Solution of the Nonhomogeneous Heat Equation

Homogeneous Problem

Consider the problem^a

$$u_{t} = k u_{xx}, \quad 0 < x < L, \quad t > 0$$

$$u(0,t) = 0, \quad u(0,t) = 0, \quad t > 0$$

$$u(x,0) = f(x), \quad 0 \le x \le L.$$
(1)

We use the Method of Separation of Variables. Assuming u(x,t) = X(x)T(t), we need to solve

$$T'' + \kappa^2 X = 0, \quad X(0) = X(L) = 0$$

The solution of this eigenvalue problem is

$$X(x) = \sin \frac{n\pi x}{L}, \quad \kappa = \frac{n\pi}{L}, n = 1, 2, \dots$$

The general solution of (1) is then

$$u(x,t) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L} e^{-n^2 \pi^2 k t/L^2}.$$
 (2)

The Fourier coefficients, b_n , are found as

$$b_n = \frac{2}{L} \int_0^L f(x) \sin \frac{n\pi x}{L} \, dx.$$

^aNote - Other boundary conditions, such as insulating, mixed, or periodic, boundary conditions will lead to other solutions.

Time-Independent BCs

Assume nonhomogeneous fixed conditions:

$$u_{t} = k u_{xx}, \quad 0 < x < L, \quad t > 0$$

$$u(0,t) = a, \quad u(L,t) = b, \quad t > 0$$

$$u(x,0) = f(x), \quad 0 \le x \le L.$$
(3)

We seek steady-state $(u_t = 0)$ solutions satisfying the boundary conditions.

$$v''(x) = 0, \quad 0 < x < L,$$

 $w(0) = a, \quad w(L) = b.$ (4)

Therefore, w(x) = cx + d, and the BCs give

$$w(x) = \frac{(b-a)x}{L} + a. \tag{5}$$

If
$$u(x,t) = w(x) + v(x,t)$$
, then $v(x,t)$ solves

$$v_t = k v_{xx}, \quad 0 < x < L, \quad t > 0$$

 $v(0,t) = 0, \quad v(L,t) = 0, \quad t > 0$

$$v(x,0) = f(x) - w(x), \quad 0 \le x \le L.$$
 (6)

The general solution of (3) is found as

$$u(x,t) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L} e^{-n^2 \pi^2 k t/L^2} + \frac{(b-a)x}{L} + a, \quad (7)$$

where b_n is determined using the modified initial condition, v(x, 0) = f(x) - w(x).

MAT 418/518 Spring 2024, by Dr. R. L. Herman

Department of Mathematics and Statistics, UNCW

General Problem with Time-Dependent Boundary Conditions

The nonhomogeneous heat equation with time-dependent boundary conditions is given by

$$u_t - ku_{xx} = F(x, t), \quad 0 < u(0, t) = a(t), \quad u(L, t)$$

 $u(x, 0) = f(x)$

We seek solutions of the form

where w(x,t) satisfies

$$u(x, t) = t(x, t)$$

 $w(x,t) = [b(t) - a(t)]\frac{x}{L} + a(t)$

and v(x,t) satisfies a nonhomogeneous problem with homogeneous boundary conditions, $v_t - kv_{xx} = F(x,t) - [b'(t) - a'(t)]\frac{x}{L} - a'(t),$

$$\kappa v_{xx} = F(x, t) - [O(t) + v(0, t)] =$$

$$v(x,0) = f(x) - [b(0)]$$

This is a nonhomogeneous heat equation with homogeneous boundary conditions.

Nonhomogeneous Heat Equation with Homogeneous BCs

The equation for
$$v(x, t)$$
 can be written in the general form
 $v_t - kv_{xx} = h(x, t), \quad 0 < v(0, t) = 0, \quad v(L, v(x, 0) = g(x))$
Once again, we split Problem (10) into two problems. Let

$$v(x,t) = u_1(x,t) +$$

where u_1 and u_2 satisfy the following two problems.

Problem for $u_1(x,t)$

$$u_{1t} - ku_{1xx} = 0, \quad 0 < x < L, \quad t > 0,$$

$$u_1(0, t) = 0, \quad u_1(L, t) = 0, \quad t > 0,$$

$$u_1(x, 0) = q(x), \quad 0 < x < L.$$

This is the familiar homogeneous heat equation with homogeneous boundary conditions. The solutions are found using the Method of Separation of Variables.

Solution to General Problem

From these simpler problems we form the general solution: $u(x,t) = u_1(x,t) + u_2(x,t) +$

 $x < L, \quad t > 0,$ $= b(t), \quad t > 0,$

 $(x), \quad 0 \le x \le L.$

u(x,t) = v(x,t) + w(x,t),

 $= 0, \quad v(\tilde{L}, t) = 0, \\) - a(0)] \frac{x}{I} - a(0).$

 $x < L, \quad t > 0,$ $(t,t) = 0, \quad t > 0,$ $x), \quad 0 \le x \le L.$ $+u_2(x,t),$

Problem for $u_2(x,t)$

$$u_{2t} - ku_{2xx} = h(x, t), \quad 0 < x < L, \quad t > 0,$$

 $u_2(0, t) = 0, \quad u_2(L, t) = 0, \quad t > 0,$
 $u_2(x, 0) = 0, \quad 0 \le x \le L.$

This is a nonhomogeneous heat equation with homogeneous boundary and initial conditions. We use **Duhamel's Principle** to convert this problem with a source to an initial value problem.

$$[b(t) - a(t)]\frac{x}{L} + a(t)$$

(8)

(9)

(10)

Let $\mathbf{X} : \mathbb{R} \to \mathbb{R}$ and $\mathbf{X}(t) = U(t)\mathbf{X}_0$ be the solution of $\dot{\mathbf{X}} = A\mathbf{X}, \, \mathbf{X}(0) = \mathbf{X}_0.$ Consider

/ 1

Solve fo

Then, ι

v(x,t;s) is the solution when the source is turned on at time $t = s - \Delta s$ and turned off at t = s. A superposition of these incremental sources gives the solution

The ste

w(x) =

(11)

Duhamel's Principle

The solution of the heat equation with a source and homogeneous boundary and initial conditions may be found by solving a homogeneous heat equation with nonhomogeneous initial conditions.

ODE Version

$$\mathbf{X}(t) = \int_0^t U(t-s)\mathbf{Y}(s) \, ds.$$

 $\mathbf{X}(t)$ satisfies the inhomogeneous problem

$$\left(\frac{a}{dt} - A\right) \mathbf{X} = \mathbf{Y}(s), \quad \mathbf{X}(0) = \mathbf{0}$$

Solution for $u_2(x,t)$

or
$$\tilde{v}(x,t;s)$$
 in the problem
 $\tilde{v}_t - k\tilde{v}_{xx} = 0, \quad 0 < x < L, \quad t > 0,$
 $\tilde{v}(0,t;s) = 0, \quad \tilde{v}(L,t;s) = 0,$
 $\tilde{v}(x,0;s) = h(x,s).$ (12)
 $v(x,t;s) = \tilde{v}(x,t-s;s)$ satisfies
 $v_t - kv_{xx} = 0, \quad 0 < x < L, \quad t \ge s,$

$$v_t - \kappa v_{xx} = 0, \quad 0 < x < L, \quad t \ge s, v(0, t; s) = 0, \quad v(L, t; s) = 0, v(x, s; s) = h(x, s).$$
(13)

$$u_{2}(x,t) = \int_{0}^{t} v(x,t;s) \, ds$$

= $\int_{0}^{t} \tilde{v}(x,t-s;s) \, ds.$ (14)

Green's Function, G(x, y)

eady state solution, satisfying

$$-kw_{xx} = h(x), \quad 0 < x < L,$$

 $w(0) = a, \quad w(L) = b,$ (15)

can be found by direct integration as

$$-\int_0^L G(x,y) \left(-\frac{1}{k}h(y)\right) \, dy + (b-a)\frac{x}{L} + a.$$