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Homogeneous Problem

Consider the problema

ut = kuxx, 0 < x < L, t > 0
u(0, t) = 0, u(0, t) = 0, t > 0

u(x, 0) = f (x), 0 ≤ x ≤ L. (1)
We use the Method of Separation of Variables.
Assuming u(x, t) = X(x)T (t), we need to solve

X ′′ + κ2X = 0, X(0) = X(L) = 0.

The solution of this eigenvalue problem is
X(x) = sin nπx

L
, κ = nπ

L
, n = 1, 2, . . . .

The general solution of (1) is then

u(x, t) =
∞∑

n=1
bn sin nπx

L
e−n2π2kt/L2

. (2)

The Fourier coefficients, bn, are found as

bn = 2
L

∫ L

0
f (x) sin nπx

L
dx.

aNote - Other boundary conditions, such as insulating, mixed, or periodic,
boundary conditions will lead to other solutions.

Time-Independent BCs

Assume nonhomogeneous fixed conditions:
ut = kuxx, 0 < x < L, t > 0

u(0, t) = a, u(L, t) = b, t > 0
u(x, 0) = f (x), 0 ≤ x ≤ L. (3)

We seek steady-state (ut = 0) solutions satisfying
the boundary conditions.

w′′(x) = 0, 0 < x < L,

w(0) = a, w(L) = b. (4)
Therefore, w(x) = cx + d, and the BCs give

w(x) = (b − a)x
L

+ a. (5)

If u(x, t) = w(x) + v(x, t), then v(x, t) solves
vt = kvxx, 0 < x < L, t > 0

v(0, t) = 0, v(L, t) = 0, t > 0
v(x, 0) = f (x) − w(x), 0 ≤ x ≤ L. (6)

The general solution of (3) is found as

u(x, t) =
∞∑

n=1
bn sin nπx

L
e−n2π2kt/L2 + (b − a)x

L
+a, (7)

where bn is determined using the modified initial
condition, v(x, 0) = f (x) − w(x).

General Problem with Time-Dependent Boundary Conditions

The nonhomogeneous heat equation with time-dependent boundary conditions is given by
ut − kuxx = F (x, t), 0 < x < L, t > 0,

u(0, t) = a(t), u(L, t) = b(t), t > 0,

u(x, 0) = f (x), 0 ≤ x ≤ L. (8)
We seek solutions of the form

u(x, t) = v(x, t) + w(x, t),
where w(x, t) satisfies

w(x, t) = [b(t) − a(t)] x

L
+ a(t) (9)

and v(x, t) satisfies a nonhomogeneous problem with homogeneous boundary conditions,
vt − kvxx = F (x, t) − [b′(t) − a′(t)] x

L
− a′(t),

v(0, t) = 0, v(L, t) = 0,

v(x, 0) = f (x) − [b(0) − a(0)] x

L
− a(0).

This is a nonhomogeneous heat equation with homogeneous boundary conditions.

Nonhomogeneous Heat Equation with Homogeneous BCs

The equation for v(x, t) can be written in the general form
vt − kvxx = h(x, t), 0 < x < L, t > 0,

v(0, t) = 0, v(L, t) = 0, t > 0,

v(x, 0) = g(x), 0 ≤ x ≤ L. (10)
Once again, we split Problem (10) into two problems. Let

v(x, t) = u1(x, t) + u2(x, t),
where u1 and u2 satisfy the following two problems.

Problem for u1(x, t)

u1t − ku1xx = 0, 0 < x < L, t > 0,

u1(0, t) = 0, u1(L, t) = 0, t > 0,

u1(x, 0) = g(x), 0 ≤ x ≤ L.

This is the familiar homogeneous heat equation
with homogeneous boundary conditions. The
solutions are found using the Method of
Separation of Variables.

Problem for u2(x, t)

u2t − ku2xx = h(x, t), 0 < x < L, t > 0,

u2(0, t) = 0, u2(L, t) = 0, t > 0,

u2(x, 0) = 0, 0 ≤ x ≤ L.

This is a nonhomogeneous heat equation with
homogeneous boundary and initial conditions. We
use Duhamel’s Principle to convert this prob-
lem with a source to an initial value problem.

Solution to General Problem

From these simpler problems we form the general solution:
u(x, t) = u1(x, t) + u2(x, t) + [b(t) − a(t)] x

L
+ a(t) (11)

Duhamel’s Principle

The solution of the heat equation with a source and
homogeneous boundary and initial conditions may be
found by solving a homogeneous heat equation with
nonhomogeneous initial conditions.

ODE Version

Let X : R → R and X(t) = U(t)X0 be the solution of
Ẋ = AX, X(0) = X0.
Consider

X(t) =
∫ t

0
U(t − s)Y(s) ds.

X(t) satisfies the inhomogeneous problem d

dt
− A

X = Y(s), X(0) = 0.

Solution for u2(x, t)

Solve for ṽ(x, t; s) in the problem
ṽt − kṽxx = 0, 0 < x < L, t > 0,

ṽ(0, t; s) = 0, ṽ(L, t; s) = 0,

ṽ(x, 0; s) = h(x, s). (12)
Then, v(x, t; s) = ṽ(x, t − s; s) satisfies

vt − kvxx = 0, 0 < x < L, t ≥ s,

v(0, t; s) = 0, v(L, t; s) = 0,

v(x, s; s) = h(x, s). (13)
v(x, t; s) is the solution when the source is turned on
at time t = s − ∆s and turned off at t = s. A super-
position of these incremental sources gives the solution

u2(x, t) =
∫ t

0
v(x, t; s) ds

=
∫ t

0
ṽ(x, t − s; s) ds. (14)

Green’s Function, G(x, y)

The steady state solution, satisfying
−kwxx = h(x), 0 < x < L,

w(0) = a, w(L) = b, (15)
can be found by direct integration as

w(x) = −
∫ L

0
G(x, y)

(
−1

k
h(y)

)
dy + (b − a)x

L
+ a.


