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Prologue

“How can it be that mathematics, being after all a product of human thought inde-
pendent of experience, is so admirably adapted to the objects of reality?.” - Albert
Einstein (1879-1955)

Introduction

This set of notes is being compiled for use in a two semester course
on mathematical methods for the solution of partial differential equations
typically taken by majors in mathematics, the physical sciences, and engi-
neering. Partial differential equations often arise in the study of problems
in applied mathematics, mathematical physics, physical oceanography, me-
teorology, engineering, and biology, economics, and just about everything
else. However, many of the key methods for studying such equations ex-
tend back to problems in physics and geometry. In this course we will
investigate analytical, graphical, and approximate solutions of some stan-
dard partial differential equations. We will study the theory, methods of
solution and applications of partial differential equations.

We will first introduce partial differential equations and a few models.
A PDE, for short, is an equation involving the derivatives of some unknown
multivariable function. It is a natural extenson of ordinary differential equa-
tions (ODEs), which are differential equations for an unknown function one
one variable. We will begin by classifying some of these equations.

While it is customary to begin the study of PDEs with the one dimen-
sional heat and wave equations, we will begin with first order PDEs and
then proceed to the other second order equations. This will allow for an un-
derstanding of characteristics and also open the door to the study of some
nonlinear equations related to some current research in the evolution of
wave equations.

There are different methods for solving partial differential and these will
be explored throughout the course. As we progress through the course, we
will introduce standard numerical methods since knowing how to numer-
ically solve differential equations can be useful in research. We will also
look into the standard solutions, including separation of variables, starting
in one dimension and then proceeding to higher dimensions. This naturally
leads to finding solutions as Fourier series and special functions, such as



x partial differential equations

Legendre polynomials and Bessel functions.
The specific topics to be studied and approximate number of lectures

will include
First Semester: (26 lectures)

• Introduction (1)

• First Order PDEs (2)

• Traveling Waves (1)

• Shock and Rarefaction Waves (2)

• Second Order PDEs (1)

• 1D Heat Equation (1)

• 1D Wave Equation - d’Alembert Solution (2)

• Separation of Variables (1)

• Fourier Series (4)

• Equations in 2D - Laplace’s Equation, Vibrating Membranes (4)

• Numerical Solutions (2)

• Special Functions (3)

• Sturm-Liouville Theory (2)

Second semester: (25 lectures)

• Nonhomogeneous Equations (2)

• Green’s Functions - ODEs (2)

• Green’s Functions - PDEs (2)

• Complex Variables (4)

• Fourier Transforms (3)

• Nonlinear PDEs (2)

• Other - numerical, conservation laws, symmetries (10)

An appendix is provided for reference, especially to basic calculus tech-
niques, differential equations, and (maybe later) linear algebra.
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1
First Order Partial Differential Equations

“The profound study of nature is the most fertile source of mathematical discover-
ies.” - Joseph Fourier (1768-1830)

1.1 Introduction

We begin our study of partial differential equations with first
order partial differential equations. Before doing so, we need to define a few
terms.

Recall (see the appendix on differential equations) that an n-th order
ordinary differential equation is an equation for an unknown function y(x) n-th order ordinary differential equation

that expresses a relationship between the unknown function and its first n
derivatives. One could write this generally as

F(y(n)(x), y(n−1)(x), . . . , y′(x), y(x), x) = 0. (1.1)

Here y(n)(x) represents the nth derivative of y(x). Furthermore, and initial
value problem consists of the differential equation plus the values of the Initial value problem.

first n− 1 derivatives at a particular value of the independent variable, say
x0:

y(n−1)(x0) = yn−1, y(n−2)(x0) = yn−2, . . . , y(x0) = y0. (1.2)

If conditions are instead provided at more than one value of the indepen-
dent variable, then we have a boundary value problem. .

If the unknown function is a function of several variables, then the deriva-
tives are partial derivatives and the resulting equation is a partial differen-
tial equation. Thus, if u = u(x, y, . . .), a general partial differential equation
might take the form

F
(

x, y, . . . , u,
∂u
∂x

,
∂u
∂y

, . . . ,
∂2u
∂x2 , . . .

)
= 0. (1.3)

Since the notation can get cumbersome, there are different ways to write
the partial derivatives. First order derivatives could be written as

∂u
∂x

, ux, ∂xu, Dxu.
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Second order partial derivatives could be written in the forms

∂2u
∂x2 , uxx, ∂xxu, D2

xu.

∂2u
∂x∂y

=
∂2u

∂y∂x
, uxy, ∂xyu, DyDxu.

Note, we are assuming that u(x, y, . . .) has continuous partial derivatives.
Then, according to Clairaut’s Theorem (Alexis Claude Clairaut, 1713-1765) ,
mixed partial derivatives are the same.

Examples of some of the partial differential equation treated in this book
are shown in Table 2.1. However, being that the highest order derivatives in
these equation are of second order, these are second order partial differential
equations. In this chapter we will focus on first order partial differential
equations. Examples are given by

ut + ux = 0.

ut + uux = 0.

ut + uux = u.

3ux − 2uy + u = x.

For function of two variables, which the above are examples, a general
first order partial differential equation for u = u(x, y) is given as

F(x, y, u, ux, uy) = 0, (x, y) ∈ D ⊂ R2. (1.4)

This equation is too general. So, restrictions can be placed on the form,
leading to a classification of first order equations. A linear first order partial
differential equation is of the formLinear first order partial differential

equation.
a(x, y)ux + b(x, y)uy + c(x, y)u = f (x, y). (1.5)

Note that all of the coefficients are independent of u and its derivatives and
each term in linear in u, ux, or uy.

We can relax the conditions on the coefficients a bit. Namely, we could as-
sume that the equation is linear only in ux and uy. This gives the quasilinear
first order partial differential equation in the formQuasilinear first order partial differential

equation.
a(x, y, u)ux + b(x, y, u)uy = f (x, y, u). (1.6)

Note that the u-term was absorbed by f (x, y, u).
In between these two forms we have the semilinear first order partial

differential equation in the formSemilinear first order partial differential
equation.

a(x, y)ux + b(x, y)uy = f (x, y, u). (1.7)

Here the left side of the equation is linear in u, ux and uy. However, the right
hand side can be nonlinear in u.

For the most part, we will introduce the Method of Characteristics for
solving quasilinear equations. But, let us first consider the simpler case of
linear first order constant coefficient partial differential equations.
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1.2 Linear Constant Coefficient Equations

Let’s consider the linear first order constant coefficient par-
tial differential equation

aux + buy + cu = f (x, y), (1.8)

for a, b, and c constants with a2 + b2 > 0. We will consider how such equa-
tions might be solved. We do this by considering two cases, b = 0 and
b 6= 0.

For the first case, b = 0, we have the equation

aux + cu = f .

We can view this as a first order linear (ordinary) differential equation with
y a parameter. Recall that the solution of such equations can be obtained
using an integrating factor. [See the discussion after Equation (B.7).] First
rewrite the equation as

ux +
c
a

u =
f
a

.

Introducing the integrating factor

µ(x) = exp(
∫ x c

a
dξ) = e

c
a x,

the differential equation can be written as

(µu)x =
f
a

µ.

Integrating this equation and solving for u(x, y), we have

µ(x)u(x, y) =
1
a

∫
f (ξ, y)µ(ξ) dξ + g(y)

e
c
a xu(x, y) =

1
a

∫
f (ξ, y)e

c
a ξ dξ + g(y)

u(x, y) =
1
a

∫
f (ξ, y)e

c
a (ξ−x) dξ + g(y)e−

c
a x. (1.9)

Here g(y) is an arbitrary function of y.
For the second case, b 6= 0, we have to solve the equation

aux + buy + cu = f .

It would help if we could find a transformation which would eliminate one
of the derivative terms reducing this problem to the previous case. That is
what we will do.

We first note that

aux + buy = (ai + bj) · (uxi + uyj)

= (ai + bj) · ∇u. (1.10)



4 partial differential equations

Recall from multivariable calculus that the last term is nothing but a direc-
tional derivative of u(x, y) in the direction ai + bj. [Actually, it is propor-
tional to the directional derivative if ai + bj is not a unit vector.]

Therefore, we seek to write the partial differential equation as involving a
derivative in the direction ai + bj but not in a directional orthogonal to this.
In Figure 1.1 we depict a new set of coordinates in which the w direction is
orthogonal to ai + bj.x

z = y

w = bx− ay

ai + bj

Figure 1.1: Coordinate systems for trans-
forming aux + buy + cu = f into bvz +
cv = f using the transformation w =
bx− ay and z = y.

We consider the transformation

w = bx− ay,

z = y. (1.11)

We first note that this transformation is invertible,

x =
1
b
(w + az),

y = z. (1.12)

Next we consider how the derivative terms transform. Let u(x, y) =

v(w, z). Then, we have

aux + buy = a
∂

∂x
v(w, z) + b

∂

∂y
v(w, z),

= a
[

∂v
∂w

∂w
∂x

+
∂v
∂z

∂z
∂x

]
+b
[

∂v
∂w

∂w
∂y

+
∂v
∂z

∂z
∂y

]
= a[bvw + 0 · vz] + b[−avw + vz]

= bvz. (1.13)

Therefore, the partial differential equation becomes

bvz + cv = f
(

1
b
(w + az), z

)
.

This is now in the same form as in the first case and can be solved using an
integrating factor.

Example 1.1. Find the general solution of the equation 3ux − 2uy + u = x.
First, we transform the equation into new coordinates.

w = bx− ay = −2x− 3y,

and z = y. The,

ux − 2uy = 3[−2vw + 0 · vz]− 2[−3vw + vz]

= −2vz. (1.14)

The new partial differential equation for v(w, z) is

−2
∂v
∂z

+ v = x = −1
2
(w + 3z).
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Rewriting this equation,

∂v
∂z
− 1

2
v =

1
4
(w + 3z),

we identify the integrating factor

µ(z) = exp
[
−
∫ z 1

2
dζ

]
= e−z/2.

Using this integrating factor, we can solve the differential equation for v(w, z).

∂

∂z

(
e−z/2v

)
=

1
4
(w + 3z)e−z/2,

e−z/2v(w, z) =
1
4

∫ z
(w + 3ζ)e−ζ/2 dζ

= −1
2
(w + 6 + 3z)e−z/2 + c(w)

v(w, z) = −1
2
(w + 6 + 3z) + c(w)ez/2

u(x, y) = x− 3 + c(−2x− 3y)ey/2.

(1.15)

1.3 Quasilinear Equations: The Method of Characteristics

1.3.1 Geometric Interpretation

We consider the quasilinear partial differential equation in
two independent variables,

a(x, y, u)ux + b(x, y, u)uy − c(x, y, u) = 0. (1.16)

Let u = u(x, y) be a solution of this equation. Then,

f (x, y, u) = u(x, y)− u = 0

describes the solution surface, or integral surface, Integral surface.

We recall from multivariable, or vector, calculus that the normal to the
integral surface is given by the gradient function,

∇ f = (ux, uy,−1).

Now consider the vector of coefficients, v = (a, b, c) and the dot product
with the gradient above:

v · ∇ f = aux + buy − c.

This is the left hand side of the partial differential equation. Therefore, for
the solution surface we have

v · ∇ f = 0,

or v is perpendicular to ∇ f . Since ∇ f is normal to the surface, v = (a, b, c)
is tangent to the surface. Geometrically, v defines a direction field, called
the characteristic field. These are shown in Figure 1.2. The characteristic field.

∇ f

v

Figure 1.2: The normal to the integral
surface,∇ f = (ux , uy,−1), and the tan-
gent vector, v = (a, b, c), are orthogonal.
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1.3.2 Characteristics

We seek the forms of the characteristic curves such as the one
shown in Figure 1.2. Recall that one can parametrize space curves,

c(t) = (x(t), y(t), u(t)), t ∈ [t1, t2].

The tangent to the curve is then

v(t) =
dc(t)

dt
=

(
dx
dt

,
dy
dt

,
du
dt

)
.

However, in the last section we saw that v(t) = (a, b, c) for the partial dif-
ferential equation a(x, y, u)ux + b(x, y, u)uy − c(x, y, u) = 0. This gives the
parametric form of the characteristic curves as

dx
dt

= a,
dy
dt

= b,
du
dt

= c. (1.17)

Another form of these equations is found by relating the differentials, dx,
dy, du, to the coefficients in the differential equation. Since x = x(t) and
y = y(t), we have

dy
dx

=
dy/dt
dx/dt

=
b
a

.

Similarly, we can show that

du
dx

=
c
a

,
du
dy

=
c
b

.

All of these relations can be summarized in the form

dt =
dx
a

=
dy
b

=
du
c

. (1.18)

How do we use these characteristics to solve quasilinear partial differen-
tial equations? Consider the next example.

Example 1.2. Find the general solution: ux + uy − u = 0.
We first identify a = 1, b = 1, and c = u. The relations between the differentials

is
dx
1

=
dy
1

=
du
u

.

We can pair the differentials in three ways:

dy
dx

= 1,
du
dx

= u,
du
dy

= u.

Only two of these relations are independent. We focus on the first pair.
The first equation gives the characteristic curves in the xy-plane. This equation

is easily solved to give
y = x + c1.

The second equation can be solved to give u = c2ex.
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The goal is to find the general solution to the differential equation. Since u =

u(x, y), the integration “constant” is not really a constant, but is constant with
respect to x. It is in fact an arbitrary constant function. In fact, we could view it
as a function of c1, the constant of integration in the first equation. Thus, we let
c2 = G(c1) for G and arbitrary function. Since c1 = y − x, we can write the
general solution of the differential equation as

u(x, y) = G(y− x)ex.

Example 1.3. Solve the advection equation, ut + cux = 0, for c a constant, and
u = u(x, t), |x| < ∞, t > 0.

The characteristic equations are

dτ =
dt
1

=
dx
c

=
du
0

(1.19)

and the parametric equations are given by

dx
dτ

= c,
du
dτ

= 0. (1.20)

These equations imply that

• u = const. = c1.

• x = ct + const. = ct + c2.
Traveling waves.

As before, we can write c1 as an arbitrary function of c2. However, before doing
so, let’s replace c1 with the variable ξ and then we have that

ξ = x− ct, u(x, t) = f (ξ) = f (x− ct)

where f is an arbitrary function. Furthermore, we see that u(x, t) = f (x − ct)
indicates that the solution is a wave moving in one direction in the shape of the
initial function, f (x). This is known as a traveling wave. A typical traveling wave
is shown in Figure 1.3.

x

u

f (x) f (x− ct)

c

Figure 1.3: Depiction of a traveling wave.
u(x, t) = f (x) at t = 0 travels without
changing shape.

Note that since u = u(x, t), we have

0 = ut + cux

=
∂u
∂t

+
dx
dt

∂u
∂x

=
du(x(t), t

dt
. (1.21)

This implies that u(x, t) = constant along the characteristics, dx
dt = c.

As with ordinary differential equations, the general solution provides an
infinite number of solutions of the differential equation. If we want to pick
out a particular solution, we need to specify some side conditions. We Side conditions.

investigate this by way of examples.

Example 1.4. Find solutions of ux + uy − u = 0 subject to u(x, 0) = 1.
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We found the general solution to the partial differential equation as u(x, y) =

G(y− x)ex. The side condition tells us that u = 1 along y = 0. This requires

1 = u(x, 0) = G(−x)ex.

Thus, G(−x) = e−x. Replacing x with −z, we find

G(z) = ez.

Thus, the side condition has allowed for the determination of the arbitrary function
G(y− x). Inserting this function, we have

u(x, y) = G(y− x)ex = ey−xex = ey.

Side conditions could be placed on other curves. For the general line,
y = mx + d, we have u(x, mx + d) = g(x) and for x = d, u(d, y) = g(y).
As we will see, it is possible that a given side condition may not yield a
solution. We will see that conditions have to be given on non-characteristic
curves in order to be useful.

Example 1.5. Find solutions of 3ux − 2uy + u = x for a) u(x, x) = x and b)
u(x, y) = 0 on 3y + 2x = 1.

Before applying the side condition, we find the general solution of the partial
differential equation. Rewriting the differential equation in standard form, we have

3ux − 2uy = x = u.

The characteristic equations are

dx
3

=
dy
−2

=
du

x− u
. (1.22)

These equations imply that

• −2dx = 3dy

This implies that the characteristic curves (lines) are 2x + 3y = c1.

• du
dx = 1

3 (x− u).

This is a linear first order differential equation, du
dx + 1

3 u = 1
3 x. It can be solved

using the integrating factor,

µ(x) = exp
(

1
3

∫ x
dξ

)
= ex/3.

d
dx

(
uex/3

)
=

1
3

xex/3

uex/3 =
1
3

∫ x
ξeξ/3 dξ + c2

= (x− 3)ex/3 + c2

u(x, y) = x− 3 + c2e−x/3. (1.23)
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As before, we write c2 as an arbitrary function of c1 = 2x + 3y. This gives the
general solution

u(x, y) = x− 3 + G(2x + 3y)e−x/3.

Note that this is the same answer that we had found in Example 1.1

Now we can look at any side conditions and use them to determine particular
solutions by picking out specific G’s.

a u(x, x) = x
This states that u = x along the line y = x. Inserting this condition into the
general solution, we have

x = x− 3 + G(5x)e−x/3,

or
G(5x) = 3ex/3.

Letting z = 5x,
G(z) = 3ez/15.

The particular solution satisfying this side condition is

u(x, y) = x− 3 + G(2x + 3y)e−x/3

= x− 3 + 3e(2x+3y)/15e−x/3

= x− 3 + 3e(y−x)/5. (1.24)

This surface is shown in Figure 1.5.

Figure 1.4: Integral surface found in Ex-
ample 1.5.

In Figure 1.5 we superimpose the values of u(x, y) along the characteristic
curves. The characteristic curves are the red lines and the images of these
curves are the black lines. The side condition is indicated with the blue curve
drawn along the surface.

Figure 1.5: Integral surface with side
condition and characteristics for Exam-
ple 1.5.

The values of u(x, y) are found from the side condition as follows. For x = ξ

on the blue curve, we know that y = ξ and u(ξ, ξ) = ξ. Now, the character-
istic lines are given by 2x + 3y = c1. The constant c1 is found on the blue
curve from the point of intersection with one of the black characteristic lines.
For x = y = ξ, we have c1 = 5ξ. Then, the equation of the characteristic
line, which is red in Figure 1.5, is given by y = 1

3 (5ξ − 2x).
Along these lines we need to find u(x, y) = x− 3 + c2e−x/3. First we have
to find c2. We have on the blue curve, that

ξ = u(ξ, ξ)

= ξ − 3 + c2e−ξ/3. (1.25)

Therefore, c2 = 3eξ/3. Inserting this result into the expression for the solu-
tion, we have

u(x, y) = x− 3 + e(ξ−x)/3.

So, for each ξ, one can draw a family of spacecurves(
x,

1
3
(5ξ − 2x), x− 3 + e(ξ−x)/3

)
yielding the integral surface.
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b u(x, y) = 0 on 3y + 2x = 1.

For this condition, we have

0 = x− 3 + G(1)e−x/3.

We note that G is not a function in this expression. We only have one value
for G. So, we cannot solve for G(x). Geometrically, this side condition corre-
sponds to one of the black curves in Figure 1.5.

1.4 Applications

1.4.1 Conservation Laws

There are many applications of quasilinear equations, especially
in fluid dynamics. The advection equation is one such example and gener-
alizations of this example to nonlinear equations leads to some interesting
problems. These equations fall into a category of equations called conser-
vation laws. We will first discuss one-dimensional (in space) conservations
laws and then look at simple examples of nonlinear conservation laws.

Conservation laws are useful in modeling several systems. They can be
boiled down to determining the rate of change of some stuff, Q(t), in a
region, a ≤ x ≤ b, as depicted in Figure 1.6. The simples model is to think
of fluid flowing in one dimension, such as water flowing in a stream. Or,
it could be the transport of mass, such as a pollutant. One could think of
traffic flow down a straight road.

Figure 1.6: The rate of change of Q be-
tween x = a and x = b depends on the
rates of flow through each end.

x = a x = b

Q(t)φ(a, t) φ(b, t)

This is an example of a typical mixing problem. The rate of change of
Q(t) is given as

the rate of change of Q = Rate in− Rate Out + source term.

Here the “Rate in” is how much is flowing into the region in Figure 1.6 from
the x = a boundary. Similarly, the “Rate out” is how much is flowing into
the region from the x = b boundary. [Of course, this could be the other way,
but we can imagine for now that q is flowing from left to right.] We can
describe this flow in terms of the flux, φ(x, t) over the ends of the region.
On the left side we have a gain of φ(a, t) and on the right side of the region
there is a loss of φ(b, t).

The source term would be some other means of adding or removing Q
from the region. In terms of fluid flow, there could be a source of fluid
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inside the region such as a faucet adding more water. Or, there could be a
drain letting water escape. We can denote this by the total source over the
interval,

∫ b
a f (x, t) dx. Here f (x, t) is the source density.

In summary, the rate of change of Q(x, t) can be written as

dQ
dt

= φ(a, t)− φ(b, t) +
∫ b

a
f (x, y) dx.

We can write this in a slightly different form by noting that φ(a, t) −
φ(b, t) can be viewed as the evaluation of antiderivatives in the Fundamental
Theorem of Calculus. Namely, we can recall that∫ b

a

∂φ(x, t)
∂x

dx = φ(b, t)− φ(a, t).

The difference is not exactly in the order that we desire, but it is easy to see
that Integral form of conservation law.

dQ
dt

= −
∫ b

a

∂φ(x, t)
∂x

dx +
∫ b

a
f (x, t) dx. (1.26)

This is the integral form of the conservation law.
We can rewrite the conservation law in differential form. First, we intro-

duce the density function, u(x, t), so that the total amount of stuff at a given
time is

Q(t) =
∫ b

a
u(x, t) dx.

Introducing this form into the integral conservation law, we have

d
dt

∫ b

a
u(x, t) dx = −

∫ b

a

∂φ

∂x
dx +

∫ b

a
f (x, t) dx. (1.27)

Assuming that a and b are fixed in time and that the integrand is continuous,
we can bring the time derivative inside the integrand and collect the three
terms into one to find∫ b

a
(ut(x, t) + φx(x, t)− f (x, t)) dx = 0, ∀x ∈ [a, b].

We cannot simply set the integrant to zero just because the integral van-
ishes. However, if this result holds for every region [a, b], then we can con-
clude the integrand vanishes. So, under that assumption, we have the local
conservation law, Differential form of conservation law.

ut(x, t) + φx(x, t) = f (x, t). (1.28)

This partial differential equation is actually an equation in terms of two
unknown functions, assuming we know something about the source func-
tion. We would like to have a single unknown function. So, we need some
additional information. This added information comes from the constitutive
relation, a function relating the flux to the density function. Namely, we will
assume that we can find the relationship φ = φ(u). If so, then we can write

∂φ

∂x
=

dφ

du
∂u
∂x

,

or φx = φ′(u)ux.
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Example 1.6. Inviscid Burgers’ Equation Find the equation satisfied by u(x, t)
for φ(u) = 1

2 u2 and f (x, t) ≡ 0.
For this flux function we have φx = φ′(u)ux = uux. The resulting equation is

then ut + uux = 0. This is the inviscid Burgers’ equation. We will later discuss
Burgers’ equation.

Example 1.7. Traffic Flow
This is a simple model of one-dimensional traffic flow. Let u(x, t) be the density

of cars. Assume that there is no source term. For example, there is no way for a car
to disappear from the flow by turning off the road or falling into a sinkhole. Also,
there is no source of additional cars.

Let φ(x, t) denote the number of cars per hour passing position x at time t. Note
that the units are given by cars/mi times mi/hr. Thus, we can write the flux as
φ = uv, where v is the velocity of the carts at position x and time t.

u

v

v1

u1

Figure 1.7: Car velocity as a function of
car density.

In order to continue we need to assume a relationship between the car velocity
and the car density. Let’s assume the simplest form, a linear relationship. The more
dense the traffic, we expect the speeds to slow down. So, a function similar to that
in Figure 1.7 is in order. This is a straight line between the two intercepts (0, v1)

and (u1, 0). It is easy to determine the equation of this line. Namely the relationship
is given as

v = v1 −
v1

u1
u.

This gives the flux as

φ = uv = v1

(
u− u2

u1

)
.

We can now write the equation for the car density,

0 = ut + φ′ux

= ut + v1

(
1− 2u

u1

)
ux. (1.29)

1.4.2 Nonlinear Advection Equations

In this section we consider equations of the form ut + c(u)ux = 0.
When c(u) is a constant function, we have the advection equation. In the last
two examples we have seen cases in which c(u) is not a constant function.
We will apply the method of characteristics to these equations. First, we will
recall how the method works for the advection equation.

The advection equation is given by ut + cux = 0. The characteristic equa-
tions are given by

dx
dt

= c,
du
dt

= 0.

These are easily solved to give the result that

u(x, t) = constant along the lines x = ct + x0,

where x0 is an arbitrary constant.
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The characteristic lines are shown in Figure 1.8. We note that u(x, t) =

u(x0, 0) = f (x0). So, if we know u initially, we can determine what u is at a
later time.

x

t

x0

t = t1

slope = 1/c

u(x0 + ct1, t1) = u(x0, 0)

Figure 1.8: The characteristics lines the
xt-plane.

In Figure 1.8 we see that the value of u(x0, ) at t = 0 and x = x0 propa-
gates along the characteristic to a point at time t = t1. From x− ct = x0, we
can solve for x in terms of t1 and find that u(x0 + ct1, t1) = u(x0, 0).

Plots of solutions u(x, t) versus x for specific times give traveling waves
as shown in Figure 1.3. In Figure 1.9 we show how each wave profile for
different times are constructed for a given initial condition.

x

u

x0

Figure 1.9: For each x = x0 at t = 0,
u(x0 + ct, t) = u(x0, 0).

The nonlinear advection equation is given by ut + c(u)ux = 0, |x| < ∞.
Let u(x, 0) = u0(x) be the initial profile. The characteristic equations are
given by

dx
dt

= c(u),
du
dt

= 0.

These are solved to give the result that

u(x, t) = constant,

along the characteristic curves x′(t) = c(u). The lines passing though u(x0, ) =
u0(x0) have slope 1/c(u0(x0)).

Example 1.8. Solve ut + uux = 0, u(x, 0) = e−x2
.

For this problem u = constant along

dx
dt

= u.

Since u is constant, this equation can be integrated to yield x = u(x0, 0)t + x0.
Inserting the initial condition, x = e−x2

0 t + x0. Therefore, the solution is

u(x, t) = e−x2
0 along x = e−x2

0 t + x0.

In Figure 1.10 the characteristics a shown. In this case we see that the charac-
teristics intersect. In Figure charlines3 we look more specifically at the intersection
of the characteristic lines for x0 = 0 and x0 = 1. These are approximately the first
lines to intersect; i.e., there are (almost) no intersections at earlier times. At the
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Figure 1.10: The characteristics lines
the xt-plane for the nonlinear advection
equation.

x

t

slope = ex2
0

Figure 1.11: The characteristics lines for
x0 = 0, 1 in the xt-plane for the nonlinear
advection equation.

x

t

u = 1
e

u = 1

x0 = 0 x0 = 1

intersection point the function u(x, t) appears to take on more than one value. For
the case shown, the solution wants to take the values u = 0 and u = 1.

In Figure 1.12 we see the development of the solution. This is found using a
parametric plot of the points (x0 + te−x2

0 , e−x2
0) for different times. The initial profile

propagates to the right with the higher points traveling faster than the lower points
since x′(t) = u > 0. Around t = 1.0 the wave breaks and becomes multivalued.
The time at which the function becomes multivalued is called the breaking time.

x

u

t =0.0

x

u

t =0.5

x

u

t =1.0

x

u

t =1.5

x

u

t =2.0

Figure 1.12: The development of a gra-
dient catastrophe in Example 1.8 leading
to a multivalued function.

1.4.3 The Breaking Time

In the last example we saw that for nonlinear wave speeds a gradi-
ent catastrophe might occur. The first time at which a catastrophe occurs
is called the breaking time. We will determine the breaking time for the
nonlinear advection equation, ut + c(u)ux = 0. For the characteristic corre-
sponding to x0 = ξ, the wavespeed is given by

F(ξ) = c(u0(ξ))

and the characteristic line is given by

x = ξ + tF(ξ).

The value of the wave function along this characteristic isu0(ξ) = u(ξ, 0).

u(x, t) = u(ξ + tF(ξ), t)

= . (1.30)

Therefore, the solution is

u(x, t) = u0(ξ) along x = ξ + tF(ξ).
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This means that

ux = u′0(ξ)ξx and ut = u′0(ξ)ξt.

We can determine ξx and ξt using the characteristic line

ξ = x− tF(ξ).

Then, we have

ξx = 1− tF′(ξ)ξx

=
1

1 + tF′(ξ)
.

ξt =
∂

∂t
(x− tF(ξ))

= −F(ξ)− tF′(ξ)ξt

=
−F(ξ)

1 + tF′(ξ)
. (1.31)

Note that ξx and ξt are undefined if the denominator in both expressions
vanishes, 1 + tF′(ξ) = 0, or at time

t = − 1
F′(ξ)

.

The minimum time for this to happen in the breaking time, The breaking time.

tb = min
{
− 1

F′(ξ)

}
. (1.32)

Example 1.9. Find the breaking time for ut + uux = 0, u(x, 0) = e−x2
.

Since c(u) = u, we have

F(ξ) = c(u0(ξ)) = e−ξ2

and
F′(ξ) = −2ξe−ξ2

.

This gives

t =
1

2ξe−ξ2 .

We need to find the minimum time. Thus, we set the derivative equal to zero and
solve for ξ.

0 =
d

dξ

(
eξ2

2ξ

)

=

(
2− 1

ξ2

)
eξ2

2
. (1.33)

Thus, the minimum occurs for 2− 1
ξ2 = 0, or ξ = 1/

√
2. This gives

tb = t
(

1√
2

)
=

1
2√

2e−1/2

=

√
e
2
≈ 1.16. (1.34)
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1.4.4 Shock Waves

Solutions of nonlinear advection equations can become multival-
ued due to a gradient catastrophe. Namely, the derivatives ut and ux become
undefined. We would like to extend solutions past the catastrophe. How-
ever, this leads to the possibility of discontinuous solutions. Such solutions
which may not be differentiable or continuous in the domain are known as
weak solutions. In particular, consider the initial value problemWeak solutions.

ut + φx = 0, x ∈ R, t > 0, u(x, 0) = u0(x).

Then, u(x, t) is a weak solution of this problem if∫ ∞

0

∫ ∞

−∞
[uvt + φvx] dxdt +

∫ ∞

−∞
u0(x)v(x, 0) dx = 0

for all smooth functions v ∈ C∞(R × [0, ∞)) with compact support, i.e.,
v ≡= 0 outside some compact subset of the domain.

x

u

t =1.5

x

u

t =1.75

x

u

t =2.0

Figure 1.13: The shock solution after the
breaking time.

Effectively, the weak solution that evolves will be a piecewise smooth
function with a discontinuity, the shock wave, that propagates with shock
speed. It can be shown that the form of the shock will be the discontinuity
shown in Figure 1.13 such that the areas cut from the solutions will cancel
leaving the total area under the solution constant. [See G. B. Whitham’s
Linear and Nonlinear Waves, 1973.] We will consider the discontinuity as
shown in Figure 1.14.

x

u

u−s

u+
s

Figure 1.14: Depiction of the jump dis-
continuity at the shock position.

We can find the equation for the shock path by using the integral form of
the conservation law,

d
dt

∫ b

a
u(x, t) dx = φ(a, t)− φ(b, t).

Recall that one can differentiate under the integral if u(x, t) and ut(x, t) are
continuous in x and t in an appropriate subset of the domain. In particu-
lar, we will integrate over the interval [a, b] as shown in Figure 1.15. The
domains on either side of shock path are denoted as R+ and R− and the
limits of x(t) and u(x, t) as one approaches from the left of the shock are
denoted by x−s (t) and u− = u(x−s , t). Similarly, the limits of x(t) and u(x, t)
as one approaches from the right of the shock are denoted by x+s (t) and
u+ = u(x+s , t).

x

t

R+R−

a b

Figure 1.15: Domains on either side of
shock path are denoted as R+ and R−.

We need to be careful in differentiating under the integral,

d
dt

∫ b

a
u(x, t) dx =

d
dt

[∫ x−s (t)

a
u(x, t) dx +

∫ b

x+s (t)
u(x, t) dx

]

=
∫ x−s (t)

a
ut(x, t) dx +

∫ b

x+s (t)
ut(x, t) dx

+u(x−s , t)
dx−s
dt
− u(x+s , t)

dx+s
dt

= φ(a, t)− φ(b, t). (1.35)
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Taking the limits a→ x−s and b→ x+s , we have that(
u(x−s , t)− u(x+s , t)

) dxs

dt
= φ(x−s , t)− φ(x+s , t).

Adopting the notation
[ f ] = f (x+s )− f (x−s ),

we arrive at the Rankine-Hugonoit jump condition The Rankine-Hugonoit jump condition.

dxs

dt
=

[φ]

[u]
. (1.36)

This gives the equation for the shock path as will be shown in the next
example.

Example 1.10. Consider the problem ut + uux = 0, |x| < ∞, t > 0 satisfying the
initial condition

u(x, 0) =

{
1, x ≤ 0,
0, x > 0.

x

u
1

x

t

u = 0u = 1

Figure 1.16: Initial condition and charac-
teristics for Example 1.10.

The characteristics for this partial differential equation are familiar by now. The
initial condition and characteristics are shown in Figure 1.16. From x′(t) = u,
there are two possibilities. If u = 0, then we have a constant. If u = 1 along the
characteristics, the we have straight lines of slope one. Therefore, the characteristics
are given by

x(t) =

{
x0, x > 0,

t + x0, x < 0.

As seen in Figure 1.16 the characteristics intersect immediately at t = 0. The
shock path is found from the Rankine-Hugonoit jump condition. We first note that
φ(u) = 1

2 u2, since φx = uux. Then, we have

dxs

dt
=

[φ]

[u]

=
1
2 u+2 − 1

2 u−2

u+ − u−

=
1
2
(u+ + u−)(u+ − u−)

u+ − u−

=
1
2
(u+ + u−)

=
1
2
(0 + 1) =

1
2

. (1.37)

Now we need only solve the ordinary differential equation x′s(t) =
1
2 with initial

condition xs(0) = 0. This gives xs(t) = t
2 . This line separates the characteristics

on the left and right side of the shock solution. The solution is given by

u(x, t) =

{
1, x ≤ t/2,
0, x > t/2.

x

t

u = 0u = 1

Figure 1.17: The characteristic lines end
at the shock path (in red). On the left
u = 1 and on the right u = 0.

In Figure 1.17 we show the characteristic lines ending at the shock path (in red)
with u = 0 and on the right and u = 1 on the left of the shock path. This is
consistent with the solution. One just sees the initial step function moving to the
right with speed 1/2 without changing shape.
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1.4.5 Rarefaction Waves

Shocks are not the only type of solutions encountered when the
velocity is a function of u. There may sometimes be regions where the char-
acteristic lines do not appear. A simple example is the following.

Example 1.11. Draw the characteristics for the problem ut + uux = 0, |x| < ∞,
t > 0 satisfying the initial condition

u(x, 0) =

{
0, x ≤ 0,
1, x > 0.

x

u
1

x

t

u = 1u = 0

Figure 1.18: Initial condition and charac-
teristics for Example 1.14.

In this case the solution is zero for negative values of x and positive for positive
values of x as shown in Figure 1.18. Since the wavespeed is given by u, the u = 1
initial values have the waves on the right moving to the right and the values on the
left stay fixed. This leads to the characteristics in Figure 1.18 showing a region in
the xt-plane that has no characteristics. In this section we will discover how to fill
in the missing characteristics and, thus, the details about the solution between the
u = 0 and u = 1 values.

As motivation, we consider a smoothed out version of this problem.

Example 1.12. Draw the characteristics for the initial condition

u(x, 0) =


0, x ≤ −ε,

x+ε
2ε , |x| ≤ ε,
1, x > ε.

The function is shown in the top graph in Figure 1.19. The leftmost and right-
most characteristics are the same as the previous example. The only new part is
determining the equations of the characteristics for |x| ≤ ε. These are found using
the method of characteristics as

x = ξ + u0(ξ)t, u0(ξ) =
ξ + ε

2ε
t.

These characteristics are drawn in Figure 1.19 in red. Note that these lines take on
slopes varying from infinite slope to slope one, corresponding to speeds going from
zero to one.

x

u
1

ε-ε

x

t

u = 1
ε-ε

u = 0

Figure 1.19: The function and character-
istics for the smoothed step function.

Comparing the last two examples, we see that as ε approaches zero, the
last example converges to the previous example. The characteristics in the
region where there were none become a “fan”. We can see this as follows.

Characteristics for rarefaction, or expan-
sion, waves are fan-like characteristics.

Since |ξ| < ε for the fan region, as ε gets small, so does this interval. Let’s
scale ξ as ξ = σε, σ ∈ [−1, 1]. Then,

x = σε + u0(σε)t, u0(σε) =
σε + ε

2ε
t =

1
2
(σ + 1)t.

For each σ ∈ [−1, 1] there is a characteristic. Letting ε→ 0, we have

x = ct, c =
1
2
(σ + 1)t.
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Thus, we have a family of straight characteristic lines in the xt-plane passing
through (0, 0) of the form x = ct for c varying from c = 0 to c = 1. These
are shown as the red lines in Figure 1.20.

The fan characteristics can be written as x/t = constant. So, we can
seek to determine these characteristics analytically and in a straight forward
manner by seeking solutions of the form u(x, t) = g( x

t ). x

t

u = 1u = 0

Figure 1.20: The characteristics for Ex-
ample 1.14 showing the “fan” character-
istics.

Example 1.13. Determine solutions of the form u(x, t) = g( x
t ) to ut + uux = 0.

Inserting this guess into the differential equation, we have

Seek rarefaction fan waves using
u(x, t) = g( x

t ).

0 = ut + uux

=
1
t

g′
(

g− x
t

)
. (1.38)

Thus, either g′ = 0 or g = x
t . The first case will not work since this gives constant

solutions. The second solution is exactly what we had obtained before. Recall that
solutions along characteristics give u(x, t) = x

t = constant. The characteristics
and solutions for t = 0, 1, 2 are shown in Figure rarefactionfig4. At a specific time
one can draw a line (dashed lines in figure) and follow the characteristics back to
the t = 0 values, u(ξ, 0) in order to construct u(x, t).

x

t

u = 1u = 0

t = 1
t = 2

x

u
1

t = 0

x

u
1

t = 1

x

u
1

t = 2

Figure 1.21: The characteristics and so-
lutions for t = 0, 1, 2 for Example 1.14

As a last example, let’s investigate a nonlinear model which possesses
both shock and rarefaction waves.

Example 1.14. Solve the initial value problem ut + u2ux = 0, |x| < ∞, t > 0
satisfying the initial condition

u(x, 0) =


0, x ≤ 0,
1, 0 < x < 2,
0, x ≥ 2.
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The method of characteristics gives

dx
dt

= u2,
du
dt

= 0.

Therefore,

u(x, t) = u0(ξ) = const. along the lines x(t) = u2
0(ξ)t + ξ.

There are three values of u0(ξ),

u0(ξ) =


0, ξ ≤ 0,
1, 0 < ξ < 2,
0, ξ ≥ 2.

In Figure 1.22 we see that there is a rarefaction and a gradient catastrophe.

Figure 1.22: In this example there occurs
a rarefaction and a gradient catastrophe.

x

u
1

20

x

t

u = 1u = 0 u = 0

In order to fill in the fan characteristics, we need to find solutions u(x, t) =

g(x/t). Inserting this guess into the differential equation, we have

0 = ut + u2ux

=
1
t

g′
(

g2 − x
t

)
. (1.39)

Thus, either g′ = 0 or g2 = x
t . The first case will not work since this gives constant

solutions. The second solution gives

g
( x

t

)
=

√
x
t

.

. Therefore, along the fan characteristics the solutions are u(x, t) =
√

x
t = con-

stant. These fan characteristics are added in Figure 1.23.
Next, we turn to the shock path. We see that the first intersection occurs at the

point (x, t) = (2, 0). The Rankine-Hugonoit condition gives

dxs

dt
=

[φ]

[u]

=
1
3 u+3 − 1

3 u−3

u+ − u−

=
1
3
(u+ − u−)(u+2

+ u+u− + u−2
)

u+ − u−
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x

t

u = 1u = 0 u = 0

Figure 1.23: The fan characteristics are
added to the other characteristic lines.

=
1
3
(u+2

+ u+u− + u−2
)

=
1
3
(0 + 0 + 1) =

1
3

. (1.40)

Thus, the shock path is given by x′s(t) = 1
3 with initial condition xs(0) = 2.

This gives xs(t) = t
3 + 2. In Figure 1.24 the shock path is shown in red with the

fan characteristics and vertical lines meeting the path. Note that the fan lines and
vertical lines cross the shock path. This leads to a change in the shock path.

x

t

u = 1u = 0 u = 0

Figure 1.24: The shock path is shown in
red with the fan characteristics and ver-
tical lines meeting the path.

The new path is found using the Rankine-Hugonoit condition with u+ = 0 and

u− =
√

x
t . Thus,

dxs

dt
=

[φ]

[u]

=
1
3 u+3 − 1

3 u−3

u+ − u−

=
1
3
(u+ − u−)(u+2

+ u+u− + u−2
)

u+ − u−

=
1
3
(u+2

+ u+u− + u−2
)

=
1
3
(0 + 0 +

√
xs

t
) =

1
3

√
xs

t
. (1.41)

We need to solve the initial value problem

dxs

dt
=

1
3

√
xs

t
, xs(3) = 3.

This can be done using separation of variables. Namely,∫ dxs√
xs

=
1
3

t√
t
.



22 partial differential equations

This gives the solution
√

xs =
1
3

√
t + c.

Since the second shock solution starts at the point (3, 3), we can determine c =
2
3

√
3. This gives the shock path as

xs(t) =
(

1
3

√
t +

2
3

√
3
)2

.

In Figure 1.25 we show this shock path and the other characteristics ending on
the path.

Figure 1.25: The second shock path is
shown in red with the characteristics
shown in all regions.

x

t

u = 1u = 0 u = 0

It is interesting to construct the solution at different times based on the charac-
teristics. For a given time, t, one draws a horizontal line in the xt-plane and reads
off the values of u(x, t) using the values at t = 0 and the rarefaction solutions. This
is shown in Figure 1.26. The right discontinuity in the initial profile continues as
a shock front until t = 3. At that time the back rarefaction wave has caught up to
the shock. After t = 3, the shock propagates forward slightly slower and the height
of the shock begins to decrease. Due to the fact that the partial differential equation
is a conservation law, the area under the shock remains constant as it stretches and
decays in amplitude.

1.4.6 Traffic Flow

An interesting application is that of traffic flow. We had al-
ready derived the flux function. Let’s investigate examples with varying
initial conditions that lead to shock or rarefaction waves. As we had seen
earlier in modeling traffic flow, we can consider the flux function

φ = uv = v1

(
u− u2

u1

)
,

which leads to the conservation law

ut + v1(1−
2u
u1

)ux = 0.

Here u(x, t) represents the density of the traffic and u1 is the maximum
density and v1 is the initial velocity.
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x

t

u = 1u = 0 u = 0

t = 1
t = 2
t = 3
t = 4
t = 5

x

u
1

t = 0

20

x

u
1

t = 1

20

x

u
1

t = 2

20

x

u
1

t = 3

20

x

u
1

t = 4

20

x

u
1

t = 5

20

Figure 1.26: Solutions for the shock-
rarefaction example.
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First, consider the flow of traffic vas it approaches a red light as shown
in Figure 1.27. The traffic that is stopped has reached the maximum density
u1. The incoming traffic has a lower density, u0. For this red light problem,
we consider the initial condition

u(x, 0) =

{
u0, x < 0,
u1, x ≥ 0.

Figure 1.27: Cars approaching a red
light.

x
u1 cars/miu0 < u1 cars/mi

The characteristics for this problem are given by

x = c(u(x0, t))t + x0,

where

c(u(x0, t)) = v1(1−
2u(x0, 0)

u1
).

Since the initial condition is a piecewise-defined function, we need to con-
sider two cases.

x

u

u0

u1

x

t

u1u0

Figure 1.28: Initial condition and charac-
teristics for the red light problem.

First, for x ≥ 0, we have

c(u(x0, t)) = c(u1) = v1(1−
2u1

u1
) = −v1.

Therefore, the slopes of the characteristics, x = −v1t + x0 are −1/v1.
For x0 < 0, we have

c(u(x0, t)) = c(u0) = v1(1−
2u0

u1
).

So, the characteristics are x = −v1(1− 2u0
u1

)t + x0.

x

t

u1u0

x

t

u1u0

Figure 1.29: The addition of the shock
path for the red light problem.

In Figure 1.28 we plot the initial condition and the characteristics for
x < 0 and x > 0. We see that there are crossing characteristics and the begin
crossing at t = 0. Therefore, the breaking time is tb = 0. We need to find the
shock path satisfying xs(0) = 0. The Rankine-Hugonoit conditions give

dxs

dt
=

[φ]

[u]

=
1
2 u+2 − 1

2 u−2

u+ − u−

=
1
2

0− v1
u2

0
u1

u1 − u0

= −v1
u0

u1
. (1.42)

Thus, the shock path is found as xs(t) = −v1
u0
u1

.
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In Figure 1.29 we show the shock path. In the top figure the red line
shows the path. In the lower figure the characteristics are stopped on the
shock path to give the complete picture of the characteristics. The picture
was drawn with v1 = 2 and u0/u1 = 1/3.

The next problem to consider is stopped traffic as the light turns green.
The cars in Figure 1.30 begin to fan out when the traffic light turns green.
In this model the initial condition is given by

u(x, 0) =

{
u1, x ≤ 0,
0, x > 0.

x
0 cars/miu1 cars/mi

Figure 1.30: Cars begin to fan out when
the traffic light turns green.

Again,

c(u(x0, t)) = v1(1−
2u(x0, 0)

u1
).

Inserting the initial values of u into this expression, we obtain constant
speeds, ±v1. The resulting characteristics are given by

x(t) =

{
−v1t + x0, x ≤ 0,
v1t + x0, x > 0.

This leads to a rarefaction wave with the solution in the rarefaction region
given by

u(x, t) = g(x/t) =
1
2

u1

(
1− 1

v1

x
t

)
.

The characteristics are shown in Figure ??. The full solution is then

u(x, t) =


u1, x ≤ −v1t,

g(x/t), |x| < v1t,
0, x > v1t.

x

t

u1u0

Figure 1.31: The characteristics for the
green light problem.

1.5 General First Order PDEs

We have spent time solving quasilinear first order partial differential
equations. We now turn to nonlinear first order equations of the form

F(x, y, u, ux, uy) = 0,
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for u = u(x, y).
If we introduce new variables, p = ux and q = uy, then the differential

equation takes the form
F(x, y, u, p, q) = 0.

Note that for u(x, t) a function with continuous derivatives, we have

py = uxy = uyx = qx.

We can view F = 0 as a surface in a five dimensional space. Since the
arguments are functions of x and y, we have from the multivariable Chain
Rule that

dF
dx

= Fx + Fu
∂u
∂x

+ Fp
∂p
∂x

+ Fq
∂q
∂x

0 = Fx + pFu + pxFp + pyFq. (1.43)

This can be rewritten as a quasilinear equation for p(x, y) :

Fp px + Fq px = −Fx − pFu.

The characteristic equations are

dx
Fp

=
dy
Fq

= − dp
Fx + pFu

.

Similarly, from dF
dy = 0 we have that

dx
Fp

=
dy
Fq

= − dq
Fy + qFu

.

Furthermore, since u = u(x, y),

du =
∂u
∂x

dx +
∂u
∂y

dy

= pdx + qdy

= pdx + q
Fq

Fp
dx

=

(
p + q

Fq

Fp

)
. (1.44)

Therefore,
dx
Fp

=
du

pFp + qFq
.

Combining these results we have the Charpit Equations

The Charpit equations. These were
named after the French mathematician
Paul Charpit Villecourt, who was proba-
bly the first to present the method in his
thesis the year of his death, 1784. His
work was further extended in 1797 by
Lagrange and given a geometric expla-
nation by Gaspard Monge (1746-1818) in
1808. This method is often called the
Lagrange-Charpit method.

dx
Fp

=
dy
Fq

=
du

pFp + qFq
= − dp

Fx + pFu
= − dq

Fy + qFu
. (1.45)

These equations can be used to find solutions of nonlinear first order partial
differential equations as seen in the following examples.
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Example 1.15. Find the general solutio of u2
x + yuy − u = 0.

First, we introduce ux = p and uy = q. Then,

F(x, y, u, p, q) = p2 + qy− u = 0.

Next we identify

Fp = 2p, Fq = y, Fu = −1, Fx = 0, , Fy = q.

Then,

pFp + qFq = 2p2 + qy,

Fx + pFu = −p,

Fy + qFu = q− q = 0.

The Charpit equations are then

dx
2p

=
dy
y

=
du

2p2 + qy
=

dp
p

=
dq
0

.

The first conclusion is that q = c1 = constant. So, from the partial differ-
ential equation we have u = p2 + c1y.

Since du = pdx + qdy = pdx + c1dy, then

du− cdy =
√

u− c1y dx.

Therefore, ∫ d(u− c1y)√
u− c1y

=
∫

dx∫ z√
z
= x + c2

2
√

u− c1y = x + c2. (1.46)

Solving for u, we have

u(x, y) =
1
4
(x + c2)

2 + c1y.

This example required a few tricks to implement the solution. Sometimes
one needs to find parametric solutions. Also, if an initial condition is given,
one needs to find the particular solution. In the next example we show how
parametric solutions are found to the initial value problem.

Example 1.16. Solve the initial value problem u2
x + uy + u = 0, u(x, 0) = x.

We consider the parametric form of the Charpit equations,

dt =
dx
Fp

=
dy
Fq

=
du

pFp + qFq
= − dp

Fx + pFu
= − dq

Fy + qFu
. (1.47)

This leads to the system of equations

dx
dt

= Fp = 2p.
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dy
dt

= Fq = 1.

du
dt

= pFp + qFq = 2p2 + q.

dp
dt

= −(Fx + pFu) = −p.

dq
dt

= −(Fy + qFu) = −q.

The second, fourth, and fifth equations can be solved to obtain

y = t + c1.

p = c2e−t.

q = c3e−t.

Inserting these results into the remaining equations, we have

dx
dt

= 2c2e−t.

du
dt

= 2c2
2e−2t + c3e−t.

These equations can be integrated to find Inserting these results into the remain-
ing equations, we have

x = −2c2e−t + c4.

u = −c2
2e−2t − c3e−t + c5.

This is a parametric set of equations for u(x, t). Since

e−t =
x− c4

−2c2
,

we have

u(x, y) = −c2
2e−2t − c3e−t + c5.

= −c2
2

(
x− c4

−2c2

)2
− c3

(
x− c4

−2c2

)
+ c5

=
1
4
(x− c4)

2 +
c3

2c2
(x− c4). (1.48)

We can use the initial conditions by first parametrizing the conditions. Let
x(s, 0) = s and y(s, 0) = 0, Then, u(s, 0) = s. Since u(x, 0) = x, ux(x, 0) = 1,
or p(s, 0) = 1.

From the partial differential equation, we have p2 + q + u = 0. Therefore,

q(s, 0) = −p2(s, 0)− u(s, 0) = −(1 + s).

These relations imply that

y(s, t)|t−0 = 0⇒ c1 = 0.

p(s, t)|t−0 = 1⇒ c2 = 1.

q(s, t)|t−0 = −(1 + s) = c3.
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So,

y(s, t) = t.

p(s, t) = e−t.

q(s, t) = −(1 + s)e−t.

The conditions on x and u give

x(s, t) = (s + 2)− 2e−t,

u(s, t) = (s + 1)e−t − e−2t.

1.6 Modern Nonlinear PDEs

The study of nonlinear partial differential equations is a hot
research topic. We will (eventually) describe some examples of important
evolution equations and discuss their solutions in the last chapter.

Problems

1. Write the following equations in conservation law form, ut + φx = 0 by
finding the flux function φ(u).

a. ut + cux = 0.

b. ut + uux − µuxx = 0.

c. ut + 6uux + uxxx = 0.

d. ut + u2ux + uxxx = 0.

2. Consider the Klein-Gordon equation, utt − auxx = bu for a and b con-
stants. Find traveling wave solutions u(x, t) = f (x− ct).

3. Find the general solution u(x, y) to the following problems.

a. ux = 0.

b. yux − xuy = 0.

c. 2ux + 3uy = 1.

d. ux + uy = u.

4. Solve the following problems.

a. ux + 2uy = 0, u(x, 0) = sin x.

b. ut + 4ux = 0, u(x, 0) = 1
1+x2 .

c. yux − xuy = 0, u(x, 0) = x.

d. ut + xtux = 0, u(x, 0) = sin x.

e. yux + xuy = 0, u(0, y) = e−y2
.

f. xut − 2xtux = 2tu, u(x, 0) = x2.
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g. (y− u)ux + (u− x)uy = x− y, u = 0 on xy = 1.

h. yux + xuy = xy, x, y > 0, for u(x, 0) = e−x2
, x > 0 and u(0, y) =

e−y2
, y > 0.

5. Consider the problem ut + uux = 0, |x| < ∞, t > 0 satisfying the initial
condition u(x, 0) = 1

1+x2 .

a. Find and plot the characteristics.

b. Graphically locate where a gradient catastrophe might occur. Es-
timate from your plot the breaking time.

c. Analytically determine the breaking time.

d. Plot solutions u(x, t) at times before and after the breaking time.

6. Consider the problem ut + u2ux = 0, |x| < ∞, t > 0 satisfying the initial
condition u(x, 0) = 1

1+x2 .

a. Find and plot the characteristics.

b. Graphically locate where a gradient catastrophe might occur. Es-
timate from your plot the breaking time.

c. Analytically determine the breaking time.

d. Plot solutions u(x, t) at times before and after the breaking time.

7. Consider the problem ut + uux = 0, |x| < ∞, t > 0 satisfying the initial
condition

u(x, 0) =

{
2, x ≤ 0,
1, x > 0.

a. Find and plot the characteristics.

b. Graphically locate where a gradient catastrophe might occur. Es-
timate from your plot the breaking time.

c. Analytically determine the breaking time.

d. Find the shock wave solution.

8. Consider the problem ut + uux = 0, |x| < ∞, t > 0 satisfying the initial
condition

u(x, 0) =

{
1, x ≤ 0,
2, x > 0.

a. Find and plot the characteristics.

b. Graphically locate where a gradient catastrophe might occur. Es-
timate from your plot the breaking time.

c. Analytically determine the breaking time.

d. Find the shock wave solution.

9. Consider the problem ut + uux = 0, |x| < ∞, t > 0 satisfying the initial
condition

u(x, 0) =


0, x ≤ −1,
2, |x| < 1,
1, x > 1.
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a. Find and plot the characteristics.

b. Graphically locate where a gradient catastrophe might occur. Es-
timate from your plot the breaking time.

c. Analytically determine the breaking time.

d. Find the shock wave solution.

10. Solve the problem ut + uux = 0, |x| < ∞, t > 0 satisfying the initial
condition

u(x, 0) =


1, x ≤ 0,

1− x
a , 0 < x < a,

0, x ≥ a.

11. Solve the problem ut + uux = 0, |x| < ∞, t > 0 satisfying the initial
condition

u(x, 0) =


0, x ≤ 0,
x
a , 0 < x < a,
1, x ≥ a.

12. Consider the problem ut + u2ux = 0, |x| < ∞, t > 0 satisfying the initial
condition

u(x, 0) =

{
2, x ≤ 0,
1, x > 0.

a. Find and plot the characteristics.

b. Graphically locate where a gradient catastrophe might occur. Es-
timate from your plot the breaking time.

c. Analytically determine the breaking time.

d. Find the shock wave solution.

13. Consider the problem ut + u2ux = 0, |x| < ∞, t > 0 satisfying the initial
condition

u(x, 0) =

{
1, x ≤ 0,
2, x > 0.

a. Find and plot the characteristics.

b. Find and plot the fan characteristics.

c. Write out the rarefaction wave solution for all regions of the xt-
plane.

14. Solve the initial-value problem ut + uux = 0 |x| < ∞, t > 0 satisfying

u(x, 0) =


1, x ≤ 0,

1− x, 0 ≤ x ≤ 1,
0, x ≥ 1.

15. Consider the stopped traffic problem in a situation where the maximum
car density is 200 cars per mile and the maximum speed is 50 miles per hour.
Assume that the cars are arriving at 30 miles per hour. Find the solution of
this problem and determine the rate at which the traffic is backing up. How
does the answer change if the cars were arriving at 15 miles per hour.
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16. Solve the following nonlinear equations where p = ux and q = uy.

a. p2 + q2 = 1, u(x, x) = x.

b. pq = u, u(0, y) = y2.

c. p + q = pq, u(x, 0) = x.

d. pq = u2

e. p2 + qy = u.

17. Find the solution of xp + qy− p2q− u = 0 in parametric form for the
initial conditions at t = 0 :

x(t, s) = s, y(t, s) = 2, u(t, s) = s + 1

.



2
Second Order Partial Differential Equa-
tions

“Either mathematics is too big for the human mind or the human mind is more than
a machine.” - Kurt Gödel (1906-1978)

2.1 Introduction

In this chapter we will introduce several generic second order linear
partial differential equations and see how such equations lead naturally to
the study of boundary value problems for ordinary differential equations.
These generic differential equation occur in one to three spatial dimensions
and are all linear differential equations. A list is provided in Table 2.1. Here
we have introduced the Laplacian operator, ∇2u = uxx + uyy + uzz. Depend-
ing on the types of boundary conditions imposed and on the geometry of
the system (rectangular, cylindrical, spherical, etc.), one encounters many
interesting boundary value problems.

Name 2 Vars 3 D
Heat Equation ut = kuxx ut = k∇2u
Wave Equation utt = c2uxx utt = c2∇2u

Laplace’s Equation uxx + uyy = 0 ∇2u = 0
Poisson’s Equation uxx + uyy = F(x, y) ∇2u = F(x, y, z)

Schrödinger’s Equation iut = uxx + F(x, t)u iut = ∇2u + F(x, y, z, t)u

Table 2.1: List of generic partial differen-
tial equations.

Let’s look at the heat equation in one dimension. This could describe the
heat conduction in a thin insulated rod of length L. It could also describe
the diffusion of pollutant in a long narrow stream, or the flow of traffic
down a road. In problems involving diffusion processes, one instead calls
this equation the diffusion equation. [See the derivation in Section 2.2.2.]

A typical initial-boundary value problem for the heat equation would be
that initially one has a temperature distribution u(x, 0) = f (x). Placing the
bar in an ice bath and assuming the heat flow is only through the ends of
the bar, one has the boundary conditions u(0, t) = 0 and u(L, t) = 0. Of
course, we are dealing with Celsius temperatures and we assume there is
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plenty of ice to keep that temperature fixed at each end for all time as seen
in Figure 2.1. So, the problem one would need to solve is given as [IC =
initial condition(s) and BC = boundary conditions.]

x
0 L

u(0, 0) = 0 u(L, 0) = 0

Figure 2.1: One dimensional heated rod
of length L. 1D Heat Equation

PDE ut = kuxx, 0 < t, 0 ≤ x ≤ L,
IC u(x, 0) = f (x), 0 < x < L,
BC u(0, t) = 0, t > 0,

u(L, t) = 0, t > 0,

(2.1)

Here, k is the heat conduction constant and is determined using proper-
ties of the bar.

Another problem that will come up in later discussions is that of the
vibrating string. A string of length L is stretched out horizontally with both
ends fixed such as a violin string as shown in Figure 2.2. Let u(x, t) be
the vertical displacement of the string at position x and time t. The motion
of the string is governed by the one dimensional wave equation. [See the
derivation in Section 2.2.1.] The string might be plucked, giving the string
an initial profile, u(x, 0) = f (x), and possibly each point on the string has
an initial velocity ut(x, 0) = g(x). The initial-boundary value problem for
this problem is given below.

1D Wave Equation

PDE utt = c2uxx 0 < t, 0 ≤ x ≤ L
IC u(x, 0) = f (x) 0 < x < L

ut(x, 0) = g(x) 0 < x < L
BC u(0, t) = 0 t > 0

u(L, t) = 0 t > 0

(2.2)

In this problem c is the wave speed in the string. It depends on the mass
per unit length of the string, µ, and the tension, τ, placed on the string.

u(x, t)

x
0 L

u(0, 0) = 0 u(L, 0) = 0

Figure 2.2: One dimensional string of
length L.

There is a rich history on the study of these and other partial differential
equations and much of this involves trying to solve problems in physics.
Consider the one dimensional wave motion in the string. Physically, the
speed of these waves depends on the tension in the string and its mass
density. The frequencies we hear are then related to the string shape, or the
allowed wavelengths across the string. We will be interested the harmonics,
or pure sinusoidal waves, of the vibrating string and how a general wave
on the string can be represented as a sum over such harmonics. This will
take us into the field of spectral, or Fourier, analysis. The solution of the
heat equation also involves the use of Fourier analysis. However, in this
case there are no oscillations in time.

There are many applications that are studied using spectral analysis. At
the root of these studies is the belief that continuous waveforms are com-
prised of a number of harmonics. Such ideas stretch back to the Pythagore-
ans study of the vibrations of strings, which led to their program of a world
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of harmony. This idea was carried further by Johannes Kepler (1571-1630) in
his harmony of the spheres approach to planetary orbits. In the 1700’s oth-
ers worked on the superposition theory for vibrating waves on a stretched
spring, starting with the wave equation and leading to the superposition
of right and left traveling waves. This work was carried out by people
such as John Wallis (1616-1703), Brook Taylor (1685-1731) and Jean le Rond
d’Alembert (1717-1783).

y

x

Figure 2.3: Plot of the second harmonic
of a vibrating string at different times.

In 1742 d’Alembert solved the wave equation

c2 ∂2y
∂x2 −

∂2y
∂t2 = 0,

where y is the string height and c is the wave speed. However, this solution
led him and others, like Leonhard Euler (1707-1783) and Daniel Bernoulli
(1700-1782), to investigate what "functions" could be the solutions of this
equation. In fact, this led to a more rigorous approach to the study of
analysis by first coming to grips with the concept of a function. For example,
in 1749 Euler sought the solution for a plucked string in which case the
initial condition y(x, 0) = h(x) has a discontinuous derivative! (We will see
how this led to important questions in analysis.)

In 1753 Daniel Bernoulli viewed the solutions as a superposition of sim-
ple vibrations, or harmonics. Such superpositions amounted to looking at
solutions of the form

y(x, t) = ∑
k

ak sin
kπx

L
cos

kπct
L

,

where the string extends over the interval [0, L] with fixed ends at x = 0 and
x = L.

y

x
0 L

2
L

AL
2

Figure 2.4: Plot of an initial condition for
a plucked string.

However, the initial profile for such superpositions is given by

y(x, 0) = ∑
k

ak sin
kπx

L
.

It was determined that many functions could not be represented by a finite
number of harmonics, even for the simply plucked string in Figure 2.4 given
by an initial condition of the form

y(x, 0) =

{
Ax, 0 ≤ x ≤ L/2

A(L− x), L/2 ≤ x ≤ L

Thus, the solution consists generally of an infinite series of trigonometric
functions.

The one dimensional version of the heat
equation is a partial differential equation
for u(x, t) of the form

∂u
∂t

= k
∂2u
∂x2 .

Solutions satisfying boundary condi-
tions u(0, t) = 0 and u(L, t) = 0, are of
the form

u(x, t) =
∞

∑
n=0

bn sin
nπx

L
e−n2π2t/L2

.

In this case, setting u(x, 0) = f (x), one
has to satisfy the condition

f (x) =
∞

∑
n=0

bn sin
nπx

L
.

This is another example leading to an in-
finite series of trigonometric functions.

Such series expansions were also of importance in Joseph Fourier’s (1768-
1830) solution of the heat equation. The use of Fourier expansions has be-
come an important tool in the solution of linear partial differential equa-
tions, such as the wave equation and the heat equation. More generally,
using a technique called the Method of Separation of Variables, allowed
higher dimensional problems to be reduced to one dimensional boundary
value problems. However, these studies led to very important questions,
which in turn opened the doors to whole fields of analysis. Some of the
problems raised were
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1. What functions can be represented as the sum of trigonometric
functions?

2. How can a function with discontinuous derivatives be represented
by a sum of smooth functions, such as the above sums of trigono-
metric functions?

3. Do such infinite sums of trigonometric functions actually converge
to the functions they represent?

There are many other systems for which it makes sense to interpret the
solutions as sums of sinusoids of particular frequencies. For example, we
can consider ocean waves. Ocean waves are affected by the gravitational
pull of the moon and the sun and other numerous forces. These lead to the
tides, which in turn have their own periods of motion. In an analysis of
wave heights, one can separate out the tidal components by making use of
Fourier analysis.

In the Section 2.4 we describe how to go about solving these equations
using the method of separation of variables. We will find that in order
to accommodate the initial conditions, we will need to introduce Fourier
series before we can complete the problems, which will be the subject of the
following chapter. However, we first derive the one-dimensional wave and
heat equations.

2.2 Derivation of Generic 1D Equations

2.2.1 Derivation of Wave Equation for String

The wave equation for a one dimensional string is derived based
upon simply looking at Newton’s Second Law of Motion for a piece of the
string plus a few simple assumptions, such as small amplitude oscillations
and constant density.

We begin with F = ma. The mass of a piece of string of length ds is
m = ρ(x)ds. From Figure (2.5) an incremental length f the string is given by

∆s2 = ∆x2 + ∆u2.

The piece of string undergoes an acceleration of a = ∂2u
∂t2 .

We will assume that the main force acting on the string is that of tension.
Let T(x, t) be the magnitude of the tension acting on the left end of the piece
of string. Then, on the right end the tension is T(x + ∆x, t). At these points
the tension makes an angle to the horizontal of θ(x, t) and θ(x + ∆x, t),
respectively.

Assuming that there is no horizontal acceleration, the x-component in the
second law, ma = F, for the string element is given by

The wave equation is derived from F =
ma.

0 = T(x + ∆x, t) cos θ(x + ∆x, t)− T(x, t) cos θ(x, t).
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x

u

u(x, t)

T(x, t)

θ(x, t)

T(x + ∆x, t)

θ(x + ∆x, t)

∆s
∆u

∆x
θ

Figure 2.5: A small piece of string is un-
der tension.

The vertical component is given by

ρ(x)∆s
∂2u
∂t2 = T(x + ∆x, t) sin θ(x + ∆x, t)− T(x, t) sin θ(x, t)

The length of the piece of string can be written in terms of ∆x,

∆s =
√

∆x2 + ∆u2 =

√
1 +

(
∆u
∆x

)2
∆x.

and the right hand sides of the component equation can be expanded about
∆x = 0, to obtain

T(x + ∆x, t) cos θ(x + ∆x, t)− T(x, t) cos θ(x, t) ≈ ∂(T cos θ)

∂x
(x, t)∆x

T(x + ∆x, t) sin θ(x + ∆x, t)− T(x, t) sin θ(x, t) ≈ ∂(T sin θ)

∂x
(x, t)∆x.

Furthermore, we note that

tan θ = lim
∆x→0

∆u
∆x

=
∂u
∂x

.

Now we can divide these component equations by ∆x and let ∆x → 0.
This gives the approximations

0 =
T(x + ∆x, t) cos θ(x + ∆x, t)− T(x, t) cos θ(x, t)

∆x

≈ ∂(T cos θ)

∂x
(x, t)

ρ(x)
∂2u
∂t2

δs
δs

=
T(x + ∆x, t) sin θ(x + ∆x, t)− T(x, t) sin θ(x, t)

∆x

ρ(x)
∂2u
∂t2

√
1 +

(
∂u
∂x

)2
≈ ∂(T sin θ)

∂x
(x, t). (2.3)

We will assume a small angle approximation, giving

sin θ ≈ tan θ =
∂u
∂x

,
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cos θ ≈ 1, and √
1 +

(
∂u
∂x

)2
≈ 1.

Then, the horizontal component becomes

∂T(x, t)
∂x

= 0.

Therefore, the magnitude of the tension T(x, t) = T(t) is at most time de-
pendent.

The vertical component equation is now

ρ(x)
∂2u
∂t2 = T(t)

∂

∂x

(
∂u
∂x

)
= T(t)

∂2u
∂x2 .

Assuming that ρ and T are constant and defining

c2 =
T
ρ

,

we obtain the one dimensional wave equation,

∂2u
∂t2 = c2 ∂2u

∂x2 .

2.2.2 Derivation of 1D Heat Equation

Consider a one dimensional rod of length L as shown in Figure 2.6.
It is heated and allowed to sit. The heat equation is the governing equation
which allows us to determine the temperature of the rod at a later time.

We begin with some simple thermodynamics. Recall that to raise the
temperature of a mass m by ∆T takes thermal energy given by

Q = mc∆T,

assuming the mass does not go through a phase transition. Here c is the
specific heat capacity of the substance. So, we will begin with the heat
content of the rod as

Q = mcT(x, t)

and assume that m and c are constant.
x

0 L

u(0, 0) = 0 u(L, 0) = 0

Figure 2.6: One dimensional heated rod
of length L.

We will also need Fourier’s law of heat transfer or heat conduction . This
law simply states that heat energy flows from warmer to cooler regions and
is written in terms of the heat energy flux, φ(x, t). The heat energy flux, or
flux density, gives the rate of energy flow per area. Thus, the amount of
heat energy flowing over the left end of the region of cross section A in time
∆t is given φ(x, t)∆tA. The units of φ(x, t) are then J/s/m2 = W/m2.

Fourier’s law of heat conduction states that the flux density is propor-
tional to the gradient of the temperature,

φ = −K
∂T
∂x

.
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x0 L∆x

φ(x + ∆x, t)φ(x, t)
Flux in Flux out Figure 2.7: A one dimensional rod of

length L. Heat can flow through incre-
ment ∆x.

Here K is the thermal conductivity and the negative sign takes into account
the direction of flow from higher to lower temperatures.

Now we make use of the conservation of energy. Consider a small section
of the rod of width ∆x as shown in Figure 2.7. The rate of change of the
energy through this section is due to energy flow through the ends. Namely,

Rate of change of heat energy = Heat in−Heat out.

The energy content of the small segment of the rod is given by

∆Q = (ρA∆x)cT(x, t + ∆t)− (ρA∆x)cT(x, t).

The flow rates across the boundaries are given by the flux.

(ρA∆x)cT(x, t + ∆t)− (ρA∆x)cT(x, t) = [φ(x, t)− φ(x + ∆x, t)]∆tA.

Dividing by ∆x and ∆t and letting ∆x, ∆t→ 0, we obtain

∂T
∂t

= − 1
cρ

∂φ

∂x
.

Using Fourier’s law of heat conduction,

∂T
∂t

=
1
cρ

∂

∂x

(
K

∂T
∂x

)
.

Assuming K, c, and ρ are constant, we have the one dimensional heat
equation as used in the text:

∂T
∂t

= k
∂2T
∂x2 ,

where k = k
cρ .

2.3 Boundary Value Problems

You might have only solved initial value problems in your under-
graduate differential equations class. For an initial value problem one has to
solve a differential equation subject to conditions on the unknown function
and its derivatives at one value of the independent variable. For example,
for x = x(t) we could have the initial value problem

x′′ + x = 2, x(0) = 1, x′(0) = 0. (2.4)

Typically, initial value problems involve time dependent functions and
boundary value problems are spatial. So, with an initial value problem one
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knows how a system evolves in terms of the differential equation and the
state of the system at some fixed time. Then one seeks to determine the
state of the system at a later time.

Example 2.1. Solve the initial value problem, x′′+ 4x = cos t, x(0) = 1, x′(0) =
0.

Note that the conditions are provided at one time, t = 0. Thus, this an initial
value problem. Recall from your course on differential equations that we need to
find the general solution and then apply the initial conditions. Furthermore, this
is a nonhomogeneous differential equation, so the solution is a sum of a solution of
the homogeneous equation and a particular solution of the nonhomogeneous equa-
tion, x(t) = xh(t) + xp(t). [See the ordinary differential equations review in the
Appendix.]

The solution of x′′ + 4x = 0 is easily found as

xh(t) = c1 cos 2t + c2 sin 2t.

The particular solution is found using the Method of Undetermined Coefficients.
We guess a solution of the form

xp(t) = A cos t + B sin t.

Differentiating twice, we have

x′′p(t) = −(A cos t + B sin t).

So,
x′′p + 4xp = −(A cos t + B sin t) + 4(A cos t + B sin t).

Comparing the right hand side of this equation with cos t in the original problem,
we are led to setting B = 0 and A = 1

3 cos t. Thus, the general solution is

x(t) = c1 cos 2t + c2 sin 2t +
1
3

cos t.

We now apply the initial conditions to find the particular solution. The first
condition, x(0) = 1, gives

1 = c1 +
1
3

.

Thus, c1 = 2
3 . Using this value for c1, the second condition, x′(0) = 0, gives

c2 = 0. Therefore,

x(t) =
1
3
(2 cos 2t + cos t).

For boundary values problems, one knows how each point responds to
its neighbors, but there are conditions that have to be satisfied at the end-
points. An example would be a horizontal beam supported at the ends, like
a bridge. The shape of the beam under the influence of gravity, or other
forces, would lead to a differential equation and the boundary conditions
at the beam ends would affect the solution of the problem. There are also
a variety of other types of boundary conditions. In the case of a beam, one
end could be fixed and the other end could be free to move. We will explore
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the effects of different boundary conditions in our discussions and exercises.
But, we will first solve a simple boundary value problem which is a slight
modification of the above problem.

Example 2.2. Solve the boundary value problem, x′′+ x = 2, x(0) = 1, x(1) =
0.

Note that the conditions at t = 0 and t = 1 make this a boundary value prob-
lem since the conditions are given at two different points. As with initial value
problems, we need to find the general solution and then apply any conditions that
we may have. This is a nonhomogeneous differential equation, so the solution is
a sum of a solution of the homogeneous equation and a particular solution of the
nonhomogeneous equation, x(t) = xh(t) + xp(t). The solution of x′′ + x = 0 is
easily found as

xh(t) = c1 cos t + c2 sin t.

The particular solution is found using the Method of Undetermined Coefficients,

xp(t) = 2.

Thus, the general solution is

x(t) = 2 + c1 cos t + c2 sin t.

We now apply the boundary conditions and see if there are values of c1 and c2

that yield a solution to this boundary value problem. The first condition, x(0) = 0,
gives

0 = 2 + c1.

Thus, c1 = −2. Using this value for c1, the second condition, x(1) = 1, gives

0 = 2− 2 cos 1 + c2 sin 1.

This yields

c2 =
2(cos 1− 1)

sin 1
.

We have found that there is a solution to the boundary value problem and it is
given by

x(t) = 2
(

1− cos t
(cos 1− 1)

sin 1
sin t

)
.

Boundary value problems arise in many physical systems, just as the ini-
tial value problems we have seen earlier. We will see in the next sections that
boundary value problems for ordinary differential equations often appear
in the solutions of partial differential equations. However, there is no guar-
antee that we will have unique solutions of our boundary value problems
as we had found in the example above.

Now that we understand simple boundary value problems for ordinary
differential equations, we can turn to initial-boundary value problems for
partial differential equations. We will see that a common method for study-
ing these problems is to use the method of separation of variables. In this
method the problem of solving partial differential equations is to separate
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the partial differential equation into several ordinary differential equations
of which several are boundary value problems of the sort seen in this sec-
tion.

2.4 Separation of Variables

Solving many of the linear partial differential equations pre-
sented in the first section can be reduced to solving ordinary differential
equations. We will demonstrate this by solving the initial-boundary value
problem for the heat equation as given in (2.1). We will employ a method
typically used in studying linear partial differential equations, called the
Method of Separation of Variables. In the next subsections we describe how
this method works for the one-dimensional heat equation, one-dimensional
wave equation, and the two-dimensional Laplace equation.

2.4.1 The 1D Heat Equation

We want to solve the heat equation,

ut = kuxx, 0 < t, 0 ≤ x ≤ L.

subject to the boundary conditions

u(0, t) = 0, u(L, t) = 0, t > 0,

and the initial condition

u(x, 0) = f (x), 0 < x < L.
Solution of the 1D heat equation using
the method of separation of variables. We begin by assuming that u can be written as a product of single variable

functions of each independent variable,

u(x, t) = X(x)T(t).

Substituting this guess into the heat equation, we find that

XT′ = kX′′T.

The prime denotes differentiation with respect to the independent vari-
able and we will suppress the independent variable in the following unless
needed for emphasis.

Dividing both sides of this result by k and u = XT, yields

1
k

T′

T
=

X′′

X
.

k We have separated the functions of time on one side and space on the
other side. The constant k could be on either side of this expression, but we
moved it to make later computations simpler.
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The only way that a function of t equals a function of x is if the functions
are constant functions. Therefore, we set each function equal to a constant,
λ : [For example, if Aect = ax2 + b is possible for any x or t, then this is only
possible if a = 0, c = 0 and b = A.]

1
k

T′

T︸︷︷︸
function of t

=
X′′

X︸︷︷︸
function of x

= λ.︸︷︷︸
constant

This leads to two equations:

T′ = kλT, (2.5)

X′′ = λX. (2.6)

These are ordinary differential equations. The general solutions to these
constant coefficient equations are readily found as

T(t) = Aekλt, (2.7)

X(x) = c1e
√

λx + c2e−
√

λx. (2.8)

We need to be a little careful at this point. The aim is to force the final so-
lutions to satisfy both the boundary conditions and initial conditions. Also,
we should note that λ is arbitrary and may be positive, zero, or negative.
We first look at how the boundary conditions on u(x, t) lead to conditions
on X(x).

The first boundary condition is u(0, t) = 0. This implies that

X(0)T(t) = 0, for all t.

The only way that this is true is if X(0) = 0. Similarly, u(L, t) = 0 for all t
implies that X(L) = 0. So, we have to solve the boundary value problem

X′′ − λX = 0, X(0) = 0 = X(L). (2.9)

An obvious solution is X ≡ 0. However, this implies that u(x, t) = 0, which
is not an interesting solution. We call such solutions, X ≡ 0, trivial solutions
and will seek nontrivial solution for these problems.

There are three cases to consider, depending on the sign of λ.

Case I. λ > 0

In this case we have the exponential solutions

X(x) = c1e
√

λx + c2e−
√

λx. (2.10)

For X(0) = 0, we have
0 = c1 + c2.

We will take c2 = −c1. Then,

X(x) = c1(e
√

λx − e−
√

λx) = 2c1 sinh
√

λx.
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Applying the second condition, X(L) = 0 yields

c1 sinh
√

λL = 0.

This will be true only if c1 = 0, since λ > 0. Thus, the only solution in
this case is the trivial solution, X(x) = 0.

Case II. λ = 0

For this case it is easier to set λ to zero in the differential equation. So,
X′′ = 0. Integrating twice, one finds

X(x) = c1x + c2.

Setting x = 0, we have c2 = 0, leaving X(x) = c1x. Setting x = L,
we find c1L = 0. So, c1 = 0 and we are once again left with a trivial
solution.

Case III. λ < 0

In this case is would be simpler to write λ = −µ2. Then the differential
equation is

X′′ + µ2X = 0.

The general solution is

X(x) = c1 cos µx + c2 sin µx.

At x = 0 we get 0 = c1. This leaves X(x) = c2 sin µx.

At x = L, we find
0 = c2 sin µL.

So, either c2 = 0 or sin µL = 0. c2 = 0 leads to a trivial solution again.
But, there are cases when the sine is zero. Namely,

µL = nπ, n = 1, 2, . . . .

Note that n = 0 is not included since this leads to a trivial solution.
Also, negative values of n are redundant, since the sine function is an
odd function.

In summary, we can find solutions to the boundary value problem (2.9)
for particular values of λ. The solutions are

Xn(x) = sin
nπx

L
, n = 1, 2, 3, . . .

for

λn = −µ2
n = −

(nπ

L

)2
, n = 1, 2, 3, . . . .

We should note that the boundary value problem in Equation (2.9) is an
eigenvalue problem. We can recast the differential equation as

LX = λX,
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where

L = D2 =
d2

dx2

is a linear differential operator. The solutions, Xn(x), are called eigenfunc-
tions and the λn’s are the eigenvalues. We will elaborate more on this char-
acterization later in the next chapter.

We have found the product solutions of the heat equation (2.1) satisfying Product solutions.

the boundary conditions. These are

un(x, t) = ekλnt sin
nπx

L
, n = 1, 2, 3, . . . . (2.11)

However, these do not necessarily satisfy the initial condition u(x, 0) = f (x).
What we do get is

un(x, 0) = sin
nπx

L
, n = 1, 2, 3, . . . .

So, if the initial condition is in one of these forms, we can pick out the right
value for n and we are done.

For other initial conditions, we have to do more work. Note, since the General solution.

heat equation is linear, the linear combination of the product solutions is
also a solution of the heat equation. The general solution satisfying the
given boundary conditions is given as

u(x, t) =
∞

∑
n=1

bnekλnt sin
nπx

L
. (2.12)

The coefficients in the general solution are determined using the initial
condition. Namely, setting t = 0 in the general solution, we have

f (x) = u(x, 0) =
∞

∑
n=1

bn sin
nπx

L
.

So, if we know f (x), can we find the coefficients, bn? If we can, then we will
have the solution to the full initial-boundary value problem.

The expression for f (x) is a Fourier sine series. We will need to digress
into the study of Fourier series in order to see how one can find the Fourier
series coefficients given f (x). Before proceeding, we will show that this pro-
cess is not uncommon by applying the Method of Separation of Variables to
the wave equation in the next section.

2.4.2 The 1D Wave Equation

In this section we will apply the Method of Separation of Variables to
the one dimensional wave equation, given by

∂2u
∂2t

= c2 ∂2u
∂2x

, t > 0, 0 ≤ xłL, (2.13)
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subject to the boundary conditions

u(0, t) = 0, u(L, t) = 0, t > 0,

and the initial conditions

u(x, 0) = f (x), ut(x, 0) = g(x), 0 < x < L.

This problem applies to the propagation of waves on a string of length L
with both ends fixed so that they do not move. u(x, t) represents the vertical
displacement of the string over time. The derivation of the wave equation
assumes that the vertical displacement is small and the string is uniform.
The constant c is the wave speed, given by

c =
√

τ

µ
,

where τ is the tension in the string and µ is the mass per unit length. We can
understand this in terms of string instruments. The tension can be adjusted
to produce different tones and the makeup of the string (nylon or steel, thick
or thin) also has an effect. In some cases the mass density is changed simply
by using thicker strings. Thus, the thicker strings in a piano produce lower
frequency notes.

The utt term gives the acceleration of a piece of the string. The uxx is the
concavity of the string. Thus, for a positive concavity the string is curved
upward near the point of interest. Thus, neighboring points tend to pull
upward towards the equilibrium position. If the concavity is negative, it
would cause a negative acceleration.Solution of the 1D wave equation using

the Method of Separation of Variables. The solution of this problem is easily found using separation of variables.
We let u(x, t) = X(x)T(t). Then we find

XT′′ = c2X′′T,

which can be rewritten as
1
c2

T′′

T
=

X′′

X
.

Again, we have separated the functions of time on one side and space on
the other side. Therefore, we set each function equal to a constant, λ.

1
c2

T′′

T︸ ︷︷ ︸
function of t

=
X′′

X︸︷︷︸
function of x

= λ.︸︷︷︸
constant

This leads to two equations:

T′′ = c2λT, (2.14)

X′′ = λX. (2.15)

As before, we have the boundary conditions on X(x):

X(0) = 0, and X(L) = 0,
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giving the solutions, as shown in Figure 2.8,

Xn(x) = sin
nπx

L
, λn = −

(nπ

L

)2
.

The main difference from the solution of the heat equation is the form of
the time function. Namely, from Equation (2.14) we have to solve

T′′ +
(nπc

L

)2
T = 0. (2.16)

This equation takes a familiar form. We let

ωn =
nπc

L
,

then we have
T′′ + ω2

nT = 0.

This is the differential equation for simple harmonic motion and ωn is the
angular frequency. The solutions are easily found as

T(t) = An cos ωnt + Bn sin ωnt. (2.17)

x

y

L0

X1(x) = sin πx
L

x

y

L0

X2(x) = sin 2πx
L

x

y

L0

X3(x) = sin 3πx
L

Figure 2.8: The first three harmonics of
the vibrating string.

Therefore, we have found that the product solutions of the wave equation
take the forms sin nπx

L cos ωnt and sin nπx
L sin ωnt. The general solution, a

superposition of all product solutions, is given by

General solution.

u(x, t) =
∞

∑
n=1

[
An cos

nπct
L

+ Bn sin
nπct

L

]
sin

nπx
L

. (2.18)

This solution satisfies the wave equation and the boundary conditions.
We still need to satisfy the initial conditions. Note that there are two initial
conditions, since the wave equation is second order in time.

First, we have u(x, 0) = f (x). Thus,

f (x) = u(x, 0) =
∞

∑
n=1

An sin
nπx

L
. (2.19)

In order to obtain the condition on the initial velocity, ut(x, 0) = g(x), we
need to differentiate the general solution with respect to t:

ut(x, t) =
∞

∑
n=1

nπc
L

[
−An sin

nπct
L

+ Bn cos
nπct

L

]
sin

nπx
L

. (2.20)

Then, we have from the initial velocity

g(x) = ut(x, 0) =
∞

∑
n=1

nπc
L

Bn sin
nπx

L
. (2.21)

So, applying the two initial conditions, we have found that f (x) and g(x),
are represented as Fourier sine series. In order to complete the problem we
need to determine the coefficients An and Bn for n = 1, 2, 3, . . .. Once we
have these, we have the complete solution to the wave equation. We had
seen similar results for the heat equation. In the next chapter we will find
out how to determine these Fourier coefficients for such series of sinusoidal
functions.
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2.5 Laplace’s Equation in 2D

Another of the generic partial differential equations is Laplace’s
equation, ∇2u = 0. This equation first appeared in the chapter on complex
variables when we discussed harmonic functions. Another example is the
electric potential for electrostatics. As we described Chapter ??, for static
electromagnetic fields,

∇ · E = ρ/ε0, E = ∇φ.

In regions devoid of charge, these equations yield the Laplace equation
∇2φ = 0.

Another example comes from studying temperature distributions. Con-
sider a thin rectangular plate with the boundaries set at fixed temperatures.
Temperature changes of the plate are governed by the heat equation. The
solution of the heat equation subject to these boundary conditions is time
dependent. In fact, after a long period of time the plate will reach thermal
equilibrium. If the boundary temperature is zero, then the plate temperature
decays to zero across the plate. However, if the boundaries are maintained
at a fixed nonzero temperature, which means energy is being put into the
system to maintain the boundary conditions, the internal temperature may
reach a nonzero equilibrium temperature. Reaching thermal equilibriumThermodynamic equilibrium, ∇2u = 0.

means that asymptotically in time the solution becomes time independent.
Thus, the equilibrium state is a solution of the time independent heat equa-
tion, which is another Laplace equation, ∇2u = 0.Incompressible, irrotational fluid flow,

∇2φ = 0, for velocity v = ∇φ. As another example we could look at fluid flow. For an incompressible
flow, ∇ · v = 0. If the flow is irrotational, then ∇× v = 0. We can introduce
a velocity potential, v = ∇φ. Thus, ∇× v vanishes by a vector identity and
∇ · v = 0 implies ∇2φ = 0. So, once again we obtain Laplace’s equation.

In this section we will look at examples of Laplace’s equation in two
dimensions. The solutions in these examples could be examples from any
of the application in the above physical situations and the solutions can be
applied appropriately.

Example 2.3. Equilibrium Temperature Distribution for a Rectangular Plate
Let’s consider Laplace’s equation in Cartesian coordinates,

uxx + uyy = 0, 0 < x < L, 0 < y < H

with the boundary conditions

u(0, y) = 0, u(L, y) = 0, u(x, 0) = f (x), u(x, H) = 0.

The boundary conditions are shown in Figure 6.8

x0

y

0 L

H

∇2u = 0

u(x, 0) = f (x)

u(x, H) = 0

u(0, y) = 0 u(L, y) = 0

Figure 2.9: In this figure we show the
domain and boundary conditions for the
example of determining the equilibrium
temperature distribution for a rectangu-
lar plate.

As with the heat and wave equations, we can solve this problem using the method
of separation of variables. Let u(x, y) = X(x)Y(y). Then, Laplace’s equation be-
comes

X′′Y + XY′′ = 0
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and we can separate the x and y dependent functions and introduce a separation
constant, λ,

X′′

X
= −Y′′

Y
= −λ.

Thus, we are led to two differential equations,

X′′ + λX = 0,

Y′′ − λY = 0. (2.22)

From the boundary condition u(0, y) = 0, u(L, y) = 0, we have X(0) =

0, X(L) = 0. So, we have the usual eigenvalue problem for X(x),

X′′ + λX = 0, X(0) = 0, X(L) = 0.

The solutions to this problem are given by

Xn(x) = sin
nπx

L
, λn =

(nπ

L

)2
, n = 1, 2, . . . .

The general solution of the equation for Y(y) is given by

Y(y) = c1e
√

λy + c2e−
√

λy.

The boundary condition u(x, H) = 0 implies Y(H) = 0. So, we have

c1e
√

λH + c2e−
√

λH = 0.

Thus,
c2 = −c1e2

√
λH .

Inserting this result into the expression for Y(y), we have Note: Having carried out this compu-
tation, we can now see that it would
be better to guess this form in the fu-
ture. So, for Y(H) = 0, one would
guess a solution Y(y) = sinh

√
λ(H− y).

For Y(0) = 0, one would guess a so-
lution Y(y) = sinh

√
λy. Similarly, if

Y′(H) = 0, one would guess a solution
Y(y) = cosh

√
λ(H − y).

Y(y) = c1e
√

λy − c1e2
√

λHe−
√

λy

= c1e
√

λH
(

e−
√

λHe
√

λy − e
√

λHe−
√

λy
)

= c1e
√

λH
(

e−
√

λ(H−y) − e
√

λ(H−y)
)

= −2c1e
√

λH sinh
√

λ(H − y). (2.23)

Since we already know the values of the eigenvalues λn from the eigenvalue
problem for X(x), we have that the y-dependence is given by

Yn(y) = sinh
nπ(H − y)

L
.

So, the product solutions are given by

un(x, y) = sin
nπx

L
sinh

nπ(H − y)
L

, n = 1, 2, . . . .

These solutions satisfy Laplace’s equation and the three homogeneous boundary
conditions and in the problem.

The remaining boundary condition, u(x, 0) = f (x), still needs to be satisfied.
Inserting y = 0 in the product solutions does not satisfy the boundary condition
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unless f (x) is proportional to one of the eigenfunctions Xn(x). So, we first write
down the general solution as a linear combination of the product solutions,

u(x, y) =
∞

∑
n=1

an sin
nπx

L
sinh

nπ(H − y)
L

. (2.24)

Now we apply the boundary condition, u(x, 0) = f (x), to find that

f (x) =
∞

∑
n=1

an sinh
nπH

L
sin

nπx
L

. (2.25)

Defining bn = an sinh nπH
L , this becomes

f (x) =
∞

∑
n=1

bn sin
nπx

L
. (2.26)

We see that the determination of the unknown coefficients, bn, is simply done by
recognizing that this is a Fourier sine series. We now move on to the study of
Fourier series and provide more complete answers in Chapter 6.

2.6 Classification of Second Order PDEs

We have studied several examples of partial differential equations, the
heat equation, the wave equation, and Laplace’s equation. These equations
are examples of parabolic, hyperbolic, and elliptic equations, respectively.
Given a general second order linear partial differential equation, how can
we tell what type it is? This is known as the classification of second order
PDEs.

Let u = u(x, y). Then, the general form of a linear second order partial
differential equation is given by

a(x, y)uxx + 2b(x, y)uxy + c(x, y)uyy + d(x, y)ux + e(x, y)uy + f (x, y)u = g(x, y).
(2.27)

In this section we will show that this equation can be transformed into one
of three types of second order partial differential equations.

Let x = x(ξ, η) and y = yξ, η) be an invertible transformation from co-
ordinates (ξ, η) to coordinates (x, y). Furthermore, let u(x(ξ, η), y(ξ, η)) =

U(ξ, η). How does the partial differential equation (2.27) transform?
We first need to transform the derivatives of u(x, t). We have

ux = Uξ ξx + Uηηx,

uy = Uξ ξy + Uηηy,

uxx =
∂

∂x
(Uξξx + Uηηx),

= Uξξξ2
x + 2Uξηξxηx + Uηηη2

x + Uξ ξxx + Uηηxx,

uyy =
∂

∂y
(Uξξy + Uηηy),

= Uξξ ξ2
y + 2Uξηξyηy + Uηηη2

y + Uξξyy + Uηηyy,
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uxy =
∂

∂y
(Uξ ξx + Uηηx),

= Uξξξxξy + Uξηξxηy + Uξηξyηx + Uηηηxηy + Uξ ξxy + Uηηxy.

(2.28)

Inserting these derivatives into Equation (2.27), we have

g− f U = auxx + 2buxy + cuyy + dux + euy

= a
(

Uξξξ2
x + 2Uξηξxηx + Uηηη2

x + Uξ ξxx + Uηηxx

)
+2b

(
Uξξξxξy + Uξηξxηy + Uξηξyηx

+ Uηηηxηy + Uξξxy + Uηηxy
)

+c
(

Uξξξ2
y + 2Uξηξyηy + Uηηη2

y + Uξ ξyy + Uηηyy

)
+d
(
Uξ ξx + Uηηx

)
+e
(
Uξξy + Uηηy

)
= (aξ2

x + 2bξxξy + cξ2
y)Uξξ

+(2aξxηx + 2bξxηy + 2bξyηx + 2cξyηy)Uξη

+(aη2
x + 2bηxηy + cη2

y)Uηη

+(aξxx + 2bξxy + cξyy + dξx + eξy)Uξ

+(aηxx + 2bηxy + cηyy + dηx + eηy)Uη

= AUξξ + 2BUξη + CUηη + DUξ + EUη . (2.29)

Picking the right transformation, we can eliminate some of the second
order derivative terms depending on the type of differential equation. This
leads to three types: elliptic, hyperbolic, or parabolic.

For example, if transformations can be found to make A ≡ 0 and C ≡ 0,
then the equation reduces to

Uξη = lower order terms.

Such an equation is called hyperbolic. A generic example of a hyperbolic
equation is the wave equation. Hyperbolic case.

The conditions that A ≡ 0 and C ≡ 0 give the conditions

aξ2
x + 2bξxξy + cξ2

y = 0.

aη2
x + 2bηxηy + cη2

y = 0. (2.30)

We seek ξ and η satisfying these two equations, which are of the same
form. Let’s assume that ξ = ξ(x, y) is a constant curve in the xy-plane.
Furthermore, if this curve is the graph of a function, y = y(x), then

dξ

dx
= ξx +

dy
dx

ξy = 0.

Then
dy
dx

= − ξx

ξy
.
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Inserting this expression in A = 0, we have

A = aξ2
x + 2bξxξy + cξ2

y

= ξ2
y

(
a
(

ξx

ξy

)2
+ 2b

ξx

ξy
+ c

)

= ξ2
y

(
a
(

dy
dx

)2
− 2b

dy
dx

+ c

)
= 0. (2.31)

This equation is satisfied if y(x) satisfies the differential equation

dy
dx

=
b±
√

b2 − ac
a

.

So, for A = 0, we choose ξ and η to be constant on these characteristic
curves.

Example 2.4. Show that uxx − uyy = 0 is hyperbolic.
In this case we have a = 1 = −c and b = 0. Then,

dy
dx

= ±1.

This gives y(x) = ±x + c. So, we choose ξ and η constant on these characteristic
curves. Therefore, we let ξ = x− y, η = x + y.

Let’s see if this transformation transforms the differential equation into a canon-
ical form. Let u(x, y) = U(ξ, η). Then, the needed derivatives become

ux = Uξ ξx + Uηηx = Uξ + Uη .

uy = Uξ ξy + Uηηy = −Uξ + Uη .

uxx =
∂

∂x
(Uξ + Uη)

= Uξξξx + Uξηηx + Uηξ ξx + Uηηηx

= Uξξ + 2Uξη + Uηη .

uyy =
∂

∂y
(−Uξ + Uη)

= −Uξξξy −Uξηηy + Uηξ ξy + Uηηηy

= Uξξ − 2Uξη + Uηη . (2.32)

Inserting these derivatives into the differential equation, we have

0 = uxx − uyy = 4Uξη .

Thus, the transformed equation is Uξη = 0. Thus, showing it is a hyperbolic equa-
tion.

We have seen that A and C vanish for ξ(x, y) and η(x, y) constant along
the characteristics

dy
dx

=
b±
√

b2 − ac
a

for second order hyperbolic equations. This is possible when b2 − ac > 0
since this leads to two characteristics.
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In general, if we consider the second order operator

L[u] = a(x, y)uxx + 2b(x, y)uxy + c(x, y)uyy,

then this operator can be transformed to the new form

L′[U] = BUξη

if b2 − ac > 0. An example of a hyperbolic equation is the wave equation,
utt = uxx.

When b2 − ac = 0, then there is only one characteristic solution, dy
dx = b

a .

This is the parabolic case. But, dy
dx = − ξx

ξy
. So, Parabolic case.

b
a
= − ξx

ξy
,

or
aξx + bξy = 0.

Also, b2 − ac = 0 implies that c = b2/a.
Inserting these expression into coefficient B, we have

B = 2aξxηx + 2bξxηy + 2bξyηx + 2cξyηy

= 2(aξx + bξy)ηx + 2(bξx + cξy)ηy

= 2
b
a
(aξx + bξy)ηy = 0. (2.33)

Therefore, in the parabolic case, A = 0 and B = 0, and L[u] transforms to

L′[U] = CUηη

when b2 − ac = 0. This is the canonical form for a parabolic operator. An
example of a parabolic equation is the heat equation, ut = uxx.

Finally, when b2 − ac < 0, we have the elliptic case. In this case we Elliptic case.

cannot force A = 0 or C = 0. However, in this case we can force B = 0. As
we just showed, we can write

B = 2(aξx + bξy)ηx + 2(bξx + cξy)ηy.

Letting ηx = 0, we can choose ξ to satisfy bξx + cξy = 0.

A = aξ2
x + 2bξxξy + cξ2

y = aξ2
x − cξ2

y =
ac− b2

c
ξ2

x

C = aη2
x + 2bηxηy + cη2

y = cη2
y

Furthermore, setting ac−b2

c ξ2
x = cη2

y , we can make A = C and L[u] trans-
forms to

L′[U] = A[Uξξ + Uηη ]

when b2 − ac < 0. This is the canonical form for an elliptic operator. An
example of an elliptic equation is Laplace’s equation, uxx + uyy = 0.
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Classification of Second Order PDEs
The second order differential operator

L[u] = a(x, y)uxx + 2b(x, y)uxy + c(x, y)uyy,

can be transformed to one of the following forms:

• b2 − ac > 0. Hyperbolic: L[u] = B(x, y)uxy

• b2 − ac = 0. Parabolic: L[u] = C(x, y)uyy

• b2 − ac < 0. Elliptic: L[u] = A(x, y)[uxx + uyy]

As a final note, the terminology used in this classification is borrowed
from the general theory of quadratic equations which are the equations for
translated and rotated conics. Recall that the general quadratic equation in
two variable takes the form

ax2 + 2bxy + cy2 + dx + ey + f = 0. (2.34)

One can complete the squares in x and y to obtain the new form

a(x− h)2 + 2bxy + c(y− k)2 + f ′ = 0.

So, translating points (x, y) using the transformations x′ = x − h and y′ =
y− k, we find the simpler form

ax2 + 2bxy + cy2 + f = 0.

Here we dropped all primes.
We can also introduce transformations to simplify the quadratic terms.

Consider a rotation of the coordinate axes by θ,

x′ = x cos θ + y sin θ

y′ = −x sin θ + y cos θ, (2.35)

or

x = x′ cos θ − y′ sin θ

y = x′ sin θ + y′ cos θ. (2.36)

The resulting equation takes the form

Ax
′2 + 2Bx′y′ + Cy

′2 + D = 0,

where

A = a cos2 θ + 2b sin θ cos θ + c sin2 θ.

B = (c− a) sin θ cos θ + b(cos2 θ − sinθ).

C = a sin2 θ − 2b sin θ cos θ + c cos2 θ. (2.37)
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We can eliminate the x′y′ term by forcing B = 0. Since cos2 θ − sin2 θ =

cos 2θ and sin θ cos θ = 1
2 sin 2θ, we have

B =
(c− a)

2
sin 2θ + b cos 2θ = 0.

Therefore, the condition for eliminating the x′y′ term is

cot(2θ) =
a− c

2b
.

Furthermore, one can show that b2− ac = B2− AC. From the form Ax
′2 +

2Bx′y′ + Cy
′2 + D = 0, the resulting quadratic equation takes one of the

following forms:

• b2 − ac > 0. Hyperbolic: Ax2 − Cy2 + D = 0.

• b2 − ac = 0. Parabolic: Ax2 + By + D = 0.

• b2 − ac < 0. Elliptic: Ax2 + Cy2 + D = 0.

Thus, one can see the connection between the classification of quadratic
equations and second order partial differential equations in two indepen-
dent variables.

2.7 d’Alembert’s Solution of the Wave Equation

A general solution of the one-dimensional wave equation can
be found. This solution was first Jean-Baptiste le Rond d’Alembert (1717-
1783) and is referred to as d’Alembert’s formula. In this section we will
derive d’Alembert’s formula and then use it to arrive at solutions to the
wave equation on infinite, semi-infinite, and finite intervals.

We consider the wave equation in the form utt = c2uxx and introduce the
transformation

u(x, t) = U(ξ, η), where ξ = x + ct and η = x− ct.

Note that ξ, and η are the characteristics of the wave equation.
We also need to note how derivatives transform. For example

∂u
∂x

=
∂U(ξ, η)

∂x

=
∂U(ξ, η)

∂ξ

∂ξ

∂x
+

∂U(ξ, η)

∂η

∂η

∂x

=
∂U(ξ, η)

∂ξ
+

∂U(ξ, η)

∂η
. (2.38)

Therefore, as an operator, we have

∂

∂x
=

∂

∂ξ
+

∂

∂η
.
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Similarly, one can show that

∂

∂t
= c

∂

∂ξ
− c

∂

∂η
.

Using these results, the wave equation becomes

0 = utt − c2uxx

=

(
∂2

∂t2 − c2 ∂2

∂x2

)
u

=

(
∂

∂t
+ c

∂

∂x

)(
∂

∂t
− c

∂

∂x

)
u

=

(
c

∂

∂ξ
− c

∂

∂η
+ c

∂

∂ξ
+ c

∂

∂η

)(
c

∂

∂ξ
− c

∂

∂η
− c

∂

∂ξ
− c

∂

∂η

)
U

= −4c2 ∂

∂ξ

∂

∂η
U. (2.39)

Therefore, the wave equation has transformed into the simpler equation,

Uηξ = 0.

Not only is this simpler, but we see it is once again a confirmation that
the wave equation is a hyperbolic equation. Of course, it is also easy to
integrate. Since

∂

∂η

(
∂U
∂ξ

)
= 0,

∂U
∂ξ

= constant with respect to ξ = Γ(η).

A further integration gives

U(ξ, η) =
∫ η

Γ(η′) dη′ + F(ξ) ≡ G(η) + F(η).

Therefore, we have as the general solution of the wave equation,

u(x, t) = F(x + ct) + G(x− ct), (2.40)

where F and G are two arbitrary, twice differentiable functions. As t is
increased, we see that F(x + ct) gets horizontally shifted to the left and
G(x − ct) gets horizontally shifted to the right. As a result, we conclude
that the solution of the wave equation can be seen as the sum of left and
right traveling waves.u(x, t) = sum of left and right traveling

waves. Let’s use initial conditions to solve for the unknown functions. We let

u(x, 0) = f (x), ut(x, 0) = g(x), |x| < ∞.

Applying this to the general solution, we have

f (x) = F(x) + G(x) (2.41)

g(x) = c[F′(x)− G′(x)]. (2.42)
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We need to solve for F(x) and G(x) in terms of f (x) and g(x). Integrating
Equation (2.42), we have

1
c

∫ t

0
g(s) ds = F(x)− G(x)− F(0) + G(0).

Adding this result to Equation (2.42), gives

F(x) =
1
2

f (x) +
1
2c

∫ t

0
g(s) ds +

1
2
[F(0)− G(0)].

Subtracting from Equation (2.42), gives

G(x) =
1
2

f (x)− 1
2c

∫ t

0
g(s) ds− 1

2
[F(0)− G(0)].

Now we can write out the solution u(x, t) = F(x + ct) + G(x− ct), yield-
ing d’Alembert’s solution d’Alembert’s solution

u(x, t) =
1
2
[ f (x + ct) + f (x− ct)] +

1
2c

∫ x+ct

x−ct
g(s) ds. (2.43)

When f (x) and g(x) are defined for all x ∈ R, the solution is well-defined.
However, there are problems on more restricted domains. In the next exam-
ples we will consider the semi-infinite and finite length string problems.In
each case we will need to consider the domain of dependence and the do-
main of influence of specific points. These concepts are shown in Figure
2.10. The domain of dependence of point P is red region. The point P de-
pends on the values of u and ut at points inside the domain. The domain of
influence of P is the blue region. The points in the region are influenced by
the values of u and ut at P.

x

t

x = η + ctx = ξ − ct

g(x)f (η) f (ξ)

P

Influence

Dependence

Figure 2.10: The domain of dependence
of point P is red region. The point P de-
pends on the values of u and ut at points
inside the domain. The domain of influ-
ence of P is the blue region. The points
in the region are influenced by the val-
ues of u and ut at P.

Example 2.5. Use d’Alembert’s solution to solve

utt = c2uxx, u(x, 0) = f (x), ut(x, 0) = g(x), 0 ≤ x < ∞.

The d’Alembert solution is not well-defined for this problem because f (x − ct)
is not defined for x− ct < 0 for c, t > 0. There are similar problems for g(x). This
can be seen by looking at the characteristics in the xt-plane. In Figure 2.11 there
are characteristics emanating from the points marked by η0 and ξ0 that intersect
in the domain x > 0. The point of intersection of the blue lines have a domain of
dependence entirely in the region x, t > 0, however the domain of dependence of
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Figure 2.11: The characteristics for the
semi-infinite string.

x

t

x = η0 + ct

η0 ξ00

P

point P reaches outside this region. Only characteristics ξ = x + ct reach point P,
but characteristics η = x − ct do not. But, we need f (η) and g(x) for x < ct to
form a solution.

This can be remedied if we specified boundary conditions at x = 0. For example,
we will assume the end x = 0 is fixed,Fixed end boundary condition

u(0, t) = 0, t ≥ 0.

Imagine an infinite string with one end (at x = 0) tied to a pole.
Since u(x, t) = F(x + ct) + G(x− ct), we have

u(0, t) = F(ct) + G(−ct) = 0.

Letting ζ = −ct, this gives G(ζ) = −F(−ζ), ζ ≤ 0.
Note that

G(ζ) =
1
2

f (ζ)− 1
2c

∫ ζ

0
g(s) ds

−F(−ζ) = −1
2

f (−ζ)− 1
2c

∫ −ζ

0
g(s) ds

= −1
2

f (−ζ) +
1
2c

∫ ζ

0
g(σ) dσ

(2.44)

Comparing the expressions for G(ζ) and −F(−ζ), we see that

f (ζ) = − f (−ζ), g(ζ) = −g(−ζ).

These relations imply that we can extend the functions into the region x < 0 if we
make them odd functions, or what are called odd extensions. An example is shown
in Figure 2.12.

Another type of boundary condition is if the end x = 0 is free,Free end boundary condition

ux(0, t) = 0, t ≥ 0.

In this case we could have an infinite string tied to a ring and that ring is allowed
to slide freely up and down a pole.

One can prove that this leads to

f (−ζ) = f (ζ), g(−ζ) = g(ζ).

Thus, we can use an even extension of these function to produce solutions.
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Example 2.6. Solve the initial-boundary value problem

utt = c2uxx, 0 ≤ x < ∞, t > 0.

u(x, 0) =


x, 0 ≤ x ≤ 1,

2− x, 1 ≤ x ≤ 2,
0, x > 2,

0 ≤ x < ∞

ut(x, 0) = 0, 0 ≤ x < ∞.

u(0, t) = 0, t > 0. (2.45)

This is a semi-infinite string with a fixed end. Initially it is plucked to produce
a nonzero triangular profile for 0 ≤ x ≤ 2. Since the initial velocity is zero, the
general solution is found from d’Alembert’s solution,

u(x, t) =
1
2
[ fo(x + ct) + fo(x− ct)],

where fo(x) is the odd extension of f (x) = u(x, 0). In Figure 2.12 we show the
initial condition and its odd extension. The odd extension is obtained through
reflection of f (x) about the origin.

x

u
f (x) = u(x, 0)

x

u
fo(x)

Figure 2.12: The initial condition and its
odd extension. The odd extension is ob-
tained through reflection of f (x) about
the origin.

The next step is to look at the horizontal shifts of fo(x). Several examples are
shown in Figure 2.13.These show the left and right traveling waves.

In Figure 2.14 we show superimposed plots of fo(x + ct) and fo(x − ct) for
given times. The initial profile in at the bottom. By the time ct = 2 the full
traveling wave has emerged. The solution to the problem emerges on the right side
of the figure by averaging each plot.

Example 2.7. Use d’Alembert’s solution to solve

utt = c2uxx, u(x, 0) = f (x), ut(x, 0) = g(x), 0 ≤ x ≤ `.

The general solution of the wave equation was found in the form

u(x, t) = F(x + ct) + G(x− ct).
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Figure 2.13: Examples of fo(x + ct) and
fo(x− ct).

x

u fo(x + 0)

x

u fo(x− 0)

x

u fo(x + 1)

x

u fo(x− 1)

x

u fo(x + 2)

x

u fo(x− 2)
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x

u
fo(x + 0) fo(x− 0)

x

u
fo(x + 0.5) fo(x− 0.5)

x

u
fo(x + 1) fo(x− 1)

x

u
fo(x + 1.5) fo(x− 1.5)

x

u
fo(x + 2) fo(x− 2)

x

u
fo(x + 2.5) fo(x− 2.5)

Figure 2.14: Superimposed plots of
fo(x + ct) and fo(x− ct) for given times.
The initial profile in at the bottom. By
the time ct = 2 the full traveling wave
has emerged.
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Figure 2.15: On the left is a plot of f (x +
ct), f (x − ct) from Figure 2.14 and the
average, u(x, t). On the right the solution
alone is shown for ct = 0 at bottom to
ct = 1 at top for the semi-infinite string
problem
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However, for this problem we can only obtain information for values of x and t
such that 0 ≤ x + ct ≤ ` and 0 ≤ x − ct ≤ `. In Figure 2.16 the characteristics
x = ξ + ct and x = η − ct for 0 ≤ ξ, η ≤ `. The main (gray) triangle, which is
the domain of dependence of the point (`, 2, `/2c), is the only region in which the
solution can be found based solely on the initial conditions. As with the previous
problem, boundary conditions will need to be given in order to extend the domain
of the solution.

In the last example we saw that a fixed boundary at x = 0 could be satisfied
when f (x) and g(x) are extended as odd functions. In Figure 2.17 we indicate how
the characteristics are affected by drawing in the new one as red dashed lines. This
allows us to now construct solutions based on the initial conditions under the line
x = `− ct for 0 ≤ x ≤ `. The new region for which we can construct solutions
from the initial conditions is indicated in gray in Figure 2.17.

x

t
x = ctx = `− ct

`
2c

0 `f (x)

Figure 2.16: The characteristics emanat-
ing from the interval 0 ≤ x ≤ ` for the
finite string problem.

−`
x

t

x = ctx = `− ct

`
2c

0 `f (x)f (−x)

Figure 2.17: The red dashed lines are the
characteristics from the interval [−`, 0]
from using the odd extension about x =
0.

We can add characteristics on the right by adding a boundary condition at x = `.
Again, we could use fixed u(`, t) = 0, or free, ux(`, t) = 0, boundary conditions.
This allows us to now construct solutions based on the initial conditions for ` ≤
x ≤ 2`.

Let’s consider a fixed boundary condition at x = `. Then, the solution must
satisfy

u(`, t) = F(`+ ct) + G(`− ct) = 0.
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To see what this means, let ζ = `+ ct. Then, this condition gives (since ct = ζ− `)

F(ζ) = −G(2`− ζ), ` ≤ ζ ≤ 2`.

Note that G(2`− ζ) is defined for 0 ≤ 2`− ζ ≤ `. Therefore, this is a well-defined
extension of the domain of F(x).

Note that

F(ζ) =
1
2

f (ζ) +
1
2c

∫ `

0
g(s) ds.

−G(2`− ζ) = −1
2

f (2`− ζ) +
1
2c

∫ 2`−ζ

0
g(s) ds

= −1
2

f (2`− ζ)− 1
2c

∫ ζ

0
g(2`− σ) dσ

(2.46)

Comparing the expressions for G(ζ) and −G(2`− ζ), we see that

f (ζ) = − f (2`− ζ), g(ζ) = −g(2`− ζ).

These relations imply that we can extend the functions into the region x > ` if
we consider an odd extension of f (x) and g(x) about x = `.. This will give the
blue dashed characteristics in Figure 2.18 and a larger gray region to construct the
solution.

Figure 2.18: The red dashed lines are the
characteristics from the interval [−`, 0]
from using the odd extension about x =
0 and the blue dashed lines are the char-
acteristics from the interval [`, 2`] from
using the odd extension about x = `.

−`
x

t

x = ctx = `− ct

`
2c

0 `f (x)f (−x) f (2`− x) 2`

So far we have extended f (x) and g(x) to the interval −` ≤ x ≤ 2` in
order to determine the solution over a larger xt-domain. For example, the
function f (x) has been extended to

fext(x) =


− f (−x), −` < x < 0,

f (x), 0 < x < `,
− f (2`− x), ` < x < 2`.

A similar extension is needed for g(x). Inserting these extended functions
into d’Alembert’s solution, we can determine u(x, t) in the region indicated
in Figure 2.18.
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Even though the original region has been expanded, we have not deter-
mined how to find the solution throughout the entire strip, [0, `] × [0, ∞).
This is accomplished by periodically repeating these extended functions
with period 2`. This can be shown from the two conditions

f (x) = − f (−x), −` ≤ x ≤ 0,

f (x) = − f (2`− x), ` ≤ x ≤ 2`. (2.47)

Now, consider

f (x + 2`) = − f (2`− (x− 2`))

= − f (−x)

= f (x). (2.48)

This shows that f (x) is periodic with period 2`. Since g(x) satisfies the same
conditions, then it is as well.

In Figure 2.19 we show how the characteristics are extended throughout
the domain strip using the periodicity of the extended initial conditions. The
characteristics from the interval endpoints zig zag throughout the domain,
filling it up. In the next example we show how to construct the odd periodic
extension of a specific function.

x

t

0 ` 2` 3``−2`

x
u(x, 0)

0
` 2` 3`−`−2`

Figure 2.19: Extending the characteris-
tics throughout the domain strip.

Example 2.8. Construct the periodic extension of the plucked string initial profile
given by

f (x) =

{
x, 0 ≤ x ≤ `

2 ,
`− x, `

2 ≤ x ≤ `,

satisfying fixed boundary conditions at x = 0 and x = `.
We first take the solution and add the odd extension about x = 0. Then we add

an extension beyond x = `. This process is shown in Figure 2.20.

We can use the odd periodic function to construct solutions. In this case
we use the result from the last example for obtaining the solution of the
problem in which the initial velocity is zero, u(x, t) = 1

2 [ f (x + ct) + f (x −
ct)]. Translations of the odd periodic extension are shown in Figure 2.21.
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Figure 2.20: Construction of odd peri-
odic extension for (a) The initial profile,
f (x). (b) Make f (x) an odd function on
[−`, `]. (c) Make the odd function peri-
odic with period 2`.

x

u(a)

x

u(b)

x

u(c)(c)(c)(c)

In Figure 2.22 we show superimposed plots of f (x + ct) and f (x − ct) for
different values of ct. A box is shown inside which the physical wave can
be constructed. The solution is an average of these odd periodic extensions
within this box. This is displayed in Figure 2.23.

Figure 2.21: Translations of the odd pe-
riodic extension.

x

uf̂ (x)f̂ (x)f̂ (x)f̂ (x)f̂ (x)

x

uf̂ (x + .2)f̂ (x + .2)f̂ (x + .2)f̂ (x + .2)f̂ (x + .2)

x

uf̂ (x + .4)f̂ (x + .4)f̂ (x + .4)f̂ (x + .4)f̂ (x + .4)

x

uf̂ (x + .6)f̂ (x + .6)f̂ (x + .6)f̂ (x + .6)f̂ (x + .6)

x

uf̂ (x− .2)f̂ (x− .2)f̂ (x− .2)f̂ (x− .2)f̂ (x− .2)

x

uf̂ (x− .4)f̂ (x− .4)f̂ (x− .4)f̂ (x− .4)f̂ (x− .4)

x

uf̂ (x− .6)f̂ (x− .6)f̂ (x− .6)f̂ (x− .6)f̂ (x− .6)

Problems

1. Solve the following initial value problems.

a. x′′ + x = 0, x(0) = 2, x′(0) = 0.

b. y′′ + 2y′ − 8y = 0, y(0) = 1, y′(0) = 2.

c. x2y′′ − 2xy′ − 4y = 0, y(1) = 1, y′(1) = 0.

2. Solve the following boundary value problems directly, when possible.

a. x′′ + x = 2, x(0) = 0, x′(1) = 0.

b. y′′ + 2y′ − 8y = 0, y(0) = 1, y(1) = 0.
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x

uf̂ (x)f̂ (x)f̂ (x)f̂ (x)f̂ (x)

x

uf̂ (x + .2)f̂ (x + .2)f̂ (x + .2)f̂ (x + .2)f̂ (x + .2) f̂ (x− .2)f̂ (x− .2)f̂ (x− .2)f̂ (x− .2)f̂ (x− .2)

x

uf̂ (x + .4)f̂ (x + .4)f̂ (x + .4)f̂ (x + .4)f̂ (x + .4) f̂ (x− .4)f̂ (x− .4)f̂ (x− .4)f̂ (x− .4)f̂ (x− .4)

x

uf̂ (x + .6)f̂ (x + .6)f̂ (x + .6)f̂ (x + .6)f̂ (x + .6) f̂ (x− .6)f̂ (x− .6)f̂ (x− .6)f̂ (x− .6)f̂ (x− .6)

x

uf̂ (x + .8)f̂ (x + .8)f̂ (x + .8)f̂ (x + .8)f̂ (x + .8) f̂ (x− .8)f̂ (x− .8)f̂ (x− .8)f̂ (x− .8)f̂ (x− .8)

x

uf̂ (x + 1)f̂ (x + 1)f̂ (x + 1)f̂ (x + 1)f̂ (x + 1) f̂ (x− 1)f̂ (x− 1)f̂ (x− 1)f̂ (x− 1)f̂ (x− 1) Figure 2.22: Superimposed translations
of the odd periodic extension.

x

u

ct = 0

x

u
ct = 1

x

u

x

u

x

u

x

u

x

u

x

u

x

u

x

u

x

u

x

u

Figure 2.23: On the left is a plot of f (x +
ct), f (x − ct) from Figure 2.22 and the
average, u(x, t). On the right the solution
alone is shown for ct = 0 to ct = 1.
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c. y′′ + y = 0, y(0) = 1, y(π) = 0.

3. Consider the boundary value problem for the deflection of a horizontal
beam fixed at one end,

d4y
dx4 = C, y(0) = 0, y′(0) = 0, y′′(L) = 0, y′′′(L) = 0.

Solve this problem assuming that C is a constant.

4. Find the product solutions, u(x, t) = T(t)X(x), to the heat equation,
ut − uxx = 0, on [0, π] satisfying the boundary conditions ux(0, t) = 0 and
u(π, t) = 0.

5. Find the product solutions, u(x, t) = T(t)X(x), to the wave equation
utt = 2uxx, on [0, 2π] satisfying the boundary conditions u(0, t) = 0 and
ux(2π, t) = 0.

6. Find product solutions, u(x, t) = X(x)Y(y), to Laplace’s equation, uxx +

uyy = 0, on the unit square satisfying the boundary conditions u(0, y) = 0,
u(1, y) = g(y), u(x, 0) = 0, and u(x, 1) = 0.

7. Consider the following boundary value problems. Determine the eigen-
values, λ, and eigenfunctions, y(x) for each problem.

a. y′′ + λy = 0, y(0) = 0, y′(1) = 0.

b. y′′ − λy = 0, y(−π) = 0, y′(π) = 0.

c. x2y′′ + xy′ + λy = 0, y(1) = 0, y(2) = 0.

d. (x2y′)′ + λy = 0, y(1) = 0, y′(e) = 0.In problem d you will not get exact
eigenvalues. Show that you obtain a
transcendental equation for the eigenval-
ues in the form tan z = 2z. Find the first
three eigenvalues numerically.

8. Classify the following equations as either hyperbolic, parabolic, or ellip-
tic.

a. uyy + uxy + uxx = 0.

b. 3uxx + 2uxy + 5uyy = 0.

c. x2uxx + 2xyuxy + y2uyy = 0.

d. y2uxx + 2xyuxy + (x2 + 4x4)uyy = 0.

9. Use d’Alembert’s solution to prove

f (−ζ) = f (ζ), g(−ζ) = g(ζ)

for the semi-infinite string satisfying the free end condition ux(0, t) = 0.

10. Derive a solution similar to d’Alembert’s solution for the equation utt +

2uxt − 3u = 0.

11. Construct the appropriate periodic extension of the plucked string ini-
tial profile given by

f (x) =

{
x, 0 ≤ x ≤ `

2 ,
`− x, `

2 ≤ x ≤ `,

satisfying the boundary conditions at u(0, t) = 0 and ux(`, t) = 0 for t > 0.
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12. Find and sketch the solution of the problem

utt = uxx, 0 ≤ x ≤ 1, t > o

u(x, 0) =


0, 0 ≤ x < 1

4 ,
1, 1

4 ≤ x ≤ 3
4 ,

0, 3
4 < x ≤ 1,

ut(x, 0) = 0,

u(0, t) = 0, t > 0,

u(1, t) = 0, t > 0,





3
Trigonometric Fourier Series

“Ordinary language is totally unsuited for expressing what physics really asserts,
since the words of everyday life are not sufficiently abstract. Only mathematics and
mathematical logic can say as little as the physicist means to say.” Bertrand Russell
(1872-1970)

3.1 Introduction to Fourier Series

We will now turn to the study of trigonometric series. You have seen
that functions have series representations as expansions in powers of x, or
x − a, in the form of Maclaurin and Taylor series. Recall that the Taylor
series expansion is given by

f (x) =
∞

∑
n=0

cn(x− a)n,

where the expansion coefficients are determined as

cn =
f (n)(a)

n!
.

From the study of the heat equation and wave equation, we have found
that there are infinite series expansions over other functions, such as sine
functions. We now turn to such expansions and in the next chapter we will
find out that expansions over special sets of functions are not uncommon in
physics. But, first we turn to Fourier trigonometric series.

We will begin with the study of the Fourier trigonometric series expan-
sion

f (x) =
a0

2
+

∞

∑
n=1

an cos
nπx

L
+ bn sin

nπx
L

.

We will find expressions useful for determining the Fourier coefficients
{an, bn} given a function f (x) defined on [−L, L]. We will also see if the
resulting infinite series reproduces f (x). However, we first begin with some
basic ideas involving simple sums of sinusoidal functions.

There is a natural appearance of such sums over sinusoidal functions in
music. A pure note can be represented as

y(t) = A sin(2π f t),
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where A is the amplitude, f is the frequency in hertz (Hz), and t is time in
seconds. The amplitude is related to the volume of the sound. The larger
the amplitude, the louder the sound. In Figure 3.1 we show plots of two
such tones with f = 2 Hz in the top plot and f = 5 Hz in the bottom one.
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y(t)

(a) y(t) = 2 sin(4π f t)

0 1 2 3

−2

0

2

t

(b) y(t) = sin(10π f t)

y(t)

Figure 3.1: Plots of y(t) = A sin(2π f t)
on [0, 5] for f = 2 Hz and f = 5 Hz.

In these plots you should notice the difference due to the amplitudes and
the frequencies. You can easily reproduce these plots and others in your
favorite plotting utility.

As an aside, you should be cautious when plotting functions, or sampling
data. The plots you get might not be what you expect, even for a simple sine
function. In Figure 3.2 we show four plots of the function y(t) = 2 sin(4πt).
In the top left you see a proper rendering of this function. However, if you
use a different number of points to plot this function, the results may be sur-
prising. In this example we show what happens if you use N = 200, 100, 101
points instead of the 201 points used in the first plot. Such disparities are
not only possible when plotting functions, but are also present when collect-
ing data. Typically, when you sample a set of data, you only gather a finite
amount of information at a fixed rate. This could happen when getting data
on ocean wave heights, digitizing music and other audio to put on your
computer, or any other process when you attempt to analyze a continuous
signal.

Figure 3.2: Problems can occur while
plotting. Here we plot the func-
tion y(t) = 2 sin 4πt using N =
201, 200, 100, 101 points.
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Next, we consider what happens when we add several pure tones. After
all, most of the sounds that we hear are in fact a combination of pure tones
with different amplitudes and frequencies. In Figure 3.3 we see what hap-
pens when we add several sinusoids. Note that as one adds more and more
tones with different characteristics, the resulting signal gets more compli-
cated. However, we still have a function of time. In this chapter we will ask,
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“Given a function f (t), can we find a set of sinusoidal functions whose sum
converges to f (t)?”
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y(t)

(a) Sum of signals with frequencies

f = 2 Hz and f = 5 Hz.

0 1 2 3

−2

0
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t

(b) Sum of signals with frequencies

f = 2 Hz, f = 5 Hz, and f = 8 Hz.

y(t)

Figure 3.3: Superposition of several si-
nusoids.

Looking at the superpositions in Figure 3.3, we see that the sums yield
functions that appear to be periodic. This is not to be unexpected. We recall
that a periodic function is one in which the function values repeat over the
domain of the function. The length of the smallest part of the domain which
repeats is called the period. We can define this more precisely: A function is
said to be periodic with period T if f (t + T) = f (t) for all t and the smallest
such positive number T is called the period.

For example, we consider the functions used in Figure 3.3. We began with
y(t) = 2 sin(4πt). Recall from your first studies of trigonometric functions
that one can determine the period by dividing the coefficient of t into 2π to
get the period. In this case we have

T =
2π

4π
=

1
2

.

Looking at the top plot in Figure 3.1 we can verify this result. (You can
count the full number of cycles in the graph and divide this into the total
time to get a more accurate value of the period.)

In general, if y(t) = A sin(2π f t), the period is found as

T =
2π

2π f
=

1
f

.

Of course, this result makes sense, as the unit of frequency, the hertz, is also
defined as s−1, or cycles per second.

Returning to Figure 3.3, the functions y(t) = 2 sin(4πt), y(t) = sin(10πt),
and y(t) = 0.5 sin(16πt) have periods of 0.5s, 0.2s, and 0.125s, respectively.
Each superposition in Figure 3.3 retains a period that is the least common
multiple of the periods of the signals added. For both plots, this is 1.0s
= 2(0.5)s = 5(.2)s = 8(.125)s.

Our goal will be to start with a function and then determine the ampli-
tudes of the simple sinusoids needed to sum to that function. We will see
that this might involve an infinite number of such terms. Thus, we will be
studying an infinite series of sinusoidal functions.

Secondly, we will find that using just sine functions will not be enough
either. This is because we can add sinusoidal functions that do not neces-
sarily peak at the same time. We will consider two signals that originate
at different times. This is similar to when your music teacher would make
sections of the class sing a song like “Row, Row, Row your Boat” starting at
slightly different times.
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(a) Plot of each function.
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(b) Plot of the sum of the functions.

y(t)

Figure 3.4: Plot of the functions y(t) =
2 sin(4πt) and y(t) = 2 sin(4πt + 7π/8)
and their sum.

We can easily add shifted sine functions. In Figure 3.4 we show the
functions y(t) = 2 sin(4πt) and y(t) = 2 sin(4πt + 7π/8) and their sum.
Note that this shifted sine function can be written as y(t) = 2 sin(4π(t +
7/32)). Thus, this corresponds to a time shift of −7/32.

So, we should account for shifted sine functions in the general sum. Of
course, we would then need to determine the unknown time shift as well
as the amplitudes of the sinusoidal functions that make up the signal, f (t).
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While this is one approach that some researchers use to analyze signals,
there is a more common approach. This results from another reworking of
the shifted function.

We should note that the form in the
lower plot of Figure 3.4 looks like a sim-
ple sinusoidal function for a reason. Let

y1(t) = 2 sin(4πt),

y2(t) = 2 sin(4πt + 7π/8).

Then,

y1 + y2 = 2 sin(4πt + 7π/8) + 2 sin(4πt)

= 2[sin(4πt + 7π/8) + sin(4πt)]

= 4 cos
7π

16
sin
(

4πt +
7π

16

)
.

Consider the general shifted function

y(t) = A sin(2π f t + φ). (3.1)

Note that 2π f t + φ is called the phase of the sine function and φ is called
the phase shift. We can use the trigonometric identity (A.17) for the sine of
the sum of two angles1 to obtain

1 Recall the identities (A.17)-(A.18)

sin(x + y) = sin x cos y + sin y cos x,

cos(x + y) = cos x cos y− sin x sin y.

y(t) = A sin(2π f t + φ)

= A sin(φ) cos(2π f t) + A cos(φ) sin(2π f t). (3.2)

Defining a = A sin(φ) and b = A cos(φ), we can rewrite this as

y(t) = a cos(2π f t) + b sin(2π f t).

Thus, we see that the signal in Equation (3.1) is a sum of sine and cosine
functions with the same frequency and different amplitudes. If we can find
a and b, then we can easily determine A and φ:

A =
√

a2 + b2, tan φ =
b
a

.

We are now in a position to state our goal.

Goal - Fourier Analysis

Given a signal f (t), we would like to determine its frequency content by
finding out what combinations of sines and cosines of varying frequencies
and amplitudes will sum to the given function. This is called Fourier
Analysis.

3.2 Fourier Trigonometric Series

As we have seen in the last section, we are interested in finding
representations of functions in terms of sines and cosines. Given a function
f (x) we seek a representation in the form

f (x) ∼ a0

2
+

∞

∑
n=1

[an cos nx + bn sin nx] . (3.3)

Notice that we have opted to drop the references to the time-frequency form
of the phase. This will lead to a simpler discussion for now and one can
always make the transformation nx = 2π fnt when applying these ideas to
applications.

The series representation in Equation (3.3) is called a Fourier trigonomet-
ric series. We will simply refer to this as a Fourier series for now. The set
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of constants a0, an, bn, n = 1, 2, . . . are called the Fourier coefficients. The
constant term is chosen in this form to make later computations simpler,
though some other authors choose to write the constant term as a0. Our
goal is to find the Fourier series representation given f (x). Having found
the Fourier series representation, we will be interested in determining when
the Fourier series converges and to what function it converges.
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y(t)

(a) Plot of function f (t).
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(b) Periodic extension of f (t).

y(t)

Figure 3.5: Plot of the function f (t) de-
fined on [0, 2π] and its periodic exten-
sion.

From our discussion in the last section, we see that The Fourier series is
periodic. The periods of cos nx and sin nx are 2π

n . Thus, the largest period,
T = 2π, comes from the n = 1 terms and the Fourier series has period 2π.
This means that the series should be able to represent functions that are
periodic of period 2π.

While this appears restrictive, we could also consider functions that are
defined over one period. In Figure 3.5 we show a function defined on [0, 2π].
In the same figure, we show its periodic extension. These are just copies of
the original function shifted by the period and glued together. The extension
can now be represented by a Fourier series and restricting the Fourier series
to [0, 2π] will give a representation of the original function. Therefore, we
will first consider Fourier series representations of functions defined on this
interval. Note that we could just as easily considered functions defined on
[−π, π] or any interval of length 2π. We will consider more general intervals
later in the chapter.

Fourier Coefficients

Theorem 3.1. The Fourier series representation of f (x) defined on [0, 2π], when
it exists, is given by (3.3) with Fourier coefficients

an =
1
π

∫ 2π

0
f (x) cos nx dx, n = 0, 1, 2, . . . ,

bn =
1
π

∫ 2π

0
f (x) sin nx dx, n = 1, 2, . . . . (3.4)

These expressions for the Fourier coefficients are obtained by considering
special integrations of the Fourier series. We will now derive the an integrals
in (3.4).

We begin with the computation of a0. Integrating the Fourier series term
by term in Equation (3.3), we have∫ 2π

0
f (x) dx =

∫ 2π

0

a0

2
dx +

∫ 2π

0

∞

∑
n=1

[an cos nx + bn sin nx] dx. (3.5)

We will assume that we can integrate the infinite sum term by term. Then Evaluating the integral of an infinite se-
ries by integrating term by term depends
on the convergence properties of the se-
ries.

we will need to compute∫ 2π

0

a0

2
dx =

a0

2
(2π) = πa0,∫ 2π

0
cos nx dx =

[
sin nx

n

]2π

0
= 0,

∫ 2π

0
sin nx dx =

[
− cos nx

n

]2π

0
= 0. (3.6)
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From these results we see that only one term in the integrated sum does not
vanish leaving ∫ 2π

0
f (x) dx = πa0.

This confirms the value for a0.2

2 Note that a0
2 is the average of f (x) over

the interval [0, 2π]. Recall from the first
semester of calculus, that the average of
a function defined on [a, b] is given by

fave =
1

b− a

∫ b

a
f (x) dx.

For f (x) defined on [0, 2π], we have

fave =
1

2π

∫ 2π

0
f (x) dx =

a0

2
.

Next, we will find the expression for an. We multiply the Fourier series
(3.3) by cos mx for some positive integer m. This is like multiplying by
cos 2x, cos 5x, etc. We are multiplying by all possible cos mx functions for
different integers m all at the same time. We will see that this will allow us
to solve for the an’s.

We find the integrated sum of the series times cos mx is given by∫ 2π

0
f (x) cos mx dx =

∫ 2π

0

a0

2
cos mx dx

+
∫ 2π

0

∞

∑
n=1

[an cos nx + bn sin nx] cos mx dx.

(3.7)

Integrating term by term, the right side becomes∫ 2π

0
f (x) cos mx dx =

a0

2

∫ 2π

0
cos mx dx

+
∞

∑
n=1

[
an

∫ 2π

0
cos nx cos mx dx + bn

∫ 2π

0
sin nx cos mx dx

]
.

(3.8)

We have already established that
∫ 2π

0 cos mx dx = 0, which implies that the
first term vanishes.

Next we need to compute integrals of products of sines and cosines. This
requires that we make use of some of the trigonometric identities listed in
Chapter 1. For quick reference, we list these here.

Useful Trigonometric Identities

sin(x± y) = sin x cos y± sin y cos x (3.9)

cos(x± y) = cos x cos y∓ sin x sin y (3.10)

sin2 x =
1
2
(1− cos 2x) (3.11)

cos2 x =
1
2
(1 + cos 2x) (3.12)

sin x sin y =
1
2
(cos(x− y)− cos(x + y)) (3.13)

cos x cos y =
1
2
(cos(x + y) + cos(x− y)) (3.14)

sin x cos y =
1
2
(sin(x + y) + sin(x− y)) (3.15)

We first want to evaluate
∫ 2π

0 cos nx cos mx dx. We do this by using the
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product identity (3.14). We have∫ 2π

0
cos nx cos mx dx =

1
2

∫ 2π

0
[cos(m + n)x + cos(m− n)x] dx

=
1
2

[
sin(m + n)x

m + n
+

sin(m− n)x
m− n

]2π

0
= 0. (3.16)

There is one caveat when doing such integrals. What if one of the de-
nominators m± n vanishes? For this problem m + n 6= 0, since both m and
n are positive integers. However, it is possible for m = n. This means that
the vanishing of the integral can only happen when m 6= n. So, what can
we do about the m = n case? One way is to start from scratch with our
integration. (Another way is to compute the limit as n approaches m in our
result and use L’Hopital’s Rule. Try it!)

For n = m we have to compute
∫ 2π

0 cos2 mx dx. This can also be handled
using a trigonometric identity. Using the half angle formula, (3.12), with
θ = mx, we find∫ 2π

0
cos2 mx dx =

1
2

∫ 2π

0
(1 + cos 2mx) dx

=
1
2

[
x +

1
2m

sin 2mx
]2π

0

=
1
2
(2π) = π. (3.17)

To summarize, we have shown that

∫ 2π

0
cos nx cos mx dx =

{
0, m 6= n
π, m = n.

(3.18)

This holds true for m, n = 0, 1, . . . . [Why did we include m, n = 0?] When
we have such a set of functions, they are said to be an orthogonal set over the
integration interval. A set of (real) functions {φn(x)} is said to be orthogonal
on [a, b] if

∫ b
a φn(x)φm(x) dx = 0 when n 6= m. Furthermore, if we also have

that
∫ b

a φ2
n(x) dx = 1, these functions are called orthonormal. Definition of an orthogonal set of func-

tions and orthonormal functions.The set of functions {cos nx}∞
n=0 are orthogonal on [0, 2π]. Actually, they

are orthogonal on any interval of length 2π. We can make them orthonormal
by dividing each function by

√
π as indicated by Equation (3.17). This is

sometimes referred to normalization of the set of functions.
The notion of orthogonality is actually a generalization of the orthogonal-

ity of vectors in finite dimensional vector spaces. The integral
∫ b

a f (x) f (x) dx
is the generalization of the dot product, and is called the scalar product of
f (x) and g(x), which are thought of as vectors in an infinite dimensional
vector space spanned by a set of orthogonal functions. We will return to
these ideas in the next chapter.

Returning to the integrals in equation (3.8), we still have to evaluate∫ 2π
0 sin nx cos mx dx. We can use the trigonometric identity involving prod-

ucts of sines and cosines, (3.15). Setting A = nx and B = mx, we find
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that ∫ 2π

0
sin nx cos mx dx =

1
2

∫ 2π

0
[sin(n + m)x + sin(n−m)x] dx

=
1
2

[
− cos(n + m)x

n + m
+
− cos(n−m)x

n−m

]2π

0

= (−1 + 1) + (−1 + 1) = 0. (3.19)

So,

∫ 2π

0
sin nx cos mx dx = 0. (3.20)

For these integrals we also should be careful about setting n = m. In this
special case, we have the integrals

∫ 2π

0
sin mx cos mx dx =

1
2

∫ 2π

0
sin 2mx dx =

1
2

[
− cos 2mx

2m

]2π

0
= 0.

Finally, we can finish evaluating the expression in Equation (3.8). We
have determined that all but one integral vanishes. In that case, n = m. This
leaves us with ∫ 2π

0
f (x) cos mx dx = amπ.

Solving for am gives

am =
1
π

∫ 2π

0
f (x) cos mx dx.

Since this is true for all m = 1, 2, . . . , we have proven this part of the theorem.
The only part left is finding the bn’s This will be left as an exercise for the
reader.

We now consider examples of finding Fourier coefficients for given func-
tions. In all of these cases we define f (x) on [0, 2π].

Example 3.1. f (x) = 3 cos 2x, x ∈ [0, 2π].
We first compute the integrals for the Fourier coefficients.

a0 =
1
π

∫ 2π

0
3 cos 2x dx = 0.

an =
1
π

∫ 2π

0
3 cos 2x cos nx dx = 0, n 6= 2.

a2 =
1
π

∫ 2π

0
3 cos2 2x dx = 3,

bn =
1
π

∫ 2π

0
3 cos 2x sin nx dx = 0, ∀n.

(3.21)

The integrals for a0, an, n 6= 2, and bn are the result of orthogonality. For a2, the
integral can be computed as follows:

a2 =
1
π

∫ 2π

0
3 cos2 2x dx
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=
3

2π

∫ 2π

0
[1 + cos 4x] dx

=
3

2π

x +
1
4

sin 4x︸ ︷︷ ︸
This term vanishes!


2π

0

= 3. (3.22)

Therefore, we have that the only nonvanishing coefficient is a2 = 3. So there is
one term and f (x) = 3 cos 2x.

Well, we should have known the answer to the last example before doing
all of those integrals. If we have a function expressed simply in terms of
sums of simple sines and cosines, then it should be easy to write down the
Fourier coefficients without much work. This is seen by writing out the
Fourier series,

f (x) ∼ a0

2
+

∞

∑
n=1

[an cos nx + bn sin nx] .

=
a0

2
+ a1 cos x + b1 sin x ++a2 cos 2x + b2 sin 2x + . . . . (3.23)

For the last problem, f (x) = 3 cos 2x. Comparing this to the expanded
Fourier series, one can immediately read off the Fourier coefficients without
doing any integration. In the next example we emphasize this point.

Example 3.2. f (x) = sin2 x, x ∈ [0, 2π].
We could determine the Fourier coefficients by integrating as in the last example.

However, it is easier to use trigonometric identities. We know that

sin2 x =
1
2
(1− cos 2x) =

1
2
− 1

2
cos 2x.

There are no sine terms, so bn = 0, n = 1, 2, . . . . There is a constant term, implying
a0/2 = 1/2. So, a0 = 1. There is a cos 2x term, corresponding to n = 2, so
a2 = − 1

2 . That leaves an = 0 for n 6= 0, 2. So, a0 = 1, a2 = − 1
2 , and all other

Fourier coefficients vanish.

Example 3.3. f (x) =

{
1, 0 < x < π,
−1, π < x < 2π,

.
π 2π

−2

−1

0

1

2

x

Figure 3.6: Plot of discontinuous func-
tion in Example 3.3.

This example will take a little more work. We cannot bypass evaluating any
integrals this time. As seen in Figure 3.6, this function is discontinuous. So, we
will break up any integration into two integrals, one over [0, π] and the other over
[π, 2π].

a0 =
1
π

∫ 2π

0
f (x) dx

=
1
π

∫ π

0
dx +

1
π

∫ 2π

π
(−1) dx

=
1
π
(π) +

1
π
(−2π + π) = 0. (3.24)

an =
1
π

∫ 2π

0
f (x) cos nx dx
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=
1
π

[∫ π

0
cos nx dx−

∫ 2π

π
cos nx dx

]
=

1
π

[(
1
n

sin nx
)π

0
−
(

1
n

sin nx
)2π

π

]
= 0. (3.25)

bn =
1
π

∫ 2π

0
f (x) sin nx dx

=
1
π

[∫ π

0
sin nx dx−

∫ 2π

π
sin nx dx

]
=

1
π

[(
− 1

n
cos nx

)π

0
+

(
1
n

cos nx
)2π

π

]

=
1
π

[
− 1

n
cos nπ +

1
n
+

1
n
− 1

n
cos nπ

]
=

2
nπ

(1− cos nπ). (3.26)

We have found the Fourier coefficients for this function. Before inserting them
into the Fourier series (3.3), we note that cos nπ = (−1)n. Therefore,

Often we see expressions involving
cos nπ = (−1)n and 1 ± cos nπ = 1 ±
(−1)n. This is an example showing how
to re-index series containing cos nπ.

1− cos nπ =

{
0, n even
2, n odd.

(3.27)

So, half of the bn’s are zero. While we could write the Fourier series representation
as

f (x) ∼ 4
π

∞

∑
n=1
n odd

1
n

sin nx,

we could let n = 2k− 1 in order to capture the odd numbers only. The answer can
be written as

f (x) =
4
π

∞

∑
k=1

sin(2k− 1)x
2k− 1

,

Having determined the Fourier representation of a given function, we
would like to know if the infinite series can be summed; i.e., does the series
converge? Does it converge to f (x)? We will discuss this question later in
the chapter after we generalize the Fourier series to intervals other than for
x ∈ [0, 2π].

3.3 Fourier Series Over Other Intervals

In many applications we are interested in determining Fourier series
representations of functions defined on intervals other than [0, 2π]. In this
section we will determine the form of the series expansion and the Fourier
coefficients in these cases.

The most general type of interval is given as [a, b]. However, this often
is too general. More common intervals are of the form [−π, π], [0, L], or
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[−L/2, L/2]. The simplest generalization is to the interval [0, L]. Such in-
tervals arise often in applications. For example, for the problem of a one
dimensional string of length L we set up the axes with the left end at x = 0
and the right end at x = L. Similarly for the temperature distribution along
a one dimensional rod of length L we set the interval to x ∈ [0, 2π]. Such
problems naturally lead to the study of Fourier series on intervals of length
L. We will see later that symmetric intervals, [−a, a], are also useful.

Given an interval [0, L], we could apply a transformation to an interval
of length 2π by simply rescaling the interval. Then we could apply this
transformation to the Fourier series representation to obtain an equivalent
one useful for functions defined on [0, L].

t
0 L

x
0 2π

Figure 3.7: A sketch of the transforma-
tion between intervals x ∈ [0, 2π] and
t ∈ [0, L].

We define x ∈ [0, 2π] and t ∈ [0, L]. A linear transformation relating these
intervals is simply x = 2πt

L as shown in Figure 3.7. So, t = 0 maps to x = 0
and t = L maps to x = 2π. Furthermore, this transformation maps f (x) to
a new function g(t) = f (x(t)), which is defined on [0, L]. We will determine
the Fourier series representation of this function using the representation
for f (x) from the last section.

Recall the form of the Fourier representation for f (x) in Equation (3.3):

f (x) ∼ a0

2
+

∞

∑
n=1

[an cos nx + bn sin nx] . (3.28)

Inserting the transformation relating x and t, we have

g(t) ∼ a0

2
+

∞

∑
n=1

[
an cos

2nπt
L

+ bn sin
2nπt

L

]
. (3.29)

This gives the form of the series expansion for g(t) with t ∈ [0, L]. But, we
still need to determine the Fourier coefficients.

Recall, that

an =
1
π

∫ 2π

0
f (x) cos nx dx.

We need to make a substitution in the integral of x = 2πt
L . We also will need

to transform the differential, dx = 2π
L dt. Thus, the resulting form for the

Fourier coefficients is

an =
2
L

∫ L

0
g(t) cos

2nπt
L

dt. (3.30)

Similarly, we find that

bn =
2
L

∫ L

0
g(t) sin

2nπt
L

dt. (3.31)

We note first that when L = 2π we get back the series representation that
we first studied. Also, the period of cos 2nπt

L is L/n, which means that the
representation for g(t) has a period of L corresponding to n = 1.

At the end of this section we present the derivation of the Fourier series
representation for a general interval for the interested reader. In Table 3.1
we summarize some commonly used Fourier series representations.

Integration of even and odd functions
over symmetric intervals, [−a, a].



82 partial differential equations

At this point we need to remind the reader about the integration of even
and odd functions on symmetric intervals.

We first recall that f (x) is an even function if f (−x) = f (x) for all x.
One can recognize even functions as they are symmetric with respect to the
y-axis as shown in Figure 3.8.

Even Functions.

a−a x

y(x)

Figure 3.8: Area under an even function
on a symmetric interval, [−a, a].

If one integrates an even function over a symmetric interval, then one has
that ∫ a

−a
f (x) dx = 2

∫ a

0
f (x) dx. (3.32)

One can prove this by splitting off the integration over negative values of x,
using the substitution x = −y, and employing the evenness of f (x). Thus,

∫ a

−a
f (x) dx =

∫ 0

−a
f (x) dx +

∫ a

0
f (x) dx

= −
∫ 0

a
f (−y) dy +

∫ a

0
f (x) dx

=
∫ a

0
f (y) dy +

∫ a

0
f (x) dx

= 2
∫ a

0
f (x) dx. (3.33)

This can be visually verified by looking at Figure 3.8.Odd Functions.

A similar computation could be done for odd functions. f (x) is an odd
function if f (−x) = − f (x) for all x. The graphs of such functions are
symmetric with respect to the origin as shown in Figure 3.9. If one integrates
an odd function over a symmetric interval, then one has that∫ a

−a
f (x) dx = 0. (3.34)

a
−a

x

y(x)

Figure 3.9: Area under an odd function
on a symmetric interval, [−a, a].

Example 3.4. Let f (x) = |x| on [−π, π] We compute the coefficients, beginning
as usual with a0. We have, using the fact that |x| is an even function,

a0 =
1
π

∫ π

−π
|x| dx

=
2
π

∫ π

0
x dx = π (3.35)

We continue with the computation of the general Fourier coefficients for f (x) =
|x| on [−π, π]. We have

an =
1
π

∫ π

−π
|x| cos nx dx =

2
π

∫ π

0
x cos nx dx. (3.36)

Here we have made use of the fact that |x| cos nx is an even function.
In order to compute the resulting integral, we need to use integration by parts ,

∫ b

a
u dv = uv

∣∣∣b
a
−
∫ b

a
v du,

by letting u = x and dv = cos nx dx. Thus, du = dx and v =
∫

dv = 1
n sin nx.
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Fourier Series on [0, L]

f (x) ∼ a0

2
+

∞

∑
n=1

[
an cos

2nπx
L

+ bn sin
2nπx

L

]
. (3.37)

an =
2
L

∫ L

0
f (x) cos

2nπx
L

dx. n = 0, 1, 2, . . . ,

bn =
2
L

∫ L

0
f (x) sin

2nπx
L

dx. n = 1, 2, . . . . (3.38)

Fourier Series on [− L
2 , L

2 ]

f (x) ∼ a0

2
+

∞

∑
n=1

[
an cos

2nπx
L

+ bn sin
2nπx

L

]
. (3.39)

an =
2
L

∫ L
2

− L
2

f (x) cos
2nπx

L
dx. n = 0, 1, 2, . . . ,

bn =
2
L

∫ L
2

− L
2

f (x) sin
2nπx

L
dx. n = 1, 2, . . . . (3.40)

Fourier Series on [−π, π]

f (x) ∼ a0

2
+

∞

∑
n=1

[an cos nx + bn sin nx] . (3.41)

an =
1
π

∫ π

−π
f (x) cos nx dx. n = 0, 1, 2, . . . ,

bn =
1
π

∫ π

−π
f (x) sin nx dx. n = 1, 2, . . . . (3.42)

Table 3.1: Special Fourier Series Repre-
sentations on Different Intervals



84 partial differential equations

Continuing with the computation, we have

an =
2
π

∫ π

0
x cos nx dx.

=
2
π

[
1
n

x sin nx
∣∣∣π
0
− 1

n

∫ π

0
sin nx dx

]
= − 2

nπ

[
− 1

n
cos nx

]π

0

= − 2
πn2 (1− (−1)n). (3.43)

Here we have used the fact that cos nπ = (−1)n for any integer n. This leads
to a factor (1− (−1)n). This factor can be simplified as

1− (−1)n =

{
2, n odd
0, n even

. (3.44)

So, an = 0 for n even and an = − 4
πn2 for n odd.

Computing the bn’s is simpler. We note that we have to integrate |x| sin nx from
x = −π to π. The integrand is an odd function and this is a symmetric interval.
So, the result is that bn = 0 for all n.

Putting this all together, the Fourier series representation of f (x) = |x| on
[−π, π] is given as

f (x) ∼ π

2
− 4

π

∞

∑
n=1
n odd

cos nx
n2 . (3.45)

While this is correct, we can rewrite the sum over only odd n by reindexing. We
let n = 2k− 1 for k = 1, 2, 3, . . . . Then we only get the odd integers. The series
can then be written as

f (x) ∼ π

2
− 4

π

∞

∑
k=1

cos(2k− 1)x
(2k− 1)2 . (3.46)

Throughout our discussion we have referred to such results as Fourier
representations. We have not looked at the convergence of these series.
Here is an example of an infinite series of functions. What does this series
sum to? We show in Figure 3.10 the first few partial sums. They appear to
be converging to f (x) = |x| fairly quickly.

Even though f (x) was defined on [−π, π] we can still evaluate the Fourier
series at values of x outside this interval. In Figure 3.11, we see that the
representation agrees with f (x) on the interval [−π, π]. Outside this interval
we have a periodic extension of f (x) with period 2π.

Another example is the Fourier series representation of f (x) = x on
[−π, π] as left for Problem 7. This is determined to be

f (x) ∼ 2
∞

∑
n=1

(−1)n+1

n
sin nx. (3.47)

As seen in Figure 3.12 we again obtain the periodic extension of the func-
tion. In this case we needed many more terms. Also, the vertical parts of the
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Figure 3.10: Plot of the first partial sums
of the Fourier series representation for
f (x) = |x|.
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Figure 3.11: Plot of the first 10 terms
of the Fourier series representation for
f (x) = |x| on the interval [−2π, 4π].
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Figure 3.12: Plot of the first 10 terms
and 200 terms of the Fourier series rep-
resentation for f (x) = x on the interval
[−2π, 4π].
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first plot are nonexistent. In the second plot we only plot the points and not
the typical connected points that most software packages plot as the default
style.

Example 3.5. It is interesting to note that one can use Fourier series to obtain
sums of some infinite series. For example, in the last example we found that

x ∼ 2
∞

∑
n=1

(−1)n+1

n
sin nx.

Now, what if we chose x = π
2 ? Then, we have

π

2
= 2

∞

∑
n=1

(−1)n+1

n
sin

nπ

2
= 2

[
1− 1

3
+

1
5
− 1

7
+ . . .

]
.

This gives a well known expression for π:

π = 4
[

1− 1
3
+

1
5
− 1

7
+ . . .

]
.

3.3.1 Fourier Series on [a, b]

A Fourier series representation is also possible for a general interval,
t ∈ [a, b]. As before, we just need to transform this interval to [0, 2π]. LetThis section can be skipped on first read-

ing. It is here for completeness and the
end result, Theorem 3.2 provides the re-
sult of the section.

x = 2π
t− a
b− a

.

Inserting this into the Fourier series (3.3) representation for f (x) we obtain

g(t) ∼ a0

2
+

∞

∑
n=1

[
an cos

2nπ(t− a)
b− a

+ bn sin
2nπ(t− a)

b− a

]
. (3.48)

Well, this expansion is ugly. It is not like the last example, where the
transformation was straightforward. If one were to apply the theory to
applications, it might seem to make sense to just shift the data so that a = 0
and be done with any complicated expressions. However, some students
enjoy the challenge of developing such generalized expressions. So, let’s see
what is involved.

First, we apply the addition identities for trigonometric functions and
rearrange the terms.

g(t) ∼ a0

2
+

∞

∑
n=1

[
an cos

2nπ(t− a)
b− a

+ bn sin
2nπ(t− a)

b− a

]
=

a0

2
+

∞

∑
n=1

[
an

(
cos

2nπt
b− a

cos
2nπa
b− a

+ sin
2nπt
b− a

sin
2nπa
b− a

)
+ bn

(
sin

2nπt
b− a

cos
2nπa
b− a

− cos
2nπt
b− a

sin
2nπa
b− a

)]
=

a0

2
+

∞

∑
n=1

[
cos

2nπt
b− a

(
an cos

2nπa
b− a

− bn sin
2nπa
b− a

)
+ sin

2nπt
b− a

(
an sin

2nπa
b− a

+ bn cos
2nπa
b− a

)]
. (3.49)
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Defining A0 = a0 and

An ≡ an cos
2nπa
b− a

− bn sin
2nπa
b− a

Bn ≡ an sin
2nπa
b− a

+ bn cos
2nπa
b− a

, (3.50)

we arrive at the more desirable form for the Fourier series representation of
a function defined on the interval [a, b].

g(t) ∼ A0

2
+

∞

∑
n=1

[
An cos

2nπt
b− a

+ Bn sin
2nπt
b− a

]
. (3.51)

We next need to find expressions for the Fourier coefficients. We insert
the known expressions for an and bn and rearrange. First, we note that
under the transformation x = 2π t−a

b−a we have

an =
1
π

∫ 2π

0
f (x) cos nx dx

=
2

b− a

∫ b

a
g(t) cos

2nπ(t− a)
b− a

dt, (3.52)

and

bn =
1
π

∫ 2π

0
f (x) cos nx dx

=
2

b− a

∫ b

a
g(t) sin

2nπ(t− a)
b− a

dt. (3.53)

Then, inserting these integrals in An, combining integrals and making use
of the addition formula for the cosine of the sum of two angles, we obtain

An ≡ an cos
2nπa
b− a

− bn sin
2nπa
b− a

=
2

b− a

∫ b

a
g(t)

[
cos

2nπ(t− a)
b− a

cos
2nπa
b− a

− sin
2nπ(t− a)

b− a
sin

2nπa
b− a

]
dt

=
2

b− a

∫ b

a
g(t) cos

2nπt
b− a

dt. (3.54)

A similar computation gives

Bn =
2

b− a

∫ b

a
g(t) sin

2nπt
b− a

dt. (3.55)

Summarizing, we have shown that:

Theorem 3.2. The Fourier series representation of f (x) defined on [a, b] when
it exists, is given by

f (x) ∼ a0

2
+

∞

∑
n=1

[
an cos

2nπx
b− a

+ bn sin
2nπx
b− a

]
. (3.56)

with Fourier coefficients

an =
2

b− a

∫ b

a
f (x) cos

2nπx
b− a

dx. n = 0, 1, 2, . . . ,

bn =
2

b− a

∫ b

a
f (x) sin

2nπx
b− a

dx. n = 1, 2, . . . . (3.57)
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3.4 Sine and Cosine Series

In the last two examples ( f (x) = |x| and f (x) = x on [−π, π]) we
have seen Fourier series representations that contain only sine or cosine
terms. As we know, the sine functions are odd functions and thus sum
to odd functions. Similarly, cosine functions sum to even functions. Such
occurrences happen often in practice. Fourier representations involving just
sines are called sine series and those involving just cosines (and the constant
term) are called cosine series.

Another interesting result, based upon these examples, is that the original
functions, |x| and x agree on the interval [0, π]. Note from Figures 3.10-3.12

that their Fourier series representations do as well. Thus, more than one se-
ries can be used to represent functions defined on finite intervals. All they
need to do is to agree with the function over that particular interval. Some-
times one of these series is more useful because it has additional properties
needed in the given application.

We have made the following observations from the previous examples:

1. There are several trigonometric series representations for a func-
tion defined on a finite interval.

2. Odd functions on a symmetric interval are represented by sine
series and even functions on a symmetric interval are represented
by cosine series.

These two observations are related and are the subject of this section.
We begin by defining a function f (x) on interval [0, L]. We have seen that
the Fourier series representation of this function appears to converge to a
periodic extension of the function.

In Figure 3.13 we show a function defined on [0, 1]. To the right is its
periodic extension to the whole real axis. This representation has a period
of L = 1. The bottom left plot is obtained by first reflecting f about the y-
axis to make it an even function and then graphing the periodic extension of
this new function. Its period will be 2L = 2. Finally, in the last plot we flip
the function about each axis and graph the periodic extension of the new
odd function. It will also have a period of 2L = 2.

In general, we obtain three different periodic representations. In order
to distinguish these we will refer to them simply as the periodic, even and
odd extensions. Now, starting with f (x) defined on [0, L], we would like
to determine the Fourier series representations leading to these extensions.
[For easy reference, the results are summarized in Table 3.2]

We have already seen from Table 3.1 that the periodic extension of f (x),
defined on [0, L], is obtained through the Fourier series representation

f (x) ∼ a0

2
+

∞

∑
n=1

[
an cos

2nπx
L

+ bn sin
2nπx

L

]
, (3.58)
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Figure 3.13: This is a sketch of a func-
tion and its various extensions. The orig-
inal function f (x) is defined on [0, 1] and
graphed in the upper left corner. To its
right is the periodic extension, obtained
by adding replicas. The two lower plots
are obtained by first making the original
function even or odd and then creating
the periodic extensions of the new func-
tion.

where

an =
2
L

∫ L

0
f (x) cos

2nπx
L

dx. n = 0, 1, 2, . . . ,

bn =
2
L

∫ L

0
f (x) sin

2nπx
L

dx. n = 1, 2, . . . . (3.59)

Given f (x) defined on [0, L], the even periodic extension is obtained by Even periodic extension.

simply computing the Fourier series representation for the even function

fe(x) ≡
{

f (x), 0 < x < L,
f (−x) −L < x < 0.

(3.60)

Since fe(x) is an even function on a symmetric interval [−L, L], we expect
that the resulting Fourier series will not contain sine terms. Therefore, the
series expansion will be given by [Use the general case in (3.56) with a = −L
and b = L.]:

fe(x) ∼ a0

2
+

∞

∑
n=1

an cos
nπx

L
. (3.67)

with Fourier coefficients

an =
1
L

∫ L

−L
fe(x) cos

nπx
L

dx. n = 0, 1, 2, . . . . (3.68)

However, we can simplify this by noting that the integrand is even and
the interval of integration can be replaced by [0, L]. On this interval fe(x) =
f (x). So, we have the Cosine Series Representation of f (x) for x ∈ [0, L] is
given as Fourier Cosine Series.

f (x) ∼ a0

2
+

∞

∑
n=1

an cos
nπx

L
. (3.69)

where

an =
2
L

∫ L

0
f (x) cos

nπx
L

dx. n = 0, 1, 2, . . . . (3.70)
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Table 3.2: Fourier Cosine and Sine Series
Representations on [0, L] Fourier Series on [0, L]

f (x) ∼ a0

2
+

∞

∑
n=1

[
an cos

2nπx
L

+ bn sin
2nπx

L

]
. (3.61)

an =
2
L

∫ L

0
f (x) cos

2nπx
L

dx. n = 0, 1, 2, . . . ,

bn =
2
L

∫ L

0
f (x) sin

2nπx
L

dx. n = 1, 2, . . . . (3.62)

Fourier Cosine Series on [0, L]

f (x) ∼ a0/2 +
∞

∑
n=1

an cos
nπx

L
. (3.63)

where

an =
2
L

∫ L

0
f (x) cos

nπx
L

dx. n = 0, 1, 2, . . . . (3.64)

Fourier Sine Series on [0, L]

f (x) ∼
∞

∑
n=1

bn sin
nπx

L
. (3.65)

where

bn =
2
L

∫ L

0
f (x) sin

nπx
L

dx. n = 1, 2, . . . . (3.66)
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Similarly, given f (x) defined on [0, L], the odd periodic extension is Odd periodic extension.

obtained by simply computing the Fourier series representation for the odd
function

fo(x) ≡
{

f (x), 0 < x < L,
− f (−x) −L < x < 0.

(3.71)

The resulting series expansion leads to defining the Sine Series Representa-
tion of f (x) for x ∈ [0, L] as Fourier Sine Series Representation.

f (x) ∼
∞

∑
n=1

bn sin
nπx

L
. (3.72)

where

bn =
2
L

∫ L

0
f (x) sin

nπx
L

dx. n = 1, 2, . . . . (3.73)

Example 3.6. In Figure 3.13 we actually provided plots of the various extensions
of the function f (x) = x2 for x ∈ [0, 1]. Let’s determine the representations of the
periodic, even and odd extensions of this function.

For a change, we will use a CAS (Computer Algebra System) package to do the
integrals. In this case we can use Maple. A general code for doing this for the
periodic extension is shown in Table 3.3.

Example 3.7. Periodic Extension - Trigonometric Fourier Series Using the
code in Table 3.3, we have that a0 = 2

3 , an = 1
n2π2 , and bn = − 1

nπ . Thus, the
resulting series is given as

f (x) ∼ 1
3
+

∞

∑
n=1

[
1

n2π2 cos 2nπx− 1
nπ

sin 2nπx
]

.

In Figure 3.14 we see the sum of the first 50 terms of this series. Generally,
we see that the series seems to be converging to the periodic extension of f . There
appear to be some problems with the convergence around integer values of x. We
will later see that this is because of the discontinuities in the periodic extension and
the resulting overshoot is referred to as the Gibbs phenomenon which is discussed
in the last section of this chapter.
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Figure 3.14: The periodic extension of
f (x) = x2 on [0, 1].
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Table 3.3: Maple code for computing
Fourier coefficients and plotting partial
sums of the Fourier series.

> restart:

> L:=1:

> f:=x^2:

> assume(n,integer):

> a0:=2/L*int(f,x=0..L);

a0 := 2/3

> an:=2/L*int(f*cos(2*n*Pi*x/L),x=0..L);

1

an := -------

2 2

n~ Pi

> bn:=2/L*int(f*sin(2*n*Pi*x/L),x=0..L);

1

bn := - -----

n~ Pi

> F:=a0/2+sum((1/(k*Pi)^2)*cos(2*k*Pi*x/L)

-1/(k*Pi)*sin(2*k*Pi*x/L),k=1..50):

> plot(F,x=-1..3,title=‘Periodic Extension‘,

titlefont=[TIMES,ROMAN,14],font=[TIMES,ROMAN,14]);

Example 3.8. Even Periodic Extension - Cosine Series
In this case we compute a0 = 2

3 and an = 4(−1)n

n2π2 . Therefore, we have

f (x) ∼ 1
3
+

4
π2

∞

∑
n=1

(−1)n

n2 cos nπx.

In Figure 3.15 we see the sum of the first 50 terms of this series. In this case the
convergence seems to be much better than in the periodic extension case. We also
see that it is converging to the even extension.

Figure 3.15: The even periodic extension
of f (x) = x2 on [0, 1].

0

0.2

0.4

0.6

0.8

1

–1 1 2 3

x



trigonometric fourier series 93

Example 3.9. Odd Periodic Extension - Sine Series
Finally, we look at the sine series for this function. We find that

bn = − 2
n3π3 (n

2π2(−1)n − 2(−1)n + 2).

Therefore,

f (x) ∼ − 2
π3

∞

∑
n=1

1
n3 (n

2π2(−1)n − 2(−1)n + 2) sin nπx.

Once again we see discontinuities in the extension as seen in Figure 3.16. However,
we have verified that our sine series appears to be converging to the odd extension
as we first sketched in Figure 3.13.
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Figure 3.16: The odd periodic extension
of f (x) = x2 on [0, 1].

3.5 Solution of the Heat Equation

We started this chapter seeking solutions of initial-boundary value
problems involving the heat equation and the wave equation. In particular,
we found the general solution for the problem of heat flow in a one dimen-
sional rod of length L with fixed zero temperature ends. The problem was
given by

PDE ut = kuxx, 0 < t, 0 ≤ x ≤ L,
IC u(x, 0) = f (x), 0 < x < L,
BC u(0, t) = 0, t > 0,

u(L, t) = 0, t > 0.

(3.74)

We found the solution using separation of variables. This resulted in a
sum over various product solutions:

u(x, t) =
∞

∑
n=1

bnekλnt sin
nπx

L
,

where
λn = −

(nπ

L

)2
.
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This equation satisfies the boundary conditions. However, we had only
gotten to state initial condition using this solution. Namely,

f (x) = u(x, 0) =
∞

∑
n=1

bn sin
nπx

L
.

We were left with having to determine the constants bn. Once we know
them, we have the solution.

Now we can get the Fourier coefficients when we are given the initial
condition, f (x). They are given by

bn =
2
L

∫ L

0
f (x) sin

nπx
L

dx, n = 1, 2, . . . .

We consider a couple of examples with different initial conditions.

Example 3.10. Consider the solution of the heat equation with f (x) = sin x and
L = π.

In this case the solution takes the form

u(x, t) =
∞

∑
n=1

bnekλnt sin nx.

However, the initial condition takes the form of the first term in the expansion; i.e.,
the n = 1 term. So, we need not carry out the integral because we can immediately
write b1 = 1 and bn = 0, n = 2, 3, . . .. Therefore, the solution consists of just one
term,

u(x, t) = e−kt sin x.

In Figure 3.17 we see that how this solution behaves for k = 1 and t ∈ [0, 1].

Figure 3.17: The evolution of the initial
condition f (x) = sin x for L = π and
k = 1.

Example 3.11. Consider solutions of the heat equation with f (x) = x(1− x) and
L = 1.
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This example requires a bit more work. The solution takes the form

u(x, t) =
∞

∑
n=1

bne−n2π2kt sin nπx,

where

bn = 2
∫ 1

0
f (x) sin nπx dx.

This integral is easily computed using integration by parts

bn = 2
∫ 1

0
x(1− x) sin nπx dx

=

[
2x(1− x)

(
− 1

nπ
cos nπx

)]1

0
+

2
nπ

∫ 1

0
(1− 2x) cos nπx dx

= − 2
n2π2

{
[(1− 2x) sin nπx]10 + 2

∫ 1

0
sin nπx dx

}
=

4
n3π3 [cos nπx]10

=
4

n3π3 (cos nπ − 1)

=

{
0, n even

− 8
n3π3 , n odd

. (3.75)

So, we have that the solution can be written as

u(x, t) =
8

π3

∞

∑
`=1

1
(2`− 1)3 e−(2`−1)2π2kt sin(2`− 1)πx.

In Figure 3.18 we see that how this solution behaves for k = 1 and t ∈ [0, 1].
Twenty terms were used. We see that this solution diffuses much faster than in the
last example. Most of the terms damp out quickly as the solution asymptotically
approaches the first term.

Figure 3.18: The evolution of the initial
condition f (x) = x(1− x) for L = 1 and
k = 1.
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3.6 Finite Length Strings

We now return to the physical example of wave propagation in a
string. We found that the general solution can be represented as a sum over
product solutions. We will restrict our discussion to the special case that the
initial velocity is zero and the original profile is given by u(x, 0) = f (x). The
solution is then

u(x, t) =
∞

∑
n=1

An sin
nπx

L
cos

nπct
L

(3.76)

satisfying

f (x) =
∞

∑
n=1

An sin
nπx

L
. (3.77)

We have seen that the Fourier sine series coefficients are given by

An =
2
L

∫ L

0
f (x) sin

nπx
L

dx. (3.78)

We can rewrite this solution in a more compact form. First, we define the
wave numbers,

kn =
nπ

L
, n = 1, 2, . . . ,

and the angular frequencies,

ωn = ckn =
nπc

L
.

Then, the product solutions take the form

sin knx cos ωnt.

Using trigonometric identities, these products can be written as

sin knx cos ωnt =
1
2
[sin(knx + ωnt) + sin(knx−ωnt)] .

Inserting this expression in the solution, we have

u(x, t) =
1
2

∞

∑
n=1

An [sin(knx + ωnt) + sin(knx−ωnt)] . (3.79)

Since ωn = ckn, we can put this into a more suggestive form:

u(x, t) =
1
2

[
∞

∑
n=1

An sin kn(x + ct) +
∞

∑
n=1

An sin kn(x− ct)

]
. (3.80)

We see that each sum is simply the sine series for f (x) but evaluated atThe solution of the wave equation can
be written as the sum of right and left
traveling waves.

either x + ct or x− ct. Thus, the solution takes the form

u(x, t) =
1
2
[ f (x + ct) + f (x− ct)] . (3.81)

If t = 0, then we have u(x, 0) = 1
2 [ f (x) + f (x)] = f (x). So, the solution

satisfies the initial condition. At t = 1, the sum has a term f (x− c).
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Recall from your mathematics classes that this is simply a shifted version
of f (x). Namely, it is shifted to the right. For general times, the function
is shifted by ct to the right. For larger values of t, this shift is further to
the right. The function (wave) shifts to the right with velocity c. Similarly,
f (x + ct) is a wave traveling to the left with velocity −c.

Thus, the waves on the string consist of waves traveling to the right and
to the left. However, the story does not stop here. We have a problem
when needing to shift f (x) across the boundaries. The original problem
only defines f (x) on [0, L]. If we are not careful, we would think that the
function leaves the interval leaving nothing left inside. However, we have
to recall that our sine series representation for f (x) has a period of 2L. So,
before we apply this shifting, we need to account for its periodicity. In fact,
being a sine series, we really have the odd periodic extension of f (x) being
shifted. The details of such analysis would take us too far from our current
goal. However, we can illustrate this with a few figures.

x

f (x)

a L

1

Figure 3.19: The initial profile for a
string of length one plucked at x = a.

We begin by plucking a string of length L. This can be represented by the
function

f (x) =

{
x
a 0 ≤ x ≤ a

L−x
L−a a ≤ x ≤ L

(3.82)

where the string is pulled up one unit at x = a. This is shown in Figure 3.19.
Next, we create an odd function by extending the function to a period of

2L. This is shown in Figure 3.20.

x

f (x)

a
2L− a

L 2L

1

-1

Figure 3.20: Odd extension about the
right end of a plucked string.

Finally, we construct the periodic extension of this to the entire line. In
Figure 3.21 we show in the lower part of the figure copies of the periodic ex-
tension, one moving to the right and the other moving to the left. (Actually,
the copies are 1

2 f (x ± ct).) The top plot is the sum of these solutions. The
physical string lies in the interval [0,1]. Of course, this is better seen when
the solution is animated.

The time evolution for this plucked string is shown for several times in
Figure 3.22. This results in a wave that appears to reflect from the ends as
time increases.

Figure 3.21: Summing the odd periodic
extensions. The lower plot shows copies
of the periodic extension, one moving to
the right and the other moving to the
left. The upper plot is the sum.

The relation between the angular frequency and the wave number, ω =

ck, is called a dispersion relation. In this case ω depends on k linearly. If one
knows the dispersion relation, then one can find the wave speed as c = ω

k .
In this case, all of the harmonics travel at the same speed. In cases where
they do not, we have nonlinear dispersion, which we will discuss later.

3.7 The Gibbs Phenomenon

We have seen the Gibbs phenomenon when there is a jump discontinu-
ity in the periodic extension of a function, whether the function originally
had a discontinuity or developed one due to a mismatch in the values of
the endpoints. This can be seen in Figures 3.12, 3.14 and 3.16. The Fourier
series has a difficult time converging at the point of discontinuity and these
graphs of the Fourier series show a distinct overshoot which does not go
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Figure 3.22: This Figure shows the
plucked string at six successive times.

t = 0

t = 0.2

t = 0.4

t = 0.1

t = 0.3

t = 0.5

away. This is called the Gibbs phenomenon3 and the amount of overshoot

3 The Gibbs phenomenon was named af-
ter Josiah Willard Gibbs (1839-1903) even
though it was discovered earlier by the
Englishman Henry Wilbraham (1825-
1883). Wilbraham published a soon for-
gotten paper about the effect in 1848. In
1889 Albert Abraham Michelson (1852-
1931), an American physicist,observed
an overshoot in his mechanical graphing
machine. Shortly afterwards J. Willard
Gibbs published papers describing this
phenomenon, which was later to be
called the Gibbs phenomena. Gibbs was
a mathematical physicist and chemist
and is considered the father of physical
chemistry.

can be computed.
In one of our first examples, Example 3.3, we found the Fourier series

representation of the piecewise defined function

f (x) =

{
1, 0 < x < π,
−1, π < x < 2π,

to be

f (x) ∼ 4
π

∞

∑
k=1

sin(2k− 1)x
2k− 1

.

Figure 3.23: The Fourier series represen-
tation of a step function on [−π, π] for
N = 10.
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In Figure 3.23 we display the sum of the first ten terms. Note the wig-
gles, overshoots and under shoots. These are seen more when we plot the
representation for x ∈ [−3π, 3π], as shown in Figure 3.24.

We note that the overshoots and undershoots occur at discontinuities in
the periodic extension of f (x). These occur whenever f (x) has a disconti-
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Figure 3.24: The Fourier series represen-
tation of a step function on [−π, π] for
N = 10 plotted on [−3π, 3π] displaying
the periodicity.

nuity or if the values of f (x) at the endpoints of the domain do not agree.
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Figure 3.25: The Fourier series represen-
tation of a step function on [−π, π] for
N = 20.

1.2

1.0

0.8

0.6

0.4

0.2

0

0.02 0.04 0.06 0.08 0.1

Figure 3.26: The Fourier series represen-
tation of a step function on [−π, π] for
N = 100.

One might expect that we only need to add more terms. In Figure 3.25 we
show the sum for twenty terms. Note the sum appears to converge better for
points far from the discontinuities. But, the overshoots and undershoots are
still present. In Figures 3.26 and 3.27 show magnified plots of the overshoot
at x = 0 for N = 100 and N = 500, respectively. We see that the overshoot
persists. The peak is at about the same height, but its location seems to be
getting closer to the origin. We will show how one can estimate the size of
the overshoot.
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0.4
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0.02 0.04 0.06 0.08 0.1

Figure 3.27: The Fourier series represen-
tation of a step function on [−π, π] for
N = 500.

We can study the Gibbs phenomenon by looking at the partial sums of
general Fourier trigonometric series for functions f (x) defined on the inter-
val [−L, L]. Writing out the partial sums, inserting the Fourier coefficients
and rearranging, we have

SN(x) = a0 +
N

∑
n=1

[
an cos

nπx
L

+ bn sin
nπx

L

]
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=
1

2L

∫ L

−L
f (y) dy +

N

∑
n=1

[(
1
L

∫ L

−L
f (y) cos

nπy
L

dy
)

cos
nπx

L

+

(
1
L

∫ L

−L
f (y) sin

nπy
L

dy.
)

sin
nπx

L

]

=
1
L

L∫
−L

{
1
2

+
N

∑
n=1

(
cos

nπy
L

cos
nπx

L
+ sin

nπy
L

sin
nπx

L

)}
f (y) dy

=
1
L

L∫
−L

{
1
2
+

N

∑
n=1

cos
nπ(y− x)

L

}
f (y) dy

≡ 1
L

L∫
−L

DN(y− x) f (y) dy

We have defined

DN(x) =
1
2
+

N

∑
n=1

cos
nπx

L
,

which is called the N-th Dirichlet kernel .
We now prove

Lemma 3.1. The N-th Dirichlet kernel is given by

DN(x) =


sin((N+ 1

2 )
πx
L )

2 sin πx
2L

, sin πx
2L 6= 0,

N + 1
2 , sin πx

2L = 0.

Proof. Let θ = πx
L and multiply DN(x) by 2 sin θ

2 to obtain:

2 sin
θ

2
DN(x) = 2 sin

θ

2

[
1
2
+ cos θ + · · ·+ cos Nθ

]
= sin

θ

2
+ 2 cos θ sin

θ

2
+ 2 cos 2θ sin

θ

2
+ · · ·+ 2 cos Nθ sin

θ

2

= sin
θ

2
+

(
sin

3θ

2
− sin

θ

2

)
+

(
sin

5θ

2
− sin

3θ

2

)
+ · · ·

+

[
sin
(

N +
1
2

)
θ − sin

(
N − 1

2

)
θ

]
= sin

(
N +

1
2

)
θ. (3.83)

Thus,

2 sin
θ

2
DN(x) = sin

(
N +

1
2

)
θ.

If sin θ
2 6= 0, then

DN(x) =
sin
(

N + 1
2

)
θ

2 sin θ
2

, θ =
πx
L

.
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If sin θ
2 = 0, then one needs to apply L’Hospital’s Rule as θ → 2mπ:

lim
θ→2mπ

sin
(

N + 1
2

)
θ

2 sin θ
2

= lim
θ→2mπ

(N + 1
2 ) cos

(
N + 1

2

)
θ

cos θ
2

=
(N + 1

2 ) cos (2mπN + mπ)

cos mπ

=
(N + 1

2 )(cos 2mπN cos mπ − sin 2mπN sin mπ)

cos mπ

= N +
1
2

. (3.84)

We further note that DN(x) is periodic with period 2L and is an even
function.

So far, we have found that the Nth partial sum is given by

SN(x) =
1
L

L∫
−L

DN(y− x) f (y) dy. (3.85)

Making the substitution ξ = y− x, we have

SN(x) =
1
L

∫ L−x

−L−x
DN(ξ) f (ξ + x) dξ

=
1
L

∫ L

−L
DN(ξ) f (ξ + x) dξ. (3.86)

In the second integral we have made use of the fact that f (x) and DN(x) are
periodic with period 2L and shifted the interval back to [−L, L].

We now write the integral as the sum of two integrals over positive and
negative values of ξ and use the fact that DN(x) is an even function. Then,

SN(x) =
1
L

∫ 0

−L
DN(ξ) f (ξ + x) dξ +

1
L

∫ L

0
DN(ξ) f (ξ + x) dξ

=
1
L

∫ L

0
[ f (x− ξ) + f (ξ + x)] DN(ξ) dξ. (3.87)

We can use this result to study the Gibbs phenomenon whenever it oc-
curs. In particular, we will only concentrate on the earlier example. For this
case, we have

SN(x) =
1
π

∫ π

0
[ f (x− ξ) + f (ξ + x)] DN(ξ) dξ (3.88)

for

DN(x) =
1
2
+

N

∑
n=1

cos nx.

Also, one can show that

f (x− ξ) + f (ξ + x) =


2, 0 ≤ ξ < x,
0, x ≤ ξ < π − x,
−2, π − x ≤ ξ < π.
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Thus, we have

SN(x) =
2
π

∫ x

0
DN(ξ) dξ − 2

π

∫ π

π−x
DN(ξ) dξ

=
2
π

∫ x

0
DN(z) dz +

2
π

∫ x

0
DN(π − z) dz. (3.89)

Here we made the substitution z = π − ξ in the second integral.
The Dirichlet kernel for L = π is given by

DN(x) =
sin(N + 1

2 )x
2 sin x

2
.

For N large, we have N + 1
2 ≈ N, and for small x, we have sin x

2 ≈
x
2 . So,

under these assumptions,

DN(x) ≈ sin Nx
x

.

Therefore,

SN(x)→ 2
π

∫ x

0

sin Nξ

ξ
dξ for large N, and small x.

If we want to determine the locations of the minima and maxima, where
the undershoot and overshoot occur, then we apply the first derivative test
for extrema to SN(x). Thus,

d
dx

SN(x) =
2
π

sin Nx
x

= 0.

The extrema occur for Nx = mπ, m = ±1,±2, . . . . One can show that there
is a maximum at x = π/N and a minimum for x = 2π/N. The value for
the overshoot can be computed as

SN(π/N) =
2
π

∫ π/N

0

sin Nξ

ξ
dξ

=
2
π

∫ π

0

sin t
t

dt

=
2
π

Si(π)

= 1.178979744 . . . . (3.90)

Note that this value is independent of N and is given in terms of the sine
integral,

Si(x) ≡
∫ x

0

sin t
t

dt.

Problems

1. Write y(t) = 3 cos 2t− 4 sin 2t in the form y(t) = A cos(2π f t + φ).
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2. Derive the coefficients bn in Equation(3.4).

3. Let f (x) be defined for x ∈ [−L, L]. Parseval’s identity is given by

1
L

∫ L

−L
f 2(x) dx =

a2
0

2
+

∞

∑
n=1

a2
n + b2

n.

Assuming the the Fourier series of f (x) converges uniformly in (−L, L),
prove Parseval’s identity by multiplying the Fourier series representation
by f (x) and integrating from x = −L to x = L. [In section 9.6.3 we will
encounter Parseval’s equality for Fourier transforms which is a continuous
version of this identity.]

4. Consider the square wave function

f (x) =

{
1, 0 < x < π,
−1, π < x < 2π.

a. Find the Fourier series representation of this function and plot the
first 50 terms.

b. Apply Parseval’s identity in Problem 3 to the result in part a.

c. Use the result of part b to show π2

8 =
∞

∑
n=1

1
(2n− 1)2 .

5. For the following sets of functions: i) show that each is orthogonal on the
given interval, and ii) determine the corresponding orthonormal set. [See
page 77]

a. {sin 2nx}, n = 1, 2, 3, . . . , 0 ≤ x ≤ π.

b. {cos nπx}, n = 0, 1, 2, . . . , 0 ≤ x ≤ 2.

c. {sin nπx
L }, n = 1, 2, 3, . . . , x ∈ [−L, L].

6. Consider f (x) = 4 sin3 2x.

a. Derive the trigonometric identity giving sin3 θ in terms of sin θ and
sin 3θ using DeMoivre’s Formula.

b. Find the Fourier series of f (x) = 4 sin3 2x on [0, 2π] without com-
puting any integrals.

7. Find the Fourier series of the following:

a. f (x) = x, x ∈ [0, 2π].

b. f (x) = x2

4 , |x| < π.

c. f (x) =

{
π
2 , 0 < x < π,
−π

2 , π < x < 2π.

8. Find the Fourier Series of each function f (x) of period 2π. For each
series, plot the Nth partial sum,

SN =
a0

2
+

N

∑
n=1

[an cos nx + bn sin nx] ,
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for N = 5, 10, 50 and describe the convergence (is it fast? what is it converg-
ing to, etc.) [Some simple Maple code for computing partial sums is shown
in the notes.]

a. f (x) = x, |x| < π.

b. f (x) = |x|, |x| < π.

c. f (x) =

{
0, −π < x < 0,
1, 0 < x < π.

9. Find the Fourier series of f (x) = x on the given interval. Plot the Nth
partial sums and describe what you see.

a. 0 < x < 2.

b. −2 < x < 2.

c. 1 < x < 2.

10. The result in problem 7b above gives a Fourier series representation of
x2

4 . By picking the right value for x and a little arrangement of the series,
show that [See Example 3.5.]

a.
π2

6
= 1 +

1
22 +

1
32 +

1
42 + · · · .

b.
π2

8
= 1 +

1
32 +

1
52 +

1
72 + · · · .

Hint: Consider how the series in part a. can be used to do this.

11. Sketch (by hand) the graphs of each of the following functions over
four periods. Then sketch the extensions each of the functions as both an
even and odd periodic function. Determine the corresponding Fourier sine
and cosine series and verify the convergence to the desired function using
Maple.

a. f (x) = x2, 0 < x < 1.

b. f (x) = x(2− x), 0 < x < 2.

c. f (x) =

{
0, 0 < x < 1,
1, 1 < x < 2.

d. f (x) =

{
π, 0 < x < π,

2π − x, π < x < 2π.

12. Consider the function f (x) = x, −π < x < π.

a. Show that x = 2 ∑∞
n=1(−1)n+1 sin nx

n .

b. Integrate the series in part a and show that

x2 =
π2

3
− 4

∞

∑
n=1

(−1)n+1 cos nx
n2 .



trigonometric fourier series 105

c. Find the Fourier cosine series of f (x) = x2 on [0, π] and compare
it to the result in part b.

13. Consider the function f (x) = x, 0 < x < 2.

a. Find the Fourier sine series representation of this function and plot
the first 50 terms.

b. Find the Fourier cosine series representation of this function and
plot the first 50 terms.

c. Apply Parseval’s identity in Problem 3 to the result in part b.

d. Use the result of part c to find the sum ∑∞
n=1

1
n4 .

14. Differentiate the Fourier sine series term by term in Problem 18. Show
that the result is not the derivative of f (x) = x.

15. Find the general solution to the heat equation, ut − uxx = 0, on [0, π]

satisfying the boundary conditions ux(0, t) = 0 and u(π, t) = 0. Determine
the solution satisfying the initial condition,

u(x, 0) =

{
x, 0 ≤ x ≤ π

2 ,
π − x, π

2 ≤ x ≤ π,

16. Find the general solution to the wave equation utt = 2uxx, on [0, 2π]

satisfying the boundary conditions u(0, t) = 0 and ux(2π, t) = 0. Deter-
mine the solution satisfying the initial conditions, u(x, 0) = x(4π − x), and
ut(x, 0) = 0.

17. Recall the plucked string initial profile example in the last chapter given
by

f (x) =

{
x, 0 ≤ x ≤ `

2 ,
`− x, `

2 ≤ x ≤ `,

satisfying fixed boundary conditions at x = 0 and x = `. Find and plot the
solutions at t = 0, .2, ..., 1.0, of utt = uxx, for u(x, 0) = f (x), ut(x, 0) = 0,
with x ∈ [0, 1].

18. Find and plot the solutions at t = 0, .2, ..., 1.0, of the problem

utt = uxx, 0 ≤ x ≤ 1, t > 0

u(x, 0) =


0, 0 ≤ x < 1

4 ,
1, 1

4 ≤ x ≤ 3
4 ,

0, 3
4 < x ≤ 1,

ut(x, 0) = 0,

u(0, t) = 0, t > 0,

u(1, t) = 0, t > 0.

19. Find the solution to Laplace’s equation, uxx + uyy = 0, on the unit
square, [0, 1]× [0, 1] satisfying the boundary conditions u(0, y) = 0, u(1, y) =
y(1− y), u(x, 0) = 0, and u(x, 1) = 0.





4
Sturm-Liouville Boundary Value Prob-
lems

We have seen that trigonometric functions and special functions
are the solutions of differential equations. These solutions give orthogonal
sets of functions which can be used to represent functions in generalized
Fourier series expansions. At the same time we would like to generalize
the techniques we had first used to solve the heat equation in order to solve
more general initial-boundary value problems. Namely, we use separation
of variables to separate the given partial differential equation into a set of
ordinary differential equations. A subset of those equations provide us with
a set of boundary value problems whose eigenfunctions are useful in repre-
senting solutions of the partial differential equation. Hopefully, those solu-
tions will form a useful basis in some function space.

A class of problems to which our previous examples belong are the
Sturm-Liouville eigenvalue problems. These problems involve self-adjoint
(differential) operators which play an important role in the spectral theory
of linear operators and the existence of the eigenfunctions needed to solve
the interesting physics problems described by the above initial-boundary
value problems. In this section we will introduce the Sturm-Liouville eigen-
value problem as a general class of boundary value problems containing the
Legendre and Bessel equations and supplying the theory needed to solve a
variety of problems.

4.1 Sturm-Liouville Operators

In physics many problems arise in the form of boundary value prob-
lems involving second order ordinary differential equations. For example,
we will explore the wave equation and the heat equation in three dimen-
sions. Separating out the time dependence leads to a three dimensional
boundary value problem in both cases. Further separation of variables leads
to a set of boundary value problems involving second order ordinary dif-
ferential equations.
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In general, we might obtain equations of the form

a2(x)y′′ + a1(x)y′ + a0(x)y = f (x) (4.1)

subject to boundary conditions. We can write such an equation in operator
form by defining the differential operator

L = a2(x)D2 + a1(x)D + a0(x),

where D = d/dx. Then, Equation (4.1) takes the form

Ly = f .

Recall that we had solved such nonhomogeneous differential equations in
Chapter 2. In this section we will show that these equations can be solved
using eigenfunction expansions. Namely, we seek solutions to the eigen-
value problem

Lφ = λφ

with homogeneous boundary conditions on φ and then seek a solution of
the nonhomogeneous problem, Ly = f , as an expansion over these eigen-
functions. Formally, we let

y(x) =
∞

∑
n=1

cnφn(x).

However, we are not guaranteed a nice set of eigenfunctions. We need an
appropriate set to form a basis in the function space. Also, it would be
nice to have orthogonality so that we can easily solve for the expansion
coefficients.

It turns out that any linear second order differential operator can be
turned into an operator that possesses just the right properties (self-adjointedness)
to carry out this procedure. The resulting operator is referred to as a Sturm-
Liouville operator. We will highlight some of the properties of these opera-
tors and see how they are used in applications.

We define the Sturm-Liouville operator asThe Sturm-Liouville operator.

L =
d

dx
p(x)

d
dx

+ q(x). (4.2)

The Sturm-Liouville eigenvalue problem is given by the differential equa-
tionThe Sturm-Liouville eigenvalue prob-

lem. Ly = −λσ(x)y,

or
d

dx

(
p(x)

dy
dx

)
+ q(x)y + λσ(x)y = 0, (4.3)

for x ∈ (a, b), y = y(x), plus boundary conditions. The functions p(x), p′(x),
q(x) and σ(x) are assumed to be continuous on (a, b) and p(x) > 0, σ(x) > 0
on [a, b]. If the interval is finite and these assumptions on the coefficients
are true on [a, b], then the problem is said to be a regular Sturm-Liouville
problem. Otherwise, it is called a singular Sturm-Liouville problem.
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We also need to impose the set of homogeneous boundary conditionsTypes of boundary conditions.

α1y(a) + β1y′(a) = 0,

α2y(b) + β2y′(b) = 0. (4.4)

The α’s and β’s are constants. For different values, one has special types
of boundary conditions. For βi = 0, we have what are called Dirichlet
boundary conditions. Namely, y(a) = 0 and y(b) = 0. For αi = 0, we Dirichlet boundary conditions - the so-

lution takes fixed values on the bound-
ary. These are named after Gustav Leje-
une Dirichlet (1805-1859).

have Neumann boundary conditions. In this case, y′(a) = 0 and y′(b) = 0.
In terms of the heat equation example, Dirichlet conditions correspond

Neumann boundary conditions - the
derivative of the solution takes fixed val-
ues on the boundary. These are named
after Carl Neumann (1832-1925).

to maintaining a fixed temperature at the ends of the rod. The Neumann
boundary conditions would correspond to no heat flow across the ends, or
insulating conditions, as there would be no temperature gradient at those
points. The more general boundary conditions allow for partially insulated
boundaries.

Another type of boundary condition that is often encountered is the pe-
riodic boundary condition. Consider the heated rod that has been bent to
form a circle. Then the two end points are physically the same. So, we
would expect that the temperature and the temperature gradient should
agree at those points. For this case we write y(a) = y(b) and y′(a) = y′(b).
Boundary value problems using these conditions have to be handled differ-
ently than the above homogeneous conditions. These conditions leads to
different types of eigenfunctions and eigenvalues. Differential equations of Sturm-Liouville

form.As previously mentioned, equations of the form (4.1) occur often. We
now show that any second order linear operator can be put into the form
of the Sturm-Liouville operator. In particular, equation (4.1) can be put into
the form

d
dx

(
p(x)

dy
dx

)
+ q(x)y = F(x). (4.5)

Another way to phrase this is provided in the theorem:
The proof of this is straight forward as we soon show. Let’s first consider

the equation (4.1) for the case that a1(x) = a′2(x). Then, we can write the
equation in a form in which the first two terms combine,

f (x) = a2(x)y′′ + a1(x)y′ + a0(x)y

= (a2(x)y′)′ + a0(x)y. (4.6)

The resulting equation is now in Sturm-Liouville form. We just identify
p(x) = a2(x) and q(x) = a0(x).

Not all second order differential equations are as simple to convert. Con-
sider the differential equation

x2y′′ + xy′ + 2y = 0.

In this case a2(x) = x2 and a′2(x) = 2x 6= a1(x). So, this does not fall into
this case. However, we can change the operator in this equation, x2D +

xD, to a Sturm-Liouville operator, Dp(x)D for a p(x) that depends on the
coefficients x2 and x..
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In the Sturm Liouville operator the derivative terms are gathered together
into one perfect derivative, Dp(x)D. This is similar to what we saw in the
Chapter 2 when we solved linear first order equations. In that case we
sought an integrating factor. We can do the same thing here. We seek a
multiplicative function µ(x) that we can multiply through (4.1) so that it
can be written in Sturm-Liouville form.

We first divide out the a2(x), giving

y′′ +
a1(x)
a2(x)

y′ +
a0(x)
a2(x)

y =
f (x)

a2(x)
.

Next, we multiply this differential equation by µ,

µ(x)y′′ + µ(x)
a1(x)
a2(x)

y′ + µ(x)
a0(x)
a2(x)

y = µ(x)
f (x)

a2(x)
.

The first two terms can now be combined into an exact derivative (µy′)′

if the second coefficient is µ′(x). Therefore, µ(x) satisfies a first order, sepa-
rable differential equation:

dµ

dx
= µ(x)

a1(x)
a2(x)

.

This is formally solved to give the sought integrating factor

µ(x) = e
∫ a1(x)

a2(x) dx
.

Thus, the original equation can be multiplied by factor

µ(x)
a2(x)

=
1

a2(x)
e
∫ a1(x)

a2(x) dx

to turn it into Sturm-Liouville form.
In summary,

Equation (4.1),

a2(x)y′′ + a1(x)y′ + a0(x)y = f (x), (4.7)

can be put into the Sturm-Liouville form

d
dx

(
p(x)

dy
dx

)
+ q(x)y = F(x), (4.8)

where

p(x) = e
∫ a1(x)

a2(x) dx
,

q(x) = p(x)
a0(x)
a2(x)

,

F(x) = p(x)
f (x)

a2(x)
. (4.9)
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Example 4.1. Convert x2y′′ + xy′ + 2y = 0 into Sturm-Liouville form.
We can multiply this equation by

µ(x)
a2(x)

=
1
x2 e

∫ dx
x =

1
x

,

to put the equation in Sturm-Liouville form:

Conversion of a linear second order
differential equation to Sturm Liouville
form.

0 = xy′′ + y′ +
2
x

y

= (xy′)′ +
2
x

y. (4.10)

4.2 Properties of Sturm-Liouville Eigenvalue Problems

There are several properties that can be proven for the (regular)
Sturm-Liouville eigenvalue problem in (4.3). However, we will not prove
them all here. We will merely list some of the important facts and focus on
a few of the properties.

Real, countable eigenvalues.

1. The eigenvalues are real, countable, ordered and there is a smallest
eigenvalue. Thus, we can write them as λ1 < λ2 < . . . . However,
there is no largest eigenvalue and n→ ∞, λn → ∞. Oscillatory eigenfunctions.

2. For each eigenvalue λn there exists an eigenfunction φn with n − 1
zeros on (a, b).

3. Eigenfunctions corresponding to different eigenvalues are orthogonal
with respect to the weight function, σ(x). Defining the inner product
of f (x) and g(x) as

〈 f , g〉 >=
∫ b

a
f (x)g(x)σ(x) dx, (4.11)

then the orthogonality of the eigenfunctions can be written in the Orthogonality of eigenfunctions.

form
〈φn, φm〉 = 〈φn, φn〉δnm, n, m = 1, 2, . . . . (4.12)

4. The set of eigenfunctions is complete; i.e., any piecewise smooth func-
tion can be represented by a generalized Fourier series expansion of
the eigenfunctions,

f (x) ∼
∞

∑
n=1

cnφn(x),

where

cn =
〈 f , φn〉
〈φn, φn〉

.

Actually, one needs f (x) ∈ L2
σ(a, b), the set of square integrable func-

tions over [a, b] with weight function σ(x). By square integrable, we
mean that 〈 f , f 〉 < ∞. One can show that such a space is isomorphic
to a Hilbert space, a complete inner product space. Hilbert spaces
play a special role in quantum mechanics.

Complete basis of eigenfunctions.
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5. The eigenvalues satisfy the Rayleigh quotient

λn =

−pφn
dφn
dx

∣∣∣b
a
+
∫ b

a

[
p
(

dφn
dx

)2
− qφ2

n

]
dx

〈φn, φn〉
.

The Rayleigh quotient is named after
Lord Rayleigh, John William Strutt, 3rd
Baron Raleigh (1842-1919).

This is verified by multiplying the eigenvalue problem

Lφn = −λnσ(x)φn

by φn and integrating. Solving this result for λn, we obtain the Rayleigh
quotient. The Rayleigh quotient is useful for getting estimates of
eigenvalues and proving some of the other properties.

Example 4.2. Verify some of these properties for the eigenvalue problem

y′′ = −λy, y(0) = y(π) = 0.

This is a problem we had seen many times. The eigenfunctions for this eigenvalue
problem are φn(x) = sin nx, with eigenvalues λn = n2 for n = 1, 2, . . . . These
satisfy the properties listed above.

First of all, the eigenvalues are real, countable and ordered, 1 < 4 < 9 < . . . .
There is no largest eigenvalue and there is a first one.

y

x

Figure 4.1: Plot of the eigenfunctions
φn(x) = sin nx for n = 1, 2, 3, 4.

The eigenfunctions corresponding to each eigenvalue have n− 1 zeros 0n (0, π).
This is demonstrated for several eigenfunctions in Figure 4.1.

We also know that the set {sin nx}∞
n=1 is an orthogonal set of basis functions of

length

‖φn‖ =
√

π

2
.

Thus, the Rayleigh quotient can be computed using p(x) = 1, q(x) = 0, and the
eigenfunctions. It is given by

R =
−φnφ′n

∣∣∣π
0
+
∫ π

0 (φ′n)
2 dx

π
2

=
2
π

∫ π

0

(
−n2 cos nx

)2
dx = n2. (4.13)

Therefore, knowing the eigenfunction, the Rayleigh quotient returns the eigenvalues
as expected.

Example 4.3. We seek the eigenfunctions of the operator found in Example 4.1.
Namely, we want to solve the eigenvalue problem

Ly = (xy′)′ +
2
x

y = −λσy (4.14)

subject to a set of homogeneous boundary conditions. Let’s use the boundary condi-
tions

y′(1) = 0, y′(2) = 0.

[Note that we do not know σ(x) yet, but will choose an appropriate function to
obtain solutions.]
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Expanding the derivative, we have

xy′′ + y′ +
2
x

y = −λσy.

Multiply through by x to obtain

x2y′′ + xy′ + (2 + λxσ) y = 0.

Notice that if we choose σ(x) = x−1, then this equation can be made a Cauchy-
Euler type equation. Thus, we have

x2y′′ + xy′ + (λ + 2) y = 0.

The characteristic equation is

r2 + λ + 2 = 0.

For oscillatory solutions, we need λ + 2 > 0. Thus, the general solution is

y(x) = c1 cos(
√

λ + 2 ln |x|) + c2 sin(
√

λ + 2 ln |x|). (4.15)

Next we apply the boundary conditions. y′(1) = 0 forces c2 = 0. This leaves

y(x) = c1 cos(
√

λ + 2 ln x).

The second condition, y′(2) = 0, yields

sin(
√

λ + 2 ln 2) = 0.

This will give nontrivial solutions when
√

λ + 2 ln 2 = nπ, n = 0, 1, 2, 3 . . . .

In summary, the eigenfunctions for this eigenvalue problem are

yn(x) = cos
( nπ

ln 2
ln x

)
, 1 ≤ x ≤ 2

and the eigenvalues are λn =
( nπ

ln 2

)2 − 2 for n = 0, 1, 2, . . . .
Note: We include the n = 0 case because y(x) = constant is a solution of the

λ = −2 case. More specifically, in this case the characteristic equation reduces to
r2 = 0. Thus, the general solution of this Cauchy-Euler equation is

y(x) = c1 + c2 ln |x|.

Setting y′(1) = 0, forces c2 = 0. y′(2) automatically vanishes, leaving the solution
in this case as y(x) = c1.

We note that some of the properties listed in the beginning of the section hold for
this example. The eigenvalues are seen to be real, countable and ordered. There is
a least one, λ0 = −2. Next, one can find the zeros of each eigenfunction on [1,2].
Then the argument of the cosine, nπ

ln 2 ln x, takes values 0 to nπ for x ∈ [1, 2]. The
cosine function has n− 1 roots on this interval.
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Orthogonality can be checked as well. We set up the integral and use the substi-
tution y = π ln x/ ln 2. This gives

〈yn, ym〉 =
∫ 2

1
cos

( nπ

ln 2
ln x

)
cos

(mπ

ln 2
ln x

) dx
x

=
ln 2
π

∫ π

0
cos ny cos my dy

=
ln 2

2
δn,m. (4.16)

4.2.1 Adjoint Operators

In the study of the spectral theory of matrices, one learns about
the adjoint of the matrix, A†, and the role that self-adjoint, or Hermitian,
matrices play in diagonalization. Also, one needs the concept of adjoint to
discuss the existence of solutions to the matrix problem y = Ax. In the same
spirit, one is interested in the existence of solutions of the operator equation
Lu = f and solutions of the corresponding eigenvalue problem. The study
of linear operators on a Hilbert space is a generalization of what the reader
had seen in a linear algebra course.

Just as one can find a basis of eigenvectors and diagonalize Hermitian,
or self-adjoint, matrices (or, real symmetric in the case of real matrices), we
will see that the Sturm-Liouville operator is self-adjoint. In this section we
will define the domain of an operator and introduce the notion of adjoint
operators. In the last section we discuss the role the adjoint plays in the
existence of solutions to the operator equation Lu = f .

We begin by defining the adjoint of an operator. The adjoint, L†, of oper-
ator L satisfies

〈u, Lv〉 = 〈L†u, v〉
for all v in the domain of L and u in the domain of L†. Here the domain
of a differential operator L is the set of all u ∈ L2

σ(a, b) satisfying a given
set of homogeneous boundary conditions. This is best understood through
example.

Example 4.4. Find the adjoint of L = a2(x)D2 + a1(x)D + a0(x) for D = d/dx.
In order to find the adjoint, we place the operator inside an integral. Consider

the inner product

〈u, Lv〉 =
∫ b

a
u(a2v′′ + a1v′ + a0v) dx.

We have to move the operator L from v and determine what operator is acting on u
in order to formally preserve the inner product. For a simple operator like L = d

dx ,
this is easily done using integration by parts. For the given operator, we will need
to apply several integrations by parts to the individual terms. We consider each
derivative term in the integrand separately.

For the a1v′ term, we integrate by parts to find∫ b

a
u(x)a1(x)v′(x) dx = a1(x)u(x)v(x)

∣∣∣b
a
−
∫ b

a
(u(x)a1(x))′v(x) dx. (4.17)
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Now, we consider the a2v′′ term. In this case it will take two integrations by
parts:

∫ b

a
u(x)a2(x)v′′(x) dx = a2(x)u(x)v′(x)

∣∣∣b
a
−
∫ b

a
(u(x)a2(x))′v(x)′ dx

=
[
a2(x)u(x)v′(x)− (a2(x)u(x))′v(x)

] ∣∣∣b
a

+
∫ b

a
(u(x)a2(x))′′v(x) dx. (4.18)

Combining these results, we obtain

〈u, Lv〉 =
∫ b

a
u(a2v′′ + a1v′ + a0v) dx

=
[
a1(x)u(x)v(x) + a2(x)u(x)v′(x)− (a2(x)u(x))′v(x)

] ∣∣∣b
a

+
∫ b

a

[
(a2u)′′ − (a1u)′ + a0u

]
v dx. (4.19)

Inserting the boundary conditions for v, one has to determine boundary condi-
tions for u such that

[
a1(x)u(x)v(x) + a2(x)u(x)v′(x)− (a2(x)u(x))′v(x)

] ∣∣∣b
a
= 0.

This leaves

〈u, Lv〉 =
∫ b

a

[
(a2u)′′ − (a1u)′ + a0u

]
v dx ≡ 〈L†u, v〉.

Therefore,

L† =
d2

dx2 a2(x)− d
dx

a1(x) + a0(x). (4.20)

Self-adjoint operators.
When L† = L, the operator is called formally self-adjoint. When the

domain of L is the same as the domain of L†, the term self-adjoint is used.
As the domain is important in establishing self-adjointness, we need to do
a complete example in which the domain of the adjoint is found.

Example 4.5. Determine L† and its domain for operator Lu = du
dx where u satisfies

the boundary conditions u(0) = 2u(1) on [0, 1].
We need to find the adjoint operator satisfying 〈v, Lu〉 = 〈L†v, u〉. Therefore,

we rewrite the integral

〈v, Lu〉 >=
∫ 1

0
v

du
dx

dx = uv|10 −
∫ 1

0
u

dv
dx

dx = 〈L†v, u〉.

From this we have the adjoint problem consisting of an adjoint operator and the
associated boundary condition (or, domain of L†.):

1. L† = − d
dx .

2. uv
∣∣∣1
0
= 0⇒ 0 = u(1)[v(1)− 2v(0)]⇒ v(1) = 2v(0).
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4.2.2 Lagrange’s and Green’s Identities

Before turning to the proofs that the eigenvalues of a Sturm-Liouville
problem are real and the associated eigenfunctions orthogonal, we will first
need to introduce two important identities. For the Sturm-Liouville opera-
tor,

L =
d

dx

(
p

d
dx

)
+ q,

we have the two identities:

Lagrange’s Identity: uLv− vLu = [p(uv′ − vu′)]′.
Green’s Identity:

∫ b
a (uLv− vLu) dx = [p(uv′ − vu′)]|ba.

The proof of Lagrange’s identity follows by a simple manipulations of
the operator:

uLv− vLu = u
[

d
dx

(
p

dv
dx

)
+ qv

]
− v

[
d

dx

(
p

du
dx

)
+ qu

]
= u

d
dx

(
p

dv
dx

)
− v

d
dx

(
p

du
dx

)
= u

d
dx

(
p

dv
dx

)
+ p

du
dx

dv
dx
− v

d
dx

(
p

du
dx

)
− p

du
dx

dv
dx

=
d

dx

[
pu

dv
dx
− pv

du
dx

]
. (4.21)

Green’s identity is simply proven by integrating Lagrange’s identity.

4.2.3 Orthogonality and Reality

We are now ready to prove that the eigenvalues of a Sturm-Liouville
problem are real and the corresponding eigenfunctions are orthogonal. These
are easily established using Green’s identity, which in turn is a statement
about the Sturm-Liouville operator being self-adjoint.

Example 4.6. The eigenvalues of the Sturm-Liouville problem (4.3) are real.
Let φn(x) be a solution of the eigenvalue problem associated with λn:

Lφn = −λnσφn.

We want to show that Namely, we show that λn = λn, where the bar means complex
conjugate. So, we also consider the complex conjugate of this equation,

Lφn = −λnσφn.

Now, multiply the first equation by φn, the second equation by φn, and then subtract
the results. We obtain

φnLφn − φnLφn = (λn − λn)σφnφn.
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Integrating both sides of this equation, we have∫ b

a

(
φnLφn − φnLφn

)
dx = (λn − λn)

∫ b

a
σφnφn dx.

We apply Green’s identity to the left hand side to find

[p(φnφ′n − φnφ
′
n)]|

b
a = (λn − λn)

∫ b

a
σφnφn dx.

Using the homogeneous boundary conditions (4.4) for a self-adjoint operator, the
left side vanishes. This leaves

0 = (λn − λn)
∫ b

a
σ‖φn‖2 dx.

The integral is nonnegative, so we must have λn = λn. Therefore, the eigenvalues
are real.

Example 4.7. The eigenfunctions corresponding to different eigenvalues of the
Sturm-Liouville problem (4.3) are orthogonal.

This is proven similar to the last example. Let φn(x) be a solution of the eigen-
value problem associated with λn,

Lφn = −λnσφn,

and let φm(x) be a solution of the eigenvalue problem associated with λm 6= λn,

Lφm = −λmσφm,

Now, multiply the first equation by φm and the second equation by φn. Subtracting
these results, we obtain

φmLφn − φnLφm = (λm − λn)σφnφm

Integrating both sides of the equation, using Green’s identity, and using the
homogeneous boundary conditions, we obtain

0 = (λm − λn)
∫ b

a
σφnφm dx.

Since the eigenvalues are distinct, we can divide by λm − λn, leaving the desired
result, ∫ b

a
σφnφm dx = 0.

Therefore, the eigenfunctions are orthogonal with respect to the weight function
σ(x).

4.2.4 The Rayleigh Quotient

The Rayleigh quotient is useful for getting estimates of eigenvalues
and proving some of the other properties associated with Sturm-Liouville
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eigenvalue problems. The Rayleigh quotient is general and finds applica-
tions for both matrix eigenvalue problems as well as self-adjoint operators.
For a Hermitian matrix M the Rayleigh quotient is given by

R(v) =
〈v, Mv〉
〈v, v〉 .

One can show that the critical values of the Rayleigh quotient, as a function
of v, are the eigenvectors of M and the values of R at these critical values
are the corresponding eigenvectors. In particular, minimizing R(v over the
vector space will give the lowest eigenvalue. This leads to the Rayleigh-Ritz
method for computing the lowest eigenvalues when the eigenvectors are not
known.

This definition can easily be extended to Sturm-Liouville operators,

R(φn) =
〈φnLφn〉
〈φn, φn〉

.

We begin by multiplying the eigenvalue problem

Lφn = −λnσ(x)φn

by φn and integrating. This gives∫ b

a

[
φn

d
dx

(
p

dφn

dx

)
+ qφ2

n

]
dx = −λn

∫ b

a
φ2

nσ dx.

One can solve the last equation for λ to find

λn =
−
∫ b

a

[
φn

d
dx

(
p dφn

dx

)
+ qφ2

n

]
dx∫ b

a φ2
nσ dx

= R(φn).

It appears that we have solved for the eigenvalues and have not needed
the machinery we had developed in Chapter 4 for studying boundary value
problems. However, we really cannot evaluate this expression when we do
not know the eigenfunctions, φn(x) yet. Nevertheless, we will see what we
can determine from the Rayleigh quotient.

One can rewrite this result by performing an integration by parts on the
first term in the numerator. Namely, pick u = φn and dv = d

dx

(
p dφn

dx

)
dx

for the standard integration by parts formula. Then, we have

∫ b

a
φn

d
dx

(
p

dφn

dx

)
dx = pφn

dφn

dx

∣∣∣b
a
−
∫ b

a

[
p
(

dφn

dx

)2
− qφ2

n

]
dx.

Inserting the new formula into the expression for λ, leads to the Rayleigh
Quotient

λn =

−pφn
dφn
dx

∣∣∣b
a
+
∫ b

a

[
p
(

dφn
dx

)2
− qφ2

n

]
dx∫ b

a φ2
nσ dx

. (4.22)

In many applications the sign of the eigenvalue is important. As we had
seen in the solution of the heat equation, T′ + kλT = 0. Since we expect
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the heat energy to diffuse, the solutions should decay in time. Thus, we
would expect λ > 0. In studying the wave equation, one expects vibrations
and these are only possible with the correct sign of the eigenvalue (positive
again). Thus, in order to have nonnegative eigenvalues, we see from (4.22)
that

a. q(x) ≤ 0, and

b. −pφn
dφn
dx

∣∣∣b
a
≥ 0.

Furthermore, if λ is a zero eigenvalue, then q(x) ≡ 0 and α1 = α2 = 0
in the homogeneous boundary conditions. This can be seen by setting the
numerator equal to zero. Then, q(x) = 0 and φ′n(x) = 0. The second of
these conditions inserted into the boundary conditions forces the restriction
on the type of boundary conditions.

One of the properties of Sturm-Liouville eigenvalue problems with ho-
mogeneous boundary conditions is that the eigenvalues are ordered, λ1 <

λ2 < . . . . Thus, there is a smallest eigenvalue. It turns out that for any
continuous function, y(x),

λ1 = min
y(x)

−py dy
dx

∣∣∣b
a
+
∫ b

a

[
p
(

dy
dx

)2
− qy2

]
dx∫ b

a y2σ dx
(4.23)

and this minimum is obtained when y(x) = φ1(x). This result can be used
to get estimates of the minimum eigenvalue by using trial functions which
are continuous and satisfy the boundary conditions, but do not necessarily
satisfy the differential equation.

Example 4.8. We have already solved the eigenvalue problem φ′′ + λφ = 0,
φ(0) = 0, φ(1) = 0. In this case, the lowest eigenvalue is λ1 = π2. We can
pick a nice function satisfying the boundary conditions, say y(x) = x− x2. Insert-
ing this into Equation (4.23), we find

λ1 ≤
∫ 1

0 (1− 2x)2 dx∫ 1
0 (x− x2)2 dx

= 10.

Indeed, 10 ≥ π2.

4.3 The Eigenfunction Expansion Method

In this section we solve the nonhomogeneous problem Ly = f
using expansions over the basis of Sturm-Liouville eigenfunctions. We have
seen that Sturm-Liouville eigenvalue problems have the requisite set of or-
thogonal eigenfunctions. In this section we will apply the eigenfunction
expansion method to solve a particular nonhomogeneous boundary value
problem.



120 partial differential equations

Recall that one starts with a nonhomogeneous differential equation

Ly = f ,

where y(x) is to satisfy given homogeneous boundary conditions. The
method makes use of the eigenfunctions satisfying the eigenvalue problem

Lφn = −λnσφn

subject to the given boundary conditions. Then, one assumes that y(x) can
be written as an expansion in the eigenfunctions,

y(x) =
∞

∑
n=1

cnφn(x),

and inserts the expansion into the nonhomogeneous equation. This gives

f (x) = L
(

∞

∑
n=1

cnφn(x)

)
= −

∞

∑
n=1

cnλnσ(x)φn(x).

The expansion coefficients are then found by making use of the orthogo-
nality of the eigenfunctions. Namely, we multiply the last equation by φm(x)
and integrate. We obtain

∫ b

a
f (x)φm(x) dx = −

∞

∑
n=1

cnλn

∫ b

a
φn(x)φm(x)σ(x) dx.

Orthogonality yields∫ b

a
f (x)φm(x) dx = −cmλm

∫ b

a
φ2

m(x)σ(x) dx.

Solving for cm, we have

cm = −
∫ b

a f (x)φm(x) dx

λm
∫ b

a φ2
m(x)σ(x) dx

.

Example 4.9. As an example, we consider the solution of the boundary value prob-
lem

(xy′)′ +
y
x
=

1
x

, x ∈ [1, e], (4.24)

y(1) = 0 = y(e). (4.25)

This equation is already in self-adjoint form. So, we know that the associated
Sturm-Liouville eigenvalue problem has an orthogonal set of eigenfunctions. We
first determine this set. Namely, we need to solve

(xφ′)′ +
φ

x
= −λσφ, φ(1) = 0 = φ(e). (4.26)

Rearranging the terms and multiplying by x, we have that

x2φ′′ + xφ′ + (1 + λσx)φ = 0.



sturm-liouville boundary value problems 121

This is almost an equation of Cauchy-Euler type. Picking the weight function
σ(x) = 1

x , we have
x2φ′′ + xφ′ + (1 + λ)φ = 0.

This is easily solved. The characteristic equation is

r2 + (1 + λ) = 0.

One obtains nontrivial solutions of the eigenvalue problem satisfying the boundary
conditions when λ > −1. The solutions are

φn(x) = A sin(nπ ln x), n = 1, 2, . . . .

where λn = n2π2 − 1.
It is often useful to normalize the eigenfunctions. This means that one chooses

A so that the norm of each eigenfunction is one. Thus, we have

1 =
∫ e

1
φn(x)2σ(x) dx

= A2
∫ e

1
sin(nπ ln x)

1
x

dx

= A2
∫ 1

0
sin(nπy) dy =

1
2

A2. (4.27)

Thus, A =
√

2. Several of these eigenfunctions are show in Figure 4.2.
x

1 e

Figure 4.2: Plots of the first five eigen-
functions, y(x) =

√
2 sin(nπ ln x).

We now turn towards solving the nonhomogeneous problem, Ly = 1
x . We first

expand the unknown solution in terms of the eigenfunctions,

y(x) =
∞

∑
n=1

cn
√

2 sin(nπ ln x).

Inserting this solution into the differential equation, we have

1
x
= Ly = −

∞

∑
n=1

cnλn
√

2 sin(nπ ln x)
1
x

.

Next, we make use of orthogonality. Multiplying both sides by the eigenfunction
φm(x) =

√
2 sin(mπ ln x) and integrating, gives

λmcm =
∫ e

1

√
2 sin(mπ ln x)

1
x

dx =

√
2

mπ
[(−1)m − 1].

Solving for cm, we have

cm =

√
2

mπ

[(−1)m − 1]
m2π2 − 1

.

Finally, we insert these coefficients into the expansion for y(x). The solution is
then

y(x) =
∞

∑
n=1

2
nπ

[(−1)n − 1]
n2π2 − 1

sin(nπ ln(x)).

We plot this solution in Figure 4.3.
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Figure 4.3: Plot of the solution in Exam-
ple 4.9.
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4.4 Appendix: The Fredholm Alternative Theorem

Given that Ly = f , when can one expect to find a solution? Is it
unique? These questions are answered by the Fredholm Alternative Theo-
rem. This theorem occurs in many forms from a statement about solutions
to systems of algebraic equations to solutions of boundary value problems
and integral equations. The theorem comes in two parts, thus the term
“alternative”. Either the equation has exactly one solution for all f , or the
equation has many solutions for some f ’s and none for the rest.

The reader is familiar with the statements of the Fredholm Alternative
for the solution of systems of algebraic equations. One seeks solutions of
the system Ax = b for A an n×m matrix. Defining the matrix adjoint, A∗

through < Ax, y >=< x, A∗y > for all x, y,∈ Cn, then either

Theorem 4.1. First Alternative
The equation Ax = b has a solution if and only if < b, v >= 0 for all v

satisfying A∗v = 0.

or

Theorem 4.2. Second Alternative
A solution of Ax = b, if it exists, is unique if and only if x = 0 is the only

solution of Ax = 0.

The second alternative is more familiar when given in the form: The
solution of a nonhomogeneous system of n equations and n unknowns is
unique if the only solution to the homogeneous problem is the zero solution.
Or, equivalently, A is invertible, or has nonzero determinant.

Proof. We prove the second theorem first. Assume that Ax = 0 for x 6= 0
and Ax0 = b. Then A(x0 + αx) = b for all α. Therefore, the solution is not
unique. Conversely, if there are two different solutions, x1 and x2, satisfying
Ax1 = b and Ax2 = b, then one has a nonzero solution x = x1 − x2 such
that Ax = A(x1 − x2) = 0.

The proof of the first part of the first theorem is simple. Let A∗v = 0 and
Ax0 = b. Then we have

< b, v >=< Ax0, v >=< x0, A∗v >= 0.

For the second part we assume that < b, v >= 0 for all v such that A∗v = 0.
Write b as the sum of a part that is in the range of A and a part that in the
space orthogonal to the range of A, b = bR + bO. Then, 0 =< bO, Ax >=<

A∗b, x > for all x. Thus, A∗bO. Since < b, v >= 0 for all v in the nullspace
of A∗, then < b, bO >= 0.

Therefore, < b, v >= 0 implies that

0 =< b, bO >=< bR + bO, bO >=< bO, bO > .

This means that bO = 0, giving b = bR is in the range of A. So, Ax = b has
a solution.
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Example 4.10. Determine the allowed forms of b for a solution of Ax = b to exist,
where

A =

(
1 2
3 6

)
.

First note that A∗ = AT . This is seen by looking at

< Ax, y > = < x, A∗y >
n

∑
i=1

n

∑
j=1

aijxjȳi =
n

∑
j=1

xj

n

∑
j=1

aijȳi

=
n

∑
j=1

xj

n

∑
j=1

(āT)ji yi. (4.28)

For this example,

A∗ =

(
1 3
2 6

)
.

We next solve A∗v = 0. This means, v1 + 3v2 = 0. So, the nullspace of A∗ is
spanned by v = (3,−1)T . For a solution of Ax = b to exist, b would have to be
orthogonal to v. Therefore, a solution exists when

b = α

(
1
3

)
.

So, what does the Fredholm Alternative say about solutions of boundary
value problems? We extend the Fredholm Alternative for linear operators.
A more general statement would be

Theorem 4.3. If L is a bounded linear operator on a Hilbert space, then Ly = f
has a solution if and only if < f , v >= 0 for every v such that L†v = 0.

The statement for boundary value problems is similar. However, we need
to be careful to treat the boundary conditions in our statement. As we have
seen, after several integrations by parts we have that

< Lu, v >= S(u, v)+ < u,L†v >,

where S(u, v) involves the boundary conditions on u and v. Note that for
nonhomogeneous boundary conditions, this term may no longer vanish.

Theorem 4.4. The solution of the boundary value problem Lu = f with boundary
conditions Bu = g exists if and only if

< f , v > −S(u, v) = 0

for all v satisfying L†v = 0 and B†v = 0.

Example 4.11. Consider the problem

u′′ + u = f (x), u(0)− u(2π) = α, u′(0)− u′(2π) = β.
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Only certain values of α and β will lead to solutions. We first note that

L = L† =
d2

dx2 + 1.

Solutions of

L†v = 0, v(0)− v(2π) = 0, v′(0)− v′(2π) = 0

are easily found to be linear combinations of v = sin x and v = cos x.
Next, one computes

S(u, v) =
[
u′v− uv′

]2π
0

= u′(2π)v(2π)− u(2π)v′(2π)− u′(0)v(0) + u(0)v′(0).

(4.29)

For v(x) = sin x, this yields

S(u, sin x) = −u(2π) + u(0) = α.

Similarly,
S(u, cos x) = β.

Using < f , v > −S(u, v) = 0, this leads to the conditions that we were seeking,∫ 2π

0
f (x) sin x dx = α,

∫ 2π

0
f (x) cos x dx = β.

Problems

1. Prove the if u(x) and v(x) satisfy the general homogeneous boundary
conditions

α1u(a) + β1u′(a) = 0,

α2u(b) + β2u′(b) = 0 (4.30)

at x = a and x = b, then

p(x)[u(x)v′(x)− v(x)u′(x)]x=b
x=a = 0.

2. Prove Green’s Identity
∫ b

a (uLv− vLu) dx = [p(uv′ − vu′)]
∣∣∣b
a

for the gen-

eral Sturm-Liouville operator L.

3. Find the adjoint operator and its domain for Lu = u′′ + 4u′ − 3u, u′(0) +
4u(0) = 0, u′(1) + 4u(1) = 0.

4. Show that a Sturm-Liouville operator with periodic boundary conditions
on [a, b] is self-adjoint if and only if p(a) = p(b). [Recall, periodic boundary
conditions are given as u(a) = u(b) and u′(a) = u′(b).]
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5. The Hermite differential equation is given by y′′− 2xy′+λy = 0. Rewrite
this equation in self-adjoint form. From the Sturm-Liouville form obtained,
verify that the differential operator is self adjoint on (−∞, ∞). Give the
integral form for the orthogonality of the eigenfunctions.

6. Find the eigenvalues and eigenfunctions of the given Sturm-Liouville
problems.

a. y′′ + λy = 0, y′(0) = 0 = y′(π).

b. (xy′)′ + λ
x y = 0, y(1) = y(e2) = 0.

7. The eigenvalue problem x2y′′ − λxy′ + λy = 0 with y(1) = y(2) = 0 is
not a Sturm-Liouville eigenvalue problem. Show that none of the eigenval-
ues are real by solving this eigenvalue problem.

8. In Example 4.8 we found a bound on the lowest eigenvalue for the given
eigenvalue problem.

a. Verify the computation in the example.

b. Apply the method using

y(x) =

{
x, 0 < x < 1

2
1− x, 1

2 < x < 1.

Is this an upper bound on λ1

c. Use the Rayleigh quotient to obtain a good upper bound for the
lowest eigenvalue of the eigenvalue problem: φ′′ + (λ− x2)φ = 0,
φ(0) = 0, φ′(1) = 0.

9. Use the method of eigenfunction expansions to solve the problems:

a. y′′ = x2, y(0) = y(1) = 0.

b. y′′ + 4y = x2, y′(0) = y′(1) = 0.

10. Determine the solvability conditions for the nonhomogeneous bound-
ary value problem: u′′ + 4u = f (x), u(0) = α, u′(π/4) = β.





5
Non-sinusoidal Harmonics and Special
Functions

“To the pure geometer the radius of curvature is an incidental characteristic - like
the grin of the Cheshire cat. To the physicist it is an indispensable characteristic.
It would be going too far to say that to the physicist the cat is merely incidental
to the grin. Physics is concerned with interrelatedness such as the interrelatedness
of cats and grins. In this case the "cat without a grin" and the "grin without a
cat" are equally set aside as purely mathematical phantasies.” Sir Arthur Stanley
Eddington (1882-1944)

In this chapter we provide a glimpse into generalized Fourier series
in which the normal modes of oscillation are not sinusoidal. For vibrating
strings, we saw that the harmonics were sinusoidal basis functions for a
large, infinite dimensional, function space. Now, we will extend these ideas
to non-sinusoidal harmonics and explore the underlying structure behind
these ideas. In particular, we will explore Legendre polynomials and Bessel
functions which will later arise in problems having cylindrical or spherical
symmetry.

The background for the study of generalized Fourier series is that of
function spaces. We begin by exploring the general context in which one
finds oneself when discussing Fourier series and (later) Fourier transforms.
We can view the sine and cosine functions in the Fourier trigonometric series
representations as basis vectors in an infinite dimensional function space. A
given function in that space may then be represented as a linear combination
over this infinite basis. With this in mind, we might wonder

• Do we have enough basis vectors for the function space?

• Are the infinite series expansions convergent?

• What functions can be represented by such expansions?

In the context of the boundary value problems which typically appear in
physics, one is led to the study of boundary value problems in the form of
Sturm-Liouville eigenvalue problems. These lead to an appropriate set of
basis vectors for the function space under consideration. We will touch a
little on these ideas, leaving some of the deeper results for more advanced
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courses in mathematics. For now, we will turn to function spaces and ex-
plore some typical basis functions, many which originated from the study
of physical problems. The common basis functions are often referred to as
special functions in physics. Examples are the classical orthogonal polyno-
mials (Legendre, Hermite, Laguerre, Tchebychef) and Bessel functions. But
first we will introduce function spaces.

5.1 Function Spaces

Earlier we studied finite dimensional vector spaces. Given a set
of basis vectors, {ak}n

k=1, in vector space V, we showed that we can expand
any vector v ∈ V in terms of this basis, v = ∑n

k=1 vkak. We then spent
some time looking at the simple case of extracting the components vk of the
vector. The keys to doing this simply were to have a scalar product and an
orthogonal basis set. These are also the key ingredients that we will need
in the infinite dimensional case. In fact, we had already done this when we
studied Fourier series.

Recall when we found Fourier trigonometric series representations of
functions, we started with a function (vector) that we wanted to expand in a
set of trigonometric functions (basis) and we sought the Fourier coefficients
(components). In this section we will extend our notions from finite dimen-We note that the above determination

of vector components for finite dimen-
sional spaces is precisely what we had
done to compute the Fourier coefficients
using trigonometric bases. Reading fur-
ther, you will see how this works.

sional spaces to infinite dimensional spaces and we will develop the needed
background in which to think about more general Fourier series expansions.
This conceptual framework is very important in other areas in mathematics
(such as ordinary and partial differential equations) and physics (such as
quantum mechanics and electrodynamics).

We will consider various infinite dimensional function spaces. Functions
in these spaces would differ by their properties. For example, we could con-
sider the space of continuous functions on [0,1], the space of differentiably
continuous functions, or the set of functions integrable from a to b. As you
will see, there are many types of function spaces . In order to view these
spaces as vector spaces, we will need to be able to add functions and multi-
ply them by scalars in such as way that they satisfy the definition of a vector
space as defined in Chapter 3.

We will also need a scalar product defined on this space of functions.
There are several types of scalar products, or inner products, that we can
define. An inner product 〈, 〉 on a real vector space V is a mapping from
V ×V into R such that for u, v, w ∈ V and α ∈ R one has

1. 〈v, v〉 ≥ 0 and 〈v, v〉 = 0 iff v = 0.

2. 〈v, w〉 = 〈w, v〉.

3. 〈αv, w〉 = α〈v, w〉.

4. 〈u + v, w〉 = 〈u, w〉+ 〈v, w〉.

A real vector space equipped with the above inner product leads to what
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is called a real inner product space. For complex inner product spaces the
above properties hold with the third property replaced with 〈v, w〉 = 〈w, v〉.

For the time being, we will only deal with real valued functions and,
thus, we will need an inner product appropriate for such spaces. One such
definition is the following. Let f (x) and g(x) be functions defined on [a, b]
and introduce the weight function σ(x) > 0. Then, we define the inner
product, if the integral exists, as

〈 f , g〉 =
∫ b

a
f (x)g(x)σ(x) dx. (5.1)

Spaces in which 〈 f , f 〉 < ∞ under this inner product are called the space of The space of square integrable functions.

square integrable functions on (a, b) under weight σ and denoted as L2
σ(a, b).

In what follows, we will assume for simplicity that σ(x) = 1. This is possible
to do by using a change of variables.

Now that we have function spaces equipped with an inner product, we
seek a basis for the space. For an n-dimensional space we need n basis
vectors. For an infinite dimensional space, how many will we need? How
do we know when we have enough? We will provide some answers to these
questions later.

Let’s assume that we have a basis of functions {φn(x)}∞
n=1. Given a func-

tion f (x), how can we go about finding the components of f in this basis?
In other words, let

f (x) =
∞

∑
n=1

cnφn(x).

How do we find the cn’s? Does this remind you of Fourier series expan-
sions? Does it remind you of the problem we had earlier for finite dimen-
sional spaces? [You may want to review the discussion at the end of Section
?? as you read the next derivation.]

Formally, we take the inner product of f with each φj and use the prop-
erties of the inner product to find

〈φj, f 〉 = 〈φj,
∞

∑
n=1

cnφn〉

=
∞

∑
n=1

cn〈φj, φn〉. (5.2)

If the basis is an orthogonal basis, then we have

〈φj, φn〉 = Njδjn, (5.3)

where δjn is the Kronecker delta. Recall from Chapter 3 that the Kronecker
delta is defined as

δij =

{
0, i 6= j
1, i = j.

(5.4)

Continuing with the derivation, we have For the generalized Fourier series expan-
sion f (x) = ∑∞

n=1 cnφn(x), we have de-
termined the generalized Fourier coeffi-
cients to be cj = 〈φj, f 〉/〈φj, φj〉.

〈φj, f 〉 =
∞

∑
n=1

cn〈φj, φn〉

=
∞

∑
n=1

cnNjδjn (5.5)
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Expanding the sum, we see that the Kronecker delta picks out one nonzero
term:

〈φj, f 〉 = c1Njδj1 + c2Njδj2 + . . . + cjNjδjj + . . .

= cjNj. (5.6)

So, the expansion coefficients are

cj =
〈φj, f 〉

Nj
=
〈φj, f 〉
〈φj, φj〉

j = 1, 2, . . . .

We summarize this important result:

Generalized Basis Expansion

Let f (x) be represented by an expansion over a basis of orthogonal func-
tions, {φn(x)}∞

n=1,

f (x) =
∞

∑
n=1

cnφn(x).

Then, the expansion coefficients are formally determined as

cn =
〈φn, f 〉
〈φn, φn〉

.

This will be referred to as the general Fourier series expansion and the
cj’s are called the Fourier coefficients. Technically, equality only holds
when the infinite series converges to the given function on the interval of
interest.

Example 5.1. Find the coefficients of the Fourier sine series expansion of f (x),
given by

f (x) =
∞

∑
n=1

bn sin nx, x ∈ [−π, π].

In the last chapter we already established that the set of functions φn(x) =

sin nx for n = 1, 2, . . . is orthogonal on the interval [−π, π]. Recall that using
trigonometric identities, we have for n 6= m

〈φn, φm〉 =
∫ π

−π
sin nx sin mx dx = πδnm. (5.7)

Therefore, the set φn(x) = sin nx for n = 1, 2, . . . is an orthogonal set of functions
on the interval [−π, π].

We determine the expansion coefficients using

bn =
〈φn, f 〉

Nn
=
〈φn, f 〉
〈φn, φn〉

=
1
π

∫ π

−π
f (x) sin nx dx.

Does this result look familiar?
Just as with vectors in three dimensions, we can normalize these basis functions

to arrive at an orthonormal basis. This is simply done by dividing by the length of
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the vector. Recall that the length of a vector is obtained as v =
√

v · v. In the same
way, we define the norm of a function by

‖ f ‖ =
√
〈 f , f 〉.

Note, there are many types of norms, but this induced norm will be sufficient.1 1 The norm defined here is the natural,
or induced, norm on the inner product
space. Norms are a generalization of the
concept of lengths of vectors. Denoting
‖v‖ the norm of v, it needs to satisfy the
properties

1. ‖v‖ ≥ 0. ‖v‖ = 0 if and only if v = 0.

2. ‖αv‖ = |α|‖v‖.
3. ‖u + v‖ ≤ ‖u‖+ ‖v‖.
Examples of common norms are

1. Euclidean norm:

‖v‖ =
√

v2
1 + · · ·+ v2

n.

2. Taxicab norm:

‖v‖ = |v1|+ · · ·+ |vn|.

3. Lp norm:

‖ f ‖ =
(∫

[ f (x)]p dx
) 1

p
.

For this example, the norms of the basis functions are ‖φn‖ =
√

π. Defining
ψn(x) = 1√

π
φn(x), we can normalize the φn’s and have obtained an orthonormal

basis of functions on [−π, π].
We can also use the normalized basis to determine the expansion coefficients. In

this case we have

bn =
〈ψn, f 〉

Nn
= 〈ψn, f 〉 = 1

π

∫ π

−π
f (x) sin nx dx.

5.2 Classical Orthogonal Polynomials

There are other basis functions that can be used to develop series
representations of functions. In this section we introduce the classical or-
thogonal polynomials. We begin by noting that the sequence of functions
{1, x, x2, . . .} is a basis of linearly independent functions. In fact, by the
Stone-Weierstraß Approximation Theorem2 this set is a basis of L2

σ(a, b), the
2 Stone-Weierstraß Approximation The-
orem Suppose f is a continuous function
defined on the interval [a, b]. For every
ε > 0, there exists a polynomial func-
tion P(x) such that for all x ∈ [a, b], we
have | f (x)− P(x)| < ε. Therefore, every
continuous function defined on [a, b] can
be uniformly approximated as closely as
we wish by a polynomial function.

space of square integrable functions over the interval [a, b] relative to weight
σ(x). However, we will show that the sequence of functions {1, x, x2, . . .}
does not provide an orthogonal basis for these spaces. We will then proceed
to find an appropriate orthogonal basis of functions.

We are familiar with being able to expand functions over the basis {1, x, x2, . . .},
since these expansions are just Maclaurin series representations of the func-
tions about x = 0,

f (x) ∼
∞

∑
n=0

cnxn.

However, this basis is not an orthogonal set of basis functions. One can
easily see this by integrating the product of two even, or two odd, basis
functions with σ(x) = 1 and (a, b)=(−1, 1). For example,

∫ 1

−1
x0x2 dx =

2
3

.

The Gram-Schmidt Orthogonalization
Process.Since we have found that orthogonal bases have been useful in determin-

ing the coefficients for expansions of given functions, we might ask, “Given
a set of linearly independent basis vectors, can one find an orthogonal basis
of the given space?" The answer is yes. We recall from introductory linear
algebra, which mostly covers finite dimensional vector spaces, that there is
a method for carrying this out called the Gram-Schmidt Orthogonalization
Process. We will review this process for finite dimensional vectors and then
generalize to function spaces.
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Let’s assume that we have three vectors that span the usual three dimen-
sional space, R3, given by a1, a2, and a3 and shown in Figure 5.1. We seek
an orthogonal basis e1, e2, and e3, beginning one vector at a time.

First we take one of the original basis vectors, say a1, and define

e1 = a1.

It is sometimes useful to normalize these basis vectors, denoting such a
normalized vector with a “hat”:

ê1 =
e1

e1
,

where e1 =
√

e1 · e1.a

aa
3 2

1

Figure 5.1: The basis a1, a2, and a3, of
R3.

Next, we want to determine an e2 that is orthogonal to e1. We take an-
other element of the original basis, a2. In Figure 5.2 we show the orientation
of the vectors. Note that the desired orthogonal vector is e2. We can now
write a2 as the sum of e2 and the projection of a2 on e1. Denoting this pro-
jection by pr1a2, we then have

e2 = a2 − pr1a2. (5.8)

e

a
2

1

pr a
1 2

e
2

Figure 5.2: A plot of the vectors e1, a2,
and e2 needed to find the projection of
a2, on e1.

Recall the projection of one vector onto another from your vector calculus
class.

pr1a2 =
a2 · e1

e2
1

e1. (5.9)

This is easily proven by writing the projection as a vector of length a2 cos θ

in direction ê1, where θ is the angle between e1 and a2. Using the definition
of the dot product, a · b = ab cos θ, the projection formula follows.

Combining Equations (5.8)-(5.9), we find that

e2 = a2 −
a2 · e1

e2
1

e1. (5.10)

It is a simple matter to verify that e2 is orthogonal to e1:

e2 · e1 = a2 · e1 −
a2 · e1

e2
1

e1 · e1

= a2 · e1 − a2 · e1 = 0. (5.11)

e

a

a
3

2

1

pr a
1 3

pr a
2 3

e
2

Figure 5.3: A plot of vectors for deter-
mining e3.

Next, we seek a third vector e3 that is orthogonal to both e1 and e2. Picto-
rially, we can write the given vector a3 as a combination of vector projections
along e1 and e2 with the new vector. This is shown in Figure 5.3. Thus, we
can see that

e3 = a3 −
a3 · e1

e2
1

e1 −
a3 · e2

e2
2

e2. (5.12)

Again, it is a simple matter to compute the scalar products with e1 and e2

to verify orthogonality.
We can easily generalize this procedure to the N-dimensional case. Let

an, n = 1, ..., N be a set of linearly independent vectors in RN . Then, an
orthogonal basis can be found by setting e1 = a1 and defining
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en = an −
n−1

∑
j=1

an · ej

e2
j

ej, n = 2, 3, . . . , N. (5.13)

Now, we can generalize this idea to (real) function spaces. Let fn(x),
n ∈ N0 = {0, 1, 2, . . .}, be a linearly independent sequence of continuous
functions defined for x ∈ [a, b]. Then, an orthogonal basis of functions,
φn(x), n ∈ N0 can be found and is given by

φ0(x) = f0(x)

and

φn(x) = fn(x)−
n−1

∑
j=0

〈 fn, φj〉
‖φj‖2 φj(x), n = 1, 2, . . . . (5.14)

Here we are using inner products relative to weight σ(x),

〈 f , g〉 =
∫ b

a
f (x)g(x)σ(x) dx. (5.15)

Note the similarity between the orthogonal basis in (5.14) and the expression
for the finite dimensional case in Equation (5.13).

Example 5.2. Apply the Gram-Schmidt Orthogonalization process to the set fn(x) =
xn, n ∈ N0, when x ∈ (−1, 1) and σ(x) = 1.

First, we have φ0(x) = f0(x) = 1. Note that∫ 1

−1
φ2

0(x) dx = 2.

We could use this result to fix the normalization of the new basis, but we will hold
off doing that for now.

Now, we compute the second basis element:

φ1(x) = f1(x)− 〈 f1, φ0〉
‖φ0‖2 φ0(x)

= x− 〈x, 1〉
‖1‖2 1 = x, (5.16)

since 〈x, 1〉 is the integral of an odd function over a symmetric interval.
For φ2(x), we have

φ2(x) = f2(x)− 〈 f2, φ0〉
‖φ0‖2 φ0(x)− 〈 f2, φ1〉

‖φ1‖2 φ1(x)

= x2 − 〈x
2, 1〉
‖1‖2 1− 〈x

2, x〉
‖x‖2 x

= x2 −
∫ 1
−1 x2 dx∫ 1
−1 dx

= x2 − 1
3

. (5.17)
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So far, we have the orthogonal set {1, x, x2 − 1
3}. If one chooses to normalize

these by forcing φn(1) = 1, then one obtains the classical Legendre polynomials,
Pn(x). Thus,

P2(x) =
1
2
(3x2 − 1).

Note that this normalization is different than the usual one. In fact, we see the
P2(x) does not have a unit norm,

‖P2‖2 =
∫ 1

−1
P2

2 (x) dx =
2
5

.

The set of Legendre3 polynomials is just one set of classical orthogo-3 Adrien-Marie Legendre (1752-1833)
was a French mathematician who made
many contributions to analysis and
algebra.

nal polynomials that can be obtained in this way. Many of these special
functions had originally appeared as solutions of important boundary value
problems in physics. They all have similar properties and we will just elab-
orate some of these for the Legendre functions in the next section. Others
in this group are shown in Table 5.1.

Table 5.1: Common classical orthogo-
nal polynomials with the interval and
weight function used to define them.

Polynomial Symbol Interval σ(x)
Hermite Hn(x) (−∞, ∞) e−x2

Laguerre Lα
n(x) [0, ∞) e−x

Legendre Pn(x) (-1,1) 1

Gegenbauer Cλ
n (x) (-1,1) (1− x2)λ−1/2

Tchebychef of the 1st kind Tn(x) (-1,1) (1− x2)−1/2

Tchebychef of the 2nd kind Un(x) (-1,1) (1− x2)−1/2

Jacobi P(ν,µ)
n (x) (-1,1) (1− x)ν(1− x)µ

5.3 Fourier-Legendre Series

In the last chapter we saw how useful Fourier series expansions were
for solving the heat and wave equations. In Chapter 6 we will investigate
partial differential equations in higher dimensions and find that problems
with spherical symmetry may lead to the series representations in terms of a
basis of Legendre polynomials. For example, we could consider the steady
state temperature distribution inside a hemispherical igloo, which takes the
form

φ(r, θ) =
∞

∑
n=0

AnrnPn(cos θ)

in spherical coordinates. Evaluating this function at the surface r = a as
φ(a, θ) = f (θ), leads to a Fourier-Legendre series expansion of function f :

f (θ) =
∞

∑
n=0

cnPn(cos θ),

where cn = Anan
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In this section we would like to explore Fourier-Legendre series expan-
sions of functions f (x) defined on (−1, 1):

f (x) ∼
∞

∑
n=0

cnPn(x). (5.18)

As with Fourier trigonometric series, we can determine the expansion coef-
ficients by multiplying both sides of Equation (5.18) by Pm(x) and integrat-
ing for x ∈ [−1, 1]. Orthogonality gives the usual form for the generalized
Fourier coefficients,

cn =
〈 f , Pn〉
‖Pn‖2 , n = 0, 1, . . . .

We will later show that
‖Pn‖2 =

2
2n + 1

.

Therefore, the Fourier-Legendre coefficients are

cn =
2n + 1

2

∫ 1

−1
f (x)Pn(x) dx. (5.19)

5.3.1 Properties of Legendre Polynomials
The Rodrigues Formula.

We can do examples of Fourier-Legendre expansions given just a
few facts about Legendre polynomials. The first property that the Legendre
polynomials have is the Rodrigues formula:

Pn(x) =
1

2nn!
dn

dxn (x2 − 1)n, n ∈ N0. (5.20)

From the Rodrigues formula, one can show that Pn(x) is an nth degree
polynomial. Also, for n odd, the polynomial is an odd function and for n
even, the polynomial is an even function.

Example 5.3. Determine P2(x) from Rodrigues formula:

P2(x) =
1

222!
d2

dx2 (x2 − 1)2

=
1
8

d2

dx2 (x4 − 2x2 + 1)

=
1
8

d
dx

(4x3 − 4x)

=
1
8
(12x2 − 4)

=
1
2
(3x2 − 1). (5.21)

Note that we get the same result as we found in the last section using orthogonal-
ization.

The first several Legendre polynomials are given in Table 5.2. In Figure
5.4 we show plots of these Legendre polynomials. The Three Term Recursion Formula.
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Table 5.2: Tabular computation of the
Legendre polynomials using the Ro-
drigues formula.

n (x2 − 1)n dn

dxn (x2 − 1)n 1
2nn! Pn(x)

0 1 1 1 1

1 x2 − 1 2x 1
2 x

2 x4 − 2x2 + 1 12x2 − 4 1
8

1
2 (3x2 − 1)

3 x6 − 3x4 + 3x2 − 1 120x3 − 72x 1
48

1
2 (5x3 − 3x)

Figure 5.4: Plots of the Legendre poly-
nomials P2(x), P3(x), P4(x), and P5(x).
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All of the classical orthogonal polynomials satisfy a three term recursion
formula (or, recurrence relation or formula). In the case of the Legendre
polynomials, we have

(n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x), n = 1, 2, . . . . (5.22)

This can also be rewritten by replacing n with n− 1 as

(2n− 1)xPn−1(x) = nPn(x) + (n− 1)Pn−2(x), n = 1, 2, . . . . (5.23)

Example 5.4. Use the recursion formula to find P2(x) and P3(x), given that
P0(x) = 1 and P1(x) = x.

We first begin by inserting n = 1 into Equation (5.22):

2P2(x) = 3xP1(x)− P0(x) = 3x2 − 1.

So, P2(x) = 1
2 (3x2 − 1).

For n = 2, we have

3P3(x) = 5xP2(x)− 2P1(x)

=
5
2

x(3x2 − 1)− 2x

=
1
2
(15x3 − 9x). (5.24)

This gives P3(x) = 1
2 (5x3 − 3x). These expressions agree with the earlier results.

We will prove the three term recursion formula in two ways. First we

The first proof of the three term recur-
sion formula is based upon the nature of
the Legendre polynomials as an orthog-
onal basis, while the second proof is de-
rived using generating functions.
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use the orthogonality properties of Legendre polynomials and the following
lemma.

Lemma 5.1. The leading coefficient of xn in Pn(x) is 1
2nn!

(2n)!
n! .

Proof. We can prove this using the Rodrigues formula. First, we focus on
the leading coefficient of (x2 − 1)n, which is x2n. The first derivative of x2n

is 2nx2n−1. The second derivative is 2n(2n− 1)x2n−2. The jth derivative is

djx2n

dxj = [2n(2n− 1) . . . (2n− j + 1)]x2n−j.

Thus, the nth derivative is given by

dnx2n

dxn = [2n(2n− 1) . . . (n + 1)]xn.

This proves that Pn(x) has degree n. The leading coefficient of Pn(x) can
now be written as

[2n(2n− 1) . . . (n + 1)]
2nn!

=
[2n(2n− 1) . . . (n + 1)]

2nn!
n(n− 1) . . . 1
n(n− 1) . . . 1

=
1

2nn!
(2n)!

n!
. (5.25)

Theorem 5.1. Legendre polynomials satisfy the three term recursion formula

(2n− 1)xPn−1(x) = nPn(x) + (n− 1)Pn−2(x), n = 1, 2, . . . . (5.26)

Proof. In order to prove the three term recursion formula we consider the
expression (2n− 1)xPn−1(x)− nPn(x). While each term is a polynomial of
degree n, the leading order terms cancel. We need only look at the coeffi-
cient of the leading order term first expression. It is

2n− 1
2n−1(n− 1)!

(2n− 2)!
(n− 1)!

=
1

2n−1(n− 1)!
(2n− 1)!
(n− 1)!

=
(2n− 1)!

2n−1 [(n− 1)!]2
.

The coefficient of the leading term for nPn(x) can be written as

n
1

2nn!
(2n)!

n!
= n

(
2n
2n2

)(
1

2n−1(n− 1)!

)
(2n− 1)!
(n− 1)!

(2n− 1)!

2n−1 [(n− 1)!]2
.

It is easy to see that the leading order terms in the expression (2n− 1)xPn−1(x)−
nPn(x) cancel.

The next terms will be of degree n− 2. This is because the Pn’s are either
even or odd functions, thus only containing even, or odd, powers of x. We
conclude that

(2n− 1)xPn−1(x)− nPn(x) = polynomial of degree n− 2.

Therefore, since the Legendre polynomials form a basis, we can write this
polynomial as a linear combination of Legendre polynomials:

(2n− 1)xPn−1(x)− nPn(x) = c0P0(x) + c1P1(x) + . . . + cn−2Pn−2(x). (5.27)
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Multiplying Equation (5.27) by Pm(x) for m = 0, 1, . . . , n− 3, integrating
from −1 to 1, and using orthogonality, we obtain

0 = cm‖Pm‖2, m = 0, 1, . . . , n− 3.

[Note:
∫ 1
−1 xkPn(x) dx = 0 for k ≤ n − 1. Thus,

∫ 1
−1 xPn−1(x)Pm(x) dx = 0

for m ≤ n− 3.]
Thus, all of these cm’s are zero, leaving Equation (5.27) as

(2n− 1)xPn−1(x)− nPn(x) = cn−2Pn−2(x).

The final coefficient can be found by using the normalization condition,
Pn(1) = 1. Thus, cn−2 = (2n− 1)− n = n− 1.

5.3.2 Generating Functions The Generating Function for Legendre Poly-
nomials

A second proof of the three term recursion formula can be ob-
tained from the generating function of the Legendre polynomials. Many
special functions have such generating functions. In this case it is given by

g(x, t) =
1√

1− 2xt + t2
=

∞

∑
n=0

Pn(x)tn, |x| ≤ 1, |t| < 1. (5.28)

This generating function occurs often in applications. In particular, it
arises in potential theory, such as electromagnetic or gravitational potentials.
These potential functions are 1

r type functions.

Figure 5.5: The position vectors used to
describe the tidal force on the Earth due
to the moon. r

2

r
1

r
1

r  -
2

For example, the gravitational potential between the Earth and the moon
is proportional to the reciprocal of the magnitude of the difference between
their positions relative to some coordinate system. An even better example,
would be to place the origin at the center of the Earth and consider the
forces on the non-pointlike Earth due to the moon. Consider a piece of the
Earth at position r1 and the moon at position r2 as shown in Figure 5.5. The
tidal potential Φ is proportional to

Φ ∝
1

|r2 − r1|
=

1√
(r2 − r1) · (r2 − r1)

=
1√

r2
1 − 2r1r2 cos θ + r2

2

,

where θ is the angle between r1 and r2.
Typically, one of the position vectors is much larger than the other. Let’s

assume that r1 � r2. Then, one can write

Φ ∝
1√

r2
1 − 2r1r2 cos θ + r2

2

=
1
r2

1√
1− 2 r1

r2
cos θ +

(
r1
r2

)2
.
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Now, define x = cos θ and t = r1
r2

. We then have that the tidal potential is
proportional to the generating function for the Legendre polynomials! So,
we can write the tidal potential as

Φ ∝
1
r2

∞

∑
n=0

Pn(cos θ)

(
r1

r2

)n
.

The first term in the expansion, 1
r2

, is the gravitational potential that gives
the usual force between the Earth and the moon. [Recall that the gravita-
tional potential for mass m at distance r from M is given by Φ = −GMm

r and

that the force is the gradient of the potential, F = −∇Φ ∝ ∇
(

1
r

)
.] The next

terms will give expressions for the tidal effects.
Now that we have some idea as to where this generating function might

have originated, we can proceed to use it. First of all, the generating function
can be used to obtain special values of the Legendre polynomials.

Example 5.5. Evaluate Pn(0) using the generating function. Pn(0) is found by
considering g(0, t). Setting x = 0 in Equation (5.28), we have

g(0, t) =
1√

1 + t2

=
∞

∑
n=0

Pn(0)tn

= P0(0) + P1(0)t + P2(0)t2 + P3(0)t3 + . . . . (5.29)

We can use the binomial expansion to find the final answer. Namely, we have

1√
1 + t2

= 1− 1
2

t2 +
3
8

t4 + . . . .

Comparing these expansions, we have the Pn(0) = 0 for n odd and for even integers
one can show (see Problem 12) that4 4 This example can be finished by first

proving that

(2n)!! = 2nn!

and

(2n− 1)!! =
(2n)!
(2n)!!

=
(2n)!
2nn!

.

P2n(0) = (−1)n (2n− 1)!!
(2n)!!

, (5.30)

where n!! is the double factorial,

n!! =


n(n− 2) . . . (3)1, n > 0, odd,
n(n− 2) . . . (4)2, n > 0, even,
1 n = 0,−1

.

Example 5.6. Evaluate Pn(−1). This is a simpler problem. In this case we have

g(−1, t) =
1√

1 + 2t + t2
=

1
1 + t

= 1− t + t2 − t3 + . . . .

Therefore, Pn(−1) = (−1)n.
Proof of the three term recursion for-
mula using the generating function.

Example 5.7. Prove the three term recursion formula,

(k + 1)Pk+1(x)− (2k + 1)xPk(x) + kPk−1(x) = 0, k = 1, 2, . . . ,
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using the generating function.
We can also use the generating function to find recurrence relations. To prove the

three term recursion (5.22) that we introduced above, then we need only differentiate
the generating function with respect to t in Equation (5.28) and rearrange the result.
First note that

∂g
∂t

=
x− t

(1− 2xt + t2)3/2 =
x− t

1− 2xt + t2 g(x, t).

Combining this with
∂g
∂t

=
∞

∑
n=0

nPn(x)tn−1,

we have

(x− t)g(x, t) = (1− 2xt + t2)
∞

∑
n=0

nPn(x)tn−1.

Inserting the series expression for g(x, t) and distributing the sum on the right side,
we obtain

(x− t)
∞

∑
n=0

Pn(x)tn =
∞

∑
n=0

nPn(x)tn−1 −
∞

∑
n=0

2nxPn(x)tn +
∞

∑
n=0

nPn(x)tn+1.

Multiplying out the x− t factor and rearranging, leads to three separate sums:

∞

∑
n=0

nPn(x)tn−1 −
∞

∑
n=0

(2n + 1)xPn(x)tn +
∞

∑
n=0

(n + 1)Pn(x)tn+1 = 0. (5.31)

Each term contains powers of t that we would like to combine into a single sum.
This is done by reindexing. For the first sum, we could use the new index k = n− 1.
Then, the first sum can be written

∞

∑
n=0

nPn(x)tn−1 =
∞

∑
k=−1

(k + 1)Pk+1(x)tk.

Using different indices is just another way of writing out the terms. Note that

∞

∑
n=0

nPn(x)tn−1 = 0 + P1(x) + 2P2(x)t + 3P3(x)t2 + . . .

and
∞

∑
k=−1

(k + 1)Pk+1(x)tk = 0 + P1(x) + 2P2(x)t + 3P3(x)t2 + . . .

actually give the same sum. The indices are sometimes referred to as dummy indices
because they do not show up in the expanded expression and can be replaced with
another letter.

If we want to do so, we could now replace all of the k’s with n’s. However, we will
leave the k’s in the first term and now reindex the next sums in Equation (5.31).
The second sum just needs the replacement n = k and the last sum we reindex
using k = n + 1. Therefore, Equation (5.31) becomes

∞

∑
k=−1

(k + 1)Pk+1(x)tk −
∞

∑
k=0

(2k + 1)xPk(x)tk +
∞

∑
k=1

kPk−1(x)tk = 0. (5.32)
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We can now combine all of the terms, noting the k = −1 term is automatically
zero and the k = 0 terms give

P1(x)− xP0(x) = 0. (5.33)

Of course, we know this already. So, that leaves the k > 0 terms:

∞

∑
k=1

[(k + 1)Pk+1(x)− (2k + 1)xPk(x) + kPk−1(x)] tk = 0. (5.34)

Since this is true for all t, the coefficients of the tk’s are zero, or

(k + 1)Pk+1(x)− (2k + 1)xPk(x) + kPk−1(x) = 0, k = 1, 2, . . . .

While this is the standard form for the three term recurrence relation, the earlier
form is obtained by setting k = n− 1.

There are other recursion relations which we list in the box below. Equa-
tion (5.35) was derived using the generating function. Differentiating it with
respect to x, we find Equation (5.36). Equation (5.37) can be proven using
the generating function by differentiating g(x, t) with respect to x and re-
arranging the resulting infinite series just as in this last manipulation. This
will be left as Problem 4. Combining this result with Equation (5.35), we
can derive Equations (5.38)-(5.39). Adding and subtracting these equations
yields Equations (5.40)-(5.41).

Recursion Formulae for Legendre Polynomials for n = 1, 2, . . . .

(n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x) (5.35)

(n + 1)P′n+1(x) = (2n + 1)[Pn(x) + xP′n(x)]− nP′n−1(x)

(5.36)

Pn(x) = P′n+1(x)− 2xP′n(x) + P′n−1(x) (5.37)

P′n−1(x) = xP′n(x)− nPn(x) (5.38)

P′n+1(x) = xP′n(x) + (n + 1)Pn(x) (5.39)

P′n+1(x) + P′n−1(x) = 2xP′n(x) + Pn(x). (5.40)

P′n+1(x)− P′n−1(x) = (2n + 1)Pn(x). (5.41)

(x2 − 1)P′n(x) = nxPn(x)− nPn−1(x) (5.42)

Finally, Equation (5.42) can be obtained using Equations (5.38) and (5.39).
Just multiply Equation (5.38) by x,

x2P′n(x)− nxPn(x) = xP′n−1(x).

Now use Equation (5.39), but first replace n with n − 1 to eliminate the
xP′n−1(x) term:

x2P′n(x)− nxPn(x) = P′n(x)− nPn−1(x).

Rearranging gives the Equation (5.42).
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Example 5.8. Use the generating function to prove

‖Pn‖2 =
∫ 1

−1
P2

n(x) dx =
2

2n + 1
.

Another use of the generating function is to obtain the normalization constant.
This can be done by first squaring the generating function in order to get the prod-
ucts Pn(x)Pm(x), and then integrating over x.The normalization constant.

Squaring the generating function has to be done with care, as we need to make
proper use of the dummy summation index. So, we first write

1
1− 2xt + t2 =

[
∞

∑
n=0

Pn(x)tn

]2

=
∞

∑
n=0

∞

∑
m=0

Pn(x)Pm(x)tn+m. (5.43)

Integrating from x = −1 to x = 1 and using the orthogonality of the Legendre
polynomials, we have∫ 1

−1

dx
1− 2xt + t2 =

∞

∑
n=0

∞

∑
m=0

tn+m
∫ 1

−1
Pn(x)Pm(x) dx

=
∞

∑
n=0

t2n
∫ 1

−1
P2

n(x) dx. (5.44)

However, one can show that55 You will need the integral∫ dx
a + bx

=
1
b

ln(a + bx) + C.
∫ 1

−1

dx
1− 2xt + t2 =

1
t

ln
(

1 + t
1− t

)
.

Expanding this expression about t = 0, we obtain66 You will need the series expansion

ln(1 + x) =
∞

∑
n=1

(−1)n+1 xn

n

= x− x2

2
+

x3

3
− · · · .

1
t

ln
(

1 + t
1− t

)
=

∞

∑
n=0

2
2n + 1

t2n.

Comparing this result with Equation (5.44), we find that

‖Pn‖2 =
∫ 1

−1
P2

n(x) dx =
2

2n + 1
. (5.45)

5.3.3 The Differential Equation for Legendre Polynomials

The Legendre polynomials satisfy a second order linear differential
equation. This differential equation occurs naturally in the solution of initial-
boundary value problems in three dimensions which possess some spherical
symmetry. We will see this in the last chapter. There are two approaches
we could take in showing that the Legendre polynomials satisfy a particular
differential equation. Either we can write down the equations and attempt
to solve it, or we could use the above properties to obtain the equation. For
now, we will seek the differential equation satisfied by Pn(x) using the above
recursion relations.
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We begin by differentiating Equation (5.42) and using Equation (5.38) to
simplify:

d
dx

(
(x2 − 1)P′n(x)

)
= nPn(x) + nxP′n(x)− nP′n−1(x)

= nPn(x) + n2Pn(x)

= n(n + 1)Pn(x). (5.46)

Therefore, Legendre polynomials, or Legendre functions of the first kind,
are solutions of the differential equation

(1− x2)y′′ − 2xy′ + n(n + 1)y = 0.

As this is a linear second order differential equation, we expect two linearly A generalization of the Legendre equa-
tion is given by (1 − x2)y′′ − 2xy′ +[

n(n + 1)− m2

1−x2

]
y = 0. Solutions to

this equation, Pm
n (x) and Qm

n (x), are
called the associated Legendre functions
of the first and second kind.

independent solutions. The second solution, called the Legendre function
of the second kind, is given by Qn(x) and is not well behaved at x = ±1.
For example,

Q0(x) =
1
2

ln
1 + x
1− x

.

We will not need these for physically interesting examples in this book.

5.3.4 Fourier-Legendre Series

With these properties of Legendre functions we are now prepared
to compute the expansion coefficients for the Fourier-Legendre series repre-
sentation of a given function.

Example 5.9. Expand f (x) = x3 in a Fourier-Legendre series.
We simply need to compute

cn =
2n + 1

2

∫ 1

−1
x3Pn(x) dx. (5.47)

We first note that ∫ 1

−1
xmPn(x) dx = 0 for m > n.

As a result, we have that cn = 0 for n > 3. We could just compute
∫ 1
−1 x3Pm(x) dx

for m = 0, 1, 2, . . . outright by looking up Legendre polynomials. But, note that x3

is an odd function. So, c0 = 0 and c2 = 0.
This leaves us with only two coefficients to compute. We refer to Table 5.2 and

find that

c1 =
3
2

∫ 1

−1
x4 dx =

3
5

c3 =
7
2

∫ 1

−1
x3
[

1
2
(5x3 − 3x)

]
dx =

2
5

.

Thus,

x3 =
3
5

P1(x) +
2
5

P3(x).
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Of course, this is simple to check using Table 5.2:

3
5

P1(x) +
2
5

P3(x) =
3
5

x +
2
5

[
1
2
(5x3 − 3x)

]
= x3.

We could have obtained this result without doing any integration. Write x3 as a
linear combination of P1(x) and P3(x) :

x3 = c1x +
1
2

c2(5x3 − 3x)

= (c1 −
3
2

c2)x +
5
2

c2x3. (5.48)

Equating coefficients of like terms, we have that c2 = 2
5 and c1 = 3

2 c2 = 3
5 .

Example 5.10. Expand the Heaviside7 function in a Fourier-Legendre series.7 Oliver Heaviside (1850-1925) was an
English mathematician, physicist and
engineer who used complex analysis to
study circuits and was a co-founder of
vector analysis. The Heaviside function
is also called the step function.

The Heaviside function is defined as

H(x) =

{
1, x > 0,
0, x < 0.

(5.49)

In this case, we cannot find the expansion coefficients without some integration. We
have to compute

cn =
2n + 1

2

∫ 1

−1
f (x)Pn(x) dx

=
2n + 1

2

∫ 1

0
Pn(x) dx. (5.50)

We can make use of identity (5.41),

P′n+1(x)− P′n−1(x) = (2n + 1)Pn(x), n > 0. (5.51)

We have for n > 0

cn =
1
2

∫ 1

0
[P′n+1(x)− P′n−1(x)] dx =

1
2
[Pn−1(0)− Pn+1(0)].

For n = 0, we have

c0 =
1
2

∫ 1

0
dx =

1
2

.

This leads to the expansion

f (x) ∼ 1
2
+

1
2

∞

∑
n=1

[Pn−1(0)− Pn+1(0)]Pn(x).

We still need to evaluate the Fourier-Legendre coefficients

cn =
1
2
[Pn−1(0)− Pn+1(0)].

Since Pn(0) = 0 for n odd, the cn’s vanish for n even. Letting n = 2k− 1, we
re-index the sum, obtaining

f (x) ∼ 1
2
+

1
2

∞

∑
k=1

[P2k−2(0)− P2k(0)]P2k−1(x).
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We can compute the nonzero Fourier coefficients, c2k−1 = 1
2 [P2k−2(0)− P2k(0)],

using a result from Problem 12:

P2k(0) = (−1)k (2k− 1)!!
(2k)!!

. (5.52)

Namely, we have

c2k−1 =
1
2
[P2k−2(0)− P2k(0)]

=
1
2

[
(−1)k−1 (2k− 3)!!

(2k− 2)!!
− (−1)k (2k− 1)!!

(2k)!!

]
= −1

2
(−1)k (2k− 3)!!

(2k− 2)!!

[
1 +

2k− 1
2k

]
= −1

2
(−1)k (2k− 3)!!

(2k− 2)!!
4k− 1

2k
. (5.53)
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Figure 5.6: Sum of first 21 terms for
Fourier-Legendre series expansion of
Heaviside function.

Thus, the Fourier-Legendre series expansion for the Heaviside function is given
by

f (x) ∼ 1
2
− 1

2

∞

∑
n=1

(−1)n (2n− 3)!!
(2n− 2)!!

4n− 1
2n

P2n−1(x). (5.54)

The sum of the first 21 terms of this series are shown in Figure 5.6. We note the slow
convergence to the Heaviside function. Also, we see that the Gibbs phenomenon is
present due to the jump discontinuity at x = 0. [See Section 3.7.]

5.4 Gamma Function
The name and symbol for the Gamma
function were first given by Legendre in
1811. However, the search for a gener-
alization of the factorial extends back to
the 1720’s when Euler provided the first
representation of the factorial as an infi-
nite product, later to be modified by oth-
ers like Gauß, Weierstraß, and Legendre.

A function that often occurs in the study of special functions

is the Gamma function. We will need the Gamma function in the next
section on Fourier-Bessel series.

For x > we define the Gamma function as

Γ(x) =
∫ ∞

0
tx−1e−t dt, x > 0. (5.55)

The Gamma function is a generalization of the factorial function and a plot
is shown in Figure 5.7. In fact, we have

Γ(1) = 1

and
Γ(x + 1) = xΓ(x).

The reader can prove this identity by simply performing an integration by
parts. (See Problem 7.) In particular, for integers n ∈ Z+, we then have

Γ(n + 1) = nΓ(n) = n(n− 1)Γ(n− 2) = n(n− 1) · · · 2Γ(1) = n!.

–6

–4

–2

2

4

1 2 3 4–1–2–3–4–6

x

Figure 5.7: Plot of the Gamma function.

We can also define the Gamma function for negative, non-integer values
of x. We first note that by iteration on n ∈ Z+, we have

Γ(x + n) = (x + n− 1) · · · (x + 1)xΓ(x), x + n > 0.



146 partial differential equations

Solving for Γ(x), we then find

Γ(x) =
Γ(x + n)

(x + n− 1) · · · (x + 1)x
, −n < x < 0

Note that the Gamma function is undefined at zero and the negative inte-
gers.

Example 5.11. We now prove that

Γ
(

1
2

)
=
√

π.

This is done by direct computation of the integral:

Γ
(

1
2

)
=
∫ ∞

0
t−

1
2 e−t dt.

Letting t = z2, we have

Γ
(

1
2

)
= 2

∫ ∞

0
e−z2

dz.

Due to the symmetry of the integrand, we obtain the classic integral

Γ
(

1
2

)
=
∫ ∞

−∞
e−z2

dz,

which can be performed using a standard trick.8 Consider the integral8 In Example 9.5 we show the more gen-
eral result:∫ ∞

−∞
e−βy2

dy =

√
π

β
. I =

∫ ∞

−∞
e−x2

dx.

Then,
I2 =

∫ ∞

−∞
e−x2

dx
∫ ∞

−∞
e−y2

dy.

Note that we changed the integration variable. This will allow us to write this
product of integrals as a double integral:

I2 =
∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2) dxdy.

This is an integral over the entire xy-plane. We can transform this Cartesian inte-
gration to an integration over polar coordinates. The integral becomes

I2 =
∫ 2π

0

∫ ∞

0
e−r2

rdrdθ.

This is simple to integrate and we have I2 = π. So, the final result is found by
taking the square root of both sides:

Γ
(

1
2

)
= I =

√
π.

In Problem 12 the reader will prove the identity

Γ(n +
1
2
) =

(2n− 1)!!
2n

√
π.
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Another useful relation, which we only state, is

Γ(x)Γ(1− x) =
π

sin πx
.

The are many other important relations, including infinite products, which
we will not need at this point. The reader is encouraged to read about
these elsewhere. In the meantime, we move on to the discussion of another
important special function in physics and mathematics.

5.5 Fourier-Bessel Series

Bessel functions arise in many problems in physics possessing cylin-
drical symmetry such as the vibrations of circular drumheads and the radial
modes in optical fibers. They also provide us with another orthogonal set
of basis functions.

The first occurrence of Bessel functions (zeroth order) was in the work Bessel functions have a long history
and were named after Friedrich Wilhelm
Bessel (1784-1846).

of Daniel Bernoulli on heavy chains (1738). More general Bessel functions
were studied by Leonhard Euler in 1781 and in his study of the vibrating
membrane in 1764. Joseph Fourier found them in the study of heat conduc-
tion in solid cylinders and Siméon Poisson (1781-1840) in heat conduction
of spheres (1823).

The history of Bessel functions, does not just originate in the study of the
wave and heat equations. These solutions originally came up in the study
of the Kepler problem, describing planetary motion. According to G. N.
Watson in his Treatise on Bessel Functions, the formulation and solution of
Kepler’s Problem was discovered by Joseph-Louis Lagrange (1736-1813), in
1770. Namely, the problem was to express the radial coordinate and what
is called the eccentric anomaly, E, as functions of time. Lagrange found
expressions for the coefficients in the expansions of r and E in trigonometric
functions of time. However, he only computed the first few coefficients. In
1816 Friedrich Wilhelm Bessel (1784-1846) had shown that the coefficients
in the expansion for r could be given an integral representation. In 1824 he
presented a thorough study of these functions, which are now called Bessel
functions.

You might have seen Bessel functions in a course on differential equations
as solutions of the differential equation

x2y′′ + xy′ + (x2 − p2)y = 0. (5.56)

Solutions to this equation are obtained in the form of series expansions.
Namely, one seeks solutions of the form

y(x) =
∞

∑
j=0

ajxj+n

by determining the for the coefficients must take. We will leave this for a
homework exercise and simply report the results.
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One solution of the differential equation is the Bessel function of the first
kind of order p, given as

y(x) = Jp(x) =
∞

∑
n=0

(−1)n

Γ(n + 1)Γ(n + p + 1)

( x
2

)2n+p
. (5.57)

Figure 5.8: Plots of the Bessel functions
J0(x), J1(x), J2(x), and J3(x).
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In Figure 5.8 we display the first few Bessel functions of the first kind
of integer order. Note that these functions can be described as decaying
oscillatory functions.

A second linearly independent solution is obtained for p not an integer as
J−p(x). However, for p an integer, the Γ(n+ p+ 1) factor leads to evaluations
of the Gamma function at zero, or negative integers, when p is negative.
Thus, the above series is not defined in these cases.

Another method for obtaining a second linearly independent solution is
through a linear combination of Jp(x) and J−p(x) as

Np(x) = Yp(x) =
cos πpJp(x)− J−p(x)

sin πp
. (5.58)

These functions are called the Neumann functions, or Bessel functions of
the second kind of order p.

In Figure 5.9 we display the first few Bessel functions of the second kind
of integer order. Note that these functions are also decaying oscillatory
functions. However, they are singular at x = 0.

In many applications one desires bounded solutions at x = 0. These
functions do not satisfy this boundary condition. For example, we will
later study one standard problem is to describe the oscillations of a circular
drumhead. For this problem one solves the two dimensional wave equation
using separation of variables in cylindrical coordinates. The radial equation
leads to a Bessel equation. The Bessel function solutions describe the radial
part of the solution and one does not expect a singular solution at the center
of the drum. The amplitude of the oscillation must remain finite. Thus, only
Bessel functions of the first kind can be used.
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Figure 5.9: Plots of the Neumann func-
tions N0(x), N1(x), N2(x), and N3(x).

Bessel functions satisfy a variety of properties, which we will only list
at this time for Bessel functions of the first kind. The reader will have the
opportunity to prove these for homework.

Derivative Identities These identities follow directly from the manipula-
tion of the series solution.

d
dx
[
xp Jp(x)

]
= xp Jp−1(x). (5.59)

d
dx
[
x−p Jp(x)

]
= −x−p Jp+1(x). (5.60)

Recursion Formulae The next identities follow from adding, or subtract-
ing, the derivative identities.

Jp−1(x) + Jp+1(x) =
2p
x

Jp(x). (5.61)

Jp−1(x)− Jp+1(x) = 2J′p(x). (5.62)

Orthogonality As we will see in the next chapter, one can recast the
Bessel equation into an eigenvalue problem whose solutions form an or-
thogonal basis of functions on L2

x(0, a). Using Sturm-Liouville theory, one
can show that

∫ a

0
xJp(jpn

x
a
)Jp(jpm

x
a
) dx =

a2

2
[

Jp+1(jpn)
]2

δn,m, (5.63)

where jpn is the nth root of Jp(x), Jp(jpn) = 0, n = 1, 2, . . . . A list of some
of these roots are provided in Table 5.3.

Generating Function

ex(t− 1
t )/2 =

∞

∑
n=−∞

Jn(x)tn, x > 0, t 6= 0. (5.64)
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Table 5.3: The zeros of Bessel Functions,
Jm(jmn) = 0.

n m = 0 m = 1 m = 2 m = 3 m = 4 m = 5
1 2.405 3.832 5.136 6.380 7.588 8.771

2 5.520 7.016 8.417 9.761 11.065 12.339

3 8.654 10.173 11.620 13.015 14.373 15.700

4 11.792 13.324 14.796 16.223 17.616 18.980

5 14.931 16.471 17.960 19.409 20.827 22.218

6 18.071 19.616 21.117 22.583 24.019 25.430

7 21.212 22.760 24.270 25.748 27.199 28.627

8 24.352 25.904 27.421 28.908 30.371 31.812

9 27.493 29.047 30.569 32.065 33.537 34.989

Integral Representation

Jn(x) =
1
π

∫ π

0
cos(x sin θ − nθ) dθ, x > 0, n ∈ Z. (5.65)

Fourier-Bessel Series

Since the Bessel functions are an orthogonal set of functions of a Sturm-
Liouville problem, we can expand square integrable functions in this ba-
sis. In fact, the Sturm-Liouville problem is given in the form

x2y′′ + xy′ + (λx2 − p2)y = 0, x ∈ [0, a], (5.66)

satisfying the boundary conditions: y(x) is bounded at x = 0 and y(a) =
0. The solutions are then of the form Jp(

√
λx), as can be shown by making

the substitution t =
√

λx in the differential equation. Namely, we let
y(x) = u(t) and note that

dy
dx

=
dt
dx

du
dt

=
√

λ
du
dt

.

Then,
t2u′′ + tu′ + (t2 − p2)u = 0,

which has a solution u(t) = Jp(t).In the study of boundary value prob-
lems in differential equations, Sturm-
Liouville problems are a bountiful
source of basis functions for the space
of square integrable functions as will be
seen in the next section.

Using Sturm-Liouville theory, one can show that Jp(jpn
x
a ) is a basis

of eigenfunctions and the resulting Fourier-Bessel series expansion of f (x)
defined on x ∈ [0, a] is

f (x) =
∞

∑
n=1

cn Jp(jpn
x
a
), (5.67)

where the Fourier-Bessel coefficients are found using the orthogonality
relation as

cn =
2

a2
[

Jp+1(jpn)
]2 ∫ a

0
x f (x)Jp(jpn

x
a
) dx. (5.68)

Example 5.12. Expand f (x) = 1 for 0 < x < 1 in a Fourier-Bessel series of
the form

f (x) =
∞

∑
n=1

cn J0(j0nx)
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.
We need only compute the Fourier-Bessel coefficients in Equation (5.68):

cn =
2

[J1(j0n)]
2

∫ 1

0
xJ0(j0nx) dx. (5.69)

From the identity

d
dx
[
xp Jp(x)

]
= xp Jp−1(x). (5.70)

we have

∫ 1

0
xJ0(j0nx) dx =

1
j20n

∫ j0n

0
yJ0(y) dy

=
1

j20n

∫ j0n

0

d
dy

[yJ1(y)] dy

=
1

j20n
[yJ1(y)]

j0n
0

=
1

j0n
J1(j0n). (5.71)
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Figure 5.10: Plot of the first 50 terms
of the Fourier-Bessel series in Equation
(5.72) for f (x) = 1 on 0 < x < 1.

As a result, the desired Fourier-Bessel expansion is given as

1 = 2
∞

∑
n=1

J0(j0nx)
j0n J1(j0n)

, 0 < x < 1. (5.72)

In Figure 5.10 we show the partial sum for the first fifty terms of this series.
Note once again the slow convergence due to the Gibbs phenomenon.
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5.6 Appendix: The Least Squares Approximation

In the first section of this chapter we showed that we can expand
functions over an infinite set of basis functions as

f (x) =
∞

∑
n=1

cnφn(x)

and that the generalized Fourier coefficients are given by

cn =
< φn, f >

< φn, φn >
.

In this section we turn to a discussion of approximating f (x) by the partial
sums ∑N

n=1 cnφn(x) and showing that the Fourier coefficients are the best
coefficients minimizing the deviation of the partial sum from f (x). This will
lead us to a discussion of the convergence of Fourier series.

More specifically, we set the following goal:

Goal

To find the best approximation of f (x) on [a, b] by SN(x) =
N
∑

n=1
cnφn(x)

for a set of fixed functions φn(x); i.e., to find the expansion coefficients,
cn, such that SN(x) approximates f (x) in the least squares sense.

We want to measure the deviation of the finite sum from the given func-
tion. Essentially, we want to look at the error made in the approximation.
This is done by introducing the mean square deviation:

EN =
∫ b

a
[ f (x)− SN(x)]2ρ(x) dx,

where we have introduced the weight function ρ(x) > 0. It gives us a sense
as to how close the Nth partial sum is to f (x).The mean square deviation.

We want to minimize this deviation by choosing the right cn’s. We begin
by inserting the partial sums and expand the square in the integrand:

EN =
∫ b

a
[ f (x)− SN(x)]2ρ(x) dx

=
∫ b

a

[
f (x)−

N

∑
n=1

cnφn(x)

]2

ρ(x) dx

=

b∫
a

f 2(x)ρ(x) dx− 2
b∫

a

f (x)
N

∑
n=1

cnφn(x)ρ(x) dx

+

b∫
a

N

∑
n=1

cnφn(x)
N

∑
m=1

cmφm(x)ρ(x) dx (5.73)

Looking at the three resulting integrals, we see that the first term is just
the inner product of f with itself. The other integrations can be rewritten
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after interchanging the order of integration and summation. The double
sum can be reduced to a single sum using the orthogonality of the φn’s.
Thus, we have

EN = < f , f > −2
N

∑
n=1

cn < f , φn > +
N

∑
n=1

N

∑
m=1

cncm < φn, φm >

= < f , f > −2
N

∑
n=1

cn < f , φn > +
N

∑
n=1

c2
n < φn, φn > . (5.74)

We are interested in finding the coefficients, so we will complete the
square in cn. Focusing on the last two terms, we have

−2
N

∑
n=1

cn < f , φn > +
N

∑
n=1

c2
n < φn, φn >

=
N

∑
n=1

< φn, φn > c2
n − 2 < f , φn > cn

=
N

∑
n=1

< φn, φn >

[
c2

n −
2 < f , φn >

< φn, φn >
cn

]

=
N

∑
n=1

< φn, φn >

[(
cn −

< f , φn >

< φn, φn >

)2
−
(

< f , φn >

< φn, φn >

)2
]

.

(5.75)

To this point we have shown that the mean square deviation is given as

EN =< f , f > +
N

∑
n=1

< φn, φn >

[(
cn −

< f , φn >

< φn, φn >

)2
−
(

< f , φn >

< φn, φn >

)2
]

.

So, EN is minimized by choosing

cn =
< f , φn >

< φn, φn >
.

However, these are the Fourier Coefficients. This minimization is often re-
ferred to as Minimization in Least Squares Sense. Minimization in Least Squares Sense

Inserting the Fourier coefficients into the mean square deviation yields Bessel’s Inequality.

0 ≤ EN =< f , f > −
N

∑
n=1

c2
n < φn, φn > .

Thus, we obtain Bessel’s Inequality:

< f , f >≥
N

∑
n=1

c2
n < φn, φn > .

Convergence in the mean.
For convergence, we next let N get large and see if the partial sums con-

verge to the function. In particular, we say that the infinite series converges
in the mean if ∫ b

a
[ f (x)− SN(x)]2ρ(x) dx → 0 as N → ∞.
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Letting N get large in Bessel’s inequality shows that the sum ∑N
n=1 c2

n <

φn, φn > converges if

(< f , f >=
∫ b

a
f 2(x)ρ(x) dx < ∞.

The space of all such f is denoted L2
ρ(a, b), the space of square integrable

functions on (a, b) with weight ρ(x).
From the nth term divergence test from calculus we know that ∑ an con-

verges implies that an → 0 as n → ∞. Therefore, in this problem the terms
c2

n < φn, φn > approach zero as n gets large. This is only possible if the cn’s
go to zero as n gets large. Thus, if ∑N

n=1 cnφn converges in the mean to f ,
then

∫ b
a [ f (x)−∑N

n=1 cnφn]2ρ(x) dx approaches zero as N → ∞. This implies
from the above derivation of Bessel’s inequality that

< f , f > −
N

∑
n=1

c2
n(φn, φn)→ 0.

This leads to Parseval’s equality:Parseval’s equality.

< f , f >=
∞

∑
n=1

c2
n < φn, φn > .

Parseval’s equality holds if and only if

lim
N→∞

b∫
a

( f (x)−
N

∑
n=1

cnφn(x))2ρ(x) dx = 0.

If this is true for every square integrable function in L2
ρ(a, b), then the set of

functions {φn(x)}∞
n=1 is said to be complete. One can view these functions

as an infinite dimensional basis for the space of square integrable functions
on (a, b) with weight ρ(x) > 0.

One can extend the above limit cn → 0 as n→ ∞, by assuming that φn(x)
‖φn‖

is uniformly bounded and that
b∫
a
| f (x)|ρ(x) dx < ∞. This is the Riemann-

Lebesgue Lemma, but will not be proven here.

Problems

1. Consider the set of vectors (−1, 1, 1), (1,−1, 1), (1, 1,−1).

a. Use the Gram-Schmidt process to find an orthonormal basis for R3

using this set in the given order.

b. What do you get if you do reverse the order of these vectors?

2. Use the Gram-Schmidt process to find the first four orthogonal polyno-
mials satisfying the following:

a. Interval: (−∞, ∞) Weight Function: e−x2
.

b. Interval: (0, ∞) Weight Function: e−x.



non-sinusoidal harmonics and special functions 155

3. Find P4(x) using

a. The Rodrigues’ Formula in Equation (5.20).

b. The three term recursion formula in Equation (5.22).

4. In Equations (5.35)-(5.42) we provide several identities for Legendre poly-
nomials. Derive the results in Equations (5.36)-(5.42) as described in the text.
Namely,

a. Differentiating Equation (5.35) with respect to x, derive Equation
(5.36).

b. Derive Equation (5.37) by differentiating g(x, t) with respect to x
and rearranging the resulting infinite series.

c. Combining the last result with Equation (5.35), derive Equations
(5.38)-(5.39).

d. Adding and subtracting Equations (5.38)-(5.39), obtain Equations
(5.40)-(5.41).

e. Derive Equation (5.42) using some of the other identities.

5. Use the recursion relation (5.22) to evaluate
∫ 1
−1 xPn(x)Pm(x) dx, n ≤ m.

6. Expand the following in a Fourier-Legendre series for x ∈ (−1, 1).

a. f (x) = x2.

b. f (x) = 5x4 + 2x3 − x + 3.

c. f (x) =

{
−1, −1 < x < 0,
1, 0 < x < 1.

d. f (x) =

{
x, −1 < x < 0,
0, 0 < x < 1.

7. Use integration by parts to show Γ(x + 1) = xΓ(x).

8. Prove the double factorial identities:

(2n)!! = 2nn!

and

(2n− 1)!! =
(2n)!
2nn!

.

9. Express the following as Gamma functions. Namely, noting the form
Γ(x + 1) =

∫ ∞
0 txe−t dt and using an appropriate substitution, each expres-

sion can be written in terms of a Gamma function.

a.
∫ ∞

0 x2/3e−x dx.

b.
∫ ∞

0 x5e−x2
dx

c.
∫ 1

0

[
ln
(

1
x

)]n
dx
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10. The coefficients Cp
k in the binomial expansion for (1 + x)p are given by

Cp
k =

p(p− 1) · · · (p− k + 1)
k!

.

a. Write Cp
k in terms of Gamma functions.

b. For p = 1/2 use the properties of Gamma functions to write C1/2
k

in terms of factorials.

c. Confirm you answer in part b by deriving the Maclaurin series
expansion of (1 + x)1/2.

11. The Hermite polynomials, Hn(x), satisfy the following:

i. < Hn, Hm >=
∫ ∞
−∞ e−x2

Hn(x)Hm(x) dx =
√

π2nn!δn,m.

ii. H′n(x) = 2nHn−1(x).

iii. Hn+1(x) = 2xHn(x)− 2nHn−1(x).

iv. Hn(x) = (−1)nex2 dn

dxn

(
e−x2

)
.

Using these, show that

a. H′′n − 2xH′n + 2nHn = 0. [Use properties ii. and iii.]

b.
∫ ∞
−∞ xe−x2

Hn(x)Hm(x) dx =
√

π2n−1n! [δm,n−1 + 2(n + 1)δm,n+1] .
[Use properties i. and iii.]

c. Hn(0) =

{
0, n odd,

(−1)m (2m)!
m! , n = 2m.

[Let x = 0 in iii. and iterate.

Note from iv. that H0(x) = 1 and H1(x) = 2x. ]

12. In Maple one can type simplify(LegendreP(2*n-2,0)-LegendreP(2*n,0));
to find a value for P2n−2(0)− P2n(0). It gives the result in terms of Gamma
functions. However, in Example 5.10 for Fourier-Legendre series, the value
is given in terms of double factorials! So, we have

P2n−2(0)− P2n(0) =
√

π(4n− 1)
2Γ(n + 1)Γ

( 3
2 − n

) = (−1)n (2n− 3)!!
(2n− 2)!!

4n− 1
2n

.

You will verify that both results are the same by doing the following:

a. Prove that P2n(0) = (−1)n (2n−1)!!
(2n)!! using the generating function

and a binomial expansion.

b. Prove that Γ
(

n + 1
2

)
= (2n−1)!!

2n
√

π using Γ(x) = (x − 1)Γ(x − 1)
and iteration.

c. Verify the result from Maple that P2n−2(0)− P2n(0) =
√

π(4n−1)
2Γ(n+1)Γ( 3

2−n)
.

d. Can either expression for P2n−2(0)− P2n(0) be simplified further?

13. A solution Bessel’s equation, x2y′′+ xy′+(x2− n2)y = 0, , can be found
using the guess y(x) = ∑∞

j=0 ajxj+n. One obtains the recurrence relation
aj =

−1
j(2n+j) aj−2. Show that for a0 = (n!2n)−1 we get the Bessel function of

the first kind of order n from the even values j = 2k:

Jn(x) =
∞

∑
k=0

(−1)k

k!(n + k)!

( x
2

)n+2k
.
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14. Use the infinite series in the last problem to derive the derivative iden-
tities (5.70) and (5.60):

a. d
dx [x

n Jn(x)] = xn Jn−1(x).

b. d
dx [x

−n Jn(x)] = −x−n Jn+1(x).

15. Prove the following identities based on those in the last problem.

a. Jp−1(x) + Jp+1(x) = 2p
x Jp(x).

b. Jp−1(x)− Jp+1(x) = 2J′p(x).

16. Use the derivative identities of Bessel functions,(5.70)-(5.60), and inte-
gration by parts to show that∫

x3 J0(x) dx = x3 J1(x)− 2x2 J2(x) + C.

17. Use the generating function to find Jn(0) and J′n(0).

18. Bessel functions Jp(λx) are solutions of x2y′′ + xy′ + (λ2x2 − p2)y = 0.
Assume that x ∈ (0, 1) and that Jp(λ) = 0 and Jp(0) is finite.

a. Show that this equation can be written in the form

d
dx

(
x

dy
dx

)
+ (λ2x− p2

x
)y = 0.

This is the standard Sturm-Liouville form for Bessel’s equation.

b. Prove that ∫ 1

0
xJp(λx)Jp(µx) dx = 0, λ 6= µ

by considering∫ 1

0

[
Jp(µx)

d
dx

(
x

d
dx

Jp(λx)
)
− Jp(λx)

d
dx

(
x

d
dx

Jp(µx)
)]

dx.

Thus, the solutions corresponding to different eigenvalues (λ, µ)
are orthogonal.

c. Prove that ∫ 1

0
x
[

Jp(λx)
]2 dx =

1
2

J2
p+1(λ) =

1
2

J′2p (λ).

19. We can rewrite Bessel functions, Jν(x), in a form which will allow the
order to be non-integer by using the gamma function. You will need the

results from Problem 12b for Γ
(

k + 1
2

)
.

a. Extend the series definition of the Bessel function of the first kind
of order ν, Jν(x), for ν ≥ 0 by writing the series solution for y(x)
in Problem 13 using the gamma function.

b. Extend the series to J−ν(x), for ν ≥ 0. Discuss the resulting series
and what happens when ν is a positive integer.
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c. Use these results to obtain the closed form expressions

J1/2(x) =

√
2

πx
sin x,

J−1/2(x) =

√
2

πx
cos x.

d. Use the results in part c with the recursion formula for Bessel
functions to obtain a closed form for J3/2(x).

20. In this problem you will derive the expansion

x2 =
c2

2
+ 4

∞

∑
j=2

J0(αjx)
α2

j J0(αjc)
, 0 < x < c,

where the α′js are the positive roots of J1(αc) = 0, by following the below
steps.

a. List the first five values of α for J1(αc) = 0 using the Table 5.3 and
Figure 5.8. [Note: Be careful determining α1.]

b. Show that ‖J0(α1x)‖2 = c2

2 . Recall,

‖J0(αjx)‖2 =
∫ c

0
xJ2

0 (αjx) dx.

c. Show that ‖J0(αjx)‖2 = c2

2
[

J0(αjc)
]2 , j = 2, 3, . . . . (This is the most

involved step.) First note from Problem 18 that y(x) = J0(αjx) is a
solution of

x2y′′ + xy′ + α2
j x2y = 0.

i. Verify the Sturm-Liouville form of this differential equation:
(xy′)′ = −α2

j xy.
ii. Multiply the equation in part i. by y(x) and integrate from

x = 0 to x = c to obtain∫ c

0
(xy′)′y dx = −α2

j

∫ c

0
xy2 dx

= −α2
j

∫ c

0
xJ2

0 (αjx) dx. (5.76)

iii. Noting that y(x) = J0(αjx), integrate the left hand side by parts
and use the following to simplify the resulting equation.
1. J′0(x) = −J1(x) from Equation (5.60).
2. Equation (5.63).
3. J2(αjc) + J0(αjc) = 0 from Equation (5.61).

iv. Now you should have enough information to complete this
part.

d. Use the results from parts b and c and Problem 16 to derive the
expansion coefficients for

x2 =
∞

∑
j=1

cj J0(αjx)

in order to obtain the desired expansion.



6
Problems in Higher Dimensions

“Equations of such complexity as are the equations of the gravitational field can be
found only through the discovery of a logically simple mathematical condition that
determines the equations completely or at least almost completely.”

“What I have to say about this book can be found inside this book.” Albert
Einstein (1879-1955)

In this chapter we will explore several examples of the solution of
initial-boundary value problems involving higher spatial dimensions. These
are described by higher dimensional partial differential equations, such as
the ones presented in Table ?? in the last chapter. The spatial domains of the
problems span many different geometries, which will necessitate the use of
rectangular, polar, cylindrical, or spherical coordinates.

We will solve many of these problems using the method of separation of
variables, which we first saw in Chapter ??. Using separation of variables
will result in a system of ordinary differential equations for each problem.
Adding the boundary conditions, we will need to solve a variety of eigen-
value problems. The product solutions that result will involve trigonomet-
ric or some of the special functions that we had encountered in Chapter 5.
These methods are used in solving the hydrogen atom and other problems
in quantum mechanics and in electrostatic problems in electrodynamics.
We will bring to this discussion many of the tools from earlier in this book
showing how much of what we have seen can be used to solve some generic
partial differential equations which describe oscillation and diffusion type
problems.

As we proceed through the examples in this chapter, we will see some
common features. For example, the two key equations that we have stud-
ied are the heat equation and the wave equation. For higher dimensional
problems these take the form

ut = k∇2u, (6.1)

utt = c2∇2u. (6.2)

We can separate out the time dependence in each equation. Inserting a
guess of u(r, t) = φ(r)T(t) into the heat and wave equations, we obtain

T′φ = kT∇2φ, (6.3)
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T′′φ = c2T∇2φ. (6.4)

Dividing each equation by φ(r)T(t), we can separate the time and space de-
pendence just as we had in Chapter ??. In each case we find that a function
of time equals a function of the spatial variables. Thus, these functions must
be constant functions. We set these equal to the constant −λ and find the
respective equations

1
k

T′

T
=
∇2φ

φ
= −λ, (6.5)

1
c2

T′′

T
=
∇2φ

φ
= −λ. (6.6)

The sign of λ is chosen because we expect decaying solutions in time for the
heat equation and oscillations in time for the wave equation and will pick
λ > 0.

The respective equations for the temporal functions T(t) are given by

T′ = −λkT, (6.7)

T′′ + c2λT = 0. (6.8)

These are easily solved as we had seen in Chapter ??. We have

T(t) = T(0)e−λkt, (6.9)

T(t) = a cos ωt + b sin ωt, ω = c
√

λ, (6.10)

where T(0), a, and b are integration constants and ω is the angular fre-
quency of vibration.

In both cases the spatial equation is of the same form,The Helmholtz equation.

∇2φ + λφ = 0. (6.11)

This equation is called the Helmholtz equation. For one dimensional prob-The Helmholtz equation is named af-
ter Hermann Ludwig Ferdinand von
Helmholtz (1821-1894). He was both a
physician and a physicist and made sig-
nificant contributions in physiology, op-
tics, acoustics, and electromagnetism.

lems, which we have already solved, the Helmholtz equation takes the form
φ′′ + λφ = 0. We had to impose the boundary conditions and found that
there were a discrete set of eigenvalues, λn, and associated eigenfunctions,
φn.

In higher dimensional problems we need to further separate out the
spatial dependence. We will again use the boundary conditions to find
the eigenvalues, λ, and eigenfunctions, φ(r), for the Helmholtz equation,
though the eigenfunctions will be labeled with more than one index. The
resulting boundary value problems are often second order ordinary dif-
ferential equations, which can be set up as Sturm-Liouville problems. We
know from Chapter 5 that such problems possess an orthogonal set of eigen-
functions. These can then be used to construct a general solution from the
product solutions which may involve elementary, or special, functions, such
as Legendre polynomials and Bessel functions.

We will begin our study of higher dimensional problems by consider-
ing the vibrations of two dimensional membranes. First we will solve the
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problem of a vibrating rectangular membrane and then we will turn our
attention to a vibrating circular membrane. The rest of the chapter will be
devoted to the study of other two and three dimensional problems possess-
ing cylindrical or spherical symmetry.

6.1 Vibrations of Rectangular Membranes

Our first example will be the study of the vibrations of a rectangular
membrane. You can think of this as a drumhead with a rectangular cross
section as shown in Figure 6.1. We stretch the membrane over the drumhead
and fasten the material to the boundary of the rectangle. The height of the
vibrating membrane is described by its height from equilibrium, u(x, y, t).
This problem is a much simpler example of higher dimensional vibrations
than that possessed by the oscillating electric and magnetic fields in the last
chapter.

x

y

H

L0
0

Figure 6.1: The rectangular membrane of
length L and width H. There are fixed
boundary conditions along the edges.

Example 6.1. The vibrating rectangular membrane.
The problem is given by the two dimensional wave equation in Cartesian coordi-

nates,
utt = c2(uxx + uyy), t > 0, 0 < x < L, 0 < y < H, (6.12)

a set of boundary conditions,

u(0, y, t) = 0, u(L, y, t) = 0, t > 0, 0 < y < H,

u(x, 0, t) = 0, u(x, H, t) = 0, t > 0, 0 < x < L, (6.13)

and a pair of initial conditions (since the equation is second order in time),

u(x, y, 0) = f (x, y), ut(x, y, 0) = g(x, y). (6.14)

The first step is to separate the variables: u(x, y, t) = X(x)Y(y)T(t). In-
serting the guess, u(x, y, t) into the wave equation, we have

X(x)Y(y)T′′(t) = c2 (X′′(x)Y(y)T(t) + X(x)Y′′(y)T(t)
)

.

Dividing by both u(x, y, t) and c2, we obtain

1
c2

T′′

T︸ ︷︷ ︸
Function of t

=
X′′

X
+

Y′′

Y︸ ︷︷ ︸
Function of x and y

= −λ. (6.15)

We see that we have a function of t equals a function of x and y. Thus,
both expressions are constant. We expect oscillations in time, so we choose
the constant λ to be positive, λ > 0. (Note: As usual, the primes mean
differentiation with respect to the specific dependent variable. So, there
should be no ambiguity.)

These lead to two equations:

T′′ + c2λT = 0, (6.16)
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and
X′′

X
+

Y′′

Y
= −λ. (6.17)

We note that the spatial equation is just the separated form of Helmholtz’s
equation with φ(x, y) = X(x)Y(y).

The first equation is easily solved. We have

T(t) = a cos ωt + b sin ωt, (6.18)

where
ω = c

√
λ. (6.19)

This is the angular frequency in terms of the separation constant, or eigen-
value. It leads to the frequency of oscillations for the various harmonics of
the vibrating membrane as

ν =
ω

2π
=

c
2π

√
λ. (6.20)

Once we know λ, we can compute these frequencies.
Next we solve the spatial equation. We need carry out another separation

of variables. Rearranging the spatial equation, we have

X′′

X︸︷︷︸
Function of x

= −Y′′

Y
− λ︸ ︷︷ ︸

Function of y

= −µ. (6.21)

Here we have a function of x equal to a function of y. So, the two expressions
are constant, which we indicate with a second separation constant, −µ < 0.
We pick the sign in this way because we expect oscillatory solutions for
X(x). This leads to two equations:

X′′ + µX = 0,

Y′′ + (λ− µ)Y = 0. (6.22)

We now impose the boundary conditions. We have u(0, y, t) = 0 for all
t > 0 and 0 < y < H. This implies that X(0)Y(y)T(t) = 0 for all t and
y in the domain. This is only true if X(0) = 0. Similarly, from the other
boundary conditions we find that X(L) = 0, Y(0) = 0, and Y(H) = 0. We
note that homogeneous boundary conditions are important in carrying out
this process. Nonhomogeneous boundary conditions could be imposed just
like we had in Section 7.3, but we still need the solutions for homogeneous
boundary conditions before tackling the more general problems.

In summary, the boundary value problems we need to solve are:

X′′ + µX = 0, X(0) = 0, X(L) = 0.

Y′′ + (λ− µ)Y = 0, Y(0) = 0, Y(H) = 0. (6.23)

We have seen boundary value problems of these forms in Chapter ??. The
solutions of the first eigenvalue problem are

Xn(x) = sin
nπx

L
, µn =

(nπ

L

)2
, n = 1, 2, 3, . . . .
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The second eigenvalue problem is solved in the same manner. The dif-
ferences from the first problem are that the “eigenvalue” is λ− µ, the inde-
pendent variable is y, and the interval is [0, H]. Thus, we can quickly write
down the solutions as

Ym(y) = sin
mπx

H
, λ− µm =

(mπ

H

)2
, m = 1, 2, 3, . . . .

At this point we need to be careful about the indexing of the separation
constants. So far, we have seen that µ depends on n and that the quantity
κ = λ− µ depends on m. Solving for λ, we should write λnm = µn + κm, or

λnm =
(nπ

L

)2
+
(mπ

H

)2
, n, m = 1, 2, . . . . (6.24)

Since ω = c
√

λ, we have that the discrete frequencies of the harmonics are The harmonics for the vibrating rectan-
gular membrane are given by

νnm =
c
2

√( n
L

)2
+
(m

H

)2
,

for n, m = 1, 2, . . . .

given by

ωnm = c

√(nπ

L

)2
+
(mπ

H

)2
, n, m = 1, 2, . . . . (6.25)

We have successfully carried out the separation of variables for the wave
equation for the vibrating rectangular membrane. The product solutions
can be written as

unm = (a cos ωnmt + b sin ωnmt) sin
nπx

L
sin

mπy
H

(6.26)

and the most general solution is written as a linear combination of the prod-
uct solutions,

u(x, y, t) = ∑
n,m

(anm cos ωnmt + bnm sin ωnmt) sin
nπx

L
sin

mπy
H

.

However, before we carry the general solution any further, we will first
concentrate on the two dimensional harmonics of this membrane.

x

y

L0

X1(x) = sin πx
L

x

y

L0

X2(x) = sin 2πx
L

x

y

L0

X3(x) = sin 3πx
L

Figure 6.2: The first harmonics of the vi-
brating string

For the vibrating string the nth harmonic corresponds to the function
sin nπx

L and several are shown in Figure 6.2. The various harmonics corre-
spond to the pure tones supported by the string. These then lead to the
corresponding frequencies that one would hear. The actual shapes of the
harmonics are sketched by locating the nodes, or places on the string that
do not move.

In the same way, we can explore the shapes of the harmonics of the vi-
brating membrane. These are given by the spatial functions

φnm(x, y) = sin
nπx

L
sin

mπy
H

. (6.27)

Instead of nodes, we will look for the nodal curves, or nodal lines. These A discussion of the nodal lines.

are the points (x, y) at which φnm(x, y) = 0. Of course, these depend on the
indices, n and m.

For example, when n = 1 and m = 1, we have

sin
πx
L

sin
πy
H

= 0.
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Figure 6.3: The first few modes of the
vibrating rectangular membrane. The
dashed lines show the nodal lines indi-
cating the points that do not move for
the particular mode. Compare these the
nodal lines to the 3D view in Figure 6.1

n = 1 n = 2 n = 3

m = 1

m = 2

m = 3
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H
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H
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H
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H
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H
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y

H

L
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H

L

x

y

H

L

These are zero when either

sin
πx
L

= 0, or sin
πy
H

= 0.

Of course, this can only happen for x = 0, L and y = 0, H. Thus, there are
no interior nodal lines.

When n = 2 and m = 1, we have y = 0, H and

sin
2πx

L
= 0,

or, x = 0, L
2 , L. Thus, there is one interior nodal line at x = L

2 . These points
stay fixed during the oscillation and all other points oscillate on either side
of this line. A similar solution shape results for the (1,2)-mode; i.e., n = 1
and m = 2.

In Figure 6.3 we show the nodal lines for several modes for n, m = 1, 2, 3
with different columns corresponding to different n-values while the rows
are labeled with different m-values. The blocked regions appear to vibrate
independently. A better view is the three dimensional view depicted in
Figure 6.1 . The frequencies of vibration are easily computed using the
formula for ωnm.

For completeness, we now return to the general solution and apply the
initial conditions. The general solution is given by a linear superposition of
the product solutions. There are two indices to sum over. Thus, the general
solution isThe general solution for the vibrating

rectangular membrane.

u(x, y, t) =
∞

∑
n=1

∞

∑
m=1

(anm cos ωnmt + bnm sin ωnmt) sin
nπx

L
sin

mπy
H

, (6.28)
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m = 1 m = 2 m = 3

n = 1

n = 2

n = 3

Table 6.1: A three dimensional view of
the vibrating rectangular membrane for
the lowest modes. Compare these im-
ages with the nodal lines in Figure 6.3

where

ωnm = c

√(nπ

L

)2
+
(mπ

H

)2
. (6.29)

The first initial condition is u(x, y, 0) = f (x, y). Setting t = 0 in the gen-
eral solution, we obtain

f (x, y) =
∞

∑
n=1

∞

∑
m=1

anm sin
nπx

L
sin

mπy
H

. (6.30)

This is a double Fourier sine series. The goal is to find the unknown coeffi-
cients anm.

The coefficients anm can be found knowing what we already know about
Fourier sine series. We can write the initial condition as the single sum

f (x, y) =
∞

∑
n=1

An(y) sin
nπx

L
, (6.31)

where

An(y) =
∞

∑
m=1

anm sin
mπy

H
. (6.32)

These are two Fourier sine series. Recalling from Chapter ?? that the
coefficients of Fourier sine series can be computed as integrals, we have

An(y) =
2
L

∫ L

0
f (x, y) sin

nπx
L

dx,

anm =
2
H

∫ H

0
An(y) sin

mπy
H

dy. (6.33)
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Inserting the integral for An(y) into that for anm, we have an integral
representation for the Fourier coefficients in the double Fourier sine series,

anm =
4

LH

∫ H

0

∫ L

0
f (x, y) sin

nπx
L

sin
mπy

H
dxdy. (6.34)

The Fourier coefficients for the double
Fourier sine series. We can carry out the same process for satisfying the second initial condi-

tion, ut(x, y, 0) = g(x, y) for the initial velocity of each point. Inserting the
general solution into this initial condition, we obtain

g(x, y) =
∞

∑
n=1

∞

∑
m=1

bnmωnm sin
nπx

L
sin

mπy
H

. (6.35)

Again, we have a double Fourier sine series. But, now we can quickly de-
termine the Fourier coefficients using the above expression for anm to find
that

bnm =
4

ωnmLH

∫ H

0

∫ L

0
g(x, y) sin

nπx
L

sin
mπy

H
dxdy. (6.36)

This completes the full solution of the vibrating rectangular membrane
problem. Namely, we have obtained the solutionThe full solution of the vibrating rectan-

gular membrane.

u(x, y, t) =
∞

∑
n=1

∞

∑
m=1

(anm cos ωnmt + bnm sin ωnmt) sin
nπx

L
sin

mπy
H

,

(6.37)
where

anm =
4

LH

∫ H

0

∫ L

0
f (x, y) sin

nπx
L

sin
mπy

H
dxdy, (6.38)

bnm =
4

ωnmLH

∫ H

0

∫ L

0
g(x, y) sin

nπx
L

sin
mπy

H
dxdy, (6.39)

and the angular frequencies are given by

ωnm = c

√(nπ

L

)2
+
(mπ

H

)2
. (6.40)

6.2 Vibrations of a Kettle Drum
x

y

a
P

r
θ

Figure 6.4: The circular membrane of ra-
dius a. A general point on the mem-
brane is given by the distance from the
center, r, and the angle, . There are fixed
boundary conditions along the edge at
r = a.

In this section we consider the vibrations of a circular membrane of
radius a as shown in Figure 6.4. Again we are looking for the harmonics
of the vibrating membrane, but with the membrane fixed around the cir-
cular boundary given by x2 + y2 = a2. However, expressing the boundary
condition in Cartesian coordinates is awkward. Namely, we can only write
u(x, y, t) = 0 for x2 + y2 = a2. It is more natural to use polar coordinates
as indicated in Figure 6.4. Let the height of the membrane be given by
u = u(r, θ, t) at time t and position (r, θ). Now the boundary condition is
given as u(a, θ, t) = 0 for all t > 0 and θ ∈ [0, 2π].

Before solving the initial-boundary value problem, we have to cast the
full problem in polar coordinates. This means that we need to rewrite the
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Laplacian in r and θ. To do so would require that we know how to transform
derivatives in x and y into derivatives with respect to r and θ. Using the re-
sults from Section ?? on curvilinear coordinates, we know that the Laplacian
can be written in polar coordinates. In fact, we could use the results from
Problem ?? in Chapter ?? for cylindrical coordinates for functions which are
z-independent, f = f (r, θ). Then, we would have

∇2 f =
1
r

∂

∂r

(
r

∂ f
∂r

)
+

1
r2

∂2 f
∂θ2 .

Derivation of Laplacian in polar coordi-
nates.We can obtain this result using a more direct approach, namely apply-

ing the Chain Rule in higher dimensions. First recall the transformations
between polar and Cartesian coordinates:

x = r cos θ, y = r sin θ

and
r =

√
x2 + y2, tan θ =

y
x

.

Now, consider a function f = f (x(r, θ), y(r, θ)) = g(r, θ). (Technically, once
we transform a given function of Cartesian coordinates we obtain a new
function g of the polar coordinates. Many texts do not rigorously distin-
guish between the two functions.) Thinking of x = x(r, θ) and y = y(r, θ),
we have from the chain rule for functions of two variables:

∂ f
∂x

=
∂g
∂r

∂r
∂x

+
∂g
∂θ

∂θ

∂x

=
∂g
∂r

x
r
− ∂g

∂θ

y
r2

= cos θ
∂g
∂r
− sin θ

r
∂g
∂θ

. (6.41)

Here we have used
∂r
∂x

=
x√

x2 + y2
=

x
r

;

and
∂θ

∂x
=

d
dx

(
tan−1 y

x

)
=
−y/x2

1 +
( y

x
)2 = − y

r2 .

Similarly,

∂ f
∂y

=
∂g
∂r

∂r
∂y

+
∂g
∂θ

∂θ

∂y

=
∂g
∂r

y
r
+

∂g
∂θ

x
r2

= sin θ
∂g
∂r

+
cos θ

r
∂g
∂θ

. (6.42)

The 2D Laplacian can now be computed as

∂2 f
∂x2 +

∂2 f
∂y2 = cos θ

∂

∂r

(
∂ f
∂x

)
− sin θ

r
∂

∂θ

(
∂ f
∂x

)
+ sin θ

∂

∂r

(
∂ f
∂y

)
+

cos θ

r
∂

∂θ

(
∂ f
∂y

)
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= cos θ
∂

∂r

(
cos θ

∂g
∂r
− sin θ

r
∂g
∂θ

)
− sin θ

r
∂

∂θ

(
cos θ

∂g
∂r
− sin θ

r
∂g
∂θ

)
+ sin θ

∂

∂r

(
sin θ

∂g
∂r

+
cos θ

r
∂g
∂θ

)
+

cos θ

r
∂

∂θ

(
sin θ

∂g
∂r

+
cos θ

r
∂g
∂θ

)
= cos θ

(
cos θ

∂2g
∂r2 +

sin θ

r2
∂g
∂θ
− sin θ

r
∂2g
∂r∂θ

)
− sin θ

r

(
cos θ

∂2g
∂θ∂r

− sin θ

r
∂2g
∂θ2 − sin θ

∂g
∂r
− cos θ

r
∂g
∂θ

)
+ sin θ

(
sin θ

∂2g
∂r2 +

cos θ

r
∂2g
∂r∂θ

− cos θ

r2
∂g
∂θ

)
+

cos θ

r

(
sin θ

∂2g
∂θ∂r

+
cos θ

r
∂2g
∂θ2 + cos θ

∂g
∂r
− sin θ

r
∂g
∂θ

)
=

∂2g
∂r2 +

1
r

∂g
∂r

+
1
r2

∂2g
∂θ2

=
1
r

∂

∂r

(
r

∂g
∂r

)
+

1
r2

∂2g
∂θ2 .

(6.43)

The last form often occurs in texts because it is in the form of a Sturm-
Liouville operator. Also, it agrees with the result from using the Laplacian
written in cylindrical coordinates as given in Problem ?? of Chapter ??.

Now that we have written the Laplacian in polar coordinates we can pose
the problem of a vibrating circular membrane.

Example 6.2. The vibrating circular membrane.
This problem is given by a partial differential equation,11 Here we state the problem of a vibrat-

ing circular membrane. We have chosen
−π < θ < π, but could have just as eas-
ily used 0 < θ < 2π. The symmetric in-
terval about θ = 0 will make the use of
boundary conditions simpler.

utt = c2
[

1
r

∂

∂r

(
r

∂u
∂r

)
+

1
r2

∂2u
∂θ2

]
, (6.44)

t > 0, 0 < r < a, −π < θ < π,

the boundary condition,

u(a, θ, t) = 0, t > 0, −π < θ < π, (6.45)

and the initial conditions,

u(r, θ, 0) = f (r, θ), 0 < r < a,−π < θ < π,

ut(r, θ, 0) = g(r, θ), , 0 < r < a,−π < θ < π. (6.46)

Now we are ready to solve this problem using separation of variables. As
before, we can separate out the time dependence. Let u(r, θ, t) = T(t)φ(r, θ).
As usual, T(t) can be written in terms of sines and cosines. This leads to
the Helmholtz equation,

∇2φ + λφ = 0.
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We now separate the Helmholtz equation by letting φ(r, θ) = R(r)Θ(θ). This
gives

1
r

∂

∂r

(
r

∂RΘ
∂r

)
+

1
r2

∂2RΘ
∂θ2 + λRΘ = 0. (6.47)

Dividing by u = RΘ, as usual, leads to

1
rR

d
dr

(
r

dR
dr

)
+

1
r2Θ

d2Θ
dθ2 + λ = 0. (6.48)

The last term is a constant. The first term is a function of r. However, the
middle term involves both r and θ. This can be remedied by multiplying the
equation by r2. Rearranging the resulting equation, we can separate out the
θ-dependence from the radial dependence. Letting µ be another separation
constant, we have

r
R

d
dr

(
r

dR
dr

)
+ λr2 = − 1

Θ
d2Θ
dθ2 = µ. (6.49)

This gives us two ordinary differential equations:

d2Θ
dθ2 + µΘ = 0,

r
d
dr

(
r

dR
dr

)
+ (λr2 − µ)R = 0. (6.50)

Let’s consider the first of these equations. It should look familiar by now.
For µ > 0, the general solution is

Θ(θ) = a cos
√

µθ + b sin
√

µθ.

The next step typically is to apply the boundary conditions in θ. However,
when we look at the given boundary conditions in the problem, we do not
see anything involving θ. This is a case for which the boundary conditions
that are needed are implied and not stated outright.

We can determine the hidden boundary conditions by making some ob-
servations. Let’s consider the solution corresponding to the endpoints θ =

±π. We note that at these θ-values we are at the same physical point for any
r < a. So, we would expect the solution to have the same value at θ = −π as
it has at θ = π. Namely, the solution is continuous at these physical points.
Similarly, we expect the slope of the solution to be the same at these points.
This can be summarized using the boundary conditions The boundary conditions in θ are peri-

odic boundary conditions.

Θ(π) = Θ(−π), Θ′(π) = Θ′(−π).

Such boundary conditions are called periodic boundary conditions.
Let’s apply these conditions to the general solution for Θ(θ). First, we set

Θ(π) = Θ(−π) and use the symmetries of the sine and cosine functions to
obtain

a cos
√

µπ + b sin
√

µπ = a cos
√

µπ − b sin
√

µπ.

This implies that
sin
√

µπ = 0.
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This can only be true for
√

µ = m, for m = 0, 1, 2, 3, . . . . Therefore, the
eigenfunctions are given by

Θm(θ) = a cos mθ + b sin mθ, m = 0, 1, 2, 3, . . . .

For the other half of the periodic boundary conditions, Θ′(π) = Θ′(−π),
we have that

−am sin mπ + bm cos mπ = am sin mπ + bm cos mπ.

But, this gives no new information since this equation boils down to bm =

bm..
To summarize what we know at this point, we have found the general

solutions to the temporal and angular equations. The product solutions will
have various products of {cos ωt, sin ωt} and {cos mθ, sin mθ}∞

m=0. We also
know that µ = m2 and ω = c

√
λ.

We still need to solve the radial equation. Inserting µ = m2, the radial
equation has the form

r
d
dr

(
r

dR
dr

)
+ (λr2 −m2)R = 0. (6.51)

Expanding the derivative term, we have

r2R′′(r) + rR′(r) + (λr2 −m2)R(r) = 0. (6.52)

The reader should recognize this differential equation from Equation (5.66).
It is a Bessel equation with bounded solutions R(r) = Jm(

√
λr).

Recall there are two linearly independent solutions of this second order
equation: Jm(

√
λr), the Bessel function of the first kind of order m, and

Nm(
√

λr), the Bessel function of the second kind of order m, or Neumann
functions. Plots of these functions are shown in Figures 5.8 and 5.9. So, we
have the general solution of the radial equation is

R(r) = c1 Jm(
√

λr) + c2Nm(
√

λr).

Now we are ready to apply the boundary conditions to the radial factor
in the product solutions. Looking at the original problem we find only
one condition: u(a, θ, t) = 0 for t > 0 and −π < < π. This implies that
R(a) = 0. But where is the second condition?

This is another unstated boundary condition. Look again at the plots
of the Bessel functions. Notice that the Neumann functions are not well
behaved at the origin. Do you expect that the solution will become infinite
at the center of the drum? No, the solutions should be finite at the center. So,
this observation leads to the second boundary condition. Namely, |R(0)| <
∞. This implies that c2 = 0.

Now we are left with
R(r) = Jm(

√
λr).

We have set c1 = 1 for simplicity. We can apply the vanishing condition at
r = a. This gives

Jm(
√

λa) = 0.
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Looking again at the plots of Jm(x), we see that there are an infinite number
of zeros, but they are not as easy as π! In Table 6.2 we list the nth zeros of
Jm, which were first seen in Table 5.3.

n m = 0 m = 1 m = 2 m = 3 m = 4 m = 5
1 2.405 3.832 5.136 6.380 7.588 8.771

2 5.520 7.016 8.417 9.761 11.065 12.339

3 8.654 10.173 11.620 13.015 14.373 15.700

4 11.792 13.324 14.796 16.223 17.616 18.980

5 14.931 16.471 17.960 19.409 20.827 22.218

6 18.071 19.616 21.117 22.583 24.019 25.430

7 21.212 22.760 24.270 25.748 27.199 28.627

8 24.352 25.904 27.421 28.908 30.371 31.812

9 27.493 29.047 30.569 32.065 33.537 34.989

Table 6.2: The zeros of Bessel Functions,
Jm(jmn) = 0.

Let’s denote the nth zero of Jm(x) by jmn. Then, the boundary condition
tells us that √

λa = jmn, m = 0, 1, . . . , n = 1, 2, . . . .

This gives us the eigenvalues as

λmn =

(
jmn

a

)2
, m = 0, 1, . . . , n = 1, 2, . . . .

Thus, the radial function satisfying the boundary conditions is

Rmn(r) = Jm

(
jmn

a
r
)

.

We are finally ready to write out the product solutions for the vibrating
circular membrane. They are given by Product solutions for the vibrating circu-

lar membrane.

u(r, θ, t) =

{
cos ωmnt
sin ωmnt

}{
cos mθ

sin mθ

}
Jm(

jmn

a
r). (6.53)

Here we have indicated choices with the braces, leading to four different
types of product solutions. Also, the angular frequency depends on the
zeros of the Bessel functions,

ωmn =
jmn

a
c, m = 0, 1, . . . , n = 1, 2, . . . .

As with the rectangular membrane, we are interested in the shapes of the
harmonics. So, we consider the spatial solution (t = 0)

φ(r, θ) = (cos mθ)Jm

(
jmn

a
r
)

.

Including the solutions involving sin mθ will only rotate these modes. The
nodal curves are given by φ(r, θ) = 0. This can be satisfied if cos mθ = 0,
or Jm(

jmn
a r) = 0. The various nodal curves which result are shown in Figure

6.5.
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Figure 6.5: The first few modes of the vi-
brating circular membrane. The dashed
lines show the nodal lines indicating the
points that do not move for the partic-
ular mode. Compare these nodal lines
with the three dimensional images in
Figure 6.3.

m = 0 m = 1 m = 2

n = 1

n = 2

n = 3

For the angular part, we easily see that the nodal curves are radial lines,
θ =const. For m = 0, there are no solutions, since cos mθ = 1 for m = 0. in
Figure 6.5 this is seen by the absence of radial lines in the first column.

For m = 1, we have cos θ = 0. This implies that θ = ±π
2 . These values

give the vertical line as shown in the second column in Figure 6.5. For
m = 2, cos 2θ = 0 implies that θ = π

4 , 3π
4 . This results in the two lines shown

in the last column of Figure 6.5.
We can also consider the nodal curves defined by the Bessel functions.

We seek values of r for which jmn
a r is a zero of the Bessel function and lies

in the interval [0, a]. Thus, we have

jmn

a
r = jmj, 1 ≤ j ≤ n,

or

r =
jmj

jmn
a, 1 ≤ j ≤ n.

These will give circles of these radii with jmj ≤ jmn, or j ≤ n. For m = 0
and n = 1, there is only one zero and r = a. In fact, for all n = 1 modes,
there is only one zero giving r = a. Thus, the first row in Figure 6.5 shows
no interior nodal circles.

For a three dimensional view, one can look at Figure 6.3. Imagine that
the various regions are oscillating independently and that the points on the
nodal curves are not moving.

We should note that the nodal circles are not evenly spaced and that the
radii can be computed relatively easily. For the n = 2 modes, we have two
circles, r = a and r = jm1

jm2
a as shown in the second row of Figure 6.5. For
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n = 1 n = 2 n = 3

m = 0

m = 1

m = 2

Table 6.3: A three dimensional view of
the vibrating circular membrane for the
lowest modes. Compare these images
with the nodal line plots in Figure 6.5.

m = 0,

r =
2.405
5.520

a ≈ 0.4357a

for the inner circle. For m = 1,

r =
3.832
7.016

a ≈ 0.5462a,

and for m = 2,

r =
5.136
8.417

a ≈ 0.6102a.

For n = 3 we obtain circles of radii

r = a, r =
jm1

jm3
a, and r =

jm2

jm3
a.

For m = 0,

r = a,
5.520
8.654

a ≈ 0.6379a,
2.405
8.654

a ≈ 0.2779a.

Similarly, for m = 1,

r = a,
3.832
10.173

a ≈ 0.3767a,
7.016

10.173
a ≈ 0.6897a,

and for m = 2,

r = a,
5.136
11.620

a ≈ 0.4420a,
8.417

11.620
a ≈ 0.7224a.
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Example 6.3. Vibrating Annulus
More complicated vibrations can be dreamt up for this geometry. Consider an

annulus in which the drum is formed from two concentric circular cylinders and
the membrane is stretch between the two with an annular cross section as shown
in Figure 6.6. The separation would follow as before except now the boundary
conditions are that the membrane is fixed around the two circular boundaries. In
this case we cannot toss out the Neumann functions because the origin is not part
of the drum head.

a
b

x

y

Figure 6.6: An annular membrane with
radii a and b > a. There are fixed bound-
ary conditions along the edges at r = a
and r = b.

The domain for this problem is shown in Figure 6.6 and the problem is given by
the partial differential equation

utt = c2
[

1
r

∂

∂r

(
r

∂u
∂r

)
+

1
r2

∂2u
∂θ2

]
, (6.54)

t > 0, b < r < a, −π < θ < π,

the boundary conditions,

u(b, θ, t) = 0, u(a, θ, t) = 0, t > 0, −π < θ < π, (6.55)

and the initial conditions,

u(r, θ, 0) = f (r, θ), b < r < a,−π < θ < π,

ut(r, θ, 0) = g(r, θ), , b < r < a,−π < θ < π. (6.56)

Since we cannot dispose of the Neumann functions, the product solutions take
the form

u(r, θ, t) =

{
cos ωt
sin ωt

}{
cos mθ

sin mθ

}
Rm(r), (6.57)

where
Rm(r) = c1 Jm(

√
λr) + c2Nm(

√
λr)

and ω = c
√

λ, m = 0, 1, . . . .
For this problem the radial boundary conditions are that the membrane is fixed

at r = a and r = b. Taking b < a, we then have to satisfy the conditions

R(a) = c1 Jm(
√

λa) + c2Nm(
√

λa) = 0,

R(b) = c1 Jm(
√

λb) + c2Nm(
√

λb) = 0. (6.58)

This leads to two homogeneous equations for c1 and c2. The coefficient determi-
nant of this system has to vanish if there are to be nontrivial solutions. This gives
the eigenvalue equation for λ :

Jm(
√

λa)Nm(
√

λb)− Jm(
√

λb)Nm(
√

λa) = 0.

There are an infinite number of zeros of the function

F(λ) = λ : Jm(
√

λa)Nm(
√

λb)− Jm(
√

λb)Nm(
√

λa).

In Figure 6.7 we show a plot of F(λ) for a = 4, b = 2 and m = 0, 1, 2, 3.
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Figure 6.7: Plot of the function

F(λ) = Jm(
√

λa)Nm(
√

λb)− Jm(
√

λb)Nm(
√

λa)

for a = 4 and b = 2 and m = 0, 1, 2, 3.

This eigenvalue equation needs to be solved numerically. Choosing a = 2 and
b = 4, we have for the first few modes√

λmn ≈ 1.562, 3.137, 4.709, m = 0

≈ 1.598, 3.156, 4.722, m = 1

≈ 1.703, 3.214, 4.761, m = 2. (6.59)

Note, since ωmn = c
√

λmn, these numbers essentially give us the frequencies of
oscillation.

For these particular roots, we can solve for c1 and c2 up to a multiplicative
constant. A simple solution is to set

c1 = Nm(
√

λmnb), c2 = Jm(
√

λmnb).

This leads to the basic modes of vibration,

Rmn(r)Θm(θ) = cos mθ
(

Nm(
√

λmnb)Jm(
√

λmnr)− Jm(
√

λmnb)Nm(
√

λmnr)
)

,

for m = 0, 1, . . . , and n = 1, 2, . . . . In Figure 6.4 we show various modes for the
particular choice of annular membrane dimensions, a = 2 and b = 4.

6.3 Laplace’s Equation in 2D

Another of the generic partial differential equations is Laplace’s
equation, ∇2u = 0. This equation first appeared in the chapter on complex
variables when we discussed harmonic functions. Another example is the
electric potential for electrostatics. As we described Chapter ??, for static
electromagnetic fields,

∇ · E = ρ/ε0, E = ∇φ.

In regions devoid of charge, these equations yield the Laplace equation
∇2φ = 0.

Another example comes from studying temperature distributions. Con-
sider a thin rectangular plate with the boundaries set at fixed temperatures.
Temperature changes of the plate are governed by the heat equation. The
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Table 6.4: A three dimensional view of
the vibrating annular membrane for the
lowest modes.

n = 1 n = 2 n = 3

m = 0

m = 1

m = 2

solution of the heat equation subject to these boundary conditions is time
dependent. In fact, after a long period of time the plate will reach thermal
equilibrium. If the boundary temperature is zero, then the plate temperature
decays to zero across the plate. However, if the boundaries are maintained
at a fixed nonzero temperature, which means energy is being put into the
system to maintain the boundary conditions, the internal temperature may
reach a nonzero equilibrium temperature. Reaching thermal equilibriumThermodynamic equilibrium, ∇2u = 0.

means that asymptotically in time the solution becomes time independent.
Thus, the equilibrium state is a solution of the time independent heat equa-
tion, which is another Laplace equation, ∇2u = 0.Incompressible, irrotational fluid flow,

∇2φ = 0, for velocity v = ∇φ. As another example we could look at fluid flow. For an incompressible
flow, ∇ · v = 0. If the flow is irrotational, then ∇× v = 0. We can introduce
a velocity potential, v = ∇φ. Thus, ∇× v vanishes by a vector identity and
∇ · v = 0 implies ∇2φ = 0. So, once again we obtain Laplace’s equation.

In this section we will look at examples of Laplace’s equation in two
dimensions. The solutions in these examples could be examples from any
of the application in the above physical situations and the solutions can be
applied appropriately.

Example 6.4. Equilibrium Temperature Distribution for a Rectangular Plate
Let’s consider Laplace’s equation in Cartesian coordinates,

uxx + uyy = 0, 0 < x < L, 0 < y < H
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with the boundary conditions

u(0, y) = 0, u(L, y) = 0, u(x, 0) = f (x), u(x, H) = 0.

The boundary conditions are shown in Figure 6.8

x0

y

0 L

H

∇2u = 0

u(x, 0) = f (x)

u(x, H) = 0

u(0, y) = 0 u(L, y) = 0

Figure 6.8: In this figure we show the
domain and boundary conditions for the
example of determining the equilibrium
temperature distribution for a rectangu-
lar plate.

As with the heat and wave equations, we can solve this problem using the method
of separation of variables. Let u(x, y) = X(x)Y(y). Then, Laplace’s equation be-
comes

X′′Y + XY′′ = 0

and we can separate the x and y dependent functions and introduce a separation
constant, λ,

X′′

X
= −Y′′

Y
= −λ.

Thus, we are led to two differential equations,

X′′ + λX = 0,

Y′′ − λY = 0. (6.60)

From the boundary condition u(0, y) = 0, u(L, y) = 0, we have X(0) =

0, X(L) = 0. So, we have the usual eigenvalue problem for X(x),

X′′ + λX = 0, X(0) = 0, X(L) = 0.

The solutions to this problem are given by

Xn(x) = sin
nπx

L
, λn =

(nπ

L

)2
, n = 1, 2, . . . .

The general solution of the equation for Y(y) is given by

Y(y) = c1e
√

λy + c2e−
√

λy.

The boundary condition u(x, H) = 0 implies Y(H) = 0. So, we have

c1e
√

λH + c2e−
√

λH = 0.

Thus,
c2 = −c1e2

√
λH .

Inserting this result into the expression for Y(y), we have Note: Having carried out this compu-
tation, we can now see that it would
be better to guess this form in the fu-
ture. So, for Y(H) = 0, one would
guess a solution Y(y) = sinh

√
λ(H− y).

For Y(0) = 0, one would guess a so-
lution Y(y) = sinh

√
λy. Similarly, if

Y′(H) = 0, one would guess a solution
Y(y) = cosh

√
λ(H − y).

Y(y) = c1e
√

λy − c1e2
√

λHe−
√

λy

= c1e
√

λH
(

e−
√

λHe
√

λy − e
√

λHe−
√

λy
)

= c1e
√

λH
(

e−
√

λ(H−y) − e
√

λ(H−y)
)

= −2c1e
√

λH sinh
√

λ(H − y). (6.61)

Since we already know the values of the eigenvalues λn from the eigenvalue
problem for X(x), we have that the y-dependence is given by

Yn(y) = sinh
nπ(H − y)

L
.
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So, the product solutions are given by

un(x, y) = sin
nπx

L
sinh

nπ(H − y)
L

, n = 1, 2, . . . .

These solutions satisfy Laplace’s equation and the three homogeneous boundary
conditions and in the problem.

The remaining boundary condition, u(x, 0) = f (x), still needs to be satisfied.
Inserting y = 0 in the product solutions does not satisfy the boundary condition
unless f (x) is proportional to one of the eigenfunctions Xn(x). So, we first write
down the general solution as a linear combination of the product solutions,

u(x, y) =
∞

∑
n=1

an sin
nπx

L
sinh

nπ(H − y)
L

. (6.62)

Now we apply the boundary condition, u(x, 0) = f (x), to find that

f (x) =
∞

∑
n=1

an sinh
nπH

L
sin

nπx
L

. (6.63)

Defining bn = an sinh nπH
L , this becomes

f (x) =
∞

∑
n=1

bn sin
nπx

L
. (6.64)

We see that the determination of the unknown coefficients, bn, is simply done by
recognizing that this is a Fourier sine series. The Fourier coefficients are easily
found as

bn =
2
L

∫ L

0
f (x) sin

nπx
L

dx. (6.65)

Since an = bn/ sinh nπH
L , we can finish solving the problem. The solution is

u(x, y) =
∞

∑
n=1

an sin
nπx

L
sinh

nπ(H − y)
L

, (6.66)

where

an =
2

L sinh nπH
L

∫ L

0
f (x) sin

nπx
L

dx. (6.67)

x0

y

0 L

H

∇2u = 0

u = f1(x)

u = f2(x)

u = g1(y) u = g2(y)

Figure 6.9: In this figure we show the do-
main and general boundary conditions
for the example of determining the equi-
librium temperature distribution for a
rectangular plate.

Example 6.5. Equilibrium Temperature Distribution for a Rectangular Plate for
General Boundary Conditions

A more general problem is to seek solutions to Laplace’s equation in Cartesian
coordinates,

uxx + uyy = 0, 0 < x < L, 0 < y < H

with non-zero boundary conditions on more than one side of the domain,

u(0, y) = g1(y), u(L, y) = g2(y), 0 < y < H,

u(x, 0) = f1(x), u(x, H) = f2(x), 0 < x < L.

These boundary conditions are shown in Figure 6.9
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x0

y

0 L

H

∇2u1 = 0

u1 = f1(x)

u1 = 0

u1 = 0 u1 = 0

x0

y

0 L

H

∇2u2 = 0

u2 = 0

u2 = f2(x)

u2 = 0 u2 = 0

x0

y

0 L

H

∇2u3 = 0

u3 = 0

u3 = 0

u3 = g1(y) u3 = 0

x0

y

0 L

H

∇2u4 = 0

u4 = 0

u4 = 0

u4 = 0 u4 = g2(y)

Figure 6.10: The general boundary value
problem for a rectangular plate can be
written as the sum of these four separate
problems.

The problem with this example is that none of the boundary conditions are ho-
mogeneous. This means that the corresponding eigenvalue problems will not have
the homogeneous boundary conditions which Sturm-Liouville theory in Section 4
needs. However, we can express this problem in terms of four different problems
with nonhomogeneous boundary conditions on only one side of the rectangle.

In Figure 6.10 we show how the problem can be broken up into four separate
problems for functions ui(x, y), i = 1, . . . , 4. Since the boundary conditions and
Laplace’s equation are linear, the solution to the general problem is simply the sum
of the solutions to these four problems,

u(x, y) = u1(x, y) + u2(x, y) + u3(x, y) + u4(x, y).

Then, this solution satisfies Laplace’s equation,

∇2u(x, y) = ∇2u1(x, y) +∇2u2(x, y) +∇2u3(x, y) +∇2u4(x, y) = 0,

and the boundary conditions. For example, using the boundary conditions defined
in Figure 6.10, we have for y = 0,

u(x, 0) = u1(x, 0) + u2(x, 0) + u3(x, 0) + u4(x, 0) = f1(x).

The other boundary conditions can also be shown to hold.
We can solve each of the problems in Figure 6.10 quickly based on the solution we

obtained in the last example. The solution for u1(x, y), which satisfies the boundary
conditions

u1(0, y) = 0, u1(L, y) = 0, 0 < y < H,

u1(x, 0) = f1(x), u1(x, H) = 0, 0 < x < L,
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is the easiest to write down. It is given by

u1(x, y) =
∞

∑
n=1

an sin
nπx

L
sinh

nπ(H − y)
L

. (6.68)

where

an =
2

L sinh nπH
L

∫ L

0
f1(x) sin

nπx
L

dx. (6.69)

For the boundary conditions

u2(0, y) = 0, u2(L, y) = 0, 0 < y < H,

u2(x, 0) = 0, u2(x, H) = f2(x), 0 < x < L.

the boundary conditions for X(x) are X(0) = 0 and X(L) = 0. So, we get the
same form for the eigenvalues and eigenfunctions as before:

Xn(x) = sin
nπx

L
, λn =

(nπ

L

)2
, n = 1, 2, . . . .

The remaining homogeneous boundary condition is now Y(0) = 0. Recalling
that the equation satisfied by Y(y) is

Y′′ − λY = 0,

we can write the general solution as

Y(y) = c1 cosh
√

λy + c2 sinh
√

λy.

Requiring Y(0) = 0, we have c1 = 0, or

Y(y) = c2 sinh
√

λy.

Then, the general solution is

u2(x, y) =
∞

∑
n=1

bn sin
nπx

L
sinh

nπy
L

. (6.70)

We now force the nonhomogeneous boundary condition, u2(x, H) = f2(x),

f2(x) =
∞

∑
n=1

bn sin
nπx

L
sinh

nπH
L

. (6.71)

Once again we have a Fourier sine series. The Fourier coefficients are given by

bn =
2

L sinh nπH
L

∫ L

0
f2(x) sin

nπx
L

dx. (6.72)

Next we turn to the problem with the boundary conditions

u3(0, y) = g1(y), u3(L, y) = 0, 0 < y < H,

u3(x, 0) = 0, u3(x, H) = 0, 0 < x < L.
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In this case the pair of homogeneous boundary conditions u3(x, 0) = 0, u3(x, H) =

0 lead to solutions

Yn(y) = sin
nπy

H
, λn = −

(nπ

H

)2
, n = 1, 2 . . . .

The condition u3(L, 0) = 0 gives X(x) = sinh nπ(L−x)
H .

The general solution satisfying the homogeneous conditions is

u3(x, y) =
∞

∑
n=1

cn sin
nπy

H
sinh

nπ(L− x)
H

. (6.73)

Applying the nonhomogeneous boundary condition, u3(0, y) = g1(y), we obtain
the Fourier sine series

g1(y) =
∞

∑
n=1

cn sin
nπy

H
sinh

nπL
H

. (6.74)

The Fourier coefficients are found as

cn =
2

H sinh nπL
H

∫ H

0
g1(y) sin

nπy
H

dy. (6.75)

Finally, we can find the solution

u4(0, y) = 0, u4(L, y) = g2(y), 0 < y < H,

u4(x, 0) = 0, u4(x, H) = 0, 0 < x < L.

Following the above analysis, we find the general solution

u4(x, y) =
∞

∑
n=1

dn sin
nπy

H
sinh

nπx
H

. (6.76)

The nonhomogeneous boundary condition, u(L, y) = g2(y), is satisfied if

g2(y) =
∞

∑
n=1

dn sin
nπy

H
sinh

nπL
H

. (6.77)

The Fourier coefficients, dn, are given by

dn =
2

H sinh nπL
H

∫ H

0
g1(y) sin

nπy
H

dy. (6.78)

The solution to the general problem is given by the sum of these four solutions.

u(x, y) =
∞

∑
n=1

[(
an sinh

nπ(H − y)
L

+ bn sinh
nπy

L

)
sin

nπx
L

+

(
cn sinh

nπ(L− x)
H

+ dn sinh
nπx

H

)
sin

nπy
H

]
,

(6.79)

where the coefficients are given by the above Fourier integrals.
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Example 6.6. Laplace’s Equation on a Disk
We now turn to solving Laplace’s equation on a disk of radius a as shown in

Figure 6.11. Laplace’s equation in polar coordinates is given by

1
r

∂

∂r

(
r

∂u
∂r

)
+

1
r2

∂2u
∂θ2 = 0, 0 < r < a, −π < θ < π. (6.80)

The boundary conditions are given as

u(a, θ) = f (θ), −π < θ < π, (6.81)

plus periodic boundary conditions in θ.x

y

a

u(a, θ) = f (θ)

Figure 6.11: The disk of radius a with
boundary condition along the edge at
r = a.

Separation of variable proceeds as usual. Let u(r, θ) = R(r)Θ(θ). Then

1
r

∂

∂r

(
r

∂(RΘ)

∂r

)
+

1
r2

∂2(RΘ)

∂θ2 = 0, (6.82)

or
Θ

1
r
(rR′)′ +

1
r2 RΘ′′ = 0. (6.83)

Diving by u(r, θ) = R(r)Θ(θ), multiplying by r2, and rearranging, we have

r
R
(rR′)′ = −Θ′′

Θ
= λ. (6.84)

Since this equation gives a function of r equal to a function of θ, we set the
equation equal to a constant. Thus, we have obtained two differential equations,
which can be written as

r(rR′)′ − λR = 0, (6.85)

Θ′′ + λΘ = 0. (6.86)

We can solve the second equation subject to the periodic boundary conditions in
the θ variable. The reader should be able to confirm that

Θ(θ) = an cos nθ + bn sin nθ, λ = n2, n = 0, 1, 2, . . .

is the solution. Note that the n = 0 case just leads to a constant solution.
Inserting λ = n2 into the radial equation, we find

r2R′′ + rR′ − n2R = 0.

This is a Cauchy-Euler type of ordinary differential equation. Recall that we solve
such equations by guessing a solution of the form R(r) = rm. This leads to the
characteristic equation m2 − n2 = 0. Therefore, m = ±n. So,

R(r) = c1rn + c2r−n.

Since we expect finite solutions at the origin, r = 0, we can set c2 = 0. Thus, the
general solution is

u(r, θ) =
a0

2
+

∞

∑
n=1

(an cos nθ + bn sin nθ) rn. (6.87)
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Note that we have taken the constant term out of the sum and put it into a familiar
form.

Now we can impose the remaining boundary condition, u(a, θ) = f (θ), or

f (θ) =
a0

2
+

∞

∑
n=1

(an cos nθ + bn sin nθ) an. (6.88)

This is a Fourier trigonometric series. The Fourier coefficients can be determined
using the results from Chapter 4:

an =
1

πan

∫ π

−π
f (θ) cos nθ dθ, n = 0, 1, . . . , (6.89)

bn =
1

πan

∫ π

−π
f (θ) sin nθ dθ n = 1, 2 . . . . (6.90)

6.3.1 Poisson Integral Formula

We can put the solution from the last example in a more compact
form by inserting the Fourier coefficients into the general solution. Doing
this, we have

u(r, θ) =
a0

2
+

∞

∑
n=1

(an cos nθ + bn sin nθ) rn

=
1

2π

∫ π

−π
f (φ) dφ

+
1
π

∫ π

−π

∞

∑
n=1

[cos nφ cos nθ + sin nφ sin nθ]
( r

a

)n
f (φ) dφ

=
1
π

∫ π

−π

[
1
2
+

∞

∑
n=1

cos n(θ − φ)
( r

a

)n
]

f (φ) dφ. (6.91)

The term in the brackets can be summed. We note that

cos n(θ − φ)
( r

a

)n
= Re

(
ein(θ−φ)

( r
a

)n)
= Re

( r
a

ei(θ−φ)
)n

. (6.92)

Therefore,

∞

∑
n=1

cos n(θ − φ)
( r

a

)n
= Re

(
∞

∑
n=1

( r
a

ei(θ−φ)
)n
)

.

The right hand side of this equation is a geometric series with common ratio

of r
a ei(θ−φ), which is also the first term of the series. Since

∣∣∣ r
a ei(θ−φ)

∣∣∣ = r
a < 1,

the series converges. Summing the series, we obtain

∞

∑
n=1

( r
a

ei(θ−φ)
)n

=
r
a ei(θ−φ)

1− r
a ei(θ−φ)

=
rei(θ−φ)

a− rei(θ−φ)
(6.93)
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We need to rewrite this result so that we can easily take the real part.
Thus, we multiply and divide by the complex conjugate of the denominator
to obtain

∞

∑
n=1

( r
a

ei(θ−φ)
)n

=
rei(θ−φ)

a− rei(θ−φ)

a− re−i(θ−φ)

a− re−i(θ−φ)

=
are−i(θ−φ) − r2

a2 + r2 − 2ar cos(θ − φ)
. (6.94)

The real part of the sum is given as

Re

(
∞

∑
n=1

( r
a

ei(θ−φ)
)n
)

=
ar cos(θ − φ)− r2

a2 + r2 − 2ar cos(θ − φ)
.

Therefore, the factor in the brackets under the integral in Equation (6.91) is

1
2
+

∞

∑
n=1

cos n(θ − φ)
( r

a

)n
=

1
2
+

ar cos(θ − φ)− r2

a2 + r2 − 2ar cos(θ − φ)

=
a2 − r2

2(a2 + r2 − 2ar cos(θ − φ))
.

(6.95)

Thus, we have shown that the solution of Laplace’s equation on a disk
of radius a with boundary condition u(a, θ) = f (θ) can be written in the
closed formPoisson Integral Formula

u(r, θ) =
1

2π

∫ π

−π

a2 − r2

a2 + r2 − 2ar cos(θ − φ)
f (φ) dφ. (6.96)

This result is called the Poisson Integral Formula and

K(θ, φ) =
a2 − r2

a2 + r2 − 2ar cos(θ − φ)

is called the Poisson kernel.

Example 6.7. Evaluate the solution (6.96) at the center of the disk.
We insert r = 0 into the solution (6.96) to obtain

u(0, θ) =
1

2π

∫ π

−π
f (φ) dφ.

Recalling that the average of a function g(x) on [a, b] is given by

gave =
1

b− a

∫ b

a
g(x) dx,

we see that the value of the solution u at the center of the disk is the average of the
boundary values. This is sometimes referred to as the mean value theorem.

6.4 Three Dimensional Cake Baking

In the rest of the chapter we will extend our studies to three di-
mensional problems. In this section we will solve the heat equation as we
look at examples of baking cakes.
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We consider cake batter, which is at room temperature of Ti = 80◦F. It is
placed into an oven, also at a fixed temperature, Tb = 350◦F. For simplicity,
we will assume that the thermal conductivity and cake density are constant.
Of course, this is not quite true. However, it is an approximation which
simplifies the model. We will consider two cases, one in which the cake is a
rectangular solid, such as baking it in a 13′′× 9′′× 2′′ baking pan. The other
case will lead to a cylindrical cake, such as you would obtain from a round
cake pan. This discussion of cake baking is

adapted from R. Wilkinson’s thesis
work. That in turn was inspired by work
done by Dr. Olszewski,(2006) From bak-
ing a cake to solving the diffusion equa-
tion. American Journal of Physics 74(6).

Assuming that the heat constant k is indeed constant and the temperature
is given by T(r, t), we begin with the heat equation in three dimensions,

∂T
∂t

= k∇2T. (6.97)

We will need to specify initial and boundary conditions. Let Ti be the initial
batter temperature, T(x, y, z, 0) = Ti.

We choose the boundary conditions to be fixed at the oven temperature
Tb. However, these boundary conditions are not homogeneous and would
lead to problems when carrying out separation of variables. This is easily
remedied by subtracting the oven temperature from all temperatures in-
volved and defining u(r, t) = T(r, t)− Tb. The heat equation then becomes

∂u
∂t

= k∇2u (6.98)

with initial condition
u(r, 0) = Ti − Tb.

The boundary conditions are now homogeneous. We cannot be any more
specific than this until we specify the geometry.

Example 6.8. Temperature of a Rectangular Cake

x

y

z

W

H

L

Figure 6.12: The dimensions of a rectan-
gular cake.

We will consider a rectangular cake with dimensions 0 ≤ x ≤ W, 0 ≤ y ≤ L,
and 0 ≤ z ≤ H as show in Figure 6.12. For this problem, we seek solutions of the
heat equation plus the conditions

u(x, y, z, 0) = Ti − Tb,

u(0, y, z, t) = u(W, y, z, t) = 0,

u(x, 0, z, t) = u(x, L, z, t) = 0,

u(x, y, 0, t) = u(x, y, H, t) = 0.

Using the method of separation of variables, we seek solutions of the form

u(x, y, z, t) = X(x)Y(y)Z(z)G(t). (6.99)

Substituting this form into the heat equation, we get

1
k

G′

G
=

X′′

X
+

Y′′

Y
+

Z′′

Z
. (6.100)

Setting these expressions equal to −λ, we get

1
k

G′

G
= −λ and

X′′

X
+

Y′′

Y
+

Z′′

Z
= −λ. (6.101)
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Therefore, the equation for G(t) is given by

G′ + kλG = 0.

We further have to separate out the functions of x, y, and z. We anticipate that
the homogeneous boundary conditions will lead to oscillatory solutions in these
variables. Therefore, we expect separation of variables will lead to the eigenvalue
problems

X′′ + µ2X = 0, X(0) = X(W) = 0,

Y′′ + ν2Y = 0, Y(0) = Y(L) = 0,

Z′′ + κ2Z = 0, Z(0) = Z(H) = 0. (6.102)

Noting that
X′′

X
= −µ2,

Y′′

Y
= −ν2,

Z′′

Z
= −κ2,

we find from the heat equation that the separation constants are related,

λ2 = µ2 + ν2 + κ2.

We could have gotten to this point quicker by writing the first separated equation
labeled with the separation constants as

1
k

G′

G︸︷︷︸
−λ

=
X′′

X︸︷︷︸
−µ

+
Y′′

Y︸︷︷︸
−ν

+
Z′′

Z︸︷︷︸
−κ

.

Then, we can read off the eigenvalues problems and determine that λ2 = µ2 + ν2 +

κ2.
From the boundary conditions, we get product solutions for u(x, y, z, t) in the

form
umn`(x, y, z, t) = sin µmx sin νny sin κ`z e−λmn`kt,

for

λmnl = µ2
m + ν2

n + κ2
` =

(mπ

W

)2
+
(nπ

L

)2
+

(
`π

H

)2
, m, n, ` = 1, 2, . . . .

The general solution is a linear combination of all of the product solutions, summed
over three different indices,

u(x, y, z, t) =
∞

∑
m=1

∞

∑
n=1

∞

∑
`=1

Amnl sin µmx sin νny sin κ`z e−λmn`kt, (6.103)

where the Amn`’s are arbitrary constants.
We can use the initial condition u(x, y, z, 0) = Ti − Tb to determine the Amn`’s.

We find

Ti − Tb =
∞

∑
m=1

∞

∑
n=1

∞

∑
`=1

Amnl sin µmx sin νny sin κ`z. (6.104)

This is a triple Fourier sine series.
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We can determine these coefficients in a manner similar to how we handled
double Fourier sine series earlier in the chapter. Defining

bm(y, z) =
∞

∑
n=1

∞

∑
`=1

Amnl sin νny sin κ`z,

we obtain a simple Fourier sine series:

Ti − Tb =
∞

∑
m=1

bm(y, z) sin µmx. (6.105)

The Fourier coefficients can then be found as

bm(y, z) =
2

W

∫ W

0
(Ti − Tb) sin µmx dx.

Using the same technique for the remaining sine series and noting that Ti− Tb is
constant, we can determine the general coefficients Amnl by carrying out the needed
integrations:

Amnl =
8

WLH

∫ H

0

∫ L

0

∫ W

0
(Ti − Tb) sin µmx sin νny sin κ`z dxdydz

= (Ti − Tb)
8

π3

[
cos (mπx

W )

m

]W

0

[
cos ( nπy

L )

n

]L

0

[
cos ( `πz

H )

`

]H

0

= (Ti − Tb)
8

π3

[
cos mπ − 1

m

] [
cos nπ − 1

n

] [
cos `π − 1

`

]
= (Ti − Tb)

8
π3

{
0, for at least one m, n, ` even,[−2

m
] [−2

n
] [−2

`

]
, for m, n, ` all odd.

Since only the odd multiples yield non-zero Amn` we let m = 2m′ − 1, n =

2n′ − 1, and ` = 2`′ − 1 for m′, n′, `′ = 1, 2, . . . . The expansion coefficients can
now be written in the simpler form

Amnl =
64(Tb − Ti)

(2m′ − 1) (2n′ − 1) (2`′ − 1)π3 .

x y

z

W

H

L

Figure 6.13: Rectangular cake showing a
vertical slice.

Substituting this result into general solution and dropping the primes, we find

u(x, y, z, t) =
64(Tb − Ti)

π3

∞

∑
m=1

∞

∑
n=1

∞

∑
`=1

sin µmx sin νny sin κ`z e−λmn`kt

(2m− 1)(2n− 1)(2`− 1)
,

where

λmn` =

(
(2m− 1)π

W

)2

+

(
(2n− 1)π

L

)2

+

(
(2`− 1)π

H

)2

for m, n, ` = 1, 2, . . ..
Recalling that the solution to the physical problem is

T(x, y, z, t) = u(x, y, z, t) + Tb,

we have the final solution is given by

T(x, y, z, t) = Tb +
64(Tb − Ti)

π3

∞

∑
m=1

∞

∑
n=1

∞

∑
`=1

sin µ̂mx sin ν̂ny sin κ̂`z e−λ̂mn`kt

(2m− 1)(2n− 1)(2`− 1)
.
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Figure 6.14: Temperature evolution for
a 13′′ × 9′′ × 2′′ cake shown as vertical
slices at the indicated length in feet.
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We show some temperature distributions in Figure 6.14. Since we cannot cap-
ture the entire cake, we show vertical slices such as depicted in Figure 6.13. Vertical
slices are taken at the positions and times indicated for a 13′′ × 9′′ × 2′′ cake. Ob-
viously, this is not accurate because the cake consistency is changing and this will
affect the parameter k. A more realistic model would be to allow k = k(T(x, y, z, t)).
However, such problems are beyond the simple methods described in this book.

Example 6.9. Circular Cakes

a

H

Figure 6.15: Geometry for a cylindrical
cake.

In this case the geometry of the cake is cylindrical as show in Figure 6.15. There-
fore, we need to express the boundary conditions and heat equation in cylindrical
coordinates. Also, we will assume that the solution, u(r, z, t) = T(r, z, t) − Tb,
is independent of θ due to axial symmetry. This gives the heat equation in θ-
independent cylindrical coordinates as

∂u
∂t

= k
(

1
r

∂

∂r

(
r

∂u
∂r

)
+

∂2u
∂z2

)
, (6.106)

where 0 ≤ r ≤ a and 0 ≤ z ≤ Z. The initial condition is

u(r, z, 0) = Ti − Tb,

and the homogeneous boundary conditions on the side, top, and bottom of the cake
are

u(a, z, t) = 0,

u(r, 0, t) = u(r, Z, t) = 0.
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Again, we seek solutions of the form u(r, z, t) = R(r)H(z)G(t). Separation of
variables leads to

1
k

G′

G︸︷︷︸
−λ

=
1

rR
d
dr
(
rR′
)

︸ ︷︷ ︸
−µ2

+
H′′

H︸︷︷︸
−ν2

. (6.107)

Here we have indicated the separation constants, which lead to three ordinary
differential equations. These equations and the boundary conditions are

G′ + kλG = 0,
d
dr
(
rR′
)
+ µ2rR = 0, R(a) = 0, R(0) is finite,

H′′ + ν2H = 0, H(0) = H(Z) = 0. (6.108)

We further note that the separation constants are related by λ = µ2 + ν2.
We can easily write down the solutions for G(t) and H(z),

G(t) = Ae−λkt

and
Hn(z) = sin

nπz
Z

, n = 1, 2, 3, . . . ,

where ν = nπ
Z . Recalling from the rectangular case that only odd terms arise in

the Fourier sine series coefficients for the constant initial condition, we proceed by
rewriting H(z) as

Hn(z) = sin
(2n− 1)πz

Z
, n = 1, 2, 3, . . . (6.109)

with ν = (2n−1)π
Z .

The radial equation can be written in the form

r2R′′ + rR′ + µ2r2R = 0.

This is a Bessel equation of the first kind of order zero which we had seen in Section
5.5. Therefore, the general solution is a linear combination of Bessel functions of the
first and second kind,

R(r) = c1 J0(µr) + c2N0(µr). (6.110)

Since R(r) is bounded at r = 0 and N0(µr) is not well behaved at r = 0, we set
c2 = 0. Up to a constant factor, the solution becomes

R(r) = J0(µr). (6.111)

The boundary condition R(a) = 0 gives the eigenvalues as

µm =
j0m

a
, m = 1, 2, 3, . . . ,

where j0m is the mth roots of the zeroth-order Bessel function, J0(j0m) = 0.
Therefore, we have found the product solutions

Hn(z)Rm(r)G(t) = sin
(2n− 1)πz

Z
J0

( r
a

j0m

)
e−λnmkt, (6.112)
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where m = 1, 2, 3, . . . , n = 1, 2, . . . . Combining the product solutions, the general
solution is found as

u(r, z, t) =
∞

∑
n=1

∞

∑
m=1

Anm sin
(2n− 1)πz

Z
J0

( r
a

j0m

)
e−λnmkt (6.113)

with

λnm =

(
(2n− 1)π

Z

)2

+

(
j0m

a

)2
,

for n, m = 1, 2, 3, . . . .
Inserting the solution into the constant initial condition, we have

Ti − Tb =
∞

∑
n=1

∞

∑
m=1

Anm sin
(2n− 1)πz

Z
J0

( r
a

j0m

)
.

This is a double Fourier series but it involves a Fourier-Bessel expansion. Writing

bn(r) =
∞

∑
m=1

Anm J0

( r
a

j0m

)
,

the condition becomes

Ti − Tb =
∞

∑
n=1

bn(r) sin
(2n− 1)πz

Z
.

As seen previously, this is a Fourier sine series and the Fourier coefficients are
given by

bn(r) =
2
Z

∫ Z

0
(Ti − Tb) sin

(2n− 1)πz
Z

dz

=
2(Ti − Tb)

Z

[
− Z
(2n− 1)π

cos
(2n− 1)πz

Z

]Z

0

=
4(Ti − Tb)

(2n− 1)π
.

We insert this result into the Fourier-Bessel series,

4(Ti − Tb)

(2n− 1)π
=

∞

∑
m=1

Anm J0

( r
a

j0m

)
,

and recall from Section 5.5 that we can determine the Fourier coefficients Anm using
the Fourier-Bessel series,

f (x) =
∞

∑
n=1

cn Jp(jpn
x
a
), (6.114)

where the Fourier-Bessel coefficients are found as

cn =
2

a2
[

Jp+1(jpn)
]2 ∫ a

0
x f (x)Jp(jpn

x
a
) dx. (6.115)

Comparing these series expansions, we have

Anm =
2

a2 J2
1 (j0m)

4(Ti − Tb)

(2n− 1)π

∫ a

0
J0(µmr)r dr. (6.116)
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In order to evaluate
∫ a

0 J0(µmr)r dr, we let y = µmr and get∫ a

0
J0(µmr)rdr =

∫ µma

0
J0(y)

y
µm

dy
µm

=
1

µ2
m

∫ µma

0
J0(y)y dy

=
1

µ2
m

∫ µma

0

d
dy

(yJ1(y)) dy

=
1

µ2
m
(µma)J1(µma) =

a2

j0m
J1(j0m). (6.117)

Here we have made use of the identity d
dx (xJ1(x)) = J0(x) from Section 5.5.

Substituting the result of this integral computation into the expression for Anm,
we find

Anm =
8(Ti − Tb)

(2n− 1)π
1

j0m J1(j0m)
.

Substituting this result into the original expression for u(r, z, t), gives

u(r, z, t) =
8(Ti − Tb)

π

∞

∑
n=1

∞

∑
m=1

sin (2n−1)πz
Z

(2n− 1)
J0(

r
a j0m)e−λnmkt

j0m J1(j0m)
.

Therefore, T(r, z, t) is found as

T(r, z, t) = Tb +
8(Ti − Tb)

π

∞

∑
n=1

∞

∑
m=1

sin (2n−1)πz
Z

(2n− 1)
J0(

r
a j0m)e−λnmkt

j0m J1(j0m)
,

where

λnm =

(
(2n− 1)π

Z

)2

+

(
j0m

a

)2
, n, m = 1, 2, 3, . . . .

Figure 6.16: Depiction of a sideview of a
vertical slice of a circular cake.

We have therefore found the general solution for the three-dimensional heat equa-
tion in cylindrical coordinates with constant diffusivity. Similar to the solutions
shown in Figure 6.14 of the previous section, we show in Figure 6.17 the tempera-
ture evolution throughout a standard 9′′ round cake pan. These are vertical slices
similar to what is depicted in Figure 6.16.

Again, one could generalize this example to considerations of other types
of cakes with cylindrical symmetry. For example, there are muffins, Boston
steamed bread which is steamed in tall cylindrical cans. One could also
consider an annular pan, such as a bundt cake pan. In fact, such problems
extend beyond baking cakes to possible heating molds in manufacturing.

6.5 Laplace’s Equation and Spherical Symmetry

We have seen that Laplace’s equation, ∇2u = 0, arises in electro-
statics as an equation for electric potential outside a charge distribution and
it occurs as the equation governing equilibrium temperature distributions.
As we had seen in the last chapter, Laplace’s equation generally occurs in
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Figure 6.17: Temperature evolution for a
standard 9′′ cake shown as vertical slices
through the center.
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the study of potential theory, which also includes the study of gravitational
and fluid potentials. The equation is named after Pierre-Simon Laplace
(1749-1827) who had studied the properties of this equation. Solutions of
Laplace’s equation are called harmonic functions.

Example 6.10. Solve Laplace’s equation in spherical coordinates.

x

y

r

u(r, θ, φ) = g(θ, φ)

Figure 6.18: A sphere of radius r with
the boundary condition u(r, θ, φ) =
g(θ, φ).

We seek solutions of this equation inside a sphere of radius r subject to the bound-
ary condition as shown in Figure 6.18. The problem is given by Laplace’s equation
Laplace’s equation in spherical coordinates22 The Laplacian in spherical coordinates

is given in Problem ?? in Chapter 8.

1
ρ2

∂

∂ρ

(
ρ2 ∂u

∂ρ

)
+

1
ρ2 sin θ

∂

∂θ

(
sin θ

∂u
∂θ

)
+

1
ρ2 sin2 θ

∂2u
∂φ2 = 0, (6.118)

where u = u(ρ, θ, φ).
The boundary conditions are given by

u(r, θ, φ) = g(θ, φ), 0 < φ < 2π, 0 < θ < π,

and the periodic boundary conditions

u(ρ, θ, 0) = u(ρ, θ, 2π), uφ(ρ, θ, 0) = uφ(ρ, θ, 2π),

where 0 < ρ < ∞, and 0 < θ < π.

As before, we perform a separation of variables by seeking product so-
lutions of the form u(ρ, θ, φ) = R(ρ)Θ(θ)Φ(φ). Inserting this form into the
Laplace equation, we obtain

x

y

z

ρ

φ

θ

Figure 6.19: Definition of spherical coor-
dinates (ρ, θ, φ). Note that there are dif-
ferent conventions for labeling spherical
coordinates. This labeling is used often
in physics.
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ΘΦ
ρ2

d
dρ

(
ρ2 dR

dρ

)
+

RΦ
ρ2 sin θ

d
dθ

(
sin θ

dΘ
dθ

)
+

RΘ
ρ2 sin2 θ

d2Φ
dφ2 = 0. (6.119)

Multiplying this equation by ρ2 and dividing by RΘΦ, yields

1
R

d
dρ

(
ρ2 dR

dρ

)
+

1
sin θΘ

d
dθ

(
sin θ

dΘ
dθ

)
+

1
sin2 θΦ

d2Φ
dφ2 = 0. (6.120)

Note that the first term is the only term depending upon ρ. Thus, we can
separate out the radial part. However, there is still more work to do on the
other two terms, which give the angular dependence. Thus, we have

− 1
R

d
dρ

(
ρ2 dR

dρ

)
=

1
sin θΘ

d
dθ

(
sin θ

dΘ
dθ

)
+

1
sin2 θΦ

d2Φ
dφ2 = −λ, (6.121)

where we have introduced the first separation constant. This leads to two
equations:

d
dρ

(
ρ2 dR

dρ

)
− λR = 0 (6.122)

and
1

sin θΘ
d
dθ

(
sin θ

dΘ
dθ

)
+

1
sin2 θΦ

d2Φ
dφ2 = −λ. (6.123)

Equation (6.123) is a key equation which
occurs when studying problems possess-
ing spherical symmetry. It is an eigen-
value problem for Y(θ, φ) = Θ(θ)Φ(φ),
LY = −λY, where

L =
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂φ2 .

The eigenfunctions of this operator are
referred to as spherical harmonics.

The final separation can be performed by multiplying the last equation by
sin2 θ, rearranging the terms, and introducing a second separation constant:

sin θ

Θ
d
dθ

(
sin θ

dΘ
dθ

)
+ λ sin2 θ = − 1

Φ
d2Φ
dφ2 = µ. (6.124)

From this expression we can determine the differential equations satisfied
by Θ(θ) and Φ(φ):

sin θ
d
dθ

(
sin θ

dΘ
dθ

)
+ (λ sin2 θ − µ)Θ = 0, (6.125)

and
d2Φ
dφ2 + µΦ = 0. (6.126)

We now have three ordinary differential equations to solve. These are the
radial equation (6.122) and the two angular equations (6.125)-(6.126). We
note that all three are in Sturm-Liouville form. We will solve each eigen-
value problem subject to appropriate boundary conditions.

The simplest of these differential equations is Equation (6.126) for Φ(φ).
We have seen equations of this form many times and the general solution
is a linear combination of sines and cosines. Furthermore, in this problem
u(ρ, θ, φ) is periodic in φ,

u(ρ, θ, 0) = u(ρ, θ, 2π), uφ(ρ, θ, 0) = uφ(ρ, θ, 2π).

Since these conditions hold for all ρ and θ, we must require that Φ(φ) satisfy
the periodic boundary conditions

Φ(0) = Φ(2π), Φ′(0) = Φ′(2π).



194 partial differential equations

The eigenfunctions and eigenvalues for Equation (6.126) are then found as

Φ(φ) = {cos mφ, sin mφ} , µ = m2, m = 0, 1, . . . . (6.127)

Next we turn to solving equation, (6.125). We first transform this equation
in order to identify the solutions. Let x = cos θ. Then the derivatives with
respect to θ transform as

d
dθ

=
dx
dθ

d
dx

= − sin θ
d

dx
.

Letting y(x) = Θ(θ) and noting that sin2 θ = 1− x2, Equation (6.125) be-
comes

d
dx

(
(1− x2)

dy
dx

)
+

(
λ− m2

1− x2

)
y = 0. (6.128)

We further note that x ∈ [−1, 1], as can be easily confirmed by the reader.
This is a Sturm-Liouville eigenvalue problem. The solutions consist of a

set of orthogonal eigenfunctions. For the special case that m = 0 Equation
(6.128) becomes

d
dx

(
(1− x2)

dy
dx

)
+ λy = 0. (6.129)

In a course in differential equations one learns to seek solutions of this
equation in the form

y(x) =
∞

∑
n=0

anxn.

This leads to the recursion relation

an+2 =
n(n + 1)− λ

(n + 2)(n + 1)
an.

Setting n = 0 and seeking a series solution, one finds that the resulting series
does not converge for x = ±1. This is remedied by choosing λ = `(`+ 1)
for ` = 0, 1, . . . , leading to the differential equation

d
dx

(
(1− x2)

dy
dx

)
+ `(`+ 1)y = 0. (6.130)

We saw this equation in Chapter 5 in the form

(1− x2)y′′ − 2xy′ + `(`+ 1)y = 0.

The solutions of this differential equation are Legendre polynomials, de-
noted by P`(x).

For the more general case, m 6= 0, the differential equation (6.128) with
λ = `(`+ 1) becomesassociated Legendre functions

d
dx

(
(1− x2)

dy
dx

)
+

(
`(`+ 1)− m2

1− x2

)
y = 0. (6.131)

The solutions of this equation are called the associated Legendre functions.
The two linearly independent solutions are denoted by Pm

` (x) and Qm
` (x).

The latter functions are not well behaved at x = ±1, corresponding to the
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north and south poles of the original problem. So, we can throw out these
solutions in many physical cases, leaving

Θ(θ) = Pm
` (cos θ)

as the needed solutions. In Table 6.5 we list a few of these.

Pm
n (x) Pm

n (cos θ)

P0
0 (x) 1 1

P0
1 (x) x cos θ

P1
1 (x) −(1− x2)

1
2 − sin θ

P0
2 (x) 1

2 (3x2 − 1) 1
2 (3 cos2 θ − 1)

P1
2 (x) −3x(1− x2)

1
2 −3 cos θ sin θ

P2
2 (x) 3(1− x2) 3 sin2 θ

P0
3 (x) 1

2 (5x3 − 3x) 1
2 (5 cos3 θ − 3 cos θ)

P1
3 (x) − 3

2 (5x2 − 1)(1− x2)
1
2 − 3

2 (5 cos2 θ − 1) sin θ

P2
3 (x) 15x(1− x2) 15 cos θ sin2 θ

P3
3 (x) −15(1− x2)

3
2 −15 sin3 θ

Table 6.5: Associated Legendre Func-
tions, Pm

n (x).

The associated Legendre functions are related to the Legendre polynomi-
als by3 3 The factor of (−1)m is known as the

Condon-Shortley phase and is useful in
quantum mechanics in the treatment of
agular momentum. It is sometimes omit-
ted by some

Pm
` (x) = (−1)m(1− x2)m/2 dm

dxm P`(x), (6.132)

for ` = 0, 1, 2, , . . . and m = 0, 1, . . . , `. We further note that P0
` (x) = P`(x),

as one can see in the table. Since P`(x) is a polynomial of degree `, then for
m > `, dm

dxm P`(x) = 0 and Pm
` (x) = 0.

Furthermore, since the differential equation only depends on m2, P−m
` (x)

is proportional to Pm
` (x). One normalization is given by

P−m
` (x) = (−1)m (`−m)!

(`+ m)!
Pm
` (x).

The associated Legendre functions also satisfy the orthogonality condi-
tion Orthogonality relation.∫ 1

−1
Pm
` (x)Pm

`′ (x) dx =
2

2`+ 1
(`+ m)!
(`−m)!

δ``′ . (6.133)

The last differential equation we need to solve is the radial equation. With
λ = `(`+ 1), ` = 0, 1, 2, . . . , the radial equation (6.122) can be written as

ρ2R′′ + 2ρR′ − `(`+ 1)R = 0. (6.134)

The radial equation is a Cauchy-Euler type of equation. So, we can guess
the form of the solution to be R(ρ) = ρs, where s is a yet to be determined
constant. Inserting this guess into the radial equation, we obtain the char-
acteristic equation

s(s + 1) = `(`+ 1).

Solving for s, we have
s = `,−(`+ 1).
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Thus, the general solution of the radial equation is

R(ρ) = aρ` + bρ−(`+1). (6.135)

We would normally apply boundary conditions at this point. The bound-
ary condition u(r, θ, φ) = g(θ, φ) is not a homogeneous boundary condition,
so we will need to hold off using it until we have the general solution to the
three dimensional problem. However, we do have a hidden condition. Since
we are interested in solutions inside the sphere, we need to consider what
happens at ρ = 0. Note that ρ−(`+1) is not defined at the origin. Since the
solution is expected to be bounded at the origin, we can set b = 0. So, in the
current problem we have established that

R(ρ) = aρ`.

When seeking solutions outside the
sphere, one considers the boundary con-
dition R(ρ) → 0 as ρ → ∞. In this case,
R(ρ) = ρ−(`+1).

We have carried out the full separation of Laplace’s equation in spherical
coordinates. The product solutions consist of the forms

u(ρ, θ, φ) = ρ`Pm
` (cos θ) cos mφ

and
u(ρ, θ, φ) = ρ`Pm

` (cos θ) sin mφ

for ` = 0, 1, 2, . . . and m = 0,±1, , . . . ,±`. These solutions can be combined
to give a complex representation of the product solutions as

u(ρ, θ, φ) = ρ`Pm
` (cos θ)eimφ.

The general solution is then given as a linear combination of these product
solutions. As there are two indices, we have a double sum:4

4 While this appears to be a complex-
valued solution, it can be rewritten as
a sum over real functions. The inner
sum contains terms for both m = k and
m = −k. Adding these contributions, we
have that

a`kρ`Pk
` (cos θ)eikφ + a`(−k)ρ

`P−k
` (cos θ)e−ikφ

can be rewritten as

(A`k cos kφ + B`k sin kφ)ρ`Pk
` (cos θ).

u(ρ, θ, φ) =
∞

∑
`=0

`

∑
m=−`

a`mρ`Pm
` (cos θ)eimφ. (6.136)

Example 6.11. Laplace’s Equation with Azimuthal Symmetry
As a simple example we consider the solution of Laplace’s equation in which there

is azimuthal symmetry. Let

u(r, θ, φ) = g(θ) = 1− cos 2θ.

This function is zero at the poles and has a maximum at the equator. So, this could
be a crude model of the temperature distribution of the Earth with zero temperature
at the poles and a maximum near the equator.

x

y

r

u(r, θ, φ) = 1− cos 2θ

Figure 6.20: A sphere of radius r with
the boundary condition

u(r, θ, φ) = 1− cos 2θ.

In problems in which there is no φ-dependence, only the m = 0 terms of the
general solution survives. Thus, we have that

u(ρ, θ, φ) =
∞

∑
`=0

a`ρ`P`(cos θ). (6.137)

Here we have used the fact that P0
` (x) = P`(x). We just need to determine the

unknown expansion coefficients, a`. Imposing the boundary condition at ρ = r, we
are lead to

g(θ) =
∞

∑
`=0

a`r`P`(cos θ). (6.138)
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This is a Fourier-Legendre series representation of g(θ). Since the Legendre poly-
nomials are an orthogonal set of eigenfunctions, we can extract the coefficients.

In Chapter 5 we had proven that∫ π

0
Pn(cos θ)Pm(cos θ) sin θ dθ =

∫ 1

−1
Pn(x)Pm(x) dx =

2
2n + 1

δnm.

So, multiplying the expression for g(θ) by Pm(cos θ) sin θ and integrating, we
obtain the expansion coefficients:

a` =
2`+ 1

2r`

∫ π

0
g(θ)P`(cos θ) sin θ dθ. (6.139)

Sometimes it is easier to rewrite g(θ) as a polynomial in cos θ and avoid the
integration. For this example we see that

g(θ) = 1− cos 2θ

= 2 sin2 θ

= 2− 2 cos2 θ. (6.140)

Thus, setting x = cos θ and G(x) = g(θ(x)), we have G(x) = 2− 2x2.
We seek the form

G(x) = c0P0(x) + c1P1(x) + c2P2(x),

where P0(x) = 1, P1(x) = x, and P2(x) = 1
2 (3x2 − 1). Since G(x) = 2− 2x2

does not have any x terms, we know that c1 = 0. So,

2− 2x2 = c0(1) + c2
1
2
(3x2 − 1) = c0 −

1
2

c2 +
3
2

c2x2.

By observation we have c2 = − 4
3 and thus, c0 = 2 + 1

2 c2 = 4
3 . Therefore,

G(x) = 4
3 P0(x)− 4

3 P2(x).
We have found the expansion of g(θ) in terms of Legendre polynomials,

g(θ) =
4
3

P0(cos θ)− 4
3

P2(cos θ). (6.141)

Therefore, the nonzero coefficients in the general solution become

a0 =
4
3

, a2 =
4
3

1
r2 ,

and the rest of the coefficients are zero. Inserting these into the general solution, we
have the final solution

u(ρ, θ, φ) =
4
3

P0(cos θ)− 4
3

(ρ

r

)2
P2(cos θ)

=
4
3
− 2

3

(ρ

r

)2
(3 cos2 θ − 1). (6.142)

6.5.1 Spherical Harmonics

The solutions of the angular parts of the problem are often com-
bined into one function of two variables, as problems with spherical sym-
metry arise often, leaving the main differences between such problems con-
fined to the radial equation. These functions are referred to as spherical
harmonics, Y`m(θ, φ), which are defined with a special normalization as

Y`m(θ, φ), are the spherical harmonics.
Spherical harmonics are important in
applications from atomic electron con-
figurations to gravitational fields, plane-
tary magnetic fields, and the cosmic mi-
crowave background radiation.
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Y`m(θ, φ) = (−1)m

√
2`+ 1

4π

(`−m)!
(`+ m)!

Pm
` (cos θ)eimφ. (6.143)

These satisfy the simple orthogonality relation∫ π

0

∫ 2π

0
Y`m(θ, φ)Y∗`′m′(θ, φ) sin θ dφ dθ = δ``′δmm′ .

As seen earlier in the chapter, the spherical harmonics are eigenfunctions
of the eigenvalue problem LY = −λY, where

L =
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂φ2 .

This operator appears in many problems in which there is spherical sym-
metry, such as obtaining the solution of Schrödinger’s equation for the hy-
drogen atom as we will see later. Therefore, it is customary to plot spherical
harmonics. Because the Y`m’s are complex functions, one typically plots ei-
ther the real part or the modulus squared. One rendition of |Y`m(θ, φ)|2 is
shown in Figure 6.6 for `, m = 0, 1, 2, 3.

Table 6.6: The first few spherical har-
monics, |Y`m(θ, φ)|2

m = 0 m = 1 m = 2 m = 3

` = 0

` = 1

` = 2

` = 3

We could also look for the nodal curves of the spherical harmonics like
we had for vibrating membranes. Such surface plots on a sphere are shown
in Figure 6.7. The colors provide for the amplitude of the |Y`m(θ, φ)|2. We
can match these with the shapes in Figure 6.6 by coloring the plots with
some of the same colors as shown in Figure 6.7. However, by plotting just
the sign of the spherical harmonics, as in Figure 6.8, we can pick out the
nodal curves much easier.
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m = 0 m = 1 m = 2 m = 3

` = 0

` = 1

` = 2

` = 3

Table 6.7: Spherical harmonic contours
for |Y`m(θ, φ)|2.

m = 0 m = 1 m = 2 m = 3

` = 0

` = 1

` = 2

` = 3

Table 6.8: In these figures we show
the nodal curves of |Y`m(θ, φ)|2 Along
the first column (m = 0) are the zonal
harmonics seen as ` horizontal circles.
Along the top diagonal (m = `) are
the sectional harmonics. These look like
orange sections formed from m vertical
circles. The remaining harmonics are
tesseral harmonics. They look like a
checkerboard pattern formed from inter-
sections of `−m horizontal circles and m
vertical circles.

Figure 6.21: Zonal harmonics, ` = 1,
m = 0.

Figure 6.22: Zonal harmonics, ` = 2,
m = 0.

Figure 6.23: Sectoral harmonics, ` = 2,
m = 2.

Figure 6.24: Tesseral harmonics, ` = 3,
m = 1.

Spherical, or surface, harmonics can be further grouped into zonal, sec-
toral, and tesseral harmonics. Zonal harmonics correspond to the m = 0
modes. In this case, one seeks nodal curves for which P`(cos θ) = 0. So-
lutions of this equation lead to constant θ values such that cos θ is a zero
of the Legendre polynomial, P`(x). The zonal harmonics correspond to the
first column in Figure 6.8. Since P`(x) is a polynomial of degree `, the zonal
harmonics consist of ` latitudinal circles.

Sectoral, or meridional, harmonics result for the case that m = ±`. For
this case, we note that P±`` (x) ∝ (1 − x2)m/2. This function vanishes for
x = ±1, or θ = 0, π. Therefore, the spherical harmonics can only produce
nodal curves for eimφ = 0. Thus, one obtains the meridians satisfying the
condition A cos mφ+ B sin mφ = 0. Solutions of this equation are of the form
φ = constant. These modes can be seen in Figure 6.8 in the top diagonal
and can be described as m circles passing through the poles, or longitudinal
circles.

Tesseral harmonics consist of the rest of the modes, which typically look
like a checker board glued to the surface of a sphere. Examples can be
seen in the pictures of nodal curves, such as Figure 6.8. Looking in Figure
6.8 along the diagonals going downward from left to right, one can see the
same number of latitudinal circles. In fact, there are `−m latitudinal nodal
curves in these figures
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In summary, the spherical harmonics have several representations, as
show in Figures 6.7-6.8. Note that there are ` nodal lines, m meridional
curves, and `−m horizontal curves in these figures. The plots in Figure 6.6
are the typical plots shown in physics for discussion of the wavefunctions
of the hydrogen atom. Those in 6.7 are useful for describing gravitational
or electric potential functions, temperature distributions, or wave modes
on a spherical surface. The relationships between these pictures and the
nodal curves can be better understood by comparing respective plots. Sev-
eral modes were separated out in Figures 6.21-6.26 to make this comparison
easier.

Figure 6.25: Sectoral harmonics, ` = 3,
m = 3.

Figure 6.26: Tesseral harmonics, ` = 4,
m = 3.

6.6 Schrödinger Equation in Spherical Coordinates

Another important eigenvalue problem in physics is the Schrödinger
equation. The time-dependent Schrödinger equation is given by

ih̄
∂Ψ
∂t

= − h̄2

2m
∇2Ψ + VΨ. (6.144)

Here Ψ(r, t) is the wave function, which determines the quantum state of
a particle of mass m subject to a (time independent) potential, V(r). From
Planck’s constant, h, one defines h̄ = h

2π . The probability of finding the
particle in an infinitesimal volume, dV, is given by |Ψ(r, t)|2 dV, assuming
the wave function is normalized,∫

all space
|Ψ(r, t)|2 dV = 1.

One can separate out the time dependence by assuming a special form,
Ψ(r, t) = ψ(r)e−iEt/h̄, where E is the energy of the particular stationary state
solution, or product solution. Inserting this form into the time-dependent
equation, one finds that ψ(r) satisfies the time-independent Schrödinger
equation,

− h̄2

2m
∇2ψ + Vψ = Eψ. (6.145)

Assuming that the potential depends only on the distance from the ori-
gin, V = V(ρ), we can further separate out the radial part of this solution
using spherical coordinates. Recall that the Laplacian in spherical coordi-
nates is given by

∇2 =
1
ρ2

∂

∂ρ

(
ρ2 ∂

∂ρ

)
+

1
ρ2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
ρ2 sin2 θ

∂2

∂φ2 . (6.146)

Then, the time-independent Schrödinger equation can be written as

− h̄2

2m

[
1
ρ2

∂

∂ρ

(
ρ2 ∂ψ

∂ρ

)
+

1
ρ2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1
ρ2 sin2 θ

∂2ψ

∂φ2

]
= [E−V(ρ)]ψ. (6.147)
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Let’s continue with the separation of variables. Assuming that the wave
function takes the form ψ(ρ, θ, φ) = R(ρ)Y(θ, φ), we obtain

− h̄2

2m

[
Y
ρ2

d
dρ

(
ρ2 dR

dρ

)
+

R
ρ2 sin θ

∂

∂θ

(
sin θ

∂Y
∂θ

)
+

R
ρ2 sin2 θ

∂2Y
∂φ2

]
= RY[E−V(ρ)]ψ. (6.148)

Dividing by ψ = RY, multiplying by − 2mρ2

h̄2 , and rearranging, we have

1
R

d
dρ

(
ρ2 dR

dρ

)
− 2mρ2

h̄2 [V(ρ)− E] = − 1
Y

LY,

where

L =
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂φ2 .

We have a function of ρ equal to a function of the angular variables. So,
we set each side equal to a constant. We will judiciously write the separation
constant as `(`+ 1). The resulting equations are then

d
dρ

(
ρ2 dR

dρ

)
− 2mρ2

h̄2 [V(ρ)− E] R = `(`+ 1)R, (6.149)

1
sin θ

∂

∂θ

(
sin θ

∂Y
∂θ

)
+

1
sin2 θ

∂2Y
∂φ2 = −`(`+ 1)Y. (6.150)

The second of these equations should look familiar from the last section.
This is the equation for spherical harmonics,

Y`m(θ, φ) =

√
2`+ 1

2
(`−m)!
(`+ m)!

Pm
` eimφ. (6.151)

So, any further analysis of the problem depends upon the choice of po-
tential, V(ρ), and the solution of the radial equation. For this, we turn to the
determination of the wave function for an electron in orbit about a proton. Solution of the hydrogen problem.

Example 6.12. The Hydrogen Atom - ` = 0 States
Historically, the first test of the Schrödinger equation was the determination of

the energy levels in a hydrogen atom. This is modeled by an electron orbiting a
proton. The potential energy is provided by the Coulomb potential,

V(ρ) = − e2

4πε0ρ
.

Thus, the radial equation becomes

d
dρ

(
ρ2 dR

dρ

)
+

2mρ2

h̄2

[
e2

4πε0ρ
+ E

]
R = `(`+ 1)R. (6.152)

Before looking for solutions, we need to simplify the equation by absorbing some
of the constants. One way to do this is to make an appropriate change of variables.
Let ρ = ar. Then, by the Chain Rule we have

d
dρ

=
dr
dρ

d
dr

=
1
a

d
dr

.
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Under this transformation, the radial equation becomes

d
dr

(
r2 du

dr

)
+

2ma2r2

h̄2

[
e2

4πε0ar
+ E

]
u = `(`+ 1)u, (6.153)

where u(r) = R(ρ). Expanding the second term,

2ma2r2

h̄2

[
e2

4πε0ar
+ E

]
u =

[
mae2

2πε0h̄2 r +
2mEa2

h̄2 r2
]

u,

we see that we can define

a =
2πε0h̄2

me2 , (6.154)

ε = −2mEa2

h̄2

= −2(2πε0)
2h̄2

me4 E. (6.155)

Using these constants, the radial equation becomes

d
dr

(
r2 du

dr

)
+ ru− `(`+ 1)u = εr2u. (6.156)

Expanding the derivative and dividing by r2,

u′′ +
2
r

u′ +
1
r

u− `(`+ 1)
r2 u = εu. (6.157)

The first two terms in this differential equation came from the Laplacian. The third
term came from the Coulomb potential. The fourth term can be thought to contribute
to the potential and is attributed to angular momentum. Thus, ` is called the
angular momentum quantum number. This is an eigenvalue problem for the radial
eigenfunctions u(r) and energy eigenvalues ε.

The solutions of this equation are determined in a quantum mechanics course. In
order to get a feeling for the solutions, we will consider the zero angular momentum
case, ` = 0 :

u′′ +
2
r

u′ +
1
r

u = εu. (6.158)

Even this equation is one we have not encountered in this book. Let’s see if we can
find some of the solutions.

First, we consider the behavior of the solutions for large r. For large r the second
and third terms on the left hand side of the equation are negligible. So, we have the
approximate equation

u′′ − εu = 0. (6.159)

Therefore, the solutions behave like u(r) = e±
√

εr for large r. For bounded solutions,
we choose the decaying solution.

This suggests that solutions take the form u(r) = v(r)e−
√

εr for some unknown
function, v(r). Inserting this guess into Equation (6.158), gives an equation for
v(r) :

rv′′ + 2
(
1−
√

εr
)

v′ + (1− 2
√

ε)v = 0. (6.160)
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Next we seek a series solution to this equation. Let

v(r) =
∞

∑
k=0

ckrk.

Inserting this series into Equation (6.160), we have

∞

∑
k=1

[k(k− 1) + 2k]ckrk−1 +
∞

∑
k=1

[1− 2
√

ε(k + 1)]ckrk = 0.

We can re-index the dummy variable in each sum. Let k = m in the first sum and
k = m− 1 in the second sum. We then find that

∞

∑
k=1

[
m(m + 1)cm + (1− 2m

√
ε)cm−1

]
rm−1 = 0.

Since this has to hold for all m ≥ 1,

cm =
2m
√

ε− 1
m(m + 1)

cm−1.

Further analysis indicates that the resulting series leads to unbounded solutions
unless the series terminates. This is only possible if the numerator, 2m

√
ε − 1,

vanishes for m = n, n = 1, 2 . . . . Thus,

ε =
1

4n2 .

Since ε is related to the energy eigenvalue, E, we have

En = − me4

2(4πε0)2h̄2n2
.

Inserting the values for the constants, this gives

En = −13.6 eV
n2 .

This is the well known set of energy levels for the hydrogen atom. Energy levels for the hydrogen atom.

The corresponding eigenfunctions are polynomials, since the infinite series was
forced to terminate. We could obtain these polynomials by iterating the recursion
equation for the cm’s. However, we will instead rewrite the radial equation (6.160).

Let x = 2
√

εr and define y(x) = v(r). Then

d
dr

= 2
√

ε
d

dx
.

This gives
2
√

εxy′′ + (2− x)2
√

εy′ + (1− 2
√

ε)y = 0.

Rearranging, we have

xy′′ + (2− x)y′ +
1

2
√

ε
(1− 2

√
ε)y = 0.

Noting that 2
√

ε = 1
n , this equation becomes

xy′′ + (2− x)y′ + (n− 1)y = 0. (6.161)
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The resulting equation is well known. It takes the form

xy′′ + (α + 1− x)y′ + ny = 0. (6.162)

Solutions of this equation are the associated Laguerre polynomials. The solutions
are denoted by Lα

n(x). They can be defined in terms of the Laguerre polynomials,

Ln(x) = ex
(

d
dx

)n
(e−xxn).

The associated Laguerre polynomials are defined as

Lm
n−m(x) = (−1)m

(
d

dx

)m
Ln(x).

Note: The Laguerre polynomials were first encountered in Problem 2 in Chapter 5
as an example of a classical orthogonal polynomial defined on [0, ∞) with weight
w(x) = e−x. Some of these polynomials are listed in Table 6.9 and several Laguerre
polynomials are shown in Figure 6.27.The associated Laguerre polynomials are

named after the French mathematician
Edmond Laguerre (1834-1886).

Comparing Equation (6.161) with Equation (6.162), we find that y(x) = L1
n−1(x).

Table 6.9: Associated Laguerre Func-
tions, Lm

n (x). Note that L0
n(x) = Ln(x).

Lm
n (x)

L0
0(x) 1

L0
1(x) 1− x

L0
2(x) 1

2 (x2 − 4x + 2)
L0

3(x) 1
6 (−x3 + 9x2 − 18x + 6)

L1
0(x) 1

L1
1(x) 2− x

L1
2(x) 1

2 (x2 − 6x + 6)
L1

3(x) 1
6 (−x3 + 3x2 − 36x + 24)

L2
0(x) 1

L2
1(x) 3− x

L2
2(x) 1

2 (x2 − 8x + 12)
L2

3(x) 1
12 (−2x3 + 30x2 − 120x + 120)

In summary, we have made the following transformations:In most derivation in quantum mechan-

ics a = a0
2 . where a0 = 4πε0 h̄2

me2 is the Bohr
radius and a0 = 5.2917× 10−11m. 1. R(ρ) = u(r), ρ = ar.

2. u(r) = v(r)e−
√

εr.

3. v(r) = y(x) = L1
n−1(x), x = 2

√
εr.

Therefore,
R(ρ) = e−

√
ερ/aL1

n−1(2
√

ερ/a).

However, we also found that 2
√

ε = 1/n. So,

R(ρ) = e−ρ/2naL1
n−1(ρ/na).

In Figure 6.28 we show a few of these solutions.
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Figure 6.27: Plots of the first few La-
guerre polynomials.

Figure 6.28: Plots of R(ρ) for a = 1 and
n = 1, 2, 3, 4 for the ` = 0 states.
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Example 6.13. Find the ` ≥ 0 solutions of the radial equation.
For the general case, for all ` ≥ 0, we need to solve the differential equation

u′′ +
2
r

u′ +
1
r

u− `(`+ 1)
r2 u = εu. (6.163)

Instead of letting u(r) = v(r)e−
√

εr, we let

u(r) = v(r)r`e−
√

εr.

This lead to the differential equation

rv′′ + 2(`+ 1−
√

εr)v′ + (1− 2(`+ 1)
√

ε)v = 0. (6.164)

as before, we let x = 2
√

εr to obtain

xy′′ + 2
[
`+ 1− x

2

]
v′ +

[
1

2
√

ε
− `(`+ 1)

]
v = 0.

Noting that 2
√

ε = 1/n, we have

xy′′ + 2 [2(`+ 1)− x] v′ + (n− `(`+ 1))v = 0.

We see that this is once again in the form of the associate Laguerre equation and the
solutions are

y(x) = L2`+1
n−`−1(x).

So, the solution to the radial equation for the hydrogen atom is given by

R(ρ) = r`e−
√

εrL2`+1
n−`−1(2

√
εr)

=
( ρ

2na

)`
e−ρ/2naL2`+1

n−`−1

( ρ

na

)
. (6.165)

Interpretations of these solutions will be left for your quantum mechanics course.

6.7 Solution of the 3D Poisson Equation

We recall from electrostatics that the gradient of the elec-
tric potential gives the electric field, E = −∇φ. However, we also have
from Gauss’ Law for electric fields ∇ · E = ρ

ε0
, where ρ(r) is the charge dis-

tribution at position r. Combining these equations, we arrive at Poisson’s
equation for the electric potential,Poisson’s equation for the electric poten-

tial.

∇2φ = − ρ

ε0
.

We note that Poisson’s equation also arises in Newton’s theory of gravitation
for the gravitational potential in the form ∇2φ = −4πGρ where ρ is the
matter density.Poisson’s equation for the gravitational

potential. We consider Poisson’s equation in the form

∇2φ(r) = −4π f (r)
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for r defined throughout all space. We will seek a solution for the potential
function using a three dimensional Fourier transform. In the electrostatic
problem f = ρ(r)/4πε0 and the gravitational problem has f = Gρ(r)

The Fourier transform can be generalized to three dimensions as

φ̂(k) =
∫

V
φ(r)eik·r d3r,

where the integration is over all space, V, d3r = dxdydz, and k is a three di-
mensional wavenumber, k = kxi + kyj + kzk. The inverse Fourier transform Three dimensional Fourier transform.

can then be written as

φ(r) =
1

(2π)3

∫
Vk

φ̂(k)e−ik·r d3k,

where d3k = dkxdkydkz and Vk is all of k-space.
The Fourier transform of the Laplacian follows from computing Fourier

transforms of any derivatives that are present. Assuming that φ and its
gradient vanish for large distances, then

F [∇2φ] = −(k2
x + k2

y + k2
z)φ̂(k).

Defining k2 = k2
x + k2

y + k2
z, then Poisson’s equation becomes the algebraic

equation
k2φ̂(k) = 4π f̂ (k).

Solving for φ̂(k), we have

φ(k) =
4π

k2 f̂ (k).

The solution to Poisson’s equation is then determined from the inverse
Fourier transform,

φ(r) =
4π

(2π)3

∫
Vk

f̂ (k)
e−ik·r

k2 d3k. (6.166)

First we will consider an example of a point charge (or mass in the grav-
itational case) at the origin. We will set f (r) = f0δ3(r) in order to represent
a point source. For a unit point charge, f0 = 1/4πε0. The three dimensional Dirac delta func-

tion, δ3(r− r0).Here we have introduced the three dimensional Dirac delta function
which, like the one dimensional case, vanishes outside the origin and satis-
fies a unit volume condition, ∫

V
δ3(r) d3r = 1.

Also, there is a sifting property, which takes the form∫
V

δ3(r− r0) f (r) d3r = f (r0).

In Cartesian coordinates,

δ3(r) = δ(x)δ(y)δ(z),
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∫
V

δ3(r) d3r =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
δ(x)δ(y)δ(z) dxdydz = 1,

and∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
δ(x− x0)δ(y− y0)δ(z− z0) f (x, y, z) dxdydz = f (x0, y0, z0).

One can define similar delta functions operating in two dimensions and n
dimensions.

We can also transform the Cartesian form into curvilinear coordinates.
Recall from the Section ?? that the volume element in curvilinear coordinates
is

d3r = dxdydz = h1h2h3du1du2du3.

Here we have used the notation from Section ??. This gives∫
V

δ3(r) d3r =
∫

V
δ3(r) h1h2h3du1du2du3 = 1.

Therefore,

δ3(r) =
δ(u1)∣∣ ∂r

∂u1

∣∣ δ(u2)∣∣ ∂r
∂u2

∣∣ δ(u3)∣∣ ∂r
∂u2

∣∣
=

1
h1h2h3

δ(u1)δ(u2)δ(u3). (6.167)

So, for cylindrical coordinates,

δ3(r) =
1
r

δ(r)δ(θ)δ(z).

Example 6.14. Find the solution of Poisson’s equation for a point source of the
form f (r) = f0δ3(r).

The solution is found by inserting the Fourier transform of this source into Equa-
tion (6.166) and carrying out the integration. The transform of f (r) is found as

f̂ (k) =
∫

V
f0δ3(r)eik·r d3r = f0.

Inserting f̂ (k) into the inverse transform in Equation (6.166) and carrying out
the integration using spherical coordinates in k-space, we find

φ(r) =
4π

(2π)3

∫
Vk

f0
e−ik·r

k2 d3k

=
f0

2π2

∫ 2π

0

∫ π

0

∫ ∞

0

e−ikx cos θ

k2 k2 sin θ dkdθdφ

=
f0

π

∫ π

0

∫ ∞

0
e−ikx cos θ sin θ dkdθ

=
f0

π

∫ ∞

0

∫ 1

−1
e−ikxy dkdy, y = cos θ,

=
2 f0

πr

∫ ∞

0

sin z
z

dz =
f0

r
. (6.168)
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If the last example is applied to a unit point charge, then f0 = 1/4πε0.
So, the electric potential outside a unit point charge located at the origin
becomes

φ(r) =
1

4πε0r
.

This is the form familiar from introductory physics.
Also, by setting f0 = 1, we have also shown in the last example that

∇2
(

1
r

)
= −4πδ3(r).

Since ∇
(

1
r

)
= − r

r3 , then we have also shown that

∇ ·
( r

r3

)
= 4πδ3(r).

Problems

1. A rectangular plate 0 ≤ x ≤ L 0 ≤ y ≤ H with heat diffusivity constant k
is insulated on the edges y = 0, H and is kept at constant zero temperature
on the other two edges. Assuming an initial temperature of u(x, y, 0) =

f (x, y), use separation of variables t find the general solution.

2. Solve the following problem.

uxx + uyy + uzz = 0, 0 < x < 2π, 0 < y < π, 0 < z < 1,

u(x, y, 0) = sin x sin y, u(x, y, z) = 0on other faces.

3. Consider Laplace’s equation on the unit square, uxx + uyy = 0, 0 ≤ x, y ≤
1. Let u(0, y) = 0, u(1, y) = 0 for 0 < y < 1 and uy(x, 0) = 0 for 0 < y < 1.
Carry out the needed separation of variables and write down the product
solutions satisfying these boundary conditions.

4. Consider a cylinder of height H and radius a.

a. Write down Laplace’s Equation for this cylinder in cylindrical coordi-
nates.

b. Carry out the separation of variables and obtain the three ordinary
differential equations that result from this problem.

c. What kind of boundary conditions could be satisfied in this problem
in the independent variables?

5. Consider a square drum of side s and a circular drum of radius a.

a. Rank the modes corresponding to the first 6 frequencies for each.

b. Write each frequency (in Hz) in terms of the fundamental (i.e., the
lowest frequency.)

c. What would the lengths of the sides of the square drum have to be to
have the same fundamental frequency? (Assume that c = 1.0 for each
one.)



210 partial differential equations

6. We presented the full solution of the vibrating rectangular membrane
in Equation 6.37. Finish the solution to the vibrating circular membrane by
writing out a similar full solution.

7. A copper cube 10.0 cm on a side is heated to 100◦ C. The block is placed
on a surface that is kept at 0◦ C. The sides of the block are insulated, so
the normal derivatives on the sides are zero. Heat flows from the top of
the block to the air governed by the gradient uz = −10◦C/m. Determine
the temperature of the block at its center after 1.0 minutes. Note that the
thermal diffusivity is given by k = K

ρcp
, where K is the thermal conductivity,

ρ is the density, and cp is the specific heat capacity.

8. Consider a spherical balloon of radius a. Small deformations on the
surface can produce waves on the balloon’s surface.

a. Write the wave equation in spherical polar coordinates. (Note: ρ is
constant!)

b. Carry out a separation of variables and find the product solutions for
this problem.

c. Describe the nodal curves for the first six modes.

d. For each mode determine the frequency of oscillation in Hz assuming
c = 1.0 m/s.

9. Consider a circular cylinder of radius R = 4.00 cm and height H = 20.0
cm which obeys the steady state heat equation

urr +
1
r

ur + uzz.

Find the temperature distribution, u(r, z), given that u(r, 0) = 0◦C, u(r, 20) =
20◦C, and heat is lost through the sides due to Newton’s Law of Cooling

[ur + hu]r=4 = 0,

for h = 1.0 cm−1.

10. The spherical surface of a homogeneous ball of radius one in main-
tained at zero temperature. It has an initial temperature distribution u(ρ, 0) =
100o C. Assuming a heat diffusivity constant k, find the temperature through-
out the sphere, u(ρ, θ, φ, t).

11. Determine the steady state temperature of a spherical ball maintained
at the temperature

u(x, y, z) = x2 + 2y2 + 3z2, ρ = 1.

[Hint - Rewrite the problem in spherical coordinates and use the properties
of spherical harmonics.]



A
Calculus Review

“Ordinary language is totally unsuited for expressing what physics really asserts,
since the words of everyday life are not sufficiently abstract. Only mathematics and
mathematical logic can say as little as the physicist means to say.” Bertrand Russell
(1872-1970)

Before you begin our study of differential equations perhaps you
should review some things from calculus. You definitely need to know
something before taking this class. It is assumed that you have taken Calcu-
lus and are comfortable with differentiation and integration. Of course, you
are not expected to know every detail from these courses. However, there
are some topics and methods that will come up and it would be useful to
have a handy reference to what it is you should know.

Most importantly, you should still have your calculus text to which you
can refer throughout the course. Looking back on that old material, you
will find that it appears easier than when you first encountered the mate-
rial. That is the nature of learning mathematics and other subjects. Your
understanding is continually evolving as you explore topics more in depth.
It does not always sink in the first time you see it. In this chapter we will
give a quick review of these topics. We will also mention a few new methods
that might be interesting.

A.1 What Do I Need To Know From Calculus?

A.1.1 Introduction

There are two main topics in calculus: derivatives and integrals.
You learned that derivatives are useful in providing rates of change in either
time or space. Integrals provide areas under curves, but also are useful
in providing other types of sums over continuous bodies, such as lengths,
areas, volumes, moments of inertia, or flux integrals. In physics, one can
look at graphs of position versus time and the slope (derivative) of such a
function gives the velocity. (See Figure A.1.) By plotting velocity versus time
you can either look at the derivative to obtain acceleration, or you could look
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at the area under the curve and get the displacement:

x =
∫ t

t0

v dt. (A.1)

This is shown in Figure A.2.

t

x(t)

v

Figure A.1: Plot of position vs time.

t0 t

v(t)

x

Figure A.2: Plot of velocity vs time.

Of course, you need to know how to differentiate and integrate given
functions. Even before getting into differentiation and integration, you need
to have a bag of functions useful in physics. Common functions are the
polynomial and rational functions. You should be fairly familiar with these.
Polynomial functions take the general form

f (x) = anxn + an−1xn−1 + · · ·+ a1x + a0, (A.2)

where an 6= 0. This is the form of a polynomial of degree n. Rational func-
tions, f (x) = g(x)

h(x) , consist of ratios of polynomials. Their graphs can exhibit
vertical and horizontal asymptotes.

Next are the exponential and logarithmic functions. The most common
are the natural exponential and the natural logarithm. The natural exponen-
tial is given by f (x) = ex, where e ≈ 2.718281828 . . . . The natural logarithm
is the inverse to the exponential, denoted by ln x. (One needs to be care-
ful, because some mathematics and physics books use log to mean natural
exponential, whereas many of us were first trained to use this notation to
mean the common logarithm, which is the ‘log base 10’. Here we will use
ln x for the natural logarithm.)

The properties of the exponential function follow from the basic proper-
ties for exponents. Namely, we have:Exponential properties.

e0 = 1, (A.3)

e−a =
1
ea (A.4)

eaeb = ea+b, (A.5)

(ea)b = eab. (A.6)

The relation between the natural logarithm and natural exponential is
given by

y = ex ⇔ x = ln y. (A.7)

Some common logarithmic properties areLogarithmic properties.

ln 1 = 0, (A.8)

ln
1
a

= − ln a, (A.9)

ln(ab) = ln a + ln b, (A.10)

ln
a
b

= ln a− ln b, (A.11)

ln
1
b

= − ln b. (A.12)

We will see applications of these relations as we progress through the
course.
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A.1.2 Trigonometric Functions

Another set of useful functions are the trigonometric functions. These
functions have probably plagued you since high school. They have their
origins as far back as the building of the pyramids. Typical applications in
your introductory math classes probably have included finding the heights
of trees, flag poles, or buildings. It was recognized a long time ago that sim-
ilar right triangles have fixed ratios of any pair of sides of the two similar
triangles. These ratios only change when the non-right angles change.

Thus, the ratio of two sides of a right triangle only depends upon the
angle. Since there are six possible ratios (think about it!), then there are six
possible functions. These are designated as sine, cosine, tangent and their
reciprocals (cosecant, secant and cotangent). In your introductory physics
class, you really only needed the first three. You also learned that they
are represented as the ratios of the opposite to hypotenuse, adjacent to hy-
potenuse, etc. Hopefully, you have this down by now.

You should also know the exact values of these basic trigonometric func-
tions for the special angles θ = 0, π

6 , π
3 , π

4 , π
2 , and their corresponding angles

in the second, third and fourth quadrants. This becomes internalized after
much use, but we provide these values in Table A.1 just in case you need a
reminder.

θ cos θ sin θ tan θ

0 1 0 0

π
6

√
3

2
1
2

√
3

3
π
3

1
2

√
3

2

√
3

π
4

√
2

2

√
2

2 1

π
2 0 1 undefined

Table A.1: Table of Trigonometric Values

The problems students often have using trigonometric functions in later
courses stem from using, or recalling, identities. We will have many an
occasion to do so in this class as well. What is an identity? It is a relation
that holds true all of the time. For example, the most common identity for
trigonometric functions is the Pythagorean identity

sin2 θ + cos2 θ = 1. (A.13)

This holds true for every angle θ! An even simpler identity is

tan θ =
sin θ

cos θ
. (A.14)

Other simple identities can be derived from the Pythagorean identity.
Dividing the identity by cos2 θ, or sin2 θ, yields

tan2 θ + 1 = sec2 θ, (A.15)

1 + cot2 θ = csc2 θ. (A.16)
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Several other useful identities stem from the use of the sine and cosine of
the sum and difference of two angles. Namely, we have thatSum and difference identities.

sin(A± B) = sin A cos B± sin B cos A, (A.17)

cos(A± B) = cos A cos B∓ sin A sin B. (A.18)

Note that the upper (lower) signs are taken together.

Example A.1. Evaluate sin π
12 .

sin
π

12
= sin

(π

3
− π

4

)
= sin

π

3
cos

π

4
− sin

π

4
cos

π

3

=

√
3

2

√
2

2
−
√

2
2

1
2

=

√
2

4

(√
3− 1

)
. (A.19)

The double angle formulae are found by setting A = B :Double angle formulae.

sin(2A) = 2 sin A cos B, (A.20)

cos(2A) = cos2 A− sin2 A. (A.21)

Using Equation (A.13), we can rewrite (A.21) as

cos(2A) = 2 cos2 A− 1, (A.22)

= 1− 2 sin2 A. (A.23)

These, in turn, lead to the half angle formulae. Solving for cos2 A and sin2 A,
we find thatHalf angle formulae.

sin2 A =
1− cos 2A

2
, (A.24)

cos2 A =
1 + cos 2A

2
. (A.25)

Example A.2. Evaluate cos π
12 . In the last example, we used the sum/difference

identities to evaluate a similar expression. We could have also used a half angle
identity. In this example, we have

cos2 π

12
=

1
2

(
1 + cos

π

6

)
=

1
2

(
1 +

√
3

2

)

=
1
4

(
2 +
√

3
)

(A.26)
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So, cos π
12 = 1

2

√
2 +
√

3. This is not the simplest form and is called a nested
radical. In fact, if we proceeded using the difference identity for cosines, then we
would obtain

cos
π

12
=

√
2

4
(1 +

√
3).

So, how does one show that these answers are the same? It is useful at times to know when one
can reduce square roots of such radi-
cals, called denesting. More generally,
one seeks to write

√
a + b

√
q = c + d

√
q.

Following the procedure in this example,
one has d = b

2c and

c2 =
1
2

(
a±

√
a2 − qb2

)
.

As long as a2 − qb2 is a perfect square,
there is a chance to reduce the expres-
sion to a simpler form.

Let’s focus on the factor
√

2 +
√

3. We seek to write this in the form c + d
√

3.
Equating the two expressions and squaring, we have

2 +
√

3 = (c + d
√

3)2

= c2 + 3d2 + 2cd
√

3. (A.27)

In order to solve for c and d, it would seem natural to equate the coefficients of
√

3
and the remaining terms. We obtain a system of two nonlinear algebraic equations,

c2 + 3d2 = 2 (A.28)

2cd = 1. (A.29)

Solving the second equation for d = 1/2c, and substituting the result into the
first equation, we find

4c4 − 8c2 + 3 = 0.

This fourth order equation has four solutions,

c = ±
√

2
2

,±
√

6
2

and

b = ±
√

2
2

,±
√

6
6

.

Thus,

cos
π

12
=

1
2

√
2 +
√

3

= ±1
2

(√
2

2
+

√
2

2

√
3

)

= ±
√

2
4

(1 +
√

3) (A.30)

and

cos
π

12
=

1
2

√
2 +
√

3

= ±1
2

(√
6

2
+

√
6

6

√
3

)

= ±
√

6
12

(3 +
√

3). (A.31)

Of the four solutions, two are negative and we know the value of the cosine for this
angle has to be positive. The remaining two solutions are actually equal! A quick
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computation will verify this:
√

6
12

(3 +
√

3) =

√
3
√

2
12

(3 +
√

3)

=

√
2

12
(3
√

3 + 3)

=

√
2

4
(
√

3 + 1). (A.32)

We could have bypassed this situation be requiring that the solutions for b and c
were not simply proportional to

√
3 like they are in the second case.

Finally, another useful set of identities are the product identities. ForProduct Identities

example, if we add the identities for sin(A + B) and sin(A− B), the second
terms cancel and we have

sin(A + B) + sin(A− B) = 2 sin A cos B.

Thus, we have that

sin A cos B =
1
2
(sin(A + B) + sin(A− B)). (A.33)

Similarly, we have

cos A cos B =
1
2
(cos(A + B) + cos(A− B)). (A.34)

and

sin A sin B =
1
2
(cos(A− B)− cos(A + B)). (A.35)

Know the above boxed identities!
These boxed equations are the most common trigonometric identities.

They appear often and should just roll off of your tongue.
We will also need to understand the behaviors of trigonometric func-

tions. In particular, we know that the sine and cosine functions are periodic.
They are not the only periodic functions, as we shall see. [Just visualize the
teeth on a carpenter’s saw.] However, they are the most common periodic
functions.

A periodic function f (x) satisfies the relationPeriodic functions.

f (x + p) = f (x), for all x

for some constant p. If p is the smallest such number, then p is called the
period. Both the sine and cosine functions have period 2π. This means that
the graph repeats its form every 2π units. Similarly, sin bx and cos bx have
the common period p = 2π

b . We will make use of this fact in later chapters.
Related to these are the inverse trigonometric functions. For example,

f (x) = sin−1 x, or f (x) = arcsin x. Inverse functions give back angles, so

In Feynman’s Surely You’re Joking Mr.
Feynman!, Richard Feynman (1918-1988)
talks about his invention of his own no-
tation for both trigonometric and inverse
trigonometric functions as the standard
notation did not make sense to him.

you should think
θ = sin−1 x ⇔ x = sin θ. (A.36)



calculus review 383

Also, you should recall that y = sin−1 x = arcsin x is only a function if−π
2 ≤

x ≤ π
2 . Similar relations exist for y = cos−1 x = arccos x and tan−1 x =

arctan x.
Once you think about these functions as providing angles, then you can

make sense out of more complicated looking expressions, like tan(sin−1 x).
Such expressions often pop up in evaluations of integrals. We can untangle
this in order to produce a simpler form by referring to expression (A.36).
θ = sin−1 x is simple an angle whose sine is x. Knowing the sine is the
opposite side of a right triangle divided by its hypotenuse, then one just
draws a triangle in this proportion as shown in Figure A.3. Namely, the
side opposite the angle has length x and the hypotenuse has length 1. Using
the Pythagorean Theorem, the missing side (adjacent to the angle) is sim-
ply
√

1− x2. Having obtained the lengths for all three sides, we can now
produce the tangent of the angle as

tan(sin−1 x) =
x√

1− x2
.

θ

1

x

√
1− x2

Figure A.3: θ = sin−1 x ⇒ tan θ =
x√

1−x2

A.1.3 Hyperbolic Functions

Solitons are special solutions to some
generic nonlinear wave equations. They
typically experience elastic collisions
and play special roles in a variety of
fields in physics, such as hydrodynam-
ics and optics. A simple soliton solution
is of the form

u(x, t) = 2η2 sech2 η(x− 4η2t).

So, are there any other functions that are useful in physics? Actu-
ally, there are many more. However, you have probably not see many of
them to date. We will see by the end of the semester that there are many
important functions that arise as solutions of some fairly generic, but im-
portant, physics problems. In your calculus classes you have also seen that
some relations are represented in parametric form. However, there is at
least one other set of elementary functions, which you should already know
about. These are the hyperbolic functions. Such functions are useful in
representing hanging cables, unbounded orbits, and special traveling waves
called solitons. They also play a role in special and general relativity. Hyperbolic functions; We will later see

the connection between the hyperbolic
and trigonometric functions in Chapter
8.

Hyperbolic functions are actually related to the trigonometric functions,
as we shall see after a little bit of complex function theory. For now, we just
want to recall a few definitions and identities. Just as all of the trigonometric
functions can be built from the sine and the cosine, the hyperbolic functions
can be defined in terms of the hyperbolic sine and hyperbolic cosine (shown
in Figure A.4):

sinh x =
ex − e−x

2
, (A.37)

cosh x =
ex + e−x

2
. (A.38) −3 −2 −1 1 2 3

−2

2

cosh x

sinh x

Figure A.4: Plots of cosh x and sinh x.
Note that sinh 0 = 0, cosh 0 = 1, and
cosh x ≥ 1.

There are four other hyperbolic functions. These are defined in terms
of the above functions similar to the relations between the trigonometric
functions. We have

tanh x =
sinh x
cosh x

=
ex − e−x

ex + e−x , (A.39)
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sech x =
1

cosh x
=

2
ex + e−x , (A.40)

csch x =
1

sinh x
=

2
ex − e−x , (A.41)

coth x =
1

tanh x
=

ex + e−x

ex − e−x . (A.42)

There are also a whole set of identities, similar to those for the trigono-
metric functions. For example, the Pythagorean identity for trigonometric
functions, sin2 θ + cos2 θ = 1, is replaced by the identity

cosh2 x− sinh2 x = 1.

This is easily shown by simply using the definitions of these functions. This
identity is also useful for providing a parametric set of equations describing
hyperbolae. Letting x = a cosh t and y = b sinh t, one has

x2

a2 −
y2

b2 = cosh2 t− sinh2 t = 1.

A list of commonly needed hyperbolic function identities are given byHyperbolic identities.

the following:

cosh2 x− sinh2 x = 1, (A.43)

tanh2 x + sech2 x = 1, (A.44)

cosh(A± B) = cosh A cosh B± sinh A sinh B, (A.45)

sinh(A± B) = sinh A cosh B± sinh B cosh A, (A.46)

cosh 2x = cosh2 x + sinh2 x, (A.47)

sinh 2x = 2 sinh x cosh x, (A.48)

cosh2 x =
1
2
(1 + cosh 2x) , (A.49)

sinh2 x =
1
2
(cosh 2x− 1) . (A.50)

Note the similarity with the trigonometric identities. Other identities can be
derived from these.

There also exist inverse hyperbolic functions and these can be written in
terms of logarithms. As with the inverse trigonometric functions, we begin
with the definition

y = sinh−1 x ⇔ x = sinh y. (A.51)

The aim is to write y in terms of x without using the inverse function. First,
we note that

x =
1
2
(
ey − e−y) . (A.52)

Next we solve for ey. This is done by noting that e−y = 1
ey and rewriting the

previous equation as
0 = (ey)2 − 2xey − 1. (A.53)
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This equation is in quadratic form which we can solve using the quadratic
formula as

ey = x +
√

1 + x2.

(There is only one root as we expect the exponential to be positive.)

The inverse hyperbolic functions care
given by

sinh−1 x = ln
(

x +
√

1 + x2
)

,

cosh−1 x = ln
(

x +
√

x2 − 1
)

,

tanh−1 x =
1
2

ln
1 + x
1− x

.

The final step is to solve for y,

y = ln
(

x +
√

1 + x2
)

. (A.54)

A.1.4 Derivatives

Now that we know some elementary functions, we seek their deriva-
tives. We will not spend time exploring the appropriate limits in any rigor-
ous way. We are only interested in the results. We provide these in Table
A.2. We expect that you know the meaning of the derivative and all of the
usual rules, such as the product and quotient rules.

Function Derivative
a 0

xn nxn−1

eax aeax

ln ax 1
x

sin ax a cos ax
cos ax −a sin ax
tan ax a sec2 ax
csc ax −a csc ax cot ax
sec ax a sec ax tan ax
cot ax −a csc2 ax

sinh ax a cosh ax
cosh ax a sinh ax
tanh ax a sech2 ax
csch ax −a csch ax coth ax
sech ax −a sech ax tanh ax
coth ax −a csch2 ax

Table A.2: Table of Common Derivatives
(a is a constant).

Also, you should be familiar with the Chain Rule. Recall that this rule
tells us that if we have a composition of functions, such as the elementary
functions above, then we can compute the derivative of the composite func-
tion. Namely, if h(x) = f (g(x)), then

dh
dx

=
d

dx
( f (g(x))) =

d f
dg

∣∣∣
g(x)

dg
dx

= f ′(g(x))g′(x). (A.55)

Example A.3. Differentiate H(x) = 5 cos
(
π tanh 2x2) .

This is a composition of three functions, H(x) = f (g(h(x))), where f (x) =

5 cos x, g(x) = π tanh x, and h(x) = 2x2. Then the derivative becomes

H′(x) = 5
(
− sin

(
π tanh 2x2

)) d
dx

((
π tanh 2x2

))
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= −5π sin
(

π tanh 2x2
)

sech2 2x2 d
dx

(
2x2
)

= −20πx sin
(

π tanh 2x2
)

sech2 2x2. (A.56)

A.1.5 Integrals

Integration is typically a bit harder. Imagine being given the last
result in (A.56) and having to figure out what was differentiated in order to
get the given function. As you may recall from the Fundamental Theorem
of Calculus, the integral is the inverse operation to differentiation:∫ d f

dx
dx = f (x) + C. (A.57)

It is not always easy to evaluate a given integral. In fact some integrals
are not even doable! However, you learned in calculus that there are some
methods that could yield an answer. While you might be happier using a
computer algebra system, such as Maple or WolframAlpha.com, or a fancy
calculator, you should know a few basic integrals and know how to use
tables for some of the more complicated ones. In fact, it can be exhilarating
when you can do a given integral without reference to a computer or a
Table of Integrals. However, you should be prepared to do some integrals
using what you have been taught in calculus. We will review a few of these
methods and some of the standard integrals in this section.

First of all, there are some integrals you are expected to know without
doing any work. These integrals appear often and are just an application of
the Fundamental Theorem of Calculus to the previous Table A.2. The basic
integrals that students should know off the top of their heads are given in
Table A.3.

These are not the only integrals you should be able to do. We can expand
the list by recalling a few of the techniques that you learned in calculus,
the Method of Substitution, Integration by Parts, integration using partial
fraction decomposition, and trigonometric integrals, and trigonometric sub-
stitution. There are also a few other techniques that you had not seen before.
We will look at several examples.

Example A.4. Evaluate
∫ x√

x2+1
dx.

When confronted with an integral, you should first ask if a simple substitution
would reduce the integral to one you know how to do.

The ugly part of this integral is the x2 + 1 under the square root. So, we let
u = x2 + 1.

Noting that when u = f (x), we have du = f ′(x) dx. For our example, du =

2x dx.
Looking at the integral, part of the integrand can be written as x dx = 1

2 u du.
Then, the integral becomes ∫ x√

x2 + 1
dx =

1
2

∫ du√
u

.
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The substitution has converted our integral into an integral over u. Also, this
integral is doable! It is one of the integrals we should know. Namely, we can write
it as

1
2

∫ du√
u
=

1
2

∫
u−1/2 du.

This is now easily finished after integrating and using the substitution variable to
give ∫ x√

x2 + 1
dx =

1
2

u1/2

1
2

+ C =
√

x2 + 1 + C.

Note that we have added the required integration constant and that the derivative
of the result easily gives the original integrand (after employing the Chain Rule).

Function Indefinite Integral
a ax

xn xn+1

n+1
eax 1

a eax

1
x ln x

sin ax − 1
a cos ax

cos ax 1
a sin ax

sec2 ax 1
a tan ax

sinh ax 1
a cosh ax

cosh ax 1
a sinh ax

sech2 ax 1
a tanh ax

sec x ln | sec x + tan x|
1

a+bx
1
b ln(a + bx)

1
a2+x2

1
a tan−1 ax

1√
a2−x2

1
a sin−1 ax

1√
x2−a2

1
a sec−1 ax

Table A.3: Table of Common Integrals.

Often we are faced with definite integrals, in which we integrate between
two limits. There are several ways to use these limits. However, students
often forget that a change of variables generally means that the limits have
to change.

Example A.5. Evaluate
∫ 2

0
x√

x2+1
dx.

This is the last example but with integration limits added. We proceed as before.
We let u = x2 + 1. As x goes from 0 to 2, u takes values from 1 to 5. So, this
substitution gives∫ 2

0

x√
x2 + 1

dx =
1
2

∫ 5

1

du√
u
=
√

u|51 =
√

5− 1.

When you becomes proficient at integration, you can bypass some of
these steps. In the next example we try to demonstrate the thought pro-
cess involved in using substitution without explicitly using the substitution
variable.
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Example A.6. Evaluate
∫ 2

0
x√

9+4x2 dx

As with the previous example, one sees that the derivative of 9 + 4x2 is propor-
tional to x, which is in the numerator of the integrand. Thus a substitution would
give an integrand of the form u−1/2. So, we expect the answer to be proportional to√

u =
√

9 + 4x2. The starting point is therefore,∫ x√
9 + 4x2

dx = A
√

9 + 4x2,

where A is a constant to be determined.
We can determine A through differentiation since the derivative of the answer

should be the integrand. Thus,

d
dx

A(9 + 4x2)
1
2 = A(9 + 4x2)−

1
2

(
1
2

)
(8x)

= 4xA(9 + 4x2)−
1
2 . (A.58)

Comparing this result with the integrand, we see that the integrand is obtained
when A = 1

4 . Therefore, ∫ x√
9 + 4x2

dx =
1
4

√
9 + 4x2.

We now complete the integral,∫ 2

0

x√
9 + 4x2

dx =
1
4
[5− 3] =

1
2

.

The function

gd(x) =
∫ x

0

dx
cosh x

= 2 tan−1 ex − π

2

is called the Gudermannian and con-
nects trigonometric and hyperbolic func-
tions. This function was named after
Christoph Gudermann (1798-1852), but
introduced by Johann Heinrich Lambert
(1728-1777), who was one of the first to
introduce hyperbolic functions.

Example A.7. Evaluate
∫ dx

cosh x .
This integral can be performed by first using the definition of cosh x followed by

a simple substitution. ∫ dx
cosh x

=
∫ 2

ex + e−x dx

=
∫ 2ex

e2x + 1
dx. (A.59)

Now, we let u = ex and du = exdx. Then,∫ dx
cosh x

=
∫ 2

1 + u2 du

= 2 tan−1 u + C

= 2 tan−1 ex + C. (A.60)

Integration by Parts

When the Method of Substitution fails, there are other methods you can
try. One of the most used is the Method of Integration by Parts. Recall the
Integration by Parts Formula:Integration by Parts Formula.

∫
u dv = uv−

∫
v du. (A.61)
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The idea is that you are given the integral on the left and you can relate it
to an integral on the right. Hopefully, the new integral is one you can do,
or at least it is an easier integral than the one you are trying to evaluate.

However, you are not usually given the functions u and v. You have to
determine them. The integral form that you really have is a function of
another variable, say x. Another form of the Integration by Parts Formula
can be written as∫

f (x)g′(x) dx = f (x)g(x)−
∫

g(x) f ′(x) dx. (A.62)

This form is a bit more complicated in appearance, though it is clearer than
the u-v form as to what is happening. The derivative has been moved from
one function to the other. Recall that this formula was derived by integrating
the product rule for differentiation. (See your calculus text.) Note: Often in physics one needs to

move a derivative between functions in-
side an integrand. The key - use inte-
gration by parts to move the derivative
from one function to the other under an
integral.

These two formulae can be related by using the differential relations

u = f (x) → du = f ′(x) dx,

v = g(x) → dv = g′(x) dx. (A.63)

This also gives a method for applying the Integration by Parts Formula.

Example A.8. Consider the integral
∫

x sin 2x dx. We choose u = x and dv =

sin 2x dx. This gives the correct left side of the Integration by Parts Formula. We
next determine v and du:

du =
du
dx

dx = dx,

v =
∫

dv =
∫

sin 2x dx = −1
2

cos 2x.

We note that one usually does not need the integration constant. Inserting these
expressions into the Integration by Parts Formula, we have∫

x sin 2x dx = −1
2

x cos 2x +
1
2

∫
cos 2x dx.

We see that the new integral is easier to do than the original integral. Had we picked
u = sin 2x and dv = x dx, then the formula still works, but the resulting integral
is not easier.

For completeness, we finish the integration. The result is∫
x sin 2x dx = −1

2
x cos 2x +

1
4

sin 2x + C.

As always, you can check your answer by differentiating the result, a step stu-
dents often forget to do. Namely,

d
dx

(
−1

2
x cos 2x +

1
4

sin 2x + C
)

= −1
2

cos 2x + x sin 2x +
1
4
(2 cos 2x)

= x sin 2x. (A.64)

So, we do get back the integrand in the original integral.
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We can also perform integration by parts on definite integrals. The gen-
eral formula is written as

∫ b

a
f (x)g′(x) dx = f (x)g(x)

∣∣∣∣b
a
−
∫ b

a
g(x) f ′(x) dx. (A.65)

Integration by Parts for Definite Inte-
grals. Example A.9. Consider the integral∫ π

0
x2 cos x dx.

This will require two integrations by parts. First, we let u = x2 and dv = cos x.
Then,

du = 2x dx. v = sin x.

Inserting into the Integration by Parts Formula, we have∫ π

0
x2 cos x dx = x2 sin x

∣∣∣π
0
− 2

∫ π

0
x sin x dx

= −2
∫ π

0
x sin x dx. (A.66)

We note that the resulting integral is easier that the given integral, but we still
cannot do the integral off the top of our head (unless we look at Example 3!). So, we
need to integrate by parts again. (Note: In your calculus class you may recall that
there is a tabular method for carrying out multiple applications of the formula. We
will show this method in the next example.)

We apply integration by parts by letting U = x and dV = sin x dx. This gives
dU = dx and V = − cos x. Therefore, we have∫ π

0
x sin x dx = −x cos x

∣∣∣π
0
+
∫ π

0
cos x dx

= π + sin x
∣∣∣π
0

= π. (A.67)

The final result is ∫ π

0
x2 cos x dx = −2π.

There are other ways to compute integrals of this type. First of all, there
is the Tabular Method to perform integration by parts. A second method is
to use differentiation of parameters under the integral. We will demonstrate
this using examples.

Example A.10. Compute the integral
∫ π

0 x2 cos x dx using the Tabular Method.Using the Tabular Method.

First we identify the two functions under the integral, x2 and cos x. We then
write the two functions and list the derivatives and integrals of each, respectively.
This is shown in Table A.4. Note that we stopped when we reached zero in the left
column.

Next, one draws diagonal arrows, as indicated, with alternating signs attached,
starting with +. The indefinite integral is then obtained by summing the products
of the functions at the ends of the arrows along with the signs on each arrow:∫

x2 cos x dx = x2 sin x + 2x cos x− 2 sin x + C.
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To find the definite integral, one evaluates the antiderivative at the given limits.∫ π

0
x2 cos x dx =

[
x2 sin x + 2x cos x− 2 sin x

]π

0

= (π2 sin π + 2π cos π − 2 sin π)− 0

= −2π. (A.68)

Actually, the Tabular Method works even if a zero does not appear in the
left column. One can go as far as possible, and if a zero does not appear,
then one needs only integrate, if possible, the product of the functions in
the last row, adding the next sign in the alternating sign progression. The
next example shows how this works.

D I

x2 cos x

2x sin x

2 − cos x

0 − sin x

+

−

+

Table A.4: Tabular Method

Example A.11. Use the Tabular Method to compute
∫

e2x sin 3x dx.
As before, we first set up the table as shown in Table A.5.

D I

sin 3x e2x

3 cos 3x 1
2 e2x

−9 sin 3x 1
4 e2x

+

−

Table A.5: Tabular Method, showing a
nonterminating example.

Putting together the pieces, noting that the derivatives in the left column will
never vanish, we have∫

e2x sin 3x dx = (
1
2

sin 3x− 3
4

cos 3x)e2x +
∫

(−9 sin 3x)
(

1
4

e2x
)

dx.

The integral on the right is a multiple of the one on the left, so we can combine
them,

13
4

∫
e2x sin 3x dx = (

1
2

sin 3x− 3
4

cos 3x)e2x,

or ∫
e2x sin 3x dx = (

2
13

sin 3x− 3
13

cos 3x)e2x.
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Differentiation Under the Integral

Another method that one can use to evaluate this integral is to differen-
tiate under the integral sign. This is mentioned in the Richard Feynman’s
memoir Surely You’re Joking, Mr. Feynman!. In the book Feynman recountsDifferentiation Under the Integral Sign

and Feynman’s trick. using this “trick” to be able to do integrals that his MIT classmates could
not do. This is based on a theorem found in Advanced Calculus texts.
Reader’s unfamiliar with partial derivatives should be able to grasp their
use in the following example.

Theorem A.1. Let the functions f (x, t) and ∂ f (x,t)
∂x be continuous in both t, and

x, in the region of the (t, x) plane which includes a(x) ≤ t ≤ b(x), x0 ≤ x ≤ x1,
where the functions a(x) and b(x) are continuous and have continuous derivatives
for x0 ≤ x ≤ x1. Defining

F(x) ≡
∫ b(x)

a(x)
f (x, t) dt,

then

dF(x)
dx

=

(
∂F
∂b

)
db
dx

+

(
∂F
∂a

)
da
dx

+
∫ b(x)

a(x)

∂

∂x
f (x, t) dt

= f (x, b(x)) b′(x)− f (x, a(x)) a′(x) +
∫ b(x)

a(x)

∂

∂x
f (x, t) dt.

(A.69)

for x0 ≤ x ≤ x1. This is a generalized version of the Fundamental Theorem of
Calculus.

In the next examples we show how we can use this theorem to bypass
integration by parts.

Example A.12. Use differentiation under the integral sign to evaluate
∫

xex dx.
First, consider the integral

I(x, a) =
∫

eax dx =
eax

a
.

Then,
∂I(x, a)

∂a
=
∫

xeax dx.

So, ∫
xeax dx =

∂I(x, a)
∂a

=
∂

∂a

(∫
eax dx

)
=

∂

∂a

(
eax

a

)
=

(
x
a
− 1

a2

)
eax. (A.70)
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Evaluating this result at a = 1, we have∫
xex dx = (x− 1)ex.

The reader can verify this result by employing the previous methods or by just
differentiating the result.

Example A.13. We will do the integral
∫ π

0 x2 cos x dx once more. First, consider
the integral

I(a) ≡
∫ π

0
cos ax dx

=
sin ax

a

∣∣∣π
0

=
sin aπ

a
. (A.71)

Differentiating the integral I(a) with respect to a twice gives

d2 I(a)
da2 = −

∫ π

0
x2 cos ax dx. (A.72)

Evaluation of this result at a = 1 leads to the desired result. Namely,

∫ π

0
x2 cos x dx = −d2 I(a)

da2

∣∣∣
a=1

= − d2

da2

(
sin aπ

a

) ∣∣∣
a=1

= − d
da

(
aπ cos aπ − sin aπ

a2

) ∣∣∣
a=1

= −
(

a2π2 sin aπ + 2aπ cos aπ − 2 sin aπ

a3

) ∣∣∣
a=1

= −2π. (A.73)

Trigonometric Integrals

Other types of integrals that you will see often are trigonometric inte-
grals. In particular, integrals involving powers of sines and cosines. For
odd powers, a simple substitution will turn the integrals into simple pow-
ers.

Example A.14. For example, consider∫
cos3 x dx.

This can be rewritten as ∫
cos3 x dx =

∫
cos2 x cos x dx.

Let u = sin x. Then, du = cos x dx. Since cos2 x = 1− sin2 x, we have Integration of odd powers of sine and co-
sine.
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∫
cos3 x dx =

∫
cos2 x cos x dx

=
∫
(1− u2) du

= u− 1
3

u3 + C

= sin x− 1
3

sin3 x + C. (A.74)

A quick check confirms the answer:

d
dx

(
sin x− 1

3
sin3 x + C

)
= cos x− sin2 x cos x

= cos x(1− sin2 x)

= cos3 x. (A.75)

Even powers of sines and cosines are a little more complicated, but doable.
In these cases we need the half angle formulae (A.24)-(A.25).Integration of even powers of sine and

cosine.
Example A.15. As an example, we will compute∫ 2π

0
cos2 x dx.

Substituting the half angle formula for cos2 x, we have∫ 2π

0
cos2 x dx =

1
2

∫ 2π

0
(1 + cos 2x) dx

=
1
2

(
x− 1

2
sin 2x

)2π

0
= π. (A.76)

We note that this result appears often in physics. When looking at rootRecall that RMS averages refer to the
root mean square average. This is com-
puted by first computing the average, or
mean, of the square of some quantity.
Then one takes the square root. Typi-
cal examples are RMS voltage, RMS cur-
rent, and the average energy in an elec-
tromagnetic wave. AC currents oscillate
so fast that the measured value is the
RMS voltage.

mean square averages of sinusoidal waves, one needs the average of the
square of sines and cosines. Recall that the average of a function on interval
[a, b] is given as

fave =
1

b− a

∫ b

a
f (x) dx. (A.77)

So, the average of cos2 x over one period is

1
2π

∫ 2π

0
cos2 x dx =

1
2

. (A.78)

The root mean square is then found by taking the square root, 1√
2

.

Trigonometric Function Substitution

Another class of integrals typically studied in calculus are those involv-
ing the forms

√
1− x2,

√
1 + x2, or

√
x2 − 1. These can be simplified through

the use of trigonometric substitutions. The idea is to combine the two terms
under the radical into one term using trigonometric identities. We will con-
sider some typical examples.
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Example A.16. Evaluate
∫ √

1− x2 dx.
Since 1− sin2 θ = cos2 θ, we perform the sine substitution

x = sin θ, dx = cos θ dθ.

Then, In any of these computations careful at-
tention has to be paid to simplifying the
radical. This is because

√
x2 = |x|.

For example,
√
(−5)2 =

√
25 = 5. For

x = sin θ, one typically specifies the do-
main −π/2 ≤ θ ≤ π/2. In this domain
we have | cos θ| = cos θ.

∫ √
1− x2 dx =

∫ √
1− sin2 θ cos θ dθ

=
∫

cos2 θ dθ. (A.79)

Using the last example, we have∫ √
1− x2 dx =

1
2

(
θ − 1

2
sin 2θ

)
+ C.

However, we need to write the answer in terms of x. We do this by first using
the double angle formula for sin 2θ and cos θ =

√
1− x2 to obtain∫ √

1− x2 dx =
1
2

(
sin−1 x− x

√
1− x2

)
+ C.

Similar trigonometric substitutions result for integrands involving
√

1 + x2

and
√

x2 − 1. The substitutions are summarized in Table A.6. The simpli-
fication of the given form is then obtained using trigonometric identities.
This can also be accomplished by referring to the right triangles shown in
Figure A.5.

Form Substitution Differential√
a2 − x2 x = a sin θ dx = a cos θ dθ√
a2 + x2 x = a tan θ dx = a sec2 θ dθ√
x2 − a2 x = a sec θ dx = a sec θ tan θ dθ

Table A.6: Standard trigonometric sub-
stitutions.

θ

x = sin θ

1

x

√
1− x2

θ

x = tan θ

√
1 + x2

x

1
θ

x = sec θ

x

√
x2 − 1

1

Figure A.5: Geometric relations used in
trigonometric substitution.

Example A.17. Evaluate
∫ 2

0

√
x2 + 4 dx.

Let x = 2 tan θ. Then, dx = 2 sec2 θ dθ and√
x2 + 4 =

√
4 tan2 θ + 4 = 2 sec θ.

So, the integral becomes∫ 2

0

√
x2 + 4 dx = 4

∫ π/4

0
sec3 θ dθ.
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One has to recall, or look up,∫
sec3 θ dθ =

1
2
(tan θ sec θ + ln | sec θ + tan θ|) + C.

This gives ∫ 2

0

√
x2 + 4 dx = 2 [tan θ sec θ + ln | sec θ + tan θ|]π/4

0

= 2
(√

2 + ln |
√

2 + 1| − (0 + ln(1))
)

= 2(
√

2 + ln(
√

2 + 1)). (A.80)

Example A.18. Evaluate
∫ dx√

x2−1
, x ≥ 1.

In this case one needs the secant substitution. This yields∫ dx√
x2 − 1

=
∫ sec θ tan θ dθ√

sec2 θ − 1

=
∫ sec θ tan θ dθ

tan θ

=
∫

sec θdθ

= ln(sec θ + tan θ) + C

= ln(x +
√

x2 − 1) + C. (A.81)

Example A.19. Evaluate
∫ dx

x
√

x2−1
, x ≥ 1.

Again we can use a secant substitution. This yields∫ dx
x
√

x2 − 1
=

∫ sec θ tan θ dθ

sec θ
√

sec2 θ − 1

=
∫ sec θ tan θ

sec θ tan θ
dθ

=
∫

dθ = θ + C = sec−1 x + C. (A.82)

Hyperbolic Function Substitution

Even though trigonometric substitution plays a role in the calculus pro-
gram, students often see hyperbolic function substitution used in physics
courses. The reason might be because hyperbolic function substitution is
sometimes simpler. The idea is the same as for trigonometric substitution.
We use an identity to simplify the radical.

Example A.20. Evaluate
∫ 2

0

√
x2 + 4 dx using the substitution x = 2 sinh u.

Since x = 2 sinh u, we have dx = 2 cosh u du. Also, we can use the identity
cosh2 u− sinh2 u = 1 to rewrite√

x2 + 4 =

√
4 sinh2 u + 4 = 2 cosh u.

The integral can be now be evaluated using these substitutions and some hyper-
bolic function identities,∫ 2

0

√
x2 + 4 dx = 4

∫ sinh−1 1

0
cosh2 u du
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= 2
∫ sinh−1 1

0
(1 + cosh 2u) du

= 2
[

u +
1
2

sinh 2u
]sinh−1 1

0

= 2 [u + sinh u cosh u]sinh−1 1
0

= 2
(

sinh−1 1 +
√

2
)

. (A.83)

In Example A.17 we used a trigonometric substitution and found∫ 2

0

√
x2 + 4 = 2(

√
2 + ln(

√
2 + 1)).

This is the same result since sinh−1 1 = ln(1 +
√

2).

Example A.21. Evaluate
∫ dx√

x2−1
for x ≥ 1 using hyperbolic function substitu-

tion.
This integral was evaluated in Example A.19 using the trigonometric substitu-

tion x = sec θ and the resulting integral of sec θ had to be recalled. Here we will
use the substitution

x = cosh u, dx = sinh u du,
√

x2 − 1 =

√
cosh2 u− 1 = sinh u.

Then, ∫ dx√
x2 − 1

=
∫ sinh u du

sinh u

=
∫

du = u + C

= cosh−1 x + C

=
1
2

ln(x +
√

x2 − 1) + C, x ≥ 1. (A.84)

This is the same result as we had obtained previously, but this derivation was a
little cleaner.

Also, we can extend this result to values x ≤ −1 by letting x = − cosh u. This
gives ∫ dx√

x2 − 1
=

1
2

ln(x +
√

x2 − 1) + C, x ≤ −1.

Combining these results, we have shown∫ dx√
x2 − 1

=
1
2

ln(|x|+
√

x2 − 1) + C, x2 ≥ 1.

We have seen in the last example that the use of hyperbolic function sub-
stitution allows us to bypass integrating the secant function in Example A.19

when using trigonometric substitutions. In fact, we can use hyperbolic sub-
stitutions to evaluate integrals of powers of secants. Comparing Examples
A.19 and A.21, we consider the transformation sec θ = cosh u. The relation
between differentials is found by differentiation, giving

sec θ tan θ dθ = sinh u du.
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Since
tanh2 θ = sec2 θ − 1,

we have tan θ = sinh u, therefore

dθ =
du

cosh u
.

In the next example we show how useful this transformation is.Evaluation of
∫

sec θ dθ.

Example A.22. Evaluate
∫

sec θ dθ using hyperbolic function substitution.
From the discussion in the last paragraph, we have∫

sec θ dθ =
∫

du

= u + C

= cosh−1(sec θ) + C (A.85)

We can express this result in the usual form by using the logarithmic form of the
inverse hyperbolic cosine,

cosh−1 x = ln(x +
√

x2 − 1).

The result is ∫
sec θ dθ = ln(sec θ + tan θ).

This example was fairly simple using the transformation sec θ = cosh u.
Another common integral that arises often is integrations of sec3 θ. In a
typical calculus class this integral is evaluated using integration by parts.
However. that leads to a tricky manipulation that is a bit scary the first time
it is encountered (and probably upon several more encounters.) In the next
example, we will show how hyperbolic function substitution is simpler.Evaluation of

∫
sec3 θ dθ.

Example A.23. Evaluate
∫

sec3 θ dθ using hyperbolic function substitution.
First, we consider the transformation sec θ = cosh u with dθ = du

cosh u . Then,∫
sec3 θ dθ =

∫ du
cosh u

.

This integral was done in Example A.7, leading to∫
sec3 θ dθ = 2 tan−1 eu + C.

While correct, this is not the form usually encountered. Instead, we make the
slightly different transformation tan θ = sinh u. Since sec2 θ = 1 + tan2 θ, we
find sec θ = cosh u. As before, we find

dθ =
du

cosh u
.

Using this transformation and several identities, the integral becomes∫
sec3 θ dθ =

∫
cosh2 u du
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=
1
2

∫
(1 + cosh 2u) du

=
1
2

(
u +

1
2

sinh 2u
)

=
1
2
(u + sinh u cosh u)

=
1
2

(
cosh−1(sec θ) + tan θ sec θ

)
=

1
2
(sec θ tan θ + ln(sec θ + tan θ)) . (A.86)

There are many other integration methods, some of which we will visit
in other parts of the book, such as partial fraction decomposition and nu-
merical integration. Another topic which we will revisit is power series.

A.1.6 Geometric Series

Geometric series are fairly common and
will be used throughout the book. You
should learn to recognize them and
work with them.

Infinite series occur often in mathematics and physics. Two series
which occur often are the geometric series and the binomial series. we will
discuss these next.

A geometric series is of the form

∞

∑
n=0

arn = a + ar + ar2 + . . . + arn + . . . . (A.87)

Here a is the first term and r is called the ratio. It is called the ratio because
the ratio of two consecutive terms in the sum is r.

Example A.24. For example,

1 +
1
2
+

1
4
+

1
8
+ . . .

is an example of a geometric series. We can write this using summation notation,

1 +
1
2
+

1
4
+

1
8
+ . . . =

∞

∑
n=0

1
(

1
2

)n
.

Thus, a = 1 is the first term and r = 1
2 is the common ratio of successive terms.

Next, we seek the sum of this infinite series, if it exists.

The sum of a geometric series, when it exists, can easily be determined.
We consider the nth partial sum:

sn = a + ar + . . . + arn−2 + arn−1. (A.88)

Now, multiply this equation by r.

rsn = ar + ar2 + . . . + arn−1 + arn. (A.89)

Subtracting these two equations, while noting the many cancelations, we
have

(1− r)sn = (a + ar + . . . + arn−2 + arn−1)
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−(ar + ar2 + . . . + arn−1 + arn)

= a− arn

= a(1− rn). (A.90)

Thus, the nth partial sums can be written in the compact form

sn =
a(1− rn)

1− r
. (A.91)

The sum, if it exists, is given by S = limn→∞ sn. Letting n get large in the
partial sum (A.91), we need only evaluate limn→∞ rn. From the special limits
in the Appendix we know that this limit is zero for |r| < 1. Thus, we have

Geometric Series

The sum of the geometric series exists for |r| < 1 and is given by

∞

∑
n=0

arn =
a

1− r
, |r| < 1. (A.92)

The reader should verify that the geometric series diverges for all other
values of r. Namely, consider what happens for the separate cases |r| > 1,
r = 1 and r = −1.

Next, we present a few typical examples of geometric series.

Example A.25. ∑∞
n=0

1
2n

In this case we have that a = 1 and r = 1
2 . Therefore, this infinite series con-

verges and the sum is

S =
1

1− 1
2
= 2.

Example A.26. ∑∞
k=2

4
3k

In this example we first note that the first term occurs for k = 2. It sometimes
helps to write out the terms of the series,

∞

∑
k=2

4
3k =

4
32 +

4
33 +

4
34 +

4
35 + . . . .

Looking at the series, we see that a = 4
9 and r = 1

3 . Since |r|<1, the geometric
series converges. So, the sum of the series is given by

S =
4
9

1− 1
3
=

2
3

.

Example A.27. ∑∞
n=1(

3
2n − 2

5n )

Finally, in this case we do not have a geometric series, but we do have the differ-
ence of two geometric series. Of course, we need to be careful whenever rearranging
infinite series. In this case it is allowed 1. Thus, we have

1 A rearrangement of terms in an infinite
series is allowed when the series is abso-
lutely convergent. (See the Appendix.)

∞

∑
n=1

(
3
2n −

2
5n

)
=

∞

∑
n=1

3
2n −

∞

∑
n=1

2
5n .
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Now we can add both geometric series to obtain

∞

∑
n=1

(
3
2n −

2
5n

)
=

3
2

1− 1
2
−

2
5

1− 1
5
= 3− 1

2
=

5
2

.

Geometric series are important because they are easily recognized and
summed. Other series which can be summed include special cases of Taylor
series and telescoping series. Next, we show an example of a telescoping
series.

Example A.28. ∑∞
n=1

1
n(n+1) The first few terms of this series are

∞

∑
n=1

1
n(n + 1)

=
1
2
+

1
6
+

1
12

+
1

20
+ . . . .

It does not appear that we can sum this infinite series. However, if we used the
partial fraction expansion

1
n(n + 1)

=
1
n
− 1

n + 1
,

then we find the kth partial sum can be written as

sk =
k

∑
n=1

1
n(n + 1)

=
k

∑
n=1

(
1
n
− 1

n + 1

)
=

(
1
1
− 1

2

)
+

(
1
2
− 1

3

)
+ · · ·+

(
1
k
− 1

k + 1

)
. (A.93)

We see that there are many cancelations of neighboring terms, leading to the series
collapsing (like a retractable telescope) to something manageable:

sk = 1− 1
k + 1

.

Taking the limit as k→ ∞, we find ∑∞
n=1

1
n(n+1) = 1.

A.1.7 Power Series

Another example of an infinite series that the student has encoun-
tered in previous courses is the power series. Examples of such series are
provided by Taylor and Maclaurin series.

Actually, what are now known as Taylor
and Maclaurin series were known long
before they were named. James Gregory
(1638-1675) has been recognized for dis-
covering Taylor series, which were later
named after Brook Taylor (1685-1731) .
Similarly, Colin Maclaurin (1698-1746)
did not actually discover Maclaurin se-
ries, but the name was adopted because
of his particular use of series.

A power series expansion about x = a with coefficient sequence cn is
given by ∑∞

n=0 cn(x− a)n. For now we will consider all constants to be real
numbers with x in some subset of the set of real numbers.

Consider the following expansion about x = 0 :

∞

∑
n=0

xn = 1 + x + x2 + . . . . (A.94)
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We would like to make sense of such expansions. For what values of x
will this infinite series converge? Until now we did not pay much attention
to which infinite series might converge. However, this particular series is
already familiar to us. It is a geometric series. Note that each term is gotten
from the previous one through multiplication by r = x. The first term is
a = 1. So, from Equation (A.92), we have that the sum of the series is given
by

∞

∑
n=0

xn =
1

1− x
, |x| < 1.

Figure A.6: (a) Comparison of 1
1−x

(solid) to 1 + x (dashed) for x ∈
[−0.2, 0.2]. (b) Comparison of 1

1−x (solid)
to 1 + x + x2 (dashed) for x ∈ [−0.2, 0.2].

f (x)
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(a)

f (x)

x
−0.2−0.1 0.1 0.2

0.80

0.90

1.00

1.10

1.20

(b)

In this case we see that the sum, when it exists, is a simple function. In
fact, when x is small, we can use this infinite series to provide approxima-
tions to the function (1− x)−1. If x is small enough, we can write

(1− x)−1 ≈ 1 + x.

In Figure A.6a we see that for small values of x these functions do agree.

f (x)

x
−1.0 −.5 0 .5

1.0

2.0

3.0

Figure A.7: Comparison of 1
1−x (solid) to

1 + x + x2 (dashed) and 1 + x + x2 + x3

(dotted) for x ∈ [−1.0, 0.7].
Of course, if we want better agreement, we select more terms. In Fig-

ure A.6b we see what happens when we do so. The agreement is much
better. But extending the interval, we see in Figure A.7 that keeping only
quadratic terms may not be good enough. Keeping the cubic terms gives
better agreement over the interval.

Finally, in Figure A.8 we show the sum of the first 21 terms over the entire
interval [−1, 1]. Note that there are problems with approximations near the
endpoints of the interval, x = ±1.

f (x)

x
−1.0 −.5 0 .5 1.0

1.0

2.0

3.0

4.0

5.0

Figure A.8: Comparison of 1
1−x (solid) to

∑20
n=0 xn for x ∈ [−1, 1].

Such polynomial approximations are called Taylor polynomials. Thus,
T3(x) = 1 + x + x2 + x3 is the third order Taylor polynomial approximation
of f (x) = 1

1−x .
With this example we have seen how useful a series representation might

be for a given function. However, the series representation was a simple
geometric series, which we already knew how to sum. Is there a way to
begin with a function and then find its series representation? Once we have
such a representation, will the series converge to the function with which
we started? For what values of x will it converge? These questions can be
answered by recalling the definitions of Taylor and Maclaurin series.
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A Taylor series expansion of f (x) about x = a is the series Taylor series expansion.

f (x) ∼
∞

∑
n=0

cn(x− a)n, (A.95)

where

cn =
f (n)(a)

n!
. (A.96)

Note that we use ∼ to indicate that we have yet to determine when the
series may converge to the given function. A special class of series are
those Taylor series for which the expansion is about x = 0. These are called
Maclaurin series.

A Maclaurin series expansion of f (x) is a Taylor series expansion of Maclaurin series expansion.

f (x) about x = 0, or

f (x) ∼
∞

∑
n=0

cnxn, (A.97)

where

cn =
f (n)(0)

n!
. (A.98)

Example A.29. Expand f (x) = ex about x = 0.
We begin by creating a table. In order to compute the expansion coefficients, cn,

we will need to perform repeated differentiations of f (x). So, we provide a table for
these derivatives. Then, we only need to evaluate the second column at x = 0 and
divide by n!.

n f (n)(x) f (n)(0) cn

0 ex e0 = 1 1
0! = 1

1 ex e0 = 1 1
1! = 1

2 ex e0 = 1 1
2!

3 ex e0 = 1 1
3!

Next, we look at the last column and try to determine a pattern so that we can
write down the general term of the series. If there is only a need to get a polynomial
approximation, then the first few terms may be sufficient. In this case, the pattern
is obvious: cn = 1

n! . So,

ex ∼
∞

∑
n=0

xn

n!
.

Example A.30. Expand f (x) = ex about x = 1.
Here we seek an expansion of the form ex ∼ ∑∞

n=0 cn(x− 1)n. We could create
a table like the last example. In fact, the last column would have values of the form
e
n! . (You should confirm this.) However, we will make use of the Maclaurin series
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expansion for ex and get the result quicker. Note that ex = ex−1+1 = eex−1. Now,
apply the known expansion for ex :

ex ∼ e
(

1 + (x− 1) +
(x− 1)2

2
+

(x− 1)3

3!
+ . . .

)
=

∞

∑
n=0

e(x− 1)n

n!
.

Example A.31. Expand f (x) = 1
1−x about x = 0.

This is the example with which we started our discussion. We can set up a table
in order to find the Maclaurin series coefficients. We see from the last column of the
table that we get back the geometric series (A.94).

n f (n)(x) f (n)(0) cn

0 1
1−x 1 1

0! = 1

1 1
(1−x)2 1 1

1! = 1

2 2(1)
(1−x)3 2(1) 2!

2! = 1

3 3(2)(1)
(1−x)4 3(2)(1) 3!

3! = 1

So, we have found
1

1− x
∼

∞

∑
n=0

xn.

We can replace ∼ by equality if we can determine the range of x-values
for which the resulting infinite series converges. We will investigate such
convergence shortly.

Series expansions for many elementary functions arise in a variety of
applications. Some common expansions are provided in Table A.7.

We still need to determine the values of x for which a given power series
converges. The first five of the above expansions converge for all reals, but
the others only converge for |x| < 1.

We consider the convergence of ∑∞
n=0 cn(x − a)n. For x = a the series

obviously converges. Will it converge for other points? One can prove

Theorem A.2. If ∑∞
n=0 cn(b− a)n converges for b 6= a, then

∑∞
n=0 cn(x− a)n converges absolutely for all x satisfying |x− a| < |b− a|.

This leads to three possibilities

1. ∑∞
n=0 cn(x− a)n may only converge at x = a.

2. ∑∞
n=0 cn(x− a)n may converge for all real numbers.

3. ∑∞
n=0 cn(x − a)n converges for |x − a| < R and diverges for |x −

a| > R.

The number R is called the radius of convergence of the power seriesInterval and radius of convergence.
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Series Expansions You Should Know

ex = 1 + x +
x2

2
+

x3

3!
+

x4

4!
+ . . . =

∞

∑
n=0

xn

n!

cos x = 1− x2

2
+

x4

4!
− . . . =

∞

∑
n=0

(−1)n x2n

(2n)!

sin x = x− x3

3!
+

x5

5!
− . . . =

∞

∑
n=0

(−1)n x2n+1

(2n + 1)!

cosh x = 1 +
x2

2
+

x4

4!
+ . . . =

∞

∑
n=0

x2n

(2n)!

sinh x = x +
x3

3!
+

x5

5!
+ . . . =

∞

∑
n=0

x2n+1

(2n + 1)!
1

1− x
= 1 + x + x2 + x3 + . . . =

∞

∑
n=0

xn

1
1 + x

= 1− x + x2 − x3 + . . . =
∞

∑
n=0

(−x)n

tan−1 x = x− x3

3
+

x5

5
− x7

7
+ . . . =

∞

∑
n=0

(−1)n x2n+1

2n + 1

ln(1 + x) = x− x2

2
+

x3

3
− . . . =

∞

∑
n=1

(−1)n+1 xn

n

Table A.7: Common Mclaurin Series Ex-
pansions

and (a− R, a + R) is called the interval of convergence. Convergence at the
endpoints of this interval has to be tested for each power series.

In order to determine the interval of convergence, one needs only note
that when a power series converges, it does so absolutely. So, we need only
test the convergence of ∑∞

n=0 |cn(x− a)n| = ∑∞
n=0 |cn||x− a|n. This is easily

done using either the ratio test or the nth root test. We first identify the
nonnegative terms an = |cn||x − a|n, using the notation from Section ??.
Then, we apply one of the convergence tests.

For example, the nth Root Test gives the convergence condition for an =

|cn||x− a|n,

ρ = lim
n→∞

n
√

an = lim
n→∞

n
√
|cn||x− a| < 1.

Since |x− a| is independent of n,, we can factor it out of the limit and divide
the value of the limit to obtain

|x− a| <
(

lim
n→∞

n
√
|cn|
)−1

≡ R.

Thus, we have found the radius of convergence, R.
Similarly, we can apply the Ratio Test.

ρ = lim
n→∞

an+1

an
= lim

n→∞

|cn+1|
|cn|

|x− a| < 1.

Again, we rewrite this result to determine the radius of convergence:

|x− a| <
(

lim
n→∞

|cn+1|
|cn|

)−1

≡ R.
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Example A.32. Find the radius of convergence of the series ex = ∑∞
n=0

xn

n! .
Since there is a factorial, we will use the Ratio Test.

ρ = lim
n→∞

|n!|
|(n + 1)!| |x| = lim

n→∞

1
n + 1

|x| = 0.

Since ρ = 0, it is independent of |x| and thus the series converges for all x. We also
can say that the radius of convergence is infinite.

Example A.33. Find the radius of convergence of the series 1
1−x = ∑∞

n=0 xn.
In this example we will use the nth Root Test.

ρ = lim
n→∞

n√1|x| = |x| < 1.

Thus, we find that we have absolute convergence for |x| < 1. Setting x = 1 or
x = −1, we find that the resulting series do not converge. So, the endpoints are not
included in the complete interval of convergence.

In this example we could have also used the Ratio Test. Thus,

ρ = lim
n→∞

1
1
|x| = |x| < 1.

We have obtained the same result as when we used the nth Root Test.

Example A.34. Find the radius of convergence of the series ∑∞
n=1

3n(x−2)n

n .
In this example, we have an expansion about x = 2. Using the nth Root Test we

find that

ρ = lim
n→∞

n

√
3n

n
|x− 2| = 3|x− 2| < 1.

Solving for |x− 2| in this inequality, we find |x− 2| < 1
3 . Thus, the radius of

convergence is R = 1
3 and the interval of convergence is

(
2− 1

3 , 2 + 1
3

)
=
( 5

3 , 7
3
)

.

As for the endpoints, we first test the point x = 7
3 . The resulting series is

∑∞
n=1

3n( 1
3 )

n

n = ∑∞
n=1

1
n . This is the harmonic series, and thus it does not converge.

Inserting x = 5
3 , we get the alternating harmonic series. This series does converge.

So, we have convergence on [ 5
3 , 7

3 ). However, it is only conditionally convergent at
the left endpoint, x = 5

3 .

Example A.35. Find an expansion of f (x) = 1
x+2 about x = 1.

Instead of explicitly computing the Taylor series expansion for this function, we
can make use of an already known function. We first write f (x) as a function of
x− 1, since we are expanding about x = 1; i.e., we are seeking a series whose terms
are powers of x− 1.

This expansion is easily done by noting that 1
x+2 = 1

(x−1)+3 . Factoring out a 3,
we can rewrite this expression as a sum of a geometric series. Namely, we use the
expansion for

g(z) =
1

1 + z
= 1− z + z2 − z3 + . . . . (A.99)
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and then we rewrite f (x) as

f (x) =
1

x + 2

=
1

(x− 1) + 3

=
1

3[1 + 1
3 (x− 1)]

=
1
3

1
1 + 1

3 (x− 1)
. (A.100)

Note that f (x) = 1
3 g( 1

3 (x− 1)) for g(z) = 1
1+z . So, the expansion becomes

f (x) =
1
3

[
1− 1

3
(x− 1) +

(
1
3
(x− 1)

)2
−
(

1
3
(x− 1)

)3
+ . . .

]
.

This can further be simplified as

f (x) =
1
3
− 1

9
(x− 1) +

1
27

(x− 1)2 − . . . .

Convergence is easily established. The expansion for g(z) converges for |z| < 1.
So, the expansion for f (x) converges for | − 1

3 (x − 1)| < 1. This implies that
|x − 1| < 3. Putting this inequality in interval notation, we have that the power
series converges absolutely for x ∈ (−2, 4). Inserting the endpoints, one can show
that the series diverges for both x = −2 and x = 4. You should verify this!

Example A.36. Prove Euler’s Formula: eiθ = cos θ + i sin θ.
Euler’s Formula, eiθ = cos θ + i sin θ,
is an important formula and is used
throughout the text.

As a final application, we can derive Euler’s Formula ,

eiθ = cos θ + i sin θ,

where i =
√
−1. We naively use the expansion for ex with x = iθ. This leads us to

eiθ = 1 + iθ +
(iθ)2

2!
+

(iθ)3

3!
+

(iθ)4

4!
+ . . . .

Next we note that each term has a power of i. The sequence of powers of i is
given as {1, i,−1,−i, 1, i,−1,−i, 1, i,−1,−i, . . .}. See the pattern? We conclude
that

in = ir, where r = remainder after dividing n by 4.

This gives

eiθ =

(
1− θ2

2!
+

θ4

4!
− . . .

)
+ i
(

θ − θ3

3!
+

θ5

5!
− . . .

)
.

We recognize the expansions in the parentheses as those for the cosine and sine
functions. Thus, we end with Euler’s Formula.

We further derive relations from this result, which will be important for
our next studies. From Euler’s formula we have that for integer n:

einθ = cos(nθ) + i sin(nθ).
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We also have
einθ =

(
eiθ
)n

= (cos θ + i sin θ)n .

Equating these two expressions, we are led to de Moivre’s Formula, named
after Abraham de Moivre (1667-1754),

(cos θ + i sin θ)n = cos(nθ) + i sin(nθ). (A.101)

de Moivre’s Formula.

This formula is useful for deriving identities relating powers of sines or
cosines to simple functions. For example, if we take n = 2 in Equation
(A.101), we find

cos 2θ + i sin 2θ = (cos θ + i sin θ)2 = cos2 θ − sin2 θ + 2i sin θ cos θ.

Looking at the real and imaginary parts of this result leads to the well
known double angle identities

cos 2θ = cos2 θ − sin2 θ, sin 2θ = 2 sin θ cos θ.

Here we see elegant proofs of well
known trigonometric identities.

cos 2θ = cos2 θ − sin2 θ,(A.102)

sin 2θ = 2 sin θ cos θ,

cos2 θ =
1
2
(1 + cos 2θ),

sin2 θ =
1
2
(1− cos 2θ).

Replacing cos2 θ = 1− sin2 θ or sin2 θ = 1− cos2 θ leads to the half angle
formulae:

cos2 θ =
1
2
(1 + cos 2θ), sin2 θ =

1
2
(1− cos 2θ).

Trigonometric functions can be written
in terms of complex exponentials:

cos θ =
eiθ + e−iθ

2
,

sin θ =
eiθ − e−iθ

2i
.

We can also use Euler’s Formula to write sines and cosines in terms of
complex exponentials. We first note that due to the fact that the cosine is an
even function and the sine is an odd function, we have

e−iθ = cos θ − i sin θ.

Combining this with Euler’s Formula, we have that

cos θ =
eiθ + e−iθ

2
, sin θ =

eiθ − e−iθ

2i
.

Hyperbolic functions and trigonometric
functions are intimately related.

cos(ix) = cosh x,

sin(ix) = −i sinh x.

We finally note that there is a simple relationship between hyperbolic
functions and trigonometric functions. Recall that

cosh x =
ex + e−x

2
.

If we let x = iθ, then we have that cosh(iθ) = cos θ and cos(ix) = cosh x.
Similarly, we can show that sinh(iθ) = i sin θ and sin(ix) = −i sinh x.

A.1.8 The Binomial Expansion

Another series expansion which occurs often in examples and ap-
plications is the binomial expansion. This is simply the expansion of theThe binomial expansion is a special se-

ries expansion used to approximate ex-
pressions of the form (a + b)p for b� a,
or (1 + x)p for |x| � 1.

expression (a + b)p in powers of a and b. We will investigate this expan-
sion first for nonnegative integer powers p and then derive the expansion
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for other values of p. While the binomial expansion can be obtained using
Taylor series, we will provide a more intuitive derivation to show that

(a + b)n =
n

∑
r=0

Cn
r an−rbr, (A.103)

where the Cn
r are called the binomial coefficients.

Lets list some of the common expansions for nonnegative integer powers.

(a + b)0 = 1

(a + b)1 = a + b

(a + b)2 = a2 + 2ab + b2

(a + b)3 = a3 + 3a2b + 3ab2 + b3

(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4

· · · (A.104)

We now look at the patterns of the terms in the expansions. First, we
note that each term consists of a product of a power of a and a power of
b. The powers of a are decreasing from n to 0 in the expansion of (a + b)n.
Similarly, the powers of b increase from 0 to n. The sums of the exponents in
each term is n. So, we can write the (k+ 1)st term in the expansion as an−kbk.
For example, in the expansion of (a + b)51 the 6th term is a51−5b5 = a46b5.
However, we do not yet know the numerical coefficients in the expansion.

Let’s list the coefficients for the above expansions.

n = 0 : 1
n = 1 : 1 1
n = 2 : 1 2 1
n = 3 : 1 3 3 1
n = 4 : 1 4 6 4 1

(A.105)

This pattern is the famous Pascal’s triangle.2 There are many interesting

2 Pascal’s triangle is named after Blaise
Pascal (1623-1662). While such configu-
rations of numbers were known earlier
in history, Pascal published them and
applied them to probability theory.

Pascal’s triangle has many unusual
properties and a variety of uses:

• Horizontal rows add to powers of 2.

• The horizontal rows are powers of 11

(1, 11, 121, 1331, etc.).

• Adding any two successive numbers
in the diagonal 1-3-6-10-15-21-28...
results in a perfect square.

• When the first number to the right of
the 1 in any row is a prime number,
all numbers in that row are divisible
by that prime number. The reader
can readily check this for the n = 5
and n = 7 rows.

• Sums along certain diagonals leads
to the Fibonacci sequence. These
diagonals are parallel to the line con-
necting the first 1 for n = 3 row and
the 2 in the n = 2 row.

features of this triangle. But we will first ask how each row can be generated.
We see that each row begins and ends with a one. The second term and

next to last term have a coefficient of n. Next we note that consecutive pairs
in each row can be added to obtain entries in the next row. For example, we
have for rows n = 2 and n = 3 that 1 + 2 = 3 and 2 + 1 = 3 :

n = 2 : 1 2 1
↘ ↙ ↘ ↙

n = 3 : 1 3 3 1
(A.106)

With this in mind, we can generate the next several rows of our triangle.

n = 3 : 1 3 3 1
n = 4 : 1 4 6 4 1
n = 5 : 1 5 10 10 5 1
n = 6 : 1 6 15 20 15 6 1

(A.107)
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So, we use the numbers in row n = 4 to generate entries in row n = 5 :
1 + 4 = 5, 4 + 6 = 10. We then use row n = 5 to get row n = 6, etc.

Of course, it would take a while to compute each row up to the desired n.
Fortunately, there is a simple expression for computing a specific coefficient.
Consider the kth term in the expansion of (a + b)n. Let r = k − 1, for
k = 1, . . . , n + 1. Then this term is of the form Cn

r an−rbr. We have seen that
the coefficients satisfy

Cn
r = Cn−1

r + Cn−1
r−1 .

Actually, the binomial coefficients, Cn
r , have been found to take a simple

form,

Cn
r =

n!
(n− r)!r!

≡
(

n
r

)
.

This is nothing other than the combinatoric symbol for determining how to
choose n objects r at a time. In the binomial expansions this makes sense.
We have to count the number of ways that we can arrange r products of b
with n− r products of a. There are n slots to place the b’s. For example, the
r = 2 case for n = 4 involves the six products: aabb, abab, abba, baab, baba,
and bbaa. Thus, it is natural to use this notation.Andreas Freiherr von Ettingshausen

(1796-1878) was a German mathemati-
cian and physicist who in 1826 intro-

duced the notation
(

n
r

)
. However,

the binomial coefficients were known by
the Hindus centuries beforehand.

So, we have found that

(a + b)n =
n

∑
r=0

(
n
r

)
an−rbr. (A.108)

Now consider the geometric series 1 + x + x2 + . . . . We have seen that
such this geometric series converges for |x| < 1, giving

1 + x + x2 + . . . =
1

1− x
.

But, 1
1−x = (1− x)−1. This is a binomial to a power, but the power is not an

integer.
It turns out that the coefficients of such a binomial expansion can be

written similar to the form in Equation(A.108). This example suggests that
our sum may no longer be finite. So, for p a real number, a = 1 and b = x,
we generalize Equation(A.108) as

(1 + x)p =
∞

∑
r=0

(
p
r

)
xr (A.109)

and see if the resulting series makes sense. However, we quickly run into
problems with the coefficients in the series.

Consider the coefficient for r = 1 in an expansion of (1 + x)−1. This is
given by (

−1
1

)
=

(−1)!
(−1− 1)!1!

=
(−1)!
(−2)!1!

.

But what is (−1)!? By definition, it is

(−1)! = (−1)(−2)(−3) · · · .
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This product does not seem to exist! But with a little care, we note that

(−1)!
(−2)!

=
(−1)(−2)!

(−2)!
= −1.

So, we need to be careful not to interpret the combinatorial coefficient liter-
ally. There are better ways to write the general binomial expansion. We can
write the general coefficient as(

p
r

)
=

p!
(p− r)!r!

=
p(p− 1) · · · (p− r + 1)(p− r)!

(p− r)!r!

=
p(p− 1) · · · (p− r + 1)

r!
. (A.110)

With this in mind we now state the theorem:

General Binomial Expansion

The general binomial expansion for (1 + x)p is a simple gener-
alization of Equation (A.108). For p real, we have the following
binomial series:

(1 + x)p =
∞

∑
r=0

p(p− 1) · · · (p− r + 1)
r!

xr, |x| < 1. (A.111)

Often in physics we only need the first few terms for the case that x � 1 :

(1 + x)p = 1 + px +
p(p− 1)

2
x2 + O(x3). (A.112)

Example A.37. Approximate γ = 1√
1− v2

c2

for v� c. The factor γ =
(

1− v2

c2

)−1/2
is impor-

tant in special relativity. Namely, this
is the factor relating differences in time
and length measurements by observers
moving relative inertial frames. For ter-
restrial speeds, this gives an appropriate
approximation.

For v� c the first approximation is found inserting v/c = 0. Thus, one obtains
γ = 1. This is the Newtonian approximation and does not provide enough of an
approximation for terrestrial speeds. Thus, we need to expand γ in powers of v/c.

First, we rewrite γ as

γ =
1√

1− v2

c2

=

[
1−

(v
c

)2
]−1/2

.

Using the binomial expansion for p = −1/2, we have

γ ≈ 1 +
(
−1

2

)(
−v2

c2

)
= 1 +

v2

2c2 .

Example A.38. Time Dilation Example
The average speed of a large commercial jet airliner is about 500 mph. If you

flew for an hour (measured from the ground), then how much younger would you
be than if you had not taken the flight, assuming these reference frames obeyed the
postulates of special relativity?
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This is the problem of time dilation. Let ∆t be the elapsed time in a stationary
reference frame on the ground and ∆τ be that in the frame of the moving plane.
Then from the Theory of Special Relativity these are related by

∆t = γ∆τ.

The time differences would then be

∆t− ∆τ = (1− γ−1)∆t

=

(
1−

√
1− v2

c2

)
∆t. (A.113)

The plane speed, 500 mph, is roughly 225 m/s and c = 3.00× 108 m/s. Since
V � c, we would need to use the binomial approximation to get a nonzero result.

∆t− ∆τ =

(
1−

√
1− v2

c2

)
∆t

=

(
1−

(
1− v2

2c2 + . . .
))

∆t

≈ v2

2c2 ∆t

=
(225)2

2(3.00× 108)2 (1 h) = 1.01 ns. (A.114)

Thus, you have aged one nanosecond less than if you did not take the flight.

Example A.39. Small differences in large numbers: Compute f (R, h) =√
R2 + h2 − R for R = 6378.164 km and h = 1.0 m.
Inserting these values into a scientific calculator, one finds that

f (6378164, 1) =
√

63781642 + 1− 6378164 = 1× 10−7 m.

In some calculators one might obtain 0, in other calculators, or computer algebra
systems like Maple, one might obtain other answers. What answer do you get and
how accurate is your answer?

The problem with this computation is that R � h. Therefore, the computation
of f (R, h) depends on how many digits the computing device can handle. The best
way to get an answer is to use the binomial approximation. Writing h = Rx, or
x = h

R , we have

f (R, h) =
√

R2 + h2 − R

= R
√

1 + x2 − R

' R
[

1 +
1
2

x2
]
− R

=
1
2

Rx2

=
1
2

h
R2 = 7.83926× 10−8 m. (A.115)

Of course, you should verify how many digits should be kept in reporting the result.
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In the next examples, we generalize this example. Such general com-
putations appear in proofs involving general expansions without specific
numerical values given.

Example A.40. Obtain an approximation to (a + b)p when a is much larger than
b, denoted by a� b.

If we neglect b then (a + b)p ' ap. How good of an approximation is this?
This is where it would be nice to know the order of the next term in the expansion.
Namely, what is the power of b/a of the first neglected term in this expansion?

In order to do this we first divide out a as

(a + b)p = ap
(

1 +
b
a

)p
.

Now we have a small parameter, b
a . According to what we have seen earlier, we can

use the binomial expansion to write(
1 +

b
a

)n
=

∞

∑
r=0

(
p
r

)(
b
a

)r
. (A.116)

Thus, we have a sum of terms involving powers of b
a . Since a � b, most of these

terms can be neglected. So, we can write(
1 +

b
a

)p
= 1 + p

b
a
+ O

((
b
a

)2
)

.

Here we used O(), big-Oh notation, to indicate the size of the first neglected term.
Summarizing, we have

(a + b)p = ap
(

1 +
b
a

)p

= ap

(
1 + p

b
a
+ O

((
b
a

)2
))

= ap + pap b
a
+ apO

((
b
a

)2
)

. (A.117)

Therefore, we can approximate (a + b)p ' ap + pbap−1, with an error on the order
of b2ap−2. Note that the order of the error does not include the constant factor from
the expansion. We could also use the approximation that (a + b)p ' ap, but it
is not typically good enough in applications because the error in this case is of the
order bap−1.

Example A.41. Approximate f (x) = (a + x)p − ap for x� a.
In an earlier example we computed f (R, h) =

√
R2 + h2 − R for R = 6378.164

km and h = 1.0 m. We can make use of the binomial expansion to determine
the behavior of similar functions in the form f (x) = (a + x)p − ap. Inserting the
binomial expression into f (x), we have as x

a → 0 that

f (x) = (a + x)p − ap
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= ap
[(

1 +
x
a

)p
− 1
]

= ap
[

px
a

+ O
(( x

a

)2
)]

= O
( x

a

)
as

x
a
→ 0. (A.118)

This result might not be the approximation that we desire. So, we could back up
one step in the derivation to write a better approximation as

(a + x)p − ap = ap−1 px + O
(( x

a

)2
)

as
x
a
→ 0.

We now use this approximation to compute f (R, h) =
√

R2 + h2 − R for R =

6378.164 km and h = 1.0 m in the earlier example. We let a = R2, x = 1 and
p = 1

2 . Then, the leading order approximation would be of order

O
(( x

a

)2
)
= O

((
1

63781642

)2
)
∼ 2.4× 10−14.

Thus, we have √
63781642 + 1− 6378164 ≈ ap−1 px

where
ap−1 px = (63781642)−1/2(0.5)1 = 7.83926× 10−8.

This is the same result we had obtained before. However, we have also an estimate
of the size of the error and this might be useful in indicating how many digits we
should trust in the answer.

Problems

1. Prove the following identities using only the definitions of the trigono-
metric functions, the Pythagorean identity, or the identities for sines and
cosines of sums of angles.

a. cos 2x = 2 cos2 x− 1.

b. sin 3x = A sin3 x + B sin x, for what values of A and B?

c. sec θ + tan θ = tan
(

θ

2
+

π

4

)
.

2. Determine the exact values of

a. sin
π

8
.

b. tan 15o.

c. cos 105o.

3. Denest the following if possible.

a.
√

3− 2
√

2.

b.
√

1 +
√

2.
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c.
√

5 + 2
√

6.

d. 3
√√

5 + 2− 3
√√

5− 2.

e. Find the roots of x2 + 6x− 4
√

5 = 0 in simplified form.

4. Determine the exact values of

a. sin
(

cos−1 3
5

)
.

b. tan
(

sin−1 x
7

)
.

c. sin−1
(

sin
3π

2

)
.

5. Do the following.

a. Write (cosh x− sinh x)6 in terms of exponentials.

b. Prove cosh(x − y) = cosh x cosh y − sinh x sinh y using the expo-
nential forms of the hyperbolic functions.

c. Prove cosh 2x = cosh2 x + sinh2 x.

d. If cosh x =
13
12

and x < 0, find sinh x and tanh x.

e. Find the exact value of sinh(arccosh 3).

6. Prove that the inverse hyperbolic functions are the following logarithms:

a. cosh−1 x = ln
(

x +
√

x2 − 1
)

.

b. tanh−1 x =
1
2

ln
1 + x
1− x

.

7. Write the following in terms of logarithms:

a. cosh−1 4
3 .

b. tanh−1 1
2 .

c. sinh−1 2.

8. Solve the following equations for x.

a. cosh(x + ln 3) = 3.

b. 2 tanh−1 x−2
x−1 = ln 2.

c. sinh2 x− 7 cosh x + 13 = 0.

9. Compute the following integrals.

a.
∫

xe2x2
dx.

b.
∫ 3

0
5x√

x2 + 16
dx.

c.
∫

x3 sin 3x dx. (Do this using integration by parts, the Tabular Method,
and differentiation under the integral sign.)

d.
∫

cos4 3x dx.

e.
∫ π/4

0 sec3 x dx.
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f.
∫

ex sinh x dx.

g.
∫ √

9− x2 dx

h.
∫ dx
(4− x2)2 , using the substitution x = 2 tanh u.

i.
∫ 4

0
dx√

9 + x2
, using a hyperbolic function substitution.

j.
∫ dx

1− x2 , using the substitution x = tanh u.

k.
∫ dx
(x2 + 4)3/2 , using the substitutions x = 2 tan θ and x = 2 sinh u.

l.
∫ dx√

3x2 − 6x + 4
.

10. Find the sum for each of the series:

a. 5 + 25
7 + 125

49 + 625
343 + · · · .

b. ∑∞
n=0

(−1)n3
4n .

c. ∑∞
n=2

2
5n .

d. ∑∞
n=−1(−1)n+1

( e
π

)n
.

e. ∑∞
n=0

(
5
2n +

1
3n

)
.

f. ∑∞
n=1

3
n(n + 3)

.

g. What is 0.569̄?

11. A superball is dropped from a 2.00 m height. After it rebounds, it
reaches a new height of 1.65 m. Assuming a constant coefficient of restitu-
tion, find the (ideal) total distance the ball will travel as it keeps bouncing.

12. Here are some telescoping series problems.

a. Verify that

∞

∑
n=1

1
(n + 2)(n + 1)

=
∞

∑
n=1

(
n + 1
n + 2

− n
n + 1

)
.

b. Find the nth partial sum of the series ∑∞
n=1

(
n + 1
n + 2

− n
n + 1

)
and

use it to determine the sum of the resulting telescoping series.

c. Sum the series ∑∞
n=1

[
tan−1 n− tan−1(n + 1)

]
by first writing the

Nth partial sum and then computing limN→∞ sN .

13. Determine the radius and interval of convergence of the following infi-
nite series:

a. ∑∞
n=1(−1)n (x− 1)n

n
.
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b. ∑∞
n=1

xn

2nn!
.

c. ∑∞
n=1

1
n

( x
5

)n
.

d. ∑∞
n=1(−1)n xn

√
n

.

14. Find the Taylor series centered at x = a and its corresponding radius of
convergence for the given function. In most cases, you need not employ the
direct method of computation of the Taylor coefficients.

a. f (x) = sinh x, a = 0.

b. f (x) =
√

1 + x, a = 0.

c. f (x) = ln
1 + x
1− x

, a = 0.

d. f (x) = xex, a = 1.

e. f (x) =
1√
x

, a = 1.

f. f (x) = x4 + x− 2, a = 2.

g. f (x) =
x− 1
2 + x

, a = 1.

15. Consider Gregory’s expansion

tan−1 x = x− x3

3
+

x5

5
− · · · =

∞

∑
k=0

(−1)k

2k + 1
x2k+1.

a. Derive Gregory’s expansion by using the definition

tan−1 x =
∫ x

0

dt
1 + t2 ,

expanding the integrand in a Maclaurin series, and integrating the
resulting series term by term.

b. From this result, derive Gregory’s series for π by inserting an ap-
propriate value for x in the series expansion for tan−1 x.

16. In the event that a series converges uniformly, one can consider the
derivative of the series to arrive at the summation of other infinite series.

a. Differentiate the series representation for f (x) = 1
1−x to sum the

series ∑∞
n=1 nxn, |x| < 1.

b. Use the result from part a to sum the series ∑∞
n=1

n
5n .

c. Sum the series ∑∞
n=2 n(n− 1)xn, |x| < 1.

d. Use the result from part c to sum the series ∑∞
n=2

n2 − n
5n .

e. Use the results from this problem to sum the series ∑∞
n=4

n2

5n .

17. Evaluate the integral
∫ π/6

0 sin2 x dx by doing the following:
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a. Compute the integral exactly.

b. Integrate the first three terms of the Maclaurin series expansion of
the integrand and compare with the exact result.

18. Determine the next term in the time dilation example, A.38. That is,
find the v4

c2 term and determine a better approximation to the time difference
of 1 ns.

19. Evaluate the following expressions at the given point. Use your calcu-
lator or your computer (such as Maple). Then use series expansions to find
an approximation to the value of the expression to as many places as you
trust.

a.
1√

1 + x3
− cos x2 at x = 0.015.

b. ln
√

1 + x
1− x

− tan x at x = 0.0015.

c. f (x) =
1√

1 + 2x2
− 1 + x2 at x = 5.00× 10−3.

d. f (R, h) = R−
√

R2 + h2 for R = 1.374× 103 km and h = 1.00 m.

e. f (x) = 1− 1√
1− x

for x = 2.5× 10−13.



B
Ordinary Differential Equations Review

“The profound study of nature is the most fertile source of mathematical discover-
ies.” - Joseph Fourier (1768-1830)

B.1 First Order Differential Equations

Before moving on, we first define an n-th order ordinary differential
equation. It is an equation for an unknown function y(x) that expresses a n-th order ordinary differential equation

relationship between the unknown function and its first n derivatives. One
could write this generally as

F(y(n)(x), y(n−1)(x), . . . , y′(x), y(x), x) = 0. (B.1)

Here y(n)(x) represents the nth derivative of y(x).
An initial value problem consists of the differential equation plus the Initial value problem.

values of the first n− 1 derivatives at a particular value of the independent
variable, say x0:

y(n−1)(x0) = yn−1, y(n−2)(x0) = yn−2, . . . , y(x0) = y0. (B.2)

A linear nth order differential equation takes the form Linear nth order differential equation

an(x)y(n)(x) + an−1(x)y(n−1)(x) + . . . + a1(x)y′(x) + a0(x)y(x)) = f (x).
(B.3)

If f (x) ≡ 0, then the equation is said to be homogeneous, otherwise it is
called nonhomogeneous. Homogeneous and nonhomogeneous

equations.Typically, the first differential equations encountered are first order equa-
tions. A first order differential equation takes the form First order differential equation

F(y′, y, x) = 0. (B.4)

There are two common first order differential equations for which one can
formally obtain a solution. The first is the separable case and the second is
a first order equation. We indicate that we can formally obtain solutions, as
one can display the needed integration that leads to a solution. However,
the resulting integrals are not always reducible to elementary functions nor
does one obtain explicit solutions when the integrals are doable.



420 partial differential equations

B.1.1 Separable Equations

A first order equation is separable if it can be written the form

dy
dx

= f (x)g(y). (B.5)

Special cases result when either f (x) = 1 or g(y) = 1. In the first case the
equation is said to be autonomous.

The general solution to equation (B.5) is obtained in terms of two inte-
grals:Separable equations.

∫ dy
g(y)

=
∫

f (x) dx + C, (B.6)

where C is an integration constant. This yields a 1-parameter family of so-
lutions to the differential equation corresponding to different values of C.
If one can solve (B.6) for y(x), then one obtains an explicit solution. Other-
wise, one has a family of implicit solutions. If an initial condition is given
as well, then one might be able to find a member of the family that satisfies
this condition, which is often called a particular solution.

Figure B.1: Plots of solutions from the 1-
parameter family of solutions of Exam-
ple B.1 for several initial conditions.

Example B.1. y′ = 2xy, y(0) = 2.
Applying (B.6), one has ∫ dy

y
=
∫

2x dx + C.

Integrating yields
ln |y| = x2 + C.

Exponentiating, one obtains the general solution,

y(x) = ±ex2+C = Aex2
.

Here we have defined A = ±eC. Since C is an arbitrary constant, A is an arbitrary
constant. Several solutions in this 1-parameter family are shown in Figure B.1.

Next, one seeks a particular solution satisfying the initial condition. For y(0) =
2, one finds that A = 2. So, the particular solution satisfying the initial condition
is y(x) = 2ex2

.

Figure B.2: Plots of solutions of Example
B.2 for several initial conditions.

Example B.2. yy′ = −x. Following the same procedure as in the last example, one
obtains: ∫

y dy = −
∫

x dx + C ⇒ y2 = −x2 + A, where A = 2C.

Thus, we obtain an implicit solution. Writing the solution as x2 + y2 = A, we see
that this is a family of circles for A > 0 and the origin for A = 0. Plots of some
solutions in this family are shown in Figure B.2.
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B.1.2 Linear First Order Equations

The second type of first order equation encountered is the linear
first order differential equation in the standard form

y′(x) + p(x)y(x) = q(x). (B.7)

In this case one seeks an integrating factor, µ(x), which is a function that one
can multiply through the equation making the left side a perfect derivative.
Thus, obtaining,

d
dx

[µ(x)y(x)] = µ(x)q(x). (B.8)

The integrating factor that works is µ(x) = exp(
∫ x p(ξ) dξ). One can

derive µ(x) by expanding the derivative in Equation (B.8),

µ(x)y′(x) + µ′(x)y(x) = µ(x)q(x), (B.9)

and comparing this equation to the one obtained from multiplying (B.7) by
µ(x) :

µ(x)y′(x) + µ(x)p(x)y(x) = µ(x)q(x). (B.10)

Note that these last two equations would be the same if the second terms
were the same. Thus, we will require that

dµ(x)
dx

= µ(x)p(x).

This is a separable first order equation for µ(x) whose solution is the inte-
grating factor: Integrating factor.

µ(x) = exp
(∫ x

p(ξ) dξ

)
. (B.11)

Equation (B.8) is now easily integrated to obtain the general solution to
the linear first order differential equation:

y(x) =
1

µ(x)

[∫ x
µ(ξ)q(ξ) dξ + C

]
. (B.12)

Example B.3. xy′ + y = x, x > 0, y(1) = 0.
One first notes that this is a linear first order differential equation. Solving for

y′, one can see that the equation is not separable. Furthermore, it is not in the
standard form (B.7). So, we first rewrite the equation as

dy
dx

+
1
x

y = 1. (B.13)

Noting that p(x) = 1
x , we determine the integrating factor

µ(x) = exp
[∫ x dξ

ξ

]
= eln x = x.
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Multiplying equation (B.13) by µ(x) = x, we actually get back the original equa-
tion! In this case we have found that xy′ + y must have been the derivative of
something to start. In fact, (xy)′ = xy′ + x. Therefore, the differential equation
becomes

(xy)′ = x.

Integrating, one obtains

xy =
1
2

x2 + C,

or
y(x) =

1
2

x +
C
x

.

Inserting the initial condition into this solution, we have 0 = 1
2 + C. Therefore,

C = − 1
2 . Thus, the solution of the initial value problem is

y(x) =
1
2
(x− 1

x
).

We can verify that this is the solution. Since y′ = 1
2 + 1

2x2 , we have

xy′ + y =
1
2

x +
1

2x
+

1
2

(
x− 1

x

)
= x.

Also, y(1) = 1
2 (1− 1) = 0.

Example B.4. (sin x)y′ + (cos x)y = x2.
Actually, this problem is easy if you realize that the left hand side is a perfect

derivative. Namely,

d
dx

((sin x)y) = (sin x)y′ + (cos x)y.

But, we will go through the process of finding the integrating factor for practice.
First, we rewrite the original differential equation in standard form. We divide

the equation by sin x to obtain

y′ + (cot x)y = x2 csc x.

Then, we compute the integrating factor as

µ(x) = exp
(∫ x

cot ξ dξ

)
= eln(sin x) = sin x.

Using the integrating factor, the standard form equation becomes

d
dx

((sin x)y) = x2.

Integrating, we have

y sin x =
1
3

x3 + C.

So, the solution is

y(x) =
(

1
3

x3 + C
)

csc x.
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B.2 Second Order Linear Differential Equations

Second order differential equations are typically harder than
first order. In most cases students are only exposed to second order linear
differential equations. A general form for a second order linear differential
equation is given by

a(x)y′′(x) + b(x)y′(x) + c(x)y(x) = f (x). (B.14)

One can rewrite this equation using operator terminology. Namely, one
first defines the differential operator L = a(x)D2 + b(x)D + c(x), where
D = d

dx . Then equation (B.14) becomes

Ly = f . (B.15)

The solutions of linear differential equations are found by making use of
the linearity of L. Namely, we consider the vector space1 consisting of real-

1 We assume that the reader has been in-
troduced to concepts in linear algebra.
Later in the text we will recall the def-
inition of a vector space and see that lin-
ear algebra is in the background of the
study of many concepts in the solution
of differential equations.

valued functions over some domain. Let f and g be vectors in this function
space. L is a linear operator if for two vectors f and g and scalar a, we have
that

a. L( f + g) = L f + Lg

b. L(a f ) = aL f .

One typically solves (B.14) by finding the general solution of the homo-
geneous problem,

Lyh = 0

and a particular solution of the nonhomogeneous problem,

Lyp = f .

Then, the general solution of (B.14) is simply given as y = yh + yp. This is
true because of the linearity of L. Namely,

Ly = L(yh + yp)

= Lyh + Lyp

= 0 + f = f . (B.16)

There are methods for finding a particular solution of a nonhomogeneous
differential equation. These methods range from pure guessing, the Method
of Undetermined Coefficients, the Method of Variation of Parameters, or
Green’s functions. We will review these methods later in the chapter.

Determining solutions to the homogeneous problem, Lyh = 0, is not al-
ways easy. However, many now famous mathematicians and physicists have
studied a variety of second order linear equations and they have saved us
the trouble of finding solutions to the differential equations that often ap-
pear in applications. We will encounter many of these in the following
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chapters. We will first begin with some simple homogeneous linear differ-
ential equations.

Linearity is also useful in producing the general solution of a homoge-
neous linear differential equation. If y1 and y2 are solutions of the homoge-
neous equation, then the linear combination y = c1y1 + c2y2 is also a solution
of the homogeneous equation. In fact, if y1 and y2 are linearly independent,22 A set of functions {yi(x)}n

i=1 is a lin-
early independent set if and only if

c1y1(x) + . . . + cnyn(x) = 0

implies ci = 0, for i = 1, . . . , n.
For n = 2, c1y1(x) + c2y2(x) = 0. If

y1 and y2 are linearly dependent, then
the coefficients are not zero and
y2(x) = − c1

c2
y1(x) and is a multiple of

y1(x).

then y = c1y1 + c2y2 is the general solution of the homogeneous problem.
Linear independence can also be established by looking at the Wronskian

of the solutions. For a second order differential equation the Wronskian is
defined as

W(y1, y2) = y1(x)y′2(x)− y′1(x)y2(x). (B.17)

The solutions are linearly independent if the Wronskian is not zero.

B.2.1 Constant Coefficient Equations

The simplest second order differential equations are those with
constant coefficients. The general form for a homogeneous constant coeffi-
cient second order linear differential equation is given as

ay′′(x) + by′(x) + cy(x) = 0, (B.18)

where a, b, and c are constants.
Solutions to (B.18) are obtained by making a guess of y(x) = erx. Inserting

this guess into (B.18) leads to the characteristic equation

ar2 + br + c = 0. (B.19)

Namely, we compute the derivatives of y(x) = erx, to get y(x) = rerx, andThe characteristic equation for
ay′′ + by′ + cy = 0 is ar2 + br + c = 0.
Solutions of this quadratic equation lead
to solutions of the differential equation.

y(x) = r2erx. Inserting into (B.18), we have

0 = ay′′(x) + by′(x) + cy(x) = (ar2 + br + c)erx.

Since the exponential is never zero, we find that ar2 + br + c = 0.Two real, distinct roots, r1 and r2, give
solutions of the form

y(x) = c1er1x + c2er2x .
The roots of this equation, r1, r2, in turn lead to three types of solutions

depending upon the nature of the roots. In general, we have two linearly in-
dependent solutions, y1(x) = er1x and y2(x) = er2x, and the general solution
is given by a linear combination of these solutions,

y(x) = c1er1x + c2er2x.

For two real distinct roots, we are done. However, when the roots are real,
but equal, or complex conjugate roots, we need to do a little more work to
obtain usable solutions.

Example B.5. y′′ − y′ − 6y = 0 y(0) = 2, y′(0) = 0.
The characteristic equation for this problem is r2 − r− 6 = 0. The roots of this

equation are found as r = −2, 3. Therefore, the general solution can be quickly
written down:

y(x) = c1e−2x + c2e3x.
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Note that there are two arbitrary constants in the general solution. Therefore,
one needs two pieces of information to find a particular solution. Of course, we have
the needed information in the form of the initial conditions.

One also needs to evaluate the first derivative

y′(x) = −2c1e−2x + 3c2e3x

in order to attempt to satisfy the initial conditions. Evaluating y and y′ at x = 0
yields

2 = c1 + c2

0 = −2c1 + 3c2 (B.20)

These two equations in two unknowns can readily be solved to give c1 = 6/5
and c2 = 4/5. Therefore, the solution of the initial value problem is obtained as
y(x) = 6

5 e−2x + 4
5 e3x.

Repeated roots, r1 = r2 = r, give solu-
tions of the form

y(x) = (c1 + c2x)erx .

In the case when there is a repeated real root, one has only one solution,
y1(x) = erx. The question is how does one obtain the second linearly in-
dependent solution? Since the solutions should be independent, we must
have that the ratio y2(x)/y1(x) is not a constant. So, we guess the form
y2(x) = v(x)y1(x) = v(x)erx. (This process is called the Method of Reduc-
tion of Order.)

For constant coefficient second order equations, we can write the equa-
tion as

(D− r)2y = 0,

where D = d
dx . We now insert y2(x) = v(x)erx into this equation. First we

compute
(D− r)verx = v′erx.

Then,
0 = (D− r)2verx = (D− r)v′erx = v′′erx.

So, if y2(x) is to be a solution to the differential equation, then v′′(x)erx = 0
for all x. So, v′′(x) = 0, which implies that

v(x) = ax + b.

So,
y2(x) = (ax + b)erx.

Without loss of generality, we can take b = 0 and a = 1 to obtain the second
linearly independent solution, y2(x) = xerx. The general solution is then

y(x) = c1erx + c2xerx.

Example B.6. y′′ + 6y′ + 9y = 0.
In this example we have r2 + 6r + 9 = 0. There is only one root, r = −3. From

the above discussion, we easily find the solution y(x) = (c1 + c2x)e−3x.
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When one has complex roots in the solution of constant coefficient equa-
tions, one needs to look at the solutions

y1,2(x) = e(α±iβ)x.

We make use of Euler’s formula (See Chapter 6 for more on complex vari-
ables)

eiβx = cos βx + i sin βx. (B.21)

Then, the linear combination of y1(x) and y2(x) becomes

Ae(α+iβ)x + Be(α−iβ)x = eαx
[

Aeiβx + Be−iβx
]

= eαx [(A + B) cos βx + i(A− B) sin βx]

≡ eαx(c1 cos βx + c2 sin βx). (B.22)

Thus, we see that we have a linear combination of two real, linearly inde-
pendent solutions, eαx cos βx and eαx sin βx.Complex roots, r = α± iβ, give solutions

of the form

y(x) = eαx(c1 cos βx + c2 sin βx). Example B.7. y′′ + 4y = 0.
The characteristic equation in this case is r2 + 4 = 0. The roots are pure imag-

inary roots, r = ±2i, and the general solution consists purely of sinusoidal func-
tions, y(x) = c1 cos(2x) + c2 sin(2x), since α = 0 and β = 2.

Example B.8. y′′ + 2y′ + 4y = 0.
The characteristic equation in this case is r2 + 2r+ 4 = 0. The roots are complex,

r = −1±
√

3i and the general solution can be written as

y(x) =
[
c1 cos(

√
3x) + c2 sin(

√
3x)
]

e−x.

Example B.9. y′′ + 4y = sin x.
This is an example of a nonhomogeneous problem. The homogeneous problem

was actually solved in Example B.7. According to the theory, we need only seek a
particular solution to the nonhomogeneous problem and add it to the solution of the
last example to get the general solution.

The particular solution can be obtained by purely guessing, making an educated
guess, or using the Method of Variation of Parameters. We will not review all of
these techniques at this time. Due to the simple form of the driving term, we will
make an intelligent guess of yp(x) = A sin x and determine what A needs to be.
Inserting this guess into the differential equation gives (−A + 4A) sin x = sin x.
So, we see that A = 1/3 works. The general solution of the nonhomogeneous
problem is therefore y(x) = c1 cos(2x) + c2 sin(2x) + 1

3 sin x.

The three cases for constant coefficient linear second order differential
equations are summarized below.
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Classification of Roots of the Characteristic Equation
for Second Order Constant Coefficient ODEs

1. Real, distinct roots r1, r2. In this case the solutions corresponding to
each root are linearly independent. Therefore, the general solution is
simply y(x) = c1er1x + c2er2x.

2. Real, equal roots r1 = r2 = r. In this case the solutions corresponding
to each root are linearly dependent. To find a second linearly inde-
pendent solution, one uses the Method of Reduction of Order. This gives
the second solution as xerx. Therefore, the general solution is found as
y(x) = (c1 + c2x)erx.

3. Complex conjugate roots r1, r2 = α ± iβ. In this case the solutions
corresponding to each root are linearly independent. Making use of
Euler’s identity, eiθ = cos(θ) + i sin(θ), these complex exponentials
can be rewritten in terms of trigonometric functions. Namely, one
has that eαx cos(βx) and eαx sin(βx) are two linearly independent solu-
tions. Therefore, the general solution becomes y(x) = eαx(c1 cos(βx) +
c2 sin(βx)).

B.3 Forced Systems

Many problems can be modeled by nonhomogeneous second order
equations. Thus, we want to find solutions of equations of the form

Ly(x) = a(x)y′′(x) + b(x)y′(x) + c(x)y(x) = f (x). (B.23)

As noted in Section B.2, one solves this equation by finding the general
solution of the homogeneous problem,

Lyh = 0

and a particular solution of the nonhomogeneous problem,

Lyp = f .

Then, the general solution of (B.14) is simply given as y = yh + yp.
So far, we only know how to solve constant coefficient, homogeneous

equations. So, by adding a nonhomogeneous term to such equations we
will need to find the particular solution to the nonhomogeneous equation.

We could guess a solution, but that is not usually possible without a little
bit of experience. So, we need some other methods. There are two main
methods. In the first case, the Method of Undetermined Coefficients, one
makes an intelligent guess based on the form of f (x). In the second method,
one can systematically developed the particular solution. We will come back
to the Method of Variation of Parameters and we will also introduce the
powerful machinery of Green’s functions later in this section.
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B.3.1 Method of Undetermined Coefficients

Let’s solve a simple differential equation highlighting how we can
handle nonhomogeneous equations.

Example B.10. Consider the equation

y′′ + 2y′ − 3y = 4. (B.24)

The first step is to determine the solution of the homogeneous equation. Thus,
we solve

y′′h + 2y′h − 3yh = 0. (B.25)

The characteristic equation is r2 + 2r− 3 = 0. The roots are r = 1,−3. So, we can
immediately write the solution

yh(x) = c1ex + c2e−3x.

The second step is to find a particular solution of (B.24). What possible function
can we insert into this equation such that only a 4 remains? If we try something
proportional to x, then we are left with a linear function after inserting x and its
derivatives. Perhaps a constant function you might think. y = 4 does not work.
But, we could try an arbitrary constant, y = A.

Let’s see. Inserting y = A into (B.24), we obtain

−3A = 4.

Ah ha! We see that we can choose A = − 4
3 and this works. So, we have a particular

solution, yp(x) = − 4
3 . This step is done.

Combining the two solutions, we have the general solution to the original non-
homogeneous equation (B.24). Namely,

y(x) = yh(x) + yp(x) = c1ex + c2e−3x − 4
3

.

Insert this solution into the equation and verify that it is indeed a solution. If we
had been given initial conditions, we could now use them to determine the arbitrary
constants.

Example B.11. What if we had a different source term? Consider the equation

y′′ + 2y′ − 3y = 4x. (B.26)

The only thing that would change is the particular solution. So, we need a guess.
We know a constant function does not work by the last example. So, let’s try

yp = Ax. Inserting this function into Equation (B.26), we obtain

2A− 3Ax = 4x.

Picking A = −4/3 would get rid of the x terms, but will not cancel everything.
We still have a constant left. So, we need something more general.
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Let’s try a linear function, yp(x) = Ax + B. Then we get after substitution into
(B.26)

2A− 3(Ax + B) = 4x.

Equating the coefficients of the different powers of x on both sides, we find a system
of equations for the undetermined coefficients:

2A− 3B = 0

−3A = 4. (B.27)

These are easily solved to obtain

A = −4
3

B =
2
3

A = −8
9

. (B.28)

So, the particular solution is

yp(x) = −4
3

x− 8
9

.

This gives the general solution to the nonhomogeneous problem as

y(x) = yh(x) + yp(x) = c1ex + c2e−3x − 4
3

x− 8
9

.

There are general forms that you can guess based upon the form of the
driving term, f (x). Some examples are given in Table B.1. More general ap-
plications are covered in a standard text on differential equations. However,
the procedure is simple. Given f (x) in a particular form, you make an ap-
propriate guess up to some unknown parameters, or coefficients. Inserting
the guess leads to a system of equations for the unknown coefficients. Solve
the system and you have the solution. This solution is then added to the
general solution of the homogeneous differential equation.

f (x) Guess
anxn + an−1xn−1 + · · ·+ a1x + a0 Anxn + An−1xn−1 + · · ·+ A1x + A0

aebx Aebx

a cos ωx + b sin ωx A cos ωx + B sin ωx

Table B.1: Forms used in the Method of
Undetermined Coefficients.

Example B.12. Solve
y′′ + 2y′ − 3y = 2e−3x. (B.29)

According to the above, we would guess a solution of the form yp = Ae−3x.
Inserting our guess, we find

0 = 2e−3x.

Oops! The coefficient, A, disappeared! We cannot solve for it. What went wrong?
The answer lies in the general solution of the homogeneous problem. Note that ex

and e−3x are solutions to the homogeneous problem. So, a multiple of e−3x will not
get us anywhere. It turns out that there is one further modification of the method.
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If the driving term contains terms that are solutions of the homogeneous problem,
then we need to make a guess consisting of the smallest possible power of x times
the function which is no longer a solution of the homogeneous problem. Namely,
we guess yp(x) = Axe−3x and differentiate this guess to obtain the derivatives
y′p = A(1− 3x)e−3x and y′′p = A(9x− 6)e−3x.

Inserting these derivatives into the differential equation, we obtain

[(9x− 6) + 2(1− 3x)− 3x]Ae−3x = 2e−3x.

Comparing coefficients, we have

−4A = 2.

So, A = −1/2 and yp(x) = − 1
2 xe−3x. Thus, the solution to the problem is

y(x) =
(

2− 1
2

x
)

e−3x.

Modified Method of Undetermined Coefficients

In general, if any term in the guess yp(x) is a solution of the homogeneous
equation, then multiply the guess by xk, where k is the smallest positive
integer such that no term in xkyp(x) is a solution of the homogeneous
problem.

B.3.2 Periodically Forced Oscillations

A special type of forcing is periodic forcing. Realistic oscillations will
dampen and eventually stop if left unattended. For example, mechanical
clocks are driven by compound or torsional pendula and electric oscilla-
tors are often designed with the need to continue for long periods of time.
However, they are not perpetual motion machines and will need a peri-
odic injection of energy. This can be done systematically by adding periodic
forcing. Another simple example is the motion of a child on a swing in the
park. This simple damped pendulum system will naturally slow down to
equilibrium (stopped) if left alone. However, if the child pumps energy into
the swing at the right time, or if an adult pushes the child at the right time,
then the amplitude of the swing can be increased.

There are other systems, such as airplane wings and long bridge spans,
in which external driving forces might cause damage to the system. A well
know example is the wind induced collapse of the Tacoma Narrows Bridge
due to strong winds. Of course, if one is not careful, the child in theThe Tacoma Narrows Bridge opened in

Washington State (U.S.) in mid 1940.
However, in November of the same year
the winds excited a transverse mode of
vibration, which eventually (in a few
hours) lead to large amplitude oscilla-
tions and then collapse.

last example might get too much energy pumped into the system causing a
similar failure of the desired motion.

While there are many types of forced systems, and some fairly compli-
cated, we can easily get to the basic characteristics of forced oscillations by
modifying the mass-spring system by adding an external, time-dependent,
driving force. Such as system satisfies the equation

mẍ + b(̇x) + kx = F(t), (B.30)
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where m is the mass, b is the damping constant, k is the spring constant,
and F(t) is the driving force. If F(t) is of simple form, then we can employ
the Method of Undetermined Coefficients. Since the systems we have con-
sidered so far are similar, one could easily apply the following to pendula
or circuits.

k m

b

F cos w t
0

Figure B.3: An external driving force is
added to the spring-mass-damper sys-
tem.

As the damping term only complicates the solution, we will consider the
simpler case of undamped motion and assume that b = 0. Furthermore,
we will introduce a sinusoidal driving force, F(t) = F0 cos ωt in order to
study periodic forcing. This leads to the simple periodically driven mass on
a spring system

mẍ + kx = F0 cos ωt. (B.31)

In order to find the general solution, we first obtain the solution to the
homogeneous problem,

xh = c1 cos ω0t + c2 sin ω0t,

where ω0 =
√

k
m . Next, we seek a particular solution to the nonhomoge-

neous problem. We will apply the Method of Undetermined Coefficients.
A natural guess for the particular solution would be to use xp = A cos ωt+

B sinωt. However, recall that the guess should not be a solution of the ho-
mogeneous problem. Comparing xp with xh, this would hold if ω 6= ω0.
Otherwise, one would need to use the Modified Method of Undetermined
Coefficients as described in the last section. So, we have two cases to con-
sider. Dividing through by the mass, we solve

the simple driven system,

ẍ + ω2
0 x =

F0

m
cos ωt.

Example B.13. Solve ẍ + ω2
0x = F0

m cos ωt, for ω 6= ω0.
In this case we continue with the guess xp = A cos ωt + B sinωt. Since there

is no damping term, one quickly finds that B = 0. Inserting xp = A cos ωt into
the differential equation, we find that(

−ω2 + ω2
0

)
A cos ωt =

F0

m
cos ωt.

Solving for A, we obtain

A =
F0

m(ω2
0 −ω2)

.

The general solution for this case is thus,

x(t) = c1 cos ω0t + c2 sin ω0t +
F0

m(ω2
0 −ω2)

cos ωt. (B.32)

Example B.14. Solve ẍ + ω2
0x = F0

m cos ω0t.
In this case, we need to employ the Modified Method of Undetermined Coef-

ficients. So, we make the guess xp = t (A cos ω0t + B sinω0t) . Since there is
no damping term, one finds that A = 0. Inserting the guess in to the differential
equation, we find that

B =
F0

2mω0
,

or the general solution is

x(t) = c1 cos ω0t + c2 sin ω0t +
F0

2mω
t sin ωt. (B.33)
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The general solution to the problem is thus

x(t) = c1 cos ω0t + c2 sin ω0t +

{ F0
m(ω2

0−ω2)
cos ωt, ω 6= ω0,

F0
2mω0

t sin ω0t, ω = ω0.
(B.34)

Special cases of these solutions provide interesting physics, which can
be explored by the reader in the homework. In the case that ω = ω0, we
see that the solution tends to grow as t gets large. This is what is called a
resonance. Essentially, one is driving the system at its natural frequency. As
the system is moving to the left, one pushes it to the left. If it is moving to
the right, one is adding energy in that direction. This forces the amplitude
of oscillation to continue to grow until the system breaks. An example of
such an oscillation is shown in Figure B.4.

Figure B.4: Plot of

x(t) = 5 cos 2t +
1
2

t sin 2t,

a solution of ẍ + 4x = 2 cos 2t showing
resonance.

In the case that ω 6= ω0, one can rewrite the solution in a simple form.
Let’s choose the initial conditions that c1 = −F0/(m(ω2

0−ω2)), c2 = 0. Then
one has (see Problem ??)

x(t) =
2F0

m(ω2
0 −ω2)

sin
(ω0 −ω)t

2
sin

(ω0 + ω)t
2

. (B.35)

For values of ω near ω0, one finds the solution consists of a rapid os-
cillation, due to the sin (ω0+ω)t

2 factor, with a slowly varying amplitude,
2F0

m(ω2
0−ω2)

sin (ω0−ω)t
2 . The reader can investigate this solution.

Figure B.5: Plot of

x(t) =
1

249

(
2045 cos 2t− 800 cos

43
20

t
)

,

a solution of ẍ + 4x = 2 cos 2.15t.

This slow variation is called a beat and the beat frequency is given by f =
|ω0−ω|

4π . In Figure B.5 we see the high frequency oscillations are contained
by the lower beat frequency, f = 0.15

4π s. This corresponds to a period of
T = 1/ f ≈ 83.7 Hz, which looks about right from the figure.

Example B.15. Solve ẍ + x = 2 cos ωt, x(0) = 0, ẋ(0) = 0, for ω = 1, 1.15. For
each case, we need the solution of the homogeneous problem,

xh(t) = c1 cos t + c2 sin t.

The particular solution depends on the value of ω.
For ω = 1, the driving term, 2 cos ωt, is a solution of the homogeneous problem.

Thus, we assume
xp(t) = At cos t + Bt sin t.

Inserting this into the differential equation, we find A = 0 and B = 1. So, the
general solution is

x(t) = c1 cos t + c2 sin t + t sin t.

Imposing the initial conditions, we find

x(t) = t sin t.

This solution is shown in Figure B.6.

Figure B.6: Plot of

x(t) = t sin 2t,

a solution of ẍ + x = 2 cos t.

For ω = 1.15, the driving term, 2 cos ω1.15t, is not a solution of the homoge-
neous problem. Thus, we assume

xp(t) = A cos 1.15t + B sin 1.15t.
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Inserting this into the differential equation, we find A = − 800
129 and B = 0. So, the

general solution is

x(t) = c1 cos t + c2 sin t− 800
129

cos t.

Imposing the initial conditions, we find

x(t) =
800
129

(cos t− cos 1.15t) .

This solution is shown in Figure B.7. The beat frequency in this case is the same as
with Figure B.5.

Figure B.7: Plot of

x(t) =
800
129

(
cos t− cos

23
20

t
)

,

a solution of ẍ + x = 2 cos 1.15t.

B.3.3 Method of Variation of Parameters

A more systematic way to find particular solutions is through the use
of the Method of Variation of Parameters. The derivation is a little detailed
and the solution is sometimes messy, but the application of the method is
straight forward if you can do the required integrals. We will first derive
the needed equations and then do some examples.

We begin with the nonhomogeneous equation. Let’s assume it is of the
standard form

a(x)y′′(x) + b(x)y′(x) + c(x)y(x) = f (x). (B.36)

We know that the solution of the homogeneous equation can be written in
terms of two linearly independent solutions, which we will call y1(x) and
y2(x) :

yh(x) = c1y1(x) + c2y2(x).

Replacing the constants with functions, then we no longer have a solution
to the homogeneous equation. Is it possible that we could stumble across
the right functions with which to replace the constants and somehow end
up with f (x) when inserted into the left side of the differential equation? It
turns out that we can.

So, let’s assume that the constants are replaced with two unknown func-
tions, which we will call c1(x) and c2(x). This change of the parameters
is where the name of the method derives. Thus, we are assuming that a
particular solution takes the form We assume the nonhomogeneous equa-

tion has a particular solution of the form

yp(x) = c1(x)y1(x) + c2(x)y2(x).yp(x) = c1(x)y1(x) + c2(x)y2(x). (B.37)

If this is to be a solution, then insertion into the differential equation should
make the equation hold. To do this we will first need to compute some
derivatives.

The first derivative is given by

y′p(x) = c1(x)y′1(x) + c2(x)y′2(x) + c′1(x)y1(x) + c′2(x)y2(x). (B.38)
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Next we will need the second derivative. But, this will yield eight terms.
So, we will first make a simplifying assumption. Let’s assume that the last
two terms add to zero:

c′1(x)y1(x) + c′2(x)y2(x) = 0. (B.39)

It turns out that we will get the same results in the end if we did not assume
this. The important thing is that it works!

Under the assumption the first derivative simplifies to

y′p(x) = c1(x)y′1(x) + c2(x)y′2(x). (B.40)

The second derivative now only has four terms:

y′p(x) = c1(x)y′′1 (x) + c2(x)y′′2 (x) + c′1(x)y′1(x) + c′2(x)y′2(x). (B.41)

Now that we have the derivatives, we can insert the guess into the differ-
ential equation. Thus, we have

f (x) = a(x)
[
c1(x)y′′1 (x) + c2(x)y′′2 (x) + c′1(x)y′1(x) + c′2(x)y′2(x)

]
+b(x)

[
c1(x)y′1(x) + c2(x)y′2(x)

]
+c(x) [c1(x)y1(x) + c2(x)y2(x)] . (B.42)

Regrouping the terms, we obtain

f (x) = c1(x)
[
a(x)y′′1 (x) + b(x)y′1(x) + c(x)y1(x)

]
+c2(x)

[
a(x)y′′2 (x) + b(x)y′2(x) + c(x)y2(x)

]
+a(x)

[
c′1(x)y′1(x) + c′2(x)y′2(x)

]
. (B.43)

Note that the first two rows vanish since y1 and y2 are solutions of the
homogeneous problem. This leaves the equation

f (x) = a(x)
[
c′1(x)y′1(x) + c′2(x)y′2(x)

]
,

which can be rearranged as

c′1(x)y′1(x) + c′2(x)y′2(x) =
f (x)
a(x)

. (B.44)

In summary, we have assumed a particular solution of the form

yp(x) = c1(x)y1(x) + c2(x)y2(x).

This is only possible if the unknown functions c1(x) and c2(x) satisfy the
system of equations

In order to solve the differential equation
Ly = f , we assume

yp(x) = c1(x)y1(x) + c2(x)y2(x),

for Ly1,2 = 0. Then, one need only solve
a simple system of equations (B.45).

c′1(x)y1(x) + c′2(x)y2(x) = 0

c′1(x)y′1(x) + c′2(x)y′2(x) =
f (x)
a(x)

. (B.45)
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System (B.45) can be solved as

c′1(x) = − f y2

aW(y1, y2)
,

c′1(x) =
f y1

aW(y1, y2)
,

where W(y1, y2) = y1y′2 − y′1y2 is the
Wronskian. We use this solution in the
next section.

It is standard to solve this system for the derivatives of the unknown
functions and then present the integrated forms. However, one could just
as easily start from this system and solve the system for each problem en-
countered.

Example B.16. Find the general solution of the nonhomogeneous problem: y′′ −
y = e2x.

The general solution to the homogeneous problem y′′h − yh = 0 is

yh(x) = c1ex + c2e−x.

In order to use the Method of Variation of Parameters, we seek a solution of the
form

yp(x) = c1(x)ex + c2(x)e−x.

We find the unknown functions by solving the system in (B.45), which in this case
becomes

c′1(x)ex + c′2(x)e−x = 0

c′1(x)ex − c′2(x)e−x = e2x. (B.46)

Adding these equations we find that

2c′1ex = e2x → c′1 =
1
2

ex.

Solving for c1(x) we find

c1(x) =
1
2

∫
ex dx =

1
2

ex.

Subtracting the equations in the system yields

2c′2e−x = −e2x → c′2 = −1
2

e3x.

Thus,

c2(x) = −1
2

∫
e3x dx = −1

6
e3x.

The particular solution is found by inserting these results into yp:

yp(x) = c1(x)y1(x) + c2(x)y2(x)

= (
1
2

ex)ex + (−1
6

e3x)e−x

=
1
3

e2x. (B.47)

Thus, we have the general solution of the nonhomogeneous problem as

y(x) = c1ex + c2e−x +
1
3

e2x.
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Example B.17. Now consider the problem: y′′ + 4y = sin x.
The solution to the homogeneous problem is

yh(x) = c1 cos 2x + c2 sin 2x. (B.48)

We now seek a particular solution of the form

yh(x) = c1(x) cos 2x + c2(x) sin 2x.

We let y1(x) = cos 2x and y2(x) = sin 2x, a(x) = 1, f (x) = sin x in system
(B.45):

c′1(x) cos 2x + c′2(x) sin 2x = 0

−2c′1(x) sin 2x + 2c′2(x) cos 2x = sin x. (B.49)

Now, use your favorite method for solving a system of two equations and two
unknowns. In this case, we can multiply the first equation by 2 sin 2x and the
second equation by cos 2x. Adding the resulting equations will eliminate the c′1
terms. Thus, we have

c′2(x) =
1
2

sin x cos 2x =
1
2
(2 cos2 x− 1) sin x.

Inserting this into the first equation of the system, we have

c′1(x) = −c′2(x)
sin 2x
cos 2x

= −1
2

sin x sin 2x = − sin2 x cos x.

These can easily be solved:

c2(x) =
1
2

∫
(2 cos2 x− 1) sin x dx =

1
2
(cos x− 2

3
cos3 x).

c1(x) = −
∫

sinx cos x dx = −1
3

sin3 x.

The final step in getting the particular solution is to insert these functions into
yp(x). This gives

yp(x) = c1(x)y1(x) + c2(x)y2(x)

= (−1
3

sin3 x) cos 2x + (
1
2

cos x− 1
3

cos3 x) sin x

=
1
3

sin x. (B.50)

So, the general solution is

y(x) = c1 cos 2x + c2 sin 2x +
1
3

sin x. (B.51)

B.4 Cauchy-Euler Equations

Another class of solvable linear differential equations that is
of interest are the Cauchy-Euler type of equations, also referred to in some
books as Euler’s equation. These are given by

ax2y′′(x) + bxy′(x) + cy(x) = 0. (B.52)
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Note that in such equations the power of x in each of the coefficients matches
the order of the derivative in that term. These equations are solved in a
manner similar to the constant coefficient equations.

One begins by making the guess y(x) = xr. Inserting this function and
its derivatives,

y′(x) = rxr−1, y′′(x) = r(r− 1)xr−2,

into Equation (B.52), we have

[ar(r− 1) + br + c] xr = 0.

Since this has to be true for all x in the problem domain, we obtain the
characteristic equation The solutions of Cauchy-Euler equations

can be found using the characteristic
equation ar(r− 1) + br + c = 0.ar(r− 1) + br + c = 0. (B.53)

Just like the constant coefficient differential equation, we have a quadratic
equation and the nature of the roots again leads to three classes of solutions.
If there are two real, distinct roots, then the general solution takes the form
y(x) = c1xr1 + c2xr2 . For two real, distinct roots, the general

solution takes the form

y(x) = c1xr1 + c2xr2 .
Example B.18. Find the general solution: x2y′′ + 5xy′ + 12y = 0.

As with the constant coefficient equations, we begin by writing down the char-
acteristic equation. Doing a simple computation,

0 = r(r− 1) + 5r + 12

= r2 + 4r + 12

= (r + 2)2 + 8,

−8 = (r + 2)2, (B.54)

one determines the roots are r = −2 ± 2
√

2i. Therefore, the general solution is
y(x) =

[
c1 cos(2

√
2 ln |x|) + c2 sin(2

√
2 ln |x|)

]
x−2

Deriving the solution for Case 2 for the Cauchy-Euler equations works in
the same way as the second for constant coefficient equations, but it is a bit
messier. First note that for the real root, r = r1, the characteristic equation
has to factor as (r− r1)

2 = 0. Expanding, we have

r2 − 2r1r + r2
1 = 0.

The general characteristic equation is

ar(r− 1) + br + c = 0.

Dividing this equation by a and rewriting, we have

r2 + (
b
a
− 1)r +

c
a
= 0.

Comparing equations, we find

b
a
= 1− 2r1,

c
a
= r2

1.
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So, the Cauchy-Euler equation for this case can be written in the form

x2y′′ + (1− 2r1)xy′ + r2
1y = 0.

Now we seek the second linearly independent solution in the form y2(x) =
v(x)xr1 . We first list this function and its derivatives,

y2(x) = vxr1 ,

y′2(x) = (xv′ + r1v)xr1−1,

y′′2 (x) = (x2v′′ + 2r1xv′ + r1(r1 − 1)v)xr1−2. (B.55)

Inserting these forms into the differential equation, we have

0 = x2y′′ + (1− 2r1)xy′ + r2
1y

= (xv′′ + v′)xr1+1. (B.56)

Thus, we need to solve the equation

xv′′ + v′ = 0,

or
v′′

v′
= − 1

x
.

Integrating, we have
ln |v′| = − ln |x|+ C,

where A = ±eC absorbs C and the signs from the absolute values. Expo-
nentiating, we obtain one last differential equation to solve,

v′ =
A
x

.

Thus,
v(x) = A ln |x|+ k.

So, we have found that the second linearly independent equation can be
written as

y2(x) = xr1 ln |x|.

Therefore, the general solution is found as y(x) = (c1 + c2 ln |x|)xr.

For one root, r1 = r2 = r, the general
solution is of the form

y(x) = (c1 + c2 ln |x|)xr .

Example B.19. Solve the initial value problem: t2y′′ + 3ty′ + y = 0, with the
initial conditions y(1) = 0, y′(1) = 1.

For this example the characteristic equation takes the form

r(r− 1) + 3r + 1 = 0,

or
r2 + 2r + 1 = 0.

There is only one real root, r = −1. Therefore, the general solution is

y(t) = (c1 + c2 ln |t|)t−1.
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However, this problem is an initial value problem. At t = 1 we know the values
of y and y′. Using the general solution, we first have that

0 = y(1) = c1.

Thus, we have so far that y(t) = c2 ln |t|t−1. Now, using the second condition and

y′(t) = c2(1− ln |t|)t−2,

we have

1 = y(1) = c2.

Therefore, the solution of the initial value problem is y(t) = ln |t|t−1.
For complex conjugate roots, r = α± iβ,
the general solution takes the form

y(x) = xα(c1 cos(β ln |x|)+ c2 sin(β ln |x|)).

We now turn to the case of complex conjugate roots, r = α± iβ. When
dealing with the Cauchy-Euler equations, we have solutions of the form
y(x) = xα+iβ. The key to obtaining real solutions is to first rewrite xy :

xy = eln xy
= ey ln x.

Thus, a power can be written as an exponential and the solution can be
written as

y(x) = xα+iβ = xαeiβ ln x, x > 0.

Recalling that

eiβ ln x = cos(β ln |x|) + i sin(β ln |x|),

we can now find two real, linearly independent solutions, xα cos(β ln |x|)
and xα sin(β ln |x|) following the same steps as earlier for the constant coef-
ficient case. This gives the general solution as

y(x) = xα(c1 cos(β ln |x|) + c2 sin(β ln |x|)).

Example B.20. Solve: x2y′′ − xy′ + 5y = 0.
The characteristic equation takes the form

r(r− 1)− r + 5 = 0,

or

r2 − 2r + 5 = 0.

The roots of this equation are complex, r1,2 = 1± 2i. Therefore, the general solution
is y(x) = x(c1 cos(2 ln |x|) + c2 sin(2 ln |x|)).

The three cases are summarized in the table below.
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Classification of Roots of the Characteristic Equation
for Cauchy-Euler Differential Equations

1. Real, distinct roots r1, r2. In this case the solutions corresponding to
each root are linearly independent. Therefore, the general solution is
simply y(x) = c1xr1 + c2xr2 .

2. Real, equal roots r1 = r2 = r. In this case the solutions corresponding
to each root are linearly dependent. To find a second linearly indepen-
dent solution, one uses the Method of Reduction of Order. This gives
the second solution as xr ln |x|. Therefore, the general solution is found
as y(x) = (c1 + c2 ln |x|)xr.

3. Complex conjugate roots r1, r2 = α ± iβ. In this case the solutions
corresponding to each root are linearly independent. These com-
plex exponentials can be rewritten in terms of trigonometric functions.
Namely, one has that xα cos(β ln |x|) and xα sin(β ln |x|) are two lin-
early independent solutions. Therefore, the general solution becomes
y(x) = xα(c1 cos(β ln |x|) + c2 sin(β ln |x|)).

Nonhomogeneous Cauchy-Euler Equations

We can also solve some nonhomogeneous Cauchy-Euler equations using
the Method of Undetermined Coefficients or the Method of Variation of
Parameters. We will demonstrate this with a couple of examples.

Example B.21. Find the solution of x2y′′ − xy′ − 3y = 2x2.
First we find the solution of the homogeneous equation. The characteristic

equation is r2 − 2r − 3 = 0. So, the roots are r = −1, 3 and the solution is
yh(x) = c1x−1 + c2x3.

We next need a particular solution. Let’s guess yp(x) = Ax2. Inserting the
guess into the nonhomogeneous differential equation, we have

2x2 = x2y′′ − xy′ − 3y = 2x2

= 2Ax2 − 2Ax2 − 3Ax2

= −3Ax2. (B.57)

So, A = −2/3. Therefore, the general solution of the problem is

y(x) = c1x−1 + c2x3 − 2
3

x2.

Example B.22. Find the solution of x2y′′ − xy′ − 3y = 2x3.
In this case the nonhomogeneous term is a solution of the homogeneous problem,

which we solved in the last example. So, we will need a modification of the method.
We have a problem of the form

ax2y′′ + bxy′ + cy = dxr,
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where r is a solution of ar(r− 1) + br + c = 0. Let’s guess a solution of the form
y = Axr ln x. Then one finds that the differential equation reduces to Axr(2ar −
a + b) = dxr. [You should verify this for yourself.]

With this in mind, we can now solve the problem at hand. Let yp = Ax3 ln x.
Inserting into the equation, we obtain 4Ax3 = 2x3, or A = 1/2. The general
solution of the problem can now be written as

y(x) = c1x−1 + c2x3 +
1
2

x3 ln x.

Example B.23. Find the solution of x2y′′ − xy′ − 3y = 2x3 using Variation of
Parameters.

As noted in the previous examples, the solution of the homogeneous problem has
two linearly independent solutions, y1(x) = x−1 and y2(x) = x3. Assuming a
particular solution of the form yp(x) = c1(x)y1(x) + c2(x)y2(x), we need to solve
the system (B.45):

c′1(x)x−1 + c′2(x)x3 = 0

−c′1(x)x−2 + 3c′2(x)x2 =
2x3

x2 = 2x. (B.58)

From the first equation of the system we have c′1(x) = −x4c′2(x). Substituting
this into the second equation gives c′2(x) = 1

2x . So, c2(x) = 1
2 ln |x| and, therefore,

c1(x) = 1
8 x4. The particular solution is

yp(x) = c1(x)y1(x) + c2(x)y2(x) =
1
8

x3 +
1
2

x3 ln |x|.

Adding this to the homogeneous solution, we obtain the same solution as in the last
example using the Method of Undetermined Coefficients. However, since 1

8 x3 is a
solution of the homogeneous problem, it can be absorbed into the first terms, leaving

y(x) = c1x−1 + c2x3 +
1
2

x3 ln x.

Problems

1. Find all of the solutions of the first order differential equations. When
an initial condition is given, find the particular solution satisfying that con-
dition.

a.
dy
dx

=
ex

2y
.

b.
dy
dt

= y2(1 + t2), y(0) = 1.

c.
dy
dx

=

√
1− y2

x
.

d. xy′ = y(1− 2y), y(1) = 2.

e. y′ − (sin x)y = sin x.

f. xy′ − 2y = x2, y(1) = 1.
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g.
ds
dt

+ 2s = st2, , s(0) = 1.

h. x′ − 2x = te2t.

i.
dy
dx

+ y = sin x, y(0) = 0.

j.
dy
dx
− 3

x
y = x3, y(1) = 4.

2. Consider the differential equation

dy
dx

=
x
y
− x

1 + y
.

a. Find the 1-parameter family of solutions (general solution) of this
equation.

b. Find the solution of this equation satisfying the initial condition
y(0) = 1. Is this a member of the 1-parameter family?

3. Identify the type of differential equation. Find the general solution and
plot several particular solutions. Also, find the singular solution if one ex-
ists.

a. y = xy′ + 1
y′ .

b. y = 2xy′ + ln y′.

c. y′ + 2xy = 2xy2.

d. y′ + 2xy = y2ex2
.

4. Find all of the solutions of the second order differential equations. When
an initial condition is given, find the particular solution satisfying that con-
dition.

a. y′′ − 9y′ + 20y = 0.

b. y′′ − 3y′ + 4y = 0, y(0) = 0, y′(0) = 1.

c. 8y′′ + 4y′ + y = 0, y(0) = 1, y′(0) = 0.

d. x′′ − x′ − 6x = 0 for x = x(t).

5. Verify that the given function is a solution and use Reduction of Order
to find a second linearly independent solution.

a. x2y′′ − 2xy′ − 4y = 0, y1(x) = x4.

b. xy′′ − y′ + 4x3y = 0, y1(x) = sin(x2).

6. Prove that y1(x) = sinh x and y2(x) = 3 sinh x − 2 cosh x are linearly
independent solutions of y′′ − y = 0. Write y3(x) = cosh x as a linear com-
bination of y1 and y2.

7. Consider the nonhomogeneous differential equation x′′− 3x′+ 2x = 6e3t.

a. Find the general solution of the homogenous equation.

b. Find a particular solution using the Method of Undetermined Co-
efficients by guessing xp(t) = Ae3t.
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c. Use your answers in the previous parts to write down the general
solution for this problem.

8. Find the general solution of the given equation by the method given.

a. y′′ − 3y′ + 2y = 10. Method of Undetermined Coefficients.

b. y′′ + y′ = 3x2. Variation of Parameters.

9. Use the Method of Variation of Parameters to determine the general
solution for the following problems.

a. y′′ + y = tan x.

b. y′′ − 4y′ + 4y = 6xe2x.

10. Instead of assuming that c′1y1 + c′2y2 = 0 in the derivation of the solu-
tion using Variation of Parameters, assume that c′1y1 + c′2y2 = h(x) for an
arbitrary function h(x) and show that one gets the same particular solution.

11. Find all of the solutions of the second order differential equations for
x > 0.. When an initial condition is given, find the particular solution
satisfying that condition.

a. x2y′′ + 3xy′ + 2y = 0.

b. x2y′′ − 3xy′ + 3y = 0.

c. x2y′′ + 5xy′ + 4y = 0.

d. x2y′′ − 2xy′ + 3y = 0.

e. x2y′′ + 3xy′ − 3y = x2.
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