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This is a summary of solutions of the wave equation based upon the d’Alembert
solution. This is meant to be a review of material already covered in class. We
begin with the general solution and then specify initial and boundary conditions
in later sections. This will show the tie between the various solutions covered
in class, and some of those not covered in detail. We end with examples of
animations done in Maple 6.

1 General Solution

We start with the wave equation

uir = g, (1)
which was derived in class for small amplitude vibrations of a uniform string
under a constant tension.

Making the substitutions £ = = + ¢t and n = x — ct, this equation is trans-
formed to
Ugn = 0. (2)

This equation can be integrated to find solutions take the form of a sum of a
wave traveling to the right and one traveling to the left:

u(z,t) = F(&) + G(n), or u(z,t) = F(x + ct) + G(z —ct), (3)

where F' and G are arbitrary functions that can be determined from prescribed
initial and boundary conditions. We will review these in the next sections.

2 Initial Conditions

The wave equation (1) is second order in time. Therefore, we need two initial
conditions, specifying the initial position u(z,0) and the initial velocity u(z,0)
of each point on the string. Thus, we assume

u(z,0) = f(z),  w(x,0)=g(x). (4)



Imposing these conditions on the general solution (3), we have

Fz) + G(z) = f(=), (5)
c[F'(z) - G'(2)] = g(). (6)

Integrating the second equation, we obtain a second equation for the un-
known functions, F'(z) and G(z).

Flz) - Gl) = 1 /0 g(s) ds + F(0) — G(0). (7)

c

Adding and subtracting to Equation (5), we find general forms for our unknown
functions:

F@) = 5@+ 5 [ o) ds+ 5 FO) - GO Q
Ge) = 31@) ~ 5. [ 9(6)ds = PO - GO Q

Now, the solution to the wave equation satisfying our initial conditions, can
be written

u(z,t) = F(z+ct)+ Gz —ct)
x+ct
= % [f(x+ct) + flx —ct)] + 2ic/zfct g(s)ds. (10)

Note that F'(0) and G(0) do not appear in this physical solution. Therefore, we
will drop them in the rest of this discussion.

3 Boundary Conditions

The problem is that the solution in (10) only makes sense for the part of the
interval [x — ct,x + ct] contained in the domain of f and g. This is fine if
these domains are the entire real axis. However, there are problems for smaller
domains. In such cases we will needed to make use of the boundary conditions
to get to the solution of the initial-boundary value problem.

3.1 Infinite String

For f(z) and g(z) defined on —oo < = < 00, such as in the case of an infinite
string, the solution (10) is well-defined.

u(z,t)

F(z +ct) + G(xz — ct)
x+ct

= %[f(w-{—ct) + flz —ct)] + i/z g(s) ds. (11)
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3.2 Semi-infinite String

For f(x) and g(z) defined on 0 < & < 00, such as in the case of the semi-infinite
string, the solution (10) is not well-defined. For positive ¢ and ¢ > 0, we have
that f(z — ct) is not defined for  — ¢t < 0, or ¢t > x/c. This also affects the
range of integration over values where g is not defined.

This can be seen using characteristics in the xt-plane. Information from the
point z = 0 can only propagate to the right at speed ¢. Drawing the line z = ct,
we find that values for u(z,t) can only be obtained from the initial condition
alone if the point (x,t) lies below the characteristic. In order to get values
for points above the characteristics, we need to specify information, which will
propagate from that region. Specifying values along the t—axis will provide such
information. Namely, we need to specify a boundary condition at x = 0.

Two types of boundary conditions are that a) the end is fixed, u(0,t) =
0,t > 0, or b) the end is free u,(0,t) = 0,¢t > 0. We will treat each case
separately.

3.2.1 Fixed End
For a fixed end, u(0,¢) =0, t > 0, we have

0 =u(0,t) = F(ct) + G(—ct). (12)
Letting ( = —ct, this equation can be rewritten as
G(Q) =-F(=(¢), ¢<0. (13)

This equation extends the range of G to negative values and can then be
used to do the same for F. Inserting the expressions for F' and G from Equations
(8)-(9), we have

¢
GO) = Q=5 [ ats)s (14)
—¢
PO = 505 [ e
¢
= 50 +5 [ al=sas (15)

Comparing the expressions in (14) and (15), we see that we can satisfy (13)
if
fQ)=-f(=¢), and  g¢(¢) =—-g(—=(). (16)
In other words, we can extend the functions f and g to be odd functions with
respect to z = 0.



3.2.2 Free End

For a free end, u,(0,¢t) =0, t > 0, we have

0=u,(0,t) = F'(ct) + G'(—ct). (17)
Letting ( = —ct, this equation can be rewritten as
G'(¢) =-F'(=(), ¢ <0. (18)

Inserting the expressions for F' and G from Equations (8)-(9), we have

G0 = 3705000, (19)
SF(=0) = —3f(=0) ~ 5.0(=0). (20)

Comparing these expressions, we see that we can satisfy (18) if

fl(Q)==f(=¢, and  g(¢) =g(=(). (21)

This means that the function f’ needs to be an odd function with respect to
x = 0. Thus, the functions f and g need to be even functions with respect to
x=0.

3.3 Finite String

In this case we have a physical string, which has a finite length ¢. We first
consider the propagation of information from the initial conditions along the
characteristics. f and g are defined for 0 < z < £. The general solution (10) is
of the form F'(z+ct)+G(z—ct). Thus, we can only compute F for 0 < z+ct < £
and G for 0 < z—ct < £. Fort > 0, we then have t < Z_T”” and t < %, respectively.

The region defined by these inequalities is a triangular region. This region
contains all points whose solution can be obtained using only the initial con-
ditions. In order to obtain more information about the future values of the
solution, we need to specify boundary conditions at = 0 (to give G) and z = ¢
(to give F).

In either case we can specify fixed or free ends. We have seen previously
what this means for z =0:

o)
—~
Y
~

I

—F(—(¢), (<0, fixed end (22)
G'¢) = —-F'(-¢)(¢<0, freeend. (23)

We now consider the conditions at x = £.



3.4 Conditions at x =/
3.4.1 Fixed End
For a fixed end, u(¢,t) =0, t > 0, we have
0=u(l,t) =F(l+ct) + G(£ — ct). (24)
Letting ¢ = ¢ + ct, this equation can be rewritten as
F(()=-G2t-(), (=t (25)

This equation extends the range of F' to values ¢ < ( < 2{. Inserting the
expressions for F' and G from Equations (8)-(9), we have

1 [
= = - 2
FQ) = 35Q+ g [t (26)
GRr=0) = —3ie-0+5 [ glds
= Sser-g % [ ger-na (21)
= 5 2 ), g T)dT.
Comparing these expressions, we see that we can satisfy (25) if
f20=¢) =—£(0), (28)
and
¢ ¢
/ g(s)ds = —/ g(2¢ — 1) dr. (29)
0 20
Differentiating the last expression with respect to ¢, we obtain
9(2t = ) = —g(Q). (30)

These conditions on f and ¢g mean that we can extend these functions to ¢ <
¢ < 2¢ by performing and odd extension about z = £. This is very similar to
the case encountered for a fixed end at z = 0.

3.4.2 Free End
For a free end, u,(¢,t) =0, t > 0, we have
0=u,(l,t) = F'({ +ct) + G'(L — ct). (31)
Letting ¢ = ¢ + ct, this equation can be rewritten as
F'(Q) = —G'(26 =), (> L. (32)

Inserting the expressions for F' and G from Equations (8)-(9), we have



1 1

PO = 3110 +5.90), (33

1 1
G- = —5fR- Q)+ 5920 Q). (34
Comparing these expressions, we see that we can satisfy (18) if

f(O==f@2—=¢), and  g(¢)=g(20- (). (35)

This means that the function f’ needs to be an odd function with respect to
x = £. Thus, the functions f and g need to be even functions with respect to
x =1/

3.4.3 Tying Loose Ends

Now all we need to do is look at the different possibilities for the ends. We could
have two fixed ends, two free ends, or one free and one fixed. With each case
we use the results for the type of extensions for f(z) and g(z). These will lead
to certain types of periodic extensions for these functions, which can be used to
rewrite the general solution as a well defined solution to the problem over the
finite interval.

1. Two Fixed Ends
In this case we have the conditions

f@)=—-f(-z), —€<z<0
fl@)y==f(2l—-2), (<z<20 (36)

Then
flz+20) = —f(20— (z +20)) = — f(—2) = f(2).

Thus, we see that f and g need to be periodic odd extensions of the original
functions with period 2¢.

2. Two Free Ends

In this case we have the conditions

Then
f@+26) = f(20 = (z +20)) = f(-z) = f(=).

Thus, we see that f and g need to be periodic even extensions of the
original functions with period 2¢.



3. One Fixed End and One Free End

In this case we either have the conditions (fixed at = 0)
fle) =—=f(-x), —€<z<0
@) = fe—w), C<a<2 (33)

or we have the conditions (free at x = 0)

fley=—f(2l—x), (<z<20 (39)

In the first case,

flea+4) = f2l—(x+40)=f(—x—20)
= —fz+20)=—-f(20—(z+70))
= —f(-x) = f(2). (40)
Thus, we see that f and g need to be periodic odd extensions of the original
functions with period 4/, since f is an odd extension about z = 0.

Similarly, for the second case,

Fla+40) = —f(20—(z+40) = —f(—x — 20)
= —flz+20)=F2— (z+10))
= f(=2) = f(=). (41)

Thus, we see that f and g need to be periodic even extensions of the
original functions with period 4/, since f is an even extension about z = 0.

3.5 Examples



