ fo(x+1)
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. fo(x+0)
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fo(x _y\ A /\% 25)
fo(x +2) o(x —2)
folx 47\ o(x —1.5)

N

U,
fo(x+0

+
=

fo(

F+0)

o(x—0)

+
=

<
=

Figure 2.14: Superimposed plots of
fo(x+ct) and f,(x — ct) for given times.
The initial profile in at the bottom. By
the time ct = 2 the full traveling wave
has emerged.
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Figure 2.15: On the left is a plot of f(x +
ct), f(x —ct) from Figure 2.14 and the
average, 1(x, ). On the right the solution
alone is shown for ct = 0 at bottom to
ct = 1 at top for the semi-infinite string
problem
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Howewver, for this problem we can only obtain information for values of x and t
such that 0 < x4 ct < £and 0 < x —ct < {. In Figure 2.16 the characteristics
x=C¢+ctand x =n —ct for 0 < &,y < {. The main (gray) triangle, which is
the domain of dependence of the point (£,2,0/2c), is the only region in which the
solution can be found based solely on the initial conditions. As with the previous
problem, boundary conditions will need to be given in order to extend the domain
of the solution.

In the last example we saw that a fixed boundary at x = 0 could be satisfied
when f(x) and g(x) are extended as odd functions. In Figure 2.17 we indicate how
the characteristics are affected by drawing in the new one as red dashed lines. This
allows us to now construct solutions based on the initial conditions under the line
x =L —ctfor 0 < x < £ The new region for which we can construct solutions
from the initial conditions is indicated in gray in Figure 2.17.

ta '
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We can add characteristics on the right by adding a boundary condition at x = £.
Again, we could use fixed u({,t) = 0, or free, uy(¢,t) = 0, boundary conditions.
This allows us to now construct solutions based on the initial conditions for ¢ <
x < 24.

Let’s consider a fixed boundary condition at x = (. Then, the solution must
satisfy

u(l,t) =F({+ct)+ G —ct)=0.

63

Figure 2.16: The characteristics emanat-
ing from the interval 0 < x < ¢ for the

finite string problem.

Figure 2.17: The red dashed lines are the
characteristics from the interval [—/,0]
from using the odd extension about x =

0.



64 PARTIAL DIFFERENTIAL EQUATIONS

Figure 2.18: The red dashed lines are the
characteristics from the interval [—/,0]
from using the odd extension about x =
0 and the blue dashed lines are the char-
acteristics from the interval [¢,2/] from
using the odd extension about x = ¢.

To see what this means, let { = £ + ct. Then, this condition gives (since ct = { — {)
F()=-G(2¢—-¢(), t<{<2.

Note that G(2¢ — () is defined for 0 < 2¢ — { < L. Therefore, this is a well-defined
extension of the domain of F(x).

Note that
O = MO 4a [

g(s)ds.
Gt-g) = rper-g+ L [
1
= -0~ 27/ (20— 0)
(2.46)
Comparing the expressions for G({) and —G(2¢ — (), we see that

f(O) =—f20=0), g(0)=—g2l-0).

These relations imply that we can extend the functions into the region x > { if
we consider an odd extension of f(x) and g(x) about x = (.. This will give the
blue dashed characteristics in Figure 2.18 and a larger gray region to construct the
solution.

ta

7
\
-

’
/7
’
\
\
\
S -

\
\

So far we have extended f(x) and g(x) to the interval —¢ < x < 2/ in
order to determine the solution over a larger xt-domain. For example, the
function f(x) has been extended to

—f(=x), —¢<x<0,

fext(x) = f(x), 0<x<?,
—f(20—x), ¢<x<2C

A similar extension is needed for g(x). Inserting these extended functions
into d’Alembert’s solution, we can determine u(x, t) in the region indicated

in Figure 2.18.
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Even though the original region has been expanded, we have not deter-
mined how to find the solution throughout the entire strip, [0, ¢] x [0, o).
This is accomplished by periodically repeating these extended functions
with period 2¢. This can be shown from the two conditions

flx) = =f(=x), —€=x<0,
flx)=—f(20—x), £<x<2 (2.47)

Now, consider

fx+20)

|
[
-
—
N
~
[
—
=
[
N
~
~—
~—

= f(x). (2.48)

This shows that f(x) is periodic with period 2¢. Since g(x) satisfies the same
conditions, then it is as well.

In Figure 2.19 we show how the characteristics are extended throughout
the domain strip using the periodicity of the extended initial conditions. The
characteristics from the interval endpoints zig zag throughout the domain,
filling it up. In the next example we show how to construct the odd periodic
extension of a specific function.

ta

~SF-=-e--

-2/ 20 3¢

Example 2.8. Construct the periodic extension of the plucked string initial profile
given by

satisfying fixed boundary conditions at x = 0 and x = £.
We first take the solution and add the odd extension about x = 0. Then we add
an extension beyond x = (. This process is shown in Figure 2.20.

We can use the odd periodic function to construct solutions. In this case
we use the result from the last example for obtaining the solution of the
problem in which the initial velocity is zero, u(x,t) = 3[f(x +ct) + f(x —
ct)]. Translations of the odd periodic extension are shown in Figure 2.21.

Figure 2.19: Extending the characteris-
tics throughout the domain strip.
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Figure 2.20: Construction of odd peri-
odic extension for (a) The initial profile,
f(x). (b) Make f(x) an odd function on
[—¢, ). (c) Make the odd function peri-
odic with period 2/.

Figure 2.21: Translations of the odd pe-
riodic extension.

(a) MT/\ L
(b)

(©)
AN A A
AV VA V7 I W g

In Figure 2.22 we show superimposed plots of f(x + ct) and f(x — ct) for
different values of ct. A box is shown inside which the physical wave can
be constructed. The solution is an average of these odd periodic extensions
within this box. This is displayed in Figure 2.23.
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Problems

1. Solve the following initial value problems.
a. x"+x=0, x(0)=2, x'(0)=0.
b. y'+2y—8y=0, y(0)=1, y'(0)=2
c x%y —2xy —4y=0, y(1)=1, y(1)=0.
2. Solve the following boundary value problems directly, when possible.
a. xX"+x=2, x(0)=0, x'(1)=0.
b. ¥ +2y-8y=0, y(0)=1, y(1)=0.
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Figure 2.22: Superimposed translations

of the odd periodic extension.

Figure 2.23: On the left is a plot of f(x +
ct), f(x —ct) from Figure 2.22 and the
average, u(x, t). On the right the solution

alone is shown for ¢t =0 to ¢t = 1.
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In problem d you will not get exact
eigenvalues. Show that you obtain a
transcendental equation for the eigenval-
ues in the form tanz = 2z. Find the first
three eigenvalues numerically.

c y'+y=0 y(0)=1, y(n)=0.

3. Consider the boundary value problem for the deflection of a horizontal
beam fixed at one end,
dty

i =C v =0 y(0) =0, y'(L)=0 y"(L)=0.

Solve this problem assuming that C is a constant.

4. Find the product solutions, u(x,t) = T(t)X(x), to the heat equation,
uy — uyxxy = 0, on [0, 77] satisfying the boundary conditions u,(0,¢) = 0 and
u(m, t) =0.

5. Find the product solutions, u(x,t) = T(t)X(x), to the wave equation
uy = 2uyy, on [0,27] satisfying the boundary conditions u(0,t) = 0 and
uy (27, t) = 0.

6. Find product solutions, u(x, t) = X(x)Y(y), to Laplace’s equation, uyy +
uyy = 0, on the unit square satisfying the boundary conditions u(0,y) = 0,
u(l,y) = g(y), u(x,0) =0, and u(x,1) = 0.

7. Consider the following boundary value problems. Determine the eigen-
values, A, and eigenfunctions, y(x) for each problem.

a. ¥ +Ay=0, y(0)=0, y(1)=0.

b. Yy —Ay=0, y(-m)=0, y(m)=0.

e 2y +xy +Ay=0, y(1)=0, y(2)=0.

d. (x%) +Ay=0, y(1)=0, y'(e)=0.
8. Classify the following equations as either hyperbolic, parabolic, or ellip-
tic.

a. Uyy + Uyy + Uxx = 0.

b. 3”3{}( + Zuxy + 51/lyy = 0

C X%uyy + 2xyuxy + yzuyy =0.

d. YPuey 4+ 2xyugy + (x2 + 4x*)u,, = 0.
9. Use d’Alembert’s solution to prove

f(=0) =£(©), &(=0)=g(0)

for the semi-infinite string satisfying the free end condition u,(0,¢) = 0.

10. Derive a solution similar to d’Alembert’s solution for the equation uy; +
2uyt —3u = 0.

11. Construct the appropriate periodic extension of the plucked string ini-
tial profile given by

satisfying the boundary conditions at (0, f) = 0 and uy(¢,t) = 0 for t > 0.
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12. Find and sketch the solution of the problem

Uy = Uy, 0<x<1,t>0
{0,0<x<L
ux0) = {1, T<x<3,
0, 3<x<1,
u(x,0) = 0,
u(0,t) = 0, t>0,
u(l,t) = 0, t>0,






3
Trigonometric Fourier Series

“Ordinary language is totally unsuited for expressing what physics really asserts,
since the words of everyday life are not sufficiently abstract. Only mathematics and
mathematical logic can say as little as the physicist means to say.” Bertrand Russell
(1872-1970)

3.1 Introduction to Fourier Series

WE WILL NOW TURN TO THE STUDY of trigonometric series. You have seen
that functions have series representations as expansions in powers of x, or
x — a, in the form of Maclaurin and Taylor series. Recall that the Taylor
series expansion is given by

[e9)
f(x) = Z cn(x —a)",
n=0
where the expansion coefficients are determined as

f"(a)

Cn = 7
n:

From the study of the heat equation and wave equation, we have found
that there are infinite series expansions over other functions, such as sine
functions. We now turn to such expansions and in the next chapter we will
find out that expansions over special sets of functions are not uncommon in
physics. But, first we turn to Fourier trigonometric series.

We will begin with the study of the Fourier trigonometric series expan-
sion -

flx) = %0 +r;ancosn—7zx —I—bnsin?.

We will find expressions useful for determining the Fourier coefficients
{an, by} given a function f(x) defined on [—L,L]. We will also see if the
resulting infinite series reproduces f(x). However, we first begin with some
basic ideas involving simple sums of sinusoidal functions.

There is a natural appearance of such sums over sinusoidal functions in
music. A pure note can be represented as

y(t) = Asin(27tft),
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t
(@) y(t) = 2sin(4rft)

y(t)

t
(b) y(1) = sin(107f1)

Figure 3.1: Plots of y(t) = Asin(27tft)
on [0,5] for f =2Hz and f =5 Hz.

Figure 3.2: Problems can occur while
plotting. Here we plot the func-
tion y(t) = 2sin4mt using N =
201,200,100,101 points.

where A is the amplitude, f is the frequency in hertz (Hz), and ¢ is time in
seconds. The amplitude is related to the volume of the sound. The larger
the amplitude, the louder the sound. In Figure 3.1 we show plots of two
such tones with f = 2 Hz in the top plot and f = 5 Hz in the bottom one.

In these plots you should notice the difference due to the amplitudes and
the frequencies. You can easily reproduce these plots and others in your
favorite plotting utility.

As an aside, you should be cautious when plotting functions, or sampling
data. The plots you get might not be what you expect, even for a simple sine
function. In Figure 3.2 we show four plots of the function y(t) = 2sin(47t).
In the top left you see a proper rendering of this function. However, if you
use a different number of points to plot this function, the results may be sur-
prising. In this example we show what happens if you use N = 200, 100,101
points instead of the 201 points used in the first plot. Such disparities are
not only possible when plotting functions, but are also present when collect-
ing data. Typically, when you sample a set of data, you only gather a finite
amount of information at a fixed rate. This could happen when getting data
on ocean wave heights, digitizing music and other audio to put on your
computer, or any other process when you attempt to analyze a continuous
signal.

y(t)=2 sin(4 = t) for N=201 points y(t)=2 sin(4 = t) for N=200 points
4 4
2 2
=X go
2 ! -2
-4 -4
0 1 2 3 4 5 0 1 2 3 4 5
Time Time
y(t)=2 sin(4 = t) for N=100 points y(t)=2 sin(4 = t) for N=101 points
4 4
2 2
=X g0
-2 -2
-4 -4
0 1 2 3 4 5 0 1 2 3 4 5
Time Time

Next, we consider what happens when we add several pure tones. After
all, most of the sounds that we hear are in fact a combination of pure tones
with different amplitudes and frequencies. In Figure 3.3 we see what hap-
pens when we add several sinusoids. Note that as one adds more and more
tones with different characteristics, the resulting signal gets more compli-
cated. However, we still have a function of time. In this chapter we will ask,



TRIGONOMETRIC FOURIER SERIES 73

“Given a function f(t), can we find a set of sinusoidal functions whose sum
converges to f(£)?”

Looking at the superpositions in Figure 3.3, we see that the sums yield
functions that appear to be periodic. This is not to be unexpected. We recall
that a periodic function is one in which the function values repeat over the
domain of the function. The length of the smallest part of the domain which
repeats is called the period. We can define this more precisely: A function is
said to be periodic with period T if f(t+ T) = f(t) for all t and the smallest
such positive number T is called the period.

For example, we consider the functions used in Figure 3.3. We began with
y(t) = 2sin(4rt). Recall from your first studies of trigonometric functions
that one can determine the period by dividing the coefficient of ¢ into 277 to
get the period. In this case we have

2 1

T=—=_.

4 2

Looking at the top plot in Figure 3.1 we can verify this result. (You can

count the full number of cycles in the graph and divide this into the total
time to get a more accurate value of the period.)

In general, if y(t) = Asin(27ft), the period is found as

27T 1

Of course, this result makes sense, as the unit of frequency, the hertz, is also

defined as s~!

, or cycles per second.

Returning to Figure 3.3, the functions y(t) = 2sin(47t), y(t) = sin(107t),
and y(t) = 0.5sin(167tt) have periods of 0.5s, 0.2s, and 0.125s, respectively.
Each superposition in Figure 3.3 retains a period that is the least common
multiple of the periods of the signals added. For both plots, this is 1.0s
=2(0.5)s = 5(.2)s = 8(.125)s.

Our goal will be to start with a function and then determine the ampli-
tudes of the simple sinusoids needed to sum to that function. We will see
that this might involve an infinite number of such terms. Thus, we will be
studying an infinite series of sinusoidal functions.

Secondly, we will find that using just sine functions will not be enough
either. This is because we can add sinusoidal functions that do not neces-
sarily peak at the same time. We will consider two signals that originate
at different times. This is similar to when your music teacher would make
sections of the class sing a song like “Row, Row, Row your Boat” starting at
slightly different times.

We can easily add shifted sine functions. In Figure 3.4 we show the
functions y(t) = 2sin(4rtt) and y(t) = 2sin(4nt + 77t/8) and their sum.
Note that this shifted sine function can be written as y(t) = 2sin(47(t +
7/32)). Thus, this corresponds to a time shift of —7/32.

So, we should account for shifted sine functions in the general sum. Of
course, we would then need to determine the unknown time shift as well
as the amplitudes of the sinusoidal functions that make up the signal, f(t).

y(t)

t
(a) Sum of signals with frequencies

f=2Hzand f =5Hz.

y(t)

t
(b) Sum of signals with frequencies
f=2Hz, f=5Hz and f = 8 Hz.

Figure 3.3: Superposition of several si-
nusoids.

y(t)

(a) Plot of each function.

y(t)
2 4
0 \/\W
_2 4
0 1 i 3

t
(b) Plot of the sum of the functions.

Figure 3.4: Plot of the functions y(t) =
2sin(4mtt) and y(t) = 2sin(47nt +77/8)
and their sum.
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We should note that the form in the While this is one approach that some researchers use to analyze signals,
lower plot of Figure 3.4 looks like a sim-

L : there is a more common approach. This results from another reworking of
ple sinusoidal function for a reason. Let

the shifted function.

n{t) = 2sinfdnt), Consider the general shifted function

y2(t) = 2sin(4rtt +77/8).
Then, y(t) = Asin(2rtft + ¢). (3.1)
ni+y2 = 2sin(4nt+7m/8) + 2sin(4mrt)
= 2[sin(47mtt + 77/8) + sin(47nt)] Note that 271ft 4 ¢ is called the phase of the sine function and ¢ is called

< 771) the phase shift. We can use the trigonometric identity (A.17) for the sine of

4rt + —

77
4 .
COos s 16

16

the sum of two angles’ to obtain

' Recall the identities (A.17)-(A.18) y(t) - A sin(27rft n (P)

= Asin(¢) cos(27ft) + Acos(¢) sin(27ft). (3-2)

sin(x+y) = sinxcosy+sinycosx,

cos(x+y) = cosxcosy—sinxsiny.

Defining a = Asin(¢) and b = A cos(¢), we can rewrite this as
y(t) = acos(27tft) + bsin(27ft).

Thus, we see that the signal in Equation (3.1) is a sum of sine and cosine
functions with the same frequency and different amplitudes. If we can find
a and b, then we can easily determine A and ¢:

A=+Va>+b? tan¢g= Z.

We are now in a position to state our goal.

Goal - Fourier Analysis

Given a signal f(t), we would like to determine its frequency content by
finding out what combinations of sines and cosines of varying frequencies
and amplitudes will sum to the given function. This is called Fourier

Analysis.

3.2 Fourier Trigonometric Series

As WE HAVE SEEN IN THE LAST SECTION, we are interested in finding
representations of functions in terms of sines and cosines. Given a function
f(x) we seek a representation in the form

[an cos nx + by, sinnx] . (3-3)

agk

fx)~ 3+

n=1

Notice that we have opted to drop the references to the time-frequency form
of the phase. This will lead to a simpler discussion for now and one can
always make the transformation nx = 27 f,t when applying these ideas to
applications.

The series representation in Equation (3.3) is called a Fourier trigonomet-
ric series. We will simply refer to this as a Fourier series for now. The set
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of constants ag, a,, by, n = 1,2,... are called the Fourier coefficients. The
constant term is chosen in this form to make later computations simpler,
though some other authors choose to write the constant term as ag. Our
goal is to find the Fourier series representation given f(x). Having found
the Fourier series representation, we will be interested in determining when
the Fourier series converges and to what function it converges.

From our discussion in the last section, we see that The Fourier series is
periodic. The periods of cosnx and sinnx are 2Z. Thus, the largest period,
T = 27, comes from the n = 1 terms and the Fourier series has period 27t.
This means that the series should be able to represent functions that are
periodic of period 27t.

While this appears restrictive, we could also consider functions that are
defined over one period. In Figure 3.5 we show a function defined on [0, 271].
In the same figure, we show its periodic extension. These are just copies of
the original function shifted by the period and glued together. The extension
can now be represented by a Fourier series and restricting the Fourier series
to [0,27t] will give a representation of the original function. Therefore, we
will first consider Fourier series representations of functions defined on this
interval. Note that we could just as easily considered functions defined on
[—7t, 7t] or any interval of length 27t. We will consider more general intervals
later in the chapter.

Fourier Coefficients

Theorem 3.1. The Fourier series representation of f(x) defined on [0,27t|, when
it exists, is given by (3.3) with Fourier coefficients

1 27 J
- - , =0,12,...,
an <) f(x)cosnxdx, n
1 27
b, = p f(x)sinnxdx, n=1,2,.... (3-4)
0

These expressions for the Fourier coefficients are obtained by considering
special integrations of the Fourier series. We will now derive the a, integrals
in (3.4).

We begin with the computation of ag. Integrating the Fourier series term
by term in Equation (3.3), we have

27 O 2
A f(x)dx = /0 dx + / Z a, cos nx + by sinnx| dx. (3.5)

We will assume that we can integrate the infinite sum term by term. Then
we will need to compute

27 ag O
/O 3dx - ? 27‘[) - 7'[110,

27
/ cosnxdx [smnx} =0,

0

27 —
/ sinnx dx [ €08 nx] =0. (3.6)
0

151

0.5 1

0 10 20
t

(a) Plot of function f(t).

5] y(t)

0.5\

0 10 20
t
(b) Periodic extension of f(t).

Figure 3.5: Plot of the function f(t) de-
fined on [0,27r] and its periodic exten-
sion.

Evaluating the integral of an infinite se-
ries by integrating term by term depends
on the convergence properties of the se-
ries.
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2 Note that %0 is the average of f(x) over
the interval [0,277]. Recall from the first
semester of calculus, that the average of
a function defined on [g, ] is given by

1 b d
fave = m/a f(x)dx.
For f(x) defined on [0, 27], we have

1 27 ao
fave = E 0 f(x) dx = 7

From these results we see that only one term in the integrated sum does not
vanish leaving

27
f(x)dx = may.
0

This confirms the value for 4.2

Next, we will find the expression for a,. We multiply the Fourier series
(3.3) by cosmx for some positive integer m. This is like multiplying by
cos 2x, cos 5x, etc. We are multiplying by all possible cos mx functions for
different integers m all at the same time. We will see that this will allow us
to solve for the a,’s.

We find the integrated sum of the series times cos mx is given by

27 27 agp
f(x)cosmxdx = / — Cosmx dx
0 0

2
+ / Y [an cos nx + by sinnx] cos mx dx.
0
n=1

(3.7)
Integrating term by term, the right side becomes
27 p ao 27 p
x)cosmxdx = — cos mx dx
[ s) |
s 27 27
+ Z {an / cos nx cosmx dx + by, / sin nx cos mx dx} .
n=1 0 0

(3.8)

We have already established that f02” cosmx dx = 0, which implies that the
first term vanishes.

Next we need to compute integrals of products of sines and cosines. This
requires that we make use of some of the trigonometric identities listed in
Chapter 1. For quick reference, we list these here.

Useful Trigonometric Identities

sin(xty) = sinxcosy+sinycosx (3.9)
cos(x£y) = cosxcosy Fsinxsiny (3.10)
sinffx = %(1 — cos 2x) (3.11)
cos?x = %(1 + cos 2x) (3.12)
sinxsiny = %(cos(x —y) —cos(x +y)) (3.13)
cosxcosy = %(cos(x—ky) + cos(x —y)) (3.14)
sinxcosy = %(sin(x +y) +sin(x —y)) (3.15)

We first want to evaluate fozn cosnx cosmx dx. We do this by using the
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product identity (3.14). We have

27
/ cosnxcosmxdx =
0

n(m+n)x sin(m —n)x]*"

m-+n m-—n 0

/ cos(m + n)x + cos(m — n)x] dx

S NI~ N~

(3.16)

There is one caveat when doing such integrals. What if one of the de-
nominators m & n vanishes? For this problem m + n # 0, since both m and
n are positive integers. However, it is possible for m = n. This means that
the vanishing of the integral can only happen when m # n. So, what can
we do about the m = n case? One way is to start from scratch with our
integration. (Another way is to compute the limit as n approaches m in our
result and use L'Hopital’s Rule. Try it!)

For n = m we have to compute fozn cos? mx dx. This can also be handled
using a trigonometric identity. Using the half angle formula, (3.12), with
0 = mx, we find

27 ) 1 [2n
/ cos“mxdx = 3 / (14 cos2mx) dx
0 0

1 21

= = |x+ L sin2mx
o2 2m

1
= 5(2”) =T (3.17)

0

To summarize, we have shown that

T, m=n.

27
/ cosnx cosmx dx = { 0, m#n (3.18)
0

This holds true for m,n = 0,1,.... [Why did we include m,n = 0?] When
we have such a set of functions, they are said to be an orthogonal set over the
integration interval. A set of (real) functions {¢,(x)} is said to be orthogonal
on [a,b] if [ b ¢On(x)Pm(x) dx = 0 when n # m. Furthermore, if we also have
that f $2(x) dx = 1, these functions are called orthonormal.

The set of functions {cosnx}$ , are orthogonal on [0,27]. Actually, they
are orthogonal on any interval of length 27r. We can make them orthonormal
by dividing each function by /7t as indicated by Equation (3.17). This is
sometimes referred to normalization of the set of functions.

The notion of orthogonality is actually a generalization of the orthogonal-
ity of vectors in finite dimensional vector spaces. The integral [ ab f(x)f(x)dx
is the generalization of the dot product, and is called the scalar product of
f(x) and g(x), which are thought of as vectors in an infinite dimensional
vector space spanned by a set of orthogonal functions. We will return to
these ideas in the next chapter.

Returning to the integrals in equation (3.8), we still have to evaluate
fozﬂ sinnx cos mx dx. We can use the trigonometric identity involving prod-
ucts of sines and cosines, (3.15). Setting A = nx and B = mx, we find

Definition of an orthogonal set of func-
tions and orthonormal functions.
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that
27T 1
/ sinnxcosmxdx = E/ sin(n + m)x + sin(n — m)x] dx
0
_ 1 [—cos(n+m)x +—cos(n—m)x m
2 n+m n—m 0
= (F1+D)+(=1+1)=0. (3.19)
So,

21
/ sinnx cosmx dx = 0. (3.20)
Jo

For these integrals we also should be careful about setting n = m. In this
special case, we have the integrals

1

27 1 r2m
/ sinmxcosmxdx = = / sin2mxdx = =
0 2 Jo 2

o 2 27
cos mx] _o

2m 0

Finally, we can finish evaluating the expression in Equation (3.8). We
have determined that all but one integral vanishes. In that case, n = m. This
leaves us with

A f(x)cosmxdx = aym.

Solving for a,, gives

T
== dx.
m = — ; f(x) cos mx dx

Since this is true for allm = 1,2, ..., we have proven this part of the theorem.
The only part left is finding the b,,’s This will be left as an exercise for the
reader.

We now consider examples of finding Fourier coefficients for given func-
tions. In all of these cases we define f(x) on [0, 27].

Example 3.1. f(x) = 3cos2x, x € [0,271].
We first compute the integrals for the Fourier coefficients.

1 27
ag = — 3cos2xdx = 0.
7T JO
1 r2r
a, = =)o 3cos2xcosnxdx =0, n #2.
1 27
a, = —/ 3cos?2xdx = 3,
T JO
1 27
b, = p 3cos2xsinnxdx = 0,Vn.
0

(3.21)

The integrals for ag, ay,n # 2, and b, are the result of orthogonality. For ay, the
integral can be computed as follows:

1 27
a = —/ 3cos? 2x dx
T Jo
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3 27T P
= — 1 4
27r/0 [1+ cos4x] dx
2
= % x+ }lsinélx =3. (3.22)

N —
This term vanishes!] g
Therefore, we have that the only nonvanishing coefficient is ap = 3. So there is
one term and f(x) = 3 cos2x.

Well, we should have known the answer to the last example before doing
all of those integrals. If we have a function expressed simply in terms of
sums of simple sines and cosines, then it should be easy to write down the
Fourier coefficients without much work. This is seen by writing out the
Fourier series,

flx) ~ %0"‘ Z [an cosnx + b, sin nx] .

n=1

- %0 + a1 o8 X + by sinx + +a3 cos2x + by sin2x + ... (3.23)

For the last problem, f(x) = 3cos2x. Comparing this to the expanded
Fourier series, one can immediately read off the Fourier coefficients without
doing any integration. In the next example we emphasize this point.

Example 3.2. f(x) =sin’x, x € [0,27].
We could determine the Fourier coefficients by integrating as in the last example.
Howeuver, it is easier to use trigonometric identities. We know that

1 1 1

.2

=—(1- 2x) = = — = 2x.

sin” x 2( cos 2x) 5 5 Cos2x

There are no sine terms, so by, = 0,n = 1,2, .... There is a constant term, implying

ap/2 = 1/2. So, ay = 1. There is a cos2x term, corresponding to n = 2, so
ap, = —%. That leaves a, = 0 for n # 0,2. S0, a9 = 1, ap = —%, and all other
Fourier coefficients vanish.

1, 0<x<m,
-1, nm<x<2m,

This example will take a little more work. We cannot bypass evaluating any
integrals this time. As seen in Figure 3.6, this function is discontinuous. So, we
will break up any integration into two integrals, one over [0, 7t| and the other over
[7t,27].

Example 3.3. f(x) =

a = 1 an(x)dx

T Jo
27‘(
:—/dx—i—/

- %() 3{( —27 4 1) = 0. (3-24)

1 27 p
ap = %/0 f(x)cosnxdx

-2
Figure 3.6: Plot of discontinuous func-
tion in Example 3.3.
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Often we see expressions involving
cosnt = (=1)" and 1+ cosnm = 1+
(—1)". This is an example showing how
to re-index series containing cos n7t.

1 7T 27T
= [/ cosnxdx—/ cosnxdx}

7T |JO T

1 1 7T 1 271
= — —sinnx — | —sinnx

[ Gamee) - o)
= 0. (3.25)

b 1 27 . p
n= T, f(x)sinnxdx

1 [ rm 27
= — / sinnxdx—/ sinnxdx}

7T | JO T

1 [ 1 T 1 27
= — (cosnx) +(cosnx>

7T n 0 n -

17 1 1 1 1 }
= — |——cosnm+ —+ — — —COSHurm

T n n n n
= i(1—(:051171) (3.26)
= . 3.

We have found the Fourier coefficients for this function. Before inserting them

into the Fourier series (3.3), we note that cosnmt = (—1)". Therefore,
0, neven
1—cosnm = ’ 2
{ 2, nodd (3:27)

So, half of the b,’s are zero. While we could write the Fourier series representation
as

4 > 1 .

= 2 ~ sinnx,

s n

Q_‘r—k

nod
we could let n = 2k — 1 in order to capture the odd numbers only. The answer can
be written as

4 & sin(2k —1)x

T -’; 2k—1 '

Having determined the Fourier representation of a given function, we
would like to know if the infinite series can be summed; i.e., does the series
converge? Does it converge to f(x)? We will discuss this question later in
the chapter after we generalize the Fourier series to intervals other than for

€ [0,2m].

3.3 Fourier Series Over Other Intervals

IN MANY APPLICATIONS WE ARE INTERESTED in determining Fourier series
representations of functions defined on intervals other than [0,27]. In this
section we will determine the form of the series expansion and the Fourier
coefficients in these cases.

The most general type of interval is given as [a,b]. However, this often

is too general. More common intervals are of the form [—7, 7], [0, L], or
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[—L/2,L/2]. The simplest generalization is to the interval [0, L]. Such in-
tervals arise often in applications. For example, for the problem of a one
dimensional string of length L we set up the axes with the left end at x = 0
and the right end at x = L. Similarly for the temperature distribution along
a one dimensional rod of length L we set the interval to x € [0,27]. Such
problems naturally lead to the study of Fourier series on intervals of length
L. We will see later that symmetric intervals, [—a, a], are also useful.

Given an interval [0, L], we could apply a transformation to an interval
of length 27t by simply rescaling the interval. Then we could apply this
transformation to the Fourier series representation to obtain an equivalent
one useful for functions defined on [0, L].

We define x € [0,277] and t € [0, L]. A linear transformation relating these
intervals is simply x = 2™ as shown in Figure 3.7. So, = 0 maps to x = 0
and t = L maps to x = 27. Furthermore, this transformation maps f(x) to
a new function g(t) = f(x(t)), which is defined on [0, L]. We will determine
the Fourier series representation of this function using the representation
for f(x) from the last section.

Recall the form of the Fourier representation for f(x) in Equation (3.3):

[ee]
fx) ~ % + Y [an cos nx + b, sinnx] . (3.28)
n=1
Inserting the transformation relating x and t, we have

2nrtt . 2nrt
+ b, sin

a [ee]
g(t) ~ ?O + Z [an cos (3.29)
n=1
This gives the form of the series expansion for g(t) with t € [0, L]. But, we
still need to determine the Fourier coefficients.

Recall, that

1
ﬂn:*

27
<)o f(x) cos nx dx.

We need to make a substitution in the integral of x = Z¥. We also will need

to transform the differential, dx = 2T”dt. Thus, the resulting form for the
Fourier coefficients is

2 L 2n7t
a, = Z/o g(t) cos T dt. (3.30)
Similarly, we find that
2 (L . 2nrtt
by = Z/o g(t)sin T dt. (3-31)

We note first that when L = 271 we get back the series representation that
we first studied. Also, the period of cos % is L/n, which means that the
representation for g(t) has a period of L corresponding to n = 1.

At the end of this section we present the derivation of the Fourier series
representation for a general interval for the interested reader. In Table 3.1

we summarize some commonly used Fourier series representations.

} m l .

T
0 L 0 2r

Figure 3.7: A sketch of the transforma-
tion between intervals x € [0,27] and
t € [0,L].

Integration of even and odd functions
over symmetric intervals, [—a, a].
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Even Functions.

Figure 3.8: Area under an even function
on a symmetric interval, [—a, a].

Odd Functions.

y(x)

Figure 3.9: Area under an odd function
on a symmetric interval, [—a,a].

At this point we need to remind the reader about the integration of even
and odd functions on symmetric intervals.

We first recall that f(x) is an even function if f(—x) = f(x) for all x.
One can recognize even functions as they are symmetric with respect to the
y-axis as shown in Figure 3.8.

If one integrates an even function over a symmetric interval, then one has
that

" pdx =2 [ flx)ax. (3:32)

One can prove this by splitting off the integration over negative values of x,
using the substitution x = —y, and employing the evenness of f(x). Thus,

ja fyax = [ Oa Flx) dx + /0 " f(x)dx
= —/ﬂof(—y)der/Ouf(X)dx
= /Oaf(y)dw/oaf(x)dx
-2 /0 " f(x) dx. (3-33)

This can be visually verified by looking at Figure 3.8.

A similar computation could be done for odd functions. f(x) is an odd
function if f(—x) = —f(x) for all x. The graphs of such functions are
symmetric with respect to the origin as shown in Figure 3.9. If one integrates
an odd function over a symmetric interval, then one has that

jﬂf (x)dx = 0. (3:34)

Example 3.4. Let f(x) = |x| on [—7t, T] We compute the coefficients, beginning
as usual with ay. We have, using the fact that |x| is an even function,

1 T
ap = ;/_n|x|dx
2 7T
= E/o xdx =71 (3.35)

We continue with the computation of the general Fourier coefficients for f(x) =
|x| on [—7t, 7]. We have

1 [ d 2 (7 d
a, = ;/_n|x|cosnx X = ;/0 X COS nx dx. (3-36)

Here we have made use of the fact that |x| cos nx is an even function.
In order to compute the resulting integral, we need to use integration by parts ,

b b b
/ udv = uv —/ vdu,
a a a

by letting u = x and dv = cosnx dx. Thus, du = dx and v = [ dv =

1

n smmnx.
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Fourier Series on [0, L]

ad 2 2
f(x)wazo-knzl{ancos nLnx—l—bnsin e
a, = E/Lf(x)cosznmcdx n=20,12
no= T 0 I . =0,12,...,
2 (L . 2nmx
b, = Z/o f(x)sin T dx. n=1,2,....
Fourier Series on [—%, %]
[ee]
2
f(x)NazO"_nEl{a”COS Y 4 bysin 2
2 [% 2nmx
a, = L/_éf(x)cos T dx. n=0,1,2,...,
2 % 2
b, = Z/_z%f(x)sin nLnxdx. n=12,....

Fourier Series on [—71, 7]

[e9)

aop

fx) ~ 5+ Y [an cos nx + by sinnx] .

n=1

1 T
a, = —/ f(x) cos nx dx.
TJ—m

1 T
by, = —/ f(x) sinnx dx.
T J—m

n=2012,...,

n=12,....

(3-37)

(3-38)

(3-39)

(3.40)

(3.41)

(3-42)

Table 3.1: Special Fourier Series Repre-
sentations on Different Intervals
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Continuing with the computation, we have
2 T
a, = —/ X cosnxdx.
7T Jo
2 [1 . T o1 7
— fxsmnx‘ - f/ sinnx dx
mn o nJo

7],

= —— |——=cosnx
nmw| n 0
2

*Tnz(l —(=1"). (3-43)

Here we have used the fact that cosnmt = (—1)" for any integer n. This leads
to a factor (1 — (—1)"). This factor can be simplified as

2, mnodd
1-(-1)"= / . .
(=1 { 0. 1 even (344)
So, a, = 0 for n even and a, = —%for n odd.
Computing the by,’s is simpler. We note that we have to integrate |x| sinnx from
x = —1t to 1. The integrand is an odd function and this is a symmetric interval.
So, the result is that b, = 0 for all n.
Putting this all together, the Fourier series representation of f(x) = |x| on
[—7t, 7t] is given as
T 4 & cosnx
UORS B Ve (3-45)
nodd

While this is correct, we can rewrite the sum over only odd n by reindexing. We
let n =2k —1fork =1,2,3,.... Then we only get the odd integers. The series
can then be written as

cos Zkf 1

Throughout our discussion we have referred to such results as Fourier
representations. We have not looked at the convergence of these series.
Here is an example of an infinite series of functions. What does this series
sum to? We show in Figure 3.10 the first few partial sums. They appear to
be converging to f(x) = |x| fairly quickly.

Even though f(x) was defined on [—7, 7r| we can still evaluate the Fourier
series at values of x outside this interval. In Figure 3.11, we see that the
representation agrees with f(x) on the interval [—7, 7r]. Outside this interval
we have a periodic extension of f(x) with period 2.

Another example is the Fourier series representation of f(x) = x on
[—7, 7t] as left for Problem 7. This is determined to be

0 (_1 n+1 )
flx)~2)° —— o sinnx. (3-47)

As seen in Figure 3.12 we again obtain the periodic extension of the func-
tion. In this case we needed many more terms. Also, the vertical parts of the
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Figure 3.10: Plot of the first partial sums
of the Fourier series representation for

f(x) = |x.

Figure 3.11: Plot of the first 10 terms
of the Fourier series representation for

f(x) = |x| on the interval [—27,471].

Figure 3.12: Plot of the first 10 terms
and 200 terms of the Fourier series rep-
resentation for f(x) = x on the interval

[—2m, 4]
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This section can be skipped on first read-
ing. It is here for completeness and the
end result, Theorem 3.2 provides the re-
sult of the section.

first plot are nonexistent. In the second plot we only plot the points and not
the typical connected points that most software packages plot as the default
style.

Example 3.5. It is interesting to note that one can use Fourier series to obtain
sums of some infinite series. For example, in the last example we found that

xNZZ

Now, what if we chose x = % ? Then, we have

00 n+1
Z 1) SlnMZZ{ 1,11 }
= n 2

This gives a well known expression for 7t:

413455+

n+1
sinnx.

3 5 7

3.3.1 Fourier Series on [a, b]

A FOURIER SERIES REPRESENTATION is also possible for a general interval,
t € [a,]. As before, we just need to transform this interval to [0,27]. Let

t—a
=2 .
X =21 —
Inserting this into the Fourier series (3.3) representation for f(x) we obtain
= 2nm(t — 2nm(t —
Q(f) ~ az—o + Z a, cos % + by sin % . (3-48)

n=1

Well, this expansion is ugly. It is not like the last example, where the
transformation was straightforward. If one were to apply the theory to
applications, it might seem to make sense to just shift the data so thata =0
and be done with any complicated expressions. However, some students
enjoy the challenge of developing such generalized expressions. So, let’s see
what is involved.

First, we apply the addition identities for trigonometric functions and
rearrange the terms.

a ad 2nmt(t —a . 2nn(t—a
gt) ~ ?O-i—n;l [Q”COSIL,Z) —l—bnsmb(_a)]
_ S i o cos 2nrt cos 2nma + sin 2nrt sin 2nma
2 = " b—a b—a b—a b—a
+ b (sin 2nrtt os 2nrma ~ cos 2nrtt sin 2nrma
" b—a b—a b—a b—a
ad 2nrrt 2 2
= %O + ;; [cos bn_ <an cos bn—nZ b, sin bn_mz)

. 2nrtt . 2nma 2nma
+ sin 5 \ansing— + by, cos IR (3.49)



TRIGONOMETRIC FOURIER SERIES 87

Defining Ay = ap and

2 2
A, =a,cos —— e — by sin e
b— b—a

2nr 2n7m
B, = i b, c ,
n = a4y sin —— - —|— b —

we arrive at the more desirable form for the Fourier series representation of

(3-50)

a function defined on the interval [a, b].

Ay | & 2nr . 2nmt
g(t) ~ 5 + Z [An cos +Bn sin g — | . (3.51)

We next need to find expressions for the Fourier coefficients. We insert
the known expressions for a4, and b, and rearrange. First, we note that
under the transformation x = 27'[% we have

1 7T
o= | f(x) cos nx dx
2 b 2nm(t —a)
= b2 L g(t) COs ﬁ dt, (352)
and
1 27
by = < f(x) cosnxdx
2 b . 2n7(t —a)
= b—a/a g(t)smﬁdt. (3.53)

Then, inserting these integrals in A;, combining integrals and making use
of the addition formula for the cosine of the sum of two angles, we obtain

2 2
A, = a,cos L by, sin 1
b—a b—a
2 b 2nm(t—a)  2nma . 2nm(t—a) . 2nma
= t - dt
b—a/a g(t) [cos p— g sy, s sin
2 b 2nret
A similar computation gives
2 b . 2n7t
By = — /a g(t) sin 3 —dt. (3-55)
Summarizing, we have shown that:
Theorem 3.2. The Fourier series representation of f(x) defined on [a, b] when
it exists, is given by
a9 | 2nm . 2nmx
f(x) ~ > —l—’; {an cos -|—bn sin o1 - (3-56)
with Fourier coefficients
2 b 2nmx
I (x)cosbi dx. n=0,1,2
2 b 2nmx
= i .o n=12,.... .
by b_g/ﬂf(x)smb_adx n=1,2, (3-57)
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3.4 Sine and Cosine Series

IN THE LAST TWO EXAMPLES (f(x) = |x| and f(x) = x on [—71, 7T]) we
have seen Fourier series representations that contain only sine or cosine
terms. As we know, the sine functions are odd functions and thus sum
to odd functions. Similarly, cosine functions sum to even functions. Such
occurrences happen often in practice. Fourier representations involving just
sines are called sine series and those involving just cosines (and the constant
term) are called cosine series.

Another interesting result, based upon these examples, is that the original
functions, |x| and x agree on the interval [0, 7r]. Note from Figures 3.10-3.12
that their Fourier series representations do as well. Thus, more than one se-
ries can be used to represent functions defined on finite intervals. All they
need to do is to agree with the function over that particular interval. Some-
times one of these series is more useful because it has additional properties
needed in the given application.

We have made the following observations from the previous examples:

1. There are several trigonometric series representations for a func-
tion defined on a finite interval.

2. Odd functions on a symmetric interval are represented by sine
series and even functions on a symmetric interval are represented
by cosine series.

These two observations are related and are the subject of this section.
We begin by defining a function f(x) on interval [0, L]. We have seen that
the Fourier series representation of this function appears to converge to a
periodic extension of the function.

In Figure 3.13 we show a function defined on [0,1]. To the right is its
periodic extension to the whole real axis. This representation has a period
of L = 1. The bottom left plot is obtained by first reflecting f about the y-
axis to make it an even function and then graphing the periodic extension of
this new function. Its period will be 2L = 2. Finally, in the last plot we flip
the function about each axis and graph the periodic extension of the new
odd function. It will also have a period of 2L = 2.

In general, we obtain three different periodic representations. In order
to distinguish these we will refer to them simply as the periodic, even and
odd extensions. Now, starting with f(x) defined on [0,L], we would like
to determine the Fourier series representations leading to these extensions.
[For easy reference, the results are summarized in Table 3.2]

We have already seen from Table 3.1 that the periodic extension of f(x),
defined on [0, L], is obtained through the Fourier series representation

nmx + b, sin 2n£rx , (3.58)

a [e9)
f(x) ~ ?0 —l—n; ay COS
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f(x) on [0,1] Periodic Extension of f(x)
15 15
1 1
0.5 / 0.5 ////
8 0 8 0
-0.5 -0.5
1 -1
-15 -15
-1 0 1 2 3 -1 0 1 2 3
X X
Even Periodic Extension of f(x) Odd Periodic Extension of f(x)
15 1.5
1 1
05 W 05
8 0 8 0
-0.5 -0.5
-1 -1
-15 -1.5
1 0 1 2 3 0 1 2 3
X
where
2 (L 2nmwx
a, = Z/o f(x) cos T dx. n=0,1,2,...,
2 (L . 2nmx
b, = Z/o f(x)sin T dx. n=12,.... (3-59)

Given f(x) defined on [0, L], the even periodic extension is obtained by
simply computing the Fourier series representation for the even function

. flx), 0<x<IL,
felx) = { f(=x) —L<x<0. (3.60)

Since f,(x) is an even function on a symmetric interval [—L, L], we expect
that the resulting Fourier series will not contain sine terms. Therefore, the

series expansion will be given by [Use the general case in (3.56) witha = —L
and b = L.]:
a - nmx
fe(x) ~ ?0 + Z iy COS ——. (3.67)
n=1

with Fourier coefficients
1 (L nmwx
an:Z/_Lfg(x)cosde. n=20,1,2,.... (3.68)

However, we can simplify this by noting that the integrand is even and
the interval of integration can be replaced by [0, L]. On this interval f,(x) =
f(x). So, we have the Cosine Series Representation of f(x) for x € [0,L] is

given as
nrix

a o0
f(x) ~ EO + Y aycos - (3.69)
n=1

where ) i
nmx
an—z/o f(x)cosde. n=20,1,2,.... (3.70)

Figure 3.13: This is a sketch of a func-
tion and its various extensions. The orig-
inal function f(x) is defined on [0, 1] and
graphed in the upper left corner. To its
right is the periodic extension, obtained
by adding replicas. The two lower plots
are obtained by first making the original
function even or odd and then creating
the periodic extensions of the new func-
tion.

Even periodic extension.

Fourier Cosine Series.
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Table 3.2: Fourier Cosine and Sine Series
Representations on [0, L]

Fourier Series on [0, L]

ad 2 2
f(x)wazo+nzzl{ancos n;x+bnsin nchx
a, = %/Lf(x)coszmrxd n=20,1,2
n - L 0 L A A LI
2 (L . 2nmx
by, = f/o f(x)sin T dx. n=12,....

Fourier Cosine Series on [0, L]

> nix
f(x) ~ag/2+ Y ancos -

n=1

where

2 (L nmx
unif/o f(x)cosde. n=0,12,....

Fourier Sine Series on [0, L]

> . N7IX
fx) ~ Z by sin ——.

n=1

where
2 nrix

L
bn:f/o f(x)sdex. n=12,....

(3.61)

(3.62)

(3-63)

(3-64)

(3-65)

(3.66)
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Similarly, given f(x) defined on [0,L], the odd periodic extension is Odd periodic extension.
obtained by simply computing the Fourier series representation for the odd

function
_ f(x), 0O<x<lL,
folx) = { —f(=x) —-L<x<0. (3.71)

The resulting series expansion leads to defining the Sine Series Representa-

tion of f (x ) for x € [0, L] as Fourier Sine Series Representation.
e . Nmx
fx) ~ Z by sin I (3.72)
n=1
where )
. hnix
bn_f/o f(x)sdex. n=12,.... (3.73)

Example 3.6. In Figure 3.13 we actually provided plots of the various extensions
of the function f(x) = x? for x € [0,1]. Let's determine the representations of the
periodic, even and odd extensions of this function.

For a change, we will use a CAS (Computer Algebra System) package to do the
integrals. In this case we can use Maple. A general code for doing this for the
periodic extension is shown in Table 3.3.

Example 3.7. Periodic Extension - Trigonometric Fourier Series Using the
code in Table 3.3, we have that ayg = %, a, = 1121?, and b, = —%. Thus, the
resulting series is given as
f(x) ! + i ! 2nrx LI 2n7x
~ = —5— COS — —sin .
3 = [nPm? nr

In Figure 3.14 we see the sum of the first 50 terms of this series. Generally,
we see that the series seems to be converging to the periodic extension of f. There
appear to be some problems with the convergence around integer values of x. We
will later see that this is because of the discontinuities in the periodic extension and
the resulting overshoot is referred to as the Gibbs phenomenon which is discussed
in the last section of this chapter.

Figure 3.14: The periodic extension of
f(x) = x?on [0,1].
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Table 3.3: Maple code for computing

Fourier coefficients and plotting partial > restart:
sums of the Fourier series. > L:=1:
> fi=x"2:
> assume(n,integer):
> a0:=2/L*int(f,x=0..L);
ad := 2/3
> an:=2/Lxint(fxcos(2*nxPixx/L),x=0..L);
1
an = -------
2 2
n~ Pi
> bn:=2/Lxint(fxsin(2*nxPixx/L),x=0..L);
1
bn = - -----
n~ Pi

> F:=a0/2+sum((1/(kxP1i)"2)*cos(2xkxPixx/L)
-1/ (k*Pi)*sin(2xkxPixx/L),k=1..50):

> plot(F,x=-1..3,title='Periodic Extension’,
titlefont=[TIMES,ROMAN, 14], font=[TIMES,ROMAN, 14]);

Example 3.8. Even Periodic Extension - Cosine Series
4(-1)"
n27

5—. Therefore, we have

In this case we compute ag = % and a, =
4 0
= Z

In Figure 3.15 we see the sum of the first 50 terms of this series. In this case the
convergence seems to be much better than in the periodic extension case. We also
see that it is converging to the even extension.

cosnrrx.

UJM—‘

flx) ~

Figure 3.15: The even periodic extension
of f(x) = x% on [0,1].

0.8

0.6

0.4 / \

a 0 1 2 3




TRIGONOMETRIC FOURIER SERIES 03

Example 3.9. Odd Periodic Extension - Sine Series
Finally, we look at the sine series for this function. We find that

by = — (n?m?(—=1)" —2(=1)" +2).

n3 73
Therefore,

2y 1 )" —=2(=1)" +2)si
3 Z 73 —2(—1)" +2)sinnmx.
Once again we see discontinuities in the extension as seen in Figure 3.16. However,

we have verified that our sine series appears to be converging to the odd extension
as we first sketched in Figure 3.13.

05 / J
Va
Ve s

3.5 Solution of the Heat Equation

WE STARTED THIS CHAPTER SEEKING SOLUTIONS of initial-boundary value
problems involving the heat equation and the wave equation. In particular,
we found the general solution for the problem of heat flow in a one dimen-
sional rod of length L with fixed zero temperature ends. The problem was
given by
PDE Ur = Kilyy, 0<t 0<x<IL,
IC  u(x,0) = f(x), 0<x <L,
BC u(0,t) =0, t>0,
u(L,t) =0, t>0.

We found the solution using separation of variables. This resulted in a

(3-74)

sum over various product solutions:

[ee]
. nmx
- Z bernt sin .
n=1

where

- (2

Figure 3.16: The odd periodic extension
of f(x) =x2on [0,1].
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Figure 3.17: The evolution of the initial
condition f(x) = sinx for L = 7 and
k=1.

This equation satisfies the boundary conditions. However, we had only
gotten to state initial condition using this solution. Namely,

F(x) = u(x,0) = i by sin ”—Zx

We were left with having to determine the constants b,. Once we know
them, we have the solution.

Now we can get the Fourier coefficients when we are given the initial
condition, f(x). They are given by

2 (L . nmx
bn_f/o f(x)sdex, n=12,....

We consider a couple of examples with different initial conditions.

Example 3.10. Consider the solution of the heat equation with f(x) = sinx and
L=
In this case the solution takes the form

o
u(x, t) = Y byt sinnx.
n=1

Howeuver, the initial condition takes the form of the first term in the expansion; i.e.,
the n = 1 term. So, we need not carry out the integral because we can immediately
write by = 1and b, = 0, n = 2,3,.... Therefore, the solution consists of just one
term,

u(x,t) = e Msinx.

In Figure 3.17 we see that how this solution behaves for k = 1 and t € [0,1].

0.8

0.6

u(x, 1)

0.4

0.2

Example 3.11. Consider solutions of the heat equation with f(x) = x(1 — x) and
L=1



This example requires a bit more work. The solution takes the form

u(x, t) =y bne_”znzkt sinnmx,

where

1
by = 2/ f(x)sinnmxdx.
0

This integral is easily computed using integration by parts

bn B

2

1
2/ x(1 — x) sinnmx dx
0

{Zx(l —x) (—nlﬂ cos nmc)}

1

0

2
+ —

nrt

1
/ (1 —2x)cosnmxdx
0

1
= —— {[(1 —2x) sinnmc](lJ +2/ sinnnxdx}
0

n2 72

n373 [

cos nrfx](l)

4
= —— (cosnm—1)

n373

p— O,
B __8
P

So, we have that the solution can be written as

8 (e}
F; 2@—1

n even
n odd

—(20-1)2 72kt sm(2€

TRIGONOMETRIC FOURIER SERIES 05

(3-75)

1) 7.

In Figure 3.18 we see that how this solution behaves for k = 1 and t € [0,1].
Twenty terms were used. We see that this solution diffuses much faster than in the
last example. Most of the terms damp out quickly as the solution asymptotically

approaches the first term.

0259

0.20 1

0.157

u(x, t)

0.10 1

0.05 1

0.2

0.4

0.6

0.8 1

Figure 3.18: The evolution of the initial
condition f(x) = x(1—x) for L =1 and
k=1.
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The solution of the wave equation can
be written as the sum of right and left
traveling waves.

3.6 Finite Length Strings

WE NOW RETURN TO THE PHYSICAL EXAMPLE of wave propagation in a
string. We found that the general solution can be represented as a sum over
product solutions. We will restrict our discussion to the special case that the
initial velocity is zero and the original profile is given by u(x,0) = f(x). The
solution is then

yg Ay sin L7er cos n7£ct (3.76)
satisfying
d . NTX
fx) =) Ausin——. (3.77)
n=1

We have seen that the Fourier sine series coefficients are given by

po=2 [ g 67

We can rewrite this solution in a more compact form. First, we define the
wave numbers,

nri
kn == Tz n= 1/ 2/ 7
and the angular frequencies,
nre
wy = Ckn - T

Then, the product solutions take the form
sink;,;x cos wyt.

Using trigonometric identities, these products can be written as

1
sin k,x cos wyut = 5 [sin(kyx 4+ wyt) + sin(kyx — wpt)].

Inserting this expression in the solution, we have
1& .
E Z [sin(kpx + wpt) + sin(kyx — wpt)] . (3.79)

Since wy, = cky,, we can put this into a more suggestive form:

u(x,t) 1 Z Ay sinky (x +ct) + Z Apsinky(x —ct)| . (3.80)

n=1 n=1

We see that each sum is simply the sine series for f(x) but evaluated at
either x + ct or x — ct. Thus, the solution takes the form

u(x, t) = % [f(x+ct)+ f(x —ct)]. (3.81)

If t = 0, then we have u(x,0) = 3 [f(x) + f(x)] = f(x). So, the solution
satisfies the initial condition. At t = 1, the sum has a term f(x — c).
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Recall from your mathematics classes that this is simply a shifted version
of f(x). Namely, it is shifted to the right. For general times, the function
is shifted by ct to the right. For larger values of t, this shift is further to
the right. The function (wave) shifts to the right with velocity c. Similarly,
f(x+ct) is a wave traveling to the left with velocity —c.

Thus, the waves on the string consist of waves traveling to the right and
to the left. However, the story does not stop here. We have a problem
when needing to shift f(x) across the boundaries. The original problem
only defines f(x) on [0,L]. If we are not careful, we would think that the
function leaves the interval leaving nothing left inside. However, we have
to recall that our sine series representation for f(x) has a period of 2L. So,
before we apply this shifting, we need to account for its periodicity. In fact,
being a sine series, we really have the odd periodic extension of f(x) being
shifted. The details of such analysis would take us too far from our current
goal. However, we can illustrate this with a few figures.

We begin by plucking a string of length L. This can be represented by the

function

2 0<x<a
= a - -

where the string is pulled up one unit at x = a. This is shown in Figure 3.19.

Next, we create an odd function by extending the function to a period of
2L. This is shown in Figure 3.20.

Finally, we construct the periodic extension of this to the entire line. In
Figure 3.21 we show in the lower part of the figure copies of the periodic ex-
tension, one moving to the right and the other moving to the left. (Actually,
the copies are 1 f(x & ct).) The top plot is the sum of these solutions. The
physical string lies in the interval [o,1]. Of course, this is better seen when
the solution is animated.

The time evolution for this plucked string is shown for several times in
Figure 3.22. This results in a wave that appears to reflect from the ends as
time increases.

The relation between the angular frequency and the wave number, w =
ck, is called a dispersion relation. In this case w depends on k linearly. If one
knows the dispersion relation, then one can find the wave speed as ¢ = ¢.
In this case, all of the harmonics travel at the same speed. In cases where
they do not, we have nonlinear dispersion, which we will discuss later.

3.7 The Gibbs Phenomenon

WE HAVE SEEN THE GIBBS PHENOMENON when there is a jump discontinu-
ity in the periodic extension of a function, whether the function originally
had a discontinuity or developed one due to a mismatch in the values of
the endpoints. This can be seen in Figures 3.12, 3.14 and 3.16. The Fourier
series has a difficult time converging at the point of discontinuity and these
graphs of the Fourier series show a distinct overshoot which does not go

f f

a L
Figure 3.19: The initial profile for a
string of length one plucked at x = a.

X

f(x)
1

-1

Figure 3.20: Odd extension about the
right end of a plucked string.

A g
VA

\

Figure 3.21: Summing the odd periodic
extensions. The lower plot shows copies
of the periodic extension, one moving to
the right and the other moving to the
left. The upper plot is the sum.
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Figure 3.22: This Figure shows the
plucked string at six successive times.

3 The Gibbs phenomenon was named af-
ter Josiah Willard Gibbs (1839-1903) even
though it was discovered earlier by the
Englishman Henry Wilbraham (1825-
1883). Wilbraham published a soon for-
gotten paper about the effect in 1848. In
1889 Albert Abraham Michelson (1852-
1931), an American physicist,observed
an overshoot in his mechanical graphing
machine. Shortly afterwards J. Willard
Gibbs published papers describing this
phenomenon, which was later to be
called the Gibbs phenomena. Gibbs was
a mathematical physicist and chemist
and is considered the father of physical
chemistry.

Figure 3.23: The Fourier series represen-
tation of a step function on [—, 7] for
N = 10.

t=0 t=01
t=0.2 t=03
t=04 t=05

away. This is called the Gibbs phenomenon3 and the amount of overshoot
can be computed.

In one of our first examples, Example 3.3, we found the Fourier series
representation of the piecewise defined function

1, O<x<m,
-1, n<x<2m,

flx) =

to be
4 &2 sin(2k —1)x
R N =
1 ‘\‘ \\“xv/\/\f\ AN\ “\4 , ﬂ‘\
| \
|
| |
|
[-3 2 a 1 2 3‘

| 415‘¥

[
‘ \
‘\ A A A ~ N.WA “‘
VAVAY A VaVaVaV4 J HH
Y V

In Figure 3.23 we display the sum of the first ten terms. Note the wig-
gles, overshoots and under shoots. These are seen more when we plot the
representation for x € [—37,37|, as shown in Figure 3.24.

We note that the overshoots and undershoots occur at discontinuities in
the periodic extension of f(x). These occur whenever f(x) has a disconti-
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One might expect that we only need to add more terms. In Figure 3.25 we
show the sum for twenty terms. Note the sum appears to converge better for
points far from the discontinuities. But, the overshoots and undershoots are
still present. In Figures 3.26 and 3.27 show magnified plots of the overshoot
at x = 0 for N = 100 and N = 500, respectively. We see that the overshoot
persists. The peak is at about the same height, but its location seems to be
getting closer to the origin. We will show how one can estimate the size of
the overshoot.

We can study the Gibbs phenomenon by looking at the partial sums of
general Fourier trigonometric series for functions f(x) defined on the inter-
val [—L, L]. Writing out the partial sums, inserting the Fourier coefficients
and rearranging, we have

nix . n7x
—— 4+ b, sin ——

N
Sn(x) = a0+r§1[ancos T T

Figure 3.24: The Fourier series represen-
tation of a step function on [—, 7t] for
N = 10 plotted on [—37,37] displaying
the periodicity.

Figure 3.25: The Fourier series represen-
tation of a step function on [—7, 7| for
N = 20.

0.8
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Figure 3.26: The Fourier series represen-
tation of a step function on [—7, 7] for
N = 100.
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Figure 3.27: The Fourier series represen-
tation of a step function on [—, 7t] for
N = 500.
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We have defined N
1 nix
DN(X) = i + n;lCOS T,

which is called the N-th Dirichlet kernel .
We now prove

Lemma 3.1. The N-th Dirichlet kernel is given by

sin((N4-1) %) .
pu( = | Ty sng 40
N+1, sin 2% = 0.

Proof. Let § = * and multiply Dy (x) by 2sin §to obtain:

6 6 [1
ZSinEDN(x) = 25in2{2+c056+--~+c05N6}

= sing+2cos€sing—|—2c0s2951ng+---+2COSNQSing

. 0 .30 .0 . 50 . 30
= smi—k SiIn— —sin_ |+ (sin— —sin— | +---

2 2 2 2
+ {sin <N+1) 0 — sin (N 1) 9}
2 2
. 1
= sin (N + 2) 6. (3.83)

Thus,

1
ZsingDN(x) = sin (N—l— 2) 6.

If sin % # 0, then
sin (N + %) 0 x

= ey T
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If sin % = 0, then one needs to apply L'Hospital’s Rule as 8 — 2m:

lim M = lim

0—2mr 2sin %

(N—i—%)cos(N—i—%)G

0—2mr CcOS %

(N + 1) cos (2mmnN + mr)
cos M7t
(N + })(cos 2mmN cos mm — sin 2m7N sinm)

cos mr7t

1

O

We further note that Dy(x) is periodic with period 2L and is an even
function.
So far, we have found that the Nth partial sum is given by

L

Sn(x) =1 [ Daly—x)f() dy. (55)
—L

Making the substitution ¢ = y — x, we have
1 rL—x
sv) = 1 [ DN@fETwae
—L—x

= L[ oa@s@ e (3.86)

In the second integral we have made use of the fact that f(x) and Dy(x) are
periodic with period 2L and shifted the interval back to [—L, L].

We now write the integral as the sum of two integrals over positive and
negative values of ¢ and use the fact that Dy/(x) is an even function. Then,

sv@) = 1 [ DN@FEHDd T [ DN+
= 1 [ -0+ £@ ) Dy(@) e 65

We can use this result to study the Gibbs phenomenon whenever it oc-
curs. In particular, we will only concentrate on the earlier example. For this
case, we have

sx(v) = (-0 + FE+x]Dn@de 689

7T JOo
for

1 N
Dyn(x) = 5 + Z Cos nx.
n=1

Also, one can show that

2, 0<¢<x,
fx=8)+f(E+x)=q 0, x<f<m—x
-2, m—x< <

101
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Thus, we have
s\ = = ["Dx(e f:——/” Du(@)de
= —/ Dy(z)dz + = /DN T—2z) (3-89)

Here we made the substitution z = 7t — ¢ in the second integral.

The Dirichlet kernel for L = 7t is given by
sin(N + 4)x
D _ 2

N(x) 2sin 5

For N large, we have N + % ~ N, and for small x, we have sin 5 ~ 3. So,
under these assumptions,

sin Nx

Dn(x) =~ p

Therefore,

2 [*sinN
Sn(x) — ;/ z ¢ d¢  forlarge N, and small x.
0
If we want to determine the locations of the minima and maxima, where
the undershoot and overshoot occur, then we apply the first derivative test
for extrema to Sy(x). Thus,

d 2 sin Nx

—Sn(x) =

=0.
dx ToXx

The extrema occur for Nx = mmr, m = +1,+£2,.... One can show that there
is a maximum at x = 77/N and a minimum for x = 27t/ N. The value for
the overshoot can be computed as

2 (/N sinN
sx(e/N) = = S
T
_ 2 / smt it
= —51(7'[)
= 1178979744 .. .. (3.90)
Note that this value is independent of N and is given in terms of the sine
integral,
si(v) = [,
J0
Problems

1. Write y(t) = 3cos2t — 4sin 2t in the form y(t) = A cos(27tft + ¢).
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2. Derive the coefficients b, in Equation(3.4).

3. Let f(x) be defined for x € [—L, L]. Parseval’s identity is given by
1 /'L F(x)dx = % Y 240
L/t 2 e

Assuming the the Fourier series of f(x) converges uniformly in (—L,L),
prove Parseval’s identity by multiplying the Fourier series representation
by f(x) and integrating from x = —L to x = L. [In section 9.6.3 we will
encounter Parseval’s equality for Fourier transforms which is a continuous

version of this identity:.]

4. Consider the square wave function

1, 0<x<m,
f(x)—{ -1, m<x<2m.

a. Find the Fourier series representation of this function and plot the
first 50 terms.

b. Apply Parseval’s identity in Problem 3 to the result in part a.

c. Use the result of part b to show %2 = ; (2711—1)2
5. For the following sets of functions: i) show that each is orthogonal on the
given interval, and ii) determine the corresponding orthonormal set. [See
page 771

a. {sin2nx}, n=1,23,..., 0<«x

b. {cosnmx}, n=0,1,2,..., 0<x<2.

c {sin®*}, n=123,.., xe[-LL]

IN

7T.

6. Consider f(x) = 4sin®2x.

a. Derive the trigonometric identity giving sin> § in terms of sin § and
sin 36 using DeMoivre’s Formula.

b. Find the Fourier series of f(x) = 4sin>2x on [0,27] without com-
puting any integrals.

7. Find the Fourier series of the following:

4
z O<x<m
_ 2/ 7
c. f(x)=
fx) {—721, < x<27.

8. Find the Fourier Series of each function f(x) of period 2. For each
series, plot the Nth partial sum,

N
SN = %0 + 2 [an cos nx + by sinnx],
n=1

103



104

PARTIAL DIFFERENTIAL EQUATIONS

for N = 5,10,50 and describe the convergence (is it fast? what is it converg-
ing to, etc.) [Some simple Maple code for computing partial sums is shown
in the notes.]

a. f(x)=ux,|x| <m.
b. f(x)=|x], |x| < 7.

.. f(x):{ 0, —mT<x<0,

1, O0<x<rm

9. Find the Fourier series of f(x) = x on the given interval. Plot the Nth
partial sums and describe what you see.

a. 0<x<2.

b. —2<x<2.

c l<x<2

10. The result in problem 7b above gives a Fourier series representation of
X2 .y . . .
- By picking the right value for x and a little arrangement of the series,
show that [See Example 3.5.]

a.

"—2—1+1+1+1+

6 2
b.

Lo SR S

8 N2

Hint: Consider how the series in part a. can be used to do this.

11. Sketch (by hand) the graphs of each of the following functions over
four periods. Then sketch the extensions each of the functions as both an
even and odd periodic function. Determine the corresponding Fourier sine
and cosine series and verify the convergence to the desired function using
Maple.

a. f(x):x2 0<x<l

x x 0<x<2
0 0<x<l,
1<x<?2

df() { T, O<x<m,

2m—x, 7w<x <2
12. Consider the function f(x) =x, — 7 < x < 7.
a. Show that x = 22;’;1(_1)n+1sin%.

b. Integrate the series in part a and show that

cos nx
_7_42 n+17

n=
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c. Find the Fourier cosine series of f(x) = x?

it to the result in part b.

on [0, 7r] and compare

13. Consider the function f(x) =x,0 < x < 2.
a. Find the Fourier sine series representation of this function and plot
the first 50 terms.

b. Find the Fourier cosine series representation of this function and
plot the first 50 terms.

c. Apply Parseval’s identity in Problem 3 to the result in part b.
d. Use the result of part c to find the sum } ;7 ; %

14. Differentiate the Fourier sine series term by term in Problem 18. Show
that the result is not the derivative of f(x) = x.

15. Find the general solution to the heat equation, u; — uyy = 0, on [0, 7]
satisfying the boundary conditions uy(0,t) = 0 and u(7,t) = 0. Determine
the solution satisfying the initial condition,

X, 0<x<Z
u(x,0) = - Y
t—x, 7<x<m

16. Find the general solution to the wave equation uy = 2iyy, on [0,27]
satisfying the boundary conditions #(0,t) = 0 and uy(27,¢t) = 0. Deter-
mine the solution satisfying the initial conditions, u(x,0) = x(47 — x), and
u(x,0) = 0.

17. Recall the plucked string initial profile example in the last chapter given
by

_J ox o0<x<d,
satisfying fixed boundary conditions at x = 0 and x = ¢. Find and plot the

solutions at t = 0,.2,...,1.0, of uy = uyy, for u(x,0) = f(x), us(x,0) = 0,
with x € [0,1].

18. Find and plot the solutions at t =0, .2, ..., 1.0, of the problem

Uy = Uyy, 0<x<1t>0
{0,0<x<i
u(x,0) = ¢ 1, 1<x<3,
0, 3<x<1,
uy(x,0) = 0,
u(0,t 0, t>0,
u(l,¢) = 0, t>0

19. Find the solution to Laplace’s equation, uyy + uyy = 0, on the unit
square, [0, 1] x [0, 1] satisfying the boundary conditions u(0,y) = 0, u(1,y) =
y(1—y), u(x,0) =0, and u(x,1) = 0.
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4
Sturm-Liouville Boundary Value Prob-

lems

WE HAVE SEEN THAT TRIGONOMETRIC FUNCTIONS and special functions
are the solutions of differential equations. These solutions give orthogonal
sets of functions which can be used to represent functions in generalized
Fourier series expansions. At the same time we would like to generalize
the techniques we had first used to solve the heat equation in order to solve
more general initial-boundary value problems. Namely, we use separation
of variables to separate the given partial differential equation into a set of
ordinary differential equations. A subset of those equations provide us with
a set of boundary value problems whose eigenfunctions are useful in repre-
senting solutions of the partial differential equation. Hopefully, those solu-
tions will form a useful basis in some function space.

A class of problems to which our previous examples belong are the
Sturm-Liouville eigenvalue problems. These problems involve self-adjoint
(differential) operators which play an important role in the spectral theory
of linear operators and the existence of the eigenfunctions needed to solve
the interesting physics problems described by the above initial-boundary
value problems. In this section we will introduce the Sturm-Liouville eigen-
value problem as a general class of boundary value problems containing the
Legendre and Bessel equations and supplying the theory needed to solve a
variety of problems.

4.1 Sturm-Liouville Operators

IN PHYSICS MANY PROBLEMS ARISE IN THE FORM of boundary value prob-
lems involving second order ordinary differential equations. For example,
we will explore the wave equation and the heat equation in three dimen-
sions. Separating out the time dependence leads to a three dimensional
boundary value problem in both cases. Further separation of variables leads
to a set of boundary value problems involving second order ordinary dif-
ferential equations.
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In general, we might obtain equations of the form

ay(x)y" + a1 (x)y’ + ao(x)y = f(x) (4.1)

subject to boundary conditions. We can write such an equation in operator
form by defining the differential operator

L = ay(x)D? +ay(x)D + ag(x),
where D = d/dx. Then, Equation (4.1) takes the form

Ly =f.

Recall that we had solved such nonhomogeneous differential equations in
Chapter 2. In this section we will show that these equations can be solved
using eigenfunction expansions. Namely, we seek solutions to the eigen-
value problem

Lp =A¢
with homogeneous boundary conditions on ¢ and then seek a solution of

the nonhomogeneous problem, Ly = f, as an expansion over these eigen-
functions. Formally, we let

[e°]

y(x) = 2 CnPn(x)-
n=1
However, we are not guaranteed a nice set of eigenfunctions. We need an
appropriate set to form a basis in the function space. Also, it would be
nice to have orthogonality so that we can easily solve for the expansion
coefficients.

It turns out that any linear second order differential operator can be
turned into an operator that possesses just the right properties (self-adjointedness)
to carry out this procedure. The resulting operator is referred to as a Sturm-
Liouville operator. We will highlight some of the properties of these opera-
tors and see how they are used in applications.

The Sturm-Liouville operator. We define the Sturm-Liouville operator as
d d
L= pl) - +q(x). (4-2)
The Sturm-Liouville eigenvalue problem is given by the differential equa-
The Sturm-Liouville eigenvalue prob- tion
fem. Ly = —ro(x)y,
or p p
4 4y =
3 (P05) + iy + Aoy =0, 43)

forx € (a,b),y = y(x), plus boundary conditions. The functions p(x), p’(x),
g(x) and o(x) are assumed to be continuous on (a,b) and p(x) > 0,0(x) >0
on [a,b]. If the interval is finite and these assumptions on the coefficients
are true on [a,b], then the problem is said to be a regular Sturm-Liouville
problem. Otherwise, it is called a singular Sturm-Liouville problem.
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We also need to impose the set of homogeneous boundary conditions

ary(a) + B1y'(a) = 0,
w2y(b) + Bay' (b) = 0. (4-4)

The a’s and B’s are constants. For different values, one has special types
of boundary conditions. For ; = 0, we have what are called Dirichlet
boundary conditions. Namely, y(a) = 0 and y(b) = 0. For «; = 0, we
have Neumann boundary conditions. In this case, y'(a) = 0 and y/(b) = 0.

In terms of the heat equation example, Dirichlet conditions correspond
to maintaining a fixed temperature at the ends of the rod. The Neumann
boundary conditions would correspond to no heat flow across the ends, or
insulating conditions, as there would be no temperature gradient at those
points. The more general boundary conditions allow for partially insulated
boundaries.

Another type of boundary condition that is often encountered is the pe-
riodic boundary condition. Consider the heated rod that has been bent to
form a circle. Then the two end points are physically the same. So, we
would expect that the temperature and the temperature gradient should
agree at those points. For this case we write y(a) = y(b) and y/(a) = v/(b).
Boundary value problems using these conditions have to be handled differ-
ently than the above homogeneous conditions. These conditions leads to
different types of eigenfunctions and eigenvalues.

As previously mentioned, equations of the form (4.1) occur often. We
now show that any second order linear operator can be put into the form
of the Sturm-Liouville operator. In particular, equation (4.1) can be put into
the form

7 () + gy = Fo), 45)

Another way to phrase this is provided in the theorem:

The proof of this is straight forward as we soon show. Let’s first consider
the equation (4.1) for the case that a;(x) = a5(x). Then, we can write the
equation in a form in which the first two terms combine,

f(x) = ax(x)y" +a1(x)y’ +ao(x)y
= (ax(x)y") +ao(x)y. (4-6)

The resulting equation is now in Sturm-Liouville form. We just identify
p(x) = ax(x) and q(x) = ao(x).

Not all second order differential equations are as simple to convert. Con-
sider the differential equation

Xy +xy' +2y = 0.

In this case ax(x) = x* and a)(x) = 2x # a;(x). So, this does not fall into
this case. However, we can change the operator in this equation, x2D +
xD, to a Sturm-Liouville operator, Dp(x)D for a p(x) that depends on the
coefficients x> and x..

Dirichlet boundary conditions - the so-
lution takes fixed values on the bound-
ary. These are named after Gustav Leje-
une Dirichlet (1805-1859).

Neumann boundary conditions - the
derivative of the solution takes fixed val-
ues on the boundary. These are named
after Carl Neumann (1832-1925).

Differential equations of Sturm-Liouville
form.
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In the Sturm Liouville operator the derivative terms are gathered together
into one perfect derivative, Dp(x)D. This is similar to what we saw in the
Chapter 2 when we solved linear first order equations. In that case we
sought an integrating factor. We can do the same thing here. We seek a
multiplicative function y(x) that we can multiply through (4.1) so that it
can be written in Sturm-Liouville form.

We first divide out the a5 (x), giving

m(x) , a(x)  f(x)
az(x)y + az(x)y ay(x)’

y// +
Next, we multiply this differential equation by p,

@)Y + p(x) Z;g; v+ )

The first two terms can now be combined into an exact derivative (uy’)’
if the second coefficient is p’(x). Therefore, u(x) satisfies a first order, sepa-
rable differential equation:

A () 1)

plio) 1 f:;—g';;dx
a(x)  az(x)

to turn it into Sturm-Liouville form.
In summary,

Equation (4.1),

a(x)y" + a1 (x)y' +ao(x)y = f(x), (4.7)

can be put into the Sturm-Liouville form

7 (P05 + oy = F(x), 49)
where
px) = o B
ax) = plv
az(x)
Fx) = pln L 49)
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Example 4.1. Convert x?y" + xy’ + 2y = 0 into Sturm-Liouville form.
We can multiply this equation by

H (x) = izef dTX = 1, Conversion of a linear second order
a2(x ) X X differential equation to Sturm Liouville
form.
to put the equation in Sturm-Liouville form:
2
0 — xy”+y’+;y
ne o, 2
= (xy')' + 2 (4.10)

4.2 Properties of Sturm-Liouville Eigenvalue Problems

THERE ARE SEVERAL PROPERTIES THAT CAN BE PROVEN for the (regular)
Sturm-Liouville eigenvalue problem in (4.3). However, we will not prove
them all here. We will merely list some of the important facts and focus on

a few of the properties.
Real, countable eigenvalues.

1. The eigenvalues are real, countable, ordered and there is a smallest

eigenvalue. Thus, we can write them as A; < Ay < .... However,

there is no largest eigenvalue and n — oo, A, — oo. Oscillatory eigenfunctions.
2. For each eigenvalue A, there exists an eigenfunction ¢, with n — 1

zeros on (a,b).
3. Eigenfunctions corresponding to different eigenvalues are orthogonal

with respect to the weight function, o(x). Defining the inner product
of f(x) and g(x) as

b
(,8) >= [ fx)so(x)dx, (411
then the orthogonality of the eigenfunctions can be written in the Orthogonality of eigenfunctions.
form
(P, Pm) = (Pn, Pn)Onm, n,m=12,.... (4.12)

4. The set of eigenfunctions is complete; i.e., any piecewise smooth func-
tion can be represented by a generalized Fourier series expansion of
the eigenfunctions,

f(x) ~ Z Cn(Pn(x),
n=1
where
)
n — .
(@, Pn)
Actually, one needs f(x) € L2(a,b), the set of square integrable func- Complete basis of eigenfunctions.

tions over [a,b] with weight function ¢(x). By square integrable, we
mean that (f, f) < 0. One can show that such a space is isomorphic
to a Hilbert space, a complete inner product space. Hilbert spaces
play a special role in quantum mechanics.
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5. The eigenvalues satisfy the Rayleigh quotient
b b ddy, 2
L o (%) - a9 |

(Pn, Pn)
The Rayleigh quotient is named after L. . Lo .
Lord Rayleigh, John William Strutt, 3rd This is verified by multiplying the eigenvalue problem

Baron Raleigh (1842-1919).

Ay
_prn%
Ay =

Ln = —Ao(x)n

by ¢, and integrating. Solving this result for A,;, we obtain the Rayleigh
quotient. The Rayleigh quotient is useful for getting estimates of
eigenvalues and proving some of the other properties.

Example 4.2. Verify some of these properties for the eigenvalue problem

y" =-Ay, y(0) =y(n) =0

This is a problem we had seen many times. The eigenfunctions for this eigenvalue

x problem are ¢, (x) = sinnx, with eigenvalues A, = n? for n = 1,2,.... These
satisfy the properties listed above.
First of all, the eigenvalues are real, countable and ordered, 1 < 4 <9 < ....
There is no largest eigenvalue and there is a first one.

Figure 4.1: Plot of the eigenfunctions The eigenfunctions corresponding to each eigenvalue have n — 1 zeros on (0, 7).
¢n(x) =sinnx forn =1,2,3,4.

This is demonstrated for several eigenfunctions in Figure 4.1.
We also know that the set {sinnx}:> , is an orthogonal set of basis functions of

7T
Il = /7

Thus, the Rayleigh quotient can be computed using p(x) = 1, q(x) = 0, and the
eigenfunctions. It is given by

length

—Pnd)

T

0 + foﬂ (47;/1)2 dx
T
2

_ 2 (o 22
= ;/0 ( ncosnx) dx = n”“. (4.13)

Therefore, knowing the eigenfunction, the Rayleigh quotient returns the eigenvalues
as expected.

Example 4.3. We seek the eigenfunctions of the operator found in Example 4.1.
Namely, we want to solve the eigenvalue problem

2
Ly = (xy)' + Ty = —Aoy (4.14)

subject to a set of homogeneous boundary conditions. Let’s use the boundary condi-
tions

y(1)=0, ¥ (2)=0.
[Note that we do not know o(x) yet, but will choose an appropriate function to
obtain solutions.]
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Expanding the derivative, we have
xy +y' + %y = —Aoy.
Multiply through by x to obtain
2y 4+ xy' + (24 Axo)y = 0.

Notice that if we choose o(x) = x~1, then this equation can be made a Cauchy-
Euler type equation. Thus, we have

Py +xy + (A+2)y =0.

The characteristic equation is
rP+A+2=0.
For oscillatory solutions, we need A + 2 > 0. Thus, the general solution is
y(x) = ¢y cos(VA +2In|x|) + casin(vA 4 21n |x]). (4.15)
Next we apply the boundary conditions. y'(1) = 0 forces c; = 0. This leaves

y(x) = ¢y cos(VA +2Inx).

The second condition, y'(2) = 0, yields
sin(v/A +2In2) = 0.
This will give nontrivial solutions when
VA+2In2=nn, n=0,1,23....

In summary, the eigenfunctions for this eigenvalue problem are

and the eigenvalues are A, = (%)2 —2forn=0,1,2,....
Note: We include the n = 0 case because y(x) = constant is a solution of the
A = —2 case. More specifically, in this case the characteristic equation reduces to

12 = 0. Thus, the general solution of this Cauchy-Euler equation is
y(x) =c1+cpn x|

Setting y' (1) = 0, forces ¢ = 0. y'(2) automatically vanishes, leaving the solution
in this case as y(x) = cy.

We note that some of the properties listed in the beginning of the section hold for
this example. The eigenvalues are seen to be real, countable and ordered. There is
a least one, \g = —2. Next, one can find the zeros of each eigenfunction on [1,2].
Then the argument of the cosine, {5 In x, takes values o to nrt for x € [1,2]. The
cosine function has n — 1 roots on this interval.
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Orthogonality can be checked as well. We set up the integral and use the substi-
tution y = rtlnx/ In2. This gives

Yn ym) = /12Cos (%lnx) cos (%lnx) d7x

= 1r172 ncosn cosmy d
= 7 b Y yay

In2
= T(Sn,m- (4.16)

4.2.1  Adjoint Operators

IN THE STUDY OF THE SPECTRAL THEORY OF MATRICES, one learns about
the adjoint of the matrix, At and the role that self-adjoint, or Hermitian,
matrices play in diagonalization. Also, one needs the concept of adjoint to
discuss the existence of solutions to the matrix problem y = Ax. In the same
spirit, one is interested in the existence of solutions of the operator equation
Lu = f and solutions of the corresponding eigenvalue problem. The study
of linear operators on a Hilbert space is a generalization of what the reader
had seen in a linear algebra course.

Just as one can find a basis of eigenvectors and diagonalize Hermitian,
or self-adjoint, matrices (or, real symmetric in the case of real matrices), we
will see that the Sturm-Liouville operator is self-adjoint. In this section we
will define the domain of an operator and introduce the notion of adjoint
operators. In the last section we discuss the role the adjoint plays in the
existence of solutions to the operator equation Lu = f.

We begin by defining the adjoint of an operator. The adjoint, LY, of oper-
ator L satisfies

(u, Lv) = (L'u,v)
for all v in the domain of L and u in the domain of L. Here the domain
of a differential operator L is the set of all u € L2(a,b) satisfying a given
set of homogeneous boundary conditions. This is best understood through
example.

Example 4.4. Find the adjoint of L = ap(x)D? + aq(x)D +ag(x) for D = d/dx.
In order to find the adjoint, we place the operator inside an integral. Consider
the inner product

b
(u, Lv) = / u(axv” + a1v’ + ago) dx.
a

We have to move the operator L from v and determine what operator is acting on u
d

dx’
this is easily done using integration by parts. For the given operator, we will need

in order to formally preserve the inner product. For a simple operator like L =

to apply several integrations by parts to the individual terms. We consider each
derivative term in the integrand separately.
For the a1v' term, we integrate by parts to find

[ a0 () dx = e (u(x)o(e)

b

- [ @) o@ . @

a
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Now, we consider the ayv” term. In this case it will take two integrations by

parts:
b b b
/a u(x)ag(x)0" (x)dx = ax(x)u(x)v'(x) . —/a (u(x)az(x)) v(x) dx
= [R@uE () ~ @ (xu(x)o)] |
b
+/11 (u(x)az(x))"v(x) dx. (4.18)
Combining these results, we obtain
(u, Loy = /b u(axy” + a1v’ 4 agv) dx
= [m(x)u(x)v(x) + az(x)u(x)o’ (x) — (a2(x)u(x)) v(x)] Z
+ /ab [(a2u)" — (aqu)’ + agu] vdx. (4-19)

Inserting the boundary conditions for v, one has to determine boundary condi-
tions for u such that

b
=0.

a

[a1 (x)u(x)o(x) + a2 (x)u(x)v'(x) — (a2(x)u(x)) v(x)]

This leaves
b
(u, Loy = / [(a2u)” — (ayu)’ + aou] vdx = (L*u,v).
a

Therefore,

. 2 d
L' = 73m(x) = a1 (x) +ao(x). (4.20)

Self-adjoint operators.

When LT = L, the operator is called formally self-adjoint. When the
domain of L is the same as the domain of LT, the term self-adjoint is used.
As the domain is important in establishing self-adjointness, we need to do
a complete example in which the domain of the adjoint is found.

Example 4.5. Determine L and its domain for operator Lu = % where u satisfies

the boundary conditions u(0) = 2u(1) on [0,1].
We need to find the adjoint operator satisfying (v, Lu) = (LYv,u). Therefore,
we rewrite the integral

- 1 du o 1 I do - +
(v, Lu) >—/0 vadx—uvb—/o u%dx— (L"v, u).

From this we have the adjoint problem consisting of an adjoint operator and the
associated boundary condition (or, domain of L¥.):

t_ _d
1. L' = I

5 [1) — 0= 0=u(1)[o(1) — 20(0)] = o(1) = 20(0).

115



116 PARTIAL DIFFERENTIAL EQUATIONS

4.2.2  Lagrange’s and Green'’s Identities

BEFORE TURNING TO THE PROOFS that the eigenvalues of a Sturm-Liouville
problem are real and the associated eigenfunctions orthogonal, we will first
need to introduce two important identities. For the Sturm-Liouville opera-

d d

tor,

we have the two identities:

Lagrange’s Identity: ulv—ovlu = [p(uv’ —ou)].
Green’s Identity: fub(uﬁv —vLu)dx = [p(uv’ —ou')]L.

The proof of Lagrange’s identity follows by a simple manipulations of
the operator:

ulv—ovluy = u {d (pdv> —|—qv} -0 [d <pdu> —Q—qu}
dx \" dx dx \" dx
= () ot (4)
dx de dx de
(o dudo d o du  dudo
udx de pdxdx de de pdxdx

A [ o
oo |PMax TP 421

Green’s identity is simply proven by integrating Lagrange’s identity.

4.2.3 Orthogonality and Reality

WE ARE NOW READY TO PROVE that the eigenvalues of a Sturm-Liouville
problem are real and the corresponding eigenfunctions are orthogonal. These
are easily established using Green’s identity, which in turn is a statement
about the Sturm-Liouville operator being self-adjoint.

Example 4.6. The eigenvalues of the Sturm-Liouville problem (4.3) are real.
Let ¢ (x) be a solution of the eigenvalue problem associated with Ay:

E(Pn = _)\n04)n.

We want to show that Namely, we show that Ay = Ay, where the bar means complex
conjugate. So, we also consider the complex conjugate of this equation,

E&n = _X'fl U&n :

Now, multiply the first equation by ¢,,, the second equation by ¢, and then subtract
the results. We obtain

PuLpn — pn Lo, = (An — An)OPn®,-
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Integrating both sides of this equation, we have

b _ o b _
/a (B, Ldn — ¢ulP,) dx = (An — Ay) /ﬂ 0, dx.

We apply Green’s identity to the left hand side to find

_ -, _ b
PGt = 0uB)Ils = (R =) [ 0, d.

Using the homogeneous boundary conditions (4.4) for a self-adjoint operator, the
left side vanishes. This leaves

o b
0= (=) [ ligldx.

The integral is nonnegative, so we must have A, = Ay,. Therefore, the eigenvalues
are real.

Example 4.7. The eigenfunctions corresponding to different eigenvalues of the
Sturm-Liouville problem (4.3) are orthogonal.

This is proven similar to the last example. Let ¢, (x) be a solution of the eigen-
value problem associated with A,

['(Pn = —Auody,
and let ¢, (x) be a solution of the eigenvalue problem associated with Ay, # Ay,
»CCPm = _)\mo—(,bm/

Now, multiply the first equation by ¢, and the second equation by ¢,,. Subtracting
these results, we obtain

P Ly — PnLpm = (Am — An)OPupm

Integrating both sides of the equation, using Green’s identity, and using the
homogeneous boundary conditions, we obtain

0= (Am—An) /b TPnPm dx.

Since the eigenvalues are distinct, we can divide by Ay, — Ay, leaving the desired
result,

b
/ oPupmdx = 0.
a
Therefore, the eigenfunctions are orthogonal with respect to the weight function

o(x).

4.2.4 The Rayleigh Quotient

THE RAYLEIGH QUOTIENT IS USEFUL for getting estimates of eigenvalues
and proving some of the other properties associated with Sturm-Liouville
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eigenvalue problems. The Rayleigh quotient is general and finds applica-
tions for both matrix eigenvalue problems as well as self-adjoint operators.
For a Hermitian matrix M the Rayleigh quotient is given by

(v, Mv)

(v,v) -

R(v) =

One can show that the critical values of the Rayleigh quotient, as a function
of v, are the eigenvectors of M and the values of R at these critical values
are the corresponding eigenvectors. In particular, minimizing R(v over the
vector space will give the lowest eigenvalue. This leads to the Rayleigh-Ritz
method for computing the lowest eigenvalues when the eigenvectors are not
known.

This definition can easily be extended to Sturm-Liouville operators,

R = eo2s.

We begin by multiplying the eigenvalue problem
Lpn = —Ano(X) Py

by ¢, and integrating. This gives

b d ([ do, b
/a [(Pndx <p dq; ) —i—qcpﬁ] dx = —)\n/a P30 dx.

One can solve the last equation for A to find

e |ends () + a0h] ax
B f: P20 dx

It appears that we have solved for the eigenvalues and have not needed

An = R(¢n).

the machinery we had developed in Chapter 4 for studying boundary value
problems. However, we really cannot evaluate this expression when we do
not know the eigenfunctions, ¢, (x) yet. Nevertheless, we will see what we
can determine from the Rayleigh quotient.

One can rewrite this result by performing an integration by parts on the

first term in the numerator. Namely, pick u = ¢, and dv = % (pdﬂ) dx
for the standard integration by parts formula. Then, we have

bood ([ dg, o dgy b gt A\
/a%dx@dx)ch—wndx a—/ﬂ lp(dx> —qq5 | dx.

Inserting the new formula into the expression for A, leads to the Rayleigh

Quotient

ddn
*P%%

b b Ao\ 2
0o () - 003 s
fub(p%(rdx '

In many applications the sign of the eigenvalue is important. As we had

Ap =

(4.22)

seen in the solution of the heat equation, T + kAT = 0. Since we expect
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the heat energy to diffuse, the solutions should decay in time. Thus, we
would expect A > 0. In studying the wave equation, one expects vibrations
and these are only possible with the correct sign of the eigenvalue (positive
again). Thus, in order to have nonnegative eigenvalues, we see from (4.22)
that

a. q(x) <0,and

b
g
b. —pgu e >0

Furthermore, if A is a zero eigenvalue, then g(x) = 0 and a7 = ap = 0
in the homogeneous boundary conditions. This can be seen by setting the
numerator equal to zero. Then, g(x) = 0 and ¢/,(x) = 0. The second of
these conditions inserted into the boundary conditions forces the restriction
on the type of boundary conditions.

One of the properties of Sturm-Liouville eigenvalue problems with ho-
mogeneous boundary conditions is that the eigenvalues are ordered, A; <
Ay < .... Thus, there is a smallest eigenvalue. It turns out that for any
continuous function, y(x),

ay|® | b [ fay\?
—pva| +Ja p (%) —a?| dx
A1 = min

y(x) fab y2odx

(4-23)

and this minimum is obtained when y(x) = ¢;(x). This result can be used
to get estimates of the minimum eigenvalue by using trial functions which
are continuous and satisfy the boundary conditions, but do not necessarily
satisfy the differential equation.

Example 4.8. We have already solved the eigenvalue problem ¢" + A¢p = 0,
$(0) = 0, ¢p(1) = 0. In this case, the lowest eigenvalue is Ay = 7w*. We can
pick a nice function satisfying the boundary conditions, say y(x) = x — x2. Insert-
ing this into Equation (4.23), we find

1 2
1—2x)d
—fo ( x)”dx =10.

M <=3
Jo (x = x2)2dx

Indeed, 10 > 2.

4.3 The Eigenfunction Expansion Method

IN THIS SECTION WE SOLVE THE NONHOMOGENEOUS PROBLEM Ly = f
using expansions over the basis of Sturm-Liouville eigenfunctions. We have
seen that Sturm-Liouville eigenvalue problems have the requisite set of or-
thogonal eigenfunctions. In this section we will apply the eigenfunction
expansion method to solve a particular nonhomogeneous boundary value
problem.
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Recall that one starts with a nonhomogeneous differential equation

Ly=f,

where y(x) is to satisfy given homogeneous boundary conditions. The
method makes use of the eigenfunctions satisfying the eigenvalue problem

Lpy = =Mooy

subject to the given boundary conditions. Then, one assumes that y(x) can
be written as an expansion in the eigenfunctions,

[e0)

y(x) = 2 Cnn(x),

n=1

and inserts the expansion into the nonhomogeneous equation. This gives

f(x) = (i(l)) ch)\a ).

The expansion coefficients are then found by making use of the orthogo-
nality of the eigenfunctions. Namely, we multiply the last equation by ¢, (x)
and integrate. We obtain

/ f(xX)Ppm(x Z [ / Pn (%) pm(x)o(x) dx
Orthogonality yields

b b
| Fgu(x) dx = —cntn [ gh(x)o() dx.

Solving for ¢,,;, we have

[ F(x)gm(x) dx
Cm =
/\m f f/’m (x)dx
Example 4.9. As an example, we consider the solution of the boundary value prob-
lem 1
N
() +¥=2, xefie (424)
y(1) =0=yle). (4.25)

This equation is already in self-adjoint form. So, we know that the associated
Sturm-Liouville eigenvalue problem has an orthogonal set of eigenfunctions. We
first determine this set. Namely, we need to solve

+2 = rop, p()=0=9(). (4.26)

(x¢')’
Rearranging the terms and multiplying by x, we have that

29" + x¢' + (1+ Aox)¢p = 0.
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This is almost an equation of Cauchy-Euler type. Picking the weight function

o(x) = ;

= 1, we have

¢ +x¢' + (1+A)p = 0.
This is easily solved. The characteristic equation is
2+ (1+A) =0.

Omne obtains nontrivial solutions of the eigenvalue problem satisfying the boundary
conditions when A > —1. The solutions are

¢pn(x) = Asin(nlnx), n=12,....

where A, = n2m? — 1.
It is often useful to normalize the eigenfunctions. This means that one chooses
A so that the norm of each eigenfunction is one. Thus, we have

1 = /1 " (x)20(x) dx

e
= Az/ sin(nﬂlnx)ldx
J1 X
2 [T Lo
= A /0 sin(nmy) dy = EA . (4-27)

Thus, A = /2. Several of these eigenfunctions are show in Figure 4.2.
We now turn towards solving the nonhomogeneous problem, Ly = % We first
expand the unknown solution in terms of the eigenfunctions,

o0
y(x) =) cnV2sin(ninx).
n=1
Inserting this solution into the differential equation, we have
1_ Ly =— i cnA \fZSin(nrclnx)1
x B n=1 o x.

Next, we make use of orthogonality. Multiplying both sides by the eigenfunction
¢m(x) = V/2sin(mrIn x) and integrating, gives

e
AmCrm :/ ﬁsin(mnlnx)%dx =
1

Solving for ¢y, we have
VA ]
" mr om2m? -1

Finally, we insert these coefficients into the expansion for y(x). The solution is
then

nm n2m? —1

y(x) = i 2 wsin(nnln(x)).

We plot this solution in Figure 4.3.

Figure 4.2: Plots of the first five eigen-
functions, y(x) = v2sin(nIn x).
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Figure 4.3: Plot of the solution in Exam-
ple 4.9.
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4.4 Appendix: The Fredholm Alternative Theorem

GIVEN THAT Ly = f, WHEN CAN ONE EXPECT to find a solution? Is it
unique? These questions are answered by the Fredholm Alternative Theo-
rem. This theorem occurs in many forms from a statement about solutions
to systems of algebraic equations to solutions of boundary value problems
and integral equations. The theorem comes in two parts, thus the term
“alternative”. Either the equation has exactly one solution for all f, or the
equation has many solutions for some f’s and none for the rest.

The reader is familiar with the statements of the Fredholm Alternative
for the solution of systems of algebraic equations. One seeks solutions of
the system Ax = b for A an n x m matrix. Defining the matrix adjoint, A*
through < Ax,y >=< x, A*y > for all x,y, € C", then either

Theorem 4.1. First Alternative
The equation Ax = b has a solution if and only if < b,v >= 0 for all v
satisfying A*v = 0.

or

Theorem 4.2. Second Alternative
A solution of Ax = b, if it exists, is unique if and only if x = 0 is the only
solution of Ax = 0.

The second alternative is more familiar when given in the form: The
solution of a nonhomogeneous system of n equations and n unknowns is
unique if the only solution to the homogeneous problem is the zero solution.
Or, equivalently, A is invertible, or has nonzero determinant.

Proof. We prove the second theorem first. Assume that Ax = 0 for x # 0
and Axg = b. Then A(xo + ax) = b for all a. Therefore, the solution is not
unique. Conversely, if there are two different solutions, x; and x, satisfying
Axy = b and Axp, = b, then one has a nonzero solution x = x1 — xp such
that Ax = A(x; — xp) = 0.

The proof of the first part of the first theorem is simple. Let A*v = 0 and
Axy = b. Then we have

< b,v>=< Axg,v >=< x9, A¥v >= 0.

For the second part we assume that < b,v >= 0 for all v such that A*v = 0.
Write b as the sum of a part that is in the range of A and a part that in the
space orthogonal to the range of A, b = bg + bp. Then, 0 =< bp, Ax >=<
A*b,x > for all x. Thus, A*bp. Since < b,v >= 0 for all v in the nullspace
of A*, then < b,bp >=0.

Therefore, < b,v >= 0 implies that

0=<b,bp >=<br+bo,bp >=<bp,bp > .

This means that by = 0, giving b = by is in the range of A. So, Ax = b has
a solution. O
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Example 4.10. Determine the allowed forms of b for a solution of Ax = b to exist,

where
A= L2 .
3 6

First note that A* = A" . This is seen by looking at

<Axy> = <x A'y>
n n n n
Y g = )X ) 4l
i=1j=1 = =
n n
= ) x @) iy (4.28)
j=1 j=1

For this example,

A*:<13>.
2 6

We next solve A*v = 0. This means, v1 + 3vp = 0. So, the nullspace of A* is
spanned by v = (3, —1)T. For a solution of Ax = b to exist, b would have to be
orthogonal to v. Therefore, a solution exists when

So, what does the Fredholm Alternative say about solutions of boundary
value problems? We extend the Fredholm Alternative for linear operators.
A more general statement would be

Theorem 4.3. If L is a bounded linear operator on a Hilbert space, then Ly = f
has a solution if and only if < f,v >= 0 for every v such that LYo = 0.

The statement for boundary value problems is similar. However, we need
to be careful to treat the boundary conditions in our statement. As we have
seen, after several integrations by parts we have that

< Lu,v >=S(u,v)+ < u, L0 >,

where S(u,v) involves the boundary conditions on u and v. Note that for
nonhomogeneous boundary conditions, this term may no longer vanish.

Theorem 4.4. The solution of the boundary value problem Lu = f with boundary
conditions Bu = g exists if and only if

< f,o>—-S(u,v)=0
for all v satisfying LTv = 0 and Bfv = 0.
Example 4.11. Consider the problem

W +u=f(x), u0)—u2n)=au(0)—u'2r) =4
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Only certain values of a and B will lead to solutions. We first note that

dZ
_ 7t _
L=L'=-5+1

Solutions of
L'v =0, ©v(0)—ov(27)=0,0'(0)—o'(2m) =0

are easily found to be linear combinations of v = sinx and v = cos x.
Next, one computes

S(u,v) = [u'v—ud] é”
= u'(2m)v(2nr) — u(27)v’ (27r) — u'(0)0(0) + u(0)v' (0).

(4-29)
For v(x) = sinx, this yields
S(u,sinx) = —u(2m) + u(0) = a.

Similarly,
S(u,cosx) = B.

Using < f,v > —S(u,v) = 0, this leads to the conditions that we were seeking,

27
f(x)sinxdx = a,
0

Oznf(x) cosxdx = B.

Problems

1. Prove the if u(x) and v(x) satisfy the general homogeneous boundary
conditions

aru(a) + pru'(a) =0,
apu(b) + Bou'(b) =0 (4.30)

atx =aand x = b, then

b
2. Prove Green'’s Identity fab(uﬁv —vLu)dx = [p(uv’ —ovu')]| for the gen-

a
eral Sturm-Liouville operator L.

3. Find the adjoint operator and its domain for Lu = u" +4u’ — 3u, u/(0) +
4u(0) =0, u/(1) +4u(1) = 0.

4. Show that a Sturm-Liouville operator with periodic boundary conditions
on [a, b] is self-adjoint if and only if p(a) = p(b). [Recall, periodic boundary
conditions are given as u(a) = u(b) and u'(a) = u’(b).]
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5. The Hermite differential equation is given by i/ — 2xy’ + Ay = 0. Rewrite
this equation in self-adjoint form. From the Sturm-Liouville form obtained,
verify that the differential operator is self adjoint on (—o0,00). Give the
integral form for the orthogonality of the eigenfunctions.

6. Find the eigenvalues and eigenfunctions of the given Sturm-Liouville
problems.
a. Y +Ay=0,9(0) =0=y'(n).
b (xy') + 5y = 0,y(1) = y(e?) = 0.
7. The eigenvalue problem x?y" — Axy’ + Ay = 0 with y(1) = y(2) = 0 is

not a Sturm-Liouville eigenvalue problem. Show that none of the eigenval-
ues are real by solving this eigenvalue problem.

8. In Example 4.8 we found a bound on the lowest eigenvalue for the given
eigenvalue problem.
a. Verify the computation in the example.

b. Apply the method using
o X, 0<x< %
y(x)—{ 1—x, %<x<1
Is this an upper bound on A4

c. Use the Rayleigh quotient to obtain a good upper bound for the
lowest eigenvalue of the eigenvalue problem: ¢” + (A — x2)¢ = 0,

¢(0) = 0,¢'(1) = 0.
9. Use the method of eigenfunction expansions to solve the problems:

a. y"=x% y(0)=y(1)=

0.
by +4y=x% y(0)=y(1)=0.
10. Determine the solvability conditions for the nonhomogeneous bound-
ary value problem: u” +4u = f(x), u(0) = a, v/ (77/4) = B.
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5
Non-sinusoidal Harmonics and Special

Functions

“To the pure geometer the radius of curvature is an incidental characteristic - like
the grin of the Cheshire cat. To the physicist it is an indispensable characteristic.
It would be going too far to say that to the physicist the cat is merely incidental
to the grin. Physics is concerned with interrelatedness such as the interrelatedness
of cats and grins. In this case the "cat without a grin” and the "grin without a
cat” are equally set aside as purely mathematical phantasies.” Sir Arthur Stanley
Eddington (1882-1944)

IN THIS CHAPTER WE PROVIDE A GLIMPSE into generalized Fourier series
in which the normal modes of oscillation are not sinusoidal. For vibrating
strings, we saw that the harmonics were sinusoidal basis functions for a
large, infinite dimensional, function space. Now, we will extend these ideas
to non-sinusoidal harmonics and explore the underlying structure behind
these ideas. In particular, we will explore Legendre polynomials and Bessel
functions which will later arise in problems having cylindrical or spherical
symmetry.

The background for the study of generalized Fourier series is that of
function spaces. We begin by exploring the general context in which one
finds oneself when discussing Fourier series and (later) Fourier transforms.
We can view the sine and cosine functions in the Fourier trigonometric series
representations as basis vectors in an infinite dimensional function space. A
given function in that space may then be represented as a linear combination
over this infinite basis. With this in mind, we might wonder

* Do we have enough basis vectors for the function space?
* Are the infinite series expansions convergent?
* What functions can be represented by such expansions?
In the context of the boundary value problems which typically appear in
physics, one is led to the study of boundary value problems in the form of
Sturm-Liouville eigenvalue problems. These lead to an appropriate set of

basis vectors for the function space under consideration. We will touch a
little on these ideas, leaving some of the deeper results for more advanced
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We note that the above determination
of vector components for finite dimen-
sional spaces is precisely what we had
done to compute the Fourier coefficients
using trigonometric bases. Reading fur-
ther, you will see how this works.

courses in mathematics. For now, we will turn to function spaces and ex-
plore some typical basis functions, many which originated from the study
of physical problems. The common basis functions are often referred to as
special functions in physics. Examples are the classical orthogonal polyno-
mials (Legendre, Hermite, Laguerre, Tchebychef) and Bessel functions. But
first we will introduce function spaces.

5.1 Function Spaces

EARLIER WE STUDIED FINITE DIMENSIONAL VECTOR SPACES. Given a set
of basis vectors, {ar}}_;, in vector space V, we showed that we can expand
any vector v € V in terms of this basis, v = }}_; vja;. We then spent
some time looking at the simple case of extracting the components vy of the
vector. The keys to doing this simply were to have a scalar product and an
orthogonal basis set. These are also the key ingredients that we will need
in the infinite dimensional case. In fact, we had already done this when we
studied Fourier series.

Recall when we found Fourier trigonometric series representations of
functions, we started with a function (vector) that we wanted to expand in a
set of trigonometric functions (basis) and we sought the Fourier coefficients
(components). In this section we will extend our notions from finite dimen-
sional spaces to infinite dimensional spaces and we will develop the needed
background in which to think about more general Fourier series expansions.
This conceptual framework is very important in other areas in mathematics
(such as ordinary and partial differential equations) and physics (such as
quantum mechanics and electrodynamics).

We will consider various infinite dimensional function spaces. Functions
in these spaces would differ by their properties. For example, we could con-
sider the space of continuous functions on [o0,1], the space of differentiably
continuous functions, or the set of functions integrable from a to b. As you
will see, there are many types of function spaces . In order to view these
spaces as vector spaces, we will need to be able to add functions and multi-
ply them by scalars in such as way that they satisfy the definition of a vector
space as defined in Chapter 3.

We will also need a scalar product defined on this space of functions.
There are several types of scalar products, or inner products, that we can
define. An inner product (,) on a real vector space V is a mapping from
V x V into R such that for u,v,w € V and « € R one has

1. <U,>>Oand( v) =0iff v = 0.
2. (v,w) = (w,v).

3. (av,w > a(o, w).

4. (u+ov,w) = (u,w) + (v,w).

A real vector space equipped with the above inner product leads to what
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is called a real inner product space. For complex inner product spaces the
above properties hold with the third property replaced with (v, w) = (w,v).

For the time being, we will only deal with real valued functions and,
thus, we will need an inner product appropriate for such spaces. One such
definition is the following. Let f(x) and g(x) be functions defined on [a, ]
and introduce the weight function ¢(x) > 0. Then, we define the inner

product, if the integral exists, as

b
(,8) = | FER)g(x)o(x)dx. (51

Spaces in which (f, f) < oo under this inner product are called the space of
square integrable functions on (a,b) under weight o and denoted as L2(a, b).
In what follows, we will assume for simplicity that o(x) = 1. This is possible
to do by using a change of variables.

Now that we have function spaces equipped with an inner product, we
seek a basis for the space. For an n-dimensional space we need n basis
vectors. For an infinite dimensional space, how many will we need? How
do we know when we have enough? We will provide some answers to these
questions later.

Let’s assume that we have a basis of functions {¢,(x)}?" ;. Given a func-
tion f(x), how can we go about finding the components of f in this basis?

In other words, let
[ee]

flx) = E Cnn(x).

n=1
How do we find the c;,’s? Does this remind you of Fourier series expan-
sions? Does it remind you of the problem we had earlier for finite dimen-
sional spaces? [You may want to review the discussion at the end of Section
?? as you read the next derivation.]
Formally, we take the inner product of f with each ¢; and use the prop-
erties of the inner product to find

<¢j/f> = <¢j’ Z CnPn)
n=1
= 2 Cn <‘ij Pn)- (5.2)
n=1
If the basis is an orthogonal basis, then we have
(@i, Pn) = Nidju, (5:3)
where Jj,, is the Kronecker delta. Recall from Chapter 3 that the Kronecker
delta is defined as
0, i#]
6 = .
g { 1, i= ] (5 4)

Continuing with the derivation, we have

@i f) = il a1, )

= Z cnNjdjn (5.5)
n=1

The space of square integrable functions.

For the generalized Fourier series expan-
sion f(x) = Yoo q cun(x), we have de-
termined the generalized Fourier coeffi-

cients to be ¢; = (¢, f)/{dj, P;)-
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Expanding the sum, we see that the Kronecker delta picks out one nonzero
term:

<(P],f> = Cle(sjl +C2Nj5j2+---+Cij5jj+---
= C]N] (56)
So, the expansion coefficients are

- 9. f) _ (9.f) i1

N; (P, #))

We summarize this important result:

Generalized Basis Expansion

Let f(x) be represented by an expansion over a basis of orthogonal func-
tions, {¢,(x)}5 4,

[e°]

flx) = Z CnPn (%)
n=1
Then, the expansion coefficients are formally determined as
o ouh)
{Pn Pn)

This will be referred to as the general Fourier series expansion and the
¢j’s are called the Fourier coefficients. Technically, equality only holds
when the infinite series converges to the given function on the interval of

interest.

Example 5.1. Find the coefficients of the Fourier sine series expansion of f(x),
given by
f(x) =Y bysinnx, x¢€[-m,nl
n=1
In the last chapter we already established that the set of functions ¢n(x) =

sinnx for n = 1,2,... is orthogonal on the interval [—rt, 7t|. Recall that using
trigonometric identities, we have for n # m

"TT
(pn, Pm) = / sinnx sinmx dx = 7ty (5.7)
J =TT

Therefore, the set ¢ (x) = sinnx for n =1,2,... is an orthogonal set of functions
on the interval [—7t, 7T].
We determine the expansion coefficients using

7<¢n1f>7 <¢n/f> 71 T .
b, = No T (omdn) E/_ﬂf(x)smnxdx.

Does this result look familiar?
Just as with vectors in three dimensions, we can normalize these basis functions
to arrive at an orthonormal basis. This is simply done by dividing by the length of
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the vector. Recall that the length of a vector is obtained as v = /v - v. In the same
way, we define the norm of a function by

£l =/ {f, £)-

Note, there are many types of norms, but this induced norm will be sufficient.*

For this example, the norms of the basis functions are ||pn|| = /7. Defining
Pu(x) = ﬁgbn(x), we can normalize the ¢,’s and have obtained an orthonormal
basis of functions on [—7t, 7T].

We can also use the normalized basis to determine the expansion coefficients. In
this case we have

{$n, f) L7 :
by = N, (Gn, f) = %/_nf(x)smnxdx.

5.2 Classical Orthogonal Polynomials

THERE ARE OTHER BASIS FUNCTIONS that can be used to develop series
representations of functions. In this section we introduce the classical or-
thogonal polynomials. We begin by noting that the sequence of functions
{1,x,x2,...} is a basis of linearly independent functions. In fact, by the
Stone-Weierstra8 Approximation Theorem? this set is a basis of L2(a, b), the
space of square integrable functions over the interval [a, b] relative to weight
o(x). However, we will show that the sequence of functions {1,x,x2,...}
does not provide an orthogonal basis for these spaces. We will then proceed
to find an appropriate orthogonal basis of functions.

1 The norm defined here is the natural,
or induced, norm on the inner product
space. Norms are a generalization of the
concept of lengths of vectors. Denoting
||v]| the norm of v, it needs to satisfy the
properties

1. ||v|]| > 0. ||v|]| = 0if and only if v = 0.
2. [lav] = la]v]l.

3. Jlu+v| < flull +v].

Examples of common norms are

1. Euclidean norm:

vl = ot + - +of
2. Taxicab norm:

[vll = lo1] +-- - + [oal.

3. LP norm:
= (firras)”

* Stone-Weierstrafs Approximation The-
orem Suppose f is a continuous function
defined on the interval [a,b]. For every
€ > 0, there exists a polynomial func-
tion P(x) such that for all x € [a,b], we
have |f(x) — P(x)| < e. Therefore, every

We are familiar with being able to expand functions over the basis {1, x, x2,.. .} ,continuous function defined on [4,b] can

since these expansions are just Maclaurin series representations of the func-
tions about x = 0,

fx) ~ iocnx”.

However, this basis is not an orthogonal set of basis functions. One can
easily see this by integrating the product of two even, or two odd, basis
functions with o(x) =1 and (a,b)=(—1,1). For example,

1 2
0.2

dx = —.

/_1xx x=3

Since we have found that orthogonal bases have been useful in determin-
ing the coefficients for expansions of given functions, we might ask, “Given
a set of linearly independent basis vectors, can one find an orthogonal basis
of the given space?" The answer is yes. We recall from introductory linear
algebra, which mostly covers finite dimensional vector spaces, that there is
a method for carrying this out called the Gram-Schmidt Orthogonalization
Process. We will review this process for finite dimensional vectors and then
generalize to function spaces.

be uniformly approximated as closely as
we wish by a polynomial function.

The Gram-Schmidt Orthogonalization
Process.
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Figure 5.1: The basis aj, ap, and a3, of
RS

Figure 5.2: A plot of the vectors ey, a,
and e; needed to find the projection of
a, on e;.

Pria;
Figure 5.3: A plot of vectors for deter-
mining e3.

Let’s assume that we have three vectors that span the usual three dimen-
sional space, R?, given by ay, ap, and a3 and shown in Figure 5.1. We seek
an orthogonal basis ej, ey, and e3, beginning one vector at a time.

First we take one of the original basis vectors, say a;, and define

€] — aj.

It is sometimes useful to normalize these basis vectors, denoting such a
normalized vector with a “hat”:

~ €1
€= —
€1

where e = /e - eq.

Next, we want to determine an e; that is orthogonal to e;. We take an-
other element of the original basis, a;. In Figure 5.2 we show the orientation
of the vectors. Note that the desired orthogonal vector is e;. We can now
write ap as the sum of e; and the projection of a; on e;. Denoting this pro-
jection by pr;ap, we then have

e, = ap — pryap. (5-8)

Recall the projection of one vector onto another from your vector calculus

class.
ajr - e
priaz = 62 €q. (59)
1

This is easily proven by writing the projection as a vector of length a; cos 6
in direction &;, where 6 is the angle between e; and a,. Using the definition
of the dot product, a - b = ab cos 6, the projection formula follows.
Combining Equations (5.8)-(5.9), we find that
- e

el 10
g 1 (5.10)

€ = ap —

It is a simple matter to verify that e, is orthogonal to es:

ar - e
€-e; — az-e] — e -ep

2
1
= ay-e;—ap-e; =0. (5.11)

Next, we seek a third vector e3 that is orthogonal to both e; and e;. Picto-
rially, we can write the given vector a3 as a combination of vector projections
along e; and ey with the new vector. This is shown in Figure 5.3. Thus, we
can see that

ez = a3z — A '291 e — A -2e2 €. (5.12)
5l €

Again, it is a simple matter to compute the scalar products with e; and e;
to verify orthogonality.

We can easily generalize this procedure to the N-dimensional case. Let
ay,, n = 1,..,N be a set of linearly independent vectors in RN. Then, an
orthogonal basis can be found by setting e; = a; and defining
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nla,-e
en=an— ) et n=2,3,..., N. (5.13)
=1 7

Now, we can generalize this idea to (real) function spaces. Let f,(x),
n € Ny = {0,1,2,...}, be a linearly independent sequence of continuous
functions defined for x € [a,b]. Then, an orthogonal basis of functions,
¢n(x), n € Np can be found and is given by

$o(x) = fo(x)

and

§u(x) = fulx) — Cpi(x), n=12,....  (514)

Here we are using inner products relative to weight o(x),

b
(f,8) = [ f@)3(x)o() dx. (5.15)

Note the similarity between the orthogonal basis in (5.14) and the expression
for the finite dimensional case in Equation (5.13).

Example 5.2. Apply the Gram-Schmidt Orthogonalization process to the set f,(x) =
x",n € Ng, when x € (=1,1) and o(x) = 1.
First, we have ¢o(x) = fo(x) = 1. Note that

/jl ¢%(x)dx = 2.

We could use this result to fix the normalization of the new basis, but we will hold
off doing that for now.
Now, we compute the second basis element:

) = filn) - L) g

x,1
= x-— <||1”2> 1=x, (5.16)

since (x,1) is the integral of an odd function over a symmetric interval.
For ¢ (x), we have

o) = falx) - L2005y 2P0

llpol|? 1|2

2 2
2 (x51) 0 (x%x)
X — 1-— by

(12 ([ %12
) filxzdx

fildx

1

= xz—g- (5.17)

133
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3 Adrien-Marie Legendre (1752-1833)
was a French mathematician who made
many contributions to analysis and
algebra.

Table 5.1: Common classical orthogo-
nal polynomials with the interval and
weight function used to define them.

So far, we have the orthogonal set {1,x,x* — %} If one chooses to normalize
these by forcing ¢, (1) = 1, then one obtains the classical Legendre polynomials,
Py(x). Thus,

1

Py(x) = E(3x2 —1).

Note that this normalization is different than the usual one. In fact, we see the
P> (x) does not have a unit norm,
1 2
P|* = / P(x)dx = .
I1P2]I" = | Pa(x)dx =g
The set of Legendre3 polynomials is just one set of classical orthogo-
nal polynomials that can be obtained in this way. Many of these special
functions had originally appeared as solutions of important boundary value
problems in physics. They all have similar properties and we will just elab-

orate some of these for the Legendre functions in the next section. Others
in this group are shown in Table 5.1.

Polynomial Symbol | Interval o(x)
Hermite Hy(x) | (—o0,00) e
Laguerre L%(x) [0, 00) e *
Legendre Py (x) (-1,1) 1

Gegenbauer Ch(x) (-1,1) (1—x2)A-1/2
Tchebychef of the 1st kind Tu(x) (-1,1) (1—x2)"1/2
Tchebychef of the 2nd kind | U, (x) (-1,1) (1—x%)"1/2

Jacobi P,SV’”)(x) (-1,1) (1—x)"(1—x)*

5.3 Fourier-Legendre Series

IN THE LAST CHAPTER WE sAW how useful Fourier series expansions were
for solving the heat and wave equations. In Chapter 6 we will investigate
partial differential equations in higher dimensions and find that problems
with spherical symmetry may lead to the series representations in terms of a
basis of Legendre polynomials. For example, we could consider the steady
state temperature distribution inside a hemispherical igloo, which takes the
form

o0

¢(r,0) = Y Apr"Py(cosb)

n=0
in spherical coordinates. Evaluating this function at the surface r = a as
¢(a,0) = f(0), leads to a Fourier-Legendre series expansion of function f :

f(6) = i cnPy(cosB),

n=0

where ¢, = A,a"
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In this section we would like to explore Fourier-Legendre series expan-
sions of functions f(x) defined on (—1,1):

fx) ~ f;ocnpn(x). (5.18)

As with Fourier trigonometric series, we can determine the expansion coef-
ficients by multiplying both sides of Equation (5.18) by Py (x) and integrat-
ing for x € [—1,1]. Orthogonality gives the usual form for the generalized

Fourier coefficients,

(f, Pn)
ch=-—=,n=0,1,....
P

We will later show that

2
P |* = .
|| T’lH 2n+1

Therefore, the Fourier-Legendre coefficients are

2n+1 1
Cp = n2 Klf(x)Pn(x) dx. (5.19)
5.3.1 Properties of Legendre Polynomials

WE CAN DO EXAMPLES OF FOURIER-LEGENDRE EXPANSIONS given just a
few facts about Legendre polynomials. The first property that the Legendre
polynomials have is the Rodrigues formula:

1 4

Py(x) = ZTn'W(xz -1)", neN. (5.20)

From the Rodrigues formula, one can show that P,(x) is an nth degree
polynomial. Also, for n odd, the polynomial is an odd function and for n
even, the polynomial is an even function.

Example 5.3. Determine P,(x) from Rodrigues formula:

1 d>, ,
P(x) = 2272!@(9( -1)

1 d?

= g2 2+
1d

= %(12;(2—4)
1.2

= §(3x —1). (5.21)

Note that we get the same result as we found in the last section using orthogonal-
ization.

The first several Legendre polynomials are given in Table 5.2. In Figure
5.4 we show plots of these Legendre polynomials.

The Rodrigues Formula.

The Three Term Recursion Formula.

135
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Table 5.2: Tabular computation of the
Legendre polynomials using the Ro-
drigues formula.

Figure 5.4: Plots of the Legendre poly-
nomials P, (x), P3(x), Ps(x), and Ps(x).

n (x2 —1)" dd;,, (2 =1)" | o Py(x)

(6] 1 1 1 1

1 x2—1 2x % X

2 x*t—2x2 4+ 1 12x> — 4 | ABxr-1)
3| x0—3x*+3x2—1 | 120x®—72x | £ | 3(5x® —3x)

All of the classical orthogonal polynomials satisfy a three term recursion

formula (or, recurrence relation or formula). In the case of the Legendre

polynomials, we have

(n+1)Pyy1(x) = (21 +1)xPy(x) — nPy1(x),

n=12,.... (5.22)

This can also be rewritten by replacing n with n —1 as

(2n —1)xP,_1(x) = nPy(x) + (n — 1)Py_2(x),

n=12,.... (5.23)

Example 5.4. Use the recursion formula to find Py(x) and Ps3(x), given that
Py(x) = 1and Py(x) = x.
We first begin by inserting n = 1 into Equation (5.22):

2P;(x) = 3xP; (x) — Py(x) = 3x* — 1.

So, Py(x) = 1(3x% —1).
For n = 2, we have

The first proof of the three term recur-
sion formula is based upon the nature of
the Legendre polynomials as an orthog-
onal basis, while the second proof is de-
rived using generating functions.

We will prove the three term recursion formula in two ways.

3P5(x)

This gives P3(x) = £(5x> — 3x).

= b5xPy(x) — 2P (x)

= gx(sz —1)—2x

= %(15353 —9x). (5.24)

These expressions agree with the earlier results.

First we
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use the orthogonality properties of Legendre polynomials and the following
lemma.

Lemma 5.1. The leading coefficient of X" in Py(x) is mrm ==

Proof. We can prove this using the Rodrigues formula. First, we focus on
the leading coefficient of (x> — 1)", which is x?". The first derivative of x*"
is 2nx?"~1. The second derivative is 211(2n — 1)x?" 2. The jth derivative is

dijn
dxi

Thus, the nth derivative is given by

= [2n(2n—1)...(2n —j+1)]x®" .

ar x2n
dx"

This proves that P,(x) has degree n. The leading coefficient of P,(x) can

=[2n(2n—1)...(n+1)]x".

now be written as

2n(2n—1)...(n+1)] _ [2n(2n—-1)...(n+1)Jn(n—-1)...1
21! N 21! nn—1)...1
1 (2n)!
T 2l oal (5-25)
O
Theorem 5.1. Legendre polynomials satisfy the three term recursion formula
(2n —1)xP, 1(x) =nPy(x)+ (n—1)P, 2(x), n=1,2,.... (5.26)

Proof. In order to prove the three term recursion formula we consider the
expression (2n — 1)xP,_1(x) — nP,(x). While each term is a polynomial of
degree 1, the leading order terms cancel. We need only look at the coeffi-
cient of the leading order term first expression. It is

m—1 (2n—-2) 1 @n—1)!  (2n—1)!
27 (n—1)t (n—=1)t 271 (n—=1)! (n—1)! — 2n-1[(n—1)1]?

The coefficient of the leading term for nP,(x) can be written as

1 (2n)! (20 1 @n—1)! (2n—1)!
"om _”<2n2) (2n1(n—1)!> (n—1)! 201 [(n— 1)

It is easy to see that the leading order terms in the expression (2n —1)xP,_1(x) —

nP,(x) cancel.

The next terms will be of degree n — 2. This is because the P,’s are either
even or odd functions, thus only containing even, or odd, powers of x. We
conclude that

(2n —1)xP,_1(x) — nP,(x) = polynomial of degree n — 2.

Therefore, since the Legendre polynomials form a basis, we can write this
polynomial as a linear combination of Legendre polynomials:

(2n —1)xP,_1(x) —nPy(x) = coPy(x) + 1 P1(x) + ...+ cyn_2Py_2(x). (5.27)
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Figure 5.5: The position vectors used to
describe the tidal force on the Earth due
to the moon.

Multiplying Equation (5.27) by Py, (x) for m = 0,1,...,n — 3, integrating
from —1 to 1, and using orthogonality, we obtain

0=cul|/Pul®>, m=0,1,...,n—3.

[Note: fil xkP,(x)dx = 0 for k < n — 1. Thus, f_ll xP,_1(x)Pp(x)dx =0
form < n—3.]
Thus, all of these ¢;;’s are zero, leaving Equation (5.27) as

(2n —1)xP;_1(x) — nPy(x) = cy—2Py_2(x).

The final coefficient can be found by using the normalization condition,
P,(1) =1.Thus,cyp=(2n—1)—n=n-—1. O

5.3.2  Generating Functions The Generating Function for Legendre Poly-
nomials

A SECOND PROOF OF THE THREE TERM RECURSION FORMULA can be ob-
tained from the generating function of the Legendre polynomials. Many
special functions have such generating functions. In this case it is given by

1 o0
X b)) = ———==) Py(x)t", |x| <1t <1 (5.28)
S0 = gy = LA, <L
This generating function occurs often in applications. In particular, it
arises in potential theory, such as electromagnetic or gravitational potentials.
These potential functions are % type functions.

;’1
r
2

5

For example, the gravitational potential between the Earth and the moon
is proportional to the reciprocal of the magnitude of the difference between
their positions relative to some coordinate system. An even better example,
would be to place the origin at the center of the Earth and consider the
forces on the non-pointlike Earth due to the moon. Consider a piece of the

Earth at position r; and the moon at position rp as shown in Figure 5.5. The
tidal potential ® is proportional to

1 1 1

—r|  /(o—1) (rn—r) \/r%—Zrlrzcosf)—i—r%

P x

where 6 is the angle between r; and rp.
Typically, one of the position vectors is much larger than the other. Let’s
assume that r; < 5. Then, one can write

P o 1 :1 1

\/r% —2rrpcosf+7r3 2 \/1_22CO89+ (%)2
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Now, define x = cosf and t = % We then have that the tidal potential is
proportional to the generating function for the Legendre polynomials! So,
we can write the tidal potential as

®o LY Pycosh) (”)

1 n=0 1

The first term in the expansion, %, is the gravitational potential that gives

the usual force between the Earth and the moon. [Recall that the gravita-

GMm
r

that the force is the gradient of the potential, F = —V® « V (%) .] The next
terms will give expressions for the tidal effects.

tional potential for mass m at distance r from M is given by ® = — and

Now that we have some idea as to where this generating function might
have originated, we can proceed to use it. First of all, the generating function
can be used to obtain special values of the Legendre polynomials.

Example 5.5. Evaluate P,(0) using the generating function. P,(0) is found by
considering g(0, t). Setting x = 0 in Equation (5.28), we have

1
+t

g(0,t) =

N

I
e S

P (0)¢"

3
I

0) 4 P1(0)t + P,(0)£2 + P3(0)£2 + ... (5.29)

—~ o

I
!

0

We can use the binomial expansion to find the final answer. Namely, we have

1 1, 3,
=1— -t —t
e 2 8T

Comparing these expansions, we have the P,(0) = 0 for n odd and for even integers
one can show (see Problem 12) that*

(2n — 1)

P, (0) = (71)”W, (5-30)

where n!! is the double factorial,

n(n—2)...(3)1, n>0,o0dd,
n!'=< n(n—2)...(4)2, n>0,even,
1 n=20,-1

Example 5.6. Evaluate P,(—1). This is a simpler problem. In this case we have

1 1
VIt2t+ 12 1+t

Therefore, P,(—1) = (—1)".

=1—t++ -5 +....

g(=1t) =

Example 5.7. Prove the three term recursion formula,

(k+1)Peyq(x) — (2k + D)xPe(x) + kPr_1(x) =0, k=1,2,...,

4 This example can be finished by first
proving that

2n)!t = 2"n!
and
g (@m)t  (2n)!
(2 =DM = o = gt

Proof of the three term recursion for-
mula using the generating function.
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using the generating function.

We can also use the generating function to find recurrence relations. To prove the
three term recursion (5.22) that we introduced above, then we need only differentiate
the generating function with respect to t in Equation (5.28) and rearrange the result.
First note that

87g_ x—t x—t

_ - 1),
ot ~ (a2 - 1—zm sl

Combining this with

[e0)

ag _ n—1
Fri ngénPn(x)t ,

we have .
(x—t)g(x,t) = (L —2xt+#2) Y nPy(x)t" L.
n=0
Inserting the series expression for g(x, t) and distributing the sum on the right side,
we obtain

(x—=1) Y Pu(x)t" = Y nPy(x)t" 1 = Y 2nxPy(x)t" 4+ Y nPy(x)t"
n=0 n=0 n=0 n=0

Multiplying out the x — t factor and rearranging, leads to three separate sums:

o [e0] o
Yo nPu(x)t" = Y 2n 4+ 1)xPy(x)t" + Y (n+ 1) Py (x)" T = 0. (5.31)
n=0 n=0 n=0
Each term contains powers of t that we would like to combine into a single sum.
This is done by reindexing. For the first sum, we could use the new index k = n — 1.
Then, the first sum can be written

() (9]

Zonpn(x)t"*1 = kz (k4 1) Py (x)t5.
n= =—1

Using different indices is just another way of writing out the terms. Note that
o
Y nPu(x)t" 1 = 0+ Py(x) + 2P (x)t + 3Ps(x) 2 + . ..
n=0

and

Y (k+1) Py (x)t5 = 0+ Py(x) + 2P (x)t + 3P5(x)£2 + ...
k=-1
actually give the same sum. The indices are sometimes referred to as dummy indices
because they do not show up in the expanded expression and can be replaced with
another letter.

If we want to do so, we could now replace all of the k’s with n’s. However, we will
leave the k’s in the first term and now reindex the next sums in Equation (5.31).
The second sum just needs the replacement n = k and the last sum we reindex
using k = n + 1. Therefore, Equation (5.31) becomes

[e9) [e9)

Y (k+1)Peyq ()15 = Y (2k + 1)xPy (x) 8 + i kP_1(x)tF =0.  (5.32)
k=-1 k=0 k=1
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We can now combine all of the terms, noting the k = —1 term is automatically
zero and the k = 0 terms give

Py (x) — xPy(x) = 0. (5.33)

Of course, we know this already. So, that leaves the k > 0 terms:
2 (k4 1) Pegr (x) — (2k + 1)xPy(x) + kPe_y (¥)] £* = 0. (534)

Since this is true for all t, the coefficients of the t*'s are zero, or
(k+1)Peyq(x) — (2k +1)xPe(x) + kPr_1(x) =0, k=1,2,....

While this is the standard form for the three term recurrence relation, the earlier
form is obtained by setting k = n — 1.

There are other recursion relations which we list in the box below. Equa-
tion (5.35) was derived using the generating function. Differentiating it with
respect to x, we find Equation (5.36). Equation (5.37) can be proven using
the generating function by differentiating g(x, t) with respect to x and re-
arranging the resulting infinite series just as in this last manipulation. This
will be left as Problem 4. Combining this result with Equation (5.35), we
can derive Equations (5.38)-(5.39). Adding and subtracting these equations
yields Equations (5.40)-(5.41).

Recursion Formulae for Legendre Polynomials forn =1,2,....

(n+1)Pua(x) = (20 +1)xPy(x) —nPy1(x) (535)

(n+ 1Py (x) = 2n+1)[Pa(x) + 2Py (x)] = nP,_4(x)
(5:36)
Pu(x) = Py (x) = 2xPy(x) + Py () (537)
n-1(x) = xPy(x) —nPy(x) (538)
Prpa(x) = xPy(x)+ (n+1)Pa(x) (539)
Pria(x) +Pyg(x) = 2xPy(x) + Pu(x). (5.40)
Pyia(x) = Py (x) (21 + 1) Py (x). (5.41)
(C =1Py(x) = nxPy(x) —nPy(x) (542)

Finally, Equation (5.42) can be obtained using Equations (5.38) and (5.39).
Just multiply Equation (5.38) by x,

x?P}(x) — nxP,(x) = xP"_;(x).

Now use Equation (5.39), but first replace n with n — 1 to eliminate the
xP)_;(x) term:

x?Pl(x) — nxP,(x) = P)(x) — nP,_1(x).

Rearranging gives the Equation (5.42).

141
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Example 5.8. Use the generating function to prove

2
2n+1°

1
IPalP = [ P3(x)dx =

Another use of the generating function is to obtain the normalization constant.
This can be done by first squaring the generating function in order to get the prod-
The normalization constant. ucts Py (x )Pm (x ), and then integrating over x.
Squaring the generating function has to be done with care, as we need to make
proper use of the dummy summation index. So, we first write

1

s

Integrating from x = —1 to x = 1 and using the orthogonality of the Legendre

()£, (5.43)

HMS

polynomials, we have

/1 dx B
11 =2xt+2

Lr "*’“/ 1Pt
L

= / x) dx. (5-44)
5 You will need the integral However, one can show that>
dx 1
/a+bx bln(a—l—bx) +C. / dileln ﬂ .
1 1—2xt+12 1—t
¢ You will need the series expansion Expanding this expression about t = 0, we obtain®
0 n
In(1+x) = —1yr 1, (14t > 2
n(l+x) n;( ) n —In <+ > = 2 S
2 t 1—t = 2n+1
= Yty

Comparing this result with Equation (5.44), we find that

2
2n+1°

1
1Pl = [ PRx)dx = (5.45)

5.3.3 The Differential Equation for Legendre Polynomials

THE LEGENDRE POLYNOMIALS SATISFY a second order linear differential
equation. This differential equation occurs naturally in the solution of initial-
boundary value problems in three dimensions which possess some spherical
symmetry. We will see this in the last chapter. There are two approaches
we could take in showing that the Legendre polynomials satisfy a particular
differential equation. Either we can write down the equations and attempt
to solve it, or we could use the above properties to obtain the equation. For
now, we will seek the differential equation satisfied by P, (x) using the above
recursion relations.
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We begin by differentiating Equation (5.42) and using Equation (5.38) to
simplify:

;—x ((x2 - 1)P{l(x)) = nPy(x)+nxP,(x) — nP,_;(x)

= nPy(x) 4 n*Py(x)
= n(n+1)P(x). (5.46)

Therefore, Legendre polynomials, or Legendre functions of the first kind,
are solutions of the differential equation

(1—x2)y" —2xy +n(n+1)y = 0.

As this is a linear second order differential equation, we expect two linearly
independent solutions. The second solution, called the Legendre function
of the second kind, is given by Q,(x) and is not well behaved at x = £1.
For example,

1. 1+x
QO(X)_Elnl—x'

We will not need these for physically interesting examples in this book.

5.3.4 Fourier-Legendre Series

WITH THESE PROPERTIES OF LEGENDRE FUNCTIONS we are now prepared
to compute the expansion coefficients for the Fourier-Legendre series repre-
sentation of a given function.

Example 5.9. Expand f(x) = x° in a Fourier-Legendre series.
We simply need to compute

2n+1 1
=" /71 X3P, (x) dx. (5.47)

We first note that
1
/ x"Py(x)dx =0 form > n.
-1

As a result, we have that ¢, = 0 for n > 3. We could just compute f_ll X3Py (x) dx
for m = 0,1,2,... outright by looking up Legendre polynomials. But, note that x>
is an odd function. So, ¢y = 0 and c; = 0.

This leaves us with only two coefficients to compute. We refer to Table 5.2 and

find that
3, 3
cl—i/_lx dx—g
7 /1 a1, 4 2
C3—§/_1x [Z(SX —3x)] dx—g.
Thus,
3 2
35 _ - <
X _5P1(x)+5P3(x)

A generalization of the Legendre equa-
tion is given by (1 — x2)y" — 2xy’ +
[n(n +1) - %] y = 0. Solutions to
this equation, PJ'(x) and QI'(x), are
called the associated Legendre functions
of the first and second kind.
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7QOliver Heaviside (1850-1925) was an
English mathematician, physicist and
engineer who used complex analysis to
study circuits and was a co-founder of
vector analysis. The Heaviside function
is also called the step function.

Of course, this is simple to check using Table 5.2:

3 2 3 271
°p cp — = e — 3
5 1(x)+5 53(x) 5x+5[ (5x 3x)] x

We could have obtained this result without doing any integration. Write x3 as a
linear combination of Py (x) and P3(x) :

3= c1x+%cz(5x3—3x)

3 5
= (c1— Ecz)x + Eczxg'. (5.48)

[$]e8)

Equating coefficients of like terms, we have that cy = % and cq = %cz =

Example 5.10. Expand the Heaviside? function in a Fourier-Legendre series.
The Heaviside function is defined as

1, x>0,
H(x) = { o roo (5.49)

In this case, we cannot find the expansion coefficients without some integration. We
have to compute

= zn;l/jlf(x)Pn(x) dx

2n+1 /1
- = /0 P, (x) dx. (5.50)

We can make use of identity (5.41),
Py (x) = Ppq () = 2+ 1)Pa(x), n>0. (551)

We have for n > 0

=3 [ s (x) ~ By ()] = 3 (B 1(0) — Pra(O)]

For n = 0, we have

This leads to the expansion

[e9)

Fx) ~ 42 Y [Pea(0) — Puca (0)]a()

n=1
We still need to evaluate the Fourier-Legendre coefficients

1

tn = 5[Pu-1(0) = Puy1(0)].

Since P, (0) = O for n odd, the c,’s vanish for n even. Letting n = 2k — 1, we
re-index the sum, obtaining

N =
agk

+ [Pox—2(0) — P (0)] Por—1(x).

NI~

flx) ~

k

1
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We can compute the nonzero Fourier coefficients, cop_1 = % [Por_2(0) — Py (0)],
using a result from Problem 12:

Pu(0) = (-0 2 (552

Namely, we have

Cok-1 = %[szfz(o)—sz(O)]
- Hom B v
= 5V G [+ T
= —%( 1)"8::;;5:42;1 (5:53)

Thus, the Fourier-Legendre series expansion for the Heaviside function is given

by
TERIS IR = LR

The sum of the first 21 terms of this series are shown in Figure 5.6. We note the slow

Poy—1(x). (5.54)

convergence to the Heaviside function. Also, we see that the Gibbs phenomenon is
present due to the jump discontinuity at x = 0. [See Section 3.7.]

5.4 Gamma Function

A FUNCTION THAT OFTEN OCCURS IN THE STUDY OF SPECIAL FUNCTIONS
is the Gamma function. We will need the Gamma function in the next
section on Fourier-Bessel series.

For x > we define the Gamma function as

T(x) = / Fletdt, x>0, (555
0

The Gamma function is a generalization of the factorial function and a plot
is shown in Figure 5.7. In fact, we have

r(1)=1

and
I'(x+1)=xl(x).

The reader can prove this identity by simply performing an integration by
parts. (See Problem 7.) In particular, for integers n € Z*, we then have

I'n+1)=nl'(n)=n(n-—1)I(n—-2)=n(n—1)---2I'(1) = nl.

We can also define the Gamma function for negative, non-integer values
of x. We first note that by iteration on n € Z*, we have

I'(x+n)=(x+n—-1)---(x+1)xT'(x), x+n>0.

1]

0.8

0.6

04

0.2

208 06 04 62 \p 02 04 06 08
X

Figure 5.6: Sum of first 21 terms for
Fourier-Legendre series expansion of
Heaviside function.

The name and symbol for the Gamma
function were first given by Legendre in
1811. However, the search for a gener-
alization of the factorial extends back to
the 1720’s when Euler provided the first
representation of the factorial as an infi-
nite product, later to be modified by oth-
ers like GauB3, Weierstraf}, and Legendre.

‘ J
i 1L

Figure 5.7: Plot of the Gamma function.

IS
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8 In Example 9.5 we show the more gen-
eral result:

” e B dy = \/ﬁ
/W Y=\

Solving for I'(x), we then find

I'(x+n)
x+n—1)--(x+1)x’

—n<x<0

I'(x) = (

Note that the Gamma function is undefined at zero and the negative inte-
gers.

Example 5.11. We now prove that

()

This is done by direct computation of the integral:

| WY A S
F(2>/0 t2e" dt.
1 _ © 2
F<2>2/Oe dz.

Due to the symmetry of the integrand, we obtain the classic integral
1 <]
rg)= /Lo

which can be performed using a standard trick. Consider the integral

I:/ e dx.

J —00

12:/ e dx/ eV dy.

Note that we changed the integration variable. This will allow us to write this

Letting t = z2, we have

Then,

product of integrals as a double integral:

= /‘oo /.oo e (V) dxdy.

This is an integral over the entire xy-plane. We can transform this Cartesian inte-
gration to an integration over polar coordinates. The integral becomes

27T oo
= / / e rdrde.
o Jo

This is simple to integrate and we have 1> = 1. So, the final result is found by
taking the square root of both sides:

r(3)=1-v=
2
In Problem 12 the reader will prove the identity
1 2n —1)!!
Pint 3y = VY o

2 n
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Another useful relation, which we only state, is

T(0)I(1—x) = Sm”m.

The are many other important relations, including infinite products, which
we will not need at this point. The reader is encouraged to read about
these elsewhere. In the meantime, we move on to the discussion of another
important special function in physics and mathematics.

5.5  Fourier-Bessel Series

BESSEL FUNCTIONS ARISE IN MANY PROBLEMS in physics possessing cylin-
drical symmetry such as the vibrations of circular drumheads and the radial
modes in optical fibers. They also provide us with another orthogonal set
of basis functions.

The first occurrence of Bessel functions (zeroth order) was in the work
of Daniel Bernoulli on heavy chains (1738). More general Bessel functions
were studied by Leonhard Euler in 1781 and in his study of the vibrating
membrane in 1764. Joseph Fourier found them in the study of heat conduc-
tion in solid cylinders and Siméon Poisson (1781-1840) in heat conduction
of spheres (1823).

The history of Bessel functions, does not just originate in the study of the
wave and heat equations. These solutions originally came up in the study
of the Kepler problem, describing planetary motion. According to G. N.
Watson in his Treatise on Bessel Functions, the formulation and solution of
Kepler’s Problem was discovered by Joseph-Louis Lagrange (1736-1813), in
1770. Namely, the problem was to express the radial coordinate and what
is called the eccentric anomaly, E, as functions of time. Lagrange found
expressions for the coefficients in the expansions of r and E in trigonometric
functions of time. However, he only computed the first few coefficients. In
1816 Friedrich Wilhelm Bessel (1784-1846) had shown that the coefficients
in the expansion for r could be given an integral representation. In 1824 he
presented a thorough study of these functions, which are now called Bessel
functions.

You might have seen Bessel functions in a course on differential equations
as solutions of the differential equation

2yt xy + (22— p?)y =0, (556)

Solutions to this equation are obtained in the form of series expansions.
Namely, one seeks solutions of the form

y(x) =Y apxt"
jn)

by determining the for the coefficients must take. We will leave this for a
homework exercise and simply report the results.

Bessel functions have a long history
and were named after Friedrich Wilhelm
Bessel (1784-1846).
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Figure 5.8: Plots of the Bessel functions

]O(x)/ Il (x)/ ]Z(X)r and ]3(3().

One solution of the differential equation is the Bessel function of the first
kind of order p, given as

v =) = 3 e (BT o)

= m+DI(n+p+1)

In Figure 5.8 we display the first few Bessel functions of the first kind
of integer order. Note that these functions can be described as decaying
oscillatory functions.

A second linearly independent solution is obtained for p not an integer as
J—p(x). However, for p an integer, the I'(n + p + 1) factor leads to evaluations
of the Gamma function at zero, or negative integers, when p is negative.
Thus, the above series is not defined in these cases.

Another method for obtaining a second linearly independent solution is
through a linear combination of J,(x) and J_,(x) as

cos Tp]p(x) — J-p(x) '

sin7tp (5.58)

Np(x) = Yp(x) =

These functions are called the Neumann functions, or Bessel functions of
the second kind of order p.

In Figure 5.9 we display the first few Bessel functions of the second kind
of integer order. Note that these functions are also decaying oscillatory
functions. However, they are singular at x = 0.

In many applications one desires bounded solutions at x = 0. These
functions do not satisfy this boundary condition. For example, we will
later study one standard problem is to describe the oscillations of a circular
drumhead. For this problem one solves the two dimensional wave equation
using separation of variables in cylindrical coordinates. The radial equation
leads to a Bessel equation. The Bessel function solutions describe the radial
part of the solution and one does not expect a singular solution at the center
of the drum. The amplitude of the oscillation must remain finite. Thus, only
Bessel functions of the first kind can be used.
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Figure 5.9: Plots of the Neumann func-

tions Np(x), Ni(x), Na(x), and N3 (x).
0.8
06 N®
0.4+

0.2

Bessel functions satisfy a variety of properties, which we will only list
at this time for Bessel functions of the first kind. The reader will have the
opportunity to prove these for homework.

Derivative Identities These identities follow directly from the manipula-
tion of the series solution.

L Wh@] = ). (559)
L] = ). (560)

Recursion Formulae The next identities follow from adding, or subtract-
ing, the derivative identities.

2
Jp1(@) + o (x) = Fp. (5.61)
]pfl (x) - ]p+1(x) = 2];;(3() (5-62)
Orthogonality As we will see in the next chapter, one can recast the
Bessel equation into an eigenvalue problem whose solutions form an or-

thogonal basis of functions on L2(0, ). Using Sturm-Liouville theory, one
can show that

a 2
/0 x]p(jpn%)]p(jpmg) dx = % Up—l—l (jpn)]zfsn,m/ (5.63)

where jp, is the nth root of J,(x), J,(jpn) =0, n =1,2,.... Alist of some
of these roots are provided in Table 5.3.

Generating Function

D2 = Y (), x>0, #0, (5.64)

n=-—oo
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Table 5.3: The zeros of Bessel Functions,
]m (jmn) =0.

In the study of boundary value prob-
lems in differential equations, Sturm-
Liouville problems are a bountiful
source of basis functions for the space
of square integrable functions as will be
seen in the next section.

m=0|m=1|m=2|m=3 | m=4|m=5

2405 | 3.832 | 5.136 | 6.380 | 7.588 | 8.771

5.520 | 7.016 | 8.417 | 9.761 | 11.065 | 12.339
8.654 | 10.173 | 11.620 | 13.015 | 14.373 | 15.700
11.792 | 13.324 | 14.796 | 16.223 | 17.616 | 18.980
14.931 | 16.471 | 17.960 | 19.409 | 20.827 | 22.218
18.071 | 19.616 | 21.117 | 22.583 | 24.019 | 25.430
21.212 | 22.760 | 24.270 | 25.748 | 27.199 | 28.627
24.352 | 25.904 | 27.421 | 28.908 | 30.371 | 31.812
27.493 | 29.047 | 30.569 | 32.065 | 33.537 | 34.989

O oy Ul A~ W N R[S

Integral Representation

Vs
Ju(x) = % / cos(xsinf —nf)do, x >0,n¢€ Z. (5.65)
Jo

Fourier-Bessel Series

Since the Bessel functions are an orthogonal set of functions of a Sturm-
Liouville problem, we can expand square integrable functions in this ba-
sis. In fact, the Sturm-Liouville problem is given in the form

Py +xy + (A —p?)y =0, x€[0,a], (5:66)

satisfying the boundary conditions: y(x) is bounded at x = 0 and y(a) =
0. The solutions are then of the form J,(v/Ax), as can be shown by making
the substitution + = v/Ax in the differential equation. Namely, we let
y(x) = u(t) and note that

dy _drdu _ o
dx dxdt " dt’
Then,
u” 4 tu' 4 (2 — pP)u =0,
which has a solution u(t) = J,(t).
Using Sturm-Liouville theory, one can show that [, (jyu3) is a basis
of eigenfunctions and the resulting Fourier-Bessel series expansion of f(x)
defined on x € [0, 4] is

[e9)

.oX
f(x) = Z Cﬂ]p(]ﬁ”;)/ (5.67)
n=1
where the Fourier-Bessel coefficients are found using the orthogonality

relation as
2

Cy = —)]2 ./Oﬂ xf(x)]p(jpng) dx. (5-68)

; a? Up+1 (jpn

Example 5.12. Expand f(x) = 1 for 0 < x < 1 in a Fourier-Bessel series of
the form

()

f(x) =Y caJo(jonx)

n=1
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We need only compute the Fourier-Bessel coefficients in Equation (5.68):

2 /1 )
cn=——"—= [ xJo(jonx)dx. (5.69)
! [T1.Gon))* Jo "
From the identity
d
7 ()] = 2P Jpa (). (5.70)
we have
1 . 1 jOn
/ xJo(jonx)dx = / ylo(y) dy
0 Jon /0
1 jOn d
= — — d
2 )y dy
1 .
= S lyh"
]On
1 .
= f]l(]On)' (5.71)
Jon
1.2+
1]
0.8
0.6
0.4
0.2
0 02 04 06 08 1

v

As a result, the desired Fourier-Bessel expansion is given as

o Jo(jonx)
1=2 ——, 0 1. .
,1;1 JonJ1 Gon) sx< (5.72)

In Figure 5.10 we show the partial sum for the first fifty terms of this series.
Note once again the slow convergence due to the Gibbs phenomenon.

Figure 5.10: Plot of the first 50 terms
of the Fourier-Bessel series in Equation
(5.72) for f(x) =1on0< x < 1.
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The mean square deviation.

5.6 Appendix: The Least Squares Approximation

IN THE FIRST SECTION OF THIS CHAPTER we showed that we can expand
functions over an infinite set of basis functions as

o]

f(x) = Z CnPn(x)

n=1

and that the generalized Fourier coefficients are given by

_ < f>

Cn — .
< ¢n/¢n >

In this section we turn to a discussion of approximating f(x) by the partial
sums YN | c,¢,(x) and showing that the Fourier coefficients are the best
coefficients minimizing the deviation of the partial sum from f(x). This will
lead us to a discussion of the convergence of Fourier series.

More specifically, we set the following goal:

Goal

N
To find the best approximation of f(x) on [a,b] by Sy(x) = ¥ cu¢pn(x)
n=1

for a set of fixed functions ¢, (x); i.e., to find the expansion coefficients,

cn, such that Sy (x) approximates f(x) in the least squares sense.

We want to measure the deviation of the finite sum from the given func-
tion. Essentially, we want to look at the error made in the approximation.
This is done by introducing the mean square deviation:

B = [ 1)~ Sn (0ol dx,

where we have introduced the weight function p(x) > 0. It gives us a sense
as to how close the Nth partial sum is to f(x).

We want to minimize this deviation by choosing the right c,’s. We begin
by inserting the partial sums and expand the square in the integrand:

Ev = [ [f(x) = Sx()Po(x) dx

b
b N 2
/ [f(x)—zcn%(x)] p(x) dx

n=1

b b N
[ P00 dx=2 [ £) 1 entn (x)p()
b

. N N
[ 3 cuu(x) X cudu(x)o(x) dx 573)
q n=1 m=1

Looking at the three resulting integrals, we see that the first term is just
the inner product of f with itself. The other integrations can be rewritten
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after interchanging the order of integration and summation. The double
sum can be reduced to a single sum using the orthogonality of the ¢,’s.

Thus, we have

N N N
En = <ff>=2Y ca<fipu>+Y, ) cnuCm < Pu pm >
n=1

n=1m=1

N N
= <frf>*zzcn<fr¢n>+ZC%<4’n/¢n>~ (5-74)

n=1 n=1

We are interested in finding the coefficients, so we will complete the
square in c,;. Focusing on the last two terms, we have

N N
2Y cu < fopun >+ Y A< pu >
n=1 n=1

N
= Z<(Pn,¢n>C%—2<f,¢n>Cn

n=1

N 2< f,pn >
_ 2 _&£xJs/¥Yn ~
— n‘z‘-’l <4)n/¢n > [Cn <(Pn/¢n >Cn:|

_ a <fr¢n> 2 <f,(Pn> 2
N r;<¢n/¢n> l(cn_<4’n/4’n>> _<<‘Pn/¢n >) .
(5.75)

To this point we have shown that the mean square deviation is given as

N < frn > )2 <<f,<l>n> )2
En = , ns Pn n— - ’
N <ff>+n;<‘/’ ‘f’>l<c < Py P > < ¢, Pu >

So, Ey is minimized by choosing

o < f,n >
T < >

However, these are the Fourier Coefficients. This minimization is often re-
ferred to as Minimization in Least Squares Sense.
Inserting the Fourier coefficients into the mean square deviation yields

N
0<SEN=<ff>—=) c&<un>.
n=1
Thus, we obtain Bessel’s Inequality:

N
<ff>=Y < upn>.
n=1

For convergence, we next let N get large and see if the partial sums con-
verge to the function. In particular, we say that the infinite series converges

in the mean if

/b[f(X) — Sn(x)]0(x)dx — 0as N — oo.

Minimization in Least Squares Sense

Bessel’s Inequality.

Convergence in the mean.
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Parseval’s equality.

N

Letting N get large in Bessel’s inequality shows that the sum Y,/ ; ¢2 <

¢n, pn > converges if

(<ff>= [ Plopx)x <

The space of all such f is denoted L%(a, b), the space of square integrable
functions on (a, b) with weight p(x).

From the nth term divergence test from calculus we know that }_a, con-
verges implies that a, — 0 as n — co. Therefore, in this problem the terms
2 < ¢u, pn > approach zero as n gets large. This is only possible if the c,’s
go to zero as n gets large. Thus, if Y\, ¢, converges in the mean to f,
then fub [f(x) — X0 cuepu]?0(x) dx approaches zero as N — co. This implies
from the above derivation of Bessel’s inequality that

N
<fif>- ;C%((Pn/‘f’n) — 0.

This leads to Parseval’s equality:

<f f>= icﬁ<cpn,¢n>.
n=1

Parseval’s equality holds if and only if

b N
dim [ (£G) = X engn() o) dx = 0.
] =
If this is true for every square integrable function in L%(a, b), then the set of
functions {¢,(x)}5_, is said to be complete. One can view these functions
as an infinite dimensional basis for the space of square integrable functions
on (a,b) with weight p(x) > 0.

One can extend the above limit ¢, — 0 as n — oo, by assuming that ¢n (1)

[l

b
is uniformly bounded and that [ |f(x)|p(x) dx < co. This is the Riemann-

a
Lebesgue Lemma, but will not be proven here.

Problems

1. Consider the set of vectors (—1,1,1), (1,-1,1), (1,1, —-1).

a. Use the Gram-Schmidt process to find an orthonormal basis for R?
using this set in the given order.

b. What do you get if you do reverse the order of these vectors?

2. Use the Gram-Schmidt process to find the first four orthogonal polyno-
mials satisfying the following:

a. Interval: (—oo,00) Weight Function: e
X

b. Interval: (0,00) Weight Function: e *.
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3. Find Py(x) using

a. The Rodrigues” Formula in Equation (5.20).
b. The three term recursion formula in Equation (5.22).
4. In Equations (5.35)-(5.42) we provide several identities for Legendre poly-

nomials. Derive the results in Equations (5.36)-(5.42) as described in the text.
Namely,

a. Differentiating Equation (5.35) with respect to x, derive Equation
(5:36).

b. Derive Equation (5.37) by differentiating g(x, t) with respect to x
and rearranging the resulting infinite series.

c. Combining the last result with Equation (5.35), derive Equations
(5:38)-(5-39)-

d. Adding and subtracting Equations (5.38)-(5.39), obtain Equations
(5-40)-(5.41).

e. Derive Equation (5.42) using some of the other identities.
5. Use the recursion relation (5.22) to evaluate [ 711 xPpy(x) Py (x) dx, n < m.

6. Expand the following in a Fourier-Legendre series for x € (—1,1).

a. f(x)
b. f(x)

e f(x)

I
[S L
N

x4 223 — x4 3.

-1, -1<x<0,
1, O<x<1.

I
—N—

x, —1<x<0,
0, O<x<l

d. flx) = {

7. Use integration by parts to show I'(x + 1) = xT'(x).

8. Prove the double factorial identities:

(2n)!t = 2"n!
and ()
2n)!
2n -1 = TR

9. Express the following as Gamma functions. Namely, noting the form
I'(x+1) = fooo t*e~! dt and using an appropriate substitution, each expres-
sion can be written in terms of a Gamma function.

a. fooo x2/3¢=% dy.
b. [ XSe= " dx

e Jy [m(2)]" ax

155
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10. The coefficients C]f in the binomial expansion for (1 + x)* are given by

o= P(P—l)-~1;!(P—k+1)_

a. Write le in terms of Gamma functions.

b. For p = 1/2 use the properties of Gamma functions to write C;/ 2
in terms of factorials.

c. Confirm you answer in part b by deriving the Maclaurin series

expansion of (1 + x)/2.

11. The Hermite polynomials, H, (x), satisfy the following:
i < Hy Hy >= [ e Hy (x)Hy (x) dx = /72" 118 .
ii. Hj(x)=2nH, 1(x).
iii. Hyyq(x) =2xH,(x) —2nH, _1(x).
iv. Hy(x) = (—1)"e" 4 (efxz).

Using these, show that

. H;) —2xH), + 2nH, = 0. [Use properties ii. and iii.]
b. f X e Hy(x)Hy(x)dx = 72" 0! Sy n_1 + 21+ 1)6ppns1] -
[Use properties i. and iii.]
0, n odd,
(—1)"1—(2,;”!)!, n=2m.
Note from iv. that Hy(x) = 1 and Hy(x) = 2x. ]

c. Hy(0) = [Let x = 0 in iii. and iterate.

12. In Maple one can type simplify(LegendreP(2*n-2,0)-LegendreP(2*n,0));

to find a value for Py, _»(0) — P, (0). It gives the result in terms of Gamma
functions. However, in Example 5.10 for Fourier-Legendre series, the value
is given in terms of double factorials! So, we have

V(4n —1) - )n(Zn—3)!!4n—l
Ar(n+ 1) (3 -n) (2n—2)!' 2n
You will verify that both results are the same by doing the following:

a. Prove that P»,(0) = (—1)" (2(’;;)1,?” using the generating function

and a binomial expansion.
b. Prove that I’ (n + %) = (2"27,1)” VvV using T'(x) = (x —1)T(x — 1)
and iteration.

c. Verify the result from Maple that P,,,_»(0) — P,,(0) = 21_(;/;(;‘7;(}1”).

d. Can either expression for P, _»(0) — P,,(0) be simplified further?

Py, 5(0) — P, (0) =

13. A solution Bessel’s equation, x?y” + xy’ + (x2 —n?)y = 0, , can be found

using the guess y(x) = Xito ajx]+”. One obtains the recurrence relation
aj = ﬁﬂj—z- Show that for ag = (n!2")~! we get the Bessel function of
the first kind of order n from the even values j = 2k:

k n
Zk,nj_)k)( >+2k'
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14. Use the infinite series in the last problem to derive the derivative iden-
tities (5.70) and (5.60):
C L ()] = 2 (%)

a- Iy
bo o [ ()] = =1 s ()

15. Prove the following identities based on those in the last problem.

a. ]pfl(x> +]p+l(x) = ZTPIP(X)
b. ]pfl(x) - ]p+1(x) = 2];/0(x>

16. Use the derivative identities of Bessel functions,(5.70)-(5.60), and inte-
gration by parts to show that

[ o) dx = P (x) 22 a(x) + C.

17. Use the generating function to find J,(0) and J},(0).
18. Bessel functions J,(Ax) are solutions of x*y” + xy’ + (A%x? — p?)y = 0.

Assume that x € (0,1) and that [,(A) = 0 and J,(0) is finite.

a. Show that this equation can be written in the form

d dy 2 P

This is the standard Sturm-Liouville form for Bessel’s equation.
b. Prove that )
/0 xJp(Ax)Jp(pux)dx =0, A#p

by considering

/01 {]p(‘ux)ddx <x;i]p()\x)> —Ip()tx)% <xddx]p(‘ux)>} dx.

Thus, the solutions corresponding to different eigenvalues (A, u)
are orthogonal.

c. Prove that

[ Uy dx = 220 (0) = 120,

19. We can rewrite Bessel functions, J,(x), in a form which will allow the
order to be non-integer by using the gamma function. You will need the
results from Problem 12b for I’ (k + %)

a. Extend the series definition of the Bessel function of the first kind
of order v, J,(x), for v > 0 by writing the series solution for y(x)
in Problem 13 using the gamma function.

b. Extend the series to J_,(x), for v > 0. Discuss the resulting series
and what happens when v is a positive integer.

157
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c. Use these results to obtain the closed form expressions

2
Jij2(x) = \/ aSinX,

2
J172(x) =/ i

d. Use the results in part ¢ with the recursion formula for Bessel

functions to obtain a closed form for J3/,(x).

20. In this problem you will derive the expansion

where the «
steps.

2 o0 ojx

x2:C—+4 ?(7]), O<x<eg,
2 j=2 %; ]0(04]‘0)

/

js are the positive roots of J; (ac) = 0, by following the below

a. List the first five values of a for J; (ac) = 0 using the Table 5.3 and

Figure 5.8. [Note: Be careful determining «4.]

. Show that || Jo(a1%)||*> = % Recall,

o) I = [ xR ) d

. Show that ||Jo(a;x)||2 = S [Jo(&jc)]*,j = 2,3,.... (This is the most

involved step.) First note from Problem 18 that y(x) = Jo(a;x) is a
solution of
xzy// + xy/ + zsz»xzy —0.
i. Verify the Sturm-Liouville form of this differential equation:
(xy') = —zszxy.
ii. Multiply the equation in part i. by y(x) and integrate from
x = 0 to x = c to obtain

¢ _ 2 €2
/O(xy’)’ydx = —oc]-/o xy* dx
c
= —ocjz/o x]%(oc]-x) dx. (5.76)

iii. Noting thaty(x) = Jo(ajx), integrate the left hand side by parts
and use the following to simplify the resulting equation.
1. Ji(x) = —J1(x) from Equation (5.60).
2. Equation (5.63).
3. Ja(ajc) + Jo(ajc) = 0 from Equation (5.61).

iv. Now you should have enough information to complete this
part.

. Use the results from parts b and ¢ and Problem 16 to derive the

expansion coefficients for
5 (o 0]
x° = 2ijo(“jx)
j=1

in order to obtain the desired expansion.



6
Problems in Higher Dimensions

“Equations of such complexity as are the equations of the gravitational field can be
found only through the discovery of a logically simple mathematical condition that
determines the equations completely or at least almost completely.”

“What I have to say about this book can be found inside this book.” Albert
Einstein (1879-1955)

IN THIS CHAPTER WE WILL EXPLORE several examples of the solution of
initial-boundary value problems involving higher spatial dimensions. These
are described by higher dimensional partial differential equations, such as
the ones presented in Table ?? in the last chapter. The spatial domains of the
problems span many different geometries, which will necessitate the use of
rectangular, polar, cylindrical, or spherical coordinates.

We will solve many of these problems using the method of separation of
variables, which we first saw in Chapter ??. Using separation of variables
will result in a system of ordinary differential equations for each problem.
Adding the boundary conditions, we will need to solve a variety of eigen-
value problems. The product solutions that result will involve trigonomet-
ric or some of the special functions that we had encountered in Chapter 5.
These methods are used in solving the hydrogen atom and other problems
in quantum mechanics and in electrostatic problems in electrodynamics.
We will bring to this discussion many of the tools from earlier in this book
showing how much of what we have seen can be used to solve some generic
partial differential equations which describe oscillation and diffusion type
problems.

As we proceed through the examples in this chapter, we will see some
common features. For example, the two key equations that we have stud-
ied are the heat equation and the wave equation. For higher dimensional
problems these take the form

u = kVZu, (6.1)
up = V. (6.2)
We can separate out the time dependence in each equation. Inserting a

guess of u(r,t) = ¢(r)T(t) into the heat and wave equations, we obtain

T'p = kTV?¢, (6.3)
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The Helmholtz equation.

The Helmholtz equation is named af-
ter Hermann Ludwig Ferdinand von
Helmholtz (1821-1894). He was both a
physician and a physicist and made sig-
nificant contributions in physiology, op-
tics, acoustics, and electromagnetism.

"¢ = *TV?p. (6.4)

Dividing each equation by ¢(r)T(t), we can separate the time and space de-
pendence just as we had in Chapter ??. In each case we find that a function
of time equals a function of the spatial variables. Thus, these functions must
be constant functions. We set these equal to the constant —A and find the
respective equations

1T V%
17 V%
2T = 4 =\ (6.6)

The sign of A is chosen because we expect decaying solutions in time for the
heat equation and oscillations in time for the wave equation and will pick
A > 0.

The respective equations for the temporal functions T(t) are given by

T' = —AkT, (6.7)
T +*AT = 0. (6.8)

These are easily solved as we had seen in Chapter ??. We have

T(t) = T(0)e M, (6-9)
T(t) = acoswt+bsinwt, w=cVA, (6.10)

where T(0), a, and b are integration constants and w is the angular fre-
quency of vibration.
In both cases the spatial equation is of the same form,

V2 +A¢p = 0. (6.11)

This equation is called the Helmholtz equation. For one dimensional prob-
lems, which we have already solved, the Helmholtz equation takes the form
¢" + Ap = 0. We had to impose the boundary conditions and found that
there were a discrete set of eigenvalues, A, and associated eigenfunctions,
Pn-

In higher dimensional problems we need to further separate out the
spatial dependence. We will again use the boundary conditions to find
the eigenvalues, A, and eigenfunctions, ¢(r), for the Helmholtz equation,
though the eigenfunctions will be labeled with more than one index. The
resulting boundary value problems are often second order ordinary dif-
ferential equations, which can be set up as Sturm-Liouville problems. We
know from Chapter 5 that such problems possess an orthogonal set of eigen-
functions. These can then be used to construct a general solution from the
product solutions which may involve elementary, or special, functions, such
as Legendre polynomials and Bessel functions.

We will begin our study of higher dimensional problems by consider-
ing the vibrations of two dimensional membranes. First we will solve the
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problem of a vibrating rectangular membrane and then we will turn our
attention to a vibrating circular membrane. The rest of the chapter will be
devoted to the study of other two and three dimensional problems possess-
ing cylindrical or spherical symmetry.

6.1 Vibrations of Rectangular Membranes

OUR FIRST EXAMPLE WILL BE THE STUDY of the vibrations of a rectangular
membrane. You can think of this as a drumhead with a rectangular cross
section as shown in Figure 6.1. We stretch the membrane over the drumhead
and fasten the material to the boundary of the rectangle. The height of the
vibrating membrane is described by its height from equilibrium, u(x,y,t).
This problem is a much simpler example of higher dimensional vibrations
than that possessed by the oscillating electric and magnetic fields in the last
chapter.

Example 6.1. The vibrating rectangular membrane.
The problem is given by the two dimensional wave equation in Cartesian coordi-
nates,
ug = ey +1tyy), t>00<x<L0<y<H, (6.12)

a set of boundary conditions,

u(0,y,¢) =0, u(Lyt)=0 t>0, 0<y<H,
u(x,0,t) =0, u(x,Ht) =0, t>0, 0<x<IL, (6.13)

and a pair of initial conditions (since the equation is second order in time),

u(x,y,0) = f(x,y), u(xy,0)=g(xy). (6.14)

The first step is to separate the variables: u(x,y,t) = X(x)Y(y)T(t). In-
serting the guess, u(x,y,t) into the wave equation, we have

X(@)Y(T'(1) = (X" ()Y ()T + X(x)Y" (1) T(1)).

Dividing by both u(x,y, t) and c2, we obtain

1 T// X// YN
CfZT - Y + 7 = —A. (6.15)
N——— N—_———r

Function of t  Function of x and y

We see that we have a function of ¢ equals a function of x and y. Thus,
both expressions are constant. We expect oscillations in time, so we choose
the constant A to be positive, A > 0. (Note: As usual, the primes mean
differentiation with respect to the specific dependent variable. So, there
should be no ambiguity.)

These lead to two equations:

T" + PAT =0, (6.16)

0 x
0 L

Figure 6.1: The rectangular membrane of
length L and width H. There are fixed
boundary conditions along the edges.
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and X/l Y//
We note that the spatial equation is just the separated form of Helmholtz’s
equation with ¢(x,y) = X(x)Y(y).

The first equation is easily solved. We have
T(t) = acoswt + bsinwt, (6.18)

where

w = cVA. (6.19)

This is the angular frequency in terms of the separation constant, or eigen-
value. It leads to the frequency of oscillations for the various harmonics of
the vibrating membrane as
w c
v=—=——VA. (6.20)
2 271
Once we know A, we can compute these frequencies.
Next we solve the spatial equation. We need carry out another separation
of variables. Rearranging the spatial equation, we have

X// Y”
Y = _7 — )\ = —‘u, (6.21)
S~~~ ——

Function of x  Function of y

Here we have a function of x equal to a function of y. So, the two expressions
are constant, which we indicate with a second separation constant, —p < 0.
We pick the sign in this way because we expect oscillatory solutions for
X(x). This leads to two equations:

X"+uX = 0,
Y'+(A—pu)Y=0. (6.22)

We now impose the boundary conditions. We have u(0,y,t) = 0 for all
t > 0and 0 < y < H. This implies that X(0)Y(y)T(¢t) = 0 for all + and
y in the domain. This is only true if X(0) = 0. Similarly, from the other
boundary conditions we find that X(L) = 0, Y(0) = 0, and Y(H) = 0. We
note that homogeneous boundary conditions are important in carrying out
this process. Nonhomogeneous boundary conditions could be imposed just
like we had in Section 7.3, but we still need the solutions for homogeneous
boundary conditions before tackling the more general problems.

In summary, the boundary value problems we need to solve are:

X"+uX=0, X(0)=0,X(L)=0.
Y'+(A—u)Y=0, Y(0)=0,Y(H)=0. (6.23)
We have seen boundary value problems of these forms in Chapter ??. The
solutions of the first eigenvalue problem are

nwx (nrc 2
A =

Xa(x) = sin ==, T) . n=1,23....
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The second eigenvalue problem is solved in the same manner. The dif-
ferences from the first problem are that the “eigenvalue” is A — p, the inde-
pendent variable is y, and the interval is [0, H]. Thus, we can quickly write
down the solutions as

M7TX
H

mrt

R - (—)2 m=1,23,....

Y (y) = sin i

At this point we need to be careful about the indexing of the separation
constants. So far, we have seen that ;1 depends on n and that the quantity
k& = A — u depends on m. Solving for A, we should write A, = py + %4, OF

Anm = (%)24—(%7[)2, nm=12,.... (6.24)

Since w = cﬂ, we have that the discrete frequencies of the harmonics are

Wym = C\/(nLﬂ)2 + (%)2, nm=12,.... (6.25)

We have successfully carried out the separation of variables for the wave

given by

equation for the vibrating rectangular membrane. The product solutions
can be written as

nx . mm
Upm = (4 oS Wyt + bsin wyyt) sin - sin Ty (6.26)
and the most general solution is written as a linear combination of the prod-

uct solutions,

. . NTX . mmy
Z(anm €08 Wymt + by SIN Wy ) SIN —— sin ——=.

t =
u(x/]// ) by L H

However, before we carry the general solution any further, we will first
concentrate on the two dimensional harmonics of this membrane.

For the vibrating string the nth harmonic corresponds to the function
sin 7% and several are shown in Figure 6.2. The various harmonics corre-
spond to the pure tones supported by the string. These then lead to the
corresponding frequencies that one would hear. The actual shapes of the
harmonics are sketched by locating the nodes, or places on the string that
do not move.

In the same way, we can explore the shapes of the harmonics of the vi-
brating membrane. These are given by the spatial functions

mry

nmx
¢Gnm(x,y) = sin - sin - (6.27)

Instead of nodes, we will look for the nodal curves, or nodal lines. These
are the points (x,y) at which ¢y, (x,y) = 0. Of course, these depend on the
indices, n and m.
For example, when n = 1 and m = 1, we have
Ty

sin T sin T =0.

The harmonics for the vibrating rectan-
gular membrane are given by

= ) ()

forn,m=1,2,....

Xq(x) = sin 5%

o
<
=

Xo(x) = sin 2%

h;>

X3(x) = sin 3%

Figure 6.2: The first harmonics of the vi-
brating string

A discussion of the nodal lines.
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Figure 6.3: The first few modes of the
vibrating rectangular membrane. The
dashed lines show the nodal lines indi-
cating the points that do not move for
the particular mode. Compare these the
nodal lines to the 3D view in Figure 6.1

The general solution for the vibrating
rectangular membrane.

n:l 1’122 Tl:3
y y Y
H H ‘ H ‘ ‘
m=1 | o
x 1 SO N x
L L L
y y y
H H I H I I
m=2  fo-oo. ] |- ]
x 1 x L x
L L L
y y y
H H ‘ H ‘ ‘
m=3 || | ]
x 1 x L x
L L L

These are zero when either
sin% =0, or sin% =0.
Of course, this can only happen for x = 0,L and y = 0, H. Thus, there are
no interior nodal lines.
Whenn =2 and m =1, we have y = 0, H and

27x
in— =0
sin 7 ,

or, x =0, %, L. Thus, there is one interior nodal line at x = % . These points
stay fixed during the oscillation and all other points oscillate on either side
of this line. A similar solution shape results for the (1,2)-mode; ie.,, n =1
and m = 2.

In Figure 6.3 we show the nodal lines for several modes for n,m = 1,2,3
with different columns corresponding to different n-values while the rows
are labeled with different m-values. The blocked regions appear to vibrate
independently. A better view is the three dimensional view depicted in
Figure 6.1 . The frequencies of vibration are easily computed using the
formula for wyy,.

For completeness, we now return to the general solution and apply the
initial conditions. The general solution is given by a linear superposition of
the product solutions. There are two indices to sum over. Thus, the general
solution is

R . . nmx . mm
u(x,y,t) = Z:l Zl(anm COS Wyt + by Sin wyyt) sin ——sin Yy, (6.28)
n=1m=
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n=1

n=2

n=23
where

o = ey () (1Y (6:29)

The first initial condition is u(x,y,0) = f(x,y). Setting t = 0 in the gen-
eral solution, we obtain

Z & . nmx . mm
flxy) = Z 2 Apm SIN —— SIN L4 (6.30)
n=1m=1 L H

This is a double Fourier sine series. The goal is to find the unknown coeffi-
cients a;;.

The coefficients a,,, can be found knowing what we already know about
Fourier sine series. We can write the initial condition as the single sum

= . nmx
floy) = Z An(y)sin A (6.31)
n=1
where -
An(y) = Y @ypsin mgy . (6.32)
m=1

These are two Fourier sine series. Recalling from Chapter ?? that the
coefficients of Fourier sine series can be computed as integrals, we have

2 L . onmx
Anly) = E/o f(x,y)sdex,

2 (H . mT
Apm = E/o Ay (y) sin Hy dy. (6.33)

Table 6.1: A three dimensional view of
the vibrating rectangular membrane for
the lowest modes. Compare these im-
ages with the nodal lines in Figure 6.3



166 PARTIAL DIFFERENTIAL EQUATIONS

The Fourier coefficients for the double
Fourier sine series.

The full solution of the vibrating rectan-
gular membrane.

Figure 6.4: The circular membrane of ra-
dius a. A general point on the mem-
brane is given by the distance from the
center, v, and the angle, . There are fixed
boundary conditions along the edge at
r=a.

Inserting the integral for A,(y) into that for a,;,, we have an integral
representation for the Fourier coefficients in the double Fourier sine series,

nrx y
Anm = T / / f(x,y) sin 2% gin dxdy. (6.34)

We can carry out the same process for satisfying the second initial condi-
tion, us(x,y,0) = g(x,y) for the initial velocity of each point. Inserting the
general solution into this initial condition, we obtain

nix mrr
Z Z bpmwym sin — sin _1/ (6.35)
L H
n=1m=
Again, we have a double Fourier sine series. But, now we can quickly de-
termine the Fourier coefficients using the above expression for a,; to find
that

bum = wnmLH/ / (x,y sm%sm ydxdy (6.36)

This completes the full solution of the vibrating rectangular membrane
problem. Namely, we have obtained the solution

(x,y,t) Z E (anm coS Wpmt + by sin wypt) sin ? sin %,
n=1m=1
(6.37)
where

Ay = / / fx, smism ydxd (6.38)

mm T y Y 3

nx J

bym = wnmLH/ / (x,y) sin T sin dxdy, (6.39)

and the angular frequencies are given by

o = e (PZ) 4 (2, (6.40)

6.2 Vibrations of a Kettle Drum

IN THIS SECTION WE CONSIDER the vibrations of a circular membrane of
radius a as shown in Figure 6.4. Again we are looking for the harmonics
of the vibrating membrane, but with the membrane fixed around the cir-
cular boundary given by x? + y?> = a®. However, expressing the boundary
condition in Cartesian coordinates is awkward. Namely, we can only write
u(x,y,t) = 0 for x2 + y*> = a2. It is more natural to use polar coordinates
as indicated in Figure 6.4. Let the height of the membrane be given by
u = u(r,0,t) at time t and position (r,0). Now the boundary condition is
given as u(a,0,t) =0 forall t > 0and 0 € [0,27].

Before solving the initial-boundary value problem, we have to cast the
full problem in polar coordinates. This means that we need to rewrite the
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Laplacian in r and 6. To do so would require that we know how to transform
derivatives in x and y into derivatives with respect to r and 6. Using the re-
sults from Section ?? on curvilinear coordinates, we know that the Laplacian
can be written in polar coordinates. In fact, we could use the results from
Problem ?? in Chapter ?? for cylindrical coordinates for functions which are
z-independent, f = f(r,6). Then, we would have

2p_10 (0f\ 1f
vf_rar "or +72892'

We can obtain this result using a more direct approach, namely apply-
ing the Chain Rule in higher dimensions. First recall the transformations
between polar and Cartesian coordinates:

x =rcosf, y=rsind

r=4/x2+y% tanf = %

Now, consider a function f = f(x(r,0),y(r,0)) = g(r,0). (Technically, once

and

we transform a given function of Cartesian coordinates we obtain a new
function g of the polar coordinates. Many texts do not rigorously distin-
guish between the two functions.) Thinking of x = x(r,0) and y = y(r,0),
we have from the chain rule for functions of two variables:

of _ agor  ago0
ox  oJrodx 090 dx
agx 08y
orr 0072
_ dg sinfdg
= COs 95 — T% (641)
Here we have used
i x x

and 5
%:,iOmaz):;zﬁi:_z
dx  dx x 1+(2)2 r2’
X
Similarly,
of _ agar  agae
dy  ordy 0900y
Ry 98X
orr 90 r?
. ,0¢  cosfdg
= s1n9§+ 30" (6.42)

The 2D Laplacian can now be computed as

Rf 2f 3 (9f\ sinfd [of
aﬂ+@2_’mww<w)_r'%<w>

. .0 [df cosf 9 (of
Fsinfa, (ay)+ : ae(ay)

Derivation of Laplacian in polar coordi-
nates.
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" Here we state the problem of a vibrat-
ing circular membrane. We have chosen
—7 < 6§ < 7, but could have just as eas-
ily used 0 < 6 < 271. The symmetric in-
terval about # = 0 will make the use of
boundary conditions simpler.

_ 0 dg sinfdg
= c059§ (COSQar p 69)

s1r198<C Gagsmeag>

r o006 08 ar r 00
. .0 (. ,0g cosfadg
+sm9§ (star + . 89)

cos@ 0 (. _0g  cosBog
—i——r M(Sln98r+ p 89>

B 0’¢ sinfdg sinf d%¢
= C059<C059672+ 2 90 7 81’39)

: 2 0092
_sm()(osgag _ sinfo%g i ag_COSGHg)

960r roaez o r 06
. . ,0%¢ cos® d’¢  cosfog
+sinf (sm@ar2 + 900 2 89)

2 2 -
+cos€ (sin@ 0°g n cos b 0°¢ eag sm98g)

d000r r W—i—cos or r a0

?¢ 1a9g 13%
o2 ror  r2002
10 [ adg 1 9%g

v ar <r8r> 7 902"

(6.43)

The last form often occurs in texts because it is in the form of a Sturm-
Liouville operator. Also, it agrees with the result from using the Laplacian
written in cylindrical coordinates as given in Problem ?? of Chapter ??2.

Now that we have written the Laplacian in polar coordinates we can pose
the problem of a vibrating circular membrane.

Example 6.2. The vibrating circular membrane.
This problem is given by a partial differential equation,”

10 [ du 1 0%u
Uy = C2 |:1’81’ (rar> + }’2892:| ’ (644)

t>0, 0<r<a -m<O<T,

the boundary condition,
u(a,0,t) =0, t>0, —-mw<O<m, (6.45)
and the initial conditions,

u(r,0,0) = f(r,0), 0<r<a-n<@<m,
ui(r,0,0) = g(r,0),, 0<r<a-m<6<m (6.46)

Now we are ready to solve this problem using separation of variables. As
before, we can separate out the time dependence. Let u(r,0,t) = T(t)$(r,0).
As usual, T(t) can be written in terms of sines and cosines. This leads to
the Helmholtz equation,

V2 + A = 0.
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We now separate the Helmholtz equation by letting ¢(r,0) = R(r)®(0). This
gives

10 ( 9RO\  19°RO
Dividing by u = RO, as usual, leads to
1d [ dR 1 d°0

The last term is a constant. The first term is a function of . However, the
middle term involves both r and 6. This can be remedied by multiplying the
equation by 2. Rearranging the resulting equation, we can separate out the
f-dependence from the radial dependence. Letting u be another separation
constant, we have

rd [ dR , 140

This gives us two ordinary differential equations:

4’0
d [ dR ) B
e (rdr> + (A" —u)R = 0. (6.50)

Let’s consider the first of these equations. It should look familiar by now.
For u > 0, the general solution is

O(0) = acos /b + bsin \/ub.

The next step typically is to apply the boundary conditions in 6. However,
when we look at the given boundary conditions in the problem, we do not
see anything involving 6. This is a case for which the boundary conditions
that are needed are implied and not stated outright.

We can determine the hidden boundary conditions by making some ob-
servations. Let’s consider the solution corresponding to the endpoints 6 =
£7t. We note that at these 0-values we are at the same physical point for any
r < a. So, we would expect the solution to have the same value at § = —7 as
it has at 8 = 7t. Namely, the solution is continuous at these physical points.
Similarly, we expect the slope of the solution to be the same at these points.
This can be summarized using the boundary conditions

O(rn) =0(-mn), O'(m) =0 (-n).

Such boundary conditions are called periodic boundary conditions.

Let’s apply these conditions to the general solution for ©(6). First, we set
O(mr) = ©(—7) and use the symmetries of the sine and cosine functions to
obtain

acos /U + bsin \/um = acos \/um — bsin \/ur.
This implies that

sin \/ﬁn =0.

The boundary conditions in 6 are peri-
odic boundary conditions.
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This can only be true for \/u = m, for m = 0,1,2,3,.... Therefore, the
eigenfunctions are given by

O (0) =acosmf +bsinmb, m=0,1,2,3,....

For the other half of the periodic boundary conditions, ©'(7r) = @' (—mn),
we have that

—am sin m7t + bm cos mm = am sinm7t + bm cos mrt.

But, this gives no new information since this equation boils down to bm =
bm..

To summarize what we know at this point, we have found the general
solutions to the temporal and angular equations. The product solutions will
have various products of {coswt,sinwt} and {cosmb,sinmb} _,. We also
know that # = m? and w = cV/A.

We still need to solve the radial equation. Inserting u = m?, the radial
equation has the form

d ( dR 2 2\p
e (rdr> + (Ar —=m”)R = 0. (6.51)

Expanding the derivative term, we have
r?R"(r) +rR'(r) + (Ar* — m*)R(r) = 0. (6.52)

The reader should recognize this differential equation from Equation (5.66).
It is a Bessel equation with bounded solutions R(r) = ], (v/Ar).

Recall there are two linearly independent solutions of this second order
equation: J,,(v/Ar), the Bessel function of the first kind of order m, and
Nm(\/Xr), the Bessel function of the second kind of order m, or Neumann
functions. Plots of these functions are shown in Figures 5.8 and 5.9. So, we
have the general solution of the radial equation is

R(r) = c1]m(VAr) 4 caNu (VAT).

Now we are ready to apply the boundary conditions to the radial factor
in the product solutions. Looking at the original problem we find only
one condition: u(a,0,t) = 0 for t > 0 and —m < < 7. This implies that
R(a) = 0. But where is the second condition?

This is another unstated boundary condition. Look again at the plots
of the Bessel functions. Notice that the Neumann functions are not well
behaved at the origin. Do you expect that the solution will become infinite
at the center of the drum? No, the solutions should be finite at the center. So,
this observation leads to the second boundary condition. Namely, |R(0)| <
0. This implies that c; = 0.

Now we are left with

R(r) = Ju(VAr).

We have set ¢; = 1 for simplicity. We can apply the vanishing condition at
r = a. This gives

Jm(VAa) = 0.
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Looking again at the plots of ], (x), we see that there are an infinite number
of zeros, but they are not as easy as 7! In Table 6.2 we list the nth zeros of
Jm, which were first seen in Table 5.3.

nilm=0|\m=1 | m=2|m=3 | m=4|m=>5 Table 6.2: The zeros of Bessel Functions,
1| 2405 | 3.832 | 5.136 | 6.380 | 7.588 | 8.771 Jin (i) = 0.
2| 5520 | 7.016 | 8.417 | 9.761 | 11.065 | 12.339
3 | 8654 | 10.173 | 11.620 | 13.015 | 14.373 | 15.700
4 | 11.792 | 13.324 | 14.796 | 16.223 | 17.616 | 18.980
5 | 14.931 | 16.471 | 17.960 | 19.409 | 20.827 | 22.218
6 | 18.071 | 19.616 | 21.117 | 22.583 | 24.019 | 25.430
7 | 21.212 | 22.760 | 24.270 | 25.748 | 27.199 | 28.627
8 | 24.352 | 25.904 | 27.421 | 28.908 | 30.371 | 31.812
9 | 27-493 | 29.047 | 30.569 | 32.065 | 33.537 | 34.989
Let’s denote the nth zero of [, (x) by jmn. Then, the boundary condition
tells us that
VAa=jun, m=0,1,..., n=12,....
This gives us the eigenvalues as
. 2
Amn:(]”;"> , m=01,..., n=12,....
Thus, the radial function satisfying the boundary conditions is
Riyn (1) = Jm (]";nr> .
We are finally ready to write out the product solutions for the vibrating
circular membrane. They are given by Product solutions for the vibrating circu-
lar membrane.
COS Wyt cos mb Jmn
7 9/ t - . . —— . 6
u(r ) { sin wy,t } { sin m6 }]m( a r) (6.53)

Here we have indicated choices with the braces, leading to four different
types of product solutions. Also, the angular frequency depends on the
zeros of the Bessel functions,

mn
wmn:%c, m=20,1,..., n=1,2,....

As with the rectangular membrane, we are interested in the shapes of the
harmonics. So, we consider the spatial solution (t = 0)

¢(r,0) = (cosmb) ] (]}an> .

Including the solutions involving sinm@ will only rotate these modes. The
nodal curves are given by ¢(r,0) = 0. This can be satisfied if cosmf = 0,
or ]m(]'%r) = 0. The various nodal curves which result are shown in Figure

6.5.
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Figure 6.5: The first few modes of the vi-
brating circular membrane. The dashed
lines show the nodal lines indicating the
points that do not move for the partic-
ular mode. Compare these nodal lines
with the three dimensional images in
Figure 6.3.

n=1
n=2
n=>3

For the angular part, we easily see that the nodal curves are radial lines,
0 =const. For m = 0, there are no solutions, since cosmf = 1 for m = 0. in
Figure 6.5 this is seen by the absence of radial lines in the first column.

For m = 1, we have cos# = 0. This implies that = 7. These values
give the vertical line as shown in the second column in Figure 6.5. For
m = 2, cos 26 = 0 implies that § = %, %T”. This results in the two lines shown
in the last column of Figure 6.5.

We can also consider the nodal curves defined by the Bessel functions.
Jmn
a
in the interval [0, 4]. Thus, we have

We seek values of r for which 2r is a zero of the Bessel function and lies

Man:jmj/ 1§]Sn/

or )
r:],ﬂa, 1<j<n.

Jmn

These will give circles of these radii with jm]- < jmn,orj<n Form=20
and n = 1, there is only one zero and r = 4. In fact, for all # = 1 modes,
there is only one zero giving r = a. Thus, the first row in Figure 6.5 shows
no interior nodal circles.

For a three dimensional view, one can look at Figure 6.3. Imagine that
the various regions are oscillating independently and that the points on the
nodal curves are not moving.

We should note that the nodal circles are not evenly spaced and that the
radii can be computed relatively easily. For the n = 2 modes, we have two
circles, r = a and r = %a as shown in the second row of Figure 6.5. For



m=20
m=1
m=2
m=20,
2.405
r = ma ~ O4357a
for the inner circle. For m =1,
3.832
r = ma ~ 0546251,
and for m = 2,
5.136
r = mﬂ ~ 0.6102a.
For n = 3 we obtain circles of radii
r=a, r:],r”—lu, andr:]_lza.
Jm3 Jm3
Form =0,
5.520 2.405
r=a, ma ~ O6379a, mﬂ =~ 0.2779a.
Similarly, for m =1,
3.832 7.016
r=a, ma ~ 0376761, ma ~ 0689761,
and for m = 2,
5.136 8.417
r=a, ma ~ 0442061, ma ~ 0.7224a4.
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Table 6.3: A three dimensional view of
the vibrating circular membrane for the
lowest modes. Compare these images
with the nodal line plots in Figure 6.5.
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L]

Figure 6.6: An annular membrane with
radii @ and b > a. There are fixed bound-
ary conditions along the edges at r = a
and r = b.

Example 6.3. Vibrating Annulus

More complicated vibrations can be dreamt up for this geometry. Consider an
annulus in which the drum is formed from two concentric circular cylinders and
the membrane is stretch between the two with an annular cross section as shown
in Figure 6.6. The separation would follow as before except now the boundary
conditions are that the membrane is fixed around the two circular boundaries. In
this case we cannot toss out the Neumann functions because the origin is not part
of the drum head.

The domain for this problem is shown in Figure 6.6 and the problem is given by
the partial differential equation

up = c* Egr (rg:l> + 1,1232912{] , (6.54)
t>0, b<r<a -—-m<O<m,
the boundary conditions,
u(b,0,t) =0, u(ab,t)=0 t>0 —-nw<l<m, (6.55)

and the initial conditions,

u(r,0,0) = f(r,0), b<r<a-n<0<m,
ui(r,0,0) = g(r,0),, b<r<a—-m<6<m (6.56)
Since we cannot dispose of the Neumann functions, the product solutions take
the form
cos wt cos mo
= R .
M(T’,Q,t) { sin wt }{ sinm9 } m(r)r (6 57)
where

Ru(r) = c1Jm(VAr) + caNu(VAr)

and w =cv/A, m=0,1,....
For this problem the radial boundary conditions are that the membrane is fixed
atr =aandr =b. Taking b < a, we then have to satisfy the conditions

R(a) = lem(\ﬁ/\ll) + Csz(\F)\ﬂ) =0,
R(b) = c1Jm(VAb) + caNu(VAb) = 0. (6.58)

This leads to two homogeneous equations for c1 and cy. The coefficient determi-
nant of this system has to vanish if there are to be nontrivial solutions. This gives
the eigenvalue equation for A :

Tt (VA&) Ny (VAD) = Jou(VAD) Ny (VAa) = 0.
There are an infinite number of zeros of the function
F()‘) =A: ]m(\/Xu)Nm(\/Xb) - ]m(\/Xb)Nm(ﬁ@'

In Figure 6.7 we show a plot of F(A) fora =4,b=2and m =0,1,2,3.
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This eigenvalue equation needs to be solved numerically. Choosing a = 2 and
b = 4, we have for the first few modes

vV Aun 1.562,3.137,4.709, m =0
1.598,3.156,4.722, m=1

1.703,3.214,4.761, m =2. (6.59)

Q

1%

Note, since wyn = c\/Aun, these numbers essentially give us the frequencies of
oscillation.

For these particular roots, we can solve for c¢1 and cp up to a multiplicative
constant. A simple solution is to set

1 = Nm( V /\mnb)/ Cy = ]m( V )Lmnb)‘

This leads to the basic modes of vibration,

Ry (1)@ (8) = cos mb (Nm(\//\mnb)]m(\//\mnr) - ]m(\//\mnb)Nm(\//\mnr)) )

form=0,1,...,and n = 1,2,.... In Figure 6.4 we show various modes for the
particular choice of annular membrane dimensions, a = 2 and b = 4.

6.3 Laplace’s Equation in 2D

ANOTHER OF THE GENERIC PARTIAL DIFFERENTIAL EQUATIONS is Laplace’s
equation, V2u = 0. This equation first appeared in the chapter on complex
variables when we discussed harmonic functions. Another example is the
electric potential for electrostatics. As we described Chapter ??, for static
electromagnetic fields,

V-E=p/eg, E=V¢.

In regions devoid of charge, these equations yield the Laplace equation
V2¢ = 0.

Another example comes from studying temperature distributions. Con-
sider a thin rectangular plate with the boundaries set at fixed temperatures.
Temperature changes of the plate are governed by the heat equation. The

Figure 6.7: Plot of the function
F(A) = Jnu(VAa) Ny (VAD) = [ (VAb) Ny (V'Aa)
fora =4andb=2and m =0,1,2,3.
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Table 6.4: A three dimensional view of
the vibrating annular membrane for the

lowest modes.

Thermodynamic equilibrium, V2u = 0.

Incompressible, irrotational fluid flow,
V2¢ = 0, for velocity v = V.
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solution of the heat equation subject to these boundary conditions is time
dependent. In fact, after a long period of time the plate will reach thermal
equilibrium. If the boundary temperature is zero, then the plate temperature
decays to zero across the plate. However, if the boundaries are maintained
at a fixed nonzero temperature, which means energy is being put into the
system to maintain the boundary conditions, the internal temperature may
reach a nonzero equilibrium temperature. Reaching thermal equilibrium
means that asymptotically in time the solution becomes time independent.
Thus, the equilibrium state is a solution of the time independent heat equa-
tion, which is another Laplace equation, V?u = 0.

As another example we could look at fluid flow. For an incompressible
flow, V - v = 0. If the flow is irrotational, then V x v = 0. We can introduce
a velocity potential, v = V¢. Thus, V x v vanishes by a vector identity and
V - v = 0 implies V¢ = 0. So, once again we obtain Laplace’s equation.

In this section we will look at examples of Laplace’s equation in two
dimensions. The solutions in these examples could be examples from any
of the application in the above physical situations and the solutions can be
applied appropriately.

Example 6.4. Equilibrium Temperature Distribution for a Rectangular Plate
Let’s consider Laplace’s equation in Cartesian coordinates,

Uy tuyy =0, 0<x<L O0<y<H
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with the boundary conditions

u(0y) =0, u(ly) =0 u(x0)=f(x)

The boundary conditions are shown in Figure 6.8
As with the heat and wave equations, we can solve this problem using the method
of separation of variables. Let u(x,y) = X(x)Y(y). Then, Laplace’s equation be-

u(x,H) = 0.

comes
X"Y +XY" =0

and we can separate the x and y dependent functions and introduce a separation

constant, A,
X// YN
X Y
Thus, we are led to two differential equations,

—A.

X"4+AX = 0,
Y'—AY = 0. (6.60)

From the boundary condition u(0,y) = 0,u(L,y) = 0, we have X(0) =
0, X(L) = 0. So, we have the usual eigenvalue problem for X(x),

X"4+AX =0, X(0)=0,X(L)=0.

The solutions to this problem are given by

. Nmx nmy2
Xn(x):SH’IT, /\n:(f) ’ i’l:1,2,....

The general solution of the equation for Y (y) is given by
Y(y) = c1e¥VM 4 eV,

The boundary condition u(x, H) = 0 implies Y(H) = 0. So, we have

VAH | pe=VAH = 0,

c1e + coe

Thus,

Cr = —ClezﬁH.

Inserting this result into the expression for Y (y), we have
Vay _ clezﬁHe_‘/Xy
VAH (e—ﬁHe\/Xy _ eﬁHe—ﬁy)

Y(y) = cie
= (1€

= Cle\/XH (e_\/X(H_y) — e\/X(H_y))

= —2cleﬁH sinh VA(H — ). (6.61)

Since we already know the values of the eigenvalues A, from the eigenvalue
problem for X (x), we have that the y-dependence is given by

nt(H —y)
L

u(x,H) =0

T

u,y) =0 | v2u=0| uw(Ly) =0

0 X
0 L
u(x,0) = f(x)
Figure 6.8: In this figure we show the
domain and boundary conditions for the
example of determining the equilibrium

temperature distribution for a rectangu-
lar plate.

Note: Having carried out this compu-
tation, we can now see that it would
be better to guess this form in the fu-
ture. So, for Y(H) = 0, one would
guess a solution Y (y) = sinh vVA(H — y).
For Y(0) = 0, one would guess a so-
lution Y(y) = sinh+/Ay. Similarly, if
Y'(H) = 0, one would guess a solution
Y(y) = coshvVA(H —y).
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u = fa(x)

T <

u=gi(y) V2u =0 u=g(y)

0 x
0 L

u=f1(x)

Figure 6.9: In this figure we show the do-
main and general boundary conditions
for the example of determining the equi-
librium temperature distribution for a
rectangular plate.

So, the product solutions are given by

un(x,y) = sin "7 inh n7e(H —y)

7 I , n=1,2,....

These solutions satisfy Laplace’s equation and the three homogeneous boundary
conditions and in the problem.

The remaining boundary condition, u(x,0) = f(x), still needs to be satisfied.
Inserting y = 0 in the product solutions does not satisfy the boundary condition
unless f(x) is proportional to one of the eigenfunctions X,(x). So, we first write
down the general solution as a linear combination of the product solutions,

u(x,y) = n;l a, sin n71fx sinh nn(fi — ]/). (6.62)
Now we apply the boundary condition, u(x,0) = f(x), to find that
flx) = 7; a, sinh # sin n—zx (6.63)
Defining b, = a, sinh ”?H , this becomes
f(x) = X busin =2 (6:64)
n=1

We see that the determination of the unknown coefficients, by, is simply done by
recognizing that this is a Fourier sine series. The Fourier coefficients are easily
found as

2 (L . MTTX
b, = Z/o f(x) s1anx. (6.65)

Since a, = b,/ sinh ”7£H, we can finish solving the problem. The solution is

> . nmx . nn(H—y)
u(x,y) = n;l ay sin — sinh I , (6.66)
where .
2 . N7X
ay = Lsmh”’EH/o f(x)sin - dx. (6.67)

Example 6.5. Equilibrium Temperature Distribution for a Rectangular Plate for
General Boundary Conditions
A more general problem is to seek solutions to Laplace’s equation in Cartesian
coordinates,
uxyy tuyy =0, 0<x<LO<y<H

with non-zero boundary conditions on more than one side of the domain,
uOy) =ai(y), uly) =gy, 0<y<H

u(x,0) = f1(x), u(x,H)=fo(x), 0<x<L.

These boundary conditions are shown in Figure 6.9
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uy = fo(x)

T

up=0 | V2u; =0 | y1=0up=0 | VZuy =0 | u2=0

uz =g1(y) | V2uz=0 | uz3=0iug =0 | Vouy =0 | us=g(y)

0 x | 0 x
L : 0u4:0

The problem with this example is that none of the boundary conditions are ho-
mogeneous. This means that the corresponding eigenvalue problems will not have
the homogeneous boundary conditions which Sturm-Liouville theory in Section 4
needs. However, we can express this problem in terms of four different problems
with nonhomogeneous boundary conditions on only one side of the rectangle.

In Figure 6.10 we show how the problem can be broken up into four separate
problems for functions u;(x,y), i = 1,...,4. Since the boundary conditions and
Laplace’s equation are linear, the solution to the general problem is simply the sum
of the solutions to these four problems,

u(x,y) = w(x,y) +u2(x,y) +us(x,y) + ua(x,y).
Then, this solution satisfies Laplace’s equation,
V2u(x,y) = Vui (x,y) + V2ua(x,y) + Vus(x,y) + Vi(x,y) =0,

and the boundary conditions. For example, using the boundary conditions defined
in Figure 6.10, we have for y = 0,

u(x,0) = uq(x,0) +uz(x,0) + uz(x,0) + us(x,0) = f1(x).

The other boundary conditions can also be shown to hold.

We can solve each of the problems in Figure 6.10 quickly based on the solution we
obtained in the last example. The solution for uy(x,y), which satisfies the boundary
conditions

u1(0,y) =0, ui(L,y)=0, 0<y<H,

u1(x,0) = f1(x), wup(x,H)=0, 0<x<L,

Figure 6.10: The general boundary value
problem for a rectangular plate can be
written as the sum of these four separate
problems.
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is the easiest to write down. It is given by

> . nnx . . nn(H—y)
uy(x,y) = ,;1 an Sin — sinh i . (6.68)
where .
2 . NnmXx
a, = W/(J fi(x) sin —— dx. (6.69)

For the boundary conditions
up(0,y) =0, up(L,y)=0, 0<y<H,

uy(x,0) =0, up(x,H) = fr(x), 0<x<L.
the boundary conditions for X(x) are X(0) = 0 and X(L) = 0. So, we get the

same form for the eigenvalues and eigenfunctions as before:

. NmIX nm\ 2
Xn(x):smT, /\”:(T) ,n=1,2,....

The remaining homogeneous boundary condition is now Y(0) = 0. Recalling
that the equation satisfied by Y (v) is

Y"—AY =0,
we can write the general solution as
Y(y) = 1 cosh VAy + ca sinh V/Ay.
Requiring Y(0) = 0, we have c; = 0, or
Y(y) = ¢y sinh VAy.
Then, the general solution is

nmy

up(x,y) = Y bysin ”Lﬂ sinh - (6.70)

n=1
We now force the nonhomogeneous boundary condition, up(x, H) = fa(x),

ad H
fa(x) =) bysin ? sinh W; . (6.71)
n=1

Once again we have a Fourier sine series. The Fourier coefficients are given by

2 L nmx
b :7/ x) sin — dx. 6.72
= Lo y RO (672
Next we turn to the problem with the boundary conditions

uz(0,y) =g1(y), us(L,y)=0, 0<y<H,

uz(x,0) =0, wuz(x,H)=0, 0<x<L.
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In this case the pair of homogeneous boundary conditions uz(x,0) =0, ug(x,H) =
0 lead to solutions

. nm ni 2
Yn(y>=sm7y, An:—(ﬁ), n=12....

The condition uz(L,0) = 0 gives X(x) = sinh w
The general solution satisfying the homogeneous conditions is

> . nmy . nu(L—x)
X,y) = cp Sin sinh . (6.73)
n;l H H

Applying the nonhomogeneous boundary condition, uz(0,y) = g1(y), we obtain
the Fourier sine series

1 ( Z cp sin ?]/ sinh ﬁ (6.74)

The Fourier coefficients are found as

2 H . nm
Cn = W/o g1(y) Smfyd% (6.75)
"H

Finally, we can find the solution
ug(0,y) =0, uy(Ly) =&(y), 0<y<H,
uy(x,0) =0, uy(x,H)=0, 0<x<L.
Following the above analysis, we find the general solution

1y (x Z dy, sin Ty sinh @. (6.76)

n=

The nonhomogeneous boundary condition, u(L,y) = ¢2(y), is satisfied if

L
2 Z dy sin % sinh ﬂ (6.77)
The Fourier coefficients, d,,, are given by
2 H y
n = T L /O g1(y)sin " dy. (6.78)

The solution to the general problem is given by the sum of these four solutions.

u(x,y) = ngl [(an sinhw + by smh y) sin L
.. nm(L
+ (cn smh% +dy smh) Hy}

(6.79)

where the coefficients are given by the above Fourier integrals.
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Figure 6.11: The disk of radius a with
boundary condition along the edge at
r=a.

Example 6.6. Laplace’s Equation on a Disk
We now turn to solving Laplace’s equation on a disk of radius a as shown in
Figure 6.11. Laplace’s equation in polar coordinates is given by

10 ([ du 1 0%u
rE)r(rar>+r28920’ 0<r<a -nm<f<m. (6.80)

The boundary conditions are given as
u(a,0)=f(»0), -nm<o<m, (6.81)

plus periodic boundary conditions in 6.
Separation of variable proceeds as usual. Let u(r,0) = R(r)®(0). Then

19 [ 9(RO) 1 9?(RO)
rar<r ar > 2 Y (6.82)
or 1 1
- A "n_
O (rR)' + 3 RO" = 0. (6.83)

Diving by u(r,0) = R(r)©(0), multiplying by 1>, and rearranging, we have
@//
r no_ _ 2 _
(rR) 5 = (6.84)

Since this equation gives a function of r equal to a function of 6, we set the
equation equal to a constant. Thus, we have obtained two differential equations,
which can be written as

r(rR"Y —AR = 0, (6.85)
Q' +1@ = 0. (6.86)

We can solve the second equation subject to the periodic boundary conditions in
the 6 variable. The reader should be able to confirm that

®(0) = a,cosnb + b, sinnh, A= n?,n=0,1,2,...

is the solution. Note that the n = 0 case just leads to a constant solution.
Inserting A = n? into the radial equation, we find

2R" + R —n®R = 0.

This is a Cauchy-Euler type of ordinary differential equation. Recall that we solve
such equations by guessing a solution of the form R(r) = r™. This leads to the
characteristic equation m> — n? = 0. Therefore, m = +n. So,

R(r) =y’ 4+ cor™".

Since we expect finite solutions at the origin, v = 0, we can set co = 0. Thus, the
general solution is
a (o]
u(r,0) = 50 + Z (ay, cosné + b, sinnd) r". (6.87)

n=1
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Note that we have taken the constant term out of the sum and put it into a familiar
form.
Now we can impose the remaining boundary condition, u(a,0) = f(6), or

o)

f(6) = > + Y (ancosnb + by sinnb) a". (6.88)

n=1

This is a Fourier trigonometric series. The Fourier coefficients can be determined
using the results from Chapter 4:

1 7T

I = g ./_nf(Q)CoandG, n=01,..., (6.89)
1 T .

b = Tat /_nf(G) sinnfdfd n=1,2.... (6.90)

6.3.1 Poisson Integral Formula

WE CAN PUT THE SOLUTION FROM THE LAST EXAMPLE in a more compact
form by inserting the Fourier coefficients into the general solution. Doing
this, we have

u(r,0) = 4 Y (ancosnf + by, sinnf) 1"
n=1

‘>—\ ISTES

= o[ s

|

_,_%/ ni [cos n¢ cos nb + sin n¢ sin nf) (g)nf(‘l’)d‘l’

:l/”

The term in the brackets can be summed. We note that

csnto- o1 (1)) = (e (1))

~ Re(Le0)", (692)

% i cos (6 —¢) ( ) ]f(‘l’) dg. (6.91)

Therefore,
s o (DY —re [ 3 (Fee-0)"
Y cosn(6 4))(a) —Re<z (ae ) .
n=1 n=1
The right hand side of this equation is a geometric series with common ratio

of gei(e_‘/’), which is also the first term of the series. Since gei(e_‘/’) ‘ =.<1,

the series converges. Summing the series, we obtain

o 16i(6-9)
-9\ _ _a®
n;(ae ) 1— Lei@—9)

rei(9_¢)

= 7 — 1ei0—9) (6.93)

183
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Poisson Integral Formula

We need to rewrite this result so that we can easily take the real part.
Thus, we multiply and divide by the complex conjugate of the denominator
to obtain

0 zei(ei(’)))n rgi(e'*q)) a— reili(of‘l’)
a—rel0=9) g — ye—i(0—¢)
are~(6—9¢) _ 42

T 2242 2arcos(0—¢) (6:94)

The real part of the sum is given as

0 {0—¢) arcos(@—fp)_rz
) e

n=1

Therefore, the factor in the brackets under the integral in Equation (6.91) is

. no1 arcos(0 — ¢) — 12
Z cosn(f —¢) ( ) = §+a2+r2f2arcos(9*¢)

112—1’2

2(a%? + 12 —2arcos(6 — ¢))

(6.95)

Thus, we have shown that the solution of Laplace’s equation on a disk
of radius a with boundary condition u(a,0) = f(6) can be written in the
closed form

1 T a2 — 2
uin8)= 2 / a2 +r2 — 2ar cos(0 — 4>)f(¢) a¢. (6.96)
This result is called the Poisson Integral Formula and
22

K(6,¢) = a2 +r2 — 2ar cos(6 — ¢)

is called the Poisson kernel.

Example 6.7. Evaluate the solution (6.96) at the center of the disk.
We insert r = 0 into the solution (6.96) to obtain

w0,0)= o [ fig)dg

Recalling that the average of a function g(x) on [a, b] is given by

1 b
ave = b*ﬂ/a g(x)dx,

we see that the value of the solution u at the center of the disk is the average of the
boundary values. This is sometimes referred to as the mean value theorem.

6.4 Three Dimensional Cake Baking

IN THE REST OF THE CHAPTER WE WILL EXTEND our studies to three di-
mensional problems. In this section we will solve the heat equation as we
look at examples of baking cakes.
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We consider cake batter, which is at room temperature of T; = 80°F. It is
placed into an oven, also at a fixed temperature, T, = 350°F. For simplicity,
we will assume that the thermal conductivity and cake density are constant.
Of course, this is not quite true. However, it is an approximation which
simplifies the model. We will consider two cases, one in which the cake is a
rectangular solid, such as baking it in a 13” x 9" x 2" baking pan. The other
case will lead to a cylindrical cake, such as you would obtain from a round
cake pan.

Assuming that the heat constant k is indeed constant and the temperature
is given by T(r,t), we begin with the heat equation in three dimensions,

oT
= = kVT. (6.97)

We will need to specify initial and boundary conditions. Let T; be the initial
batter temperature, T(x,y,z,0) = T;.

We choose the boundary conditions to be fixed at the oven temperature
Tp. However, these boundary conditions are not homogeneous and would
lead to problems when carrying out separation of variables. This is easily
remedied by subtracting the oven temperature from all temperatures in-
volved and defining u(r,t) = T(r,t) — Tp. The heat equation then becomes

ou

12
5 kV<u (6.98)
with initial condition

u(r,O) = Ti - Tb-

The boundary conditions are now homogeneous. We cannot be any more
specific than this until we specify the geometry.

Example 6.8. Temperature of a Rectangular Cake

We will consider a rectangular cake with dimensions 0 < x < W,0 <y <L,
and 0 < z < H as show in Figure 6.12. For this problem, we seek solutions of the
heat equation plus the conditions

u(x,y,z,0) = Ti—T,
u(0,y,z,t) =u(W,y,z,t) = 0,
u(x,0,z,t) =u(x,L,z,t) = 0,
u(x,y,0,t) =u(x,y,Ht) = 0.

Using the method of separation of variables, we seek solutions of the form

u(x,y,z,t) = X(x)Y(y)Z(z)G(#). (6.99)
Substituting this form into the heat equation, we get

1 G/ X/l Y// Z//
EE = Y+7+7. (6.100)
Setting these expressions equal to —A, we get

16 x!  y" gz
- -\ and <ty tz= —A. (6.101)

This discussion of cake baking is
adapted from R. Wilkinson’s thesis
work. That in turn was inspired by work
done by Dr. Olszewski,(2006) From bak-
ing a cake to solving the diffusion equa-
tion. American Journal of Physics 74(6).

<

H

x
L

Figure 6.12: The dimensions of a rectan-
gular cake.
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Therefore, the equation for G(t) is given by
G +kAG =0.

We further have to separate out the functions of x, y, and z. We anticipate that
the homogeneous boundary conditions will lead to oscillatory solutions in these
variables. Therefore, we expect separation of variables will lead to the eigenvalue

problems
X"+u*X = 0, X(0)=X(W)=0,
Y'+1v2Y = 0, Y(0)=Y(L)=0,
7" +x*Z = 0, Z(0)=Z(H)=0. (6.102)
Noting that
X// LII _ 71/2 Ziﬂ B 71{2
X ,u 7 Y - 7 Z - 7

we find from the heat equation that the separation constants are related,
A2 =1+ + i

We could have gotten to this point quicker by writing the first separated equation
labeled with the separation constants as

1 G/ X// YN Z//

AR RN
— =~ =~ =~
—A —u -V —K

Then, we can read off the eigenvalues problems and determine that \> = u? +v? +

2
K-
From the boundary conditions, we get product solutions for u(x,y,z,t) in the
form
u = si i 1 —Amnckt
mne(X, 1,2, t) = sin pyxsinv,ysinkze ,
for

At = 12 +12 + 13 = (%)ZJF (%)24r (g)z mon =12,

The general solution is a linear combination of all of the product solutions, summed
over three different indices,

(e} [ee] [ee]
(x,y,2,t) = Z Z Z Ay i px sinvyy sinkpz e~ Akt (6.103)
m=1n=1/(=1
where the Ay,y,e's are arbitrary constants.

We can use the initial condition u(x,y,z,0) = T; — Ty to determine the A’s.
We find

[o0] [o0] o
T, —T, = E 2 Z A SIN P X SIN VY Sinkpz. (6.104)
m=1n=1¢=1

This is a triple Fourier sine series.
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We can determine these coefficients in a manner similar to how we handled
double Fourier sine series earlier in the chapter. Defining

b

HM8

o
Z mnl SIN VY sinkyz,
we obtain a simple Fourier sine series:

T, —T, = Z b (y, z) sin pyx. (6.105)
The Fourier coefficients can then be found as

2 (W .
by, z) = W/O (T; — Tp) sin pyx dx.

Using the same technique for the remaining sine series and noting that T; — Ty is
constant, we can determine the general coefficients A, by carrying out the needed
integrations:

8 LW e
Apnt = m/o /0/0 (T; — Tp) sin pyx sin vy sinkpz dxdydz

mrx H
(Ti—Tb)ﬁ {COS(W)]W [COS(H)] [COS(%)}
0 0

3
T 0 n 4

m
8 smm—1] [cosnm—11] [coslmr—1

- @ [ [ [
8

n

~ Ty 8 0, for at least one m, n, £ even,
= b [52] [52] [F], for m,n, € all odd.

Since only the odd multiples yield non-zero A, we let m = 2m' —1, n =
2n' —1,and £ = 20" — 1 for m',n', 0’ = 1,2,.... The expansion coefficients can
now be written in the simpler form z

64(T, — T;)
Qm' —1) (2 —1) 20 = 1) 13"

Amnl =

Substituting this result into general solution and dropping the primes, we find x g
Akt g w
mnt

© © o _: . . _
M Z Z Z SIN fim X SN VY SIN Kz € , Figure 6.13: Rectangular cake showing a
’ m=1n=1/(=1 (Zm - 1) (21’1 - 1) (26 - 1) vertical slice.

- (B () ()

formmn,=1,2,...
Recalling that the solution to the physical problem is

u(x,y,z,t) =

where

T(x,y,2,t) = u(x,y,z,t) + Ty,
we have the final solution is given by

64(Ty — T;) & & & sin flyx sin D,y sin Rpz e~ Amnekt
T(x,y,z,t) =T, + ——=-"
' o LEL Gnnen-n@ED
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Figure 6.14: Temperature evolution for
a 13" x 9" x 2" cake shown as vertical
slices at the indicated length in feet.

H

Figure 6.15: Geometry for a cylindrical
cake.
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We show some temperature distributions in Figure 6.14. Since we cannot cap-

ture the entire cake, we show vertical slices such as depicted in Figure 6.13. Vertical
slices are taken at the positions and times indicated for a 13" x 9" x 2" cake. Ob-
viously, this is not accurate because the cake consistency is changing and this will
affect the parameter k. A more realistic model would be to allow k = k(T(x,y,z,t)).
Howeuver, such problems are beyond the simple methods described in this book.

Example 6.9. Circular Cakes

In this case the geometry of the cake is cylindrical as show in Figure 6.15. There-
fore, we need to express the boundary conditions and heat equation in cylindrical
coordinates. Also, we will assume that the solution, u(r,z,t) = T(r,z,t) — Tp,
is independent of 6 due to axial symmetry. This gives the heat equation in 0-
independent cylindrical coordinates as

(10 (o, P
ot \ror\  or 0z2 )’

where 0 < r < aand 0 < z < Z. The initial condition is

(6.106)

u(r,z,0) =T; — Ty,

and the homogeneous boundary conditions on the side, top, and bottom of the cake
are

u(a,z,t) =0,
u(r,0,t) =u(r,Z,t) = 0.
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Again, we seek solutions of the form u(r,z,t) = R(r)H(z)G(t). Separation of
variables leads to

16 1d, _, H

kc R )T (6.107)
—— ———_

—A 2 2

Here we have indicated the separation constants, which lead to three ordinary
differential equations. These equations and the boundary conditions are

G'+kAG = 0,
%(rR’)—i—‘uer = 0, R(a)=0, R(0)isfinite,
H"+v*H = 0, H(0)=H(Z)=0. (6.108)

We further note that the separation constants are related by A = u? + v2.
We can easily write down the solutions for G(t) and H(z),

G(t) = Ae Mt

and -
Hy(z) = sin7, n=123...,

where v = % Recalling from the rectangular case that only odd terms arise in
the Fourier sine series coefficients for the constant initial condition, we proceed by
rewriting H(z) as

2n—1)nz

7 , n=1,2,3,... (6.109)

Hy(z) = sin
. _ (@2n-)rm
withv = “=———.
The radial equation can be written in the form

r?R” + R + u*r*R = 0.

This is a Bessel equation of the first kind of order zero which we had seen in Section
5.5. Therefore, the general solution is a linear combination of Bessel functions of the
first and second kind,

R(r) = c1Jo(pur) + caNo(ur). (6.110)

Since R(r) is bounded at r = 0 and Ny (pr) is not well behaved at r = 0, we set
cp = 0. Up to a constant factor, the solution becomes

R(r) = Jo(ur). (6.111)
The boundary condition R(a) = 0 gives the eigenvalues as
=10 =1,2,3,...,

where jo, is the m'™ roots of the zeroth-order Bessel function, Jo(jom) = 0.
Therefore, we have found the product solutions

Hy(z)Ry (r)G(t) = sin mﬁ) (gj()m) e~ Akt (6.112)

189
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where m = 1,2,3,...,n =1,2,.... Combining the product solutions, the general
solution is found as

(2n—1 . _
(r,z,t) Z Z Anmsm " Z) Jo (2]0m>e Anmkt (6.113)

n=1m=

@n -1\ | (jom\®
)an =\ + | — ’
V4 a
forn,m=1,2,3,....
Inserting the solution into the constant initial condition, we have

22 . (2n—1)mz_ /7.
T, —T, = Apm sin —————Jo | =jom ) -
i b nglmgl nm 7 0 (LZ Om)

This is a double Fourier series but it involves a Fourier-Bessel expansion. Writing

r) = il Anm]o (g]Om) ,

with

the condition becomes

> 2n—1
T=Ty = ) bul )sin%.
n=1
As seen previously, this is a Fourier sine series and the Fourier coefficients are
given by
2 (2 . (2n—-1)mz
bi(r) = - /O (T~ Ty) s1n%dz
_ ATy [z (@n-mz z
B z 2n—1)m Z 0
_ ATi-T,)
2n—-1)m

We insert this result into the Fourier-Bessel series,

= i Aumlo (gjom) ,

m=1

4T, - Tp)
2n—-1)m

and recall from Section 5.5 that we can determine the Fourier coefficients Ay, using
the Fourier-Bessel series,

[e9)

X
f(x) = Z Cn]p(]pn;)/ (6.114)
n=1
where the Fourier-Bessel coefficients are found as
on= s [T f D) dx (6.115)
n— . 2 p\pn_ : :
2 Uerl (]pn)] 0 a
Comparing these series expansions, we have
2 4T, — Ty) /
= rdr. 6.116
= P ) Jy e (6.116)
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In order to evaluate [ Jo(pmr)r dr, we let y = pr and get

a Hma d
/O]o(ﬂmr)fdf = /o fo(y)ll

Wm Um
1 Hma
= 2, Jo(y)y dy
m
1 [Hma g
= 2/ g wh)

= P:zn(ﬂm”)h(ﬂmﬂ) = ].(Tmh(]'()m). (6.117)

Here we have made use of the identity % (xJ1(x)) = Jo(x) from Section 5.5.
Substituting the result of this integral computation into the expression for Ay,

we find

8(T;i—Tp) 1

(2n — 1) 7 jomJ1 (jom)

Substituting this result into the original expression for u(r,z,t), gives

Anm =

8 T Tb s 0 SIHM ]O(gjom)e—/\nmkt
S 2n=1)  jomJ1(jom)

Therefore, T(r,z,t) is found as

8(T Tb i i sin (2n 1)7Tz ] (%jom)e*)\mnkt
(2n — 1) jOm]l(jOm)

T(r,z,t) =Ty +

where

. 2 . 2 /\
Ay — <(27121)7T> i (70m> C nm=1,2,3,....
a (( )j

Figure 6.16: Depiction of a sideview of a
vertical slice of a circular cake.

We have therefore found the general solution for the three-dimensional heat equa-
tion in cylindrical coordinates with constant diffusivity. Similar to the solutions
shown in Figure 6.14 of the previous section, we show in Figure 6.17 the tempera-

ture evolution throughout a standard 9" round cake pan. These are vertical slices
similar to what is depicted in Figure 6.16.

Again, one could generalize this example to considerations of other types
of cakes with cylindrical symmetry. For example, there are muffins, Boston
steamed bread which is steamed in tall cylindrical cans. One could also
consider an annular pan, such as a bundt cake pan. In fact, such problems
extend beyond baking cakes to possible heating molds in manufacturing.

6.5 Laplace’s Equation and Spherical Symmetry

WE HAVE SEEN THAT LAPLACE’S EQUATION, V2u = 0, arises in electro-
statics as an equation for electric potential outside a charge distribution and
it occurs as the equation governing equilibrium temperature distributions.
As we had seen in the last chapter, Laplace’s equation generally occurs in
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Figure 6.17: Temperature evolution for a
standard 9” cake shown as vertical slices
through the center.

u(r,0,¢) = g(6,¢)

Figure 6.18: A sphere of radius r with
the boundary condition u(r,6,¢) =

g(6,¢).

2 The Laplacian in spherical coordinates
is given in Problem ?? in Chapter 8.

Figure 6.19: Definition of spherical coor-
dinates (p, 6, ¢). Note that there are dif-
ferent conventions for labeling spherical
coordinates. This labeling is used often
in physics.
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the study of potential theory, which also includes the study of gravitational
and fluid potentials. The equation is named after Pierre-Simon Laplace
(1749-1827) who had studied the properties of this equation. Solutions of
Laplace’s equation are called harmonic functions.

Example 6.10. Solve Laplace’s equation in spherical coordinates.

We seek solutions of this equation inside a sphere of radius v subject to the bound-
ary condition as shown in Figure 6.18. The problem is given by Laplace’s equation
Laplace’s equation in spherical coordinates®

2o \" 9p) " p2sinf o6

where u = u(p, 6, P).
The boundary conditions are given by

u(r,0,¢) = g(6,¢),

and the periodic boundary conditions
u(p,0,0) = u(p,0,2m),

where 0 < p <oo,and 0<6 <.

2
19 (pzau)+ 1 0 (Sinea_u>+ 1 ou 0,

0<¢<2m,

(6.118)

20 pzsin29aT72 B

0<o<m,

ugp(p0,0,0) = ug(p,0,2m),

As before, we perform a separation of variables by seeking product so-
lutions of the form u(p,0,¢) = R(p)O(0)P(¢). Inserting this form into the

Laplace equation, we obtain
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RO d*®

Od d [ ,dR RO d (. dO

02 do \" dp p2sin 6 do dao

Multiplying this equation by p? and dividing by RO®, yields

li 2d7R + 1 i singdg +;dziq)—0
Rdp \" dp) " sin0@do a0 ) " sinZod dp2

Note that the first term is the only term depending upon p. Thus, we can

(6.120)

separate out the radial part. However, there is still more work to do on the
other two terms, which give the angular dependence. Thus, we have

Rdp \" dp) ~ sin0® do ) " sinZod dpr "

where we have introduced the first separation constant. This leads to two

(6.121)

equations:
d 5dR B
% (p dp) —AR=0 (6.122)
and )
1 d N (C) 1 d*d

The final separation can be performed by multiplying the last equation by
sin? §, rearranging the terms, and introducing a second separation constant:

sinGi
® do

1d°d

0N o
smﬂde) + Asin” 6 = "D U (6.124)

From this expression we can determine the differential equations satisfied
by ©(0) and P(¢):

a4 (. ,dO ) _
smG% <sm0de) + (Asin“0 —u)©® =0, (6.125)
and )
d-d

We now have three ordinary differential equations to solve. These are the
radial equation (6.122) and the two angular equations (6.125)-(6.126). We
note that all three are in Sturm-Liouville form. We will solve each eigen-
value problem subject to appropriate boundary conditions.

The simplest of these differential equations is Equation (6.126) for ®(¢).
We have seen equations of this form many times and the general solution
is a linear combination of sines and cosines. Furthermore, in this problem
u(p,0,¢) is periodic in ¢,

u(p,0,0) = u(p,0,2m), up(p,0,0) =ug(p,6,2m).

Since these conditions hold for all p and 6, we must require that ®(¢) satisfy
the periodic boundary conditions

®(0) = ®(2n), P'(0) = D' (2n).

Equation (6.123) is a key equation which
occurs when studying problems possess-
ing spherical symmetry. It is an eigen-
value problem for Y(6,¢) = ©(0)P(¢),
LY = —AY, where

PR T AU S
T sin000 \"" 30/ " sin?6 9g%
The eigenfunctions of this operator are
referred to as spherical harmonics.
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associated Legendre functions

The eigenfunctions and eigenvalues for Equation (6.126) are then found as
®(p) = {cosm¢,sinm¢p}, p=m?> m=0,1,.... (6.127)

Next we turn to solving equation, (6.125). We first transform this equation
in order to identify the solutions. Let x = cos 6. Then the derivatives with
respect to f transform as

d_dxd _ ol

do — dodx dx
Letting y(x) = ©(6) and noting that sin?# = 1 — x?, Equation (6.125) be-

d d 2
Tr ((1 — x2)dz> + </\ — 1n_1x2> y=0. (6.128)

We further note that x € [—1,1], as can be easily confirmed by the reader.

comes

This is a Sturm-Liouville eigenvalue problem. The solutions consist of a
set of orthogonal eigenfunctions. For the special case that m = 0 Equation
(6.128) becomes

d d
I <(l - xZ)dZ) + Ay =0. (6.129)

In a course in differential equations one learns to seek solutions of this
equation in the form

[ee)
y(x) =) anx".
n=0
This leads to the recursion relation

. nn+1)—A .

T ) +1) "
Setting n = 0 and seeking a series solution, one finds that the resulting series
does not converge for x = +1. This is remedied by choosing A = ¢(¢ + 1)
for ¢ =0,1,..., leading to the differential equation

d d
I ((1 - xz)d];) +4(L+1)y=0. (6.130)

We saw this equation in Chapter 5 in the form
(1—x2)y" —2xy' + (L +1)y = 0.

The solutions of this differential equation are Legendre polynomials, de-
noted by Py(x).

For the more general case, m # 0, the differential equation (6.128) with
A = {(¢ +1) becomes

d d 2
T ((1—x2)dz> + (6(64—1) —foz)y—o. (6.131)

The solutions of this equation are called the associated Legendre functions.
The two linearly independent solutions are denoted by P;"(x) and Q}'(x).
The latter functions are not well behaved at x = %1, corresponding to the
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north and south poles of the original problem. So, we can throw out these
solutions in many physical cases, leaving

©(#) = P/ (cos )

as the needed solutions. In Table 6.5 we list a few of these.

prrln (x ) P;ln (COS 9) Table 6.5: Associated Legendre Func-
tions, P (x).

X 1
? X x cos
1 (x —(1-x2)2 —sinf

x %(33(2—1)1 3(3cos?6 —1)

x —3x(1 —x?)2 —3cosfsinf

3sin? 6

=

(508360 — 3 cosh)

3(5c08?0 —1)sinf
15x(1 — x?) 15 cos 0 sin” 0

—15(1 — x2)3 —15sin® 6

3(5x% - 3x) 3

= R

=

B e e
SN N N NN TN NN N
S— N N \_/\>-</\-/ S— N N N

O8]

—

—_

=

N

SN—

The associated Legendre functions are related to the Legendre polynomi-

als by3 3The factor of (—1)" is known as the
Condon-Shortley phase and is useful in
2 2
P[m(x) = (_1)m(1 —X )m/ dxm Pé<x)r (6.132) quantum mechanics in the treatment of
agular momentum. It is sometimes omit-

for/ =0,1,2,,...and m = 0,1,...,¢. We further note that Pg(x) = Py(x), ted by some
as one can see in the table. Since P;(x) is a polynomial of degree /, then for
m > ¢, £5Py(x) = 0 and P}(x) = 0.
Furthermore, since the differential equation only depends on m?, P, ™ (x)
is proportional to Pj"(x). One normalization is given by

(e_m)! m

P (x) = (~1)" (P )

The associated Legendre functions also satisfy the orthogonality condi-
tion Orthogonality relation.
PP () dx = o R 613)
/_1 CE ) = A = m) 133
The last differential equation we need to solve is the radial equation. With
A=4L({+1),£=0,1,2,..., the radial equation (6.122) can be written as

p?R" 4 20R" — £(£ +1)R = 0. (6.134)

The radial equation is a Cauchy-Euler type of equation. So, we can guess
the form of the solution to be R(p) = p®, where s is a yet to be determined
constant. Inserting this guess into the radial equation, we obtain the char-
acteristic equation

s(s+1)=£L({+1).

Solving for s, we have
s=¢,—(0+1).
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When seeking solutions outside the
sphere, one considers the boundary con-
dition R(p) — 0 as p — oo. In this case,
R(p) = p~ (1),

4 While this appears to be a complex-
valued solution, it can be rewritten as
a sum over real functions. The inner
sum contains terms for both m = k and
m = —k. Adding these contributions, we
have that

agp' Pf (cos 0)e™? + ay ) p' P (cos 0)e %0
can be rewritten as

(Agi coskg + By sinkep)o’ Pf(cos 6).

u(r,0,¢) =1— cos26

Figure 6.20: A sphere of radius r with
the boundary condition

u(r,0,¢) =1 — cos26.

Thus, the general solution of the radial equation is
R(p) = ap’ +bp~ "+, (6.135)

We would normally apply boundary conditions at this point. The bound-
ary condition u(r,6,¢) = g(6, ¢) is not a homogeneous boundary condition,
so we will need to hold off using it until we have the general solution to the
three dimensional problem. However, we do have a hidden condition. Since
we are interested in solutions inside the sphere, we need to consider what

happens at p = 0. Note that p—(‘+1)

is not defined at the origin. Since the
solution is expected to be bounded at the origin, we can set b = 0. So, in the

current problem we have established that

R(p) = ap".

We have carried out the full separation of Laplace’s equation in spherical
coordinates. The product solutions consist of the forms

u(p,8,$) = p*P"(cos 0) cos me

and

u(p,0,¢) = p'P"(cos 0) sin me
for{ =0,1,2,...and m = 0,+£1,,...,+¢. These solutions can be combined
to give a complex representation of the product solutions as

u(p,0,¢) = pépg” (cos)e™?.

The general solution is then given as a linear combination of these product
solutions. As there are two indices, we have a double sum:4

oo f
u(p,0,¢) =Y Y agmpéPém(cos 0)e"?. (6.136)
(=0m=—¢
Example 6.11. Laplace’s Equation with Azimuthal Symmetry
As a simple example we consider the solution of Laplace’s equation in which there
is azimuthal symmetry. Let

u(r,0,¢) = g(6) =1 — cos26.

This function is zero at the poles and has a maximum at the equator. So, this could
be a crude model of the temperature distribution of the Earth with zero temperature
at the poles and a maximum near the equator.

In problems in which there is no ¢-dependence, only the m = 0 terms of the
general solution survives. Thus, we have that

u(p,0,¢) = Y_ arp'Py(cosb). (6.137)
(=0

Here we have used the fact that P{(x) = Py(x). We just need to determine the

unknown expansion coefficients, ay. Imposing the boundary condition at p = r, we

are lead to

<(0) = i ayr'Py(cosb). (6.138)
(=0
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This is a Fourier-Legendre series representation of g(0). Since the Legendre poly-
nomials are an orthogonal set of eigenfunctions, we can extract the coefficients.
In Chapter 5 we had proven that

Onm-

T : ! 2
/0 P, (cos6) Py, (cosB)sinfdf = /_1 Py (x)Py(x)dx = il

So, multiplying the expression for g(0) by Py (cos®)siné and integrating, we
obtain the expansion coefficients:
T
ay = 262%1/ <(0)Py(cos ) sin 6 db. (6.139)
~Jo

Sometimes it is easier to rewrite g(6) as a polynomial in cos@ and avoid the
integration. For this example we see that

g(0) = 1-—cos26
= 2sin’6
= 2—2cos?6. (6.140)

Thus, setting x = cos 6 and G(x) = g(6(x)), we have G(x) = 2 — 2x2.
We seek the form
G(x) = coPo(x) + c1P1(x) + c2Pa(x),

where Py(x) = 1, Py(x) = x, and P(x) = 3(3x2 —1). Since G(x) = 2 — 2x?
does not have any x terms, we know that c; = 0. So,
2—2x% =¢y(1) + C2%(3x2 —1)=1¢y— %cz + %czxz.
By observation we have c; = —% and thus, ¢g = 2+ %Cg = %. Therefore,
G(x) = 3Py(x) — 3P2(x).
We have found the expansion of g(0) in terms of Legendre polynomials,

4 4
g(0) = gPO(COS 0) — ng(cos 0). (6.141)
Therefore, the nonzero coefficients in the general solution become
go=t o4l
0— 3/ 2 — 3 r2/

and the rest of the coefficients are zero. Inserting these into the general solution, we
have the final solution

2
u(p,0,¢) = %Po(cos ) — % (g) P> (cos0)
% - % (g)z (3cos?0 —1). (6.142)

6.5.1 Spherical Harmonics

THE SOLUTIONS OF THE ANGULAR PARTS OF THE PROBLEM are often com-
bined into one function of two variables, as problems with spherical sym-
metry arise often, leaving the main differences between such problems con-
fined to the radial equation. These functions are referred to as spherical
harmonics, Y, (6, ¢), which are defined with a special normalization as

Y/ (6,¢), are the spherical harmonics.
Spherical harmonics are important in
applications from atomic electron con-
figurations to gravitational fields, plane-
tary magnetic fields, and the cosmic mi-
crowave background radiation.
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Table 6.6: The first few spherical har-
monics, | Yy (6, )|

Vin(8,9) = (1" |2 cose)e™. (6:143)

These satisfy the simple orthogonality relation

T 27
/O /O Yo (0, 9) Y5 (60,8) SN0 dp d0 = 806 .

As seen earlier in the chapter, the spherical harmonics are eigenfunctions
of the eigenvalue problem LY = —AY, where

L1 a0, 1 #
" sinf 00 20 sin2984>2'

This operator appears in many problems in which there is spherical sym-
metry, such as obtaining the solution of Schrédinger’s equation for the hy-
drogen atom as we will see later. Therefore, it is customary to plot spherical
harmonics. Because the Yy,,’s are complex functions, one typically plots ei-
ther the real part or the modulus squared. One rendition of |Yy,,(8,¢)|? is
shown in Figure 6.6 for /,m =0,1,2,3.

We could also look for the nodal curves of the spherical harmonics like
we had for vibrating membranes. Such surface plots on a sphere are shown
in Figure 6.7. The colors provide for the amplitude of the |Y;,, (0, ¢)|>. We
can match these with the shapes in Figure 6.6 by coloring the plots with
some of the same colors as shown in Figure 6.7. However, by plotting just
the sign of the spherical harmonics, as in Figure 6.8, we can pick out the
nodal curves much easier.
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Spherical, or surface, harmonics can be further grouped into zonal, sec-
toral, and tesseral harmonics. Zonal harmonics correspond to the m = 0
modes. In this case, one seeks nodal curves for which Py(cos@) = 0. So-
lutions of this equation lead to constant 6 values such that cos @ is a zero
of the Legendre polynomial, P;(x). The zonal harmonics correspond to the
first column in Figure 6.8. Since P;(x) is a polynomial of degree /, the zonal
harmonics consist of ¢ latitudinal circles.

Sectoral, or meridional, harmonics result for the case that m = 4/. For
this case, we note that P;*‘(x) o (1 — x2)"/2. This function vanishes for
x = %1, or 8 = 0, 7t. Therefore, the spherical harmonics can only produce
nodal curves for ¢™? = 0. Thus, one obtains the meridians satisfying the
condition A cos m¢ + B sinm¢ = 0. Solutions of this equation are of the form
¢ = constant. These modes can be seen in Figure 6.8 in the top diagonal
and can be described as m circles passing through the poles, or longitudinal
circles.

Tesseral harmonics consist of the rest of the modes, which typically look
like a checker board glued to the surface of a sphere. Examples can be
seen in the pictures of nodal curves, such as Figure 6.8. Looking in Figure
6.8 along the diagonals going downward from left to right, one can see the
same number of latitudinal circles. In fact, there are ¢ — m latitudinal nodal
curves in these figures

Table 6.7: Spherical harmonic contours
for | Yy, (6, 4)|2.

Table 6.8: In these figures we show
the nodal curves of |Yy,(6,¢)|? Along
the first column (m = 0) are the zonal
harmonics seen as ¢ horizontal circles.
Along the top diagonal (m = /() are
the sectional harmonics. These look like
orange sections formed from m vertical
circles. The remaining harmonics are
tesseral harmonics. They look like a
checkerboard pattern formed from inter-
sections of £ — m horizontal circles and m
vertical circles.

Figure 6.21: Zonal harmonics, ¢ = 1,
m = 0.

Figure 6.22: Zonal harmonics, ¢ = 2,
m = 0.

G

Figure 6.23: Sectoral harmonics, { = 2,
m=2.

Figure 6.24: Tesseral harmonics, { = 3,
m=1.
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In summary, the spherical harmonics have several representations, as

o show in Figures 6.7-6.8. Note that there are ¢ nodal lines, m meridional

| N curves, and ¢ — m horizontal curves in these figures. The plots in Figure 6.6

e are the typical plots shown in physics for discussion of the wavefunctions

Figure 6.25: Sectoral harmonics, ¢ = 3, of the hydrogen atom. Those in 6.7 are useful for describing gravitational

m=3. or electric potential functions, temperature distributions, or wave modes
on a spherical surface. The relationships between these pictures and the

- nodal curves can be better understood by comparing respective plots. Sev-
@ @ X eral modes were separated out in Figures 6.21-6.26 to make this comparison
7\ easier.

Figure 6.26: Tesseral harmonics, ¢ = 4,
m = 3.

6.6 Schrodinger Equation in Spherical Coordinates

ANOTHER IMPORTANT EIGENVALUE PROBLEM IN PHYSICS is the Schrodinger
equation. The time-dependent Schrédinger equation is given by
R o

ih—

LR v
5 = va Y+ VY. (6.144)

Here ¥(r,t) is the wave function, which determines the quantum state of
a particle of mass m subject to a (time independent) potential, V(r). From
Planck’s constant, i, one defines 71 = % The probability of finding the
particle in an infinitesimal volume, dV/, is given by [¥(r, t) |2 dV, assuming
the wave function is normalized,

/ ¥ (r, £)2dV = 1.
all space

One can separate out the time dependence by assuming a special form,
¥(r,t) = w(r)eE/", where E is the energy of the particular stationary state
solution, or product solution. Inserting this form into the time-dependent
equation, one finds that ¢(r) satisfies the time-independent Schrédinger
equation,

n_,
—5- Vi + VY = Ep. (6.145)

Assuming that the potential depends only on the distance from the ori-
gin, V = V(p), we can further separate out the radial part of this solution
using spherical coordinates. Recall that the Laplacian in spherical coordi-
nates is given by

19 9 1 0 0 1 0
2_ 19 (209 9 (inp @ L
Ve = 230 (p ap) + 7 sind 96 (sm980> + 2520 9g2 (6.146)
Then, the time-independent Schrodinger equation can be written as

10 [ ,00 1 0 /. oy 1 %y
T Lzap (" ap) T Zsin6 o6 (S“‘Gae> +pzsm29a¢z}

= [E=V(o)ly. (6.147)
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Let’s continue with the separation of variables. Assuming that the wave
function takes the form ¢(p,0,¢) = R(p)Y (6, ¢), we obtain

2m |p2dp \P dp ) " pZsin0 90 6 ) " p2sin? 0 9¢7

— RY[E-V(o)ly. (6.148)

Dividing by ¢ = RY, multiplying by — £ ’ , and rearranging, we have

1d dR 2mp? 1
(%)~ - V() —E =~ gy,

2m
I

Rdp dp >
where
L= 1 9 sir19i + Lafz
" sinf 00 00 sin2 @ a¢2 ’

We have a function of p equal to a function of the angular variables. So,
we set each side equal to a constant. We will judiciously write the separation
constant as ¢(¢ + 1). The resulting equations are then

d [ ,dR 2mp? _

. <p dp) -2 V(o) - EJR = e+ DR, (6.149)
1 9 (. 0Y 1 %Y

S50 (sm@ae) + 20992 —L(L+1)Y. (6.150)

The second of these equations should look familiar from the last section.
This is the equation for spherical harmonics,

2041 (£ —m)

r
Yom (6, ¢) = 5 _pjtet™?, (6.151)

(L +m)!
So, any further analysis of the problem depends upon the choice of po-

tential, V(p), and the solution of the radial equation. For this, we turn to the

determination of the wave function for an electron in orbit about a proton. Solution of the hydrogen problem.

Example 6.12. The Hydrogen Atom - { = 0 States

Historically, the first test of the Schrodinger equation was the determination of
the energy levels in a hydrogen atom. This is modeled by an electron orbiting a
proton. The potential energy is provided by the Coulomb potential,

2
Thus, the radial equation becomes
d [ ,dR 2mp? [ 2 B
& (p dp> + Py [47T€0P —O—E} R=/(({+1)R. (6.152)

Before looking for solutions, we need to simplify the equation by absorbing some
of the constants. One way to do this is to make an appropriate change of variables.
Let p = ar. Then, by the Chain Rule we have

d _drd 1d

do  dodr  adr

201
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Under this transformation, the radial equation becomes

d ( ,du 2ma®r? e? B
e (7 dr) + - [4”6‘0[17’ + E] u=4LL+1)u, (6.153)

where u(r) = R(p). Expanding the second term,

2ma’r? [ 2 }

[ mae? Jr2m]5a2r2 ;
K2 4reqar !

u= r
{2neoh2 n?

we see that we can define

27'(60}‘12
a = me2 ' (6154)
_ 2mEa?
C T T
2(27teg)?H?

Using these constants, the radial equation becomes

d [ ,du )
o <r dr) +ru—L({+1)u = er-u. (6.156)

Expanding the derivative and dividing by 2,

2 1 l+1
u"—l—;u’—l—;u— (72 )u:eu. (6.157)

The first two terms in this differential equation came from the Laplacian. The third
term came from the Coulomb potential. The fourth term can be thought to contribute
to the potential and is attributed to angular momentum. Thus, £ is called the
angular momentum quantum number. This is an eigenvalue problem for the radial
eigenfunctions u(r) and energy eigenvalues €.

The solutions of this equation are determined in a quantum mechanics course. In
order to get a feeling for the solutions, we will consider the zero angular momentum
case, { =0 :

u’ + %u' + %u = €. (6.158)

Even this equation is one we have not encountered in this book. Let’s see if we can
find some of the solutions.

First, we consider the behavior of the solutions for large r. For large r the second
and third terms on the left hand side of the equation are negligible. So, we have the
approximate equation

u" —eu=0. (6.159)

Therefore, the solutions behave like u(r) = V<" for large r. For bounded solutions,
we choose the decaying solution.

This suggests that solutions take the form u(r) = v(r)eVe" for some unknown
function, v(r). Inserting this guess into Equation (6.158), gives an equation for
o(r):

" +2(1—er)o' + (1 —-2Ve)v =0. (6.160)
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Next we seek a series solution to this equation. Let

[0 9)
=1y cxr*.
k=0

Inserting this series into Equation (6.160), we have

Y [k(k — 1) + 2Klcxr* 1 + Y [1 - 2/e(k + 1)]epr* = 0.

k=1 k=1
We can re-index the dummy variable in each sum. Let k = m in the first sum and
k = m — 1 in the second sum. We then find that

[0 9)

Y [m(m+1)cw + (1 —2my/€)cy_q] 1 =0.

k=1
Since this has to hold for all m > 1,

me—l
(m+1)

Cm—

Further analysis indicates that the resulting series leads to unbounded solutions
unless the series terminates. This is only possible if the numerator, 2m+/e — 1,
vanishes form =n,n =1,2.... Thus,

1
4n?’
Since € is related to the energy eigenvalue, E, we have

me4

" _2(47'[6’0)27’12712'

Inserting the values for the constants, this gives

13.6 eV
Ey=——35—.
n
This is the well known set of energy levels for the hydrogen atom. Energy levels for the hydrogen atom.

The corresponding eigenfunctions are polynomials, since the infinite series was
forced to terminate. We could obtain these polynomials by iterating the recursion
equation for the c,,’s. However, we will instead rewrite the radial equation (6.160).

Let x = 2\/er and define y(x) = v(r). Then

d d
i = Ve
This gives
2Vexy" + (2 — x)2Vey' + (1 —2Ve)y =

Rearranging, we have

W/ + @2y + 512V =

Noting that 2\/€ = %, this equation becomes

xy' +(2-x)y +(n—1)y=0. (6.161)
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The associated Laguerre polynomials are
named after the French mathematician
Edmond Laguerre (1834-1886).

Table 6.9: Associated Laguerre Func-
tions, L' (x). Note that L} (x) = Ly(x).

In most derivation in quantum mechan-
2

icsa = . where qp = 47::3;’ is the Bohr

radius and a4y = 5.2917 x 10~ 'm.

The resulting equation is well known. It takes the form

xy” + (w+1—x)y +ny=0. (6.162)

Solutions of this equation are the associated Laguerre polynomials. The solutions
are denoted by L% (x). They can be defined in terms of the Laguerre polynomials,

Lu(x) = ¢* (;x) (3.

The associated Laguerre polynomials are defined as

L () = (—1)" (jx)an(x).

Note: The Laguerre polynomials were first encountered in Problem 2 in Chapter 5
as an example of a classical orthogonal polynomial defined on [0, 00) with weight
w(x) = e~ *. Some of these polynomials are listed in Table 6.9 and several Laguerre
polynomials are shown in Figure 6.27.

Comparing Equation (6.161) with Equation (6.162), we find that y(x) = L. (x).

I~

1(x2 — 8x +12)
& (—2x% 4 30x% — 120x + 120)

=

I~
=

L (%)

L3(x) 1
LI(x) 1—x
LI(x) 3(x? —4x +2)
L9(x) (=23 +9x2 —18x + 6)
Li(x) 1
Li(x) 2—x
LY (x) L(x — 6x+6)
L(x) L(—x%+3x2 —36x +24)
L3(x) 1
L3(x) 3—x

3(x)

3(x)

In summary, we have made the following transformations:

1. R(p) = u(r), p = ar.

2. u(r) = v(r)e Ver,

3. v(r) =y(x) = L}_,(x), x =2\/er.
Therefore,

R(p) = e™Ve/°LL , (2/ep/a).
However, we also found that 2+/e€ = 1/n. So,

R(p) = e /> L}, (p/na).

In Figure 6.28 we show a few of these solutions.
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Figure 6.27: Plots of the first few La-
guerre polynomials.

4 Figure 6.28: Plots of R(p) for 2 = 1 and
n=1,2,3,4 for the £ = 0 states.
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Poisson’s equation for the electric poten-
tial.

Poisson’s equation for the gravitational
potential.

Example 6.13. Find the { > 0 solutions of the radial equation.
For the general case, for all £ > 0, we need to solve the differential equation

2 1 0(0+1)
" /
u’ + fru + fru — ) U = €u. (6.163)

Instead of letting u(r) = v(r)e™ Ve, we let
u(r) = v(r)rfe_\/a.
This lead to the differential equation
10" +2(0+1—+/er)v + (1 —2({ +1)ye)v = 0. (6.164)

as before, we let x = 2\/er to obtain
" X1 L_ o
xy +2{€+1 2}0—#{2\/5 6(6—1—1)}0—0.

Noting that 2\/e = 1/n, we have
xy" +22(0+1) —x]0 + (n—0({+1))v=0.

We see that this is once again in the form of the associate Laguerre equation and the
solutions are

y(x) = Liéjgl_ﬁx)
So, the solution to the radial equation for the hydrogen atom is given by
R(p) = rleVoL2i) 2y
— P ¢ —p/2nay20+1 P
B (Zmz) ¢ Lt (na) ' (6.165)

Interpretations of these solutions will be left for your quantum mechanics course.

6.7 Solution of the 3D Poisson Equation

WE RECALL FROM ELECTROSTATICS THAT THE GRADIENT OF THE ELEC-
TRIC POTENTIAL gives the electric field, E = —V¢. However, we also have
from Gauss’ Law for electric fields V - E = e%, where p(r) is the charge dis-
tribution at position r. Combining these equations, we arrive at Poisson’s
equation for the electric potential,

vip =L

€0
We note that Poisson’s equation also arises in Newton’s theory of gravitation
for the gravitational potential in the form V¢ = —47wGp where p is the
matter density.
We consider Poisson’s equation in the form

V2p(r) = —4nf(r)
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for r defined throughout all space. We will seek a solution for the potential
function using a three dimensional Fourier transform. In the electrostatic
problem f = p(r)/47mep and the gravitational problem has f = Gp(r)

The Fourier transform can be generalized to three dimensions as

#0) = [ pwekrdr,

where the integration is over all space, V, PBr = dxdydz, and k is a three di-
mensional wavenumber, k = kyi + kyj + k;k. The inverse Fourier transform

can then be written as
1 . .
_ k —ik-r d3k,
P = s, $K)e

where d®k = dkydkydk, and Vj is all of k-space.

The Fourier transform of the Laplacian follows from computing Fourier
transforms of any derivatives that are present. Assuming that ¢ and its
gradient vanish for large distances, then

FIV2) = —(K: + ky + K2)p (k).

Defining k* = k2 + kﬁ + k2, then Poisson’s equation becomes the algebraic
equation

Solving for ¢(k), we have

_4m,

¢(k) = ka (k).
The solution to Poisson’s equation is then determined from the inverse
Fourier transform,
—ik-r

¢(r) = (24:)3 /V : f(k)‘“’k—2 d*k. (6.166)

First we will consider an example of a point charge (or mass in the grav-
itational case) at the origin. We will set f(r) = fyd°(r) in order to represent
a point source. For a unit point charge, fy = 1/47ey.

Here we have introduced the three dimensional Dirac delta function
which, like the one dimensional case, vanishes outside the origin and satis-
fies a unit volume condition,

/‘/53(r) dBr=1.

Also, there is a sifting property, which takes the form

/V 5 (r — 1) f(r) d®r = f(xo).

In Cartesian coordinates,

Three dimensional Fourier transform.

The three dimensional Dirac delta func-
tion, 8%(r — 1g).
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/‘/(53( r—/ / / 0(z) dxdydz =1,

/ [ 5= 20)3(y — y0)oz —20) (9, 2) dudydz = f(x0,y0,20).

One can define similar delta functions operating in two dimensions and n
dimensions.

We can also transform the Cartesian form into curvilinear coordinates.
Recall from the Section ?? that the volume element in curvilinear coordinates
is

d*r = dxdydz = hihyhsduyduydus.

Here we have used the notation from Section ??. This gives

/ 5(r) Pr = / 53(t) hhohsdusdusdus = 1.
1% 14

Therefore,
uy) o(up) o(u
53(1,) _ (a ) (a ) (ar3>
EnlEAREA
1
- hlh2h35(u1)§(u2)5(u3)' (6167)
So, for cylindrical coordinates,
3 1
°(x) = ~8(r)3(8)4(2)

Example 6.14. Find the solution of Poisson’s equation for a point source of the

form f(x) = foo*(r).
The solution is found by inserting the Fourier transform of this source into Equa-
tion (6.166) and carrying out the integration. The transform of f(r) is found as

700 = | fos® @) d’r = fo

Inserting f (k) into the inverse transform in Equation (6.166) and carrying out
the integration using spherical coordinates in k-space, we find

4 —ik-r
o) = n3/foek2 &k

27 ooeflkxcose
- 25 / / / K2 sin 6 dkd6d¢
_f / / e‘lkxcosesinGdde
7T Jo 0

fO /oo /1 —ikxy
= — dkd 7 - 9,
7 Jo . e Y y Ccos

- z—f(’/owﬁdz: fo, (6.168)

tr z r
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If the last example is applied to a unit point charge, then fy = 1/4mey.
So, the electric potential outside a unit point charge located at the origin

becomes 1

" Admegr’

¢(r)

This is the form familiar from introductory physics.
Also, by setting fp = 1, we have also shown in the last example that

v? (1> = —4778%(r).

r

Since V (%) = - r%, then we have also shown that
ry _ 3
v (T3) = 478%(x).

Problems

1. A rectangular plate 0 < x < L 0 < y < H with heat diffusivity constant k
is insulated on the edges ¥ = 0, H and is kept at constant zero temperature
on the other two edges. Assuming an initial temperature of u(x,y,0) =
f(x,y), use separation of variables t find the general solution.

2. Solve the following problem.

Uy + Uy + 1z =0, 0<x<2mr, O<y<m 0<z<I,
u(x,y,0) =sinxsiny, u(x,y,z) = Oon other faces.
3. Consider Laplace’s equation on the unit square, iy +uy, = 0,0 < x,y <
1. Let u(0,y) = 0,u(1l,y) =0for 0 <y < 1and uy(x,0) =0for 0 <y < 1.

Carry out the needed separation of variables and write down the product
solutions satisfying these boundary conditions.

4. Consider a cylinder of height H and radius a.
a. Write down Laplace’s Equation for this cylinder in cylindrical coordi-
nates.

b. Carry out the separation of variables and obtain the three ordinary
differential equations that result from this problem.

c. What kind of boundary conditions could be satisfied in this problem
in the independent variables?

5. Consider a square drum of side s and a circular drum of radius a.

a. Rank the modes corresponding to the first 6 frequencies for each.

b. Write each frequency (in Hz) in terms of the fundamental (i.e., the
lowest frequency.)

c. What would the lengths of the sides of the square drum have to be to
have the same fundamental frequency? (Assume that ¢ = 1.0 for each
one.)
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6. We presented the full solution of the vibrating rectangular membrane
in Equation 6.37. Finish the solution to the vibrating circular membrane by
writing out a similar full solution.

7. A copper cube 10.0 cm on a side is heated to 100° C. The block is placed
on a surface that is kept at 0° C. The sides of the block are insulated, so
the normal derivatives on the sides are zero. Heat flows from the top of
the block to the air governed by the gradient u, = —10°C/m. Determine
the temperature of the block at its center after 1.0 minutes. Note that the
thermal diffusivity is given by k = %, where K is the thermal conductivity,
p is the density, and ¢, is the specific heat capacity.

8. Consider a spherical balloon of radius a. Small deformations on the

surface can produce waves on the balloon’s surface.
a. Write the wave equation in spherical polar coordinates. (Note: p is
constant!)

b. Carry out a separation of variables and find the product solutions for
this problem.

c. Describe the nodal curves for the first six modes.

d. For each mode determine the frequency of oscillation in Hz assuming
c=10m/s.

9. Consider a circular cylinder of radius R = 4.00 cm and height H = 20.0
cm which obeys the steady state heat equation

1
Upy + ;Mr + Uzz.

Find the temperature distribution, u(r, z), given that u(r,0) = 0°C, u(r,20) =
20°C, and heat is lost through the sides due to Newton’s Law of Cooling

[ur + hu]r:4 =0,
forh =1.0cm™ L.

10. The spherical surface of a homogeneous ball of radius one in main-
tained at zero temperature. It has an initial temperature distribution u(p,0) =
100° C. Assuming a heat diffusivity constant k, find the temperature through-
out the sphere, u(p, 6, ¢, t).

11. Determine the steady state temperature of a spherical ball maintained
at the temperature

u(x,y,z) = x? —|—2y2 + 322, p=1

[Hint - Rewrite the problem in spherical coordinates and use the properties
of spherical harmonics.]



A
Calculus Review

“Ordinary language is totally unsuited for expressing what physics really asserts,
since the words of everyday life are not sufficiently abstract. Only mathematics and
mathematical logic can say as little as the physicist means to say.” Bertrand Russell
(1872-1970)

BEFORE YOU BEGIN OUR STUDY OF DIFFERENTIAL EQUATIONS perhaps you
should review some things from calculus. You definitely need to know
something before taking this class. It is assumed that you have taken Calcu-
lus and are comfortable with differentiation and integration. Of course, you
are not expected to know every detail from these courses. However, there
are some topics and methods that will come up and it would be useful to
have a handy reference to what it is you should know.

Most importantly, you should still have your calculus text to which you
can refer throughout the course. Looking back on that old material, you
will find that it appears easier than when you first encountered the mate-
rial. That is the nature of learning mathematics and other subjects. Your
understanding is continually evolving as you explore topics more in depth.
It does not always sink in the first time you see it. In this chapter we will
give a quick review of these topics. We will also mention a few new methods
that might be interesting.

A.1 What Do I Need To Know From Calculus?

A.1.1 Introduction

THERE ARE TWO MAIN TOPICS IN CALCULUS: derivatives and integrals.
You learned that derivatives are useful in providing rates of change in either
time or space. Integrals provide areas under curves, but also are useful
in providing other types of sums over continuous bodies, such as lengths,
areas, volumes, moments of inertia, or flux integrals. In physics, one can
look at graphs of position versus time and the slope (derivative) of such a
function gives the velocity. (See Figure A.1.) By plotting velocity versus time
you can either look at the derivative to obtain acceleration, or you could look
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x(f)

t

Figure A.1: Plot of position vs time.

— R

to t

Figure A.2: Plot of velocity vs time.

Exponential properties.

Logarithmic properties.

at the area under the curve and get the displacement:

t
x= [ vdt (A1)

to
This is shown in Figure A.2.

Of course, you need to know how to differentiate and integrate given
functions. Even before getting into differentiation and integration, you need
to have a bag of functions useful in physics. Common functions are the
polynomial and rational functions. You should be fairly familiar with these.
Polynomial functions take the general form

f(x) = apx" + a1 x" '+ +agx +ag, (A.2)

where a, # 0. This is the form of a polynomial of degree n. Rational func-
tions, f(x) = %, consist of ratios of polynomials. Their graphs can exhibit
vertical and horizontal asymptotes.

Next are the exponential and logarithmic functions. The most common
are the natural exponential and the natural logarithm. The natural exponen-
tial is given by f(x) = ¢*, where e ~ 2.718281828 . ... The natural logarithm
is the inverse to the exponential, denoted by Inx. (One needs to be care-
ful, because some mathematics and physics books use log to mean natural
exponential, whereas many of us were first trained to use this notation to
mean the common logarithm, which is the ‘log base 10". Here we will use
In x for the natural logarithm.)

The properties of the exponential function follow from the basic proper-
ties for exponents. Namely, we have:

e =1, (A.3)
_ 1

et = 2 (A-4)

eaeb — eaer’ (A5)

) = e (A.6)
The relation between the natural logarithm and natural exponential is

given by
y=e¢" < x=Iny. (A7)
Some common logarithmic properties are

In1 = 0, (A.8)

In % = —lIng, (A.9)

In(ab) = Ina+Inb, (A.10)

ln% = Ina—Inb, (A.11)

ln% = —Inb. (A.12)

We will see applications of these relations as we progress through the
course.



A.1.2  Trigonometric Functions

ANOTHER SET OF USEFUL FUNCTIONS are the trigonometric functions. These
functions have probably plagued you since high school. They have their

origins as far back as the building of the pyramids. Typical applications in

your introductory math classes probably have included finding the heights

of trees, flag poles, or buildings. It was recognized a long time ago that sim-

ilar right triangles have fixed ratios of any pair of sides of the two similar

triangles. These ratios only change when the non-right angles change.

Thus, the ratio of two sides of a right triangle only depends upon the
angle. Since there are six possible ratios (think about it!), then there are six
possible functions. These are designated as sine, cosine, tangent and their
reciprocals (cosecant, secant and cotangent). In your introductory physics
class, you really only needed the first three. You also learned that they
are represented as the ratios of the opposite to hypotenuse, adjacent to hy-
potenuse, etc. Hopefully, you have this down by now.

You should also know the exact values of these basic trigonometric func-
tions for the special angles 6 = 0, ¥, 5, 7, 7, and their corresponding angles
in the second, third and fourth quadrants. This becomes internalized after
much use, but we provide these values in Table A.1 just in case you need a

reminder.
0 | cosf | sinf tan 6
0 1 0 0
| V3 1 V3
6 2 \2[ 3
T 1 3
3| 2 | o V3
x| V2 | 2 1
1 2 2
Z 0 1 undefined

The problems students often have using trigonometric functions in later
courses stem from using, or recalling, identities. We will have many an
occasion to do so in this class as well. What is an identity? It is a relation
that holds true all of the time. For example, the most common identity for
trigonometric functions is the Pythagorean identity

sin® 0 + cos? 6 = 1. (A.13)

This holds true for every angle 6! An even simpler identity is

(A.14)

Other simple identities can be derived from the Pythagorean identity.
Dividing the identity by cos? 6, or sin? 6, yields

tan?0+1 = sec?, (A.15)
1+cot?0 = csc?6. (A.16)
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Table A.1: Table of Trigonometric Values
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Sum and difference identities.

Double angle formulae.

Half angle formulae.

Several other useful identities stem from the use of the sine and cosine of

the sum and difference of two angles. Namely, we have that

sin(A+B) = sinAcosB+sinBcosA, (A.17)
cos(A+B) = cosAcosB FsinAsinB. (A.18)
Note that the upper (lower) signs are taken together.
Example A.1. Evaluate sin {5.
. . (T T
s E = Sm (E — Z)
= sin Zcos * —sin 2 cos
N 3 4 4 3
_ V3v2 V21
22 22
V2
= = (V3-1). (A.19)
The double angle formulae are found by setting A = B :
sin(2A) = 2sinAcosB, (A.20)
cos(2A) = cos® A —sin? A. (A.21)
Using Equation (A.13), we can rewrite (A.21) as
cos(2A) = 2cos?A—1, (A.22)
= 1-2sin’ A. (A.23)

These, in turn, lead to the half angle formulae. Solving for cos? A and sin? A,

we find that

sin? A =

cos? A =

1—cos2A
—
1+ cos2A
—

(A.24)

(A.25)

Example A.2. Evaluate cos {5. In the last example, we used the sum/difference

identities to evaluate a similar expression.

identity. In this example, we have

cos u
12

(1 + cos %)

(-3)

(2+V3)

Bl NI= N

We could have also used a half angle

(A.26)



So, cos {5 = %\/2 + /3. This is not the simplest form and is called a nested
radical. In fact, if we proceeded using the difference identity for cosines, then we
would obtain

V2
oS 75 = -
So, how does one show that these answers are the same?

Let’s focus on the factor \/2 + /3. We seck to write this in the form ¢ + d+/3.
Equating the two expressions and squaring, we have

243 = (c+dV3)?
= +3d*+2cd V3.

(1+V3).

(A.27)

In order to solve for c and d, it would seem natural to equate the coefficients of \/3
and the remaining terms. We obtain a system of two nonlinear algebraic equations,

(A.28)

A4+32 = 2
1. (A.29)

2cd =

Solving the second equation for d = 1/2c, and substituting the result into the
first equation, we find
4c* —8c* +3=0.

This fourth order equation has four solutions,

and

Thus,

7T 1
cosﬁ = 5V2+\@

(A.30)

and

T 1 /
COSE = 5 2+\/§

(45

V6

6
= +706+ V3). (A31)

Of the four solutions, two are negative and we know the value of the cosine for this
angle has to be positive. The remaining two solutions are actually equal! A quick
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It is useful at times to know when one
can reduce square roots of such radi-
cals, called denesting. More generally,
one seeks to write \/a +b,/q = c+d./3.
Following the procedure in this example,
one has d = % and

2_ 1 2 — a2
=3 at/a*>—qb? ).

As long as a? — gb? is a perfect square,
there is a chance to reduce the expres-
sion to a simpler form.
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Product Identities

Know the above boxed identities!

Periodic functions.

In Feynman’s Surely You're Joking Mr.
Feynman!, Richard Feynman (1918-1988)
talks about his invention of his own no-
tation for both trigonometric and inverse
trigonometric functions as the standard
notation did not make sense to him.

computation will verify this:

ﬁ(3+x/§) =

V3v2
12 TRCARE)

V2
= 4 (3v3+3)
2
= %(\@—l—l) (A.32)
We could have bypassed this situation be requiring that the solutions for b and c
were not simply proportional to \/3 like they are in the second case.

Finally, another useful set of identities are the product identities. ~For
example, if we add the identities for sin(A + B) and sin(A — B), the second
terms cancel and we have

sin(A + B) + sin(A — B) = 2sin A cos B.

Thus, we have that

sin A cos B — %(sin(A + B)+sin(A—B)). (A33)

Similarly, we have

1
cos AcosB = E(COS(A + B) 4+ cos(A — B)). (A.34)

and

sin Asin B = ~(cos(A — B) — cos(A + B)). (A.35)

N —

These boxed equations are the most common trigonometric identities.
They appear often and should just roll off of your tongue.

We will also need to understand the behaviors of trigonometric func-
tions. In particular, we know that the sine and cosine functions are periodic.
They are not the only periodic functions, as we shall see. [Just visualize the
teeth on a carpenter’s saw.] However, they are the most common periodic
functions.

A periodic function f(x) satisfies the relation

f(x+p)=f(x), forallx

for some constant p. If p is the smallest such number, then p is called the
period. Both the sine and cosine functions have period 27r. This means that
the graph repeats its form every 27t units. Similarly, sin bx and cos bx have
the common period p = 27" We will make use of this fact in later chapters.

Related to these are the inverse trigonometric functions. For example,
f(x) = sin"lx, or f(x) = arcsinx. Inverse functions give back angles, so
you should think

f=sin"!x < x=sind. (A.36)



1

Also, you should recall that y = sin™ " x = arcsin x is only a function if — % <

1.’)( = arccosx and tan’lx =

x < 7. Similar relations exist for y = cos™
arctan x.

Once you think about these functions as providing angles, then you can
make sense out of more complicated looking expressions, like tan(sin! x).
Such expressions often pop up in evaluations of integrals. We can untangle
this in order to produce a simpler form by referring to expression (A.36).
0 = sin~!x is simple an angle whose sine is x. Knowing the sine is the
opposite side of a right triangle divided by its hypotenuse, then one just
draws a triangle in this proportion as shown in Figure A.3. Namely, the
side opposite the angle has length x and the hypotenuse has length 1. Using
the Pythagorean Theorem, the missing side (adjacent to the angle) is sim-
ply v1— x2. Having obtained the lengths for all three sides, we can now
produce the tangent of the angle as

X

V1—22

tan(sin ! x) =

A.1.3  Hyperbolic Functions

SO, ARE THERE ANY OTHER FUNCTIONS that are useful in physics? Actu-
ally, there are many more. However, you have probably not see many of
them to date. We will see by the end of the semester that there are many
important functions that arise as solutions of some fairly generic, but im-
portant, physics problems. In your calculus classes you have also seen that
some relations are represented in parametric form. However, there is at
least one other set of elementary functions, which you should already know
about. These are the hyperbolic functions. Such functions are useful in
representing hanging cables, unbounded orbits, and special traveling waves
called solitons. They also play a role in special and general relativity.
Hyperbolic functions are actually related to the trigonometric functions,
as we shall see after a little bit of complex function theory. For now, we just
want to recall a few definitions and identities. Just as all of the trigonometric
functions can be built from the sine and the cosine, the hyperbolic functions
can be defined in terms of the hyperbolic sine and hyperbolic cosine (shown

in Figure A.4):
X _ ,—X
sinhx = %, (A.37)
X —X
coshx = % (A.38)

There are four other hyperbolic functions. These are defined in terms
of the above functions similar to the relations between the trigonometric
functions. We have

eX —e "

eX +e ¥’

sinh x
tanhx = =
cosh x

(A.39)
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0
V1 —x?
Figure A.3: 0 = sin 'x = tanf =
X

V1-x2

Solitons are special solutions to some
generic nonlinear wave equations. They
typically experience elastic collisions
and play special roles in a variety of
fields in physics, such as hydrodynam-
ics and optics. A simple soliton solution
is of the form

u(x, t) = 2% sech?® yy(x — 41%t).

Hyperbolic functions; We will later see
the connection between the hyperbolic
and trigonometric functions in Chapter
8.

Figure A.4: Plots of coshx and sinhx.
Note that sinh0 = 0, cosh0 = 1, and
coshx > 1.
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Hyperbolic identities.

1 2
h = = A.
sechix coshx e¥+e*’ (A-40)
cschx = LI 2 (A.q1)
~ sinhx  e¥ —e*’ 4
X —X
cothx = ! _cete (A.42)

tanhx e¥ —e™ X’

There are also a whole set of identities, similar to those for the trigono-
metric functions. For example, the Pythagorean identity for trigonometric
functions, sin? 6 + cos? § = 1, is replaced by the identity

cosh? x — sinh? x = 1.

This is easily shown by simply using the definitions of these functions. This
identity is also useful for providing a parametric set of equations describing
hyperbolae. Letting x = acosht and y = bsinht, one has
2 2
jz%_ z—z = cosh? t —sinh? t = 1.
A list of commonly needed hyperbolic function identities are given by
the following;:

cosh®?x —sinh?x = 1, (A.43)
tanh® x + sech’x = 1, (A.44)
cosh(A+£B) = cosh A coshB = sinh A sinh B, (A.45)
sinh(A+B) = sinh Acosh B =+ sinh B cosh A, (A.46)
cosh2x = cosh®x + sinh®x, (A.47)

sinh2x = 2sinhxcoshx, (A.48)

cosh?x = % (14 cosh2x), (A.49)

sinh?x = % (cosh2x —1). (A.50)

Note the similarity with the trigonometric identities. Other identities can be
derived from these.

There also exist inverse hyperbolic functions and these can be written in
terms of logarithms. As with the inverse trigonometric functions, we begin
with the definition

y= sinh 'x & x= sinhy. (A.51)

The aim is to write y in terms of x without using the inverse function. First,
we note that .
x=3 (e —e7Y). (A.52)

Next we solve for e?. This is done by noting that e/ = J; and rewriting the
previous equation as
0= (e¥)? — 2xe — 1. (A.53)
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This equation is in quadratic form which we can solve using the quadratic

formula as The inverse hyperbolic functions care
e/ =x+ /1422 given by
(There is only one root as we expect the exponential to be positive.) sinh ' x In (x +V1+ xz) ,
The final step is to solve for y, cosh- 'y = In (x n m) )
y=In (x +V1+ x2) ) (A.54) tanhlx = %m T_ri

A.1.4 Derivatives

NOW THAT WE KNOW SOME ELEMENTARY FUNCTIONS, we seek their deriva-
tives. We will not spend time exploring the appropriate limits in any rigor-
ous way. We are only interested in the results. We provide these in Table
A.2. We expect that you know the meaning of the derivative and all of the
usual rules, such as the product and quotient rules.

Function Derivative Table A.2: Table of Common Derivatives
a 0 (a is a constant).
XM nxn—l
eax aeax
Inax %
sinax a.cos ax
Cos ax —asinax
tanax asec? ax
cscax —acscax cotax
secax asecax tanax
cotax —acsc?ax
sinh ax acoshax
coshax asinh ax
tanh ax asech? ax
cschax | —acschaxcothax
sechax | —asechaxtanhax
coth ax —acsch? ax

Also, you should be familiar with the Chain Rule. Recall that this rule
tells us that if we have a composition of functions, such as the elementary

functions above, then we can compute the derivative of the composite func-
tion. Namely, if h(x) = f(g(x)), then
dn d _df

B e =g L oregm. s

Example A.3. Differentiate H(x) = 5 cos (7 tanh 2x?) .
This is a composition of three functions, H(x) = f(g(h(x))), where f(x) =
5cos x, g(x) = mtanh x, and h(x) = 2x%. Then the derivative becomes

H'(x) = 5 (— sin (ntanh2x2>) % ((ntanh2x2>)
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= —b5msin (n tanh 2x2) sech? 2x2% (2x2)

= —207xsin (71 tanh 2x2) sech? 2x2. (A.56)
A.1.5 Integrals

INTEGRATION IS TYPICALLY A BIT HARDER. Imagine being given the last
result in (A.56) and having to figure out what was differentiated in order to
get the given function. As you may recall from the Fundamental Theorem
of Calculus, the integral is the inverse operation to differentiation:

% dx = f(x) +C. (A57)

It is not always easy to evaluate a given integral. In fact some integrals
are not even doable! However, you learned in calculus that there are some
methods that could yield an answer. While you might be happier using a
computer algebra system, such as Maple or WolframAlpha.com, or a fancy
calculator, you should know a few basic integrals and know how to use
tables for some of the more complicated ones. In fact, it can be exhilarating
when you can do a given integral without reference to a computer or a
Table of Integrals. However, you should be prepared to do some integrals
using what you have been taught in calculus. We will review a few of these
methods and some of the standard integrals in this section.

First of all, there are some integrals you are expected to know without
doing any work. These integrals appear often and are just an application of
the Fundamental Theorem of Calculus to the previous Table A.2. The basic
integrals that students should know off the top of their heads are given in
Table A.3.

These are not the only integrals you should be able to do. We can expand
the list by recalling a few of the techniques that you learned in calculus,
the Method of Substitution, Integration by Parts, integration using partial
fraction decomposition, and trigonometric integrals, and trigonometric sub-
stitution. There are also a few other techniques that you had not seen before.
We will look at several examples.

Example A.4. Evaluate [ T

When confronted with an integral, you should first ask if a simple substitution
would reduce the integral to one you know how to do.

The ugly part of this integral is the x> + 1 under the square root. So, we let
u=x>+1

Noting that when u = f(x), we have du = f'(x)dx. For our example, du =
2x dx.

Looking at the integral, part of the integrand can be written as x dx = %u du.

Then, the integral becomes

[ PR
Va1l 2)



The substitution has converted our integral into an integral over u. Also, this
integral is doable! It is one of the integrals we should know. Namely, we can write

it as J

Ljpdu 17 _ap

- —==z du.

2) Vu 2 / ! !
This is now easily finished after integrating and using the substitution variable to
give

x 1ul/?
————dx =5 +C=Va2+1+C.
/ VaZ+1 2 1
Note that we have added the required integration constant and that the derivative
of the result easily gives the original integrand (after employing the Chain Rule).

Function | Indefinite Integral
a ax
. -
eax Eeﬂx
% Inx
sinax — % Ccos ax
COSs ax % sinax
sec? ax % tanax
sinh ax % cosh ax
coshax % sinh ax
sech? ax % tanh ax
secx In|secx + tan x|
a+1bx %lln(a:l; bx)
el 7 tan™ " ax
\/aZlfixZ % sin~ ! ax
\/lef,ﬂ lseclax

Often we are faced with definite integrals, in which we integrate between
two limits. There are several ways to use these limits. However, students
often forget that a change of variables generally means that the limits have
to change.

Example A.5. Evaluate foz \/;zcﬁdx'

This is the last example but with integration limits added. We proceed as before.

We let u = x? + 1. As x goes from o to 2, u takes values from 1 to 5. So, this
substitution gives

2 X 5 du
d P — —_— = 5: 5_1.
/o Jeri T2k Vu Vult = V5

When you becomes proficient at integration, you can bypass some of
these steps. In the next example we try to demonstrate the thought pro-
cess involved in using substitution without explicitly using the substitution
variable.

CALCULUS REVIEW 387

Table A.3: Table of Common Integrals.
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The function

o dx 1. T
gd(x)—/0 m_z“‘“ -7

is called the Gudermannian and con-
nects trigonometric and hyperbolic func-
tions. This function was named after
Christoph Gudermann (1798-1852), but
introduced by Johann Heinrich Lambert
(1728-1777), who was one of the first to
introduce hyperbolic functions.

Integration by Parts Formula.

Example A.6. Evaluate foz \/ﬁ dx

As with the previous example, one sees that the derivative of 9 + 4x? is propor-
tional to x, which is in the numerator of the integrand. Thus a substitution would

give an integrand of the form u=1/2. So, we expect the answer to be proportional to

Vu = V9 + 4x2. The starting point is therefore,

x
—_dx = AV9 +4x?,
/ V9 +4x2

where A is a constant to be determined.

We can determine A through differentiation since the derivative of the answer
should be the integrand. Thus,

%A(9+4x2)% = A(9+4x%)2 G) (8x)
= 4xA(9+4x%)7 1. (A.58)

Comparing this result with the integrand, we see that the integrand is obtained
when A = %. Therefore,

X 1
—dx = Sv/9+4x2.
/\/94—4x2 4

We now complete the integral,

/zde—l[S—s] _1
0 V94 4x? 4 2’
Example A.7. Evaluate Co‘iﬁx.

This integral can be performed by first using the definition of cosh x followed by

/ dx _ / 2 i
coshx eX +e X

a simple substitution.

2e*

= = dx. A.

[ i (A59)

Now, we let u = e¢* and du = e*dx. Then,
dx 2
= ——d
/ cosh x / 14+ u2 "

= 2tan 'u+C
= 2tan 'e¥ +C. (A.60)

Integration by Parts

When the Method of Substitution fails, there are other methods you can
try. One of the most used is the Method of Integration by Parts. Recall the
Integration by Parts Formula:

/udU = uv — /vdu. (A.61)




The idea is that you are given the integral on the left and you can relate it
to an integral on the right. Hopefully, the new integral is one you can do,
or at least it is an easier integral than the one you are trying to evaluate.

However, you are not usually given the functions u and v. You have to
determine them. The integral form that you really have is a function of
another variable, say x. Another form of the Integration by Parts Formula
can be written as

[ F)g 0 dx = fx)g(x) - [g()f (x)dx. (A6

This form is a bit more complicated in appearance, though it is clearer than
the u-v form as to what is happening. The derivative has been moved from
one function to the other. Recall that this formula was derived by integrating
the product rule for differentiation. (See your calculus text.)

These two formulae can be related by using the differential relations

u=f(x) — du=f'(x)dx,
v=g(x) — do=g¢'(x)dx. (A.63)

This also gives a method for applying the Integration by Parts Formula.

Example A.8. Consider the integral [ xsin2xdx. We choose u = x and dv =
sin2x dx. This gives the correct left side of the Integration by Parts Formula. We
next determine v and du:

du = 5dx = dx,

U= /dU: /siandx: —%cost.

We note that one usually does not need the integration constant. Inserting these
expressions into the Integration by Parts Formula, we have

/xsiandx = —%xcost—l—%/costdx.

We see that the new integral is easier to do than the original integral. Had we picked
u = sin2x and dv = x dx, then the formula still works, but the resulting integral
is not easier.

For completeness, we finish the integration. The result is

/xsiandx = —%xcost + isian + C.

As always, you can check your answer by differentiating the result, a step stu-
dents often forget to do. Namely,

d 1 1 . 1 . 1
dx(—zxcost+451n2x+C> = —Ec032x+xsm2x+z(2c052x)

= Xxsin2x. (A.64)

So, we do get back the integrand in the original integral.
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Note: Often in physics one needs to
move a derivative between functions in-
side an integrand. The key - use inte-
gration by parts to move the derivative
from one function to the other under an
integral.
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Integration by Parts for Definite Inte-
grals.

Using the Tabular Method.

We can also perform integration by parts on definite integrals. The gen-
eral formula is written as

b b b
[ fog @ dx = fog)| - [ g)f(x)dx. (Aa63)
a a a
Example A.9. Consider the integral
/n x? cos x dx.
0

This will require two integrations by parts. First, we let u = x> and dv = cos x.
Then,
du =2xdx. v =sinux.

Inserting into the Integration by Parts Formula, we have
T s T
/ x?cosxdx = xzsinx‘ —2/ x sinx dx
0 0 0
7T
= —2/0 xsin x dx. (A.66)

We note that the resulting integral is easier that the given integral, but we still
cannot do the integral off the top of our head (unless we look at Example 3!). So, we
need to integrate by parts again. (Note: In your calculus class you may recall that
there is a tabular method for carrying out multiple applications of the formula. We
will show this method in the next example.)

We apply integration by parts by letting U = x and dV = sin x dx. This gives

dU = dx and V = — cos x. Therefore, we have
T T T
/ xsinxdx = —xcosx’ +/ cosxdx
0 0 0
7T
= 7m+sinx ‘ .
= T (A.67)

The final result is
7T
/ x?cosxdx = —27t.
0

There are other ways to compute integrals of this type. First of all, there
is the Tabular Method to perform integration by parts. A second method is
to use differentiation of parameters under the integral. We will demonstrate
this using examples.

Example A.10. Compute the integral fon x? cos x dx using the Tabular Method.

First we identify the two functions under the integral, x> and cos x. We then
write the two functions and list the derivatives and integrals of each, respectively.
This is shown in Table A.4. Note that we stopped when we reached zero in the left
column.

Next, one draws diagonal arrows, as indicated, with alternating signs attached,
starting with +. The indefinite integral is then obtained by summing the products
of the functions at the ends of the arrows along with the signs on each arrow:

/xzcosxdx = x?sinx + 2xcosx — 2sinx + C.



To find the definite integral, one evaluates the antiderivative at the given limits.

7T 7T
/ x?cosxdx = xzsinx+2xcosx—23inx]0
0

= (7

= =27

sin 7t + 27 cos T — 2sin ) — 0

(A.68)

Actually, the Tabular Method works even if a zero does not appear in the

left column. One can go as far as possible, and if a zero does not appear,

then one needs only integrate, if possible, the product of the functions in

the last row, adding the next sign in the alternating sign progression. The

next example shows how this works.

D I

2
X X cos x
2x \ sin x
2 + — COos X
0 —sinx

Example A.11. Use the Tabular Method to compute [ ¢** sin3x dx.
As before, we first set up the table as shown in Table A.5.

D 1
sin 3x e2x
_l’_
3 cos3x e
—9sin 3x 1e%

Putting together the pieces, noting that the derivatives in the left column will

never vanish, we have

1 3 ' 1
/62x sin3xdx = (5 sin3x — cos 3x)e* + / (—9sin3x) <4€2x> dx.

The integral on the right is a multiple of the one on the left, so we can combine

them, 5 . 3
vy /ez" sin3xdx = (E sin 3x — 708 3x)e?*,

or

2 3
2X o3 _ . . 2x
/e sin3x dx = (13 sin 3x 13 cos 3x)e”*.
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Table A.4: Tabular Method

Table A.5: Tabular Method, showing a
nonterminating example.
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Differentiation Under the Integral Sign
and Feynman’s trick.

Differentiation Under the Integral

Another method that one can use to evaluate this integral is to differen-
tiate under the integral sign. This is mentioned in the Richard Feynman'’s
memoir Surely You're Joking, Mr. Feynman!. In the book Feynman recounts
using this “trick” to be able to do integrals that his MIT classmates could
not do. This is based on a theorem found in Advanced Calculus texts.
Reader’s unfamiliar with partial derivatives should be able to grasp their
use in the following example.

of (x,t)

Theorem A.1. Let the functions f(x,t) and =7~ be continuous in both t, and
x, in the region of the (t,x) plane which includes a(x) <t < b(x), xg < x < x1,
where the functions a(x) and b(x) are continuous and have continuous derivatives
for xog < x < xq. Defining

b(x)
F(x) = ) f(x,t)dt,
then
dF(x)  (9F\db (dF\da ' 3
i (E)b)dx+<aa)dx+ ./am axf (o) dt
— )Y )~ fal)a () + [ 2 )

(A.69)

for xo < x < x1. This is a generalized version of the Fundamental Theorem of
Calculus.

In the next examples we show how we can use this theorem to bypass
integration by parts.

Example A.12. Use differentiation under the integral sign to evaluate [ xe* dx.
First, consider the integral

ax

I(x,a) = /e“xdx = —.

a
Then,
ol(x,a) = /xe’”‘ dx.
da
So,
/. xe™dx = 9l(x,a)
. da

= aaa</e”xdx>
_ 9 (e
"~ oa\ a

(;C - 1112) e™. (A.70)



Evaluating this result at a = 1, we have

/xex dx = (x —1)e".

The reader can verify this result by employing the previous methods or by just

differentiating the result.

Example A.13. We will do the integral fon x? cos x dx once more. First, consider

the integral

I(a) =

7T

/cosaxdx
0

sinax‘7r
a lo
sinart
pant

Differentiating the integral I(a) with respect to a twice gives

dzl(a) 2
az /O X-cosaxax

Evaluation of this result at a = 1 leads to the desired result. Namely,

T 2
/ X~ cos x dx
0

Trigonometric Integrals

- da?
_iz sinarm
da? a

da

d*1(a)

a=1

a=1

d <a71cosa7r — sinan)

az a=1
<a2n2 sin a7zt + 2ast cos art — 2sinarn
Px)
—271.

(A.71)

(A.72)

)

a=1

(A.73)

Other types of integrals that you will see often are trigonometric inte-

grals. In particular, integrals involving powers of sines and cosines. For

odd powers, a simple substitution will turn the integrals into simple pow-

ers.

Example A.14. For example, consider

This can be rewritten as

Let u = sinx. Then, du = cos x dx. Since cos

/cos3 xdx.

/cos3xdx = /coszxcosxdx.

2 2

x =1—sin

x, we have
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Integration of odd powers of sine and co-

sine.
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Integration of even powers of sine and
cosine.

Recall that RMS averages refer to the
root mean square average. This is com-
puted by first computing the average, or
mean, of the square of some quantity.
Then one takes the square root. Typi-
cal examples are RMS voltage, RMS cur-
rent, and the average energy in an elec-
tromagnetic wave. AC currents oscillate
so fast that the measured value is the
RMS voltage.

/cos3xdx = /coszxcosxdx
= /(1—u2)du

1 3
— — (
u u’ +

1
= sinx — 3 sin®x + C. (A.74)

A quick check confirms the answer:

d 1
— (sinx— Zsinx+C = cosx —sin®xcosx
dx 3

= cosx(1—sin®x)

= cos’x. (A.75)

Even powers of sines and cosines are a little more complicated, but doable.
In these cases we need the half angle formulae (A.24)-(A.25).

Example A.15. As an example, we will compute

27T 2
/ cos” x dx.
0

2

Substituting the half angle formula for cos* x, we have

27 1 27
/ cos?xdx = = / (1 + cos2x)dx
0 2 Jo
1 1 . 21
= 5 <x—251n2x)0

We note that this result appears often in physics. When looking at root

|
=

(A.76)

mean square averages of sinusoidal waves, one needs the average of the
square of sines and cosines. Recall that the average of a function on interval
[a,b] is given as

1 b
fave = b / f(x)dx. (A.77)
—a a
So, the average of cos? x over one period is
1 27 5 1
oy /0 cos“ xdx = 5 (A.78)

1

The root mean square is then found by taking the square root, 7

Trigonometric Function Substitution

Another class of integrals typically studied in calculus are those involv-
ing the forms V1 =2x2,v/1+ x2, or vVx2 — 1. These can be simplified through
the use of trigonometric substitutions. The idea is to combine the two terms

under the radical into one term using trigonometric identities. We will con-
sider some typical examples.



Example A.16. Evaluate [ /1 — x?dx.
Since 1 — sin? @ = cos? 6, we perform the sine substitution

x =sinf, dx = cosfdo.
Then,
/ﬂdx = /mcosede
= / cos? 0.d6. (A.79)

Using the last example, we have

/\/1—x2dx:1<9—;sin26>+c.

2

However, we need to write the answer in terms of x. We do this by first using
the double angle formula for sin20 and cos 6 = /1 — x? to obtain

/\/1—x2dx: % (sin_lx—x\/l—x2> +C.

Similar trigonometric substitutions result for integrands involving /1 + x2
and vx? — 1. The substitutions are summarized in Table A.6. The simpli-
fication of the given form is then obtained using trigonometric identities.
This can also be accomplished by referring to the right triangles shown in

Figure A.5.
Form Substitution Differential
Va2 —x2 | x=uasinb dx =acos0do
vVaz+x2 | x=atan6 dx = asec?0do
x2—a2 | x=asecO | dx =asecOtan6db
x = sinf x = tan 0 x = secf
1 X
V1422
x x x2—1
0 0 0

V1 — 22 1 1

Example A.17. Evaluate foz Va2 4+ 4dx.
Let x = 2tan 6. Then, dx = 2 sec? 0 do and

V2 +4=+/4tan20 + 4 = 2sech.

So, the integral becomes

2 /4
/ \/x2+4dx:4/ sec® 6 de.
0 0
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In any of these computations careful at-
tention has to be paid to simplifying the
radical. This is because

Va2 = |x].
For example, \/(—5)2 = v/25 = 5. For

x = sinf, one typically specifies the do-
main —7t/2 < 8 < 71/2. In this domain
we have | cos 0| = cos#.

Table A.6: Standard trigonometric sub-
stitutions.

Figure A.5: Geometric relations used in
trigonometric substitution.
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Ome has to recall, or look up,

1

/sec39d9 = — (tanfsect + In|sech + tan6b|) + C.

2
This gives

2
/\/x2—|—4dx = 2[tanfsecH + In|secd + tan6|]
0

2 (ﬁ+ln\\fz+1| - (O—Hn(l)))

= 2(V24+In(v2+1)).

Example A.18. Evaluate | \/%, x> 1.

In this case one needs the secant substitution. This yields

/ dx - " secfHtan 6 do
V2 —1 J Vsec2§ —1
_ /sec@tan@d@

tan 0

= /sec 0de

= In(secf +tanb) +C

= In(x+Vx2-1)+C.

Example A.19. Evaluate [ —%— x> 1.

. xx2-1" " o
Again we can use a secant substitution. This yields

/ secftan 6 do

secfv/sec?29 —1
sectan6
— b

/ secftan

/ dx
xvVxz—1

= /d9:9+C:sec_1x+C.

Hyperbolic Function Substitution

/4
0

(A.80)

(A.81)

(A.82)

Even though trigonometric substitution plays a role in the calculus pro-

gram, students often see hyperbolic function substitution used in physics

courses. The reason might be because hyperbolic function substitution is

sometimes simpler. The idea is the same as for trigonometric substitution.

We use an identity to simplify the radical.

Example A.20. Evaluate foz vV x2% + 4 dx using the substitution x = 2 sinh u.
Since x = 2sinhu, we have dx = 2coshu du. Also, we can use the identity

cosh? u — sinh? u = 1 to rewrite

Va2 +4=1/4sinh?u + 4 = 2 cosh u.

The integral can be now be evaluated using these substitutions and some hyper-

bolic function identities,

2
/ VX2 4 4dx
0

sinh 11 by
4 / cosh” u du
0



sinh~1'1
= 2/ (1 + cosh2u) du
0
1 sinh 11
= 2 {u + - sinh2u}
2 0
= 2[u+sinhucosh u}%mh_l !

= 2 (sinh_1 1+ \fZ) . (A.83)

In Example A.17 we used a trigonometric substitution and found

/02 Va2 44 =2(V2+In(V2+1)).

This is the same result since sinh ™' 1 = In(1 + v/2).

dx
VaZ—1

Example A.21. Evaluate | for x > 1 using hyperbolic function substitu-
tion.

This integral was evaluated in Example A.19 using the trigonometric substitu-
tion x = sect and the resulting integral of sec @ had to be recalled. Here we will

use the substitution

x =coshu, dx=sinhudu, +x2—-1= \/coshzu —1 =sinhu.

Then,

/d7x - /sinhudu
2 —1 sinh u
= /du =u+C
= cosh™tx+C
= %ln(x +V2-1)4+C, x>1 (A.84)

This is the same result as we had obtained previously, but this derivation was a
little cleaner.

Also, we can extend this result to values x < —1 by letting x = — coshu. This
gives

dx 1
—  =ZIn(x+vVx2—-1)+C, x<-1.
/ e =y VA1)

Combining these results, we have shown

/\/xdzxi_1 = %ln(|x\ +Va2-1)+C, ¥*>1

We have seen in the last example that the use of hyperbolic function sub-
stitution allows us to bypass integrating the secant function in Example A.19
when using trigonometric substitutions. In fact, we can use hyperbolic sub-
stitutions to evaluate integrals of powers of secants. Comparing Examples
A.19 and A.21, we consider the transformation sec = cosh u. The relation
between differentials is found by differentiation, giving

secftan6df = sinh u du.
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Evaluation of [ sec6 d6.

Evaluation of [ sec®6do.

Since
tanh? 6 = sec? 6 — 1,

we have tan 0 = sinh u, therefore

du
do = .
coshu

In the next example we show how useful this transformation is.

Example A.22. Evaluate [ secd6 using hyperbolic function substitution.
From the discussion in the last paragraph, we have

/sec()d@ = /du

= u+C
= cosh !(sech) +C (A.85)

We can express this result in the usual form by using the logarithmic form of the
inverse hyperbolic cosine,

cosh™tx = In(x + V/x2 — 1).

The result is
/sec 6d6 = In(sech + tan6).

This example was fairly simple using the transformation sec = coshu.
Another common integral that arises often is integrations of sec®6. In a
typical calculus class this integral is evaluated using integration by parts.
However. that leads to a tricky manipulation that is a bit scary the first time
it is encountered (and probably upon several more encounters.) In the next
example, we will show how hyperbolic function substitution is simpler.

Example A.23. Evaluate [ sec® 6 d6 using hyperbolic function substitution.

First, we consider the transformation sec @ = cosh u with d0 = A Then,

coshu*
g du
3
ew:/ .
/ sec J coshu

This integral was done in Example A.7, leading to

/sec3 0do = 2tan 1 e* + C.

While correct, this is not the form usually encountered. Instead, we make the
slightly different transformation tan = sinhu. Since sec> = 1+ tan? 6, we
find sec @ = cosh u. As before, we find

du
do = .
cosh u

Using this transformation and several identities, the integral becomes

/sec39d6 = /coshZudu



\

(14 cosh2u) du

u+ - smh 2u>

u + sinh u cosh u)

——\/\,—\

cosh™!(sec8) 4 tan 6 sec 9)

NIFRDNIFRDNI- NP DN

(secftan6 + In(secf + tanb)) . (A.86)

There are many other integration methods, some of which we will visit
in other parts of the book, such as partial fraction decomposition and nu-
merical integration. Another topic which we will revisit is power series.

A.1.6 Geometric Series

INFINITE SERIES OCCUR OFTEN in mathematics and physics. Two series
which occur often are the geometric series and the binomial series. we will
discuss these next.

A geometric series is of the form

Zar”:g+ar+ar2+...+ar"+.... (A87)
n=0

Here a is the first term and r is called the ratio. It is called the ratio because
the ratio of two consecutive terms in the sum is r.

Example A.24. For example,

1+ E + ! + E +
2 4 8 7
is an example of a geometric series. We can write this using summation notation,
1 1 1 = !
1
+t3+titg T ; ( )

Thus, a = 1 is the first term and r = % is the common ratio of successive terms.
Next, we seek the sum of this infinite series, if it exists.

The sum of a geometric series, when it exists, can easily be determined.
We consider the nth partial sum:

sp=a+ar+...+ar" 2 far" L, (A.88)
Now, multiply this equation by r.
rsy =ar+ar* 4+ ... +ar" " +ar’. (A.89)

Subtracting these two equations, while noting the many cancelations, we
have

(1—7)sy = (a4ar+...+ar 2 +ar" )
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Geometric series are fairly common and
will be used throughout the book. You
should learn to recognize them and
work with them.
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—(ar4ar* 4+ ... +ar" £ art)

= a—ar"
a(l—r"). (A.90)

Thus, the nth partial sums can be written in the compact form

a(l—r"
5"27(1—r ).

(A.91)

The sum, if it exists, is given by S = lim,_« s,. Letting n get large in the
partial sum (A.91), we need only evaluate lim;,_,, r"*. From the special limits
in the Appendix we know that this limit is zero for |r| < 1. Thus, we have

Geometric Series

The sum of the geometric series exists for |r| < 1 and is given by
(A.92)

Ir| < 1.

4

o0
Y ar' =
n=0

The reader should verify that the geometric series diverges for all other
values of r. Namely, consider what happens for the separate cases |r| > 1,

r=1andr = —1.
Next, we present a few typical examples of geometric series

Example A.25. Y00 ( o
L. Therefore, this infinite series con-

In this case we have that a = 1 and r =

verges and the sum is
LI 2

Example A.26. } ;7 , 347
In this example we first note that the first term occurs for k = 2. It sometimes
helps to write out the terms of the series,
(o]
Looking at the series, we see that a = % and r = 3. Since |r|<1, the geometric

series converges. So, the sum of the series is given by

4
) 5 = + +34+ -

8] 3 2
Example A.27. Y7 | (57 — &)
) ) Finally, in this case we do not have a geometric series, but we do have the differ-
* A rearrangement of terms in an infinite . )
i ence of two geometric series. Of course, we need to be careful whenever rearranging

series is allowed when the series is abso-

lutely convergent. (See the Appendix.) infinite series. In this case it is allowed *. Thus, we have
Y2yl



Now we can add both geometric series to obtain

P(2_2y_ 3 & _, 1.5
on o 5n )T 1_%_ 2 2

n=1

Geometric series are important because they are easily recognized and
summed. Other series which can be summed include special cases of Taylor
series and telescoping series. Next, we show an example of a telescoping
series.

Example A.28. Y7, ﬁ The first few terms of this series are

I U
=an+1) 26 12 20 7

It does not appear that we can sum this infinite series. However, if we used the
partial fraction expansion

1 1 1

nn+1) n n+1’

then we find the kth partial sum can be written as

koo
S S ——
k rg’ln(n—kl)

ko1 1
n1<”_”+1)
1 1 1 1 1 1
= <1‘z>+<z‘3>+“'+<k‘m)' (A.93)

We see that there are many cancelations of neighboring terms, leading to the series
collapsing (like a retractable telescope) to something manageable:

I
g

1
Taking the limit as k — oo, we find ) ;> 4 m =1.

A.1.7 Power Series

ANOTHER EXAMPLE OF AN INFINITE SERIES that the student has encoun-
tered in previous courses is the power series. Examples of such series are
provided by Taylor and Maclaurin series.

A power series expansion about x = a with coefficient sequence c; is
given by Y_7° ¢, (x — a)". For now we will consider all constants to be real
numbers with x in some subset of the set of real numbers.

Consider the following expansion about x = 0 :

e}

=14 xFx2 4. (A.94)
=0

n
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Actually, what are now known as Taylor
and Maclaurin series were known long
before they were named. James Gregory
(1638-1675) has been recognized for dis-
covering Taylor series, which were later
named after Brook Taylor (1685-1731) .
Similarly, Colin Maclaurin (1698-1746)
did not actually discover Maclaurin se-
ries, but the name was adopted because
of his particular use of series.
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Figure A.6: (a) Comparison of

1
I-x

(solid) to 1 4 x (dashed) for x €
[—0.2,0.2]. (b) Comparison of 1+ (solid)
to 14 x + x2 (dashed) for x € [—0.2,0.2].

10 -5 0

5

X

Figure A.7: Comparison of ﬁ (solid) to
1+ x + x2 (dashed) and 1 + x + x2 + x3

(dotted) for x € [-1.0,0.7].

f(x)
5.0

4.0
3.0
2.0

\ 1

\

-1.0 -5 0

5

1.0

X

Figure A.8: Comparison of 11+ (solid) to

Y20 x" for x € [—1,1].

We would like to make sense of such expansions. For what values of x
will this infinite series converge? Until now we did not pay much attention
to which infinite series might converge. However, this particular series is
already familiar to us. It is a geometric series. Note that each term is gotten
from the previous one through multiplication by » = x. The first term is
a = 1. So, from Equation (A.92), we have that the sum of the series is given
by

> 1
an:m, |X| <1
n=0

f(x) f(x)

1.20 g
1.10
1.00

.90

7 P

s

0,80
~02-01 01 02

0.80
~02-01 01 02
(a) (b)

X

X

In this case we see that the sum, when it exists, is a simple function. In
fact, when x is small, we can use this infinite series to provide approxima-
tions to the function (1 — x)~1. If x is small enough, we can write

1-—x)"tx1+x

In Figure A.6a we see that for small values of x these functions do agree.

Of course, if we want better agreement, we select more terms. In Fig-
ure A.6b we see what happens when we do so. The agreement is much
better. But extending the interval, we see in Figure A.7 that keeping only
quadratic terms may not be good enough. Keeping the cubic terms gives
better agreement over the interval.

Finally, in Figure A.8 we show the sum of the first 21 terms over the entire
interval [—1,1]. Note that there are problems with approximations near the
endpoints of the interval, x = £1.

Such polynomial approximations are called Taylor polynomials. Thus,
T3(x) = 1+ x + x% + 23 is the third order Taylor polynomial approximation
of f(x) = 2.

With this example we have seen how useful a series representation might
be for a given function. However, the series representation was a simple
geometric series, which we already knew how to sum. Is there a way to
begin with a function and then find its series representation? Once we have
such a representation, will the series converge to the function with which
we started? For what values of x will it converge? These questions can be
answered by recalling the definitions of Taylor and Maclaurin series.



A Taylor series expansion of f(x) about x = a is the series

fx)~ Y en(x—a)", (A.95)
n=0
where .
" (a)
o =1 o, (A.96)

Note that we use ~ to indicate that we have yet to determine when the
series may converge to the given function. A special class of series are
those Taylor series for which the expansion is about x = 0. These are called
Maclaurin series.

A Maclaurin series expansion of f(x) is a Taylor series expansion of
f(x) about x =0, or

f(x) ~ ) enx”, (A.97)

n=0

where o
cy = f n!<0)' (A.98)

Example A.29. Expand f(x) = e* about x = 0.

We begin by creating a table. In order to compute the expansion coefficients, cy,
we will need to perform repeated differentiations of f(x). So, we provide a table for
these derivatives. Then, we only need to evaluate the second column at x = 0 and

divide by n!.
n | fU0) | F0) | e
0 e’ =1 & =1
1 e’ =1 % =1
2| e =1
3 e* =1 %

Next, we look at the last column and try to determine a pattern so that we can
write down the general term of the series. If there is only a need to get a polynomial
approximation, then the first few terms may be sufficient. In this case, the pattern

is obvious: ¢, = % So,

[e¢] xn
X
)
n=0

Example A.30. Expand f(x) = e* about x = 1.

Here we seek an expansion of the form e* ~ Y. 4 c,(x — 1)". We could create
a table like the last example. In fact, the last column would have values of the form
- (You should confirm this.) However, we will make use of the Maclaurin series
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Taylor series expansion.

Maclaurin series expansion.
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Interval and radius of convergence.

expansion for e* and get the result quicker. Note that e¥ = e*~ 111 = ee*~1. Now,
apply the known expansion for e* :

(x—zl)2 . (x;!l)3 +> _ i e(x;!l)”.

ex~e<1+(x1)+
n=0

Example A.31. Expand f(x) = {1 about x = 0.

This is the example with which we started our discussion. We can set up a table
in order to find the Maclaurin series coefficients. We see from the last column of the
table that we get back the geometric series (A.94).

n | fO0) [ f00) | e

0| = 1 d=1

—X

1 (1_17)2 1 =1

So, we have found

We can replace ~ by equality if we can determine the range of x-values
for which the resulting infinite series converges. We will investigate such
convergence shortly.

Series expansions for many elementary functions arise in a variety of
applications. Some common expansions are provided in Table A.7.

We still need to determine the values of x for which a given power series
converges. The first five of the above expansions converge for all reals, but
the others only converge for |x| < 1.

We consider the convergence of Y ;> ;cn(x —a)". For x = a the series
obviously converges. Will it converge for other points? One can prove

Theorem A.2. If Y > ¢, (b —a)" converges for b # a, then
Yoo Cn(x — a)" converges absolutely for all x satisfying |x —a| < |b —al.

This leads to three possibilities

1. Y7 oCcn(x —a)" may only converge at x = a.

2. Y02 o cn(x —a)" may converge for all real numbers.

3. Yoeocn(x —a)" converges for |x —a| < R and diverges for |x —

al > R.

The number R is called the radius of convergence of the power series



Series Expansions You Should Know
2 3 z ST
Xt X X x
ex = 1+x+3+§+j+ = V;)m
2 4 o 2n
X~ x x
= 1—7 _— = - n
cosx 2 " 7;)( e
3 5 ) 2n+1
X’ x x
i = x— 4. = L —
T TR LV G
2 4 o .21
xs X x
coshx = 1+7+E+”' = ,;)(2”)!
345 o\ 2n+1
sinhx = TR = %(Zn—kl)!
1 2, .3 C-
Ty - ltxErdc+ = ngox”
! = 1-x+x2-x+ = i(—x)"
1+x =
. 345 7 o y2n+1
t - = —_ — —_ — = = — n
R LV
x> xd d X"
— - —_— - n [R—
Inl+x) = «x >t 3 r;< 1) ”

and (a — R,a + R) is called the interval of convergence. Convergence at the
endpoints of this interval has to be tested for each power series.

In order to determine the interval of convergence, one needs only note
that when a power series converges, it does so absolutely. So, we need only
test the convergence of Y > [cn(x —a)"| = Y5 |cn||x — a|". This is easily
done using either the ratio test or the nth root test. We first identify the
nonnegative terms a, = |c,||x — a|”, using the notation from Section ??.
Then, we apply one of the convergence tests.

For example, the nth Root Test gives the convergence condition for a, =
[enllx —al",

= lim {/a; = lim {/len||x —al < 1.

Since |x — a| is independent of 1,, we can factor it out of the limit and divide
the value of the limit to obtain

-1
|x —a] < (hm v/ |cn|> =R
n—oo
Thus, we have found the radius of convergence, R.
Similarly, we can apply the Ratio Test.
0= Tim L — fig o1l g
n—co gy, n=oo eyl

Again, we rewrite this result to determine the radius of convergence:

-1
|x —a| < <lim |Cn+1|> =R

n—sco |Cn|

CALCULUS REVIEW 405

Table A.7: Common Mclaurin Series Ex-

pansions
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n

Example A.32. Find the radius of convergence of the series e* = }_;°  7r.
Since there is a factorial, we will use the Ratio Test.

. |n!] o 1 B
P = i, ey = i, s =0

Since p = 0, it is independent of |x| and thus the series converges for all x. We also
can say that the radius of convergence is infinite.

Example A.33. Find the radius of convergence of the series 11—x =YX
In this example we will use the nth Root Test.

p = lim V1|x| = |x| < 1.
n—o0

Thus, we find that we have absolute convergence for |x| < 1. Setting x = 1 or
x = —1, we find that the resulting series do not converge. So, the endpoints are not
included in the complete interval of convergence.

In this example we could have also used the Ratio Test. Thus,

1
p=lim -[x] =[x <1.

We have obtained the same result as when we used the nth Root Test.
3" (x—2)"
n
In this example, we have an expansion about x = 2. Using the nth Root Test we

find that
37’!
p = lim { ;|x—2| =3lx—2| < 1.
Solving for |x — 2| in this inequality, we find |x — 2| < 1. Thus, the radius of
2

1 1\ _ (57
—3/2+§> =(3.3)-
As for the endpoints, we first test the point x = 3. The resulting series is

Example A.34. Find the radius of convergence of the series ), 4

convergence is R = % and the interval of convergence is

NN

3"(3 . — .
Yo (713) =Y | L. This is the harmonic series, and thus it does not converge.

Inserting x = %, we get the alternating harmonic series. This series does converge.

57
33

So, we have convergence on |
the left endpoint, x = %

). Howewver, it is only conditionally convergent at

Example A.35. Find an expansion of f(x) = x+_2 about x = 1.

Instead of explicitly computing the Taylor series expansion for this function, we
can make use of an already known function. We first write f(x) as a function of
x — 1, since we are expanding about x = 1; i.e., we are seeking a series whose terms
are powers of x — 1.

This expansion is easily done by noting that xlﬁ = m Factoring out a 3,
we can rewrite this expression as a sum of a geometric series. Namely, we use the
expansion for

8(z) = 14z
= 1—z+22-224.... (A.99)



and then we rewrite f(x) as

flx) =

(A.100)

fE) =5 - g =1)+ glx =17~ ...

Convergence is easily established. The expansion for g(z) converges for |z| < 1.
So, the expansion for f(x) converges for | — 3(x —1)| < 1. This implies that
|x — 1| < 3. Putting this inequality in interval notation, we have that the power
series converges absolutely for x € (—2,4). Inserting the endpoints, one can show
that the series diverges for both x = —2 and x = 4. You should verify this!

Example A.36. Prove Euler’s Formula: ¢ = cos + isin .

As a final application, we can derive Euler’s Formula ,
¢ = cos® +isinb,

where i = /—1. We naively use the expansion for e* with x = i6. This leads us to

(07, (107 , (o)

0 _ .
e’ =1+1i0+ o 30 a

Next we note that each term has a power of i. The sequence of powers of i is
gienas {1,i,—1,—i,1,i,—1,—i,1,i,—1,—i,...}. See the pattern? We conclude
that

i" =i", where r = remainder after dividing n by 4.

This gives

. 92 94 93 95
0 .
e ——(12!+4!...)+l(93!+5!...).

We recognize the expansions in the parentheses as those for the cosine and sine
functions. Thus, we end with Euler’s Formula.

We further derive relations from this result, which will be important for
our next studies. From Euler’s formula we have that for integer n:

e’ = cos(n) + isin(nh).
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Euler’s Formula, e = cos@ + isin6,
is an important formula and is used
throughout the text.
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de Moivre’s Formula.

Here we see elegant proofs of well
known trigonometric identities.

c0s20 = cos? 6 — sin®B(A.102)
sin20 = 2sinfcos0,
1
cos’f = 5(1 + cos 20),
sin? = %(1 — cos20).

Trigonometric functions can be written
in terms of complex exponentials:

¢t 4 o—if
cosf = 5 ,
0 _ ,—if
. el —e
sinf = - .
2i

Hyperbolic functions and trigonometric
functions are intimately related.
cos(ix) = coshx,

sin(ix) = —isinhx.

The binomial expansion is a special se-
ries expansion used to approximate ex-
pressions of the form (a + b)? for b < a,
or (1+ x)? for |x| < 1.

We also have ;

e"? = (e’9> = (cos +isinf)".
Equating these two expressions, we are led to de Moivre’s Formula, named
after Abraham de Moivre (1667-1754),

(cosf +isin®)" = cos(nd) + isin(nh). (A.101)

This formula is useful for deriving identities relating powers of sines or
cosines to simple functions. For example, if we take n = 2 in Equation
(A.101), we find

0826 + isin 20 = (cos 6 + isin§)% = cos? 6 — sin® § + 2i sin § cos 6.

Looking at the real and imaginary parts of this result leads to the well
known double angle identities

c0s260 = cos? 0 —sin?60, sin26 = 2sin6 cos 6.

Replacing cos?@ = 1 — sin? 6 or sin? @ = 1 — cos? 6 leads to the half angle
formulae:

1 1
cos’ 0 = E(l +co0s26), sin’f = E(l — cos20).

We can also use Euler’s Formula to write sines and cosines in terms of
complex exponentials. We first note that due to the fact that the cosine is an
even function and the sine is an odd function, we have

e ¥ = cos — isin®.

Combining this with Euler’s Formula, we have that

) el 4 o=it - ol _ p—if
cosf=-————, sinf=-——-——.
2 ! 2i

We finally note that there is a simple relationship between hyperbolic
functions and trigonometric functions. Recall that

eX+e

h =
cosn x 5

If we let x = i0, then we have that cosh(if) = cosf and cos(ix) = cosh x.
Similarly, we can show that sinh(if)) = isin @ and sin(ix) = —isinhx.

A.1.8 The Binomial Expansion

ANOTHER SERIES EXPANSION WHICH OCCURS often in examples and ap-
plications is the binomial expansion. This is simply the expansion of the
expression (a + b)” in powers of a and b. We will investigate this expan-

sion first for nonnegative integer powers p and then derive the expansion



for other values of p. While the binomial expansion can be obtained using
Taylor series, we will provide a more intuitive derivation to show that

n
(a+b)" =Y. Cla"'V,
r=0

(A.103)

where the C} are called the binomial coefficients.
Lets list some of the common expansions for nonnegative integer powers.

(a+0)° = 1

(a+0b)! a+b

(a+Db)? a* + 2ab + b*

(a+b)°® = a4+ 3a°b + 3ab* +1°
(a+b)* = a*+4a°b + 64%b° + 4ab® + b*

(A.104)

We now look at the patterns of the terms in the expansions. First, we
note that each term consists of a product of a power of a and a power of
b. The powers of a are decreasing from n to 0 in the expansion of (a + b)".
Similarly, the powers of b increase from 0 to n. The sums of the exponents in
each term is 1. So, we can write the (k + 1)st term in the expansion as a” bk,
For example, in the expansion of (a + b)5! the 6th term is a®'~5b° = a%0p°.
However, we do not yet know the numerical coefficients in the expansion.

Let’s list the coefficients for the above expansions.

n=20: 1

n=1: 1 1

n=2: 1 2 1 (A.105)
n=23: 1 3 3 1

n=4: 1 4 6 4 1

This pattern is the famous Pascal’s triangle.> There are many interesting
features of this triangle. But we will first ask how each row can be generated.

We see that each row begins and ends with a one. The second term and
next to last term have a coefficient of n. Next we note that consecutive pairs
in each row can be added to obtain entries in the next row. For example, we
have forrowsn =2andn =3that1+2=3and2+1=3:

n=2: 1 2 1

N\ v N\ v
n=23: 1 3 3 1

(A.106)

n=3:
n==4: 1 4 6 4 1
n=>5
n==o6
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*Pascal’s triangle is named after Blaise
Pascal (1623-1662). While such configu-
rations of numbers were known earlier
in history, Pascal published them and
applied them to probability theory.

Pascal’s triangle has many unusual

properties and a variety of uses:

Horizontal rows add to powers of 2.

The horizontal rows are powers of 11
(1, 11, 121, 1331, etc.).

Adding any two successive numbers
in the diagonal 1-3-6-10-15-21-28...
results in a perfect square.

When the first number to the right of
the 1 in any row is a prime number,
all numbers in that row are divisible
by that prime number. The reader
can readily check this for the n = 5
and n = 7 rows.

Sums along certain diagonals leads
to the Fibonacci sequence.  These
diagonals are parallel to the line con-
necting the first 1 for n = 3 row and
the 2 in the n = 2 row.
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Andreas Freiherr von Ettingshausen
(1796-1878) was a German mathemati-
cian and physicist who in 1826 intro-

duced the notation ( ): > However,

the binomial coefficients were known by
the Hindus centuries beforehand.

So, we use the numbers in row n = 4 to generate entries in row n = 5 :
144 =5,44 6 = 10. We then use row n = 5 to get row n = 6, etc.

Of course, it would take a while to compute each row up to the desired n.
Fortunately, there is a simple expression for computing a specific coefficient.
Consider the kth term in the expansion of (a + b)". Let r = k—1, for
k=1,...,n+ 1. Then this term is of the form C}'a"~"b". We have seen that
the coefficients satisfy

Cr=crt+ o

Actually, the binomial coefficients, C;', have been found to take a simple

Cr = (n—.r)!r!E ( r )

This is nothing other than the combinatoric symbol for determining how to

form,

choose 7 objects 7 at a time. In the binomial expansions this makes sense.
We have to count the number of ways that we can arrange r products of b
with n — r products of a. There are n slots to place the b’s. For example, the
r = 2 case for n = 4 involves the six products: aabb, abab, abba, baab, baba,
and bbaa. Thus, it is natural to use this notation.

So, we have found that

(a+D)" = i ( 1: ) a’ " (A.108)
r=0

Now consider the geometric series 1 + x + x> +.... We have seen that
such this geometric series converges for |x| < 1, giving

1
1—x

1+x+x2+...=

But, % = (1 —x)~!. This is a binomial to a power, but the power is not an
integer.

It turns out that the coefficients of such a binomial expansion can be
written similar to the form in Equation(A.108). This example suggests that
our sum may no longer be finite. So, for p a real number, 2 =1 and b = x,

we generalize Equation(A.108) as
(1+x)P =) ( P ) x" (A.109)
r=0

and see if the resulting series makes sense. However, we quickly run into
problems with the coefficients in the series.
Consider the coefficient for = 1 in an expansion of (1 + x)~!. This is

-1\ (=1 (=1
1 /] (=1-=-1)1r  (=2)nr
But what is (—1)!? By definition, it is

(~1)t = (-1)(-2)(=3) .

given by




This product does not seem to exist! But with a little care, we note that

(-1 _ (D

(=2 (-2)

So, we need to be careful not to interpret the combinatorial coefficient liter-

ally. There are better ways to write the general binomial expansion. We can
write the general coefficient as

( p ) _ 7
r (p—r)tr!

plp—1)---(p—r+1)(p—r)!
(p—r)tr!
_ plp=1)-(p-r+1) (A110)

7! ’

With this in mind we now state the theorem:

General Binomial Expansion

The general binomial expansion for (1 + x)? is a simple gener-
alization of Equation (A.108). For p real, we have the following
binomial series:

(1+x)P = i plp—1) '1;'(19 o 1)xr, x| <1. (A.111)
r=0 :

Often in physics we only need the first few terms for the case that x < 1:

I4+x)P =1+px+ @xz—f—O(x?’). (A.112)

Example A.37. Approximate y = —- > forv <L c.
-2

For v < c the first approximation is found inserting v/c = 0. Thus, one obtains
v = 1. This is the Newtonian approximation and does not provide enough of an
approximation for terrestrial speeds. Thus, we need to expand <y in powers of v/c.
First, we rewrite 7y as

o O

-2

Using the binomial expansion for p = —1/2, we have

T 2 2 ) 202"

Example A.38. Time Dilation Example

The average speed of a large commercial jet airliner is about 500 mph. If you
flew for an hour (measured from the ground), then how much younger would you
be than if you had not taken the flight, assuming these reference frames obeyed the
postulates of special relativity?
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2\ —1/2

The factor v = (1 — %2) is impor-
tant in special relativity. Namely, this
is the factor relating differences in time
and length measurements by observers
moving relative inertial frames. For ter-
restrial speeds, this gives an appropriate
approximation.



412 PARTIAL DIFFERENTIAL EQUATIONS

This is the problem of time dilation. Let At be the elapsed time in a stationary
reference frame on the ground and At be that in the frame of the moving plane.
Then from the Theory of Special Relativity these are related by

At = yAT.
The time differences would then be

At—AT = (1—9"YHAt
02
= 1—14/1-— 2 At. (A.113)

The plane speed, 500 mph, is roughly 225 m/s and ¢ = 3.00 x 108 m/s. Since
V < ¢, we would need to use the binomial approximation to get a nonzero result.

2
At —AT = (1— 1—:2>At
2
- <1—<1—20C2+...>)At
2
0
~ LAt
2c?
225)2
= ﬁ(lh)zl.Mrzs. (A.114)

2(3.00 x 108)2
Thus, you have aged one nanosecond less than if you did not take the flight.

Example A.39. Small differences in large numbers: Compute f(R,h) =
VR? + h? — R for R = 6378.164 km and h = 1.0 m.
Inserting these values into a scientific calculator, one finds that

,1) = +1-— =1x10"" m.
6378164, 1 Vv 63781642 6378164 =1 x 1077

In some calculators one might obtain o, in other calculators, or computer algebra
systems like Maple, one might obtain other answers. What answer do you get and
how accurate is your answer?

The problem with this computation is that R >> h. Therefore, the computation
of f(R, h) depends on how many digits the computing device can handle. The best
way to get an answer is to use the binomial approximation. Writing h = Rx, or
X = %, we have

f(RE) = VRZ+h2-R
= RV1+x2—-R

~ R[l—l—;xz}—R

1
1h -8
SR 7.83926 x 107° m. (A.115)

Of course, you should verify how many digits should be kept in reporting the result.



In the next examples, we generalize this example. Such general com-
putations appear in proofs involving general expansions without specific
numerical values given.

Example A.qo0. Obtain an approximation to (a4 b)P when a is much larger than
b, denoted by a > b.

If we neglect b then (a 4+ b)P ~ aP. How good of an approximation is this?
This is where it would be nice to know the order of the next term in the expansion.
Namely, what is the power of b/ a of the first neglected term in this expansion?

In order to do this we first divide out a as

(a+b)f =a? (1+Z)p.

Now we have a small parameter, 2 According to what we have seen earlier, we can
use the binomial expansion to write

b n (¢S] b r
<1+) =) < P ) () . (A.116)
a =\ r a
r=0
Thus, we have a sum of terms involving powers of % Since a > b, most of these
terms can be neglected. So, we can write

() vt eo ()

Here we used O(), big-Oh notation, to indicate the size of the first neglected term.

a? <1+b)p
a
2
o fieteo((2)))
P Pb 14 b ?
a” + pa 54—110 <a> . (A.117)

Therefore, we can approximate (a+ b)P ~ aP + pbaP~', with an error on the order
of b*aP~2. Note that the order of the error does not include the constant factor from
the expansion. We could also use the approximation that (a + b)P ~ aP, but it
is not typically good enough in applications because the error in this case is of the
order baP~ 1.

Summarizing, we have

(a+b)P

Example A.41. Approximate f(x) = (a + x)P — a? for x < a.

In an earlier example we computed f(R,h) = VR? + h? — R for R = 6378.164
km and h = 1.0 m. We can make use of the binomial expansion to determine
the behavior of similar functions in the form f(x) = (a + x)P — aP. Inserting the
binomial expression into f(x), we have as % — 0 that

flx) = (a+x)F—a’

CALCULUS REVIEW 413
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=0 (g) as > =0, (A.118)

This result might not be the approximation that we desire. So, we could back up
one step in the derivation to write a better approximation as

P gb = g1 x)? o
(a+x)P —al =a px—I—O((u)) asa—>0.

We now use this approximation to compute f(R,h) = VRZ+h? — R for R =
6378.164 km and h = 1.0 m in the earlier example. We let a = R, x =1 and
p= % Then, the leading order approximation would be of order

o) <(Z)2> -0 <(637811642)2> ~ 24 x 10714,

Thus, we have

V63781642 + 1 — 6378164 ~ a? ~!px

where
aP~px = (6378164%)71/2(0.5)1 = 7.83926 x 1078,

This is the same result we had obtained before. However, we have also an estimate
of the size of the error and this might be useful in indicating how many digits we
should trust in the answer.

Problems

1. Prove the following identities using only the definitions of the trigono-
metric functions, the Pythagorean identity, or the identities for sines and
cosines of sums of angles.

a. cos2x =2cos?x — 1.

b. sin3x = Asin® x + Bsin x, for what values of A and B?

c. secH +tanf = tan Q—FE
) = >t 1)

2. Determine the exact values of

a. sin z
. 3
b. tan15°.

c. cos105°.

3. Denest the following if possible.

:

a.
b.

—_

+ V2.



c. V5+2v6.
d. VV6+2-/VE-2.
e. Find the roots of x2 + 6x — 41/5 = 0 in simplified form.

4. Determine the exact values of

a. sin Cos’lé
. )

b. tan (sirf1 ;) .

c. sin! sin3—n
. > )

5. Do the following.

a. Write (cosh x — sinh x)® in terms of exponentials.

b. Prove cosh(x —y) = coshxcoshy — sinh x sinhy using the expo-
nential forms of the hyperbolic functions.

c. Prove cosh2x = cosh? x + sinh? x.
d. If coshx = g and x < 0, find sinh x and tanh x.

e. Find the exact value of sinh(arccosh 3).
6. Prove that the inverse hyperbolic functions are the following logarithms:

a. cosh 'x =1In (x + m) .

1+ x
1—x

7. Write the following in terms of logarithms:

b. tanh 1 x = %ln

a. cosh™! %.
b. tanh™! %
c. sinh™12.

8. Solve the following equations for x.

a. cosh(x +1In3) = 3.
—1x-2 _
b. 2tanh fgj =In2.
c. sinh?x — 7cosh x + 13 = 0.

9. Compute the following integrals.

a. fxez"2 dx.

5x
b [P 2T g
Jo VaZ+16

c. [ x3sin3xdx. (Do this using integration by parts, the Tabular Method,

and differentiation under the integral sign.)
d. [cos*3xdx.

/4 3
e. [y secxdx.
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f. [e*sinhxdx.
g. f\/ 9 —x2dx

h. f 2, using the substitution x = 2 tanh u.

, using a hyperbolic function substitution.

i. fo 7%9 —
d
i [ ﬁ, using the substitution x = tanh u.

dx

k. [ Z ) using the substitutions x = 2tan 0 and x = 2sinhu.
x

L f d—x
V3x2 —6x+4
10. Find the sum for each of the series:
a. 5+24+ B+ ...
(-1)"3
4gn -
o 2
¢ Yoz

d o (-m ()

o (5 1
e. Zn:O <2n+3n)

3
RS ey L

g. What is 0.569?

b. X

11. A superball is dropped from a 2.00 m height. After it rebounds, it
reaches a new height of 1.65 m. Assuming a constant coefficient of restitu-
tion, find the (ideal) total distance the ball will travel as it keeps bouncing.

12. Here are some telescoping series problems.

a. Verify that

ad 1 X n+1 n
Z (n+2)(n+1) :ng’l<n+2_n+1>'

n=1

1
b. Find the nth partial sum of the series ), ; (:1112 n Z 1> and

use it to determine the sum of the resulting telescoping series.
c. Sum the series Y ; [tan~!n —tan"!(n + 1)] by first writing the
Nth partial sum and then computing limy_,« SN

13. Determine the radius and interval of convergence of the following infi-
nite series:
(x—1)"

. .

a. Yl (=1)"



14. Find the Taylor series centered at x = 4 and its corresponding radius of
convergence for the given function. In most cases, you need not employ the

direct method of computation of the Taylor coefficients.

a. f(x) =sinhx,a=0
b. f(x)=v1+xa=0
1+x

C. f(x)zlnl_x,a:O

d. f(x)=xe*,a=1

e f(x)z%,a:l

f. f(x)=xt+x—-2,a=2
x—1

g f(x):2+xr =1

15. Consider Gregory’s expansion

3 .5 o k
-1 X x (=1 241
t. e —_ — —_— .. = .
an”lx =x— o+ k;OZk—l— x

—_

a. Derive Gregory’s expansion by using the definition

xodt

tan = —,
0 1-+1¢2

expanding the integrand in a Maclaurin series, and integrating the
resulting series term by term.

b. From this result, derive Gregory’s series for 7 by inserting an ap-

propriate value for x in the series expansion for tan~! x.

16. In the event that a series converges uniformly, one can consider the
derivative of the series to arrive at the summation of other infinite series.

a.

e.

. Use the result from part a to sum the series )

. Use the result from part ¢ to sum the series Y, ,

Differentiate the series representation for f(x) = ﬁ to sum the
series Y ;> 1 nx", |x| < 1.

w N

n=1 57
Sum the series ) 5> , n(n —1)x", |x| < 1.

7”12—1’1

5n
2
Use the results from this problem to sum the series Y ;> , =k

17. Evaluate the integral fon/ ® sin? x dx by doing the following:

CALCULUS REVIEW 417
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a. Compute the integral exactly.

b. Integrate the first three terms of the Maclaurin series expansion of
the integrand and compare with the exact result.

18. Determine the next term in the time dilation example, A.38. That is,
find the gé term and determine a better approximation to the time difference
of 1 ns.

19. Evaluate the following expressions at the given point. Use your calcu-
lator or your computer (such as Maple). Then use series expansions to find
an approximation to the value of the expression to as many places as you

trust.
a ;—cosxz at x = 0.015
b. Iny/ % — tanx at x = 0.0015.

e f(x) = s
. V1+2x2
d. f(R,h) = R—+/R2+h? for R = 1.374 x 10% km and / = 1.00 m.

e. flx)=1-

—1+4x%atx=5.00x103.

1
for x = 2.5 x 10713,
vV1—x



B
Ordinary Differential Equations Review

“The profound study of nature is the most fertile source of mathematical discover-
ies.” - Joseph Fourier (1768-1830)

B.1  First Order Differential Equations

BEFORE MOVING ON, WE FIRST DEFINE an #-th order ordinary differential
equation. It is an equation for an unknown function y(x) that expresses a
relationship between the unknown function and its first n derivatives. One
could write this generally as

Fy" (x),y" Y (x),..., ¥ (x),y(x), %) = 0. (B.1)

Here y(") (x) represents the nth derivative of y(x).

An initial value problem consists of the differential equation plus the
values of the first n — 1 derivatives at a particular value of the independent
variable, say x:

vV (x0) =yar, ¥V (x0) =ya2 -, yx)=w.  (B2)

A linear nth order differential equation takes the form

an(x)y ™ (x) + a1 (2)y "D (@) 4+ @ (0 (3) + a0 ()y () = F(x).
(B-3)
If f(x) = 0, then the equation is said to be homogeneous, otherwise it is
called nonhomogeneous.
Typically, the first differential equations encountered are first order equa-
tions. A first order differential equation takes the form

F(y,y,x) = 0. (B.4)

There are two common first order differential equations for which one can
formally obtain a solution. The first is the separable case and the second is
a first order equation. We indicate that we can formally obtain solutions, as
one can display the needed integration that leads to a solution. However,
the resulting integrals are not always reducible to elementary functions nor
does one obtain explicit solutions when the integrals are doable.

n-th order ordinary differential equation

Initial value problem.

Linear nth order differential equation

Homogeneous and nonhomogeneous
equations.

First order differential equation
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Separable equations.

!

-2 -

7

o 4

£/

n

,IOA

Figure B.1: Plots of solutions from the 1-
parameter family of solutions of Exam-
ple B.1 for several initial conditions.

)

&

Figure B.2: Plots of solutions of Example
B.2 for several initial conditions.

B.1.1  Separable Equations

A FIRST ORDER EQUATION IS SEPARABLE if it can be written the form

Y~ fws) (B.5)

Special cases result when either f(x) = 1 or g(y) = 1. In the first case the
equation is said to be autonomous.

The general solution to equation (B.5) is obtained in terms of two inte-
grals:

/g‘g) _ /f(x) dx + C, (B.6)

where C is an integration constant. This yields a 1-parameter family of so-
lutions to the differential equation corresponding to different values of C.
If one can solve (B.6) for y(x), then one obtains an explicit solution. Other-
wise, one has a family of implicit solutions. If an initial condition is given
as well, then one might be able to find a member of the family that satisfies
this condition, which is often called a particular solution.

Example B.1. v/ = 2xy, y(0) = 2.

/d—y:/Zxdx+C.
y

In|y| = x* +C.

Applying (B.6), one has

Integrating yields

Exponentiating, one obtains the general solution,
y(x) = £ 1€ = Ae*.

Here we have defined A = +eC. Since C is an arbitrary constant, A is an arbitrary
constant. Several solutions in this 1-parameter family are shown in Figure B.1.

Next, one seeks a particular solution satisfying the initial condition. For y(0) =
2, one finds that A = 2. So, the particular solution satisfying the initial condition
isy(x) = 26

Example B.z2. yy' = —x. Following the same procedure as in the last example, one

obtains:

/ydy:—/xdx+C:>y2=—x2+A, where A = 2C.

Thus, we obtain an implicit solution. Writing the solution as x*> +y> = A, we see
that this is a family of circles for A > 0 and the origin for A = 0. Plots of some
solutions in this family are shown in Figure B.2.
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B.1.2  Linear First Order Equations

THE SECOND TYPE OF FIRST ORDER EQUATION encountered is the linear
first order differential equation in the standard form

¥ (%) + p(0)y(x) = q(x). (B.7)

In this case one seeks an integrating factor, y(x), which is a function that one
can multiply through the equation making the left side a perfect derivative.

Thus, obtaining,

2 ()] = k(). ®3)

The integrating factor that works is u(x) = exp([" p(¢)d¢). One can
derive u(x) by expanding the derivative in Equation (B.8),

p(x)y' (x) + 1 (0)y(x) = p(x)q(x), (B.9)

and comparing this equation to the one obtained from multiplying (B.7) by
p(x)

#()Y (x) + u(x)p(x)y(x) = p(x)q(x). (B.10)
Note that these last two equations would be the same if the second terms
were the same. Thus, we will require that

This is a separable first order equation for j(x) whose solution is the inte-
grating factor: Integrating factor.

) =exp ([ pl)de). B.11)

Equation (B.8) is now easily integrated to obtain the general solution to
the linear first order differential equation:

V) = o | [ @ e +c|. (B12)

u(x)

Example B.3. xy/ +y=x, x>0,y(1)=0.

Ome first notes that this is a linear first order differential equation. Solving for
y', one can see that the equation is not separable. Furthermore, it is not in the
standard form (B.7). So, we first rewrite the equation as

—+-y=1 (B.13)

Noting that p(x) = 1, we determine the integrating factor

:;,

u(x) = exp [/x dé"] =el"¥ =y,
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Multiplying equation (B.13) by u(x) = x, we actually get back the original equa-
tion! In this case we have found that xy' + y must have been the derivative of
something to start. In fact, (xy) = xy’ + x. Therefore, the differential equation

becomes
(xy)' = x.
Integrating, one obtains
L
== C,
xy 2x +
" (x) = 1x + =
W=y
Inserting the initial condition into this solution, we have 0 = % + C. Therefore,
C= —%. Thus, the solution of the initial value problem is
1 1
y(x) = 5(x=2)
We can verify that this is the solution. Since y' = % + 21?, we have

sy = st —+i(x-1) =2«
A A PR A Y R
Also,y(1) = $(1—1) = 0.
Example B.4. (sinx)y’ + (cosx)y = x2.
Actually, this problem is easy if you realize that the left hand side is a perfect
derivative. Namely,

%((sinx)y) = (sinx)y’ + (cos x)y.

But, we will go through the process of finding the integrating factor for practice.
First, we rewrite the original differential equation in standard form. We divide
the equation by sin x to obtain

y' + (cotx)y = x® csc x.

Then, we compute the integrating factor as

x ,
p(x) = exp ( / cot§d§> = (N = gin .
Using the integrating factor, the standard form equation becomes

% ((sinx)y) = 2.

Integrating, we have
1
ysinx = §x3 +C.

So, the solution is

y(x) = <;x3 + C> cscx.
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B.2  Second Order Linear Differential Equations

SECOND ORDER DIFFERENTIAL EQUATIONS ARE TYPICALLY HARDER than
first order. In most cases students are only exposed to second order linear
differential equations. A general form for a second order linear differential
equation is given by

a(x)y" (x) + b(x)y' (x) + c(x)y(x) = f(x). (B.14)

One can rewrite this equation using operator terminology. Namely, one
first defines the differential operator L = a(x)D? + b(x)D + c(x), where
D= %. Then equation (B.14) becomes

Ly = f. (B.15)

The solutions of linear differential equations are found by making use of
the linearity of L. Namely, we consider the vector space® consisting of real-
valued functions over some domain. Let f and g be vectors in this function
space. L is a linear operator if for two vectors f and g and scalar 4, we have
that

a. L(f+g)=Lf+Lg
b. L(af) =aLf.

One typically solves (B.14) by finding the general solution of the homo-
geneous problem,
Ly, =0

and a particular solution of the nonhomogeneous problem,
Lyy = f.

Then, the general solution of (B.14) is simply given as y = y;, + y,. This is
true because of the linearity of L. Namely,

L(yn +yp)
= Ly, + Lyp
= 0+f=/. (B.16)

Ly

There are methods for finding a particular solution of a nonhomogeneous
differential equation. These methods range from pure guessing, the Method
of Undetermined Coefficients, the Method of Variation of Parameters, or
Green'’s functions. We will review these methods later in the chapter.

Determining solutions to the homogeneous problem, Ly, = 0, is not al-
ways easy. However, many now famous mathematicians and physicists have
studied a variety of second order linear equations and they have saved us
the trouble of finding solutions to the differential equations that often ap-
pear in applications. We will encounter many of these in the following

* We assume that the reader has been in-
troduced to concepts in linear algebra.
Later in the text we will recall the def-
inition of a vector space and see that lin-
ear algebra is in the background of the
study of many concepts in the solution
of differential equations.
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> A set of functions {y;(x)}/, is a lin-
early independent set if and only if

c1y1(x) + ...+ cayn(x) =0

impliesc; =0,fori=1,...,n.

For n = 2, c1y1(x) + coya(x) = 0. If
y1 and yp are linearly dependent, then
the coefficients are not zero and
y2(x) = —Zyi(x) and is a multiple of

y1(%).

The characteristic equation for

ay” +by +cy = 0is ar? + br +¢c = 0.
Solutions of this quadratic equation lead
to solutions of the differential equation.

Two real, distinct roots, r; and r;, give
solutions of the form

y(x) = 1€ + e,

chapters. We will first begin with some simple homogeneous linear differ-
ential equations.

Linearity is also useful in producing the general solution of a homoge-
neous linear differential equation. If y; and y, are solutions of the homoge-
neous equation, then the linear combination y = c1y1 + c2y2 is also a solution
of the homogeneous equation. In fact, if y; and y, are linearly independent,>
then y = c1y1 + coy» is the general solution of the homogeneous problem.

Linear independence can also be established by looking at the Wronskian
of the solutions. For a second order differential equation the Wronskian is
defined as

W(y1,y2) = y1(x)ya(x) — vy (x)y2(x). (B.17)

The solutions are linearly independent if the Wronskian is not zero.

B.2.1  Constant Coefficient Equations

THE SIMPLEST SECOND ORDER DIFFERENTIAL EQUATIONS are those with
constant coefficients. The general form for a homogeneous constant coeffi-
cient second order linear differential equation is given as

ay” (x) + by’ (x) + cy(x) =0, (B.18)

where 4, b, and ¢ are constants.
Solutions to (B.18) are obtained by making a guess of y(x) = ¢’*. Inserting
this guess into (B.18) leads to the characteristic equation

ar* +br+c=0. (B.19)

Namely, we compute the derivatives of y(x) = ¢, to get y(x) = re'*, and
y(x) = r?¢™. Inserting into (B.18), we have

0 = ay" (x) + by (x) + cy(x) = (ar® + br +c)e'™.

Since the exponential is never zero, we find that ar? + br +c = 0.
The roots of this equation, 71, 72, in turn lead to three types of solutions
depending upon the nature of the roots. In general, we have two linearly in-

roX

dependent solutions, y; (x) = €1* and y»(x) = €’?*, and the general solution

is given by a linear combination of these solutions,
y(x) = 1" 4 cpe’?*.

For two real distinct roots, we are done. However, when the roots are real,
but equal, or complex conjugate roots, we need to do a little more work to
obtain usable solutions.

Example B.5. v/ —y' — 6y =0y(0) =2,4/(0) = 0.

The characteristic equation for this problem is r> — r — 6 = 0. The roots of this
equation are found as r = —2,3. Therefore, the general solution can be quickly
written down:

y(x) = cre” ¥ + e,
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Note that there are two arbitrary constants in the general solution. Therefore,
one needs two pieces of information to find a particular solution. Of course, we have
the needed information in the form of the initial conditions.

One also needs to evaluate the first derivative

¥ (x) = —2c1e7% + 3cpe™

in order to attempt to satisfy the initial conditions. Evaluating y and y' at x = 0
yields

2 = 140
0 = —2c1+3c (B.20)

These two equations in two unknowns can readily be solved to give c; = 6/5
and cy = 4/5. Therefore, the solution of the initial value problem is obtained as
y(x) = ge_zx + %63".

In the case when there is a repeated real root, one has only one solution,
y1(x) = e™. The question is how does one obtain the second linearly in-
dependent solution? Since the solutions should be independent, we must
have that the ratio y(x)/y1(x) is not a constant. So, we guess the form
ya2(x) = v(x)y1(x) = v(x)e™. (This process is called the Method of Reduc-
tion of Order.)

For constant coefficient second order equations, we can write the equa-

tion as
(D -1y =0,
where D = 4. We now insert y»(x) = v(x)e’™ into this equation. First we
compute
(D —r)ve™ = d'e'™.
Then,

0= (D —r)*ve™ = (D —r)v/e™ =v"e™.

So, if y2(x) is to be a solution to the differential equation, then v/ (x)e™ = 0
for all x. So, v”(x) = 0, which implies that

v(x) =ax+0b.

So,
y2(x) = (ax + b)e™.

Without loss of generality, we can take b = 0 and a4 = 1 to obtain the second
linearly independent solution, y,(x) = xe"™. The general solution is then

y(x) = cre’™ + cpxe’™.

Example B.6. "’ + 6y’ +9y = 0.
In this example we have 1> + 6r + 9 = 0. There is only one root, r = —3. From
the above discussion, we easily find the solution y(x) = (c1 + cox)e 3%,

Repeated roots, r1 = r, = 7, give solu-
tions of the form

y(x) = (c1 + cax)e™.
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Complex roots, r = & + i, give solutions
of the form

y(x) = e"*(cq cos Bx + ¢; sin Bx).

When one has complex roots in the solution of constant coefficient equa-
tions, one needs to look at the solutions

yia(x) = P,

We make use of Euler’s formula (See Chapter 6 for more on complex vari-
ables)

eP¥ = cos Bx + isin px. (B.21)
Then, the linear combination of y (x) and y,(x) becomes

Ae(aJri/S)x_'_Be(leiﬁ)x = oM [Aei/}x _i_Befi/Sx}
e** [(A+ B) cos Bx + i(A — B) sin Bx]

e"*(c1 cos Bx + ¢ sin Bx). (B.22)

Thus, we see that we have a linear combination of two real, linearly inde-
pendent solutions, e** cos fx and " sin Sx.

Example B.7. v +4y = 0.

The characteristic equation in this case is r*> + 4 = 0. The roots are pure imag-
inary roots, r = %2i, and the general solution consists purely of sinusoidal func-
tions, y(x) = c1 cos(2x) + 3 sin(2x), since « = 0 and p = 2.

Example B.8. " + 2y +4y = 0.
The characteristic equation in this case is r> + 2r + 4 = 0. The roots are complex,
r = —14+/3i and the general solution can be written as

y(x) = [cl cos(V/3x) + ¢z sin(\/gx)] e "

Example B.g. " + 4y = sinx.

This is an example of a nonhomogeneous problem. The homogeneous problem
was actually solved in Example B.7. According to the theory, we need only seek a
particular solution to the nonhomogeneous problem and add it to the solution of the
last example to get the general solution.

The particular solution can be obtained by purely quessing, making an educated
guess, or using the Method of Variation of Parameters. We will not review all of
these techniques at this time. Due to the simple form of the driving term, we will
make an intelligent guess of y,(x) = Asinx and determine what A needs to be.
Inserting this guess into the differential equation gives (—A + 4A) sinx = sinx.
So, we see that A = 1/3 works. The general solution of the nonhomogeneous

problem is therefore y(x) = c; cos(2x) + ¢z sin(2x) + 3 sin x.

The three cases for constant coefficient linear second order differential
equations are summarized below.
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Classification of Roots of the Characteristic Equation
for Second Order Constant Coefficient ODEs

1. Real, distinct roots rq, ;. In this case the solutions corresponding to
each root are linearly independent. Therefore, the general solution is
simply y(x) = c1e"* + cpe?*.

2. Real, equal roots r; = r, = r. In this case the solutions corresponding
to each root are linearly dependent. To find a second linearly inde-
pendent solution, one uses the Method of Reduction of Order. This gives
the second solution as xe". Therefore, the general solution is found as
y(x) = (c1 + cax)e™.

3. Complex conjugate roots r1,7; = a +if. In this case the solutions
corresponding to each root are linearly independent. Making use of
Euler’s identity, e = cos(6) + isin(f), these complex exponentials
can be rewritten in terms of trigonometric functions. Namely, one
has that e** cos(Bx) and e** sin(Bx) are two linearly independent solu-
tions. Therefore, the general solution becomes y(x) = e**(cj cos(px) +

cp sin(Bx)).

B.3 Forced Systems

MANY PROBLEMS CAN BE MODELED by nonhomogeneous second order
equations. Thus, we want to find solutions of equations of the form

Ly(x) = a(x)y"(x) + b(x)y'(x) + c(x)y(x) = f(x). (B.23)

As noted in Section B.2, one solves this equation by finding the general
solution of the homogeneous problem,

Lyh =0
and a particular solution of the nonhomogeneous problem,

Lyp:f.

Then, the general solution of (B.14) is simply given as y = y, + yp.

So far, we only know how to solve constant coefficient, homogeneous
equations. So, by adding a nonhomogeneous term to such equations we
will need to find the particular solution to the nonhomogeneous equation.

We could guess a solution, but that is not usually possible without a little
bit of experience. So, we need some other methods. There are two main
methods. In the first case, the Method of Undetermined Coefficients, one
makes an intelligent guess based on the form of f(x). In the second method,
one can systematically developed the particular solution. We will come back
to the Method of Variation of Parameters and we will also introduce the
powerful machinery of Green’s functions later in this section.
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B.3.1  Method of Undetermined Coefficients

LET’S SOLVE A SIMPLE DIFFERENTIAL EQUATION highlighting how we can
handle nonhomogeneous equations.

Example B.10. Consider the equation
v'+2y -3y =4 (B.24)

The first step is to determine the solution of the homogeneous equation. Thus,
we solve

Yy + 2y, — 3y = 0. (B.25)

The characteristic equation is 72 4+ 2r — 3 = 0. The roots are r = 1, —3. So, we can
immediately write the solution

yp(x) = c1e* + coe 3%,

The second step is to find a particular solution of (B.24). What possible function
can we insert into this equation such that only a 4 remains? If we try something
proportional to x, then we are left with a linear function after inserting x and its
derivatives. Perhaps a constant function you might think. y = 4 does not work.
But, we could try an arbitrary constant, y = A.

Let’s see. Inserting y = A into (B.24), we obtain

—3A =4.

Ah ha! We see that we can choose A = —% and this works. So, we have a particular
solution, y,(x) = —3%. This step is done.
Combining the two solutions, we have the general solution to the original non-
homogeneous equation (B.24). Namely,
X —3x 4
Y(x) = ynx) + yp(x) = 16 cre % — 2
Insert this solution into the equation and verify that it is indeed a solution. If we

had been given initial conditions, we could now use them to determine the arbitrary
constants.

Example B.11. What if we had a different source term? Consider the equation
y' +2y — 3y = 4x. (B.26)

The only thing that would change is the particular solution. So, we need a guess.
We know a constant function does not work by the last example. So, let’s try
yp = Ax. Inserting this function into Equation (B.26), we obtain

2A — 3Ax = 4x.

Picking A = —4/3 would get rid of the x terms, but will not cancel everything.
We still have a constant left. So, we need something more general.
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Let’s try a linear function, y,(x) = Ax + B. Then we get after substitution into
(B.26)
2A —3(Ax + B) = 4x.

Equating the coefficients of the different powers of x on both sides, we find a system
of equations for the undetermined coefficients:

2A—-3B = 0
34 = 4. (B.27)

These are easily solved to obtain

4
A = —
3
2 8
B = §A_ ~5 (B.28)
So, the particular solution is
4 8

yp(x) = —3¥ g
This gives the general solution to the nonhomogeneous problem as

_ 4 8
y(x) = yn(x) +yp(x) = c1e” + cze 3x _ §x —5

There are general forms that you can guess based upon the form of the
driving term, f(x). Some examples are given in Table B.1. More general ap-
plications are covered in a standard text on differential equations. However,
the procedure is simple. Given f(x) in a particular form, you make an ap-
propriate guess up to some unknown parameters, or coefficients. Inserting
the guess leads to a system of equations for the unknown coefficients. Solve
the system and you have the solution. This solution is then added to the
general solution of the homogeneous differential equation.

f (x) Guess Table B.1: Forms used in the Method of
— — Undetermined Coefficients.
apX" +a, X" b axtag | Apx" + A, X A+ Ag ndeterined Loethicients
aebx Aebx
acos wx + bsinwx A cos wx + Bsinwx

Example B.12. Solve
y' +2y — 3y =273, (B.29)

According to the above, we would guess a solution of the form y, = Ae>*.
Inserting our guess, we find
0=2¢"

Oops! The coefficient, A, disappeared! We cannot solve for it. What went wrong?
The answer lies in the general solution of the homogeneous problem. Note that e*

and e=3% are solutions to the homogeneous problem. So, a multiple of e~3* will not

get us anywhere. It turns out that there is one further modification of the method.
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The Tacoma Narrows Bridge opened in
Washington State (U.S.) in mid 1940.
However, in November of the same year
the winds excited a transverse mode of
vibration, which eventually (in a few
hours) lead to large amplitude oscilla-
tions and then collapse.

If the driving term contains terms that are solutions of the homogeneous problem,
then we need to make a guess consisting of the smallest possible power of x times
the function which is no longer a solution of the homogeneous problem. Namely,
we guess Yp(x) = Axe™3* and differentiate this guess to obtain the derivatives
v, =A(1- 3x)e~3* and yp, = A(9x — 6)e=3x.
Inserting these derivatives into the differential equation, we obtain
[(9x — 6) +2(1 — 3x) — 3x] Ae ™3 = 2737,
Comparing coefficients, we have

—4A =2.

So, A = —1/2 and y,(x) = —Yxe~3%. Thus, the solution to the problem is

y(x) = (2 - ;x) e 3.

Modified Method of Undetermined Coefficients

In general, if any term in the guess y,(x) is a solution of the homogeneous
equation, then multiply the guess by x¥, where k is the smallest positive
integer such that no term in xkyp(x) is a solution of the homogeneous
problem.

B.3.2  Periodically Forced Oscillations

A SPECIAL TYPE OF FORCING is periodic forcing. Realistic oscillations will
dampen and eventually stop if left unattended. For example, mechanical
clocks are driven by compound or torsional pendula and electric oscilla-
tors are often designed with the need to continue for long periods of time.
However, they are not perpetual motion machines and will need a peri-
odic injection of energy. This can be done systematically by adding periodic
forcing. Another simple example is the motion of a child on a swing in the
park. This simple damped pendulum system will naturally slow down to
equilibrium (stopped) if left alone. However, if the child pumps energy into
the swing at the right time, or if an adult pushes the child at the right time,
then the amplitude of the swing can be increased.

There are other systems, such as airplane wings and long bridge spans,
in which external driving forces might cause damage to the system. A well
know example is the wind induced collapse of the Tacoma Narrows Bridge
due to strong winds.  Of course, if one is not careful, the child in the
last example might get too much energy pumped into the system causing a
similar failure of the desired motion.

While there are many types of forced systems, and some fairly compli-
cated, we can easily get to the basic characteristics of forced oscillations by
modifying the mass-spring system by adding an external, time-dependent,
driving force. Such as system satisfies the equation

mi + b(x) +kx = F(t), (B.30)
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where m is the mass, b is the damping constant, k is the spring constant,
and F(t) is the driving force. If F(t) is of simple form, then we can employ
the Method of Undetermined Coefficients. Since the systems we have con-
sidered so far are similar, one could easily apply the following to pendula
or circuits.

As the damping term only complicates the solution, we will consider the
simpler case of undamped motion and assume that b = 0. Furthermore,
we will introduce a sinusoidal driving force, F(t) = Fycoswt in order to
study periodic forcing. This leads to the simple periodically driven mass on
a spring system

mi + kx = Fycos wt. (B.31)

In order to find the general solution, we first obtain the solution to the

homogeneous problem,

Xy, = €1 cos wot + ¢p sin wot,

where wy = \/% . Next, we seek a particular solution to the nonhomoge-
neous problem. We will apply the Method of Undetermined Coefficients.
A natural guess for the particular solution would be to use x, = A cos wt +

B sinwt. However, recall that the guess should not be a solution of the ho-
mogeneous problem. Comparing x, with x, this would hold if w # wy.
Otherwise, one would need to use the Modified Method of Undetermined
Coefficients as described in the last section. So, we have two cases to con-
sider.

. F
Example B.13. Solve i + wix = cos wt, for w # wo.
In this case we continue with the guess x, = A coswt + B sinwt. Since there

is no damping term, one quickly finds that B = 0. Inserting x, = A coswt into
the differential equation, we find that

F
(—wz + w%) Acoswt = EO cos wt.
Solving for A, we obtain

R
m(w3 — w?)’

The general solution for this case is thus,

Fy

x(t) = c1 cos wot + ¢ sin wot + ——5 -
m(wj — w?)

cos wt. (B.32)
Example B.14. Solve i + wix = % cos wyt.

In this case, we need to employ the Modified Method of Undetermined Coef-
ficients. So, we make the guess x, = t(Acoswyt + B sinwyt) . Since there is
no damping term, one finds that A = 0. Inserting the guess in to the differential

equation, we find that
__h
© 2mwy’

or the general solution is

. F
x(t) = ¢1 cos wpt + 7 sin wyt +
2mw

t sin wt. (B-33)

k m
W Igcoswt
<
b @ 6

Figure B.3: An external driving force is
added to the spring-mass-damper sys-
tem.

Dividing through by the mass, we solve
the simple driven system,

. 2 FO
¥+ wjx = — coswt.
m
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Figure B.4: Plot of

1
x(t) = 5cos2t + EtsinZt,
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Figure B.5: Plot of

1

x(t) = )

(2045 cos 2t — 800 cos %t) ,

a solution of ¥ + 4x = 2 cos2.15¢.
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Figure B.6: Plot of
x(t) = tsin2t,

a solution of ¥ + x = 2cost.

The general solution to the problem is thus

Fy
—0——coswt, w # wy,
x(t) = c1 cos wpt + ¢ sin wpt + m(wp—ew?)
0_tsin wpt,

2mwy

(B.34)

w = Wy.

Special cases of these solutions provide interesting physics, which can
be explored by the reader in the homework. In the case that w = wy, we
see that the solution tends to grow as t gets large. This is what is called a
resonance. Essentially, one is driving the system at its natural frequency. As
the system is moving to the left, one pushes it to the left. If it is moving to
the right, one is adding energy in that direction. This forces the amplitude
of oscillation to continue to grow until the system breaks. An example of
such an oscillation is shown in Figure B.4.

In the case that w # wy, one can rewrite the solution in a simple form.
Let’s choose the initial conditions that c; = —Fy/(m(w3 — w?)), c2 = 0. Then
one has (see Problem ?2?)

2F, . (wg—w)t . (wo+w)t
sin sin .

m(w3 — w?) 2 2

x(t) = (B.35)

For values of w near wyp, one finds the solution consists of a rapid os-

cillation, due to the smM

2F, . -
m(w%ng) sin (wo2 w)
This slow variation is called a beat and the beat frequency is given by f =

lwo—l 1 Figure B.5 we see the high frequency oscillations are contained

T
by the lower beat frequency, f = %S. This corresponds to a period of

T = 1/f =~ 83.7 Hz, which looks about right from the figure.

factor, with a slowly varying amplitude,

L. The reader can investigate this solution.

Example B.15. Solve ¥ + x = 2coswt, x(0) =0, %(0) = 0, for w = 1,1.15. For
each case, we need the solution of the homogeneous problem,

x,(t) = c1cost+cpsint.

The particular solution depends on the value of w.
For w =1, the driving term, 2 cos wt, is a solution of the homogeneous problem.
Thus, we assume
xp(t) = Atcost + Btsint.

Inserting this into the differential equation, we find A = 0 and B = 1. So, the
general solution is
x(t) =c1cost+cpsint + tsint.

Imposing the initial conditions, we find
x(t) = tsint.

This solution is shown in Figure B.6.
For w = 1.15, the driving term, 2 cos w1.15t, is not a solution of the homoge-
neous problem. Thus, we assume

xp(t) = Acos1.15t + Bsin1.15¢.
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Inserting this into the differential equation, we find A = —% and B = 0. So, the
general solution is

8
x(t) = cpcost+cysint — —— cost.
Imposing the initial conditions, we find
800
= — —cos 1.15¢) .
x(¥) 179 (cost — cos1.15¢) 5
This solution is shown in Figure B.7. The beat frequency in this case is the same as /\ {\ /\ {

with Figure B.5. 0 \/ AARP W\T TTH \FO

B.3.3 Method of Variation of Parameters

-104

A MORE SYSTEMATIC WAY to find particular solutions is through the use Figure B.7: Plot of

of the Method of Variation of Parameters. The derivation is a little detailed 800 23
S . - . =_ t—cos=-t],

and the solution is sometimes messy, but the application of the method is ()= 19 <COS 20 )

straight forward if you can do the required integrals. We will first derive a solution of % + x = 2 cos 1.15t.
the needed equations and then do some examples.

We begin with the nonhomogeneous equation. Let’s assume it is of the
standard form

a(x)y" (x) +b(x)y'(x) + c(x)y(x) = f(x). (B.36)

We know that the solution of the homogeneous equation can be written in
terms of two linearly independent solutions, which we will call y;(x) and
ya(x) :

yn(x) = cry1(x) + cya(x).

Replacing the constants with functions, then we no longer have a solution
to the homogeneous equation. Is it possible that we could stumble across
the right functions with which to replace the constants and somehow end
up with f(x) when inserted into the left side of the differential equation? It
turns out that we can.

So, let’s assume that the constants are replaced with two unknown func-
tions, which we will call ¢1(x) and cp(x). This change of the parameters
is where the name of the method derives. Thus, we are assuming that a

particular solution takes the form We assume the nonhomogeneous equa-
tion has a particular solution of the form
yp(x) = c1(0)y1(x) + c2(x)y2(x). (B.37) yp(x) = e1(0)y1 (x) + e2(x)y2 (x).

If this is to be a solution, then insertion into the differential equation should
make the equation hold. To do this we will first need to compute some
derivatives.

The first derivative is given by

yp(x) = c1()yh () + ca(2)ya(x) + 1 ()y1(x) + e ()y2(x).  (B.38)
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In order to solve the differential equation
Ly = f, we assume

Yp(x) = cr()y1(x) + ca(x)y2(x),

for Ly1» = 0. Then, one need only solve
a simple system of equations (B.45).

Next we will need the second derivative. But, this will yield eight terms.
So, we will first make a simplifying assumption. Let’s assume that the last
two terms add to zero:

cr()y1(x) + ca(x)ya(x) = 0. (B.39)

It turns out that we will get the same results in the end if we did not assume
this. The important thing is that it works!
Under the assumption the first derivative simplifies to

yp(x) = e1(x)y1 (%) + c2(*)ya (%). (B.40)
The second derivative now only has four terms:
yp(x) = 1 (Y] (x) + e2(x)y2 (x) + 1 (N)y1 (¥) + 2 ()ya(x).  (B.41)

Now that we have the derivatives, we can insert the guess into the differ-
ential equation. Thus, we have

flx) = a(x) [ea(x)y (x) + ca(x)ys (x) + c1 (x)y1 (x) + 2 (x)y (x)]
+b(x) [e1(x)y1 (x) + ca(x)ya(x)]
+e(x) [er (x)y (x) + ca(x)ya(x)] - (B.42)

Regrouping the terms, we obtain

(B.43)

Note that the first two rows vanish since y; and y, are solutions of the
homogeneous problem. This leaves the equation

f(x) = a(x) [e1()y1(x) + 2 ()ya(x)],
which can be rearranged as

& (XY (x) + () (x) = f(§ (B.a4)

alx

In summary, we have assumed a particular solution of the form

Yp(x) = c1(0)y1(x) + c2(x)y2(x).

This is only possible if the unknown functions ¢1(x) and c;(x) satisfy the
system of equations

()yi(x) + e (x)ya(x) =
Ay (x) +a(x)y(x) = ) (B.45)
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— Y1y is the It is standard to solve this system for the derivatives of the unknown

lution in the functions and then present the integrated forms. However, one could just

as easily start from this system and solve the system for each problem en-
countered.

Example B.16. Find the general solution of the nonhomogeneous problem: y" —
y= e,
The general solution to the homogeneous problem y;| — y, = 0 is

yn(x) = c1e* 4+ cpe™ ",

In order to use the Method of Variation of Parameters, we seek a solution of the
form

yp(x) = c1(x)e* +ca(x)e.

We find the unknown functions by solving the system in (B.45), which in this case
becomes

ci(x)e* +ch(x)e™™ = 0

/
1
c(x)e* —ch(x)e™ = ¥ (B.46)
Adding these equations we find that

1
P Eex.
Solving for c1(x) we find
1 1
c1(x) = E/EX dx = Eex.

Subtracting the equations in the system yields

1
2che ™ = —e®* ¢ = —563".
Thus,
1 3x 1 3
- d fpci
ca(x) 2/6 X 5¢

The particular solution is found by inserting these results into y,:

yp(x) = c(¥)y1(x) +c2(x)ya(x)

(%ex)ex 4 (_%6335)6735

= %ezx . (B.47)

Thus, we have the general solution of the nonhomogeneous problem as

1
y(x) =cre* + e + gezx.
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Example B.17. Now consider the problem: y" + 4y = sin x.
The solution to the homogeneous problem is
Yn(x) = ¢1 cos2x + cp sin 2x. (B.48)
We now seek a particular solution of the form
yp(x) = c1(x) cos 2x + cp(x) sin 2x.
We let y1(x) = cos2x and yy(x) = sin2x, a(x) = 1, f(x) = sinx in system
(B.45):
cj(x)cos2x +ch(x)sin2x = 0
—2¢}(x) sin2x + 2¢5(x) cos2x = sinx. (B.49)
Now, use your favorite method for solving a system of two equations and two
unknowns. In this case, we can multiply the first equation by 2sin2x and the

second equation by cos2x. Adding the resulting equations will eliminate the c)
terms. Thus, we have

1 1
ch(x) = Esinxcost = E(Zcoszx —1)sinx.

Inserting this into the first equation of the system, we have

in2 1
cj(x) = —ch(x) SIZY _ Sinxsin2x = — sin xcosX.

cos2x 2
These can easily be solved:

1 1 2
o(x) = E/(Zcoszx— 1)sinxdx = E(cosx— gcosg’ x).

1
c1(x) = — /sin" cosxdx = —3 sin® x.

The final step in getting the particular solution is to insert these functions into
Yp(x). This gives
yp(x) = a(@)y(x) +ea(x)ya(x)

1 1 1
= (_§Sin3 x) cos2x + (E CcoS X — 3 cos® x)sinx

1
= 3 sin x. (B.50)

So, the general solution is

1
y(x) = c1 cos2x + cp sin2x + 3 sin x. (B.51)

B.4 Cauchy-Euler Equations

ANOTHER CLASS OF SOLVABLE LINEAR DIFFERENTIAL EQUATIONS that is
of interest are the Cauchy-Euler type of equations, also referred to in some
books as Euler’s equation. These are given by

ax®y" (x) + bxy' (x) + cy(x) = 0. (B.52)
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Note that in such equations the power of x in each of the coefficients matches
the order of the derivative in that term. These equations are solved in a
manner similar to the constant coefficient equations.

One begins by making the guess y(x) = x”. Inserting this function and
its derivatives,

Y@ =r"l y(x) =r(r =122,
into Equation (B.52), we have
[ar(r —1) +br+c]x" = 0.

Since this has to be true for all x in the problem domain, we obtain the
characteristic equation

ar(r—1)+br+c=0. (B.53)

Just like the constant coefficient differential equation, we have a quadratic
equation and the nature of the roots again leads to three classes of solutions.
If there are two real, distinct roots, then the general solution takes the form

y(x) = c1x™ + cpx".

Example B.18. Find the general solution: x*y" + 5xy’ + 12y = 0.
As with the constant coefficient equations, we begin by writing down the char-
acteristic equation. Doing a simple computation,

0 = r(r—1)+5r+12
= P +4r+12
= (7 + 2)2 + 8/
-8 = (1’ + 2)2r (B-54)
one determines the roots are r = —2 + 24/2i. Therefore, the general solution is

y(x) = {cl cos(2v/21In |x|) + ¢ 5in(2v/21n |x|)} x~2

Deriving the solution for Case 2 for the Cauchy-Euler equations works in
the same way as the second for constant coefficient equations, but it is a bit
messier. First note that for the real root, » = rq, the characteristic equation
has to factor as (r — r1)? = 0. Expanding, we have

2 —2rr +73 = 0.
The general characteristic equation is
ar(r—1)+br+c=0.
Dividing this equation by a and rewriting, we have
b
2r -1+ S=o.
a a
Comparing equations, we find

b c
-=1-2r, f:r%.
a a

The solutions of Cauchy-Euler equations
can be found using the characteristic
equation ar(r — 1) +br+c = 0.

For two real, distinct roots, the general
solution takes the form

y(x) = c1x"1 4 cpx"2.
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For one root, r1 = rp = r, the general
solution is of the form

y(x) = (c1 + 2 In|x|)x".

So, the Cauchy-Euler equation for this case can be written in the form

2y 4 (1 —2r)xy’ + 2y = 0.

Now we seek the second linearly independent solution in the form y;(x)
v(x)x". We first list this function and its derivatives,

y(x) = ovxi,
B = (e
vy(x) = (x%0" +2rx0" +ri(r; — 1)0)x1 72 (B.55)

Inserting these forms into the differential equation, we have

0 = 2%y +(1—2r)xy +riy

= (x0" 4+ )x L (B.56)
Thus, we need to solve the equation
x0" +9 =0,

or

v 1
o x
Integrating, we have

In|o'| = —In|x| + C,

where A = +¢C absorbs C and the signs from the absolute values. Expo-
nentiating, we obtain one last differential equation to solve,

Thus,
v(x) = Aln|x| + k.

So, we have found that the second linearly independent equation can be
written as
ya(x) = 2" In |x|.

Therefore, the general solution is found as y(x) = (¢ + ¢z In |x])x".

Example B.19. Solve the initial value problem: t2y" + 3ty +y = 0, with the
initial conditions y(1) =0, y'(1) = 1.
For this example the characteristic equation takes the form

r(r—1)+3r+1=0,

or
2 +2r+1=0.

There is only one real root, r = —1. Therefore, the general solution is

y(t) = (c1 +caInt)t L.
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Howeuver, this problem is an initial value problem. At t = 1 we know the values
of y and y'. Using the general solution, we first have that

0=y(1) =c.
Thus, we have so far that y(t) = c; In |t|t 1. Now, using the second condition and
¥ (t) = co(1—Int])t 2,
we have
1=y(1) =cy.
Therefore, the solution of the initial value problem is y(t) = In [t[t~1.

We now turn to the case of complex conjugate roots, r = a £ if. When
dealing with the Cauchy-Euler equations, we have solutions of the form
y(x) = x**iP. The key to obtaining real solutions is to first rewrite xV :

o = elnxy — eylnx.

Thus, a power can be written as an exponential and the solution can be
written as

y(x) = x8HP = x¥elPInx x5,

Recalling that
ePInX — cos(BIn |x|) + isin(BIn |x|),
we can now find two real, linearly independent solutions, x*cos(fIn |x|)

and x* sin(B1n |x|) following the same steps as earlier for the constant coef-
ficient case. This gives the general solution as

y(x) = x*(c1 cos(BIn |x[) + casin(BIn[x])).

Example B.20. Solve: x?y" — xy' + 5y = 0.
The characteristic equation takes the form

rir—=1)—r+5=0,

or

2 —2r+5=0.

The roots of this equation are complex, r1p = 1 = 2i. Therefore, the general solution
is y(x) = x(cq cos(21n |x|) 4+ ¢ sin(21n |x|)).

The three cases are summarized in the table below.

For complex conjugate roots, ¥ = a £if,
the general solution takes the form

y(x) = x*(c1 cos(BIn |x]) + cosin(BIn|x])).
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Classification of Roots of the Characteristic Equation
for Cauchy-Euler Differential Equations

1. Real, distinct roots r1,7;. In this case the solutions corresponding to
each root are linearly independent. Therefore, the general solution is
simply y(x) = c1x" + cpx'2.

2. Real, equal roots r; = 1 = r. In this case the solutions corresponding
to each root are linearly dependent. To find a second linearly indepen-
dent solution, one uses the Method of Reduction of Order. This gives
the second solution as x" In |x|. Therefore, the general solution is found
as y(x) = (c1 + c2Inx])x".

3. Complex conjugate roots r1,7p = a £ if. In this case the solutions
corresponding to each root are linearly independent. These com-
plex exponentials can be rewritten in terms of trigonometric functions.
Namely, one has that x* cos(BIn|x|) and x*sin(BIn|x|) are two lin-
early independent solutions. Therefore, the general solution becomes
y(x) = x¥(c1 cos(BInx]) + casin(BIn [x])).

Nonhomogeneous Cauchy-Euler Equations

We can also solve some nonhomogeneous Cauchy-Euler equations using
the Method of Undetermined Coefficients or the Method of Variation of
Parameters. We will demonstrate this with a couple of examples.

Example B.21. Find the solution of x*y" — xy' — 3y = 2x2.

First we find the solution of the homogeneous equation. The characteristic
equation is 12 —2r —3 = 0. So, the roots are r = —1,3 and the solution is
yp(x) = cpxt + oo,

We next need a particular solution. Let's guess y,(x) = Ax?. Inserting the
guess into the nonhomogeneous differential equation, we have

22t = X%y —xy — 3y = 242
= 2Ax* —2Ax*> —3Ax?
= —3Ax% (B.57)

So, A = —2/3. Therefore, the general solution of the problem is

2
y(x) = x4 oox® — éxz.
Example B.22. Find the solution of x*y" — xy' — 3y = 2x3.
In this case the nonhomogeneous term is a solution of the homogeneous problem,
which we solved in the last example. So, we will need a modification of the method.
We have a problem of the form

ax®y" + bxy' + cy = dx’,
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where 1 is a solution of ar(r — 1) + br + ¢ = 0. Let’s guess a solution of the form
y = Ax"Inx. Then one finds that the differential equation reduces to Ax"(2ar —
a+b) = dx". [You should verify this for yourself.]

With this in mind, we can now solve the problem at hand. Let y, = Ax®Inx.
Inserting into the equation, we obtain 4Ax3 = 2x3, or A = 1/2. The general
solution of the problem can now be written as

y(x) = cpx 4o + %x3 Inx.
Example B.23. Find the solution of x?y" — xy' — 3y = 2x> using Variation of
Parameters.

As noted in the previous examples, the solution of the homogeneous problem has
two linearly independent solutions, y1(x) = x~' and y,(x) = x>. Assuming a
particular solution of the form y,(x) = c1(x)y1(x) + c2(x)y2(x), we need to solve
the system (B.45):

A(x)x P+ h(x)x® = 0
2 / 2 23
—cj(x)x % +3ch(x)x* = o 2x. (B.58)
From the first equation of the system we have ¢ (x) = —x%c}(x). Substituting

this into the second equation gives ch(x) = 5. So, ca(x) = 4 In|x| and, therefore,
c(x) = %x‘*. The particular solution is

1p(¥) = (O (x) + (W) = g3+ 2P Inal.

Adding this to the homogeneous solution, we obtain the same solution as in the last

example using the Method of Undetermined Coefficients. However, since %x?’

solution of the homogeneous problem, it can be absorbed into the first terms, leaving

is a

1
y(x) = cpx 4o + §x3 Inx.

Problems

1. Find all of the solutions of the first order differential equations. When
an initial condition is given, find the particular solution satisfying that con-

dition.
dy "
a- % —_ @'
d
b S =121+ ), y(0) =1
)
Vi
dx x

d. xy' =y(1-2y), y(1)=2.
e. ¥y — (sinx)y =sinx.

f.oxy —2y=x%y(1) =1
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g. %JFZS:stZ, ,s(0) =1.
h. x' —2x = te?.

i j—i—l—y:sinx,y(O):O.
. dy 3

j- %—; =x%,y(1) = 4.

2. Consider the differential equation

dl_x X

dx y 1+y’

a. Find the 1-parameter family of solutions (general solution) of this

equation.

b. Find the solution of this equation satisfying the initial condition
y(0) = 1. Is this a member of the 1-parameter family?

3. Identify the type of differential equation. Find the general solution and
plot several particular solutions. Also, find the singular solution if one ex-

ists.
a. y=xy' + %
b. y=2xy +Iny.
c. vy +2xy = 2xy>.
d. v +2xy = y2e*.

4. Find all of the solutions of the second order differential equations. When
an initial condition is given, find the particular solution satisfying that con-

dition.
a. y' =9y’ +20y =0.
b. y" =38y +4y=0, y(0)=0, ¥ (0)=
c 8y +4y/+y=0 y0)=1 y'(0)=

d. ¥ —x' —6x =0 for x = x(t).

5. Verify that the given function is a solution and use Reduction of Order

to find a second linearly independent solution.

a. x2y" —2xy' —4y =0, y(x)=x*

b. xy" —y' +4x% =0, yi(x) =sin(x?).

6. Prove that y1(x) = sinhx and y,(x) = 3sinhx — 2coshx are linearly
independent solutions of y”” — y = 0. Write y3(x) = cosh x as a linear com-

bination of y; and y».

7. Consider the nonhomogeneous differential equation x”" — 3x’ +2x = 6¢%".

a. Find the general solution of the homogenous equation.

b. Find a particular solution using the Method of Undetermined Co-

efficients by guessing x,(t) = Ae’.
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c. Use your answers in the previous parts to write down the general
solution for this problem.

8. Find the general solution of the given equation by the method given.

a. y” — 3y’ + 2y = 10. Method of Undetermined Coefficients.
b. y” +vy' = 3x2. Variation of Parameters.
9. Use the Method of Variation of Parameters to determine the general
solution for the following problems.
a. ¥ +y=tanx.
b. v — 4y + 4y = 6xe?*.
10. Instead of assuming that ¢}y + ¢4y, = 0 in the derivation of the solu-

tion using Variation of Parameters, assume that cjy; + chyo, = h(x) for an
arbitrary function i(x) and show that one gets the same particular solution.

11. Find all of the solutions of the second order differential equations for
x > 0.. When an initial condition is given, find the particular solution
satisfying that condition.

a. x%y" +3xy’ +2y = 0.
b. x%y" —3xy' + 3y = 0.
c. x?y" +5xy +4y = 0.

&

x%y" —2xy' 4+ 3y = 0.

e. x2y" +3xy’ — 3y = x2.
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