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Prologue

“How can it be that mathematics, being after all a product of human thought inde-
pendent of experience, is so admirably adapted to the objects of reality?.” - Albert
Einstein (1879-1955)

Introduction

This set of notes is being compiled for use in a two semester course
on mathematical methods for the solution of partial differential equations
typically taken by majors in mathematics, the physical sciences, and engi-
neering. Partial differential equations often arise in the study of problems
in applied mathematics, mathematical physics, physical oceanography, me-
teorology, engineering, and biology, economics, and just about everything
else. However, many of the key methods for studying such equations ex-
tend back to problems in physics and geometry. In this course we will
investigate analytical, graphical, and approximate solutions of some stan-
dard partial differential equations. We will study the theory, methods of
solution and applications of partial differential equations.

We will first introduce partial differential equations and a few models.
A PDE, for short, is an equation involving the derivatives of some unknown
multivariable function. It is a natural extenson of ordinary differential equa-
tions (ODEs), which are differential equations for an unknown function one
one variable. We will begin by classifying some of these equations.

While it is customary to begin the study of PDEs with the one dimen-
sional heat and wave equations, we will begin with first order PDEs and
then proceed to the other second order equations. This will allow for an un-
derstanding of characteristics and also open the door to the study of some
nonlinear equations related to some current research in the evolution of
wave equations.

There are different methods for solving partial differential and these will
be explored throughout the course. As we progress through the course, we
will introduce standard numerical methods since knowing how to numer-
ically solve differential equations can be useful in research. We will also
look into the standard solutions, including separation of variables, starting
in one dimension and then proceeding to higher dimensions. This naturally
leads to finding solutions as Fourier series and special functions, such as



x partial differential equations

Legendre polynomials and Bessel functions.
The specific topics to be studied and approximate number of lectures

will include
First Semester: (26 lectures)

• Introduction (1)

• First Order PDEs (2)

• Traveling Waves (1)

• Shock and Rarefaction Waves (2)

• Second Order PDEs (1)

• 1D Heat Equation (1)

• 1D Wave Equation - d’Alembert Solution (2)

• Separation of Variables (1)

• Fourier Series (4)

• Equations in 2D - Laplace’s Equation, Vibrating Membranes (4)

• Numerical Solutions (2)

• Special Functions (3)

• Sturm-Liouville Theory (2)

Second semester: (25 lectures)

• Nonhomogeneous Equations (2)

• Green’s Functions - ODEs (2)

• Green’s Functions - PDEs (2)

• Complex Variables (4)

• Fourier Transforms (3)

• Nonlinear PDEs (2)

• Other - numerical, conservation laws, symmetries (10)

An appendix is provided for reference, especially to basic calculus tech-
niques, differential equations, and (maybe later) linear algebra.
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1
First Order Partial Differential Equations

“The profound study of nature is the most fertile source of mathematical discover-
ies.” - Joseph Fourier (1768-1830)

1.1 Introduction

We begin our study of partial differential equations with first
order partial differential equations. Before doing so, we need to define a few
terms.

Recall (see the appendix on differential equations) that an n-th order
ordinary differential equation is an equation for an unknown function y(x) n-th order ordinary differential equation

that expresses a relationship between the unknown function and its first n
derivatives. One could write this generally as

F(y(n)(x), y(n−1)(x), . . . , y′(x), y(x), x) = 0. (1.1)

Here y(n)(x) represents the nth derivative of y(x). Furthermore, and initial
value problem consists of the differential equation plus the values of the Initial value problem.

first n− 1 derivatives at a particular value of the independent variable, say
x0:

y(n−1)(x0) = yn−1, y(n−2)(x0) = yn−2, . . . , y(x0) = y0. (1.2)

If conditions are instead provided at more than one value of the indepen-
dent variable, then we have a boundary value problem. .

If the unknown function is a function of several variables, then the deriva-
tives are partial derivatives and the resulting equation is a partial differen-
tial equation. Thus, if u = u(x, y, . . .), a general partial differential equation
might take the form

F
(

x, y, . . . , u,
∂u
∂x

,
∂u
∂y

, . . . ,
∂2u
∂x2 , . . .

)
= 0. (1.3)

Since the notation can get cumbersome, there are different ways to write
the partial derivatives. First order derivatives could be written as

∂u
∂x

, ux, ∂xu, Dxu.
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Second order partial derivatives could be written in the forms

∂2u
∂x2 , uxx, ∂xxu, D2

xu.

∂2u
∂x∂y

=
∂2u

∂y∂x
, uxy, ∂xyu, DyDxu.

Note, we are assuming that u(x, y, . . .) has continuous partial derivatives.
Then, according to Clairaut’s Theorem (Alexis Claude Clairaut, 1713-1765) ,
mixed partial derivatives are the same.

Examples of some of the partial differential equation treated in this book
are shown in Table 2.1. However, being that the highest order derivatives in
these equation are of second order, these are second order partial differential
equations. In this chapter we will focus on first order partial differential
equations. Examples are given by

ut + ux = 0.

ut + uux = 0.

ut + uux = u.

3ux − 2uy + u = x.

For function of two variables, which the above are examples, a general
first order partial differential equation for u = u(x, y) is given as

F(x, y, u, ux, uy) = 0, (x, y) ∈ D ⊂ R2. (1.4)

This equation is too general. So, restrictions can be placed on the form,
leading to a classification of first order equations. A linear first order partial
differential equation is of the formLinear first order partial differential

equation.
a(x, y)ux + b(x, y)uy + c(x, y)u = f (x, y). (1.5)

Note that all of the coefficients are independent of u and its derivatives and
each term in linear in u, ux, or uy.

We can relax the conditions on the coefficients a bit. Namely, we could as-
sume that the equation is linear only in ux and uy. This gives the quasilinear
first order partial differential equation in the formQuasilinear first order partial differential

equation.
a(x, y, u)ux + b(x, y, u)uy = f (x, y, u). (1.6)

Note that the u-term was absorbed by f (x, y, u).
In between these two forms we have the semilinear first order partial

differential equation in the formSemilinear first order partial differential
equation.

a(x, y)ux + b(x, y)uy = f (x, y, u). (1.7)

Here the left side of the equation is linear in u, ux and uy. However, the right
hand side can be nonlinear in u.

For the most part, we will introduce the Method of Characteristics for
solving quasilinear equations. But, let us first consider the simpler case of
linear first order constant coefficient partial differential equations.
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1.2 Linear Constant Coefficient Equations

Let’s consider the linear first order constant coefficient par-
tial differential equation

aux + buy + cu = f (x, y), (1.8)

for a, b, and c constants with a2 + b2 > 0. We will consider how such equa-
tions might be solved. We do this by considering two cases, b = 0 and
b 6= 0.

For the first case, b = 0, we have the equation

aux + cu = f .

We can view this as a first order linear (ordinary) differential equation with
y a parameter. Recall that the solution of such equations can be obtained
using an integrating factor. [See the discussion after Equation (B.7).] First
rewrite the equation as

ux +
c
a

u =
f
a

.

Introducing the integrating factor

µ(x) = exp(
∫ x c

a
dξ) = e

c
a x,

the differential equation can be written as

(µu)x =
f
a

µ.

Integrating this equation and solving for u(x, y), we have

µ(x)u(x, y) =
1
a

∫
f (ξ, y)µ(ξ) dξ + g(y)

e
c
a xu(x, y) =

1
a

∫
f (ξ, y)e

c
a ξ dξ + g(y)

u(x, y) =
1
a

∫
f (ξ, y)e

c
a (ξ−x) dξ + g(y)e−

c
a x. (1.9)

Here g(y) is an arbitrary function of y.
For the second case, b 6= 0, we have to solve the equation

aux + buy + cu = f .

It would help if we could find a transformation which would eliminate one
of the derivative terms reducing this problem to the previous case. That is
what we will do.

We first note that

aux + buy = (ai + bj) · (uxi + uyj)

= (ai + bj) · ∇u. (1.10)
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Recall from multivariable calculus that the last term is nothing but a direc-
tional derivative of u(x, y) in the direction ai + bj. [Actually, it is propor-
tional to the directional derivative if ai + bj is not a unit vector.]

Therefore, we seek to write the partial differential equation as involving a
derivative in the direction ai + bj but not in a directional orthogonal to this.
In Figure 1.1 we depict a new set of coordinates in which the w direction is
orthogonal to ai + bj.x

z = y

w = bx− ay

ai + bj

Figure 1.1: Coordinate systems for trans-
forming aux + buy + cu = f into bvz +
cv = f using the transformation w =
bx− ay and z = y.

We consider the transformation

w = bx− ay,

z = y. (1.11)

We first note that this transformation is invertible,

x =
1
b
(w + az),

y = z. (1.12)

Next we consider how the derivative terms transform. Let u(x, y) =

v(w, z). Then, we have

aux + buy = a
∂

∂x
v(w, z) + b

∂

∂y
v(w, z),

= a
[

∂v
∂w

∂w
∂x

+
∂v
∂z

∂z
∂x

]
+b
[

∂v
∂w

∂w
∂y

+
∂v
∂z

∂z
∂y

]
= a[bvw + 0 · vz] + b[−avw + vz]

= bvz. (1.13)

Therefore, the partial differential equation becomes

bvz + cv = f
(

1
b
(w + az), z

)
.

This is now in the same form as in the first case and can be solved using an
integrating factor.

Example 1.1. Find the general solution of the equation 3ux − 2uy + u = x.
First, we transform the equation into new coordinates.

w = bx− ay = −2x− 3y,

and z = y. The,

ux − 2uy = 3[−2vw + 0 · vz]− 2[−3vw + vz]

= −2vz. (1.14)

The new partial differential equation for v(w, z) is

−2
∂v
∂z

+ v = x = −1
2
(w + 3z).
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Rewriting this equation,

∂v
∂z
− 1

2
v =

1
4
(w + 3z),

we identify the integrating factor

µ(z) = exp
[
−
∫ z 1

2
dζ

]
= e−z/2.

Using this integrating factor, we can solve the differential equation for v(w, z).

∂

∂z

(
e−z/2v

)
=

1
4
(w + 3z)e−z/2,

e−z/2v(w, z) =
1
4

∫ z
(w + 3ζ)e−ζ/2 dζ

= −1
2
(w + 6 + 3z)e−z/2 + c(w)

v(w, z) = −1
2
(w + 6 + 3z) + c(w)ez/2

u(x, y) = x− 3 + c(−2x− 3y)ey/2.

(1.15)

1.3 Quasilinear Equations: The Method of Characteristics

1.3.1 Geometric Interpretation

We consider the quasilinear partial differential equation in
two independent variables,

a(x, y, u)ux + b(x, y, u)uy − c(x, y, u) = 0. (1.16)

Let u = u(x, y) be a solution of this equation. Then,

f (x, y, u) = u(x, y)− u = 0

describes the solution surface, or integral surface, Integral surface.

We recall from multivariable, or vector, calculus that the normal to the
integral surface is given by the gradient function,

∇ f = (ux, uy,−1).

Now consider the vector of coefficients, v = (a, b, c) and the dot product
with the gradient above:

v · ∇ f = aux + buy − c.

This is the left hand side of the partial differential equation. Therefore, for
the solution surface we have

v · ∇ f = 0,

or v is perpendicular to ∇ f . Since ∇ f is normal to the surface, v = (a, b, c)
is tangent to the surface. Geometrically, v defines a direction field, called
the characteristic field. These are shown in Figure 1.2. The characteristic field.

∇ f

v

Figure 1.2: The normal to the integral
surface,∇ f = (ux , uy,−1), and the tan-
gent vector, v = (a, b, c), are orthogonal.
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1.3.2 Characteristics

We seek the forms of the characteristic curves such as the one
shown in Figure 1.2. Recall that one can parametrize space curves,

c(t) = (x(t), y(t), u(t)), t ∈ [t1, t2].

The tangent to the curve is then

v(t) =
dc(t)

dt
=

(
dx
dt

,
dy
dt

,
du
dt

)
.

However, in the last section we saw that v(t) = (a, b, c) for the partial dif-
ferential equation a(x, y, u)ux + b(x, y, u)uy − c(x, y, u) = 0. This gives the
parametric form of the characteristic curves as

dx
dt

= a,
dy
dt

= b,
du
dt

= c. (1.17)

Another form of these equations is found by relating the differentials, dx,
dy, du, to the coefficients in the differential equation. Since x = x(t) and
y = y(t), we have

dy
dx

=
dy/dt
dx/dt

=
b
a

.

Similarly, we can show that

du
dx

=
c
a

,
du
dy

=
c
b

.

All of these relations can be summarized in the form

dt =
dx
a

=
dy
b

=
du
c

. (1.18)

How do we use these characteristics to solve quasilinear partial differen-
tial equations? Consider the next example.

Example 1.2. Find the general solution: ux + uy − u = 0.
We first identify a = 1, b = 1, and c = u. The relations between the differentials

is
dx
1

=
dy
1

=
du
u

.

We can pair the differentials in three ways:

dy
dx

= 1,
du
dx

= u,
du
dy

= u.

Only two of these relations are independent. We focus on the first pair.
The first equation gives the characteristic curves in the xy-plane. This equation

is easily solved to give
y = x + c1.

The second equation can be solved to give u = c2ex.
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The goal is to find the general solution to the differential equation. Since u =

u(x, y), the integration “constant” is not really a constant, but is constant with
respect to x. It is in fact an arbitrary constant function. In fact, we could view it
as a function of c1, the constant of integration in the first equation. Thus, we let
c2 = G(c1) for G and arbitrary function. Since c1 = y − x, we can write the
general solution of the differential equation as

u(x, y) = G(y− x)ex.

Example 1.3. Solve the advection equation, ut + cux = 0, for c a constant, and
u = u(x, t), |x| < ∞, t > 0.

The characteristic equations are

dτ =
dt
1

=
dx
c

=
du
0

(1.19)

and the parametric equations are given by

dx
dτ

= c,
du
dτ

= 0. (1.20)

These equations imply that

• u = const. = c1.

• x = ct + const. = ct + c2.
Traveling waves.

As before, we can write c1 as an arbitrary function of c2. However, before doing
so, let’s replace c1 with the variable ξ and then we have that

ξ = x− ct, u(x, t) = f (ξ) = f (x− ct)

where f is an arbitrary function. Furthermore, we see that u(x, t) = f (x − ct)
indicates that the solution is a wave moving in one direction in the shape of the
initial function, f (x). This is known as a traveling wave. A typical traveling wave
is shown in Figure 1.3.

x

u

f (x) f (x− ct)

c

Figure 1.3: Depiction of a traveling wave.
u(x, t) = f (x) at t = 0 travels without
changing shape.

Note that since u = u(x, t), we have

0 = ut + cux

=
∂u
∂t

+
dx
dt

∂u
∂x

=
du(x(t), t

dt
. (1.21)

This implies that u(x, t) = constant along the characteristics, dx
dt = c.

As with ordinary differential equations, the general solution provides an
infinite number of solutions of the differential equation. If we want to pick
out a particular solution, we need to specify some side conditions. We Side conditions.

investigate this by way of examples.

Example 1.4. Find solutions of ux + uy − u = 0 subject to u(x, 0) = 1.
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We found the general solution to the partial differential equation as u(x, y) =

G(y− x)ex. The side condition tells us that u = 1 along y = 0. This requires

1 = u(x, 0) = G(−x)ex.

Thus, G(−x) = e−x. Replacing x with −z, we find

G(z) = ez.

Thus, the side condition has allowed for the determination of the arbitrary function
G(y− x). Inserting this function, we have

u(x, y) = G(y− x)ex = ey−xex = ey.

Side conditions could be placed on other curves. For the general line,
y = mx + d, we have u(x, mx + d) = g(x) and for x = d, u(d, y) = g(y).
As we will see, it is possible that a given side condition may not yield a
solution. We will see that conditions have to be given on non-characteristic
curves in order to be useful.

Example 1.5. Find solutions of 3ux − 2uy + u = x for a) u(x, x) = x and b)
u(x, y) = 0 on 3y + 2x = 1.

Before applying the side condition, we find the general solution of the partial
differential equation. Rewriting the differential equation in standard form, we have

3ux − 2uy = x = u.

The characteristic equations are

dx
3

=
dy
−2

=
du

x− u
. (1.22)

These equations imply that

• −2dx = 3dy

This implies that the characteristic curves (lines) are 2x + 3y = c1.

• du
dx = 1

3 (x− u).

This is a linear first order differential equation, du
dx + 1

3 u = 1
3 x. It can be solved

using the integrating factor,

µ(x) = exp
(

1
3

∫ x
dξ

)
= ex/3.

d
dx

(
uex/3

)
=

1
3

xex/3

uex/3 =
1
3

∫ x
ξeξ/3 dξ + c2

= (x− 3)ex/3 + c2

u(x, y) = x− 3 + c2e−x/3. (1.23)
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As before, we write c2 as an arbitrary function of c1 = 2x + 3y. This gives the
general solution

u(x, y) = x− 3 + G(2x + 3y)e−x/3.

Note that this is the same answer that we had found in Example 1.1

Now we can look at any side conditions and use them to determine particular
solutions by picking out specific G’s.

a u(x, x) = x
This states that u = x along the line y = x. Inserting this condition into the
general solution, we have

x = x− 3 + G(5x)e−x/3,

or
G(5x) = 3ex/3.

Letting z = 5x,
G(z) = 3ez/15.

The particular solution satisfying this side condition is

u(x, y) = x− 3 + G(2x + 3y)e−x/3

= x− 3 + 3e(2x+3y)/15e−x/3

= x− 3 + 3e(y−x)/5. (1.24)

This surface is shown in Figure 1.5.

Figure 1.4: Integral surface found in Ex-
ample 1.5.

In Figure 1.5 we superimpose the values of u(x, y) along the characteristic
curves. The characteristic curves are the red lines and the images of these
curves are the black lines. The side condition is indicated with the blue curve
drawn along the surface.

Figure 1.5: Integral surface with side
condition and characteristics for Exam-
ple 1.5.

The values of u(x, y) are found from the side condition as follows. For x = ξ

on the blue curve, we know that y = ξ and u(ξ, ξ) = ξ. Now, the character-
istic lines are given by 2x + 3y = c1. The constant c1 is found on the blue
curve from the point of intersection with one of the black characteristic lines.
For x = y = ξ, we have c1 = 5ξ. Then, the equation of the characteristic
line, which is red in Figure 1.5, is given by y = 1

3 (5ξ − 2x).
Along these lines we need to find u(x, y) = x− 3 + c2e−x/3. First we have
to find c2. We have on the blue curve, that

ξ = u(ξ, ξ)

= ξ − 3 + c2e−ξ/3. (1.25)

Therefore, c2 = 3eξ/3. Inserting this result into the expression for the solu-
tion, we have

u(x, y) = x− 3 + e(ξ−x)/3.

So, for each ξ, one can draw a family of spacecurves(
x,

1
3
(5ξ − 2x), x− 3 + e(ξ−x)/3

)
yielding the integral surface.
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b u(x, y) = 0 on 3y + 2x = 1.

For this condition, we have

0 = x− 3 + G(1)e−x/3.

We note that G is not a function in this expression. We only have one value
for G. So, we cannot solve for G(x). Geometrically, this side condition corre-
sponds to one of the black curves in Figure 1.5.

1.4 Applications

1.4.1 Conservation Laws

There are many applications of quasilinear equations, especially
in fluid dynamics. The advection equation is one such example and gener-
alizations of this example to nonlinear equations leads to some interesting
problems. These equations fall into a category of equations called conser-
vation laws. We will first discuss one-dimensional (in space) conservations
laws and then look at simple examples of nonlinear conservation laws.

Conservation laws are useful in modeling several systems. They can be
boiled down to determining the rate of change of some stuff, Q(t), in a
region, a ≤ x ≤ b, as depicted in Figure 1.6. The simples model is to think
of fluid flowing in one dimension, such as water flowing in a stream. Or,
it could be the transport of mass, such as a pollutant. One could think of
traffic flow down a straight road.

Figure 1.6: The rate of change of Q be-
tween x = a and x = b depends on the
rates of flow through each end.

x = a x = b

Q(t)φ(a, t) φ(b, t)

This is an example of a typical mixing problem. The rate of change of
Q(t) is given as

the rate of change of Q = Rate in− Rate Out + source term.

Here the “Rate in” is how much is flowing into the region in Figure 1.6 from
the x = a boundary. Similarly, the “Rate out” is how much is flowing into
the region from the x = b boundary. [Of course, this could be the other way,
but we can imagine for now that q is flowing from left to right.] We can
describe this flow in terms of the flux, φ(x, t) over the ends of the region.
On the left side we have a gain of φ(a, t) and on the right side of the region
there is a loss of φ(b, t).

The source term would be some other means of adding or removing Q
from the region. In terms of fluid flow, there could be a source of fluid
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inside the region such as a faucet adding more water. Or, there could be a
drain letting water escape. We can denote this by the total source over the
interval,

∫ b
a f (x, t) dx. Here f (x, t) is the source density.

In summary, the rate of change of Q(x, t) can be written as

dQ
dt

= φ(a, t)− φ(b, t) +
∫ b

a
f (x, y) dx.

We can write this in a slightly different form by noting that φ(a, t) −
φ(b, t) can be viewed as the evaluation of antiderivatives in the Fundamental
Theorem of Calculus. Namely, we can recall that∫ b

a

∂φ(x, t)
∂x

dx = φ(b, t)− φ(a, t).

The difference is not exactly in the order that we desire, but it is easy to see
that Integral form of conservation law.

dQ
dt

= −
∫ b

a

∂φ(x, t)
∂x

dx +
∫ b

a
f (x, t) dx. (1.26)

This is the integral form of the conservation law.
We can rewrite the conservation law in differential form. First, we intro-

duce the density function, u(x, t), so that the total amount of stuff at a given
time is

Q(t) =
∫ b

a
u(x, t) dx.

Introducing this form into the integral conservation law, we have

d
dt

∫ b

a
u(x, t) dx = −

∫ b

a

∂φ

∂x
dx +

∫ b

a
f (x, t) dx. (1.27)

Assuming that a and b are fixed in time and that the integrand is continuous,
we can bring the time derivative inside the integrand and collect the three
terms into one to find∫ b

a
(ut(x, t) + φx(x, t)− f (x, t)) dx = 0, ∀x ∈ [a, b].

We cannot simply set the integrant to zero just because the integral van-
ishes. However, if this result holds for every region [a, b], then we can con-
clude the integrand vanishes. So, under that assumption, we have the local
conservation law, Differential form of conservation law.

ut(x, t) + φx(x, t) = f (x, t). (1.28)

This partial differential equation is actually an equation in terms of two
unknown functions, assuming we know something about the source func-
tion. We would like to have a single unknown function. So, we need some
additional information. This added information comes from the constitutive
relation, a function relating the flux to the density function. Namely, we will
assume that we can find the relationship φ = φ(u). If so, then we can write

∂φ

∂x
=

dφ

du
∂u
∂x

,

or φx = φ′(u)ux.
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Example 1.6. Inviscid Burgers’ Equation Find the equation satisfied by u(x, t)
for φ(u) = 1

2 u2 and f (x, t) ≡ 0.
For this flux function we have φx = φ′(u)ux = uux. The resulting equation is

then ut + uux = 0. This is the inviscid Burgers’ equation. We will later discuss
Burgers’ equation.

Example 1.7. Traffic Flow
This is a simple model of one-dimensional traffic flow. Let u(x, t) be the density

of cars. Assume that there is no source term. For example, there is no way for a car
to disappear from the flow by turning off the road or falling into a sinkhole. Also,
there is no source of additional cars.

Let φ(x, t) denote the number of cars per hour passing position x at time t. Note
that the units are given by cars/mi times mi/hr. Thus, we can write the flux as
φ = uv, where v is the velocity of the carts at position x and time t.

u

v

v1

u1

Figure 1.7: Car velocity as a function of
car density.

In order to continue we need to assume a relationship between the car velocity
and the car density. Let’s assume the simplest form, a linear relationship. The more
dense the traffic, we expect the speeds to slow down. So, a function similar to that
in Figure 1.7 is in order. This is a straight line between the two intercepts (0, v1)

and (u1, 0). It is easy to determine the equation of this line. Namely the relationship
is given as

v = v1 −
v1

u1
u.

This gives the flux as

φ = uv = v1

(
u− u2

u1

)
.

We can now write the equation for the car density,

0 = ut + φ′ux

= ut + v1

(
1− 2u

u1

)
ux. (1.29)

1.4.2 Nonlinear Advection Equations

In this section we consider equations of the form ut + c(u)ux = 0.
When c(u) is a constant function, we have the advection equation. In the last
two examples we have seen cases in which c(u) is not a constant function.
We will apply the method of characteristics to these equations. First, we will
recall how the method works for the advection equation.

The advection equation is given by ut + cux = 0. The characteristic equa-
tions are given by

dx
dt

= c,
du
dt

= 0.

These are easily solved to give the result that

u(x, t) = constant along the lines x = ct + x0,

where x0 is an arbitrary constant.
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The characteristic lines are shown in Figure 1.8. We note that u(x, t) =

u(x0, 0) = f (x0). So, if we know u initially, we can determine what u is at a
later time.

x

t

x0

t = t1

slope = 1/c

u(x0 + ct1, t1) = u(x0, 0)

Figure 1.8: The characteristics lines the
xt-plane.

In Figure 1.8 we see that the value of u(x0, ) at t = 0 and x = x0 propa-
gates along the characteristic to a point at time t = t1. From x− ct = x0, we
can solve for x in terms of t1 and find that u(x0 + ct1, t1) = u(x0, 0).

Plots of solutions u(x, t) versus x for specific times give traveling waves
as shown in Figure 1.3. In Figure 1.9 we show how each wave profile for
different times are constructed for a given initial condition.

x

u

x0

Figure 1.9: For each x = x0 at t = 0,
u(x0 + ct, t) = u(x0, 0).

The nonlinear advection equation is given by ut + c(u)ux = 0, |x| < ∞.
Let u(x, 0) = u0(x) be the initial profile. The characteristic equations are
given by

dx
dt

= c(u),
du
dt

= 0.

These are solved to give the result that

u(x, t) = constant,

along the characteristic curves x′(t) = c(u). The lines passing though u(x0, ) =
u0(x0) have slope 1/c(u0(x0)).

Example 1.8. Solve ut + uux = 0, u(x, 0) = e−x2
.

For this problem u = constant along

dx
dt

= u.

Since u is constant, this equation can be integrated to yield x = u(x0, 0)t + x0.
Inserting the initial condition, x = e−x2

0 t + x0. Therefore, the solution is

u(x, t) = e−x2
0 along x = e−x2

0 t + x0.

In Figure 1.10 the characteristics a shown. In this case we see that the charac-
teristics intersect. In Figure charlines3 we look more specifically at the intersection
of the characteristic lines for x0 = 0 and x0 = 1. These are approximately the first
lines to intersect; i.e., there are (almost) no intersections at earlier times. At the
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Figure 1.10: The characteristics lines
the xt-plane for the nonlinear advection
equation.

x

t

slope = ex2
0

Figure 1.11: The characteristics lines for
x0 = 0, 1 in the xt-plane for the nonlinear
advection equation.

x

t

u = 1
e

u = 1

x0 = 0 x0 = 1

intersection point the function u(x, t) appears to take on more than one value. For
the case shown, the solution wants to take the values u = 0 and u = 1.

In Figure 1.12 we see the development of the solution. This is found using a
parametric plot of the points (x0 + te−x2

0 , e−x2
0) for different times. The initial profile

propagates to the right with the higher points traveling faster than the lower points
since x′(t) = u > 0. Around t = 1.0 the wave breaks and becomes multivalued.
The time at which the function becomes multivalued is called the breaking time.

x

u

t =0.0

x

u

t =0.5

x

u

t =1.0

x

u

t =1.5

x

u

t =2.0

Figure 1.12: The development of a gra-
dient catastrophe in Example 1.8 leading
to a multivalued function.

1.4.3 The Breaking Time

In the last example we saw that for nonlinear wave speeds a gradi-
ent catastrophe might occur. The first time at which a catastrophe occurs
is called the breaking time. We will determine the breaking time for the
nonlinear advection equation, ut + c(u)ux = 0. For the characteristic corre-
sponding to x0 = ξ, the wavespeed is given by

F(ξ) = c(u0(ξ))

and the characteristic line is given by

x = ξ + tF(ξ).

The value of the wave function along this characteristic isu0(ξ) = u(ξ, 0).

u(x, t) = u(ξ + tF(ξ), t)

= . (1.30)

Therefore, the solution is

u(x, t) = u0(ξ) along x = ξ + tF(ξ).
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This means that

ux = u′0(ξ)ξx and ut = u′0(ξ)ξt.

We can determine ξx and ξt using the characteristic line

ξ = x− tF(ξ).

Then, we have

ξx = 1− tF′(ξ)ξx

=
1

1 + tF′(ξ)
.

ξt =
∂

∂t
(x− tF(ξ))

= −F(ξ)− tF′(ξ)ξt

=
−F(ξ)

1 + tF′(ξ)
. (1.31)

Note that ξx and ξt are undefined if the denominator in both expressions
vanishes, 1 + tF′(ξ) = 0, or at time

t = − 1
F′(ξ)

.

The minimum time for this to happen in the breaking time, The breaking time.

tb = min
{
− 1

F′(ξ)

}
. (1.32)

Example 1.9. Find the breaking time for ut + uux = 0, u(x, 0) = e−x2
.

Since c(u) = u, we have

F(ξ) = c(u0(ξ)) = e−ξ2

and
F′(ξ) = −2ξe−ξ2

.

This gives

t =
1

2ξe−ξ2 .

We need to find the minimum time. Thus, we set the derivative equal to zero and
solve for ξ.

0 =
d

dξ

(
eξ2

2ξ

)

=

(
2− 1

ξ2

)
eξ2

2
. (1.33)

Thus, the minimum occurs for 2− 1
ξ2 = 0, or ξ = 1/

√
2. This gives

tb = t
(

1√
2

)
=

1
2√

2e−1/2

=

√
e
2
≈ 1.16. (1.34)
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1.4.4 Shock Waves

Solutions of nonlinear advection equations can become multival-
ued due to a gradient catastrophe. Namely, the derivatives ut and ux become
undefined. We would like to extend solutions past the catastrophe. How-
ever, this leads to the possibility of discontinuous solutions. Such solutions
which may not be differentiable or continuous in the domain are known as
weak solutions. In particular, consider the initial value problemWeak solutions.

ut + φx = 0, x ∈ R, t > 0, u(x, 0) = u0(x).

Then, u(x, t) is a weak solution of this problem if∫ ∞

0

∫ ∞

−∞
[uvt + φvx] dxdt +

∫ ∞

−∞
u0(x)v(x, 0) dx = 0

for all smooth functions v ∈ C∞(R × [0, ∞)) with compact support, i.e.,
v ≡= 0 outside some compact subset of the domain.

x

u

t =1.5

x

u

t =1.75

x

u

t =2.0

Figure 1.13: The shock solution after the
breaking time.

Effectively, the weak solution that evolves will be a piecewise smooth
function with a discontinuity, the shock wave, that propagates with shock
speed. It can be shown that the form of the shock will be the discontinuity
shown in Figure 1.13 such that the areas cut from the solutions will cancel
leaving the total area under the solution constant. [See G. B. Whitham’s
Linear and Nonlinear Waves, 1973.] We will consider the discontinuity as
shown in Figure 1.14.

x

u

u−s

u+
s

Figure 1.14: Depiction of the jump dis-
continuity at the shock position.

We can find the equation for the shock path by using the integral form of
the conservation law,

d
dt

∫ b

a
u(x, t) dx = φ(a, t)− φ(b, t).

Recall that one can differentiate under the integral if u(x, t) and ut(x, t) are
continuous in x and t in an appropriate subset of the domain. In particu-
lar, we will integrate over the interval [a, b] as shown in Figure 1.15. The
domains on either side of shock path are denoted as R+ and R− and the
limits of x(t) and u(x, t) as one approaches from the left of the shock are
denoted by x−s (t) and u− = u(x−s , t). Similarly, the limits of x(t) and u(x, t)
as one approaches from the right of the shock are denoted by x+s (t) and
u+ = u(x+s , t).

x

t

R+R−

a b

Figure 1.15: Domains on either side of
shock path are denoted as R+ and R−.

We need to be careful in differentiating under the integral,

d
dt

∫ b

a
u(x, t) dx =

d
dt

[∫ x−s (t)

a
u(x, t) dx +

∫ b

x+s (t)
u(x, t) dx

]

=
∫ x−s (t)

a
ut(x, t) dx +

∫ b

x+s (t)
ut(x, t) dx

+u(x−s , t)
dx−s
dt
− u(x+s , t)

dx+s
dt

= φ(a, t)− φ(b, t). (1.35)
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Taking the limits a→ x−s and b→ x+s , we have that(
u(x−s , t)− u(x+s , t)

) dxs

dt
= φ(x−s , t)− φ(x+s , t).

Adopting the notation
[ f ] = f (x+s )− f (x−s ),

we arrive at the Rankine-Hugonoit jump condition The Rankine-Hugonoit jump condition.

dxs

dt
=

[φ]

[u]
. (1.36)

This gives the equation for the shock path as will be shown in the next
example.

Example 1.10. Consider the problem ut + uux = 0, |x| < ∞, t > 0 satisfying the
initial condition

u(x, 0) =

{
1, x ≤ 0,
0, x > 0.

x

u
1

x

t

u = 0u = 1

Figure 1.16: Initial condition and charac-
teristics for Example 1.10.

The characteristics for this partial differential equation are familiar by now. The
initial condition and characteristics are shown in Figure 1.16. From x′(t) = u,
there are two possibilities. If u = 0, then we have a constant. If u = 1 along the
characteristics, the we have straight lines of slope one. Therefore, the characteristics
are given by

x(t) =

{
x0, x > 0,

t + x0, x < 0.

As seen in Figure 1.16 the characteristics intersect immediately at t = 0. The
shock path is found from the Rankine-Hugonoit jump condition. We first note that
φ(u) = 1

2 u2, since φx = uux. Then, we have

dxs

dt
=

[φ]

[u]

=
1
2 u+2 − 1

2 u−2

u+ − u−

=
1
2
(u+ + u−)(u+ − u−)

u+ − u−

=
1
2
(u+ + u−)

=
1
2
(0 + 1) =

1
2

. (1.37)

Now we need only solve the ordinary differential equation x′s(t) =
1
2 with initial

condition xs(0) = 0. This gives xs(t) = t
2 . This line separates the characteristics

on the left and right side of the shock solution. The solution is given by

u(x, t) =

{
1, x ≤ t/2,
0, x > t/2.

x

t

u = 0u = 1

Figure 1.17: The characteristic lines end
at the shock path (in red). On the left
u = 1 and on the right u = 0.

In Figure 1.17 we show the characteristic lines ending at the shock path (in red)
with u = 0 and on the right and u = 1 on the left of the shock path. This is
consistent with the solution. One just sees the initial step function moving to the
right with speed 1/2 without changing shape.
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1.4.5 Rarefaction Waves

Shocks are not the only type of solutions encountered when the
velocity is a function of u. There may sometimes be regions where the char-
acteristic lines do not appear. A simple example is the following.

Example 1.11. Draw the characteristics for the problem ut + uux = 0, |x| < ∞,
t > 0 satisfying the initial condition

u(x, 0) =

{
0, x ≤ 0,
1, x > 0.

x

u
1

x

t

u = 1u = 0

Figure 1.18: Initial condition and charac-
teristics for Example 1.14.

In this case the solution is zero for negative values of x and positive for positive
values of x as shown in Figure 1.18. Since the wavespeed is given by u, the u = 1
initial values have the waves on the right moving to the right and the values on the
left stay fixed. This leads to the characteristics in Figure 1.18 showing a region in
the xt-plane that has no characteristics. In this section we will discover how to fill
in the missing characteristics and, thus, the details about the solution between the
u = 0 and u = 1 values.

As motivation, we consider a smoothed out version of this problem.

Example 1.12. Draw the characteristics for the initial condition

u(x, 0) =


0, x ≤ −ε,

x+ε
2ε , |x| ≤ ε,
1, x > ε.

The function is shown in the top graph in Figure 1.19. The leftmost and right-
most characteristics are the same as the previous example. The only new part is
determining the equations of the characteristics for |x| ≤ ε. These are found using
the method of characteristics as

x = ξ + u0(ξ)t, u0(ξ) =
ξ + ε

2ε
t.

These characteristics are drawn in Figure 1.19 in red. Note that these lines take on
slopes varying from infinite slope to slope one, corresponding to speeds going from
zero to one.

x

u
1

ε-ε

x

t

u = 1
ε-ε

u = 0

Figure 1.19: The function and character-
istics for the smoothed step function.

Comparing the last two examples, we see that as ε approaches zero, the
last example converges to the previous example. The characteristics in the
region where there were none become a “fan”. We can see this as follows.

Characteristics for rarefaction, or expan-
sion, waves are fan-like characteristics.

Since |ξ| < ε for the fan region, as ε gets small, so does this interval. Let’s
scale ξ as ξ = σε, σ ∈ [−1, 1]. Then,

x = σε + u0(σε)t, u0(σε) =
σε + ε

2ε
t =

1
2
(σ + 1)t.

For each σ ∈ [−1, 1] there is a characteristic. Letting ε→ 0, we have

x = ct, c =
1
2
(σ + 1)t.
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Thus, we have a family of straight characteristic lines in the xt-plane passing
through (0, 0) of the form x = ct for c varying from c = 0 to c = 1. These
are shown as the red lines in Figure 1.20.

The fan characteristics can be written as x/t = constant. So, we can
seek to determine these characteristics analytically and in a straight forward
manner by seeking solutions of the form u(x, t) = g( x

t ). x

t

u = 1u = 0

Figure 1.20: The characteristics for Ex-
ample 1.14 showing the “fan” character-
istics.

Example 1.13. Determine solutions of the form u(x, t) = g( x
t ) to ut + uux = 0.

Inserting this guess into the differential equation, we have

Seek rarefaction fan waves using
u(x, t) = g( x

t ).

0 = ut + uux

=
1
t

g′
(

g− x
t

)
. (1.38)

Thus, either g′ = 0 or g = x
t . The first case will not work since this gives constant

solutions. The second solution is exactly what we had obtained before. Recall that
solutions along characteristics give u(x, t) = x

t = constant. The characteristics
and solutions for t = 0, 1, 2 are shown in Figure rarefactionfig4. At a specific time
one can draw a line (dashed lines in figure) and follow the characteristics back to
the t = 0 values, u(ξ, 0) in order to construct u(x, t).

x

t

u = 1u = 0

t = 1
t = 2

x

u
1

t = 0

x

u
1

t = 1

x

u
1

t = 2

Figure 1.21: The characteristics and so-
lutions for t = 0, 1, 2 for Example 1.14

As a last example, let’s investigate a nonlinear model which possesses
both shock and rarefaction waves.

Example 1.14. Solve the initial value problem ut + u2ux = 0, |x| < ∞, t > 0
satisfying the initial condition

u(x, 0) =


0, x ≤ 0,
1, 0 < x < 2,
0, x ≥ 2.
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The method of characteristics gives

dx
dt

= u2,
du
dt

= 0.

Therefore,

u(x, t) = u0(ξ) = const. along the lines x(t) = u2
0(ξ)t + ξ.

There are three values of u0(ξ),

u0(ξ) =


0, ξ ≤ 0,
1, 0 < ξ < 2,
0, ξ ≥ 2.

In Figure 1.22 we see that there is a rarefaction and a gradient catastrophe.

Figure 1.22: In this example there occurs
a rarefaction and a gradient catastrophe.

x

u
1

20

x

t

u = 1u = 0 u = 0

In order to fill in the fan characteristics, we need to find solutions u(x, t) =

g(x/t). Inserting this guess into the differential equation, we have

0 = ut + u2ux

=
1
t

g′
(

g2 − x
t

)
. (1.39)

Thus, either g′ = 0 or g2 = x
t . The first case will not work since this gives constant

solutions. The second solution gives

g
( x

t

)
=

√
x
t

.

. Therefore, along the fan characteristics the solutions are u(x, t) =
√

x
t = con-

stant. These fan characteristics are added in Figure 1.23.
Next, we turn to the shock path. We see that the first intersection occurs at the

point (x, t) = (2, 0). The Rankine-Hugonoit condition gives

dxs

dt
=

[φ]

[u]

=
1
3 u+3 − 1

3 u−3

u+ − u−

=
1
3
(u+ − u−)(u+2

+ u+u− + u−2
)

u+ − u−
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x

t

u = 1u = 0 u = 0

Figure 1.23: The fan characteristics are
added to the other characteristic lines.

=
1
3
(u+2

+ u+u− + u−2
)

=
1
3
(0 + 0 + 1) =

1
3

. (1.40)

Thus, the shock path is given by x′s(t) = 1
3 with initial condition xs(0) = 2.

This gives xs(t) = t
3 + 2. In Figure 1.24 the shock path is shown in red with the

fan characteristics and vertical lines meeting the path. Note that the fan lines and
vertical lines cross the shock path. This leads to a change in the shock path.

x

t

u = 1u = 0 u = 0

Figure 1.24: The shock path is shown in
red with the fan characteristics and ver-
tical lines meeting the path.

The new path is found using the Rankine-Hugonoit condition with u+ = 0 and

u− =
√

x
t . Thus,

dxs

dt
=

[φ]

[u]

=
1
3 u+3 − 1

3 u−3

u+ − u−

=
1
3
(u+ − u−)(u+2

+ u+u− + u−2
)

u+ − u−

=
1
3
(u+2

+ u+u− + u−2
)

=
1
3
(0 + 0 +

√
xs

t
) =

1
3

√
xs

t
. (1.41)

We need to solve the initial value problem

dxs

dt
=

1
3

√
xs

t
, xs(3) = 3.

This can be done using separation of variables. Namely,∫ dxs√
xs

=
1
3

t√
t
.
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This gives the solution
√

xs =
1
3

√
t + c.

Since the second shock solution starts at the point (3, 3), we can determine c =
2
3

√
3. This gives the shock path as

xs(t) =
(

1
3

√
t +

2
3

√
3
)2

.

In Figure 1.25 we show this shock path and the other characteristics ending on
the path.

Figure 1.25: The second shock path is
shown in red with the characteristics
shown in all regions.

x

t

u = 1u = 0 u = 0

It is interesting to construct the solution at different times based on the charac-
teristics. For a given time, t, one draws a horizontal line in the xt-plane and reads
off the values of u(x, t) using the values at t = 0 and the rarefaction solutions. This
is shown in Figure 1.26. The right discontinuity in the initial profile continues as
a shock front until t = 3. At that time the back rarefaction wave has caught up to
the shock. After t = 3, the shock propagates forward slightly slower and the height
of the shock begins to decrease. Due to the fact that the partial differential equation
is a conservation law, the area under the shock remains constant as it stretches and
decays in amplitude.

1.4.6 Traffic Flow

An interesting application is that of traffic flow. We had al-
ready derived the flux function. Let’s investigate examples with varying
initial conditions that lead to shock or rarefaction waves. As we had seen
earlier in modeling traffic flow, we can consider the flux function

φ = uv = v1

(
u− u2

u1

)
,

which leads to the conservation law

ut + v1(1−
2u
u1

)ux = 0.

Here u(x, t) represents the density of the traffic and u1 is the maximum
density and v1 is the initial velocity.
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x

t

u = 1u = 0 u = 0

t = 1
t = 2
t = 3
t = 4
t = 5

x

u
1

t = 0

20

x

u
1

t = 1

20

x

u
1

t = 2

20

x

u
1

t = 3

20

x

u
1

t = 4

20

x

u
1

t = 5

20

Figure 1.26: Solutions for the shock-
rarefaction example.
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First, consider the flow of traffic vas it approaches a red light as shown
in Figure 1.27. The traffic that is stopped has reached the maximum density
u1. The incoming traffic has a lower density, u0. For this red light problem,
we consider the initial condition

u(x, 0) =

{
u0, x < 0,
u1, x ≥ 0.

Figure 1.27: Cars approaching a red
light.

x
u1 cars/miu0 < u1 cars/mi

The characteristics for this problem are given by

x = c(u(x0, t))t + x0,

where

c(u(x0, t)) = v1(1−
2u(x0, 0)

u1
).

Since the initial condition is a piecewise-defined function, we need to con-
sider two cases.

x

u

u0

u1

x

t

u1u0

Figure 1.28: Initial condition and charac-
teristics for the red light problem.

First, for x ≥ 0, we have

c(u(x0, t)) = c(u1) = v1(1−
2u1

u1
) = −v1.

Therefore, the slopes of the characteristics, x = −v1t + x0 are −1/v1.
For x0 < 0, we have

c(u(x0, t)) = c(u0) = v1(1−
2u0

u1
).

So, the characteristics are x = −v1(1− 2u0
u1

)t + x0.

x

t

u1u0

x

t

u1u0

Figure 1.29: The addition of the shock
path for the red light problem.

In Figure 1.28 we plot the initial condition and the characteristics for
x < 0 and x > 0. We see that there are crossing characteristics and the begin
crossing at t = 0. Therefore, the breaking time is tb = 0. We need to find the
shock path satisfying xs(0) = 0. The Rankine-Hugonoit conditions give

dxs

dt
=

[φ]

[u]

=
1
2 u+2 − 1

2 u−2

u+ − u−

=
1
2

0− v1
u2

0
u1

u1 − u0

= −v1
u0

u1
. (1.42)

Thus, the shock path is found as xs(t) = −v1
u0
u1

.
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In Figure 1.29 we show the shock path. In the top figure the red line
shows the path. In the lower figure the characteristics are stopped on the
shock path to give the complete picture of the characteristics. The picture
was drawn with v1 = 2 and u0/u1 = 1/3.

The next problem to consider is stopped traffic as the light turns green.
The cars in Figure 1.30 begin to fan out when the traffic light turns green.
In this model the initial condition is given by

u(x, 0) =

{
u1, x ≤ 0,
0, x > 0.

x
0 cars/miu1 cars/mi

Figure 1.30: Cars begin to fan out when
the traffic light turns green.

Again,

c(u(x0, t)) = v1(1−
2u(x0, 0)

u1
).

Inserting the initial values of u into this expression, we obtain constant
speeds, ±v1. The resulting characteristics are given by

x(t) =

{
−v1t + x0, x ≤ 0,
v1t + x0, x > 0.

This leads to a rarefaction wave with the solution in the rarefaction region
given by

u(x, t) = g(x/t) =
1
2

u1

(
1− 1

v1

x
t

)
.

The characteristics are shown in Figure ??. The full solution is then

u(x, t) =


u1, x ≤ −v1t,

g(x/t), |x| < v1t,
0, x > v1t.

x

t

u1u0

Figure 1.31: The characteristics for the
green light problem.

1.5 General First Order PDEs

We have spent time solving quasilinear first order partial differential
equations. We now turn to nonlinear first order equations of the form

F(x, y, u, ux, uy) = 0,
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for u = u(x, y).
If we introduce new variables, p = ux and q = uy, then the differential

equation takes the form
F(x, y, u, p, q) = 0.

Note that for u(x, t) a function with continuous derivatives, we have

py = uxy = uyx = qx.

We can view F = 0 as a surface in a five dimensional space. Since the
arguments are functions of x and y, we have from the multivariable Chain
Rule that

dF
dx

= Fx + Fu
∂u
∂x

+ Fp
∂p
∂x

+ Fq
∂q
∂x

0 = Fx + pFu + pxFp + pyFq. (1.43)

This can be rewritten as a quasilinear equation for p(x, y) :

Fp px + Fq px = −Fx − pFu.

The characteristic equations are

dx
Fp

=
dy
Fq

= − dp
Fx + pFu

.

Similarly, from dF
dy = 0 we have that

dx
Fp

=
dy
Fq

= − dq
Fy + qFu

.

Furthermore, since u = u(x, y),

du =
∂u
∂x

dx +
∂u
∂y

dy

= pdx + qdy

= pdx + q
Fq

Fp
dx

=

(
p + q

Fq

Fp

)
. (1.44)

Therefore,
dx
Fp

=
du

pFp + qFq
.

Combining these results we have the Charpit Equations

The Charpit equations. These were
named after the French mathematician
Paul Charpit Villecourt, who was proba-
bly the first to present the method in his
thesis the year of his death, 1784. His
work was further extended in 1797 by
Lagrange and given a geometric expla-
nation by Gaspard Monge (1746-1818) in
1808. This method is often called the
Lagrange-Charpit method.

dx
Fp

=
dy
Fq

=
du

pFp + qFq
= − dp

Fx + pFu
= − dq

Fy + qFu
. (1.45)

These equations can be used to find solutions of nonlinear first order partial
differential equations as seen in the following examples.
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Example 1.15. Find the general solutio of u2
x + yuy − u = 0.

First, we introduce ux = p and uy = q. Then,

F(x, y, u, p, q) = p2 + qy− u = 0.

Next we identify

Fp = 2p, Fq = y, Fu = −1, Fx = 0, , Fy = q.

Then,

pFp + qFq = 2p2 + qy,

Fx + pFu = −p,

Fy + qFu = q− q = 0.

The Charpit equations are then

dx
2p

=
dy
y

=
du

2p2 + qy
=

dp
p

=
dq
0

.

The first conclusion is that q = c1 = constant. So, from the partial differ-
ential equation we have u = p2 + c1y.

Since du = pdx + qdy = pdx + c1dy, then

du− cdy =
√

u− c1y dx.

Therefore, ∫ d(u− c1y)√
u− c1y

=
∫

dx∫ z√
z
= x + c2

2
√

u− c1y = x + c2. (1.46)

Solving for u, we have

u(x, y) =
1
4
(x + c2)

2 + c1y.

This example required a few tricks to implement the solution. Sometimes
one needs to find parametric solutions. Also, if an initial condition is given,
one needs to find the particular solution. In the next example we show how
parametric solutions are found to the initial value problem.

Example 1.16. Solve the initial value problem u2
x + uy + u = 0, u(x, 0) = x.

We consider the parametric form of the Charpit equations,

dt =
dx
Fp

=
dy
Fq

=
du

pFp + qFq
= − dp

Fx + pFu
= − dq

Fy + qFu
. (1.47)

This leads to the system of equations

dx
dt

= Fp = 2p.
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dy
dt

= Fq = 1.

du
dt

= pFp + qFq = 2p2 + q.

dp
dt

= −(Fx + pFu) = −p.

dq
dt

= −(Fy + qFu) = −q.

The second, fourth, and fifth equations can be solved to obtain

y = t + c1.

p = c2e−t.

q = c3e−t.

Inserting these results into the remaining equations, we have

dx
dt

= 2c2e−t.

du
dt

= 2c2
2e−2t + c3e−t.

These equations can be integrated to find Inserting these results into the remain-
ing equations, we have

x = −2c2e−t + c4.

u = −c2
2e−2t − c3e−t + c5.

This is a parametric set of equations for u(x, t). Since

e−t =
x− c4

−2c2
,

we have

u(x, y) = −c2
2e−2t − c3e−t + c5.

= −c2
2

(
x− c4

−2c2

)2
− c3

(
x− c4

−2c2

)
+ c5

=
1
4
(x− c4)

2 +
c3

2c2
(x− c4). (1.48)

We can use the initial conditions by first parametrizing the conditions. Let
x(s, 0) = s and y(s, 0) = 0, Then, u(s, 0) = s. Since u(x, 0) = x, ux(x, 0) = 1,
or p(s, 0) = 1.

From the partial differential equation, we have p2 + q + u = 0. Therefore,

q(s, 0) = −p2(s, 0)− u(s, 0) = −(1 + s).

These relations imply that

y(s, t)|t−0 = 0⇒ c1 = 0.

p(s, t)|t−0 = 1⇒ c2 = 1.

q(s, t)|t−0 = −(1 + s) = c3.
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So,

y(s, t) = t.

p(s, t) = e−t.

q(s, t) = −(1 + s)e−t.

The conditions on x and u give

x(s, t) = (s + 2)− 2e−t,

u(s, t) = (s + 1)e−t − e−2t.

1.6 Modern Nonlinear PDEs

The study of nonlinear partial differential equations is a hot
research topic. We will (eventually) describe some examples of important
evolution equations and discuss their solutions in the last chapter.

Problems

1. Write the following equations in conservation law form, ut + φx = 0 by
finding the flux function φ(u).

a. ut + cux = 0.

b. ut + uux − µuxx = 0.

c. ut + 6uux + uxxx = 0.

d. ut + u2ux + uxxx = 0.

2. Consider the Klein-Gordon equation, utt − auxx = bu for a and b con-
stants. Find traveling wave solutions u(x, t) = f (x− ct).

3. Find the general solution u(x, y) to the following problems.

a. ux = 0.

b. yux − xuy = 0.

c. 2ux + 3uy = 1.

d. ux + uy = u.

4. Solve the following problems.

a. ux + 2uy = 0, u(x, 0) = sin x.

b. ut + 4ux = 0, u(x, 0) = 1
1+x2 .

c. yux − xuy = 0, u(x, 0) = x.

d. ut + xtux = 0, u(x, 0) = sin x.

e. yux + xuy = 0, u(0, y) = e−y2
.

f. xut − 2xtux = 2tu, u(x, 0) = x2.
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g. (y− u)ux + (u− x)uy = x− y, u = 0 on xy = 1.

h. yux + xuy = xy, x, y > 0, for u(x, 0) = e−x2
, x > 0 and u(0, y) =

e−y2
, y > 0.

5. Consider the problem ut + uux = 0, |x| < ∞, t > 0 satisfying the initial
condition u(x, 0) = 1

1+x2 .

a. Find and plot the characteristics.

b. Graphically locate where a gradient catastrophe might occur. Es-
timate from your plot the breaking time.

c. Analytically determine the breaking time.

d. Plot solutions u(x, t) at times before and after the breaking time.

6. Consider the problem ut + u2ux = 0, |x| < ∞, t > 0 satisfying the initial
condition u(x, 0) = 1

1+x2 .

a. Find and plot the characteristics.

b. Graphically locate where a gradient catastrophe might occur. Es-
timate from your plot the breaking time.

c. Analytically determine the breaking time.

d. Plot solutions u(x, t) at times before and after the breaking time.

7. Consider the problem ut + uux = 0, |x| < ∞, t > 0 satisfying the initial
condition

u(x, 0) =

{
2, x ≤ 0,
1, x > 0.

a. Find and plot the characteristics.

b. Graphically locate where a gradient catastrophe might occur. Es-
timate from your plot the breaking time.

c. Analytically determine the breaking time.

d. Find the shock wave solution.

8. Consider the problem ut + uux = 0, |x| < ∞, t > 0 satisfying the initial
condition

u(x, 0) =

{
1, x ≤ 0,
2, x > 0.

a. Find and plot the characteristics.

b. Graphically locate where a gradient catastrophe might occur. Es-
timate from your plot the breaking time.

c. Analytically determine the breaking time.

d. Find the shock wave solution.

9. Consider the problem ut + uux = 0, |x| < ∞, t > 0 satisfying the initial
condition

u(x, 0) =


0, x ≤ −1,
2, |x| < 1,
1, x > 1.
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a. Find and plot the characteristics.

b. Graphically locate where a gradient catastrophe might occur. Es-
timate from your plot the breaking time.

c. Analytically determine the breaking time.

d. Find the shock wave solution.

10. Solve the problem ut + uux = 0, |x| < ∞, t > 0 satisfying the initial
condition

u(x, 0) =


1, x ≤ 0,

1− x
a , 0 < x < a,

0, x ≥ a.

11. Solve the problem ut + uux = 0, |x| < ∞, t > 0 satisfying the initial
condition

u(x, 0) =


0, x ≤ 0,
x
a , 0 < x < a,
1, x ≥ a.

12. Consider the problem ut + u2ux = 0, |x| < ∞, t > 0 satisfying the initial
condition

u(x, 0) =

{
2, x ≤ 0,
1, x > 0.

a. Find and plot the characteristics.

b. Graphically locate where a gradient catastrophe might occur. Es-
timate from your plot the breaking time.

c. Analytically determine the breaking time.

d. Find the shock wave solution.

13. Consider the problem ut + u2ux = 0, |x| < ∞, t > 0 satisfying the initial
condition

u(x, 0) =

{
1, x ≤ 0,
2, x > 0.

a. Find and plot the characteristics.

b. Find and plot the fan characteristics.

c. Write out the rarefaction wave solution for all regions of the xt-
plane.

14. Solve the initial-value problem ut + uux = 0 |x| < ∞, t > 0 satisfying

u(x, 0) =


1, x ≤ 0,

1− x, 0 ≤ x ≤ 1,
0, x ≥ 1.

15. Consider the stopped traffic problem in a situation where the maximum
car density is 200 cars per mile and the maximum speed is 50 miles per hour.
Assume that the cars are arriving at 30 miles per hour. Find the solution of
this problem and determine the rate at which the traffic is backing up. How
does the answer change if the cars were arriving at 15 miles per hour.
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16. Solve the following nonlinear equations where p = ux and q = uy.

a. p2 + q2 = 1, u(x, x) = x.

b. pq = u, u(0, y) = y2.

c. p + q = pq, u(x, 0) = x.

d. pq = u2

e. p2 + qy = u.

17. Find the solution of xp + qy− p2q− u = 0 in parametric form for the
initial conditions at t = 0 :

x(t, s) = s, y(t, s) = 2, u(t, s) = s + 1

.



2
Second Order Partial Differential Equa-
tions

“Either mathematics is too big for the human mind or the human mind is more than
a machine.” - Kurt Gödel (1906-1978)

2.1 Introduction

In this chapter we will introduce several generic second order linear
partial differential equations and see how such equations lead naturally to
the study of boundary value problems for ordinary differential equations.
These generic differential equation occur in one to three spatial dimensions
and are all linear differential equations. A list is provided in Table 2.1. Here
we have introduced the Laplacian operator, ∇2u = uxx + uyy + uzz. Depend-
ing on the types of boundary conditions imposed and on the geometry of
the system (rectangular, cylindrical, spherical, etc.), one encounters many
interesting boundary value problems.

Name 2 Vars 3 D
Heat Equation ut = kuxx ut = k∇2u
Wave Equation utt = c2uxx utt = c2∇2u

Laplace’s Equation uxx + uyy = 0 ∇2u = 0
Poisson’s Equation uxx + uyy = F(x, y) ∇2u = F(x, y, z)

Schrödinger’s Equation iut = uxx + F(x, t)u iut = ∇2u + F(x, y, z, t)u

Table 2.1: List of generic partial differen-
tial equations.

Let’s look at the heat equation in one dimension. This could describe the
heat conduction in a thin insulated rod of length L. It could also describe
the diffusion of pollutant in a long narrow stream, or the flow of traffic
down a road. In problems involving diffusion processes, one instead calls
this equation the diffusion equation. [See the derivation in Section 2.2.2.]

A typical initial-boundary value problem for the heat equation would be
that initially one has a temperature distribution u(x, 0) = f (x). Placing the
bar in an ice bath and assuming the heat flow is only through the ends of
the bar, one has the boundary conditions u(0, t) = 0 and u(L, t) = 0. Of
course, we are dealing with Celsius temperatures and we assume there is
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plenty of ice to keep that temperature fixed at each end for all time as seen
in Figure 2.1. So, the problem one would need to solve is given as [IC =
initial condition(s) and BC = boundary conditions.]

x
0 L

u(0, 0) = 0 u(L, 0) = 0

Figure 2.1: One dimensional heated rod
of length L. 1D Heat Equation

PDE ut = kuxx, 0 < t, 0 ≤ x ≤ L,
IC u(x, 0) = f (x), 0 < x < L,
BC u(0, t) = 0, t > 0,

u(L, t) = 0, t > 0,

(2.1)

Here, k is the heat conduction constant and is determined using proper-
ties of the bar.

Another problem that will come up in later discussions is that of the
vibrating string. A string of length L is stretched out horizontally with both
ends fixed such as a violin string as shown in Figure 2.2. Let u(x, t) be
the vertical displacement of the string at position x and time t. The motion
of the string is governed by the one dimensional wave equation. [See the
derivation in Section 2.2.1.] The string might be plucked, giving the string
an initial profile, u(x, 0) = f (x), and possibly each point on the string has
an initial velocity ut(x, 0) = g(x). The initial-boundary value problem for
this problem is given below.

1D Wave Equation

PDE utt = c2uxx 0 < t, 0 ≤ x ≤ L
IC u(x, 0) = f (x) 0 < x < L

ut(x, 0) = g(x) 0 < x < L
BC u(0, t) = 0 t > 0

u(L, t) = 0 t > 0

(2.2)

In this problem c is the wave speed in the string. It depends on the mass
per unit length of the string, µ, and the tension, τ, placed on the string.

u(x, t)

x
0 L

u(0, 0) = 0 u(L, 0) = 0

Figure 2.2: One dimensional string of
length L.

There is a rich history on the study of these and other partial differential
equations and much of this involves trying to solve problems in physics.
Consider the one dimensional wave motion in the string. Physically, the
speed of these waves depends on the tension in the string and its mass
density. The frequencies we hear are then related to the string shape, or the
allowed wavelengths across the string. We will be interested the harmonics,
or pure sinusoidal waves, of the vibrating string and how a general wave
on the string can be represented as a sum over such harmonics. This will
take us into the field of spectral, or Fourier, analysis. The solution of the
heat equation also involves the use of Fourier analysis. However, in this
case there are no oscillations in time.

There are many applications that are studied using spectral analysis. At
the root of these studies is the belief that continuous waveforms are com-
prised of a number of harmonics. Such ideas stretch back to the Pythagore-
ans study of the vibrations of strings, which led to their program of a world
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of harmony. This idea was carried further by Johannes Kepler (1571-1630) in
his harmony of the spheres approach to planetary orbits. In the 1700’s oth-
ers worked on the superposition theory for vibrating waves on a stretched
spring, starting with the wave equation and leading to the superposition
of right and left traveling waves. This work was carried out by people
such as John Wallis (1616-1703), Brook Taylor (1685-1731) and Jean le Rond
d’Alembert (1717-1783).

y

x

Figure 2.3: Plot of the second harmonic
of a vibrating string at different times.

In 1742 d’Alembert solved the wave equation

c2 ∂2y
∂x2 −

∂2y
∂t2 = 0,

where y is the string height and c is the wave speed. However, this solution
led him and others, like Leonhard Euler (1707-1783) and Daniel Bernoulli
(1700-1782), to investigate what "functions" could be the solutions of this
equation. In fact, this led to a more rigorous approach to the study of
analysis by first coming to grips with the concept of a function. For example,
in 1749 Euler sought the solution for a plucked string in which case the
initial condition y(x, 0) = h(x) has a discontinuous derivative! (We will see
how this led to important questions in analysis.)

In 1753 Daniel Bernoulli viewed the solutions as a superposition of sim-
ple vibrations, or harmonics. Such superpositions amounted to looking at
solutions of the form

y(x, t) = ∑
k

ak sin
kπx

L
cos

kπct
L

,

where the string extends over the interval [0, L] with fixed ends at x = 0 and
x = L.

y

x
0 L

2
L

AL
2

Figure 2.4: Plot of an initial condition for
a plucked string.

However, the initial profile for such superpositions is given by

y(x, 0) = ∑
k

ak sin
kπx

L
.

It was determined that many functions could not be represented by a finite
number of harmonics, even for the simply plucked string in Figure 2.4 given
by an initial condition of the form

y(x, 0) =

{
Ax, 0 ≤ x ≤ L/2

A(L− x), L/2 ≤ x ≤ L

Thus, the solution consists generally of an infinite series of trigonometric
functions.

The one dimensional version of the heat
equation is a partial differential equation
for u(x, t) of the form

∂u
∂t

= k
∂2u
∂x2 .

Solutions satisfying boundary condi-
tions u(0, t) = 0 and u(L, t) = 0, are of
the form

u(x, t) =
∞

∑
n=0

bn sin
nπx

L
e−n2π2t/L2

.

In this case, setting u(x, 0) = f (x), one
has to satisfy the condition

f (x) =
∞

∑
n=0

bn sin
nπx

L
.

This is another example leading to an in-
finite series of trigonometric functions.

Such series expansions were also of importance in Joseph Fourier’s (1768-
1830) solution of the heat equation. The use of Fourier expansions has be-
come an important tool in the solution of linear partial differential equa-
tions, such as the wave equation and the heat equation. More generally,
using a technique called the Method of Separation of Variables, allowed
higher dimensional problems to be reduced to one dimensional boundary
value problems. However, these studies led to very important questions,
which in turn opened the doors to whole fields of analysis. Some of the
problems raised were
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1. What functions can be represented as the sum of trigonometric
functions?

2. How can a function with discontinuous derivatives be represented
by a sum of smooth functions, such as the above sums of trigono-
metric functions?

3. Do such infinite sums of trigonometric functions actually converge
to the functions they represent?

There are many other systems for which it makes sense to interpret the
solutions as sums of sinusoids of particular frequencies. For example, we
can consider ocean waves. Ocean waves are affected by the gravitational
pull of the moon and the sun and other numerous forces. These lead to the
tides, which in turn have their own periods of motion. In an analysis of
wave heights, one can separate out the tidal components by making use of
Fourier analysis.

In the Section 2.4 we describe how to go about solving these equations
using the method of separation of variables. We will find that in order
to accommodate the initial conditions, we will need to introduce Fourier
series before we can complete the problems, which will be the subject of the
following chapter. However, we first derive the one-dimensional wave and
heat equations.

2.2 Derivation of Generic 1D Equations

2.2.1 Derivation of Wave Equation for String

The wave equation for a one dimensional string is derived based
upon simply looking at Newton’s Second Law of Motion for a piece of the
string plus a few simple assumptions, such as small amplitude oscillations
and constant density.

We begin with F = ma. The mass of a piece of string of length ds is
m = ρ(x)ds. From Figure (2.5) an incremental length f the string is given by

∆s2 = ∆x2 + ∆u2.

The piece of string undergoes an acceleration of a = ∂2u
∂t2 .

We will assume that the main force acting on the string is that of tension.
Let T(x, t) be the magnitude of the tension acting on the left end of the piece
of string. Then, on the right end the tension is T(x + ∆x, t). At these points
the tension makes an angle to the horizontal of θ(x, t) and θ(x + ∆x, t),
respectively.

Assuming that there is no horizontal acceleration, the x-component in the
second law, ma = F, for the string element is given by

The wave equation is derived from F =
ma.

0 = T(x + ∆x, t) cos θ(x + ∆x, t)− T(x, t) cos θ(x, t).
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x

u

u(x, t)

T(x, t)

θ(x, t)

T(x + ∆x, t)

θ(x + ∆x, t)

∆s
∆u

∆x
θ

Figure 2.5: A small piece of string is un-
der tension.

The vertical component is given by

ρ(x)∆s
∂2u
∂t2 = T(x + ∆x, t) sin θ(x + ∆x, t)− T(x, t) sin θ(x, t)

The length of the piece of string can be written in terms of ∆x,

∆s =
√

∆x2 + ∆u2 =

√
1 +

(
∆u
∆x

)2
∆x.

and the right hand sides of the component equation can be expanded about
∆x = 0, to obtain

T(x + ∆x, t) cos θ(x + ∆x, t)− T(x, t) cos θ(x, t) ≈ ∂(T cos θ)

∂x
(x, t)∆x

T(x + ∆x, t) sin θ(x + ∆x, t)− T(x, t) sin θ(x, t) ≈ ∂(T sin θ)

∂x
(x, t)∆x.

Furthermore, we note that

tan θ = lim
∆x→0

∆u
∆x

=
∂u
∂x

.

Now we can divide these component equations by ∆x and let ∆x → 0.
This gives the approximations

0 =
T(x + ∆x, t) cos θ(x + ∆x, t)− T(x, t) cos θ(x, t)

∆x

≈ ∂(T cos θ)

∂x
(x, t)

ρ(x)
∂2u
∂t2

δs
δs

=
T(x + ∆x, t) sin θ(x + ∆x, t)− T(x, t) sin θ(x, t)

∆x

ρ(x)
∂2u
∂t2

√
1 +

(
∂u
∂x

)2
≈ ∂(T sin θ)

∂x
(x, t). (2.3)

We will assume a small angle approximation, giving

sin θ ≈ tan θ =
∂u
∂x

,
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cos θ ≈ 1, and √
1 +

(
∂u
∂x

)2
≈ 1.

Then, the horizontal component becomes

∂T(x, t)
∂x

= 0.

Therefore, the magnitude of the tension T(x, t) = T(t) is at most time de-
pendent.

The vertical component equation is now

ρ(x)
∂2u
∂t2 = T(t)

∂

∂x

(
∂u
∂x

)
= T(t)

∂2u
∂x2 .

Assuming that ρ and T are constant and defining

c2 =
T
ρ

,

we obtain the one dimensional wave equation,

∂2u
∂t2 = c2 ∂2u

∂x2 .

2.2.2 Derivation of 1D Heat Equation

Consider a one dimensional rod of length L as shown in Figure 2.6.
It is heated and allowed to sit. The heat equation is the governing equation
which allows us to determine the temperature of the rod at a later time.

We begin with some simple thermodynamics. Recall that to raise the
temperature of a mass m by ∆T takes thermal energy given by

Q = mc∆T,

assuming the mass does not go through a phase transition. Here c is the
specific heat capacity of the substance. So, we will begin with the heat
content of the rod as

Q = mcT(x, t)

and assume that m and c are constant.
x

0 L

u(0, 0) = 0 u(L, 0) = 0

Figure 2.6: One dimensional heated rod
of length L.

We will also need Fourier’s law of heat transfer or heat conduction . This
law simply states that heat energy flows from warmer to cooler regions and
is written in terms of the heat energy flux, φ(x, t). The heat energy flux, or
flux density, gives the rate of energy flow per area. Thus, the amount of
heat energy flowing over the left end of the region of cross section A in time
∆t is given φ(x, t)∆tA. The units of φ(x, t) are then J/s/m2 = W/m2.

Fourier’s law of heat conduction states that the flux density is propor-
tional to the gradient of the temperature,

φ = −K
∂T
∂x

.
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x0 L∆x

φ(x + ∆x, t)φ(x, t)
Flux in Flux out Figure 2.7: A one dimensional rod of

length L. Heat can flow through incre-
ment ∆x.

Here K is the thermal conductivity and the negative sign takes into account
the direction of flow from higher to lower temperatures.

Now we make use of the conservation of energy. Consider a small section
of the rod of width ∆x as shown in Figure 2.7. The rate of change of the
energy through this section is due to energy flow through the ends. Namely,

Rate of change of heat energy = Heat in−Heat out.

The energy content of the small segment of the rod is given by

∆Q = (ρA∆x)cT(x, t + ∆t)− (ρA∆x)cT(x, t).

The flow rates across the boundaries are given by the flux.

(ρA∆x)cT(x, t + ∆t)− (ρA∆x)cT(x, t) = [φ(x, t)− φ(x + ∆x, t)]∆tA.

Dividing by ∆x and ∆t and letting ∆x, ∆t→ 0, we obtain

∂T
∂t

= − 1
cρ

∂φ

∂x
.

Using Fourier’s law of heat conduction,

∂T
∂t

=
1
cρ

∂

∂x

(
K

∂T
∂x

)
.

Assuming K, c, and ρ are constant, we have the one dimensional heat
equation as used in the text:

∂T
∂t

= k
∂2T
∂x2 ,

where k = k
cρ .

2.3 Boundary Value Problems

You might have only solved initial value problems in your under-
graduate differential equations class. For an initial value problem one has to
solve a differential equation subject to conditions on the unknown function
and its derivatives at one value of the independent variable. For example,
for x = x(t) we could have the initial value problem

x′′ + x = 2, x(0) = 1, x′(0) = 0. (2.4)

Typically, initial value problems involve time dependent functions and
boundary value problems are spatial. So, with an initial value problem one
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knows how a system evolves in terms of the differential equation and the
state of the system at some fixed time. Then one seeks to determine the
state of the system at a later time.

Example 2.1. Solve the initial value problem, x′′+ 4x = cos t, x(0) = 1, x′(0) =
0.

Note that the conditions are provided at one time, t = 0. Thus, this an initial
value problem. Recall from your course on differential equations that we need to
find the general solution and then apply the initial conditions. Furthermore, this
is a nonhomogeneous differential equation, so the solution is a sum of a solution of
the homogeneous equation and a particular solution of the nonhomogeneous equa-
tion, x(t) = xh(t) + xp(t). [See the ordinary differential equations review in the
Appendix.]

The solution of x′′ + 4x = 0 is easily found as

xh(t) = c1 cos 2t + c2 sin 2t.

The particular solution is found using the Method of Undetermined Coefficients.
We guess a solution of the form

xp(t) = A cos t + B sin t.

Differentiating twice, we have

x′′p(t) = −(A cos t + B sin t).

So,
x′′p + 4xp = −(A cos t + B sin t) + 4(A cos t + B sin t).

Comparing the right hand side of this equation with cos t in the original problem,
we are led to setting B = 0 and A = 1

3 cos t. Thus, the general solution is

x(t) = c1 cos 2t + c2 sin 2t +
1
3

cos t.

We now apply the initial conditions to find the particular solution. The first
condition, x(0) = 1, gives

1 = c1 +
1
3

.

Thus, c1 = 2
3 . Using this value for c1, the second condition, x′(0) = 0, gives

c2 = 0. Therefore,

x(t) =
1
3
(2 cos 2t + cos t).

For boundary values problems, one knows how each point responds to
its neighbors, but there are conditions that have to be satisfied at the end-
points. An example would be a horizontal beam supported at the ends, like
a bridge. The shape of the beam under the influence of gravity, or other
forces, would lead to a differential equation and the boundary conditions
at the beam ends would affect the solution of the problem. There are also
a variety of other types of boundary conditions. In the case of a beam, one
end could be fixed and the other end could be free to move. We will explore
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the effects of different boundary conditions in our discussions and exercises.
But, we will first solve a simple boundary value problem which is a slight
modification of the above problem.

Example 2.2. Solve the boundary value problem, x′′+ x = 2, x(0) = 1, x(1) =
0.

Note that the conditions at t = 0 and t = 1 make this a boundary value prob-
lem since the conditions are given at two different points. As with initial value
problems, we need to find the general solution and then apply any conditions that
we may have. This is a nonhomogeneous differential equation, so the solution is
a sum of a solution of the homogeneous equation and a particular solution of the
nonhomogeneous equation, x(t) = xh(t) + xp(t). The solution of x′′ + x = 0 is
easily found as

xh(t) = c1 cos t + c2 sin t.

The particular solution is found using the Method of Undetermined Coefficients,

xp(t) = 2.

Thus, the general solution is

x(t) = 2 + c1 cos t + c2 sin t.

We now apply the boundary conditions and see if there are values of c1 and c2

that yield a solution to this boundary value problem. The first condition, x(0) = 0,
gives

0 = 2 + c1.

Thus, c1 = −2. Using this value for c1, the second condition, x(1) = 1, gives

0 = 2− 2 cos 1 + c2 sin 1.

This yields

c2 =
2(cos 1− 1)

sin 1
.

We have found that there is a solution to the boundary value problem and it is
given by

x(t) = 2
(

1− cos t
(cos 1− 1)

sin 1
sin t

)
.

Boundary value problems arise in many physical systems, just as the ini-
tial value problems we have seen earlier. We will see in the next sections that
boundary value problems for ordinary differential equations often appear
in the solutions of partial differential equations. However, there is no guar-
antee that we will have unique solutions of our boundary value problems
as we had found in the example above.

Now that we understand simple boundary value problems for ordinary
differential equations, we can turn to initial-boundary value problems for
partial differential equations. We will see that a common method for study-
ing these problems is to use the method of separation of variables. In this
method the problem of solving partial differential equations is to separate
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the partial differential equation into several ordinary differential equations
of which several are boundary value problems of the sort seen in this sec-
tion.

2.4 Separation of Variables

Solving many of the linear partial differential equations pre-
sented in the first section can be reduced to solving ordinary differential
equations. We will demonstrate this by solving the initial-boundary value
problem for the heat equation as given in (2.1). We will employ a method
typically used in studying linear partial differential equations, called the
Method of Separation of Variables. In the next subsections we describe how
this method works for the one-dimensional heat equation, one-dimensional
wave equation, and the two-dimensional Laplace equation.

2.4.1 The 1D Heat Equation

We want to solve the heat equation,

ut = kuxx, 0 < t, 0 ≤ x ≤ L.

subject to the boundary conditions

u(0, t) = 0, u(L, t) = 0, t > 0,

and the initial condition

u(x, 0) = f (x), 0 < x < L.
Solution of the 1D heat equation using
the method of separation of variables. We begin by assuming that u can be written as a product of single variable

functions of each independent variable,

u(x, t) = X(x)T(t).

Substituting this guess into the heat equation, we find that

XT′ = kX′′T.

The prime denotes differentiation with respect to the independent vari-
able and we will suppress the independent variable in the following unless
needed for emphasis.

Dividing both sides of this result by k and u = XT, yields

1
k

T′

T
=

X′′

X
.

k We have separated the functions of time on one side and space on the
other side. The constant k could be on either side of this expression, but we
moved it to make later computations simpler.
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The only way that a function of t equals a function of x is if the functions
are constant functions. Therefore, we set each function equal to a constant,
λ : [For example, if Aect = ax2 + b is possible for any x or t, then this is only
possible if a = 0, c = 0 and b = A.]

1
k

T′

T︸︷︷︸
function of t

=
X′′

X︸︷︷︸
function of x

= λ.︸︷︷︸
constant

This leads to two equations:

T′ = kλT, (2.5)

X′′ = λX. (2.6)

These are ordinary differential equations. The general solutions to these
constant coefficient equations are readily found as

T(t) = Aekλt, (2.7)

X(x) = c1e
√

λx + c2e−
√

λx. (2.8)

We need to be a little careful at this point. The aim is to force the final so-
lutions to satisfy both the boundary conditions and initial conditions. Also,
we should note that λ is arbitrary and may be positive, zero, or negative.
We first look at how the boundary conditions on u(x, t) lead to conditions
on X(x).

The first boundary condition is u(0, t) = 0. This implies that

X(0)T(t) = 0, for all t.

The only way that this is true is if X(0) = 0. Similarly, u(L, t) = 0 for all t
implies that X(L) = 0. So, we have to solve the boundary value problem

X′′ − λX = 0, X(0) = 0 = X(L). (2.9)

An obvious solution is X ≡ 0. However, this implies that u(x, t) = 0, which
is not an interesting solution. We call such solutions, X ≡ 0, trivial solutions
and will seek nontrivial solution for these problems.

There are three cases to consider, depending on the sign of λ.

Case I. λ > 0

In this case we have the exponential solutions

X(x) = c1e
√

λx + c2e−
√

λx. (2.10)

For X(0) = 0, we have
0 = c1 + c2.

We will take c2 = −c1. Then,

X(x) = c1(e
√

λx − e−
√

λx) = 2c1 sinh
√

λx.
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Applying the second condition, X(L) = 0 yields

c1 sinh
√

λL = 0.

This will be true only if c1 = 0, since λ > 0. Thus, the only solution in
this case is the trivial solution, X(x) = 0.

Case II. λ = 0

For this case it is easier to set λ to zero in the differential equation. So,
X′′ = 0. Integrating twice, one finds

X(x) = c1x + c2.

Setting x = 0, we have c2 = 0, leaving X(x) = c1x. Setting x = L,
we find c1L = 0. So, c1 = 0 and we are once again left with a trivial
solution.

Case III. λ < 0

In this case is would be simpler to write λ = −µ2. Then the differential
equation is

X′′ + µ2X = 0.

The general solution is

X(x) = c1 cos µx + c2 sin µx.

At x = 0 we get 0 = c1. This leaves X(x) = c2 sin µx.

At x = L, we find
0 = c2 sin µL.

So, either c2 = 0 or sin µL = 0. c2 = 0 leads to a trivial solution again.
But, there are cases when the sine is zero. Namely,

µL = nπ, n = 1, 2, . . . .

Note that n = 0 is not included since this leads to a trivial solution.
Also, negative values of n are redundant, since the sine function is an
odd function.

In summary, we can find solutions to the boundary value problem (2.9)
for particular values of λ. The solutions are

Xn(x) = sin
nπx

L
, n = 1, 2, 3, . . .

for

λn = −µ2
n = −

(nπ

L

)2
, n = 1, 2, 3, . . . .

We should note that the boundary value problem in Equation (2.9) is an
eigenvalue problem. We can recast the differential equation as

LX = λX,
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where

L = D2 =
d2

dx2

is a linear differential operator. The solutions, Xn(x), are called eigenfunc-
tions and the λn’s are the eigenvalues. We will elaborate more on this char-
acterization later in the next chapter.

We have found the product solutions of the heat equation (2.1) satisfying Product solutions.

the boundary conditions. These are

un(x, t) = ekλnt sin
nπx

L
, n = 1, 2, 3, . . . . (2.11)

However, these do not necessarily satisfy the initial condition u(x, 0) = f (x).
What we do get is

un(x, 0) = sin
nπx

L
, n = 1, 2, 3, . . . .

So, if the initial condition is in one of these forms, we can pick out the right
value for n and we are done.

For other initial conditions, we have to do more work. Note, since the General solution.

heat equation is linear, the linear combination of the product solutions is
also a solution of the heat equation. The general solution satisfying the
given boundary conditions is given as

u(x, t) =
∞

∑
n=1

bnekλnt sin
nπx

L
. (2.12)

The coefficients in the general solution are determined using the initial
condition. Namely, setting t = 0 in the general solution, we have

f (x) = u(x, 0) =
∞

∑
n=1

bn sin
nπx

L
.

So, if we know f (x), can we find the coefficients, bn? If we can, then we will
have the solution to the full initial-boundary value problem.

The expression for f (x) is a Fourier sine series. We will need to digress
into the study of Fourier series in order to see how one can find the Fourier
series coefficients given f (x). Before proceeding, we will show that this pro-
cess is not uncommon by applying the Method of Separation of Variables to
the wave equation in the next section.

2.4.2 The 1D Wave Equation

In this section we will apply the Method of Separation of Variables to
the one dimensional wave equation, given by

∂2u
∂2t

= c2 ∂2u
∂2x

, t > 0, 0 ≤ xłL, (2.13)
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subject to the boundary conditions

u(0, t) = 0, u(L, t) = 0, t > 0,

and the initial conditions

u(x, 0) = f (x), ut(x, 0) = g(x), 0 < x < L.

This problem applies to the propagation of waves on a string of length L
with both ends fixed so that they do not move. u(x, t) represents the vertical
displacement of the string over time. The derivation of the wave equation
assumes that the vertical displacement is small and the string is uniform.
The constant c is the wave speed, given by

c =
√

τ

µ
,

where τ is the tension in the string and µ is the mass per unit length. We can
understand this in terms of string instruments. The tension can be adjusted
to produce different tones and the makeup of the string (nylon or steel, thick
or thin) also has an effect. In some cases the mass density is changed simply
by using thicker strings. Thus, the thicker strings in a piano produce lower
frequency notes.

The utt term gives the acceleration of a piece of the string. The uxx is the
concavity of the string. Thus, for a positive concavity the string is curved
upward near the point of interest. Thus, neighboring points tend to pull
upward towards the equilibrium position. If the concavity is negative, it
would cause a negative acceleration.Solution of the 1D wave equation using

the Method of Separation of Variables. The solution of this problem is easily found using separation of variables.
We let u(x, t) = X(x)T(t). Then we find

XT′′ = c2X′′T,

which can be rewritten as
1
c2

T′′

T
=

X′′

X
.

Again, we have separated the functions of time on one side and space on
the other side. Therefore, we set each function equal to a constant, λ.

1
c2

T′′

T︸ ︷︷ ︸
function of t

=
X′′

X︸︷︷︸
function of x

= λ.︸︷︷︸
constant

This leads to two equations:

T′′ = c2λT, (2.14)

X′′ = λX. (2.15)

As before, we have the boundary conditions on X(x):

X(0) = 0, and X(L) = 0,



second order partial differential equations 47

giving the solutions, as shown in Figure 2.8,

Xn(x) = sin
nπx

L
, λn = −

(nπ

L

)2
.

The main difference from the solution of the heat equation is the form of
the time function. Namely, from Equation (2.14) we have to solve

T′′ +
(nπc

L

)2
T = 0. (2.16)

This equation takes a familiar form. We let

ωn =
nπc

L
,

then we have
T′′ + ω2

nT = 0.

This is the differential equation for simple harmonic motion and ωn is the
angular frequency. The solutions are easily found as

T(t) = An cos ωnt + Bn sin ωnt. (2.17)

x

y

L0

X1(x) = sin πx
L

x

y

L0

X2(x) = sin 2πx
L

x

y

L0

X3(x) = sin 3πx
L

Figure 2.8: The first three harmonics of
the vibrating string.

Therefore, we have found that the product solutions of the wave equation
take the forms sin nπx

L cos ωnt and sin nπx
L sin ωnt. The general solution, a

superposition of all product solutions, is given by

General solution.

u(x, t) =
∞

∑
n=1

[
An cos

nπct
L

+ Bn sin
nπct

L

]
sin

nπx
L

. (2.18)

This solution satisfies the wave equation and the boundary conditions.
We still need to satisfy the initial conditions. Note that there are two initial
conditions, since the wave equation is second order in time.

First, we have u(x, 0) = f (x). Thus,

f (x) = u(x, 0) =
∞

∑
n=1

An sin
nπx

L
. (2.19)

In order to obtain the condition on the initial velocity, ut(x, 0) = g(x), we
need to differentiate the general solution with respect to t:

ut(x, t) =
∞

∑
n=1

nπc
L

[
−An sin

nπct
L

+ Bn cos
nπct

L

]
sin

nπx
L

. (2.20)

Then, we have from the initial velocity

g(x) = ut(x, 0) =
∞

∑
n=1

nπc
L

Bn sin
nπx

L
. (2.21)

So, applying the two initial conditions, we have found that f (x) and g(x),
are represented as Fourier sine series. In order to complete the problem we
need to determine the coefficients An and Bn for n = 1, 2, 3, . . .. Once we
have these, we have the complete solution to the wave equation. We had
seen similar results for the heat equation. In the next chapter we will find
out how to determine these Fourier coefficients for such series of sinusoidal
functions.
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2.5 Laplace’s Equation in 2D

Another generic partial differential equation is Laplace’s equa-
tion, ∇2u = 0. Laplace’s equation arises in many applications. As an exam-
ple, consider a thin rectangular plate with boundaries set at fixed tempera-
tures. Assume that any temperature changes of the plate are governed by
the heat equation, ut = k∇2u, subject to these boundary conditions. How-
ever, after a long period of time the plate may reach thermal equilibrium.
If the boundary temperature is zero, then the plate temperature decays to
zero across the plate. However, if the boundaries are maintained at a fixed
nonzero temperature, which means energy is being put into the system to
maintain the boundary conditions, the internal temperature may reach a
nonzero equilibrium temperature. Reaching thermal equilibrium meansThermodynamic equilibrium, ∇2u = 0.

that asymptotically in time the solution becomes time independent. Thus,
the equilibrium state is a solution of the time independent heat equation,
∇2u = 0.

A second example comes from electrostatics. Letting φ(r) be the electric
potential, one has for a static charge distribution, ρ(r), that the electric field,
E = ∇φ, satisfies one of Maxwell’s equations, ∇ · E = ρ/ε0. In regions
devoid of charge, ρ(r) = 0, the electric potential satisfies Laplace’s equation,
∇2φ = 0.Incompressible, irrotational fluid flow,

∇2φ = 0, for velocity v = ∇φ. See more
in Section 2.5.

As a final example, Laplace’s equation appears in two-dimensional fluid
flow. For an incompressible flow, ∇ · v = 0. If the flow is irrotational, then
∇ × v = 0. We can introduce a velocity potential, v = ∇φ. Thus, ∇ × v
vanishes by a vector identity and ∇ · v = 0 implies ∇2φ = 0. So, once again
we obtain Laplace’s equation.

Solutions of Laplace’s equation are called harmonic functions and we will
encounter these in Chapter 8 on complex variables and in Section 2.5 we will
apply complex variable techniques to solve the two-dimensional Laplace
equation. In this section we use the Method of Separation of Variables to
solve simple examples of Laplace’s equation in two dimensions. Three-
dimensional problems will studied in Chapter 6.

Example 2.3. Equilibrium Temperature Distribution for a Rectangular Plate
Let’s consider Laplace’s equation in Cartesian coordinates,

uxx + uyy = 0, 0 < x < L, 0 < y < H

with the boundary conditions

u(0, y) = 0, u(L, y) = 0, u(x, 0) = f (x), u(x, H) = 0.

The boundary conditions are shown in Figure 6.8

x0

y

0 L

H

∇2u = 0

u(x, 0) = f (x)

u(x, H) = 0

u(0, y) = 0 u(L, y) = 0

Figure 2.9: In this figure we show the
domain and boundary conditions for the
example of determining the equilibrium
temperature distribution for a rectangu-
lar plate.

As with the heat and wave equations, we can solve this problem using the method
of separation of variables. Let u(x, y) = X(x)Y(y). Then, Laplace’s equation be-
comes

X′′Y + XY′′ = 0
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and we can separate the x and y dependent functions and introduce a separation
constant, λ,

X′′

X
= −Y′′

Y
= −λ.

Thus, we are led to two differential equations,

X′′ + λX = 0,

Y′′ − λY = 0. (2.22)

From the boundary condition u(0, y) = 0, u(L, y) = 0, we have X(0) =

0, X(L) = 0. So, we have the usual eigenvalue problem for X(x),

X′′ + λX = 0, X(0) = 0, X(L) = 0.

The solutions to this problem are given by

Xn(x) = sin
nπx

L
, λn =

(nπ

L

)2
, n = 1, 2, . . . .

The general solution of the equation for Y(y) is given by

Y(y) = c1e
√

λy + c2e−
√

λy.

The boundary condition u(x, H) = 0 implies Y(H) = 0. So, we have

c1e
√

λH + c2e−
√

λH = 0.

Thus,
c2 = −c1e2

√
λH .

Inserting this result into the expression for Y(y), we have Note: Having carried out this compu-
tation, we can now see that it would
be better to guess this form in the fu-
ture. So, for Y(H) = 0, one would
guess a solution Y(y) = sinh

√
λ(H− y).

For Y(0) = 0, one would guess a so-
lution Y(y) = sinh

√
λy. Similarly, if

Y′(H) = 0, one would guess a solution
Y(y) = cosh

√
λ(H − y).

Y(y) = c1e
√

λy − c1e2
√

λHe−
√

λy

= c1e
√

λH
(

e−
√

λHe
√

λy − e
√

λHe−
√

λy
)

= c1e
√

λH
(

e−
√

λ(H−y) − e
√

λ(H−y)
)

= −2c1e
√

λH sinh
√

λ(H − y). (2.23)

Since we already know the values of the eigenvalues λn from the eigenvalue
problem for X(x), we have that the y-dependence is given by

Yn(y) = sinh
nπ(H − y)

L
.

So, the product solutions are given by

un(x, y) = sin
nπx

L
sinh

nπ(H − y)
L

, n = 1, 2, . . . .

These solutions satisfy Laplace’s equation and the three homogeneous boundary
conditions and in the problem.

The remaining boundary condition, u(x, 0) = f (x), still needs to be satisfied.
Inserting y = 0 in the product solutions does not satisfy the boundary condition
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unless f (x) is proportional to one of the eigenfunctions Xn(x). So, we first write
down the general solution as a linear combination of the product solutions,

u(x, y) =
∞

∑
n=1

an sin
nπx

L
sinh

nπ(H − y)
L

. (2.24)

Now we apply the boundary condition, u(x, 0) = f (x), to find that

f (x) =
∞

∑
n=1

an sinh
nπH

L
sin

nπx
L

. (2.25)

Defining bn = an sinh nπH
L , this becomes

f (x) =
∞

∑
n=1

bn sin
nπx

L
. (2.26)

We see that the determination of the unknown coefficients, bn, is simply done by
recognizing that this is a Fourier sine series. We now move on to the study of
Fourier series and provide more complete answers in Chapter 6.

2.6 Classification of Second Order PDEs

We have studied several examples of partial differential equations, the
heat equation, the wave equation, and Laplace’s equation. These equations
are examples of parabolic, hyperbolic, and elliptic equations, respectively.
Given a general second order linear partial differential equation, how can
we tell what type it is? This is known as the classification of second order
PDEs.

Let u = u(x, y). Then, the general form of a linear second order partial
differential equation is given by

a(x, y)uxx + 2b(x, y)uxy + c(x, y)uyy + d(x, y)ux + e(x, y)uy + f (x, y)u = g(x, y).
(2.27)

In this section we will show that this equation can be transformed into one
of three types of second order partial differential equations.

Let x = x(ξ, η) and y = yξ, η) be an invertible transformation from co-
ordinates (ξ, η) to coordinates (x, y). Furthermore, let u(x(ξ, η), y(ξ, η)) =

U(ξ, η). How does the partial differential equation (2.27) transform?
We first need to transform the derivatives of u(x, t). We have

ux = Uξ ξx + Uηηx,

uy = Uξ ξy + Uηηy,

uxx =
∂

∂x
(Uξξx + Uηηx),

= Uξξξ2
x + 2Uξηξxηx + Uηηη2

x + Uξ ξxx + Uηηxx,

uyy =
∂

∂y
(Uξξy + Uηηy),

= Uξξ ξ2
y + 2Uξηξyηy + Uηηη2

y + Uξξyy + Uηηyy,
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uxy =
∂

∂y
(Uξ ξx + Uηηx),

= Uξξξxξy + Uξηξxηy + Uξηξyηx + Uηηηxηy + Uξ ξxy + Uηηxy.

(2.28)

Inserting these derivatives into Equation (2.27), we have

g− f U = auxx + 2buxy + cuyy + dux + euy

= a
(

Uξξξ2
x + 2Uξηξxηx + Uηηη2

x + Uξ ξxx + Uηηxx

)
+2b

(
Uξξξxξy + Uξηξxηy + Uξηξyηx

+ Uηηηxηy + Uξξxy + Uηηxy
)

+c
(

Uξξξ2
y + 2Uξηξyηy + Uηηη2

y + Uξ ξyy + Uηηyy

)
+d
(
Uξ ξx + Uηηx

)
+e
(
Uξξy + Uηηy

)
= (aξ2

x + 2bξxξy + cξ2
y)Uξξ

+(2aξxηx + 2bξxηy + 2bξyηx + 2cξyηy)Uξη

+(aη2
x + 2bηxηy + cη2

y)Uηη

+(aξxx + 2bξxy + cξyy + dξx + eξy)Uξ

+(aηxx + 2bηxy + cηyy + dηx + eηy)Uη

= AUξξ + 2BUξη + CUηη + DUξ + EUη . (2.29)

Picking the right transformation, we can eliminate some of the second
order derivative terms depending on the type of differential equation. This
leads to three types: elliptic, hyperbolic, or parabolic.

For example, if transformations can be found to make A ≡ 0 and C ≡ 0,
then the equation reduces to

Uξη = lower order terms.

Such an equation is called hyperbolic. A generic example of a hyperbolic
equation is the wave equation. Hyperbolic case.

The conditions that A ≡ 0 and C ≡ 0 give the conditions

aξ2
x + 2bξxξy + cξ2

y = 0.

aη2
x + 2bηxηy + cη2

y = 0. (2.30)

We seek ξ and η satisfying these two equations, which are of the same
form. Let’s assume that ξ = ξ(x, y) is a constant curve in the xy-plane.
Furthermore, if this curve is the graph of a function, y = y(x), then

dξ

dx
= ξx +

dy
dx

ξy = 0.

Then
dy
dx

= − ξx

ξy
.
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Inserting this expression in A = 0, we have

A = aξ2
x + 2bξxξy + cξ2

y

= ξ2
y

(
a
(

ξx

ξy

)2
+ 2b

ξx

ξy
+ c

)

= ξ2
y

(
a
(

dy
dx

)2
− 2b

dy
dx

+ c

)
= 0. (2.31)

This equation is satisfied if y(x) satisfies the differential equation

dy
dx

=
b±
√

b2 − ac
a

.

So, for A = 0, we choose ξ and η to be constant on these characteristic
curves.

Example 2.4. Show that uxx − uyy = 0 is hyperbolic.
In this case we have a = 1 = −c and b = 0. Then,

dy
dx

= ±1.

This gives y(x) = ±x + c. So, we choose ξ and η constant on these characteristic
curves. Therefore, we let ξ = x− y, η = x + y.

Let’s see if this transformation transforms the differential equation into a canon-
ical form. Let u(x, y) = U(ξ, η). Then, the needed derivatives become

ux = Uξ ξx + Uηηx = Uξ + Uη .

uy = Uξ ξy + Uηηy = −Uξ + Uη .

uxx =
∂

∂x
(Uξ + Uη)

= Uξξξx + Uξηηx + Uηξ ξx + Uηηηx

= Uξξ + 2Uξη + Uηη .

uyy =
∂

∂y
(−Uξ + Uη)

= −Uξξξy −Uξηηy + Uηξ ξy + Uηηηy

= Uξξ − 2Uξη + Uηη . (2.32)

Inserting these derivatives into the differential equation, we have

0 = uxx − uyy = 4Uξη .

Thus, the transformed equation is Uξη = 0. Thus, showing it is a hyperbolic equa-
tion.

We have seen that A and C vanish for ξ(x, y) and η(x, y) constant along
the characteristics

dy
dx

=
b±
√

b2 − ac
a

for second order hyperbolic equations. This is possible when b2 − ac > 0
since this leads to two characteristics.
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In general, if we consider the second order operator

L[u] = a(x, y)uxx + 2b(x, y)uxy + c(x, y)uyy,

then this operator can be transformed to the new form

L′[U] = BUξη

if b2 − ac > 0. An example of a hyperbolic equation is the wave equation,
utt = uxx.

When b2 − ac = 0, then there is only one characteristic solution, dy
dx = b

a .

This is the parabolic case. But, dy
dx = − ξx

ξy
. So, Parabolic case.

b
a
= − ξx

ξy
,

or
aξx + bξy = 0.

Also, b2 − ac = 0 implies that c = b2/a.
Inserting these expression into coefficient B, we have

B = 2aξxηx + 2bξxηy + 2bξyηx + 2cξyηy

= 2(aξx + bξy)ηx + 2(bξx + cξy)ηy

= 2
b
a
(aξx + bξy)ηy = 0. (2.33)

Therefore, in the parabolic case, A = 0 and B = 0, and L[u] transforms to

L′[U] = CUηη

when b2 − ac = 0. This is the canonical form for a parabolic operator. An
example of a parabolic equation is the heat equation, ut = uxx.

Finally, when b2 − ac < 0, we have the elliptic case. In this case we Elliptic case.

cannot force A = 0 or C = 0. However, in this case we can force B = 0. As
we just showed, we can write

B = 2(aξx + bξy)ηx + 2(bξx + cξy)ηy.

Letting ηx = 0, we can choose ξ to satisfy bξx + cξy = 0.

A = aξ2
x + 2bξxξy + cξ2

y = aξ2
x − cξ2

y =
ac− b2

c
ξ2

x

C = aη2
x + 2bηxηy + cη2

y = cη2
y

Furthermore, setting ac−b2

c ξ2
x = cη2

y , we can make A = C and L[u] trans-
forms to

L′[U] = A[Uξξ + Uηη ]

when b2 − ac < 0. This is the canonical form for an elliptic operator. An
example of an elliptic equation is Laplace’s equation, uxx + uyy = 0.
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Classification of Second Order PDEs
The second order differential operator

L[u] = a(x, y)uxx + 2b(x, y)uxy + c(x, y)uyy,

can be transformed to one of the following forms:

• b2 − ac > 0. Hyperbolic: L[u] = B(x, y)uxy

• b2 − ac = 0. Parabolic: L[u] = C(x, y)uyy

• b2 − ac < 0. Elliptic: L[u] = A(x, y)[uxx + uyy]

As a final note, the terminology used in this classification is borrowed
from the general theory of quadratic equations which are the equations for
translated and rotated conics. Recall that the general quadratic equation in
two variable takes the form

ax2 + 2bxy + cy2 + dx + ey + f = 0. (2.34)

One can complete the squares in x and y to obtain the new form

a(x− h)2 + 2bxy + c(y− k)2 + f ′ = 0.

So, translating points (x, y) using the transformations x′ = x − h and y′ =
y− k, we find the simpler form

ax2 + 2bxy + cy2 + f = 0.

Here we dropped all primes.
We can also introduce transformations to simplify the quadratic terms.

Consider a rotation of the coordinate axes by θ,

x′ = x cos θ + y sin θ

y′ = −x sin θ + y cos θ, (2.35)

or

x = x′ cos θ − y′ sin θ

y = x′ sin θ + y′ cos θ. (2.36)

The resulting equation takes the form

Ax
′2 + 2Bx′y′ + Cy

′2 + D = 0,

where

A = a cos2 θ + 2b sin θ cos θ + c sin2 θ.

B = (c− a) sin θ cos θ + b(cos2 θ − sinθ).

C = a sin2 θ − 2b sin θ cos θ + c cos2 θ. (2.37)
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We can eliminate the x′y′ term by forcing B = 0. Since cos2 θ − sin2 θ =

cos 2θ and sin θ cos θ = 1
2 sin 2θ, we have

B =
(c− a)

2
sin 2θ + b cos 2θ = 0.

Therefore, the condition for eliminating the x′y′ term is

cot(2θ) =
a− c

2b
.

Furthermore, one can show that b2− ac = B2− AC. From the form Ax
′2 +

2Bx′y′ + Cy
′2 + D = 0, the resulting quadratic equation takes one of the

following forms:

• b2 − ac > 0. Hyperbolic: Ax2 − Cy2 + D = 0.

• b2 − ac = 0. Parabolic: Ax2 + By + D = 0.

• b2 − ac < 0. Elliptic: Ax2 + Cy2 + D = 0.

Thus, one can see the connection between the classification of quadratic
equations and second order partial differential equations in two indepen-
dent variables.

2.7 d’Alembert’s Solution of the Wave Equation

A general solution of the one-dimensional wave equation can
be found. This solution was first Jean-Baptiste le Rond d’Alembert (1717-
1783) and is referred to as d’Alembert’s formula. In this section we will
derive d’Alembert’s formula and then use it to arrive at solutions to the
wave equation on infinite, semi-infinite, and finite intervals.

We consider the wave equation in the form utt = c2uxx and introduce the
transformation

u(x, t) = U(ξ, η), where ξ = x + ct and η = x− ct.

Note that ξ, and η are the characteristics of the wave equation.
We also need to note how derivatives transform. For example

∂u
∂x

=
∂U(ξ, η)

∂x

=
∂U(ξ, η)

∂ξ

∂ξ

∂x
+

∂U(ξ, η)

∂η

∂η

∂x

=
∂U(ξ, η)

∂ξ
+

∂U(ξ, η)

∂η
. (2.38)

Therefore, as an operator, we have

∂

∂x
=

∂

∂ξ
+

∂

∂η
.
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Similarly, one can show that

∂

∂t
= c

∂

∂ξ
− c

∂

∂η
.

Using these results, the wave equation becomes

0 = utt − c2uxx

=

(
∂2

∂t2 − c2 ∂2

∂x2

)
u

=

(
∂

∂t
+ c

∂

∂x

)(
∂

∂t
− c

∂

∂x

)
u

=

(
c

∂

∂ξ
− c

∂

∂η
+ c

∂

∂ξ
+ c

∂

∂η

)(
c

∂

∂ξ
− c

∂

∂η
− c

∂

∂ξ
− c

∂

∂η

)
U

= −4c2 ∂

∂ξ

∂

∂η
U. (2.39)

Therefore, the wave equation has transformed into the simpler equation,

Uηξ = 0.

Not only is this simpler, but we see it is once again a confirmation that
the wave equation is a hyperbolic equation. Of course, it is also easy to
integrate. Since

∂

∂η

(
∂U
∂ξ

)
= 0,

∂U
∂ξ

= constant with respect to ξ = Γ(η).

A further integration gives

U(ξ, η) =
∫ η

Γ(η′) dη′ + F(ξ) ≡ G(η) + F(η).

Therefore, we have as the general solution of the wave equation,

u(x, t) = F(x + ct) + G(x− ct), (2.40)

where F and G are two arbitrary, twice differentiable functions. As t is
increased, we see that F(x + ct) gets horizontally shifted to the left and
G(x − ct) gets horizontally shifted to the right. As a result, we conclude
that the solution of the wave equation can be seen as the sum of left and
right traveling waves.u(x, t) = sum of left and right traveling

waves. Let’s use initial conditions to solve for the unknown functions. We let

u(x, 0) = f (x), ut(x, 0) = g(x), |x| < ∞.

Applying this to the general solution, we have

f (x) = F(x) + G(x) (2.41)

g(x) = c[F′(x)− G′(x)]. (2.42)
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We need to solve for F(x) and G(x) in terms of f (x) and g(x). Integrating
Equation (2.42), we have

1
c

∫ x

0
g(s) ds = F(x)− G(x)− F(0) + G(0).

Adding this result to Equation (2.42), gives

F(x) =
1
2

f (x) +
1
2c

∫ x

0
g(s) ds +

1
2
[F(0)− G(0)].

Subtracting from Equation (2.42), gives

G(x) =
1
2

f (x)− 1
2c

∫ x

0
g(s) ds− 1

2
[F(0)− G(0)].

Now we can write out the solution u(x, t) = F(x + ct) + G(x− ct), yield-
ing d’Alembert’s solution d’Alembert’s solution

u(x, t) =
1
2
[ f (x + ct) + f (x− ct)] +

1
2c

∫ x+ct

x−ct
g(s) ds. (2.43)

When f (x) and g(x) are defined for all x ∈ R, the solution is well-defined.
However, there are problems on more restricted domains. In the next exam-
ples we will consider the semi-infinite and finite length string problems.In
each case we will need to consider the domain of dependence and the do-
main of influence of specific points. These concepts are shown in Figure
2.10. The domain of dependence of point P is red region. The point P de-
pends on the values of u and ut at points inside the domain. The domain of
influence of P is the blue region. The points in the region are influenced by
the values of u and ut at P.

x

t

x = η + ctx = ξ − ct

g(x)f (η) f (ξ)

P

Influence

Dependence

Figure 2.10: The domain of dependence
of point P is red region. The point P de-
pends on the values of u and ut at points
inside the domain. The domain of influ-
ence of P is the blue region. The points
in the region are influenced by the val-
ues of u and ut at P.

Example 2.5. Use d’Alembert’s solution to solve

utt = c2uxx, u(x, 0) = f (x), ut(x, 0) = g(x), 0 ≤ x < ∞.

The d’Alembert solution is not well-defined for this problem because f (x − ct)
is not defined for x− ct < 0 for c, t > 0. There are similar problems for g(x). This
can be seen by looking at the characteristics in the xt-plane. In Figure 2.11 there
are characteristics emanating from the points marked by η0 and ξ0 that intersect
in the domain x > 0. The point of intersection of the blue lines have a domain of
dependence entirely in the region x, t > 0, however the domain of dependence of
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Figure 2.11: The characteristics for the
semi-infinite string.

x

t

x = η0 + ct

η0 ξ00

P

point P reaches outside this region. Only characteristics ξ = x + ct reach point P,
but characteristics η = x − ct do not. But, we need f (η) and g(x) for x < ct to
form a solution.

This can be remedied if we specified boundary conditions at x = 0. For example,
we will assume the end x = 0 is fixed,Fixed end boundary condition

u(0, t) = 0, t ≥ 0.

Imagine an infinite string with one end (at x = 0) tied to a pole.
Since u(x, t) = F(x + ct) + G(x− ct), we have

u(0, t) = F(ct) + G(−ct) = 0.

Letting ζ = −ct, this gives G(ζ) = −F(−ζ), ζ ≤ 0.
Note that

G(ζ) =
1
2

f (ζ)− 1
2c

∫ ζ

0
g(s) ds

−F(−ζ) = −1
2

f (−ζ)− 1
2c

∫ −ζ

0
g(s) ds

= −1
2

f (−ζ) +
1
2c

∫ ζ

0
g(σ) dσ

(2.44)

Comparing the expressions for G(ζ) and −F(−ζ), we see that

f (ζ) = − f (−ζ), g(ζ) = −g(−ζ).

These relations imply that we can extend the functions into the region x < 0 if we
make them odd functions, or what are called odd extensions. An example is shown
in Figure 2.12.

Another type of boundary condition is if the end x = 0 is free,Free end boundary condition

ux(0, t) = 0, t ≥ 0.

In this case we could have an infinite string tied to a ring and that ring is allowed
to slide freely up and down a pole.

One can prove that this leads to

f (−ζ) = f (ζ), g(−ζ) = g(ζ).

Thus, we can use an even extension of these function to produce solutions.
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Example 2.6. Solve the initial-boundary value problem

utt = c2uxx, 0 ≤ x < ∞, t > 0.

u(x, 0) =


x, 0 ≤ x ≤ 1,

2− x, 1 ≤ x ≤ 2,
0, x > 2,

0 ≤ x < ∞

ut(x, 0) = 0, 0 ≤ x < ∞.

u(0, t) = 0, t > 0. (2.45)

This is a semi-infinite string with a fixed end. Initially it is plucked to produce
a nonzero triangular profile for 0 ≤ x ≤ 2. Since the initial velocity is zero, the
general solution is found from d’Alembert’s solution,

u(x, t) =
1
2
[ fo(x + ct) + fo(x− ct)],

where fo(x) is the odd extension of f (x) = u(x, 0). In Figure 2.12 we show the
initial condition and its odd extension. The odd extension is obtained through
reflection of f (x) about the origin.

x

u
f (x) = u(x, 0)

x

u
fo(x)

Figure 2.12: The initial condition and its
odd extension. The odd extension is ob-
tained through reflection of f (x) about
the origin.

The next step is to look at the horizontal shifts of fo(x). Several examples are
shown in Figure 2.13.These show the left and right traveling waves.

In Figure 2.14 we show superimposed plots of fo(x + ct) and fo(x − ct) for
given times. The initial profile in at the bottom. By the time ct = 2 the full
traveling wave has emerged. The solution to the problem emerges on the right side
of the figure by averaging each plot.

Example 2.7. Use d’Alembert’s solution to solve

utt = c2uxx, u(x, 0) = f (x), ut(x, 0) = g(x), 0 ≤ x ≤ `.

The general solution of the wave equation was found in the form

u(x, t) = F(x + ct) + G(x− ct).
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Figure 2.13: Examples of fo(x + ct) and
fo(x− ct).

x

u fo(x + 0)

x

u fo(x− 0)

x

u fo(x + 1)

x

u fo(x− 1)

x

u fo(x + 2)

x

u fo(x− 2)
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x

u
fo(x + 0) fo(x− 0)

x

u
fo(x + 0.5) fo(x− 0.5)

x

u
fo(x + 1) fo(x− 1)

x

u
fo(x + 1.5) fo(x− 1.5)

x

u
fo(x + 2) fo(x− 2)

x

u
fo(x + 2.5) fo(x− 2.5)

Figure 2.14: Superimposed plots of
fo(x + ct) and fo(x− ct) for given times.
The initial profile in at the bottom. By
the time ct = 2 the full traveling wave
has emerged.
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Figure 2.15: On the left is a plot of f (x +
ct), f (x − ct) from Figure 2.14 and the
average, u(x, t). On the right the solution
alone is shown for ct = 0 at bottom to
ct = 1 at top for the semi-infinite string
problem
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However, for this problem we can only obtain information for values of x and t
such that 0 ≤ x + ct ≤ ` and 0 ≤ x − ct ≤ `. In Figure 2.16 the characteristics
x = ξ + ct and x = η − ct for 0 ≤ ξ, η ≤ `. The main (gray) triangle, which is
the domain of dependence of the point (`, 2, `/2c), is the only region in which the
solution can be found based solely on the initial conditions. As with the previous
problem, boundary conditions will need to be given in order to extend the domain
of the solution.

In the last example we saw that a fixed boundary at x = 0 could be satisfied
when f (x) and g(x) are extended as odd functions. In Figure 2.17 we indicate how
the characteristics are affected by drawing in the new one as red dashed lines. This
allows us to now construct solutions based on the initial conditions under the line
x = `− ct for 0 ≤ x ≤ `. The new region for which we can construct solutions
from the initial conditions is indicated in gray in Figure 2.17.

x

t
x = ctx = `− ct

`
2c

0 `f (x)

Figure 2.16: The characteristics emanat-
ing from the interval 0 ≤ x ≤ ` for the
finite string problem.

−`
x

t

x = ctx = `− ct

`
2c

0 `f (x)f (−x)

Figure 2.17: The red dashed lines are the
characteristics from the interval [−`, 0]
from using the odd extension about x =
0.

We can add characteristics on the right by adding a boundary condition at x = `.
Again, we could use fixed u(`, t) = 0, or free, ux(`, t) = 0, boundary conditions.
This allows us to now construct solutions based on the initial conditions for ` ≤
x ≤ 2`.

Let’s consider a fixed boundary condition at x = `. Then, the solution must
satisfy

u(`, t) = F(`+ ct) + G(`− ct) = 0.
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To see what this means, let ζ = `+ ct. Then, this condition gives (since ct = ζ− `)

F(ζ) = −G(2`− ζ), ` ≤ ζ ≤ 2`.

Note that G(2`− ζ) is defined for 0 ≤ 2`− ζ ≤ `. Therefore, this is a well-defined
extension of the domain of F(x).

Note that

F(ζ) =
1
2

f (ζ) +
1
2c

∫ `

0
g(s) ds.

−G(2`− ζ) = −1
2

f (2`− ζ) +
1
2c

∫ 2`−ζ

0
g(s) ds

= −1
2

f (2`− ζ)− 1
2c

∫ ζ

0
g(2`− σ) dσ

(2.46)

Comparing the expressions for G(ζ) and −G(2`− ζ), we see that

f (ζ) = − f (2`− ζ), g(ζ) = −g(2`− ζ).

These relations imply that we can extend the functions into the region x > ` if
we consider an odd extension of f (x) and g(x) about x = `.. This will give the
blue dashed characteristics in Figure 2.18 and a larger gray region to construct the
solution.

Figure 2.18: The red dashed lines are the
characteristics from the interval [−`, 0]
from using the odd extension about x =
0 and the blue dashed lines are the char-
acteristics from the interval [`, 2`] from
using the odd extension about x = `.

−`
x

t

x = ctx = `− ct

`
2c

0 `f (x)f (−x) f (2`− x) 2`

So far we have extended f (x) and g(x) to the interval −` ≤ x ≤ 2` in
order to determine the solution over a larger xt-domain. For example, the
function f (x) has been extended to

fext(x) =


− f (−x), −` < x < 0,

f (x), 0 < x < `,
− f (2`− x), ` < x < 2`.

A similar extension is needed for g(x). Inserting these extended functions
into d’Alembert’s solution, we can determine u(x, t) in the region indicated
in Figure 2.18.
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Even though the original region has been expanded, we have not deter-
mined how to find the solution throughout the entire strip, [0, `] × [0, ∞).
This is accomplished by periodically repeating these extended functions
with period 2`. This can be shown from the two conditions

f (x) = − f (−x), −` ≤ x ≤ 0,

f (x) = − f (2`− x), ` ≤ x ≤ 2`. (2.47)

Now, consider

f (x + 2`) = − f (2`− (x− 2`))

= − f (−x)

= f (x). (2.48)

This shows that f (x) is periodic with period 2`. Since g(x) satisfies the same
conditions, then it is as well.

In Figure 2.19 we show how the characteristics are extended throughout
the domain strip using the periodicity of the extended initial conditions. The
characteristics from the interval endpoints zig zag throughout the domain,
filling it up. In the next example we show how to construct the odd periodic
extension of a specific function.

x

t

0 ` 2` 3``−2`

x
u(x, 0)

0
` 2` 3`−`−2`

Figure 2.19: Extending the characteris-
tics throughout the domain strip.

Example 2.8. Construct the periodic extension of the plucked string initial profile
given by

f (x) =

{
x, 0 ≤ x ≤ `

2 ,
`− x, `

2 ≤ x ≤ `,

satisfying fixed boundary conditions at x = 0 and x = `.
We first take the solution and add the odd extension about x = 0. Then we add

an extension beyond x = `. This process is shown in Figure 2.20.

We can use the odd periodic function to construct solutions. In this case
we use the result from the last example for obtaining the solution of the
problem in which the initial velocity is zero, u(x, t) = 1

2 [ f (x + ct) + f (x −
ct)]. Translations of the odd periodic extension are shown in Figure 2.21.
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Figure 2.20: Construction of odd peri-
odic extension for (a) The initial profile,
f (x). (b) Make f (x) an odd function on
[−`, `]. (c) Make the odd function peri-
odic with period 2`.

x

u(a)

x

u(b)

x

u(c)(c)(c)(c)

In Figure 2.22 we show superimposed plots of f (x + ct) and f (x − ct) for
different values of ct. A box is shown inside which the physical wave can
be constructed. The solution is an average of these odd periodic extensions
within this box. This is displayed in Figure 2.23.

Figure 2.21: Translations of the odd pe-
riodic extension.

x

uf̂ (x)f̂ (x)f̂ (x)f̂ (x)f̂ (x)

x

uf̂ (x + .2)f̂ (x + .2)f̂ (x + .2)f̂ (x + .2)f̂ (x + .2)

x

uf̂ (x + .4)f̂ (x + .4)f̂ (x + .4)f̂ (x + .4)f̂ (x + .4)

x

uf̂ (x + .6)f̂ (x + .6)f̂ (x + .6)f̂ (x + .6)f̂ (x + .6)

x

uf̂ (x− .2)f̂ (x− .2)f̂ (x− .2)f̂ (x− .2)f̂ (x− .2)

x

uf̂ (x− .4)f̂ (x− .4)f̂ (x− .4)f̂ (x− .4)f̂ (x− .4)

x

uf̂ (x− .6)f̂ (x− .6)f̂ (x− .6)f̂ (x− .6)f̂ (x− .6)

Problems

1. Solve the following initial value problems.

a. x′′ + x = 0, x(0) = 2, x′(0) = 0.

b. y′′ + 2y′ − 8y = 0, y(0) = 1, y′(0) = 2.

c. x2y′′ − 2xy′ − 4y = 0, y(1) = 1, y′(1) = 0.

2. Solve the following boundary value problems directly, when possible.

a. x′′ + x = 2, x(0) = 0, x′(1) = 0.

b. y′′ + 2y′ − 8y = 0, y(0) = 1, y(1) = 0.
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x

uf̂ (x)f̂ (x)f̂ (x)f̂ (x)f̂ (x)

x

uf̂ (x + .2)f̂ (x + .2)f̂ (x + .2)f̂ (x + .2)f̂ (x + .2) f̂ (x− .2)f̂ (x− .2)f̂ (x− .2)f̂ (x− .2)f̂ (x− .2)

x

uf̂ (x + .4)f̂ (x + .4)f̂ (x + .4)f̂ (x + .4)f̂ (x + .4) f̂ (x− .4)f̂ (x− .4)f̂ (x− .4)f̂ (x− .4)f̂ (x− .4)

x

uf̂ (x + .6)f̂ (x + .6)f̂ (x + .6)f̂ (x + .6)f̂ (x + .6) f̂ (x− .6)f̂ (x− .6)f̂ (x− .6)f̂ (x− .6)f̂ (x− .6)

x

uf̂ (x + .8)f̂ (x + .8)f̂ (x + .8)f̂ (x + .8)f̂ (x + .8) f̂ (x− .8)f̂ (x− .8)f̂ (x− .8)f̂ (x− .8)f̂ (x− .8)

x

uf̂ (x + 1)f̂ (x + 1)f̂ (x + 1)f̂ (x + 1)f̂ (x + 1) f̂ (x− 1)f̂ (x− 1)f̂ (x− 1)f̂ (x− 1)f̂ (x− 1) Figure 2.22: Superimposed translations
of the odd periodic extension.
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u

ct = 0

x

u
ct = 1

x

u

x
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u

x

u

x

u

x

u

x

u

x

u

x

u

x

u

Figure 2.23: On the left is a plot of f (x +
ct), f (x − ct) from Figure 2.22 and the
average, u(x, t). On the right the solution
alone is shown for ct = 0 to ct = 1.
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c. y′′ + y = 0, y(0) = 1, y(π) = 0.

3. Consider the boundary value problem for the deflection of a horizontal
beam fixed at one end,

d4y
dx4 = C, y(0) = 0, y′(0) = 0, y′′(L) = 0, y′′′(L) = 0.

Solve this problem assuming that C is a constant.

4. Find the product solutions, u(x, t) = T(t)X(x), to the heat equation,
ut − uxx = 0, on [0, π] satisfying the boundary conditions ux(0, t) = 0 and
u(π, t) = 0.

5. Find the product solutions, u(x, t) = T(t)X(x), to the wave equation
utt = 2uxx, on [0, 2π] satisfying the boundary conditions u(0, t) = 0 and
ux(2π, t) = 0.

6. Find product solutions, u(x, t) = X(x)Y(y), to Laplace’s equation, uxx +

uyy = 0, on the unit square satisfying the boundary conditions u(0, y) = 0,
u(1, y) = g(y), u(x, 0) = 0, and u(x, 1) = 0.

7. Consider the following boundary value problems. Determine the eigen-
values, λ, and eigenfunctions, y(x) for each problem.

a. y′′ + λy = 0, y(0) = 0, y′(1) = 0.

b. y′′ − λy = 0, y(−π) = 0, y′(π) = 0.

c. x2y′′ + xy′ + λy = 0, y(1) = 0, y(2) = 0.

d. (x2y′)′ + λy = 0, y(1) = 0, y′(e) = 0.In problem d you will not get exact
eigenvalues. Show that you obtain a
transcendental equation for the eigenval-
ues in the form tan z = 2z. Find the first
three eigenvalues numerically.

8. Classify the following equations as either hyperbolic, parabolic, or ellip-
tic.

a. uyy + uxy + uxx = 0.

b. 3uxx + 2uxy + 5uyy = 0.

c. x2uxx + 2xyuxy + y2uyy = 0.

d. y2uxx + 2xyuxy + (x2 + 4x4)uyy = 0.

9. Use d’Alembert’s solution to prove

f (−ζ) = f (ζ), g(−ζ) = g(ζ)

for the semi-infinite string satisfying the free end condition ux(0, t) = 0.

10. Derive a solution similar to d’Alembert’s solution for the equation utt +

2uxt − 3u = 0.

11. Construct the appropriate periodic extension of the plucked string ini-
tial profile given by

f (x) =

{
x, 0 ≤ x ≤ `

2 ,
`− x, `

2 ≤ x ≤ `,

satisfying the boundary conditions at u(0, t) = 0 and ux(`, t) = 0 for t > 0.
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12. Find and sketch the solution of the problem

utt = uxx, 0 ≤ x ≤ 1, t > o

u(x, 0) =


0, 0 ≤ x < 1

4 ,
1, 1

4 ≤ x ≤ 3
4 ,

0, 3
4 < x ≤ 1,

ut(x, 0) = 0,

u(0, t) = 0, t > 0,

u(1, t) = 0, t > 0,





3
Trigonometric Fourier Series

“Ordinary language is totally unsuited for expressing what physics really asserts,
since the words of everyday life are not sufficiently abstract. Only mathematics and
mathematical logic can say as little as the physicist means to say.” Bertrand Russell
(1872-1970)

3.1 Introduction to Fourier Series

We will now turn to the study of trigonometric series. You have seen
that functions have series representations as expansions in powers of x, or
x − a, in the form of Maclaurin and Taylor series. Recall that the Taylor
series expansion is given by

f (x) =
∞

∑
n=0

cn(x− a)n,

where the expansion coefficients are determined as

cn =
f (n)(a)

n!
.

From the study of the heat equation and wave equation, we have found
that there are infinite series expansions over other functions, such as sine
functions. We now turn to such expansions and in the next chapter we will
find out that expansions over special sets of functions are not uncommon in
physics. But, first we turn to Fourier trigonometric series.

We will begin with the study of the Fourier trigonometric series expan-
sion

f (x) =
a0

2
+

∞

∑
n=1

an cos
nπx

L
+ bn sin

nπx
L

.

We will find expressions useful for determining the Fourier coefficients
{an, bn} given a function f (x) defined on [−L, L]. We will also see if the
resulting infinite series reproduces f (x). However, we first begin with some
basic ideas involving simple sums of sinusoidal functions.

There is a natural appearance of such sums over sinusoidal functions in
music. A pure note can be represented as

y(t) = A sin(2π f t),
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where A is the amplitude, f is the frequency in hertz (Hz), and t is time in
seconds. The amplitude is related to the volume of the sound. The larger
the amplitude, the louder the sound. In Figure 3.1 we show plots of two
such tones with f = 2 Hz in the top plot and f = 5 Hz in the bottom one.

0 1 2 3

−2

0

2

t

y(t)

(a) y(t) = 2 sin(4π f t)

0 1 2 3

−2

0

2

t

(b) y(t) = sin(10π f t)

y(t)

Figure 3.1: Plots of y(t) = A sin(2π f t)
on [0, 5] for f = 2 Hz and f = 5 Hz.

In these plots you should notice the difference due to the amplitudes and
the frequencies. You can easily reproduce these plots and others in your
favorite plotting utility.

As an aside, you should be cautious when plotting functions, or sampling
data. The plots you get might not be what you expect, even for a simple sine
function. In Figure 3.2 we show four plots of the function y(t) = 2 sin(4πt).
In the top left you see a proper rendering of this function. However, if you
use a different number of points to plot this function, the results may be sur-
prising. In this example we show what happens if you use N = 200, 100, 101
points instead of the 201 points used in the first plot. Such disparities are
not only possible when plotting functions, but are also present when collect-
ing data. Typically, when you sample a set of data, you only gather a finite
amount of information at a fixed rate. This could happen when getting data
on ocean wave heights, digitizing music and other audio to put on your
computer, or any other process when you attempt to analyze a continuous
signal.

Figure 3.2: Problems can occur while
plotting. Here we plot the func-
tion y(t) = 2 sin 4πt using N =
201, 200, 100, 101 points.
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y(t)=2 sin(4 π t) for N=201 points
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y(t)=2 sin(4 π t) for N=200 points
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0
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y(t)=2 sin(4 π t) for N=100 points

Time

y(
t)
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y(t)=2 sin(4 π t) for N=101 points

Time

y(
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Next, we consider what happens when we add several pure tones. After
all, most of the sounds that we hear are in fact a combination of pure tones
with different amplitudes and frequencies. In Figure 3.3 we see what hap-
pens when we add several sinusoids. Note that as one adds more and more
tones with different characteristics, the resulting signal gets more compli-
cated. However, we still have a function of time. In this chapter we will ask,
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“Given a function f (t), can we find a set of sinusoidal functions whose sum
converges to f (t)?”

0 1 2 3

−2

0

2

t

y(t)

(a) Sum of signals with frequencies

f = 2 Hz and f = 5 Hz.

0 1 2 3

−2

0

2

t

(b) Sum of signals with frequencies

f = 2 Hz, f = 5 Hz, and f = 8 Hz.

y(t)

Figure 3.3: Superposition of several si-
nusoids.

Looking at the superpositions in Figure 3.3, we see that the sums yield
functions that appear to be periodic. This is not to be unexpected. We recall
that a periodic function is one in which the function values repeat over the
domain of the function. The length of the smallest part of the domain which
repeats is called the period. We can define this more precisely: A function is
said to be periodic with period T if f (t + T) = f (t) for all t and the smallest
such positive number T is called the period.

For example, we consider the functions used in Figure 3.3. We began with
y(t) = 2 sin(4πt). Recall from your first studies of trigonometric functions
that one can determine the period by dividing the coefficient of t into 2π to
get the period. In this case we have

T =
2π

4π
=

1
2

.

Looking at the top plot in Figure 3.1 we can verify this result. (You can
count the full number of cycles in the graph and divide this into the total
time to get a more accurate value of the period.)

In general, if y(t) = A sin(2π f t), the period is found as

T =
2π

2π f
=

1
f

.

Of course, this result makes sense, as the unit of frequency, the hertz, is also
defined as s−1, or cycles per second.

Returning to Figure 3.3, the functions y(t) = 2 sin(4πt), y(t) = sin(10πt),
and y(t) = 0.5 sin(16πt) have periods of 0.5s, 0.2s, and 0.125s, respectively.
Each superposition in Figure 3.3 retains a period that is the least common
multiple of the periods of the signals added. For both plots, this is 1.0s
= 2(0.5)s = 5(.2)s = 8(.125)s.

Our goal will be to start with a function and then determine the ampli-
tudes of the simple sinusoids needed to sum to that function. We will see
that this might involve an infinite number of such terms. Thus, we will be
studying an infinite series of sinusoidal functions.

Secondly, we will find that using just sine functions will not be enough
either. This is because we can add sinusoidal functions that do not neces-
sarily peak at the same time. We will consider two signals that originate
at different times. This is similar to when your music teacher would make
sections of the class sing a song like “Row, Row, Row your Boat” starting at
slightly different times.

0 1 2 3

−2

0

2

t

y(t)

(a) Plot of each function.

0 1 2 3

−2

0

2

t

(b) Plot of the sum of the functions.

y(t)

Figure 3.4: Plot of the functions y(t) =
2 sin(4πt) and y(t) = 2 sin(4πt + 7π/8)
and their sum.

We can easily add shifted sine functions. In Figure 3.4 we show the
functions y(t) = 2 sin(4πt) and y(t) = 2 sin(4πt + 7π/8) and their sum.
Note that this shifted sine function can be written as y(t) = 2 sin(4π(t +
7/32)). Thus, this corresponds to a time shift of −7/32.

So, we should account for shifted sine functions in the general sum. Of
course, we would then need to determine the unknown time shift as well
as the amplitudes of the sinusoidal functions that make up the signal, f (t).
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While this is one approach that some researchers use to analyze signals,
there is a more common approach. This results from another reworking of
the shifted function.

We should note that the form in the
lower plot of Figure 3.4 looks like a sim-
ple sinusoidal function for a reason. Let

y1(t) = 2 sin(4πt),

y2(t) = 2 sin(4πt + 7π/8).

Then,

y1 + y2 = 2 sin(4πt + 7π/8) + 2 sin(4πt)

= 2[sin(4πt + 7π/8) + sin(4πt)]

= 4 cos
7π

16
sin
(

4πt +
7π

16

)
.

Consider the general shifted function

y(t) = A sin(2π f t + φ). (3.1)

Note that 2π f t + φ is called the phase of the sine function and φ is called
the phase shift. We can use the trigonometric identity (A.17) for the sine of
the sum of two angles1 to obtain

1 Recall the identities (A.17)-(A.18)

sin(x + y) = sin x cos y + sin y cos x,

cos(x + y) = cos x cos y− sin x sin y.

y(t) = A sin(2π f t + φ)

= A sin(φ) cos(2π f t) + A cos(φ) sin(2π f t). (3.2)

Defining a = A sin(φ) and b = A cos(φ), we can rewrite this as

y(t) = a cos(2π f t) + b sin(2π f t).

Thus, we see that the signal in Equation (3.1) is a sum of sine and cosine
functions with the same frequency and different amplitudes. If we can find
a and b, then we can easily determine A and φ:

A =
√

a2 + b2, tan φ =
b
a

.

We are now in a position to state our goal.

Goal - Fourier Analysis

Given a signal f (t), we would like to determine its frequency content by
finding out what combinations of sines and cosines of varying frequencies
and amplitudes will sum to the given function. This is called Fourier
Analysis.

3.2 Fourier Trigonometric Series

As we have seen in the last section, we are interested in finding
representations of functions in terms of sines and cosines. Given a function
f (x) we seek a representation in the form

f (x) ∼ a0

2
+

∞

∑
n=1

[an cos nx + bn sin nx] . (3.3)

Notice that we have opted to drop the references to the time-frequency form
of the phase. This will lead to a simpler discussion for now and one can
always make the transformation nx = 2π fnt when applying these ideas to
applications.

The series representation in Equation (3.3) is called a Fourier trigonomet-
ric series. We will simply refer to this as a Fourier series for now. The set
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of constants a0, an, bn, n = 1, 2, . . . are called the Fourier coefficients. The
constant term is chosen in this form to make later computations simpler,
though some other authors choose to write the constant term as a0. Our
goal is to find the Fourier series representation given f (x). Having found
the Fourier series representation, we will be interested in determining when
the Fourier series converges and to what function it converges.

0 10 20

0.5

1

1.5

t

y(t)

(a) Plot of function f (t).

0 10 20

0.5

1

1.5

t

(b) Periodic extension of f (t).

y(t)

Figure 3.5: Plot of the function f (t) de-
fined on [0, 2π] and its periodic exten-
sion.

From our discussion in the last section, we see that The Fourier series is
periodic. The periods of cos nx and sin nx are 2π

n . Thus, the largest period,
T = 2π, comes from the n = 1 terms and the Fourier series has period 2π.
This means that the series should be able to represent functions that are
periodic of period 2π.

While this appears restrictive, we could also consider functions that are
defined over one period. In Figure 3.5 we show a function defined on [0, 2π].
In the same figure, we show its periodic extension. These are just copies of
the original function shifted by the period and glued together. The extension
can now be represented by a Fourier series and restricting the Fourier series
to [0, 2π] will give a representation of the original function. Therefore, we
will first consider Fourier series representations of functions defined on this
interval. Note that we could just as easily considered functions defined on
[−π, π] or any interval of length 2π. We will consider more general intervals
later in the chapter.

Fourier Coefficients

Theorem 3.1. The Fourier series representation of f (x) defined on [0, 2π], when
it exists, is given by (3.3) with Fourier coefficients

an =
1
π

∫ 2π

0
f (x) cos nx dx, n = 0, 1, 2, . . . ,

bn =
1
π

∫ 2π

0
f (x) sin nx dx, n = 1, 2, . . . . (3.4)

These expressions for the Fourier coefficients are obtained by considering
special integrations of the Fourier series. We will now derive the an integrals
in (3.4).

We begin with the computation of a0. Integrating the Fourier series term
by term in Equation (3.3), we have∫ 2π

0
f (x) dx =

∫ 2π

0

a0

2
dx +

∫ 2π

0

∞

∑
n=1

[an cos nx + bn sin nx] dx. (3.5)

We will assume that we can integrate the infinite sum term by term. Then Evaluating the integral of an infinite se-
ries by integrating term by term depends
on the convergence properties of the se-
ries.

we will need to compute∫ 2π

0

a0

2
dx =

a0

2
(2π) = πa0,∫ 2π

0
cos nx dx =

[
sin nx

n

]2π

0
= 0,

∫ 2π

0
sin nx dx =

[
− cos nx

n

]2π

0
= 0. (3.6)
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From these results we see that only one term in the integrated sum does not
vanish leaving ∫ 2π

0
f (x) dx = πa0.

This confirms the value for a0.2

2 Note that a0
2 is the average of f (x) over

the interval [0, 2π]. Recall from the first
semester of calculus, that the average of
a function defined on [a, b] is given by

fave =
1

b− a

∫ b

a
f (x) dx.

For f (x) defined on [0, 2π], we have

fave =
1

2π

∫ 2π

0
f (x) dx =

a0

2
.

Next, we will find the expression for an. We multiply the Fourier series
(3.3) by cos mx for some positive integer m. This is like multiplying by
cos 2x, cos 5x, etc. We are multiplying by all possible cos mx functions for
different integers m all at the same time. We will see that this will allow us
to solve for the an’s.

We find the integrated sum of the series times cos mx is given by∫ 2π

0
f (x) cos mx dx =

∫ 2π

0

a0

2
cos mx dx

+
∫ 2π

0

∞

∑
n=1

[an cos nx + bn sin nx] cos mx dx.

(3.7)

Integrating term by term, the right side becomes∫ 2π

0
f (x) cos mx dx =

a0

2

∫ 2π

0
cos mx dx

+
∞

∑
n=1

[
an

∫ 2π

0
cos nx cos mx dx + bn

∫ 2π

0
sin nx cos mx dx

]
.

(3.8)

We have already established that
∫ 2π

0 cos mx dx = 0, which implies that the
first term vanishes.

Next we need to compute integrals of products of sines and cosines. This
requires that we make use of some of the trigonometric identities listed in
Chapter 1. For quick reference, we list these here.

Useful Trigonometric Identities

sin(x± y) = sin x cos y± sin y cos x (3.9)

cos(x± y) = cos x cos y∓ sin x sin y (3.10)

sin2 x =
1
2
(1− cos 2x) (3.11)

cos2 x =
1
2
(1 + cos 2x) (3.12)

sin x sin y =
1
2
(cos(x− y)− cos(x + y)) (3.13)

cos x cos y =
1
2
(cos(x + y) + cos(x− y)) (3.14)

sin x cos y =
1
2
(sin(x + y) + sin(x− y)) (3.15)

We first want to evaluate
∫ 2π

0 cos nx cos mx dx. We do this by using the
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product identity (3.14). We have∫ 2π

0
cos nx cos mx dx =

1
2

∫ 2π

0
[cos(m + n)x + cos(m− n)x] dx

=
1
2

[
sin(m + n)x

m + n
+

sin(m− n)x
m− n

]2π

0
= 0. (3.16)

There is one caveat when doing such integrals. What if one of the de-
nominators m± n vanishes? For this problem m + n 6= 0, since both m and
n are positive integers. However, it is possible for m = n. This means that
the vanishing of the integral can only happen when m 6= n. So, what can
we do about the m = n case? One way is to start from scratch with our
integration. (Another way is to compute the limit as n approaches m in our
result and use L’Hopital’s Rule. Try it!)

For n = m we have to compute
∫ 2π

0 cos2 mx dx. This can also be handled
using a trigonometric identity. Using the half angle formula, (3.12), with
θ = mx, we find∫ 2π

0
cos2 mx dx =

1
2

∫ 2π

0
(1 + cos 2mx) dx

=
1
2

[
x +

1
2m

sin 2mx
]2π

0

=
1
2
(2π) = π. (3.17)

To summarize, we have shown that

∫ 2π

0
cos nx cos mx dx =

{
0, m 6= n
π, m = n.

(3.18)

This holds true for m, n = 0, 1, . . . . [Why did we include m, n = 0?] When
we have such a set of functions, they are said to be an orthogonal set over the
integration interval. A set of (real) functions {φn(x)} is said to be orthogonal
on [a, b] if

∫ b
a φn(x)φm(x) dx = 0 when n 6= m. Furthermore, if we also have

that
∫ b

a φ2
n(x) dx = 1, these functions are called orthonormal. Definition of an orthogonal set of func-

tions and orthonormal functions.The set of functions {cos nx}∞
n=0 are orthogonal on [0, 2π]. Actually, they

are orthogonal on any interval of length 2π. We can make them orthonormal
by dividing each function by

√
π as indicated by Equation (3.17). This is

sometimes referred to normalization of the set of functions.
The notion of orthogonality is actually a generalization of the orthogonal-

ity of vectors in finite dimensional vector spaces. The integral
∫ b

a f (x) f (x) dx
is the generalization of the dot product, and is called the scalar product of
f (x) and g(x), which are thought of as vectors in an infinite dimensional
vector space spanned by a set of orthogonal functions. We will return to
these ideas in the next chapter.

Returning to the integrals in equation (3.8), we still have to evaluate∫ 2π
0 sin nx cos mx dx. We can use the trigonometric identity involving prod-

ucts of sines and cosines, (3.15). Setting A = nx and B = mx, we find
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that ∫ 2π

0
sin nx cos mx dx =

1
2

∫ 2π

0
[sin(n + m)x + sin(n−m)x] dx

=
1
2

[
− cos(n + m)x

n + m
+
− cos(n−m)x

n−m

]2π

0

= (−1 + 1) + (−1 + 1) = 0. (3.19)

So,

∫ 2π

0
sin nx cos mx dx = 0. (3.20)

For these integrals we also should be careful about setting n = m. In this
special case, we have the integrals

∫ 2π

0
sin mx cos mx dx =

1
2

∫ 2π

0
sin 2mx dx =

1
2

[
− cos 2mx

2m

]2π

0
= 0.

Finally, we can finish evaluating the expression in Equation (3.8). We
have determined that all but one integral vanishes. In that case, n = m. This
leaves us with ∫ 2π

0
f (x) cos mx dx = amπ.

Solving for am gives

am =
1
π

∫ 2π

0
f (x) cos mx dx.

Since this is true for all m = 1, 2, . . . , we have proven this part of the theorem.
The only part left is finding the bn’s This will be left as an exercise for the
reader.

We now consider examples of finding Fourier coefficients for given func-
tions. In all of these cases we define f (x) on [0, 2π].

Example 3.1. f (x) = 3 cos 2x, x ∈ [0, 2π].
We first compute the integrals for the Fourier coefficients.

a0 =
1
π

∫ 2π

0
3 cos 2x dx = 0.

an =
1
π

∫ 2π

0
3 cos 2x cos nx dx = 0, n 6= 2.

a2 =
1
π

∫ 2π

0
3 cos2 2x dx = 3,

bn =
1
π

∫ 2π

0
3 cos 2x sin nx dx = 0, ∀n.

(3.21)

The integrals for a0, an, n 6= 2, and bn are the result of orthogonality. For a2, the
integral can be computed as follows:

a2 =
1
π

∫ 2π

0
3 cos2 2x dx
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=
3

2π

∫ 2π

0
[1 + cos 4x] dx

=
3

2π

x +
1
4

sin 4x︸ ︷︷ ︸
This term vanishes!


2π

0

= 3. (3.22)

Therefore, we have that the only nonvanishing coefficient is a2 = 3. So there is
one term and f (x) = 3 cos 2x.

Well, we should have known the answer to the last example before doing
all of those integrals. If we have a function expressed simply in terms of
sums of simple sines and cosines, then it should be easy to write down the
Fourier coefficients without much work. This is seen by writing out the
Fourier series,

f (x) ∼ a0

2
+

∞

∑
n=1

[an cos nx + bn sin nx] .

=
a0

2
+ a1 cos x + b1 sin x ++a2 cos 2x + b2 sin 2x + . . . . (3.23)

For the last problem, f (x) = 3 cos 2x. Comparing this to the expanded
Fourier series, one can immediately read off the Fourier coefficients without
doing any integration. In the next example we emphasize this point.

Example 3.2. f (x) = sin2 x, x ∈ [0, 2π].
We could determine the Fourier coefficients by integrating as in the last example.

However, it is easier to use trigonometric identities. We know that

sin2 x =
1
2
(1− cos 2x) =

1
2
− 1

2
cos 2x.

There are no sine terms, so bn = 0, n = 1, 2, . . . . There is a constant term, implying
a0/2 = 1/2. So, a0 = 1. There is a cos 2x term, corresponding to n = 2, so
a2 = − 1

2 . That leaves an = 0 for n 6= 0, 2. So, a0 = 1, a2 = − 1
2 , and all other

Fourier coefficients vanish.

Example 3.3. f (x) =

{
1, 0 < x < π,
−1, π < x < 2π,

.
π 2π

−2

−1

0

1

2

x

Figure 3.6: Plot of discontinuous func-
tion in Example 3.3.

This example will take a little more work. We cannot bypass evaluating any
integrals this time. As seen in Figure 3.6, this function is discontinuous. So, we
will break up any integration into two integrals, one over [0, π] and the other over
[π, 2π].

a0 =
1
π

∫ 2π

0
f (x) dx

=
1
π

∫ π

0
dx +

1
π

∫ 2π

π
(−1) dx

=
1
π
(π) +

1
π
(−2π + π) = 0. (3.24)

an =
1
π

∫ 2π

0
f (x) cos nx dx
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=
1
π

[∫ π

0
cos nx dx−

∫ 2π

π
cos nx dx

]
=

1
π

[(
1
n

sin nx
)π

0
−
(

1
n

sin nx
)2π

π

]
= 0. (3.25)

bn =
1
π

∫ 2π

0
f (x) sin nx dx

=
1
π

[∫ π

0
sin nx dx−

∫ 2π

π
sin nx dx

]
=

1
π

[(
− 1

n
cos nx

)π

0
+

(
1
n

cos nx
)2π

π

]

=
1
π

[
− 1

n
cos nπ +

1
n
+

1
n
− 1

n
cos nπ

]
=

2
nπ

(1− cos nπ). (3.26)

We have found the Fourier coefficients for this function. Before inserting them
into the Fourier series (3.3), we note that cos nπ = (−1)n. Therefore,

Often we see expressions involving
cos nπ = (−1)n and 1 ± cos nπ = 1 ±
(−1)n. This is an example showing how
to re-index series containing cos nπ.

1− cos nπ =

{
0, n even
2, n odd.

(3.27)

So, half of the bn’s are zero. While we could write the Fourier series representation
as

f (x) ∼ 4
π

∞

∑
n=1
n odd

1
n

sin nx,

we could let n = 2k− 1 in order to capture the odd numbers only. The answer can
be written as

f (x) =
4
π

∞

∑
k=1

sin(2k− 1)x
2k− 1

,

Having determined the Fourier representation of a given function, we
would like to know if the infinite series can be summed; i.e., does the series
converge? Does it converge to f (x)? We will discuss this question later in
the chapter after we generalize the Fourier series to intervals other than for
x ∈ [0, 2π].

3.3 Fourier Series Over Other Intervals

In many applications we are interested in determining Fourier series
representations of functions defined on intervals other than [0, 2π]. In this
section we will determine the form of the series expansion and the Fourier
coefficients in these cases.

The most general type of interval is given as [a, b]. However, this often
is too general. More common intervals are of the form [−π, π], [0, L], or



trigonometric fourier series 81

[−L/2, L/2]. The simplest generalization is to the interval [0, L]. Such in-
tervals arise often in applications. For example, for the problem of a one
dimensional string of length L we set up the axes with the left end at x = 0
and the right end at x = L. Similarly for the temperature distribution along
a one dimensional rod of length L we set the interval to x ∈ [0, 2π]. Such
problems naturally lead to the study of Fourier series on intervals of length
L. We will see later that symmetric intervals, [−a, a], are also useful.

Given an interval [0, L], we could apply a transformation to an interval
of length 2π by simply rescaling the interval. Then we could apply this
transformation to the Fourier series representation to obtain an equivalent
one useful for functions defined on [0, L].

t
0 L

x
0 2π

Figure 3.7: A sketch of the transforma-
tion between intervals x ∈ [0, 2π] and
t ∈ [0, L].

We define x ∈ [0, 2π] and t ∈ [0, L]. A linear transformation relating these
intervals is simply x = 2πt

L as shown in Figure 3.7. So, t = 0 maps to x = 0
and t = L maps to x = 2π. Furthermore, this transformation maps f (x) to
a new function g(t) = f (x(t)), which is defined on [0, L]. We will determine
the Fourier series representation of this function using the representation
for f (x) from the last section.

Recall the form of the Fourier representation for f (x) in Equation (3.3):

f (x) ∼ a0

2
+

∞

∑
n=1

[an cos nx + bn sin nx] . (3.28)

Inserting the transformation relating x and t, we have

g(t) ∼ a0

2
+

∞

∑
n=1

[
an cos

2nπt
L

+ bn sin
2nπt

L

]
. (3.29)

This gives the form of the series expansion for g(t) with t ∈ [0, L]. But, we
still need to determine the Fourier coefficients.

Recall, that

an =
1
π

∫ 2π

0
f (x) cos nx dx.

We need to make a substitution in the integral of x = 2πt
L . We also will need

to transform the differential, dx = 2π
L dt. Thus, the resulting form for the

Fourier coefficients is

an =
2
L

∫ L

0
g(t) cos

2nπt
L

dt. (3.30)

Similarly, we find that

bn =
2
L

∫ L

0
g(t) sin

2nπt
L

dt. (3.31)

We note first that when L = 2π we get back the series representation that
we first studied. Also, the period of cos 2nπt

L is L/n, which means that the
representation for g(t) has a period of L corresponding to n = 1.

At the end of this section we present the derivation of the Fourier series
representation for a general interval for the interested reader. In Table 3.1
we summarize some commonly used Fourier series representations.

Integration of even and odd functions
over symmetric intervals, [−a, a].
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At this point we need to remind the reader about the integration of even
and odd functions on symmetric intervals.

We first recall that f (x) is an even function if f (−x) = f (x) for all x.
One can recognize even functions as they are symmetric with respect to the
y-axis as shown in Figure 3.8.

Even Functions.

a−a x

y(x)

Figure 3.8: Area under an even function
on a symmetric interval, [−a, a].

If one integrates an even function over a symmetric interval, then one has
that ∫ a

−a
f (x) dx = 2

∫ a

0
f (x) dx. (3.32)

One can prove this by splitting off the integration over negative values of x,
using the substitution x = −y, and employing the evenness of f (x). Thus,

∫ a

−a
f (x) dx =

∫ 0

−a
f (x) dx +

∫ a

0
f (x) dx

= −
∫ 0

a
f (−y) dy +

∫ a

0
f (x) dx

=
∫ a

0
f (y) dy +

∫ a

0
f (x) dx

= 2
∫ a

0
f (x) dx. (3.33)

This can be visually verified by looking at Figure 3.8.Odd Functions.

A similar computation could be done for odd functions. f (x) is an odd
function if f (−x) = − f (x) for all x. The graphs of such functions are
symmetric with respect to the origin as shown in Figure 3.9. If one integrates
an odd function over a symmetric interval, then one has that∫ a

−a
f (x) dx = 0. (3.34)

a
−a

x

y(x)

Figure 3.9: Area under an odd function
on a symmetric interval, [−a, a].

Example 3.4. Let f (x) = |x| on [−π, π] We compute the coefficients, beginning
as usual with a0. We have, using the fact that |x| is an even function,

a0 =
1
π

∫ π

−π
|x| dx

=
2
π

∫ π

0
x dx = π (3.35)

We continue with the computation of the general Fourier coefficients for f (x) =
|x| on [−π, π]. We have

an =
1
π

∫ π

−π
|x| cos nx dx =

2
π

∫ π

0
x cos nx dx. (3.36)

Here we have made use of the fact that |x| cos nx is an even function.
In order to compute the resulting integral, we need to use integration by parts ,

∫ b

a
u dv = uv

∣∣∣b
a
−
∫ b

a
v du,

by letting u = x and dv = cos nx dx. Thus, du = dx and v =
∫

dv = 1
n sin nx.
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Fourier Series on [0, L]

f (x) ∼ a0

2
+

∞

∑
n=1

[
an cos

2nπx
L

+ bn sin
2nπx

L

]
. (3.37)

an =
2
L

∫ L

0
f (x) cos

2nπx
L

dx. n = 0, 1, 2, . . . ,

bn =
2
L

∫ L

0
f (x) sin

2nπx
L

dx. n = 1, 2, . . . . (3.38)

Fourier Series on [− L
2 , L

2 ]

f (x) ∼ a0

2
+

∞

∑
n=1

[
an cos

2nπx
L

+ bn sin
2nπx

L

]
. (3.39)

an =
2
L

∫ L
2

− L
2

f (x) cos
2nπx

L
dx. n = 0, 1, 2, . . . ,

bn =
2
L

∫ L
2

− L
2

f (x) sin
2nπx

L
dx. n = 1, 2, . . . . (3.40)

Fourier Series on [−π, π]

f (x) ∼ a0

2
+

∞

∑
n=1

[an cos nx + bn sin nx] . (3.41)

an =
1
π

∫ π

−π
f (x) cos nx dx. n = 0, 1, 2, . . . ,

bn =
1
π

∫ π

−π
f (x) sin nx dx. n = 1, 2, . . . . (3.42)

Table 3.1: Special Fourier Series Repre-
sentations on Different Intervals
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Continuing with the computation, we have

an =
2
π

∫ π

0
x cos nx dx.

=
2
π

[
1
n

x sin nx
∣∣∣π
0
− 1

n

∫ π

0
sin nx dx

]
= − 2

nπ

[
− 1

n
cos nx

]π

0

= − 2
πn2 (1− (−1)n). (3.43)

Here we have used the fact that cos nπ = (−1)n for any integer n. This leads
to a factor (1− (−1)n). This factor can be simplified as

1− (−1)n =

{
2, n odd
0, n even

. (3.44)

So, an = 0 for n even and an = − 4
πn2 for n odd.

Computing the bn’s is simpler. We note that we have to integrate |x| sin nx from
x = −π to π. The integrand is an odd function and this is a symmetric interval.
So, the result is that bn = 0 for all n.

Putting this all together, the Fourier series representation of f (x) = |x| on
[−π, π] is given as

f (x) ∼ π

2
− 4

π

∞

∑
n=1
n odd

cos nx
n2 . (3.45)

While this is correct, we can rewrite the sum over only odd n by reindexing. We
let n = 2k− 1 for k = 1, 2, 3, . . . . Then we only get the odd integers. The series
can then be written as

f (x) ∼ π

2
− 4

π

∞

∑
k=1

cos(2k− 1)x
(2k− 1)2 . (3.46)

Throughout our discussion we have referred to such results as Fourier
representations. We have not looked at the convergence of these series.
Here is an example of an infinite series of functions. What does this series
sum to? We show in Figure 3.10 the first few partial sums. They appear to
be converging to f (x) = |x| fairly quickly.

Even though f (x) was defined on [−π, π] we can still evaluate the Fourier
series at values of x outside this interval. In Figure 3.11, we see that the
representation agrees with f (x) on the interval [−π, π]. Outside this interval
we have a periodic extension of f (x) with period 2π.

Another example is the Fourier series representation of f (x) = x on
[−π, π] as left for Problem 7. This is determined to be

f (x) ∼ 2
∞

∑
n=1

(−1)n+1

n
sin nx. (3.47)

As seen in Figure 3.12 we again obtain the periodic extension of the func-
tion. In this case we needed many more terms. Also, the vertical parts of the
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Figure 3.10: Plot of the first partial sums
of the Fourier series representation for
f (x) = |x|.
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Figure 3.11: Plot of the first 10 terms
of the Fourier series representation for
f (x) = |x| on the interval [−2π, 4π].
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Figure 3.12: Plot of the first 10 terms
and 200 terms of the Fourier series rep-
resentation for f (x) = x on the interval
[−2π, 4π].
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first plot are nonexistent. In the second plot we only plot the points and not
the typical connected points that most software packages plot as the default
style.

Example 3.5. It is interesting to note that one can use Fourier series to obtain
sums of some infinite series. For example, in the last example we found that

x ∼ 2
∞

∑
n=1

(−1)n+1

n
sin nx.

Now, what if we chose x = π
2 ? Then, we have

π

2
= 2

∞

∑
n=1

(−1)n+1

n
sin

nπ

2
= 2

[
1− 1

3
+

1
5
− 1

7
+ . . .

]
.

This gives a well known expression for π:

π = 4
[

1− 1
3
+

1
5
− 1

7
+ . . .

]
.

3.3.1 Fourier Series on [a, b]

A Fourier series representation is also possible for a general interval,
t ∈ [a, b]. As before, we just need to transform this interval to [0, 2π]. LetThis section can be skipped on first read-

ing. It is here for completeness and the
end result, Theorem 3.2 provides the re-
sult of the section.

x = 2π
t− a
b− a

.

Inserting this into the Fourier series (3.3) representation for f (x) we obtain

g(t) ∼ a0

2
+

∞

∑
n=1

[
an cos

2nπ(t− a)
b− a

+ bn sin
2nπ(t− a)

b− a

]
. (3.48)

Well, this expansion is ugly. It is not like the last example, where the
transformation was straightforward. If one were to apply the theory to
applications, it might seem to make sense to just shift the data so that a = 0
and be done with any complicated expressions. However, some students
enjoy the challenge of developing such generalized expressions. So, let’s see
what is involved.

First, we apply the addition identities for trigonometric functions and
rearrange the terms.

g(t) ∼ a0

2
+

∞

∑
n=1

[
an cos

2nπ(t− a)
b− a

+ bn sin
2nπ(t− a)

b− a

]
=

a0

2
+

∞

∑
n=1

[
an

(
cos

2nπt
b− a

cos
2nπa
b− a

+ sin
2nπt
b− a

sin
2nπa
b− a

)
+ bn

(
sin

2nπt
b− a

cos
2nπa
b− a

− cos
2nπt
b− a

sin
2nπa
b− a

)]
=

a0

2
+

∞

∑
n=1

[
cos

2nπt
b− a

(
an cos

2nπa
b− a

− bn sin
2nπa
b− a

)
+ sin

2nπt
b− a

(
an sin

2nπa
b− a

+ bn cos
2nπa
b− a

)]
. (3.49)
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Defining A0 = a0 and

An ≡ an cos
2nπa
b− a

− bn sin
2nπa
b− a

Bn ≡ an sin
2nπa
b− a

+ bn cos
2nπa
b− a

, (3.50)

we arrive at the more desirable form for the Fourier series representation of
a function defined on the interval [a, b].

g(t) ∼ A0

2
+

∞

∑
n=1

[
An cos

2nπt
b− a

+ Bn sin
2nπt
b− a

]
. (3.51)

We next need to find expressions for the Fourier coefficients. We insert
the known expressions for an and bn and rearrange. First, we note that
under the transformation x = 2π t−a

b−a we have

an =
1
π

∫ 2π

0
f (x) cos nx dx

=
2

b− a

∫ b

a
g(t) cos

2nπ(t− a)
b− a

dt, (3.52)

and

bn =
1
π

∫ 2π

0
f (x) cos nx dx

=
2

b− a

∫ b

a
g(t) sin

2nπ(t− a)
b− a

dt. (3.53)

Then, inserting these integrals in An, combining integrals and making use
of the addition formula for the cosine of the sum of two angles, we obtain

An ≡ an cos
2nπa
b− a

− bn sin
2nπa
b− a

=
2

b− a

∫ b

a
g(t)

[
cos

2nπ(t− a)
b− a

cos
2nπa
b− a

− sin
2nπ(t− a)

b− a
sin

2nπa
b− a

]
dt

=
2

b− a

∫ b

a
g(t) cos

2nπt
b− a

dt. (3.54)

A similar computation gives

Bn =
2

b− a

∫ b

a
g(t) sin

2nπt
b− a

dt. (3.55)

Summarizing, we have shown that:

Theorem 3.2. The Fourier series representation of f (x) defined on [a, b] when
it exists, is given by

f (x) ∼ a0

2
+

∞

∑
n=1

[
an cos

2nπx
b− a

+ bn sin
2nπx
b− a

]
. (3.56)

with Fourier coefficients

an =
2

b− a

∫ b

a
f (x) cos

2nπx
b− a

dx. n = 0, 1, 2, . . . ,

bn =
2

b− a

∫ b

a
f (x) sin

2nπx
b− a

dx. n = 1, 2, . . . . (3.57)
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3.4 Sine and Cosine Series

In the last two examples ( f (x) = |x| and f (x) = x on [−π, π]) we
have seen Fourier series representations that contain only sine or cosine
terms. As we know, the sine functions are odd functions and thus sum
to odd functions. Similarly, cosine functions sum to even functions. Such
occurrences happen often in practice. Fourier representations involving just
sines are called sine series and those involving just cosines (and the constant
term) are called cosine series.

Another interesting result, based upon these examples, is that the original
functions, |x| and x agree on the interval [0, π]. Note from Figures 3.10-3.12

that their Fourier series representations do as well. Thus, more than one se-
ries can be used to represent functions defined on finite intervals. All they
need to do is to agree with the function over that particular interval. Some-
times one of these series is more useful because it has additional properties
needed in the given application.

We have made the following observations from the previous examples:

1. There are several trigonometric series representations for a func-
tion defined on a finite interval.

2. Odd functions on a symmetric interval are represented by sine
series and even functions on a symmetric interval are represented
by cosine series.

These two observations are related and are the subject of this section.
We begin by defining a function f (x) on interval [0, L]. We have seen that
the Fourier series representation of this function appears to converge to a
periodic extension of the function.

In Figure 3.13 we show a function defined on [0, 1]. To the right is its
periodic extension to the whole real axis. This representation has a period
of L = 1. The bottom left plot is obtained by first reflecting f about the y-
axis to make it an even function and then graphing the periodic extension of
this new function. Its period will be 2L = 2. Finally, in the last plot we flip
the function about each axis and graph the periodic extension of the new
odd function. It will also have a period of 2L = 2.

In general, we obtain three different periodic representations. In order
to distinguish these we will refer to them simply as the periodic, even and
odd extensions. Now, starting with f (x) defined on [0, L], we would like
to determine the Fourier series representations leading to these extensions.
[For easy reference, the results are summarized in Table 3.2]

We have already seen from Table 3.1 that the periodic extension of f (x),
defined on [0, L], is obtained through the Fourier series representation

f (x) ∼ a0

2
+

∞

∑
n=1

[
an cos

2nπx
L

+ bn sin
2nπx

L

]
, (3.58)
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Figure 3.13: This is a sketch of a func-
tion and its various extensions. The orig-
inal function f (x) is defined on [0, 1] and
graphed in the upper left corner. To its
right is the periodic extension, obtained
by adding replicas. The two lower plots
are obtained by first making the original
function even or odd and then creating
the periodic extensions of the new func-
tion.

where

an =
2
L

∫ L

0
f (x) cos

2nπx
L

dx. n = 0, 1, 2, . . . ,

bn =
2
L

∫ L

0
f (x) sin

2nπx
L

dx. n = 1, 2, . . . . (3.59)

Given f (x) defined on [0, L], the even periodic extension is obtained by Even periodic extension.

simply computing the Fourier series representation for the even function

fe(x) ≡
{

f (x), 0 < x < L,
f (−x) −L < x < 0.

(3.60)

Since fe(x) is an even function on a symmetric interval [−L, L], we expect
that the resulting Fourier series will not contain sine terms. Therefore, the
series expansion will be given by [Use the general case in (3.56) with a = −L
and b = L.]:

fe(x) ∼ a0

2
+

∞

∑
n=1

an cos
nπx

L
. (3.67)

with Fourier coefficients

an =
1
L

∫ L

−L
fe(x) cos

nπx
L

dx. n = 0, 1, 2, . . . . (3.68)

However, we can simplify this by noting that the integrand is even and
the interval of integration can be replaced by [0, L]. On this interval fe(x) =
f (x). So, we have the Cosine Series Representation of f (x) for x ∈ [0, L] is
given as Fourier Cosine Series.

f (x) ∼ a0

2
+

∞

∑
n=1

an cos
nπx

L
. (3.69)

where

an =
2
L

∫ L

0
f (x) cos

nπx
L

dx. n = 0, 1, 2, . . . . (3.70)
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Table 3.2: Fourier Cosine and Sine Series
Representations on [0, L] Fourier Series on [0, L]

f (x) ∼ a0

2
+

∞

∑
n=1

[
an cos

2nπx
L

+ bn sin
2nπx

L

]
. (3.61)

an =
2
L

∫ L

0
f (x) cos

2nπx
L

dx. n = 0, 1, 2, . . . ,

bn =
2
L

∫ L

0
f (x) sin

2nπx
L

dx. n = 1, 2, . . . . (3.62)

Fourier Cosine Series on [0, L]

f (x) ∼ a0/2 +
∞

∑
n=1

an cos
nπx

L
. (3.63)

where

an =
2
L

∫ L

0
f (x) cos

nπx
L

dx. n = 0, 1, 2, . . . . (3.64)

Fourier Sine Series on [0, L]

f (x) ∼
∞

∑
n=1

bn sin
nπx

L
. (3.65)

where

bn =
2
L

∫ L

0
f (x) sin

nπx
L

dx. n = 1, 2, . . . . (3.66)
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Similarly, given f (x) defined on [0, L], the odd periodic extension is Odd periodic extension.

obtained by simply computing the Fourier series representation for the odd
function

fo(x) ≡
{

f (x), 0 < x < L,
− f (−x) −L < x < 0.

(3.71)

The resulting series expansion leads to defining the Sine Series Representa-
tion of f (x) for x ∈ [0, L] as Fourier Sine Series Representation.

f (x) ∼
∞

∑
n=1

bn sin
nπx

L
. (3.72)

where

bn =
2
L

∫ L

0
f (x) sin

nπx
L

dx. n = 1, 2, . . . . (3.73)

Example 3.6. In Figure 3.13 we actually provided plots of the various extensions
of the function f (x) = x2 for x ∈ [0, 1]. Let’s determine the representations of the
periodic, even and odd extensions of this function.

For a change, we will use a CAS (Computer Algebra System) package to do the
integrals. In this case we can use Maple. A general code for doing this for the
periodic extension is shown in Table 3.3.

Example 3.7. Periodic Extension - Trigonometric Fourier Series Using the
code in Table 3.3, we have that a0 = 2

3 , an = 1
n2π2 , and bn = − 1

nπ . Thus, the
resulting series is given as

f (x) ∼ 1
3
+

∞

∑
n=1

[
1

n2π2 cos 2nπx− 1
nπ

sin 2nπx
]

.

In Figure 3.14 we see the sum of the first 50 terms of this series. Generally,
we see that the series seems to be converging to the periodic extension of f . There
appear to be some problems with the convergence around integer values of x. We
will later see that this is because of the discontinuities in the periodic extension and
the resulting overshoot is referred to as the Gibbs phenomenon which is discussed
in the last section of this chapter.
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Figure 3.14: The periodic extension of
f (x) = x2 on [0, 1].
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Table 3.3: Maple code for computing
Fourier coefficients and plotting partial
sums of the Fourier series.

> restart:

> L:=1:

> f:=x^2:

> assume(n,integer):

> a0:=2/L*int(f,x=0..L);

a0 := 2/3

> an:=2/L*int(f*cos(2*n*Pi*x/L),x=0..L);

1

an := -------

2 2

n~ Pi

> bn:=2/L*int(f*sin(2*n*Pi*x/L),x=0..L);

1

bn := - -----

n~ Pi

> F:=a0/2+sum((1/(k*Pi)^2)*cos(2*k*Pi*x/L)

-1/(k*Pi)*sin(2*k*Pi*x/L),k=1..50):

> plot(F,x=-1..3,title=‘Periodic Extension‘,

titlefont=[TIMES,ROMAN,14],font=[TIMES,ROMAN,14]);

Example 3.8. Even Periodic Extension - Cosine Series
In this case we compute a0 = 2

3 and an = 4(−1)n

n2π2 . Therefore, we have

f (x) ∼ 1
3
+

4
π2

∞

∑
n=1

(−1)n

n2 cos nπx.

In Figure 3.15 we see the sum of the first 50 terms of this series. In this case the
convergence seems to be much better than in the periodic extension case. We also
see that it is converging to the even extension.

Figure 3.15: The even periodic extension
of f (x) = x2 on [0, 1].
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Example 3.9. Odd Periodic Extension - Sine Series
Finally, we look at the sine series for this function. We find that

bn = − 2
n3π3 (n

2π2(−1)n − 2(−1)n + 2).

Therefore,

f (x) ∼ − 2
π3

∞

∑
n=1

1
n3 (n

2π2(−1)n − 2(−1)n + 2) sin nπx.

Once again we see discontinuities in the extension as seen in Figure 3.16. However,
we have verified that our sine series appears to be converging to the odd extension
as we first sketched in Figure 3.13.

–1

–0.5

0

0.5

1

–1 1 2 3
x

Figure 3.16: The odd periodic extension
of f (x) = x2 on [0, 1].

3.5 Solution of the Heat Equation

We started this chapter seeking solutions of initial-boundary value
problems involving the heat equation and the wave equation. In particular,
we found the general solution for the problem of heat flow in a one dimen-
sional rod of length L with fixed zero temperature ends. The problem was
given by

PDE ut = kuxx, 0 < t, 0 ≤ x ≤ L,
IC u(x, 0) = f (x), 0 < x < L,
BC u(0, t) = 0, t > 0,

u(L, t) = 0, t > 0.

(3.74)

We found the solution using separation of variables. This resulted in a
sum over various product solutions:

u(x, t) =
∞

∑
n=1

bnekλnt sin
nπx

L
,

where
λn = −

(nπ

L

)2
.
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This equation satisfies the boundary conditions. However, we had only
gotten to state initial condition using this solution. Namely,

f (x) = u(x, 0) =
∞

∑
n=1

bn sin
nπx

L
.

We were left with having to determine the constants bn. Once we know
them, we have the solution.

Now we can get the Fourier coefficients when we are given the initial
condition, f (x). They are given by

bn =
2
L

∫ L

0
f (x) sin

nπx
L

dx, n = 1, 2, . . . .

We consider a couple of examples with different initial conditions.

Example 3.10. Consider the solution of the heat equation with f (x) = sin x and
L = π.

In this case the solution takes the form

u(x, t) =
∞

∑
n=1

bnekλnt sin nx.

However, the initial condition takes the form of the first term in the expansion; i.e.,
the n = 1 term. So, we need not carry out the integral because we can immediately
write b1 = 1 and bn = 0, n = 2, 3, . . .. Therefore, the solution consists of just one
term,

u(x, t) = e−kt sin x.

In Figure 3.17 we see that how this solution behaves for k = 1 and t ∈ [0, 1].

Figure 3.17: The evolution of the initial
condition f (x) = sin x for L = π and
k = 1.

Example 3.11. Consider solutions of the heat equation with f (x) = x(1− x) and
L = 1.
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This example requires a bit more work. The solution takes the form

u(x, t) =
∞

∑
n=1

bne−n2π2kt sin nπx,

where

bn = 2
∫ 1

0
f (x) sin nπx dx.

This integral is easily computed using integration by parts

bn = 2
∫ 1

0
x(1− x) sin nπx dx

=

[
2x(1− x)

(
− 1

nπ
cos nπx

)]1

0
+

2
nπ

∫ 1

0
(1− 2x) cos nπx dx

= − 2
n2π2

{
[(1− 2x) sin nπx]10 + 2

∫ 1

0
sin nπx dx

}
=

4
n3π3 [cos nπx]10

=
4

n3π3 (cos nπ − 1)

=

{
0, n even

− 8
n3π3 , n odd

. (3.75)

So, we have that the solution can be written as

u(x, t) =
8

π3

∞

∑
`=1

1
(2`− 1)3 e−(2`−1)2π2kt sin(2`− 1)πx.

In Figure 3.18 we see that how this solution behaves for k = 1 and t ∈ [0, 1].
Twenty terms were used. We see that this solution diffuses much faster than in the
last example. Most of the terms damp out quickly as the solution asymptotically
approaches the first term.

Figure 3.18: The evolution of the initial
condition f (x) = x(1− x) for L = 1 and
k = 1.
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3.6 Finite Length Strings

We now return to the physical example of wave propagation in a
string. We found that the general solution can be represented as a sum over
product solutions. We will restrict our discussion to the special case that the
initial velocity is zero and the original profile is given by u(x, 0) = f (x). The
solution is then

u(x, t) =
∞

∑
n=1

An sin
nπx

L
cos

nπct
L

(3.76)

satisfying

f (x) =
∞

∑
n=1

An sin
nπx

L
. (3.77)

We have seen that the Fourier sine series coefficients are given by

An =
2
L

∫ L

0
f (x) sin

nπx
L

dx. (3.78)

We can rewrite this solution in a more compact form. First, we define the
wave numbers,

kn =
nπ

L
, n = 1, 2, . . . ,

and the angular frequencies,

ωn = ckn =
nπc

L
.

Then, the product solutions take the form

sin knx cos ωnt.

Using trigonometric identities, these products can be written as

sin knx cos ωnt =
1
2
[sin(knx + ωnt) + sin(knx−ωnt)] .

Inserting this expression in the solution, we have

u(x, t) =
1
2

∞

∑
n=1

An [sin(knx + ωnt) + sin(knx−ωnt)] . (3.79)

Since ωn = ckn, we can put this into a more suggestive form:

u(x, t) =
1
2

[
∞

∑
n=1

An sin kn(x + ct) +
∞

∑
n=1

An sin kn(x− ct)

]
. (3.80)

We see that each sum is simply the sine series for f (x) but evaluated atThe solution of the wave equation can
be written as the sum of right and left
traveling waves.

either x + ct or x− ct. Thus, the solution takes the form

u(x, t) =
1
2
[ f (x + ct) + f (x− ct)] . (3.81)

If t = 0, then we have u(x, 0) = 1
2 [ f (x) + f (x)] = f (x). So, the solution

satisfies the initial condition. At t = 1, the sum has a term f (x− c).
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Recall from your mathematics classes that this is simply a shifted version
of f (x). Namely, it is shifted to the right. For general times, the function
is shifted by ct to the right. For larger values of t, this shift is further to
the right. The function (wave) shifts to the right with velocity c. Similarly,
f (x + ct) is a wave traveling to the left with velocity −c.

Thus, the waves on the string consist of waves traveling to the right and
to the left. However, the story does not stop here. We have a problem
when needing to shift f (x) across the boundaries. The original problem
only defines f (x) on [0, L]. If we are not careful, we would think that the
function leaves the interval leaving nothing left inside. However, we have
to recall that our sine series representation for f (x) has a period of 2L. So,
before we apply this shifting, we need to account for its periodicity. In fact,
being a sine series, we really have the odd periodic extension of f (x) being
shifted. The details of such analysis would take us too far from our current
goal. However, we can illustrate this with a few figures.

x

f (x)

a L

1

Figure 3.19: The initial profile for a
string of length one plucked at x = a.

We begin by plucking a string of length L. This can be represented by the
function

f (x) =

{
x
a 0 ≤ x ≤ a

L−x
L−a a ≤ x ≤ L

(3.82)

where the string is pulled up one unit at x = a. This is shown in Figure 3.19.
Next, we create an odd function by extending the function to a period of

2L. This is shown in Figure 3.20.

x

f (x)

a
2L− a

L 2L

1

-1

Figure 3.20: Odd extension about the
right end of a plucked string.

Finally, we construct the periodic extension of this to the entire line. In
Figure 3.21 we show in the lower part of the figure copies of the periodic ex-
tension, one moving to the right and the other moving to the left. (Actually,
the copies are 1

2 f (x ± ct).) The top plot is the sum of these solutions. The
physical string lies in the interval [0,1]. Of course, this is better seen when
the solution is animated.

The time evolution for this plucked string is shown for several times in
Figure 3.22. This results in a wave that appears to reflect from the ends as
time increases.

Figure 3.21: Summing the odd periodic
extensions. The lower plot shows copies
of the periodic extension, one moving to
the right and the other moving to the
left. The upper plot is the sum.

The relation between the angular frequency and the wave number, ω =

ck, is called a dispersion relation. In this case ω depends on k linearly. If one
knows the dispersion relation, then one can find the wave speed as c = ω

k .
In this case, all of the harmonics travel at the same speed. In cases where
they do not, we have nonlinear dispersion, which we will discuss later.

3.7 The Gibbs Phenomenon

We have seen the Gibbs phenomenon when there is a jump discontinu-
ity in the periodic extension of a function, whether the function originally
had a discontinuity or developed one due to a mismatch in the values of
the endpoints. This can be seen in Figures 3.12, 3.14 and 3.16. The Fourier
series has a difficult time converging at the point of discontinuity and these
graphs of the Fourier series show a distinct overshoot which does not go
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Figure 3.22: This Figure shows the
plucked string at six successive times.

t = 0

t = 0.2

t = 0.4

t = 0.1

t = 0.3

t = 0.5

away. This is called the Gibbs phenomenon3 and the amount of overshoot

3 The Gibbs phenomenon was named af-
ter Josiah Willard Gibbs (1839-1903) even
though it was discovered earlier by the
Englishman Henry Wilbraham (1825-
1883). Wilbraham published a soon for-
gotten paper about the effect in 1848. In
1889 Albert Abraham Michelson (1852-
1931), an American physicist,observed
an overshoot in his mechanical graphing
machine. Shortly afterwards J. Willard
Gibbs published papers describing this
phenomenon, which was later to be
called the Gibbs phenomena. Gibbs was
a mathematical physicist and chemist
and is considered the father of physical
chemistry.

can be computed.
In one of our first examples, Example 3.3, we found the Fourier series

representation of the piecewise defined function

f (x) =

{
1, 0 < x < π,
−1, π < x < 2π,

to be

f (x) ∼ 4
π

∞

∑
k=1

sin(2k− 1)x
2k− 1

.

Figure 3.23: The Fourier series represen-
tation of a step function on [−π, π] for
N = 10.
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In Figure 3.23 we display the sum of the first ten terms. Note the wig-
gles, overshoots and under shoots. These are seen more when we plot the
representation for x ∈ [−3π, 3π], as shown in Figure 3.24.

We note that the overshoots and undershoots occur at discontinuities in
the periodic extension of f (x). These occur whenever f (x) has a disconti-
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Figure 3.24: The Fourier series represen-
tation of a step function on [−π, π] for
N = 10 plotted on [−3π, 3π] displaying
the periodicity.

nuity or if the values of f (x) at the endpoints of the domain do not agree.

–1

–0.5

0.5

1

 

–3 –2 –1 1 2 3
 

Figure 3.25: The Fourier series represen-
tation of a step function on [−π, π] for
N = 20.
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Figure 3.26: The Fourier series represen-
tation of a step function on [−π, π] for
N = 100.

One might expect that we only need to add more terms. In Figure 3.25 we
show the sum for twenty terms. Note the sum appears to converge better for
points far from the discontinuities. But, the overshoots and undershoots are
still present. In Figures 3.26 and 3.27 show magnified plots of the overshoot
at x = 0 for N = 100 and N = 500, respectively. We see that the overshoot
persists. The peak is at about the same height, but its location seems to be
getting closer to the origin. We will show how one can estimate the size of
the overshoot.
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Figure 3.27: The Fourier series represen-
tation of a step function on [−π, π] for
N = 500.

We can study the Gibbs phenomenon by looking at the partial sums of
general Fourier trigonometric series for functions f (x) defined on the inter-
val [−L, L]. Writing out the partial sums, inserting the Fourier coefficients
and rearranging, we have

SN(x) = a0 +
N

∑
n=1

[
an cos

nπx
L

+ bn sin
nπx

L

]
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=
1

2L

∫ L

−L
f (y) dy +

N

∑
n=1

[(
1
L

∫ L

−L
f (y) cos

nπy
L

dy
)

cos
nπx

L

+

(
1
L

∫ L

−L
f (y) sin

nπy
L

dy.
)

sin
nπx

L

]

=
1
L

L∫
−L

{
1
2

+
N

∑
n=1

(
cos

nπy
L

cos
nπx

L
+ sin

nπy
L

sin
nπx

L

)}
f (y) dy

=
1
L

L∫
−L

{
1
2
+

N

∑
n=1

cos
nπ(y− x)

L

}
f (y) dy

≡ 1
L

L∫
−L

DN(y− x) f (y) dy

We have defined

DN(x) =
1
2
+

N

∑
n=1

cos
nπx

L
,

which is called the N-th Dirichlet kernel .
We now prove

Lemma 3.1. The N-th Dirichlet kernel is given by

DN(x) =


sin((N+ 1

2 )
πx
L )

2 sin πx
2L

, sin πx
2L 6= 0,

N + 1
2 , sin πx

2L = 0.

Proof. Let θ = πx
L and multiply DN(x) by 2 sin θ

2 to obtain:

2 sin
θ

2
DN(x) = 2 sin

θ

2

[
1
2
+ cos θ + · · ·+ cos Nθ

]
= sin

θ

2
+ 2 cos θ sin

θ

2
+ 2 cos 2θ sin

θ

2
+ · · ·+ 2 cos Nθ sin

θ

2

= sin
θ

2
+

(
sin

3θ

2
− sin

θ

2

)
+

(
sin

5θ

2
− sin

3θ

2

)
+ · · ·

+

[
sin
(

N +
1
2

)
θ − sin

(
N − 1

2

)
θ

]
= sin

(
N +

1
2

)
θ. (3.83)

Thus,

2 sin
θ

2
DN(x) = sin

(
N +

1
2

)
θ.

If sin θ
2 6= 0, then

DN(x) =
sin
(

N + 1
2

)
θ

2 sin θ
2

, θ =
πx
L

.
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If sin θ
2 = 0, then one needs to apply L’Hospital’s Rule as θ → 2mπ:

lim
θ→2mπ

sin
(

N + 1
2

)
θ

2 sin θ
2

= lim
θ→2mπ

(N + 1
2 ) cos

(
N + 1

2

)
θ

cos θ
2

=
(N + 1

2 ) cos (2mπN + mπ)

cos mπ

=
(N + 1

2 )(cos 2mπN cos mπ − sin 2mπN sin mπ)

cos mπ

= N +
1
2

. (3.84)

We further note that DN(x) is periodic with period 2L and is an even
function.

So far, we have found that the Nth partial sum is given by

SN(x) =
1
L

L∫
−L

DN(y− x) f (y) dy. (3.85)

Making the substitution ξ = y− x, we have

SN(x) =
1
L

∫ L−x

−L−x
DN(ξ) f (ξ + x) dξ

=
1
L

∫ L

−L
DN(ξ) f (ξ + x) dξ. (3.86)

In the second integral we have made use of the fact that f (x) and DN(x) are
periodic with period 2L and shifted the interval back to [−L, L].

We now write the integral as the sum of two integrals over positive and
negative values of ξ and use the fact that DN(x) is an even function. Then,

SN(x) =
1
L

∫ 0

−L
DN(ξ) f (ξ + x) dξ +

1
L

∫ L

0
DN(ξ) f (ξ + x) dξ

=
1
L

∫ L

0
[ f (x− ξ) + f (ξ + x)] DN(ξ) dξ. (3.87)

We can use this result to study the Gibbs phenomenon whenever it oc-
curs. In particular, we will only concentrate on the earlier example. For this
case, we have

SN(x) =
1
π

∫ π

0
[ f (x− ξ) + f (ξ + x)] DN(ξ) dξ (3.88)

for

DN(x) =
1
2
+

N

∑
n=1

cos nx.

Also, one can show that

f (x− ξ) + f (ξ + x) =


2, 0 ≤ ξ < x,
0, x ≤ ξ < π − x,
−2, π − x ≤ ξ < π.
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Thus, we have

SN(x) =
2
π

∫ x

0
DN(ξ) dξ − 2

π

∫ π

π−x
DN(ξ) dξ

=
2
π

∫ x

0
DN(z) dz +

2
π

∫ x

0
DN(π − z) dz. (3.89)

Here we made the substitution z = π − ξ in the second integral.
The Dirichlet kernel for L = π is given by

DN(x) =
sin(N + 1

2 )x
2 sin x

2
.

For N large, we have N + 1
2 ≈ N, and for small x, we have sin x

2 ≈
x
2 . So,

under these assumptions,

DN(x) ≈ sin Nx
x

.

Therefore,

SN(x)→ 2
π

∫ x

0

sin Nξ

ξ
dξ for large N, and small x.

If we want to determine the locations of the minima and maxima, where
the undershoot and overshoot occur, then we apply the first derivative test
for extrema to SN(x). Thus,

d
dx

SN(x) =
2
π

sin Nx
x

= 0.

The extrema occur for Nx = mπ, m = ±1,±2, . . . . One can show that there
is a maximum at x = π/N and a minimum for x = 2π/N. The value for
the overshoot can be computed as

SN(π/N) =
2
π

∫ π/N

0

sin Nξ

ξ
dξ

=
2
π

∫ π

0

sin t
t

dt

=
2
π

Si(π)

= 1.178979744 . . . . (3.90)

Note that this value is independent of N and is given in terms of the sine
integral,

Si(x) ≡
∫ x

0

sin t
t

dt.

Problems

1. Write y(t) = 3 cos 2t− 4 sin 2t in the form y(t) = A cos(2π f t + φ).
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2. Derive the coefficients bn in Equation(3.4).

3. Let f (x) be defined for x ∈ [−L, L]. Parseval’s identity is given by

1
L

∫ L

−L
f 2(x) dx =

a2
0

2
+

∞

∑
n=1

a2
n + b2

n.

Assuming the the Fourier series of f (x) converges uniformly in (−L, L),
prove Parseval’s identity by multiplying the Fourier series representation
by f (x) and integrating from x = −L to x = L. [In section 9.6.3 we will
encounter Parseval’s equality for Fourier transforms which is a continuous
version of this identity.]

4. Consider the square wave function

f (x) =

{
1, 0 < x < π,
−1, π < x < 2π.

a. Find the Fourier series representation of this function and plot the
first 50 terms.

b. Apply Parseval’s identity in Problem 3 to the result in part a.

c. Use the result of part b to show π2

8 =
∞

∑
n=1

1
(2n− 1)2 .

5. For the following sets of functions: i) show that each is orthogonal on the
given interval, and ii) determine the corresponding orthonormal set. [See
page 77]

a. {sin 2nx}, n = 1, 2, 3, . . . , 0 ≤ x ≤ π.

b. {cos nπx}, n = 0, 1, 2, . . . , 0 ≤ x ≤ 2.

c. {sin nπx
L }, n = 1, 2, 3, . . . , x ∈ [−L, L].

6. Consider f (x) = 4 sin3 2x.

a. Derive the trigonometric identity giving sin3 θ in terms of sin θ and
sin 3θ using DeMoivre’s Formula.

b. Find the Fourier series of f (x) = 4 sin3 2x on [0, 2π] without com-
puting any integrals.

7. Find the Fourier series of the following:

a. f (x) = x, x ∈ [0, 2π].

b. f (x) = x2

4 , |x| < π.

c. f (x) =

{
π
2 , 0 < x < π,
−π

2 , π < x < 2π.

8. Find the Fourier Series of each function f (x) of period 2π. For each
series, plot the Nth partial sum,

SN =
a0

2
+

N

∑
n=1

[an cos nx + bn sin nx] ,
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for N = 5, 10, 50 and describe the convergence (is it fast? what is it converg-
ing to, etc.) [Some simple Maple code for computing partial sums is shown
in the notes.]

a. f (x) = x, |x| < π.

b. f (x) = |x|, |x| < π.

c. f (x) =

{
0, −π < x < 0,
1, 0 < x < π.

9. Find the Fourier series of f (x) = x on the given interval. Plot the Nth
partial sums and describe what you see.

a. 0 < x < 2.

b. −2 < x < 2.

c. 1 < x < 2.

10. The result in problem 7b above gives a Fourier series representation of
x2

4 . By picking the right value for x and a little arrangement of the series,
show that [See Example 3.5.]

a.
π2

6
= 1 +

1
22 +

1
32 +

1
42 + · · · .

b.
π2

8
= 1 +

1
32 +

1
52 +

1
72 + · · · .

Hint: Consider how the series in part a. can be used to do this.

11. Sketch (by hand) the graphs of each of the following functions over
four periods. Then sketch the extensions each of the functions as both an
even and odd periodic function. Determine the corresponding Fourier sine
and cosine series and verify the convergence to the desired function using
Maple.

a. f (x) = x2, 0 < x < 1.

b. f (x) = x(2− x), 0 < x < 2.

c. f (x) =

{
0, 0 < x < 1,
1, 1 < x < 2.

d. f (x) =

{
π, 0 < x < π,

2π − x, π < x < 2π.

12. Consider the function f (x) = x, −π < x < π.

a. Show that x = 2 ∑∞
n=1(−1)n+1 sin nx

n .

b. Integrate the series in part a and show that

x2 =
π2

3
− 4

∞

∑
n=1

(−1)n+1 cos nx
n2 .
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c. Find the Fourier cosine series of f (x) = x2 on [0, π] and compare
it to the result in part b.

13. Consider the function f (x) = x, 0 < x < 2.

a. Find the Fourier sine series representation of this function and plot
the first 50 terms.

b. Find the Fourier cosine series representation of this function and
plot the first 50 terms.

c. Apply Parseval’s identity in Problem 3 to the result in part b.

d. Use the result of part c to find the sum ∑∞
n=1

1
n4 .

14. Differentiate the Fourier sine series term by term in Problem 18. Show
that the result is not the derivative of f (x) = x.

15. Find the general solution to the heat equation, ut − uxx = 0, on [0, π]

satisfying the boundary conditions ux(0, t) = 0 and u(π, t) = 0. Determine
the solution satisfying the initial condition,

u(x, 0) =

{
x, 0 ≤ x ≤ π

2 ,
π − x, π

2 ≤ x ≤ π,

16. Find the general solution to the wave equation utt = 2uxx, on [0, 2π]

satisfying the boundary conditions u(0, t) = 0 and ux(2π, t) = 0. Deter-
mine the solution satisfying the initial conditions, u(x, 0) = x(4π − x), and
ut(x, 0) = 0.

17. Recall the plucked string initial profile example in the last chapter given
by

f (x) =

{
x, 0 ≤ x ≤ `

2 ,
`− x, `

2 ≤ x ≤ `,

satisfying fixed boundary conditions at x = 0 and x = `. Find and plot the
solutions at t = 0, .2, ..., 1.0, of utt = uxx, for u(x, 0) = f (x), ut(x, 0) = 0,
with x ∈ [0, 1].

18. Find and plot the solutions at t = 0, .2, ..., 1.0, of the problem

utt = uxx, 0 ≤ x ≤ 1, t > 0

u(x, 0) =


0, 0 ≤ x < 1

4 ,
1, 1

4 ≤ x ≤ 3
4 ,

0, 3
4 < x ≤ 1,

ut(x, 0) = 0,

u(0, t) = 0, t > 0,

u(1, t) = 0, t > 0.

19. Find the solution to Laplace’s equation, uxx + uyy = 0, on the unit
square, [0, 1]× [0, 1] satisfying the boundary conditions u(0, y) = 0, u(1, y) =
y(1− y), u(x, 0) = 0, and u(x, 1) = 0.





4
Sturm-Liouville Boundary Value Prob-
lems

We have seen that trigonometric functions and special functions
are the solutions of differential equations. These solutions give orthogonal
sets of functions which can be used to represent functions in generalized
Fourier series expansions. At the same time we would like to generalize
the techniques we had first used to solve the heat equation in order to solve
more general initial-boundary value problems. Namely, we use separation
of variables to separate the given partial differential equation into a set of
ordinary differential equations. A subset of those equations provide us with
a set of boundary value problems whose eigenfunctions are useful in repre-
senting solutions of the partial differential equation. Hopefully, those solu-
tions will form a useful basis in some function space.

A class of problems to which our previous examples belong are the
Sturm-Liouville eigenvalue problems. These problems involve self-adjoint
(differential) operators which play an important role in the spectral theory
of linear operators and the existence of the eigenfunctions needed to solve
the interesting physics problems described by the above initial-boundary
value problems. In this section we will introduce the Sturm-Liouville eigen-
value problem as a general class of boundary value problems containing the
Legendre and Bessel equations and supplying the theory needed to solve a
variety of problems.

4.1 Sturm-Liouville Operators

In physics many problems arise in the form of boundary value prob-
lems involving second order ordinary differential equations. For example,
we will explore the wave equation and the heat equation in three dimen-
sions. Separating out the time dependence leads to a three dimensional
boundary value problem in both cases. Further separation of variables leads
to a set of boundary value problems involving second order ordinary dif-
ferential equations.
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In general, we might obtain equations of the form

a2(x)y′′ + a1(x)y′ + a0(x)y = f (x) (4.1)

subject to boundary conditions. We can write such an equation in operator
form by defining the differential operator

L = a2(x)D2 + a1(x)D + a0(x),

where D = d/dx. Then, Equation (4.1) takes the form

Ly = f .

Recall that we had solved such nonhomogeneous differential equations in
Chapter 2. In this section we will show that these equations can be solved
using eigenfunction expansions. Namely, we seek solutions to the eigen-
value problem

Lφ = λφ

with homogeneous boundary conditions on φ and then seek a solution of
the nonhomogeneous problem, Ly = f , as an expansion over these eigen-
functions. Formally, we let

y(x) =
∞

∑
n=1

cnφn(x).

However, we are not guaranteed a nice set of eigenfunctions. We need an
appropriate set to form a basis in the function space. Also, it would be
nice to have orthogonality so that we can easily solve for the expansion
coefficients.

It turns out that any linear second order differential operator can be
turned into an operator that possesses just the right properties (self-adjointedness)
to carry out this procedure. The resulting operator is referred to as a Sturm-
Liouville operator. We will highlight some of the properties of these opera-
tors and see how they are used in applications.

We define the Sturm-Liouville operator asThe Sturm-Liouville operator.

L =
d

dx
p(x)

d
dx

+ q(x). (4.2)

The Sturm-Liouville eigenvalue problem is given by the differential equa-
tionThe Sturm-Liouville eigenvalue prob-

lem. Ly = −λσ(x)y,

or
d

dx

(
p(x)

dy
dx

)
+ q(x)y + λσ(x)y = 0, (4.3)

for x ∈ (a, b), y = y(x), plus boundary conditions. The functions p(x), p′(x),
q(x) and σ(x) are assumed to be continuous on (a, b) and p(x) > 0, σ(x) > 0
on [a, b]. If the interval is finite and these assumptions on the coefficients
are true on [a, b], then the problem is said to be a regular Sturm-Liouville
problem. Otherwise, it is called a singular Sturm-Liouville problem.
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We also need to impose the set of homogeneous boundary conditionsTypes of boundary conditions.

α1y(a) + β1y′(a) = 0,

α2y(b) + β2y′(b) = 0. (4.4)

The α’s and β’s are constants. For different values, one has special types
of boundary conditions. For βi = 0, we have what are called Dirichlet
boundary conditions. Namely, y(a) = 0 and y(b) = 0. For αi = 0, we Dirichlet boundary conditions - the so-

lution takes fixed values on the bound-
ary. These are named after Gustav Leje-
une Dirichlet (1805-1859).

have Neumann boundary conditions. In this case, y′(a) = 0 and y′(b) = 0.
In terms of the heat equation example, Dirichlet conditions correspond

Neumann boundary conditions - the
derivative of the solution takes fixed val-
ues on the boundary. These are named
after Carl Neumann (1832-1925).

to maintaining a fixed temperature at the ends of the rod. The Neumann
boundary conditions would correspond to no heat flow across the ends, or
insulating conditions, as there would be no temperature gradient at those
points. The more general boundary conditions allow for partially insulated
boundaries.

Another type of boundary condition that is often encountered is the pe-
riodic boundary condition. Consider the heated rod that has been bent to
form a circle. Then the two end points are physically the same. So, we
would expect that the temperature and the temperature gradient should
agree at those points. For this case we write y(a) = y(b) and y′(a) = y′(b).
Boundary value problems using these conditions have to be handled differ-
ently than the above homogeneous conditions. These conditions leads to
different types of eigenfunctions and eigenvalues. Differential equations of Sturm-Liouville

form.As previously mentioned, equations of the form (4.1) occur often. We
now show that any second order linear operator can be put into the form
of the Sturm-Liouville operator. In particular, equation (4.1) can be put into
the form

d
dx

(
p(x)

dy
dx

)
+ q(x)y = F(x). (4.5)

Another way to phrase this is provided in the theorem:
The proof of this is straight forward as we soon show. Let’s first consider

the equation (4.1) for the case that a1(x) = a′2(x). Then, we can write the
equation in a form in which the first two terms combine,

f (x) = a2(x)y′′ + a1(x)y′ + a0(x)y

= (a2(x)y′)′ + a0(x)y. (4.6)

The resulting equation is now in Sturm-Liouville form. We just identify
p(x) = a2(x) and q(x) = a0(x).

Not all second order differential equations are as simple to convert. Con-
sider the differential equation

x2y′′ + xy′ + 2y = 0.

In this case a2(x) = x2 and a′2(x) = 2x 6= a1(x). So, this does not fall into
this case. However, we can change the operator in this equation, x2D +

xD, to a Sturm-Liouville operator, Dp(x)D for a p(x) that depends on the
coefficients x2 and x..
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In the Sturm Liouville operator the derivative terms are gathered together
into one perfect derivative, Dp(x)D. This is similar to what we saw in the
Chapter 2 when we solved linear first order equations. In that case we
sought an integrating factor. We can do the same thing here. We seek a
multiplicative function µ(x) that we can multiply through (4.1) so that it
can be written in Sturm-Liouville form.

We first divide out the a2(x), giving

y′′ +
a1(x)
a2(x)

y′ +
a0(x)
a2(x)

y =
f (x)

a2(x)
.

Next, we multiply this differential equation by µ,

µ(x)y′′ + µ(x)
a1(x)
a2(x)

y′ + µ(x)
a0(x)
a2(x)

y = µ(x)
f (x)

a2(x)
.

The first two terms can now be combined into an exact derivative (µy′)′

if the second coefficient is µ′(x). Therefore, µ(x) satisfies a first order, sepa-
rable differential equation:

dµ

dx
= µ(x)

a1(x)
a2(x)

.

This is formally solved to give the sought integrating factor

µ(x) = e
∫ a1(x)

a2(x) dx
.

Thus, the original equation can be multiplied by factor

µ(x)
a2(x)

=
1

a2(x)
e
∫ a1(x)

a2(x) dx

to turn it into Sturm-Liouville form.
In summary,

Equation (4.1),

a2(x)y′′ + a1(x)y′ + a0(x)y = f (x), (4.7)

can be put into the Sturm-Liouville form

d
dx

(
p(x)

dy
dx

)
+ q(x)y = F(x), (4.8)

where

p(x) = e
∫ a1(x)

a2(x) dx
,

q(x) = p(x)
a0(x)
a2(x)

,

F(x) = p(x)
f (x)

a2(x)
. (4.9)
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Example 4.1. Convert x2y′′ + xy′ + 2y = 0 into Sturm-Liouville form.
We can multiply this equation by

µ(x)
a2(x)

=
1
x2 e

∫ dx
x =

1
x

,

to put the equation in Sturm-Liouville form:

Conversion of a linear second order
differential equation to Sturm Liouville
form.

0 = xy′′ + y′ +
2
x

y

= (xy′)′ +
2
x

y. (4.10)

4.2 Properties of Sturm-Liouville Eigenvalue Problems

There are several properties that can be proven for the (regular)
Sturm-Liouville eigenvalue problem in (4.3). However, we will not prove
them all here. We will merely list some of the important facts and focus on
a few of the properties.

Real, countable eigenvalues.

1. The eigenvalues are real, countable, ordered and there is a smallest
eigenvalue. Thus, we can write them as λ1 < λ2 < . . . . However,
there is no largest eigenvalue and n→ ∞, λn → ∞. Oscillatory eigenfunctions.

2. For each eigenvalue λn there exists an eigenfunction φn with n − 1
zeros on (a, b).

3. Eigenfunctions corresponding to different eigenvalues are orthogonal
with respect to the weight function, σ(x). Defining the inner product
of f (x) and g(x) as

〈 f , g〉 =
∫ b

a
f (x)g(x)σ(x) dx, (4.11)

then the orthogonality of the eigenfunctions can be written in the Orthogonality of eigenfunctions.

form
〈φn, φm〉 = 〈φn, φn〉δnm, n, m = 1, 2, . . . . (4.12)

4. The set of eigenfunctions is complete; i.e., any piecewise smooth func-
tion can be represented by a generalized Fourier series expansion of
the eigenfunctions,

f (x) ∼
∞

∑
n=1

cnφn(x),

where

cn =
〈 f , φn〉
〈φn, φn〉

.

Actually, one needs f (x) ∈ L2
σ(a, b), the set of square integrable func-

tions over [a, b] with weight function σ(x). By square integrable, we
mean that 〈 f , f 〉 < ∞. One can show that such a space is isomorphic
to a Hilbert space, a complete inner product space. Hilbert spaces
play a special role in quantum mechanics.

Complete basis of eigenfunctions.
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5. The eigenvalues satisfy the Rayleigh quotient

λn =

−pφn
dφn
dx

∣∣∣b
a
+
∫ b

a

[
p
(

dφn
dx

)2
− qφ2

n

]
dx

〈φn, φn〉
.

The Rayleigh quotient is named after
Lord Rayleigh, John William Strutt, 3rd
Baron Raleigh (1842-1919).

This is verified by multiplying the eigenvalue problem

Lφn = −λnσ(x)φn

by φn and integrating. Solving this result for λn, we obtain the Rayleigh
quotient. The Rayleigh quotient is useful for getting estimates of
eigenvalues and proving some of the other properties.

Example 4.2. Verify some of these properties for the eigenvalue problem

y′′ = −λy, y(0) = y(π) = 0.

This is a problem we had seen many times. The eigenfunctions for this eigenvalue
problem are φn(x) = sin nx, with eigenvalues λn = n2 for n = 1, 2, . . . . These
satisfy the properties listed above.

First of all, the eigenvalues are real, countable and ordered, 1 < 4 < 9 < . . . .
There is no largest eigenvalue and there is a first one.

y

x

Figure 4.1: Plot of the eigenfunctions
φn(x) = sin nx for n = 1, 2, 3, 4.

The eigenfunctions corresponding to each eigenvalue have n− 1 zeros 0n (0, π).
This is demonstrated for several eigenfunctions in Figure 4.1.

We also know that the set {sin nx}∞
n=1 is an orthogonal set of basis functions of

length

‖φn‖ =
√

π

2
.

Thus, the Rayleigh quotient can be computed using p(x) = 1, q(x) = 0, and the
eigenfunctions. It is given by

R =
−φnφ′n

∣∣∣π
0
+
∫ π

0 (φ′n)
2 dx

π
2

=
2
π

∫ π

0

(
−n2 cos nx

)2
dx = n2. (4.13)

Therefore, knowing the eigenfunction, the Rayleigh quotient returns the eigenvalues
as expected.

Example 4.3. We seek the eigenfunctions of the operator found in Example 4.1.
Namely, we want to solve the eigenvalue problem

Ly = (xy′)′ +
2
x

y = −λσy (4.14)

subject to a set of homogeneous boundary conditions. Let’s use the boundary condi-
tions

y′(1) = 0, y′(2) = 0.

[Note that we do not know σ(x) yet, but will choose an appropriate function to
obtain solutions.]
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Expanding the derivative, we have

xy′′ + y′ +
2
x

y = −λσy.

Multiply through by x to obtain

x2y′′ + xy′ + (2 + λxσ) y = 0.

Notice that if we choose σ(x) = x−1, then this equation can be made a Cauchy-
Euler type equation. Thus, we have

x2y′′ + xy′ + (λ + 2) y = 0.

The characteristic equation is

r2 + λ + 2 = 0.

For oscillatory solutions, we need λ + 2 > 0. Thus, the general solution is

y(x) = c1 cos(
√

λ + 2 ln |x|) + c2 sin(
√

λ + 2 ln |x|). (4.15)

Next we apply the boundary conditions. y′(1) = 0 forces c2 = 0. This leaves

y(x) = c1 cos(
√

λ + 2 ln x).

The second condition, y′(2) = 0, yields

sin(
√

λ + 2 ln 2) = 0.

This will give nontrivial solutions when
√

λ + 2 ln 2 = nπ, n = 0, 1, 2, 3 . . . .

In summary, the eigenfunctions for this eigenvalue problem are

yn(x) = cos
( nπ

ln 2
ln x

)
, 1 ≤ x ≤ 2

and the eigenvalues are λn =
( nπ

ln 2

)2 − 2 for n = 0, 1, 2, . . . .
Note: We include the n = 0 case because y(x) = constant is a solution of the

λ = −2 case. More specifically, in this case the characteristic equation reduces to
r2 = 0. Thus, the general solution of this Cauchy-Euler equation is

y(x) = c1 + c2 ln |x|.

Setting y′(1) = 0, forces c2 = 0. y′(2) automatically vanishes, leaving the solution
in this case as y(x) = c1.

We note that some of the properties listed in the beginning of the section hold for
this example. The eigenvalues are seen to be real, countable and ordered. There is
a least one, λ0 = −2. Next, one can find the zeros of each eigenfunction on [1,2].
Then the argument of the cosine, nπ

ln 2 ln x, takes values 0 to nπ for x ∈ [1, 2]. The
cosine function has n− 1 roots on this interval.
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Orthogonality can be checked as well. We set up the integral and use the substi-
tution y = π ln x/ ln 2. This gives

〈yn, ym〉 =
∫ 2

1
cos

( nπ

ln 2
ln x

)
cos

(mπ

ln 2
ln x

) dx
x

=
ln 2
π

∫ π

0
cos ny cos my dy

=
ln 2

2
δn,m. (4.16)

4.2.1 Adjoint Operators

In the study of the spectral theory of matrices, one learns about
the adjoint of the matrix, A†, and the role that self-adjoint, or Hermitian,
matrices play in diagonalization. Also, one needs the concept of adjoint to
discuss the existence of solutions to the matrix problem y = Ax. In the same
spirit, one is interested in the existence of solutions of the operator equation
Lu = f and solutions of the corresponding eigenvalue problem. The study
of linear operators on a Hilbert space is a generalization of what the reader
had seen in a linear algebra course.

Just as one can find a basis of eigenvectors and diagonalize Hermitian,
or self-adjoint, matrices (or, real symmetric in the case of real matrices), we
will see that the Sturm-Liouville operator is self-adjoint. In this section we
will define the domain of an operator and introduce the notion of adjoint
operators. In the last section we discuss the role the adjoint plays in the
existence of solutions to the operator equation Lu = f .

We begin by defining the adjoint of an operator. The adjoint, L†, of oper-
ator L satisfies

〈u, Lv〉 = 〈L†u, v〉
for all v in the domain of L and u in the domain of L†. Here the domain
of a differential operator L is the set of all u ∈ L2

σ(a, b) satisfying a given
set of homogeneous boundary conditions. This is best understood through
example.

Example 4.4. Find the adjoint of L = a2(x)D2 + a1(x)D + a0(x) for D = d/dx.
In order to find the adjoint, we place the operator inside an integral. Consider

the inner product

〈u, Lv〉 =
∫ b

a
u(a2v′′ + a1v′ + a0v) dx.

We have to move the operator L from v and determine what operator is acting on u
in order to formally preserve the inner product. For a simple operator like L = d

dx ,
this is easily done using integration by parts. For the given operator, we will need
to apply several integrations by parts to the individual terms. We consider each
derivative term in the integrand separately.

For the a1v′ term, we integrate by parts to find∫ b

a
u(x)a1(x)v′(x) dx = a1(x)u(x)v(x)

∣∣∣b
a
−
∫ b

a
(u(x)a1(x))′v(x) dx. (4.17)
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Now, we consider the a2v′′ term. In this case it will take two integrations by
parts:

∫ b

a
u(x)a2(x)v′′(x) dx = a2(x)u(x)v′(x)

∣∣∣b
a
−
∫ b

a
(u(x)a2(x))′v(x)′ dx

=
[
a2(x)u(x)v′(x)− (a2(x)u(x))′v(x)

] ∣∣∣b
a

+
∫ b

a
(u(x)a2(x))′′v(x) dx. (4.18)

Combining these results, we obtain

〈u, Lv〉 =
∫ b

a
u(a2v′′ + a1v′ + a0v) dx

=
[
a1(x)u(x)v(x) + a2(x)u(x)v′(x)− (a2(x)u(x))′v(x)

] ∣∣∣b
a

+
∫ b

a

[
(a2u)′′ − (a1u)′ + a0u

]
v dx. (4.19)

Inserting the boundary conditions for v, one has to determine boundary condi-
tions for u such that

[
a1(x)u(x)v(x) + a2(x)u(x)v′(x)− (a2(x)u(x))′v(x)

] ∣∣∣b
a
= 0.

This leaves

〈u, Lv〉 =
∫ b

a

[
(a2u)′′ − (a1u)′ + a0u

]
v dx ≡ 〈L†u, v〉.

Therefore,

L† =
d2

dx2 a2(x)− d
dx

a1(x) + a0(x). (4.20)

Self-adjoint operators.
When L† = L, the operator is called formally self-adjoint. When the

domain of L is the same as the domain of L†, the term self-adjoint is used.
As the domain is important in establishing self-adjointness, we need to do
a complete example in which the domain of the adjoint is found.

Example 4.5. Determine L† and its domain for operator Lu = du
dx where u satisfies

the boundary conditions u(0) = 2u(1) on [0, 1].
We need to find the adjoint operator satisfying 〈v, Lu〉 = 〈L†v, u〉. Therefore,

we rewrite the integral

〈v, Lu〉 >=
∫ 1

0
v

du
dx

dx = uv
∣∣1
0 −

∫ 1

0
u

dv
dx

dx = 〈L†v, u〉.

From this we have the adjoint problem consisting of an adjoint operator and the
associated boundary condition (or, domain of L†.):

1. L† = − d
dx .

2. uv
∣∣∣1
0
= 0⇒ 0 = u(1)[v(1)− 2v(0)]⇒ v(1) = 2v(0).



116 partial differential equations

4.2.2 Lagrange’s and Green’s Identities

Before turning to the proofs that the eigenvalues of a Sturm-Liouville
problem are real and the associated eigenfunctions orthogonal, we will first
need to introduce two important identities. For the Sturm-Liouville opera-
tor,

L =
d

dx

(
p

d
dx

)
+ q,

we have the two identities:

Lagrange’s Identity: uLv− vLu = [p(uv′ − vu′)]′.
Green’s Identity:

∫ b
a (uLv− vLu) dx = [p(uv′ − vu′)]|ba.

The proof of Lagrange’s identity follows by a simple manipulations of
the operator:

uLv− vLu = u
[

d
dx

(
p

dv
dx

)
+ qv

]
− v

[
d

dx

(
p

du
dx

)
+ qu

]
= u

d
dx

(
p

dv
dx

)
− v

d
dx

(
p

du
dx

)
= u

d
dx

(
p

dv
dx

)
+ p

du
dx

dv
dx
− v

d
dx

(
p

du
dx

)
− p

du
dx

dv
dx

=
d

dx

[
pu

dv
dx
− pv

du
dx

]
. (4.21)

Green’s identity is simply proven by integrating Lagrange’s identity.

4.2.3 Orthogonality and Reality

We are now ready to prove that the eigenvalues of a Sturm-Liouville
problem are real and the corresponding eigenfunctions are orthogonal. These
are easily established using Green’s identity, which in turn is a statement
about the Sturm-Liouville operator being self-adjoint.

Example 4.6. The eigenvalues of the Sturm-Liouville problem (4.3) are real.
Let φn(x) be a solution of the eigenvalue problem associated with λn:

Lφn = −λnσφn.

We want to show that Namely, we show that λn = λn, where the bar means complex
conjugate. So, we also consider the complex conjugate of this equation,

Lφn = −λnσφn.

Now, multiply the first equation by φn, the second equation by φn, and then subtract
the results. We obtain

φnLφn − φnLφn = (λn − λn)σφnφn.
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Integrating both sides of this equation, we have∫ b

a

(
φnLφn − φnLφn

)
dx = (λn − λn)

∫ b

a
σφnφn dx.

We apply Green’s identity to the left hand side to find

[p(φnφ′n − φnφ
′
n)]|

b
a = (λn − λn)

∫ b

a
σφnφn dx.

Using the homogeneous boundary conditions (4.4) for a self-adjoint operator, the
left side vanishes. This leaves

0 = (λn − λn)
∫ b

a
σ‖φn‖2 dx.

The integral is nonnegative, so we must have λn = λn. Therefore, the eigenvalues
are real.

Example 4.7. The eigenfunctions corresponding to different eigenvalues of the
Sturm-Liouville problem (4.3) are orthogonal.

This is proven similar to the last example. Let φn(x) be a solution of the eigen-
value problem associated with λn,

Lφn = −λnσφn,

and let φm(x) be a solution of the eigenvalue problem associated with λm 6= λn,

Lφm = −λmσφm,

Now, multiply the first equation by φm and the second equation by φn. Subtracting
these results, we obtain

φmLφn − φnLφm = (λm − λn)σφnφm

Integrating both sides of the equation, using Green’s identity, and using the
homogeneous boundary conditions, we obtain

0 = (λm − λn)
∫ b

a
σφnφm dx.

Since the eigenvalues are distinct, we can divide by λm − λn, leaving the desired
result, ∫ b

a
σφnφm dx = 0.

Therefore, the eigenfunctions are orthogonal with respect to the weight function
σ(x).

4.2.4 The Rayleigh Quotient

The Rayleigh quotient is useful for getting estimates of eigenvalues
and proving some of the other properties associated with Sturm-Liouville
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eigenvalue problems. The Rayleigh quotient is general and finds applica-
tions for both matrix eigenvalue problems as well as self-adjoint operators.
For a Hermitian matrix M the Rayleigh quotient is given by

R(v) =
〈v, Mv〉
〈v, v〉 .

One can show that the critical values of the Rayleigh quotient, as a function
of v, are the eigenvectors of M and the values of R at these critical values
are the corresponding eigenvectors. In particular, minimizing R(v over the
vector space will give the lowest eigenvalue. This leads to the Rayleigh-Ritz
method for computing the lowest eigenvalues when the eigenvectors are not
known.

This definition can easily be extended to Sturm-Liouville operators,

R(φn) =
〈φnLφn〉
〈φn, φn〉

.

We begin by multiplying the eigenvalue problem

Lφn = −λnσ(x)φn

by φn and integrating. This gives∫ b

a

[
φn

d
dx

(
p

dφn

dx

)
+ qφ2

n

]
dx = −λn

∫ b

a
φ2

nσ dx.

One can solve the last equation for λ to find

λn =
−
∫ b

a

[
φn

d
dx

(
p dφn

dx

)
+ qφ2

n

]
dx∫ b

a φ2
nσ dx

= R(φn).

It appears that we have solved for the eigenvalues and have not needed
the machinery we had developed in Chapter 4 for studying boundary value
problems. However, we really cannot evaluate this expression when we do
not know the eigenfunctions, φn(x) yet. Nevertheless, we will see what we
can determine from the Rayleigh quotient.

One can rewrite this result by performing an integration by parts on the
first term in the numerator. Namely, pick u = φn and dv = d

dx

(
p dφn

dx

)
dx

for the standard integration by parts formula. Then, we have

∫ b

a
φn

d
dx

(
p

dφn

dx

)
dx = pφn

dφn

dx

∣∣∣b
a
−
∫ b

a

[
p
(

dφn

dx

)2
− qφ2

n

]
dx.

Inserting the new formula into the expression for λ, leads to the Rayleigh
Quotient

λn =

−pφn
dφn
dx

∣∣∣b
a
+
∫ b

a

[
p
(

dφn
dx

)2
− qφ2

n

]
dx∫ b

a φ2
nσ dx

. (4.22)

In many applications the sign of the eigenvalue is important. As we had
seen in the solution of the heat equation, T′ + kλT = 0. Since we expect
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the heat energy to diffuse, the solutions should decay in time. Thus, we
would expect λ > 0. In studying the wave equation, one expects vibrations
and these are only possible with the correct sign of the eigenvalue (positive
again). Thus, in order to have nonnegative eigenvalues, we see from (4.22)
that

a. q(x) ≤ 0, and

b. −pφn
dφn
dx

∣∣∣b
a
≥ 0.

Furthermore, if λ is a zero eigenvalue, then q(x) ≡ 0 and α1 = α2 = 0
in the homogeneous boundary conditions. This can be seen by setting the
numerator equal to zero. Then, q(x) = 0 and φ′n(x) = 0. The second of
these conditions inserted into the boundary conditions forces the restriction
on the type of boundary conditions.

One of the properties of Sturm-Liouville eigenvalue problems with ho-
mogeneous boundary conditions is that the eigenvalues are ordered, λ1 <

λ2 < . . . . Thus, there is a smallest eigenvalue. It turns out that for any
continuous function, y(x),

λ1 = min
y(x)

−py dy
dx

∣∣∣b
a
+
∫ b

a

[
p
(

dy
dx

)2
− qy2

]
dx∫ b

a y2σ dx
(4.23)

and this minimum is obtained when y(x) = φ1(x). This result can be used
to get estimates of the minimum eigenvalue by using trial functions which
are continuous and satisfy the boundary conditions, but do not necessarily
satisfy the differential equation.

Example 4.8. We have already solved the eigenvalue problem φ′′ + λφ = 0,
φ(0) = 0, φ(1) = 0. In this case, the lowest eigenvalue is λ1 = π2. We can
pick a nice function satisfying the boundary conditions, say y(x) = x− x2. Insert-
ing this into Equation (4.23), we find

λ1 ≤
∫ 1

0 (1− 2x)2 dx∫ 1
0 (x− x2)2 dx

= 10.

Indeed, 10 ≥ π2.

4.3 The Eigenfunction Expansion Method

In this section we solve the nonhomogeneous problem Ly = f
using expansions over the basis of Sturm-Liouville eigenfunctions. We have
seen that Sturm-Liouville eigenvalue problems have the requisite set of or-
thogonal eigenfunctions. In this section we will apply the eigenfunction
expansion method to solve a particular nonhomogeneous boundary value
problem.
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Recall that one starts with a nonhomogeneous differential equation

Ly = f ,

where y(x) is to satisfy given homogeneous boundary conditions. The
method makes use of the eigenfunctions satisfying the eigenvalue problem

Lφn = −λnσφn

subject to the given boundary conditions. Then, one assumes that y(x) can
be written as an expansion in the eigenfunctions,

y(x) =
∞

∑
n=1

cnφn(x),

and inserts the expansion into the nonhomogeneous equation. This gives

f (x) = L
(

∞

∑
n=1

cnφn(x)

)
= −

∞

∑
n=1

cnλnσ(x)φn(x).

The expansion coefficients are then found by making use of the orthogo-
nality of the eigenfunctions. Namely, we multiply the last equation by φm(x)
and integrate. We obtain

∫ b

a
f (x)φm(x) dx = −

∞

∑
n=1

cnλn

∫ b

a
φn(x)φm(x)σ(x) dx.

Orthogonality yields∫ b

a
f (x)φm(x) dx = −cmλm

∫ b

a
φ2

m(x)σ(x) dx.

Solving for cm, we have

cm = −
∫ b

a f (x)φm(x) dx

λm
∫ b

a φ2
m(x)σ(x) dx

.

Example 4.9. As an example, we consider the solution of the boundary value prob-
lem

(xy′)′ +
y
x
=

1
x

, x ∈ [1, e], (4.24)

y(1) = 0 = y(e). (4.25)

This equation is already in self-adjoint form. So, we know that the associated
Sturm-Liouville eigenvalue problem has an orthogonal set of eigenfunctions. We
first determine this set. Namely, we need to solve

(xφ′)′ +
φ

x
= −λσφ, φ(1) = 0 = φ(e). (4.26)

Rearranging the terms and multiplying by x, we have that

x2φ′′ + xφ′ + (1 + λσx)φ = 0.
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This is almost an equation of Cauchy-Euler type. Picking the weight function
σ(x) = 1

x , we have
x2φ′′ + xφ′ + (1 + λ)φ = 0.

This is easily solved. The characteristic equation is

r2 + (1 + λ) = 0.

One obtains nontrivial solutions of the eigenvalue problem satisfying the boundary
conditions when λ > −1. The solutions are

φn(x) = A sin(nπ ln x), n = 1, 2, . . . .

where λn = n2π2 − 1.
It is often useful to normalize the eigenfunctions. This means that one chooses

A so that the norm of each eigenfunction is one. Thus, we have

1 =
∫ e

1
φn(x)2σ(x) dx

= A2
∫ e

1
sin(nπ ln x)

1
x

dx

= A2
∫ 1

0
sin(nπy) dy =

1
2

A2. (4.27)

Thus, A =
√

2. Several of these eigenfunctions are show in Figure 4.2.
x

1 e

Figure 4.2: Plots of the first five eigen-
functions, y(x) =

√
2 sin(nπ ln x).

We now turn towards solving the nonhomogeneous problem, Ly = 1
x . We first

expand the unknown solution in terms of the eigenfunctions,

y(x) =
∞

∑
n=1

cn
√

2 sin(nπ ln x).

Inserting this solution into the differential equation, we have

1
x
= Ly = −

∞

∑
n=1

cnλn
√

2 sin(nπ ln x)
1
x

.

Next, we make use of orthogonality. Multiplying both sides by the eigenfunction
φm(x) =

√
2 sin(mπ ln x) and integrating, gives

λmcm =
∫ e

1

√
2 sin(mπ ln x)

1
x

dx =

√
2

mπ
[(−1)m − 1].

Solving for cm, we have

cm =

√
2

mπ

[(−1)m − 1]
m2π2 − 1

.

Finally, we insert these coefficients into the expansion for y(x). The solution is
then

y(x) =
∞

∑
n=1

2
nπ

[(−1)n − 1]
n2π2 − 1

sin(nπ ln(x)).

We plot this solution in Figure 4.3.
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Figure 4.3: Plot of the solution in Exam-
ple 4.9.
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4.4 Appendix: The Fredholm Alternative Theorem

Given that Ly = f , when can one expect to find a solution? Is it
unique? These questions are answered by the Fredholm Alternative Theo-
rem. This theorem occurs in many forms from a statement about solutions
to systems of algebraic equations to solutions of boundary value problems
and integral equations. The theorem comes in two parts, thus the term
“alternative”. Either the equation has exactly one solution for all f , or the
equation has many solutions for some f ’s and none for the rest.

The reader is familiar with the statements of the Fredholm Alternative
for the solution of systems of algebraic equations. One seeks solutions of
the system Ax = b for A an n×m matrix. Defining the matrix adjoint, A∗

through < Ax, y >=< x, A∗y > for all x, y,∈ Cn, then either

Theorem 4.1. First Alternative
The equation Ax = b has a solution if and only if < b, v >= 0 for all v

satisfying A∗v = 0.

or

Theorem 4.2. Second Alternative
A solution of Ax = b, if it exists, is unique if and only if x = 0 is the only

solution of Ax = 0.

The second alternative is more familiar when given in the form: The
solution of a nonhomogeneous system of n equations and n unknowns is
unique if the only solution to the homogeneous problem is the zero solution.
Or, equivalently, A is invertible, or has nonzero determinant.

Proof. We prove the second theorem first. Assume that Ax = 0 for x 6= 0
and Ax0 = b. Then A(x0 + αx) = b for all α. Therefore, the solution is not
unique. Conversely, if there are two different solutions, x1 and x2, satisfying
Ax1 = b and Ax2 = b, then one has a nonzero solution x = x1 − x2 such
that Ax = A(x1 − x2) = 0.

The proof of the first part of the first theorem is simple. Let A∗v = 0 and
Ax0 = b. Then we have

< b, v >=< Ax0, v >=< x0, A∗v >= 0.

For the second part we assume that < b, v >= 0 for all v such that A∗v = 0.
Write b as the sum of a part that is in the range of A and a part that in the
space orthogonal to the range of A, b = bR + bO. Then, 0 =< bO, Ax >=<

A∗b, x > for all x. Thus, A∗bO. Since < b, v >= 0 for all v in the nullspace
of A∗, then < b, bO >= 0.

Therefore, < b, v >= 0 implies that

0 =< b, bO >=< bR + bO, bO >=< bO, bO > .

This means that bO = 0, giving b = bR is in the range of A. So, Ax = b has
a solution.
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Example 4.10. Determine the allowed forms of b for a solution of Ax = b to exist,
where

A =

(
1 2
3 6

)
.

First note that A∗ = AT . This is seen by looking at

< Ax, y > = < x, A∗y >
n

∑
i=1

n

∑
j=1

aijxjȳi =
n

∑
j=1

xj

n

∑
j=1

aijȳi

=
n

∑
j=1

xj

n

∑
j=1

(āT)ji yi. (4.28)

For this example,

A∗ =

(
1 3
2 6

)
.

We next solve A∗v = 0. This means, v1 + 3v2 = 0. So, the nullspace of A∗ is
spanned by v = (3,−1)T . For a solution of Ax = b to exist, b would have to be
orthogonal to v. Therefore, a solution exists when

b = α

(
1
3

)
.

So, what does the Fredholm Alternative say about solutions of boundary
value problems? We extend the Fredholm Alternative for linear operators.
A more general statement would be

Theorem 4.3. If L is a bounded linear operator on a Hilbert space, then Ly = f
has a solution if and only if < f , v >= 0 for every v such that L†v = 0.

The statement for boundary value problems is similar. However, we need
to be careful to treat the boundary conditions in our statement. As we have
seen, after several integrations by parts we have that

< Lu, v >= S(u, v)+ < u,L†v >,

where S(u, v) involves the boundary conditions on u and v. Note that for
nonhomogeneous boundary conditions, this term may no longer vanish.

Theorem 4.4. The solution of the boundary value problem Lu = f with boundary
conditions Bu = g exists if and only if

< f , v > −S(u, v) = 0

for all v satisfying L†v = 0 and B†v = 0.

Example 4.11. Consider the problem

u′′ + u = f (x), u(0)− u(2π) = α, u′(0)− u′(2π) = β.
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Only certain values of α and β will lead to solutions. We first note that

L = L† =
d2

dx2 + 1.

Solutions of

L†v = 0, v(0)− v(2π) = 0, v′(0)− v′(2π) = 0

are easily found to be linear combinations of v = sin x and v = cos x.
Next, one computes

S(u, v) =
[
u′v− uv′

]2π
0

= u′(2π)v(2π)− u(2π)v′(2π)− u′(0)v(0) + u(0)v′(0).

(4.29)

For v(x) = sin x, this yields

S(u, sin x) = −u(2π) + u(0) = α.

Similarly,
S(u, cos x) = β.

Using < f , v > −S(u, v) = 0, this leads to the conditions that we were seeking,∫ 2π

0
f (x) sin x dx = α,

∫ 2π

0
f (x) cos x dx = β.

Problems

1. Prove the if u(x) and v(x) satisfy the general homogeneous boundary
conditions

α1u(a) + β1u′(a) = 0,

α2u(b) + β2u′(b) = 0 (4.30)

at x = a and x = b, then

p(x)[u(x)v′(x)− v(x)u′(x)]x=b
x=a = 0.

2. Prove Green’s Identity
∫ b

a (uLv− vLu) dx = [p(uv′ − vu′)]
∣∣∣b
a

for the gen-

eral Sturm-Liouville operator L.

3. Find the adjoint operator and its domain for Lu = u′′ + 4u′ − 3u, u′(0) +
4u(0) = 0, u′(1) + 4u(1) = 0.

4. Show that a Sturm-Liouville operator with periodic boundary conditions
on [a, b] is self-adjoint if and only if p(a) = p(b). [Recall, periodic boundary
conditions are given as u(a) = u(b) and u′(a) = u′(b).]
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5. The Hermite differential equation is given by y′′− 2xy′+λy = 0. Rewrite
this equation in self-adjoint form. From the Sturm-Liouville form obtained,
verify that the differential operator is self adjoint on (−∞, ∞). Give the
integral form for the orthogonality of the eigenfunctions.

6. Find the eigenvalues and eigenfunctions of the given Sturm-Liouville
problems.

a. y′′ + λy = 0, y′(0) = 0 = y′(π).

b. (xy′)′ + λ
x y = 0, y(1) = y(e2) = 0.

7. The eigenvalue problem x2y′′ − λxy′ + λy = 0 with y(1) = y(2) = 0 is
not a Sturm-Liouville eigenvalue problem. Show that none of the eigenval-
ues are real by solving this eigenvalue problem.

8. In Example 4.8 we found a bound on the lowest eigenvalue for the given
eigenvalue problem.

a. Verify the computation in the example.

b. Apply the method using

y(x) =

{
x, 0 < x < 1

2
1− x, 1

2 < x < 1.

Is this an upper bound on λ1

c. Use the Rayleigh quotient to obtain a good upper bound for the
lowest eigenvalue of the eigenvalue problem: φ′′ + (λ− x2)φ = 0,
φ(0) = 0, φ′(1) = 0.

9. Use the method of eigenfunction expansions to solve the problems:

a. y′′ = x2, y(0) = y(1) = 0.

b. y′′ + 4y = x2, y′(0) = y′(1) = 0.

10. Determine the solvability conditions for the nonhomogeneous bound-
ary value problem: u′′ + 4u = f (x), u(0) = α, u′(π/4) = β.





5
Non-sinusoidal Harmonics and Special
Functions

“To the pure geometer the radius of curvature is an incidental characteristic - like
the grin of the Cheshire cat. To the physicist it is an indispensable characteristic.
It would be going too far to say that to the physicist the cat is merely incidental
to the grin. Physics is concerned with interrelatedness such as the interrelatedness
of cats and grins. In this case the "cat without a grin" and the "grin without a
cat" are equally set aside as purely mathematical phantasies.” Sir Arthur Stanley
Eddington (1882-1944)

In this chapter we provide a glimpse into generalized Fourier series
in which the normal modes of oscillation are not sinusoidal. For vibrating
strings, we saw that the harmonics were sinusoidal basis functions for a
large, infinite dimensional, function space. Now, we will extend these ideas
to non-sinusoidal harmonics and explore the underlying structure behind
these ideas. In particular, we will explore Legendre polynomials and Bessel
functions which will later arise in problems having cylindrical or spherical
symmetry.

The background for the study of generalized Fourier series is that of
function spaces. We begin by exploring the general context in which one
finds oneself when discussing Fourier series and (later) Fourier transforms.
We can view the sine and cosine functions in the Fourier trigonometric series
representations as basis vectors in an infinite dimensional function space. A
given function in that space may then be represented as a linear combination
over this infinite basis. With this in mind, we might wonder

• Do we have enough basis vectors for the function space?

• Are the infinite series expansions convergent?

• What functions can be represented by such expansions?

In the context of the boundary value problems which typically appear in
physics, one is led to the study of boundary value problems in the form of
Sturm-Liouville eigenvalue problems. These lead to an appropriate set of
basis vectors for the function space under consideration. We will touch a
little on these ideas, leaving some of the deeper results for more advanced
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courses in mathematics. For now, we will turn to function spaces and ex-
plore some typical basis functions, many which originated from the study
of physical problems. The common basis functions are often referred to as
special functions in physics. Examples are the classical orthogonal polyno-
mials (Legendre, Hermite, Laguerre, Tchebychef) and Bessel functions. But
first we will introduce function spaces.

5.1 Function Spaces

Earlier we studied finite dimensional vector spaces. Given a set
of basis vectors, {ak}n

k=1, in vector space V, we showed that we can expand
any vector v ∈ V in terms of this basis, v = ∑n

k=1 vkak. We then spent
some time looking at the simple case of extracting the components vk of the
vector. The keys to doing this simply were to have a scalar product and an
orthogonal basis set. These are also the key ingredients that we will need
in the infinite dimensional case. In fact, we had already done this when we
studied Fourier series.

Recall when we found Fourier trigonometric series representations of
functions, we started with a function (vector) that we wanted to expand in a
set of trigonometric functions (basis) and we sought the Fourier coefficients
(components). In this section we will extend our notions from finite dimen-We note that the above determination

of vector components for finite dimen-
sional spaces is precisely what we had
done to compute the Fourier coefficients
using trigonometric bases. Reading fur-
ther, you will see how this works.

sional spaces to infinite dimensional spaces and we will develop the needed
background in which to think about more general Fourier series expansions.
This conceptual framework is very important in other areas in mathematics
(such as ordinary and partial differential equations) and physics (such as
quantum mechanics and electrodynamics).

We will consider various infinite dimensional function spaces. Functions
in these spaces would differ by their properties. For example, we could con-
sider the space of continuous functions on [0,1], the space of differentiably
continuous functions, or the set of functions integrable from a to b. As you
will see, there are many types of function spaces . In order to view these
spaces as vector spaces, we will need to be able to add functions and multi-
ply them by scalars in such as way that they satisfy the definition of a vector
space as defined in Chapter 3.

We will also need a scalar product defined on this space of functions.
There are several types of scalar products, or inner products, that we can
define. An inner product 〈, 〉 on a real vector space V is a mapping from
V ×V into R such that for u, v, w ∈ V and α ∈ R one has

1. 〈v, v〉 ≥ 0 and 〈v, v〉 = 0 iff v = 0.

2. 〈v, w〉 = 〈w, v〉.

3. 〈αv, w〉 = α〈v, w〉.

4. 〈u + v, w〉 = 〈u, w〉+ 〈v, w〉.

A real vector space equipped with the above inner product leads to what
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is called a real inner product space. For complex inner product spaces the
above properties hold with the third property replaced with 〈v, w〉 = 〈w, v〉.

For the time being, we will only deal with real valued functions and,
thus, we will need an inner product appropriate for such spaces. One such
definition is the following. Let f (x) and g(x) be functions defined on [a, b]
and introduce the weight function σ(x) > 0. Then, we define the inner
product, if the integral exists, as

〈 f , g〉 =
∫ b

a
f (x)g(x)σ(x) dx. (5.1)

Spaces in which 〈 f , f 〉 < ∞ under this inner product are called the space of The space of square integrable functions.

square integrable functions on (a, b) under weight σ and denoted as L2
σ(a, b).

In what follows, we will assume for simplicity that σ(x) = 1. This is possible
to do by using a change of variables.

Now that we have function spaces equipped with an inner product, we
seek a basis for the space. For an n-dimensional space we need n basis
vectors. For an infinite dimensional space, how many will we need? How
do we know when we have enough? We will provide some answers to these
questions later.

Let’s assume that we have a basis of functions {φn(x)}∞
n=1. Given a func-

tion f (x), how can we go about finding the components of f in this basis?
In other words, let

f (x) =
∞

∑
n=1

cnφn(x).

How do we find the cn’s? Does this remind you of Fourier series expan-
sions? Does it remind you of the problem we had earlier for finite dimen-
sional spaces? [You may want to review the discussion at the end of Section
?? as you read the next derivation.]

Formally, we take the inner product of f with each φj and use the prop-
erties of the inner product to find

〈φj, f 〉 = 〈φj,
∞

∑
n=1

cnφn〉

=
∞

∑
n=1

cn〈φj, φn〉. (5.2)

If the basis is an orthogonal basis, then we have

〈φj, φn〉 = Njδjn, (5.3)

where δjn is the Kronecker delta. Recall from Chapter 3 that the Kronecker
delta is defined as

δij =

{
0, i 6= j
1, i = j.

(5.4)

Continuing with the derivation, we have For the generalized Fourier series expan-
sion f (x) = ∑∞

n=1 cnφn(x), we have de-
termined the generalized Fourier coeffi-
cients to be cj = 〈φj, f 〉/〈φj, φj〉.

〈φj, f 〉 =
∞

∑
n=1

cn〈φj, φn〉

=
∞

∑
n=1

cnNjδjn (5.5)
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Expanding the sum, we see that the Kronecker delta picks out one nonzero
term:

〈φj, f 〉 = c1Njδj1 + c2Njδj2 + . . . + cjNjδjj + . . .

= cjNj. (5.6)

So, the expansion coefficients are

cj =
〈φj, f 〉

Nj
=
〈φj, f 〉
〈φj, φj〉

j = 1, 2, . . . .

We summarize this important result:

Generalized Basis Expansion

Let f (x) be represented by an expansion over a basis of orthogonal func-
tions, {φn(x)}∞

n=1,

f (x) =
∞

∑
n=1

cnφn(x).

Then, the expansion coefficients are formally determined as

cn =
〈φn, f 〉
〈φn, φn〉

.

This will be referred to as the general Fourier series expansion and the
cj’s are called the Fourier coefficients. Technically, equality only holds
when the infinite series converges to the given function on the interval of
interest.

Example 5.1. Find the coefficients of the Fourier sine series expansion of f (x),
given by

f (x) =
∞

∑
n=1

bn sin nx, x ∈ [−π, π].

In the last chapter we already established that the set of functions φn(x) =

sin nx for n = 1, 2, . . . is orthogonal on the interval [−π, π]. Recall that using
trigonometric identities, we have for n 6= m

〈φn, φm〉 =
∫ π

−π
sin nx sin mx dx = πδnm. (5.7)

Therefore, the set φn(x) = sin nx for n = 1, 2, . . . is an orthogonal set of functions
on the interval [−π, π].

We determine the expansion coefficients using

bn =
〈φn, f 〉

Nn
=
〈φn, f 〉
〈φn, φn〉

=
1
π

∫ π

−π
f (x) sin nx dx.

Does this result look familiar?
Just as with vectors in three dimensions, we can normalize these basis functions

to arrive at an orthonormal basis. This is simply done by dividing by the length of
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the vector. Recall that the length of a vector is obtained as v =
√

v · v. In the same
way, we define the norm of a function by

‖ f ‖ =
√
〈 f , f 〉.

Note, there are many types of norms, but this induced norm will be sufficient.1 1 The norm defined here is the natural,
or induced, norm on the inner product
space. Norms are a generalization of the
concept of lengths of vectors. Denoting
‖v‖ the norm of v, it needs to satisfy the
properties

1. ‖v‖ ≥ 0. ‖v‖ = 0 if and only if v = 0.

2. ‖αv‖ = |α|‖v‖.
3. ‖u + v‖ ≤ ‖u‖+ ‖v‖.
Examples of common norms are

1. Euclidean norm:

‖v‖ =
√

v2
1 + · · ·+ v2

n.

2. Taxicab norm:

‖v‖ = |v1|+ · · ·+ |vn|.

3. Lp norm:

‖ f ‖ =
(∫

[ f (x)]p dx
) 1

p
.

For this example, the norms of the basis functions are ‖φn‖ =
√

π. Defining
ψn(x) = 1√

π
φn(x), we can normalize the φn’s and have obtained an orthonormal

basis of functions on [−π, π].
We can also use the normalized basis to determine the expansion coefficients. In

this case we have

bn =
〈ψn, f 〉

Nn
= 〈ψn, f 〉 = 1

π

∫ π

−π
f (x) sin nx dx.

5.2 Classical Orthogonal Polynomials

There are other basis functions that can be used to develop series
representations of functions. In this section we introduce the classical or-
thogonal polynomials. We begin by noting that the sequence of functions
{1, x, x2, . . .} is a basis of linearly independent functions. In fact, by the
Stone-Weierstraß Approximation Theorem2 this set is a basis of L2

σ(a, b), the
2 Stone-Weierstraß Approximation The-
orem Suppose f is a continuous function
defined on the interval [a, b]. For every
ε > 0, there exists a polynomial func-
tion P(x) such that for all x ∈ [a, b], we
have | f (x)− P(x)| < ε. Therefore, every
continuous function defined on [a, b] can
be uniformly approximated as closely as
we wish by a polynomial function.

space of square integrable functions over the interval [a, b] relative to weight
σ(x). However, we will show that the sequence of functions {1, x, x2, . . .}
does not provide an orthogonal basis for these spaces. We will then proceed
to find an appropriate orthogonal basis of functions.

We are familiar with being able to expand functions over the basis {1, x, x2, . . .},
since these expansions are just Maclaurin series representations of the func-
tions about x = 0,

f (x) ∼
∞

∑
n=0

cnxn.

However, this basis is not an orthogonal set of basis functions. One can
easily see this by integrating the product of two even, or two odd, basis
functions with σ(x) = 1 and (a, b)=(−1, 1). For example,

∫ 1

−1
x0x2 dx =

2
3

.

The Gram-Schmidt Orthogonalization
Process.Since we have found that orthogonal bases have been useful in determin-

ing the coefficients for expansions of given functions, we might ask, “Given
a set of linearly independent basis vectors, can one find an orthogonal basis
of the given space?" The answer is yes. We recall from introductory linear
algebra, which mostly covers finite dimensional vector spaces, that there is
a method for carrying this out called the Gram-Schmidt Orthogonalization
Process. We will review this process for finite dimensional vectors and then
generalize to function spaces.
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Let’s assume that we have three vectors that span the usual three dimen-
sional space, R3, given by a1, a2, and a3 and shown in Figure 5.1. We seek
an orthogonal basis e1, e2, and e3, beginning one vector at a time.

First we take one of the original basis vectors, say a1, and define

e1 = a1.

It is sometimes useful to normalize these basis vectors, denoting such a
normalized vector with a “hat”:

ê1 =
e1

e1
,

where e1 =
√

e1 · e1.a

aa
3 2

1

Figure 5.1: The basis a1, a2, and a3, of
R3.

Next, we want to determine an e2 that is orthogonal to e1. We take an-
other element of the original basis, a2. In Figure 5.2 we show the orientation
of the vectors. Note that the desired orthogonal vector is e2. We can now
write a2 as the sum of e2 and the projection of a2 on e1. Denoting this pro-
jection by pr1a2, we then have

e2 = a2 − pr1a2. (5.8)

e

a
2

1

pr a
1 2

e
2

Figure 5.2: A plot of the vectors e1, a2,
and e2 needed to find the projection of
a2, on e1.

Recall the projection of one vector onto another from your vector calculus
class.

pr1a2 =
a2 · e1

e2
1

e1. (5.9)

This is easily proven by writing the projection as a vector of length a2 cos θ

in direction ê1, where θ is the angle between e1 and a2. Using the definition
of the dot product, a · b = ab cos θ, the projection formula follows.

Combining Equations (5.8)-(5.9), we find that

e2 = a2 −
a2 · e1

e2
1

e1. (5.10)

It is a simple matter to verify that e2 is orthogonal to e1:

e2 · e1 = a2 · e1 −
a2 · e1

e2
1

e1 · e1

= a2 · e1 − a2 · e1 = 0. (5.11)

e

a

a
3

2

1

pr a
1 3

pr a
2 3

e
2

Figure 5.3: A plot of vectors for deter-
mining e3.

Next, we seek a third vector e3 that is orthogonal to both e1 and e2. Picto-
rially, we can write the given vector a3 as a combination of vector projections
along e1 and e2 with the new vector. This is shown in Figure 5.3. Thus, we
can see that

e3 = a3 −
a3 · e1

e2
1

e1 −
a3 · e2

e2
2

e2. (5.12)

Again, it is a simple matter to compute the scalar products with e1 and e2

to verify orthogonality.
We can easily generalize this procedure to the N-dimensional case. Let

an, n = 1, ..., N be a set of linearly independent vectors in RN . Then, an
orthogonal basis can be found by setting e1 = a1 and defining
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en = an −
n−1

∑
j=1

an · ej

e2
j

ej, n = 2, 3, . . . , N. (5.13)

Now, we can generalize this idea to (real) function spaces. Let fn(x),
n ∈ N0 = {0, 1, 2, . . .}, be a linearly independent sequence of continuous
functions defined for x ∈ [a, b]. Then, an orthogonal basis of functions,
φn(x), n ∈ N0 can be found and is given by

φ0(x) = f0(x)

and

φn(x) = fn(x)−
n−1

∑
j=0

〈 fn, φj〉
‖φj‖2 φj(x), n = 1, 2, . . . . (5.14)

Here we are using inner products relative to weight σ(x),

〈 f , g〉 =
∫ b

a
f (x)g(x)σ(x) dx. (5.15)

Note the similarity between the orthogonal basis in (5.14) and the expression
for the finite dimensional case in Equation (5.13).

Example 5.2. Apply the Gram-Schmidt Orthogonalization process to the set fn(x) =
xn, n ∈ N0, when x ∈ (−1, 1) and σ(x) = 1.

First, we have φ0(x) = f0(x) = 1. Note that∫ 1

−1
φ2

0(x) dx = 2.

We could use this result to fix the normalization of the new basis, but we will hold
off doing that for now.

Now, we compute the second basis element:

φ1(x) = f1(x)− 〈 f1, φ0〉
‖φ0‖2 φ0(x)

= x− 〈x, 1〉
‖1‖2 1 = x, (5.16)

since 〈x, 1〉 is the integral of an odd function over a symmetric interval.
For φ2(x), we have

φ2(x) = f2(x)− 〈 f2, φ0〉
‖φ0‖2 φ0(x)− 〈 f2, φ1〉

‖φ1‖2 φ1(x)

= x2 − 〈x
2, 1〉
‖1‖2 1− 〈x

2, x〉
‖x‖2 x

= x2 −
∫ 1
−1 x2 dx∫ 1
−1 dx

= x2 − 1
3

. (5.17)
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So far, we have the orthogonal set {1, x, x2 − 1
3}. If one chooses to normalize

these by forcing φn(1) = 1, then one obtains the classical Legendre polynomials,
Pn(x). Thus,

P2(x) =
1
2
(3x2 − 1).

Note that this normalization is different than the usual one. In fact, we see the
P2(x) does not have a unit norm,

‖P2‖2 =
∫ 1

−1
P2

2 (x) dx =
2
5

.

The set of Legendre3 polynomials is just one set of classical orthogo-3 Adrien-Marie Legendre (1752-1833)
was a French mathematician who made
many contributions to analysis and
algebra.

nal polynomials that can be obtained in this way. Many of these special
functions had originally appeared as solutions of important boundary value
problems in physics. They all have similar properties and we will just elab-
orate some of these for the Legendre functions in the next section. Others
in this group are shown in Table 5.1.

Table 5.1: Common classical orthogo-
nal polynomials with the interval and
weight function used to define them.

Polynomial Symbol Interval σ(x)
Hermite Hn(x) (−∞, ∞) e−x2

Laguerre Lα
n(x) [0, ∞) e−x

Legendre Pn(x) (-1,1) 1

Gegenbauer Cλ
n (x) (-1,1) (1− x2)λ−1/2

Tchebychef of the 1st kind Tn(x) (-1,1) (1− x2)−1/2

Tchebychef of the 2nd kind Un(x) (-1,1) (1− x2)−1/2

Jacobi P(ν,µ)
n (x) (-1,1) (1− x)ν(1− x)µ

5.3 Fourier-Legendre Series

In the last chapter we saw how useful Fourier series expansions were
for solving the heat and wave equations. In Chapter 6 we will investigate
partial differential equations in higher dimensions and find that problems
with spherical symmetry may lead to the series representations in terms of a
basis of Legendre polynomials. For example, we could consider the steady
state temperature distribution inside a hemispherical igloo, which takes the
form

φ(r, θ) =
∞

∑
n=0

AnrnPn(cos θ)

in spherical coordinates. Evaluating this function at the surface r = a as
φ(a, θ) = f (θ), leads to a Fourier-Legendre series expansion of function f :

f (θ) =
∞

∑
n=0

cnPn(cos θ),

where cn = Anan
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In this section we would like to explore Fourier-Legendre series expan-
sions of functions f (x) defined on (−1, 1):

f (x) ∼
∞

∑
n=0

cnPn(x). (5.18)

As with Fourier trigonometric series, we can determine the expansion coef-
ficients by multiplying both sides of Equation (5.18) by Pm(x) and integrat-
ing for x ∈ [−1, 1]. Orthogonality gives the usual form for the generalized
Fourier coefficients,

cn =
〈 f , Pn〉
‖Pn‖2 , n = 0, 1, . . . .

We will later show that
‖Pn‖2 =

2
2n + 1

.

Therefore, the Fourier-Legendre coefficients are

cn =
2n + 1

2

∫ 1

−1
f (x)Pn(x) dx. (5.19)

5.3.1 Properties of Legendre Polynomials
The Rodrigues Formula.

We can do examples of Fourier-Legendre expansions given just a
few facts about Legendre polynomials. The first property that the Legendre
polynomials have is the Rodrigues formula:

Pn(x) =
1

2nn!
dn

dxn (x2 − 1)n, n ∈ N0. (5.20)

From the Rodrigues formula, one can show that Pn(x) is an nth degree
polynomial. Also, for n odd, the polynomial is an odd function and for n
even, the polynomial is an even function.

Example 5.3. Determine P2(x) from Rodrigues formula:

P2(x) =
1

222!
d2

dx2 (x2 − 1)2

=
1
8

d2

dx2 (x4 − 2x2 + 1)

=
1
8

d
dx

(4x3 − 4x)

=
1
8
(12x2 − 4)

=
1
2
(3x2 − 1). (5.21)

Note that we get the same result as we found in the last section using orthogonal-
ization.

The first several Legendre polynomials are given in Table 5.2. In Figure
5.4 we show plots of these Legendre polynomials. The Three Term Recursion Formula.
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Table 5.2: Tabular computation of the
Legendre polynomials using the Ro-
drigues formula.

n (x2 − 1)n dn

dxn (x2 − 1)n 1
2nn! Pn(x)

0 1 1 1 1

1 x2 − 1 2x 1
2 x

2 x4 − 2x2 + 1 12x2 − 4 1
8

1
2 (3x2 − 1)

3 x6 − 3x4 + 3x2 − 1 120x3 − 72x 1
48

1
2 (5x3 − 3x)

Figure 5.4: Plots of the Legendre poly-
nomials P2(x), P3(x), P4(x), and P5(x).
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All of the classical orthogonal polynomials satisfy a three term recursion
formula (or, recurrence relation or formula). In the case of the Legendre
polynomials, we have

(n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x), n = 1, 2, . . . . (5.22)

This can also be rewritten by replacing n with n− 1 as

(2n− 1)xPn−1(x) = nPn(x) + (n− 1)Pn−2(x), n = 1, 2, . . . . (5.23)

Example 5.4. Use the recursion formula to find P2(x) and P3(x), given that
P0(x) = 1 and P1(x) = x.

We first begin by inserting n = 1 into Equation (5.22):

2P2(x) = 3xP1(x)− P0(x) = 3x2 − 1.

So, P2(x) = 1
2 (3x2 − 1).

For n = 2, we have

3P3(x) = 5xP2(x)− 2P1(x)

=
5
2

x(3x2 − 1)− 2x

=
1
2
(15x3 − 9x). (5.24)

This gives P3(x) = 1
2 (5x3 − 3x). These expressions agree with the earlier results.

We will prove the three term recursion formula in two ways. First we

The first proof of the three term recur-
sion formula is based upon the nature of
the Legendre polynomials as an orthog-
onal basis, while the second proof is de-
rived using generating functions.
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use the orthogonality properties of Legendre polynomials and the following
lemma.

Lemma 5.1. The leading coefficient of xn in Pn(x) is 1
2nn!

(2n)!
n! .

Proof. We can prove this using the Rodrigues formula. First, we focus on
the leading coefficient of (x2 − 1)n, which is x2n. The first derivative of x2n

is 2nx2n−1. The second derivative is 2n(2n− 1)x2n−2. The jth derivative is

djx2n

dxj = [2n(2n− 1) . . . (2n− j + 1)]x2n−j.

Thus, the nth derivative is given by

dnx2n

dxn = [2n(2n− 1) . . . (n + 1)]xn.

This proves that Pn(x) has degree n. The leading coefficient of Pn(x) can
now be written as

[2n(2n− 1) . . . (n + 1)]
2nn!

=
[2n(2n− 1) . . . (n + 1)]

2nn!
n(n− 1) . . . 1
n(n− 1) . . . 1

=
1

2nn!
(2n)!

n!
. (5.25)

Theorem 5.1. Legendre polynomials satisfy the three term recursion formula

(2n− 1)xPn−1(x) = nPn(x) + (n− 1)Pn−2(x), n = 1, 2, . . . . (5.26)

Proof. In order to prove the three term recursion formula we consider the
expression (2n− 1)xPn−1(x)− nPn(x). While each term is a polynomial of
degree n, the leading order terms cancel. We need only look at the coeffi-
cient of the leading order term first expression. It is

2n− 1
2n−1(n− 1)!

(2n− 2)!
(n− 1)!

=
1

2n−1(n− 1)!
(2n− 1)!
(n− 1)!

=
(2n− 1)!

2n−1 [(n− 1)!]2
.

The coefficient of the leading term for nPn(x) can be written as

n
1

2nn!
(2n)!

n!
= n

(
2n
2n2

)(
1

2n−1(n− 1)!

)
(2n− 1)!
(n− 1)!

(2n− 1)!

2n−1 [(n− 1)!]2
.

It is easy to see that the leading order terms in the expression (2n− 1)xPn−1(x)−
nPn(x) cancel.

The next terms will be of degree n− 2. This is because the Pn’s are either
even or odd functions, thus only containing even, or odd, powers of x. We
conclude that

(2n− 1)xPn−1(x)− nPn(x) = polynomial of degree n− 2.

Therefore, since the Legendre polynomials form a basis, we can write this
polynomial as a linear combination of Legendre polynomials:

(2n− 1)xPn−1(x)− nPn(x) = c0P0(x) + c1P1(x) + . . . + cn−2Pn−2(x). (5.27)
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Multiplying Equation (5.27) by Pm(x) for m = 0, 1, . . . , n− 3, integrating
from −1 to 1, and using orthogonality, we obtain

0 = cm‖Pm‖2, m = 0, 1, . . . , n− 3.

[Note:
∫ 1
−1 xkPn(x) dx = 0 for k ≤ n − 1. Thus,

∫ 1
−1 xPn−1(x)Pm(x) dx = 0

for m ≤ n− 3.]
Thus, all of these cm’s are zero, leaving Equation (5.27) as

(2n− 1)xPn−1(x)− nPn(x) = cn−2Pn−2(x).

The final coefficient can be found by using the normalization condition,
Pn(1) = 1. Thus, cn−2 = (2n− 1)− n = n− 1.

5.3.2 Generating Functions The Generating Function for Legendre Poly-
nomials

A second proof of the three term recursion formula can be ob-
tained from the generating function of the Legendre polynomials. Many
special functions have such generating functions. In this case it is given by

g(x, t) =
1√

1− 2xt + t2
=

∞

∑
n=0

Pn(x)tn, |x| ≤ 1, |t| < 1. (5.28)

This generating function occurs often in applications. In particular, it
arises in potential theory, such as electromagnetic or gravitational potentials.
These potential functions are 1

r type functions.

Figure 5.5: The position vectors used to
describe the tidal force on the Earth due
to the moon. r

2

r
1

r
1

r  -
2

For example, the gravitational potential between the Earth and the moon
is proportional to the reciprocal of the magnitude of the difference between
their positions relative to some coordinate system. An even better example,
would be to place the origin at the center of the Earth and consider the
forces on the non-pointlike Earth due to the moon. Consider a piece of the
Earth at position r1 and the moon at position r2 as shown in Figure 5.5. The
tidal potential Φ is proportional to

Φ ∝
1

|r2 − r1|
=

1√
(r2 − r1) · (r2 − r1)

=
1√

r2
1 − 2r1r2 cos θ + r2

2

,

where θ is the angle between r1 and r2.
Typically, one of the position vectors is much larger than the other. Let’s

assume that r1 � r2. Then, one can write

Φ ∝
1√

r2
1 − 2r1r2 cos θ + r2

2

=
1
r2

1√
1− 2 r1

r2
cos θ +

(
r1
r2

)2
.
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Now, define x = cos θ and t = r1
r2

. We then have that the tidal potential is
proportional to the generating function for the Legendre polynomials! So,
we can write the tidal potential as

Φ ∝
1
r2

∞

∑
n=0

Pn(cos θ)

(
r1

r2

)n
.

The first term in the expansion, 1
r2

, is the gravitational potential that gives
the usual force between the Earth and the moon. [Recall that the gravita-
tional potential for mass m at distance r from M is given by Φ = −GMm

r and

that the force is the gradient of the potential, F = −∇Φ ∝ ∇
(

1
r

)
.] The next

terms will give expressions for the tidal effects.
Now that we have some idea as to where this generating function might

have originated, we can proceed to use it. First of all, the generating function
can be used to obtain special values of the Legendre polynomials.

Example 5.5. Evaluate Pn(0) using the generating function. Pn(0) is found by
considering g(0, t). Setting x = 0 in Equation (5.28), we have

g(0, t) =
1√

1 + t2

=
∞

∑
n=0

Pn(0)tn

= P0(0) + P1(0)t + P2(0)t2 + P3(0)t3 + . . . . (5.29)

We can use the binomial expansion to find the final answer. Namely, we have

1√
1 + t2

= 1− 1
2

t2 +
3
8

t4 + . . . .

Comparing these expansions, we have the Pn(0) = 0 for n odd and for even integers
one can show (see Problem 12) that4 4 This example can be finished by first

proving that

(2n)!! = 2nn!

and

(2n− 1)!! =
(2n)!
(2n)!!

=
(2n)!
2nn!

.

P2n(0) = (−1)n (2n− 1)!!
(2n)!!

, (5.30)

where n!! is the double factorial,

n!! =


n(n− 2) . . . (3)1, n > 0, odd,
n(n− 2) . . . (4)2, n > 0, even,
1 n = 0,−1

.

Example 5.6. Evaluate Pn(−1). This is a simpler problem. In this case we have

g(−1, t) =
1√

1 + 2t + t2
=

1
1 + t

= 1− t + t2 − t3 + . . . .

Therefore, Pn(−1) = (−1)n.
Proof of the three term recursion for-
mula using the generating function.

Example 5.7. Prove the three term recursion formula,

(k + 1)Pk+1(x)− (2k + 1)xPk(x) + kPk−1(x) = 0, k = 1, 2, . . . ,
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using the generating function.
We can also use the generating function to find recurrence relations. To prove the

three term recursion (5.22) that we introduced above, then we need only differentiate
the generating function with respect to t in Equation (5.28) and rearrange the result.
First note that

∂g
∂t

=
x− t

(1− 2xt + t2)3/2 =
x− t

1− 2xt + t2 g(x, t).

Combining this with
∂g
∂t

=
∞

∑
n=0

nPn(x)tn−1,

we have

(x− t)g(x, t) = (1− 2xt + t2)
∞

∑
n=0

nPn(x)tn−1.

Inserting the series expression for g(x, t) and distributing the sum on the right side,
we obtain

(x− t)
∞

∑
n=0

Pn(x)tn =
∞

∑
n=0

nPn(x)tn−1 −
∞

∑
n=0

2nxPn(x)tn +
∞

∑
n=0

nPn(x)tn+1.

Multiplying out the x− t factor and rearranging, leads to three separate sums:

∞

∑
n=0

nPn(x)tn−1 −
∞

∑
n=0

(2n + 1)xPn(x)tn +
∞

∑
n=0

(n + 1)Pn(x)tn+1 = 0. (5.31)

Each term contains powers of t that we would like to combine into a single sum.
This is done by reindexing. For the first sum, we could use the new index k = n− 1.
Then, the first sum can be written

∞

∑
n=0

nPn(x)tn−1 =
∞

∑
k=−1

(k + 1)Pk+1(x)tk.

Using different indices is just another way of writing out the terms. Note that

∞

∑
n=0

nPn(x)tn−1 = 0 + P1(x) + 2P2(x)t + 3P3(x)t2 + . . .

and
∞

∑
k=−1

(k + 1)Pk+1(x)tk = 0 + P1(x) + 2P2(x)t + 3P3(x)t2 + . . .

actually give the same sum. The indices are sometimes referred to as dummy indices
because they do not show up in the expanded expression and can be replaced with
another letter.

If we want to do so, we could now replace all of the k’s with n’s. However, we will
leave the k’s in the first term and now reindex the next sums in Equation (5.31).
The second sum just needs the replacement n = k and the last sum we reindex
using k = n + 1. Therefore, Equation (5.31) becomes

∞

∑
k=−1

(k + 1)Pk+1(x)tk −
∞

∑
k=0

(2k + 1)xPk(x)tk +
∞

∑
k=1

kPk−1(x)tk = 0. (5.32)
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We can now combine all of the terms, noting the k = −1 term is automatically
zero and the k = 0 terms give

P1(x)− xP0(x) = 0. (5.33)

Of course, we know this already. So, that leaves the k > 0 terms:

∞

∑
k=1

[(k + 1)Pk+1(x)− (2k + 1)xPk(x) + kPk−1(x)] tk = 0. (5.34)

Since this is true for all t, the coefficients of the tk’s are zero, or

(k + 1)Pk+1(x)− (2k + 1)xPk(x) + kPk−1(x) = 0, k = 1, 2, . . . .

While this is the standard form for the three term recurrence relation, the earlier
form is obtained by setting k = n− 1.

There are other recursion relations which we list in the box below. Equa-
tion (5.35) was derived using the generating function. Differentiating it with
respect to x, we find Equation (5.36). Equation (5.37) can be proven using
the generating function by differentiating g(x, t) with respect to x and re-
arranging the resulting infinite series just as in this last manipulation. This
will be left as Problem 4. Combining this result with Equation (5.35), we
can derive Equations (5.38)-(5.39). Adding and subtracting these equations
yields Equations (5.40)-(5.41).

Recursion Formulae for Legendre Polynomials for n = 1, 2, . . . .

(n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x) (5.35)

(n + 1)P′n+1(x) = (2n + 1)[Pn(x) + xP′n(x)]− nP′n−1(x)

(5.36)

Pn(x) = P′n+1(x)− 2xP′n(x) + P′n−1(x) (5.37)

P′n−1(x) = xP′n(x)− nPn(x) (5.38)

P′n+1(x) = xP′n(x) + (n + 1)Pn(x) (5.39)

P′n+1(x) + P′n−1(x) = 2xP′n(x) + Pn(x). (5.40)

P′n+1(x)− P′n−1(x) = (2n + 1)Pn(x). (5.41)

(x2 − 1)P′n(x) = nxPn(x)− nPn−1(x) (5.42)

Finally, Equation (5.42) can be obtained using Equations (5.38) and (5.39).
Just multiply Equation (5.38) by x,

x2P′n(x)− nxPn(x) = xP′n−1(x).

Now use Equation (5.39), but first replace n with n − 1 to eliminate the
xP′n−1(x) term:

x2P′n(x)− nxPn(x) = P′n(x)− nPn−1(x).

Rearranging gives the Equation (5.42).
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Example 5.8. Use the generating function to prove

‖Pn‖2 =
∫ 1

−1
P2

n(x) dx =
2

2n + 1
.

Another use of the generating function is to obtain the normalization constant.
This can be done by first squaring the generating function in order to get the prod-
ucts Pn(x)Pm(x), and then integrating over x.The normalization constant.

Squaring the generating function has to be done with care, as we need to make
proper use of the dummy summation index. So, we first write

1
1− 2xt + t2 =

[
∞

∑
n=0

Pn(x)tn

]2

=
∞

∑
n=0

∞

∑
m=0

Pn(x)Pm(x)tn+m. (5.43)

Integrating from x = −1 to x = 1 and using the orthogonality of the Legendre
polynomials, we have∫ 1

−1

dx
1− 2xt + t2 =

∞

∑
n=0

∞

∑
m=0

tn+m
∫ 1

−1
Pn(x)Pm(x) dx

=
∞

∑
n=0

t2n
∫ 1

−1
P2

n(x) dx. (5.44)

However, one can show that55 You will need the integral∫ dx
a + bx

=
1
b

ln(a + bx) + C.
∫ 1

−1

dx
1− 2xt + t2 =

1
t

ln
(

1 + t
1− t

)
.

Expanding this expression about t = 0, we obtain66 You will need the series expansion

ln(1 + x) =
∞

∑
n=1

(−1)n+1 xn

n

= x− x2

2
+

x3

3
− · · · .

1
t

ln
(

1 + t
1− t

)
=

∞

∑
n=0

2
2n + 1

t2n.

Comparing this result with Equation (5.44), we find that

‖Pn‖2 =
∫ 1

−1
P2

n(x) dx =
2

2n + 1
. (5.45)

5.3.3 The Differential Equation for Legendre Polynomials

The Legendre polynomials satisfy a second order linear differential
equation. This differential equation occurs naturally in the solution of initial-
boundary value problems in three dimensions which possess some spherical
symmetry. We will see this in the last chapter. There are two approaches
we could take in showing that the Legendre polynomials satisfy a particular
differential equation. Either we can write down the equations and attempt
to solve it, or we could use the above properties to obtain the equation. For
now, we will seek the differential equation satisfied by Pn(x) using the above
recursion relations.
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We begin by differentiating Equation (5.42) and using Equation (5.38) to
simplify:

d
dx

(
(x2 − 1)P′n(x)

)
= nPn(x) + nxP′n(x)− nP′n−1(x)

= nPn(x) + n2Pn(x)

= n(n + 1)Pn(x). (5.46)

Therefore, Legendre polynomials, or Legendre functions of the first kind,
are solutions of the differential equation

(1− x2)y′′ − 2xy′ + n(n + 1)y = 0.

As this is a linear second order differential equation, we expect two linearly A generalization of the Legendre equa-
tion is given by (1 − x2)y′′ − 2xy′ +[

n(n + 1)− m2

1−x2

]
y = 0. Solutions to

this equation, Pm
n (x) and Qm

n (x), are
called the associated Legendre functions
of the first and second kind.

independent solutions. The second solution, called the Legendre function
of the second kind, is given by Qn(x) and is not well behaved at x = ±1.
For example,

Q0(x) =
1
2

ln
1 + x
1− x

.

We will not need these for physically interesting examples in this book.

5.3.4 Fourier-Legendre Series

With these properties of Legendre functions we are now prepared
to compute the expansion coefficients for the Fourier-Legendre series repre-
sentation of a given function.

Example 5.9. Expand f (x) = x3 in a Fourier-Legendre series.
We simply need to compute

cn =
2n + 1

2

∫ 1

−1
x3Pn(x) dx. (5.47)

We first note that ∫ 1

−1
xmPn(x) dx = 0 for m > n.

As a result, we have that cn = 0 for n > 3. We could just compute
∫ 1
−1 x3Pm(x) dx

for m = 0, 1, 2, . . . outright by looking up Legendre polynomials. But, note that x3

is an odd function. So, c0 = 0 and c2 = 0.
This leaves us with only two coefficients to compute. We refer to Table 5.2 and

find that

c1 =
3
2

∫ 1

−1
x4 dx =

3
5

c3 =
7
2

∫ 1

−1
x3
[

1
2
(5x3 − 3x)

]
dx =

2
5

.

Thus,

x3 =
3
5

P1(x) +
2
5

P3(x).
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Of course, this is simple to check using Table 5.2:

3
5

P1(x) +
2
5

P3(x) =
3
5

x +
2
5

[
1
2
(5x3 − 3x)

]
= x3.

We could have obtained this result without doing any integration. Write x3 as a
linear combination of P1(x) and P3(x) :

x3 = c1x +
1
2

c2(5x3 − 3x)

= (c1 −
3
2

c2)x +
5
2

c2x3. (5.48)

Equating coefficients of like terms, we have that c2 = 2
5 and c1 = 3

2 c2 = 3
5 .

Example 5.10. Expand the Heaviside7 function in a Fourier-Legendre series.7 Oliver Heaviside (1850-1925) was an
English mathematician, physicist and
engineer who used complex analysis to
study circuits and was a co-founder of
vector analysis. The Heaviside function
is also called the step function.

The Heaviside function is defined as

H(x) =

{
1, x > 0,
0, x < 0.

(5.49)

In this case, we cannot find the expansion coefficients without some integration. We
have to compute

cn =
2n + 1

2

∫ 1

−1
f (x)Pn(x) dx

=
2n + 1

2

∫ 1

0
Pn(x) dx. (5.50)

We can make use of identity (5.41),

P′n+1(x)− P′n−1(x) = (2n + 1)Pn(x), n > 0. (5.51)

We have for n > 0

cn =
1
2

∫ 1

0
[P′n+1(x)− P′n−1(x)] dx =

1
2
[Pn−1(0)− Pn+1(0)].

For n = 0, we have

c0 =
1
2

∫ 1

0
dx =

1
2

.

This leads to the expansion

f (x) ∼ 1
2
+

1
2

∞

∑
n=1

[Pn−1(0)− Pn+1(0)]Pn(x).

We still need to evaluate the Fourier-Legendre coefficients

cn =
1
2
[Pn−1(0)− Pn+1(0)].

Since Pn(0) = 0 for n odd, the cn’s vanish for n even. Letting n = 2k− 1, we
re-index the sum, obtaining

f (x) ∼ 1
2
+

1
2

∞

∑
k=1

[P2k−2(0)− P2k(0)]P2k−1(x).
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We can compute the nonzero Fourier coefficients, c2k−1 = 1
2 [P2k−2(0)− P2k(0)],

using a result from Problem 12:

P2k(0) = (−1)k (2k− 1)!!
(2k)!!

. (5.52)

Namely, we have

c2k−1 =
1
2
[P2k−2(0)− P2k(0)]

=
1
2

[
(−1)k−1 (2k− 3)!!

(2k− 2)!!
− (−1)k (2k− 1)!!

(2k)!!

]
= −1

2
(−1)k (2k− 3)!!

(2k− 2)!!

[
1 +

2k− 1
2k

]
= −1

2
(−1)k (2k− 3)!!

(2k− 2)!!
4k− 1

2k
. (5.53)
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Figure 5.6: Sum of first 21 terms for
Fourier-Legendre series expansion of
Heaviside function.

Thus, the Fourier-Legendre series expansion for the Heaviside function is given
by

f (x) ∼ 1
2
− 1

2

∞

∑
n=1

(−1)n (2n− 3)!!
(2n− 2)!!

4n− 1
2n

P2n−1(x). (5.54)

The sum of the first 21 terms of this series are shown in Figure 5.6. We note the slow
convergence to the Heaviside function. Also, we see that the Gibbs phenomenon is
present due to the jump discontinuity at x = 0. [See Section 3.7.]

5.4 Gamma Function
The name and symbol for the Gamma
function were first given by Legendre in
1811. However, the search for a gener-
alization of the factorial extends back to
the 1720’s when Euler provided the first
representation of the factorial as an infi-
nite product, later to be modified by oth-
ers like Gauß, Weierstraß, and Legendre.

A function that often occurs in the study of special functions

is the Gamma function. We will need the Gamma function in the next
section on Fourier-Bessel series.

For x > we define the Gamma function as

Γ(x) =
∫ ∞

0
tx−1e−t dt, x > 0. (5.55)

The Gamma function is a generalization of the factorial function and a plot
is shown in Figure 5.7. In fact, we have

Γ(1) = 1

and
Γ(x + 1) = xΓ(x).

The reader can prove this identity by simply performing an integration by
parts. (See Problem 7.) In particular, for integers n ∈ Z+, we then have

Γ(n + 1) = nΓ(n) = n(n− 1)Γ(n− 2) = n(n− 1) · · · 2Γ(1) = n!.

–6

–4

–2

2

4

1 2 3 4–1–2–3–4–6

x

Figure 5.7: Plot of the Gamma function.

We can also define the Gamma function for negative, non-integer values
of x. We first note that by iteration on n ∈ Z+, we have

Γ(x + n) = (x + n− 1) · · · (x + 1)xΓ(x), x + n > 0.



146 partial differential equations

Solving for Γ(x), we then find

Γ(x) =
Γ(x + n)

(x + n− 1) · · · (x + 1)x
, −n < x < 0

Note that the Gamma function is undefined at zero and the negative inte-
gers.

Example 5.11. We now prove that

Γ
(

1
2

)
=
√

π.

This is done by direct computation of the integral:

Γ
(

1
2

)
=
∫ ∞

0
t−

1
2 e−t dt.

Letting t = z2, we have

Γ
(

1
2

)
= 2

∫ ∞

0
e−z2

dz.

Due to the symmetry of the integrand, we obtain the classic integral

Γ
(

1
2

)
=
∫ ∞

−∞
e−z2

dz,

which can be performed using a standard trick.8 Consider the integral8 In Example 9.5 we show the more gen-
eral result:∫ ∞

−∞
e−βy2

dy =

√
π

β
. I =

∫ ∞

−∞
e−x2

dx.

Then,
I2 =

∫ ∞

−∞
e−x2

dx
∫ ∞

−∞
e−y2

dy.

Note that we changed the integration variable. This will allow us to write this
product of integrals as a double integral:

I2 =
∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2) dxdy.

This is an integral over the entire xy-plane. We can transform this Cartesian inte-
gration to an integration over polar coordinates. The integral becomes

I2 =
∫ 2π

0

∫ ∞

0
e−r2

rdrdθ.

This is simple to integrate and we have I2 = π. So, the final result is found by
taking the square root of both sides:

Γ
(

1
2

)
= I =

√
π.

In Problem 12 the reader will prove the identity

Γ(n +
1
2
) =

(2n− 1)!!
2n

√
π.
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Another useful relation, which we only state, is

Γ(x)Γ(1− x) =
π

sin πx
.

The are many other important relations, including infinite products, which
we will not need at this point. The reader is encouraged to read about
these elsewhere. In the meantime, we move on to the discussion of another
important special function in physics and mathematics.

5.5 Fourier-Bessel Series

Bessel functions arise in many problems in physics possessing cylin-
drical symmetry such as the vibrations of circular drumheads and the radial
modes in optical fibers. They also provide us with another orthogonal set
of basis functions.

The first occurrence of Bessel functions (zeroth order) was in the work Bessel functions have a long history
and were named after Friedrich Wilhelm
Bessel (1784-1846).

of Daniel Bernoulli on heavy chains (1738). More general Bessel functions
were studied by Leonhard Euler in 1781 and in his study of the vibrating
membrane in 1764. Joseph Fourier found them in the study of heat conduc-
tion in solid cylinders and Siméon Poisson (1781-1840) in heat conduction
of spheres (1823).

The history of Bessel functions, does not just originate in the study of the
wave and heat equations. These solutions originally came up in the study
of the Kepler problem, describing planetary motion. According to G. N.
Watson in his Treatise on Bessel Functions, the formulation and solution of
Kepler’s Problem was discovered by Joseph-Louis Lagrange (1736-1813), in
1770. Namely, the problem was to express the radial coordinate and what
is called the eccentric anomaly, E, as functions of time. Lagrange found
expressions for the coefficients in the expansions of r and E in trigonometric
functions of time. However, he only computed the first few coefficients. In
1816 Friedrich Wilhelm Bessel (1784-1846) had shown that the coefficients
in the expansion for r could be given an integral representation. In 1824 he
presented a thorough study of these functions, which are now called Bessel
functions.

You might have seen Bessel functions in a course on differential equations
as solutions of the differential equation

x2y′′ + xy′ + (x2 − p2)y = 0. (5.56)

Solutions to this equation are obtained in the form of series expansions.
Namely, one seeks solutions of the form

y(x) =
∞

∑
j=0

ajxj+n

by determining the for the coefficients must take. We will leave this for a
homework exercise and simply report the results.
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One solution of the differential equation is the Bessel function of the first
kind of order p, given as

y(x) = Jp(x) =
∞

∑
n=0

(−1)n

Γ(n + 1)Γ(n + p + 1)

( x
2

)2n+p
. (5.57)

Figure 5.8: Plots of the Bessel functions
J0(x), J1(x), J2(x), and J3(x).
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In Figure 5.8 we display the first few Bessel functions of the first kind
of integer order. Note that these functions can be described as decaying
oscillatory functions.

A second linearly independent solution is obtained for p not an integer as
J−p(x). However, for p an integer, the Γ(n+ p+ 1) factor leads to evaluations
of the Gamma function at zero, or negative integers, when p is negative.
Thus, the above series is not defined in these cases.

Another method for obtaining a second linearly independent solution is
through a linear combination of Jp(x) and J−p(x) as

Np(x) = Yp(x) =
cos πpJp(x)− J−p(x)

sin πp
. (5.58)

These functions are called the Neumann functions, or Bessel functions of
the second kind of order p.

In Figure 5.9 we display the first few Bessel functions of the second kind
of integer order. Note that these functions are also decaying oscillatory
functions. However, they are singular at x = 0.

In many applications one desires bounded solutions at x = 0. These
functions do not satisfy this boundary condition. For example, we will
later study one standard problem is to describe the oscillations of a circular
drumhead. For this problem one solves the two dimensional wave equation
using separation of variables in cylindrical coordinates. The radial equation
leads to a Bessel equation. The Bessel function solutions describe the radial
part of the solution and one does not expect a singular solution at the center
of the drum. The amplitude of the oscillation must remain finite. Thus, only
Bessel functions of the first kind can be used.
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Figure 5.9: Plots of the Neumann func-
tions N0(x), N1(x), N2(x), and N3(x).

Bessel functions satisfy a variety of properties, which we will only list
at this time for Bessel functions of the first kind. The reader will have the
opportunity to prove these for homework.

Derivative Identities These identities follow directly from the manipula-
tion of the series solution.

d
dx
[
xp Jp(x)

]
= xp Jp−1(x). (5.59)

d
dx
[
x−p Jp(x)

]
= −x−p Jp+1(x). (5.60)

Recursion Formulae The next identities follow from adding, or subtract-
ing, the derivative identities.

Jp−1(x) + Jp+1(x) =
2p
x

Jp(x). (5.61)

Jp−1(x)− Jp+1(x) = 2J′p(x). (5.62)

Orthogonality As we will see in the next chapter, one can recast the
Bessel equation into an eigenvalue problem whose solutions form an or-
thogonal basis of functions on L2

x(0, a). Using Sturm-Liouville theory, one
can show that

∫ a

0
xJp(jpn

x
a
)Jp(jpm

x
a
) dx =

a2

2
[

Jp+1(jpn)
]2

δn,m, (5.63)

where jpn is the nth root of Jp(x), Jp(jpn) = 0, n = 1, 2, . . . . A list of some
of these roots are provided in Table 5.3.

Generating Function

ex(t− 1
t )/2 =

∞

∑
n=−∞

Jn(x)tn, x > 0, t 6= 0. (5.64)
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Table 5.3: The zeros of Bessel Functions,
Jm(jmn) = 0.

n m = 0 m = 1 m = 2 m = 3 m = 4 m = 5
1 2.405 3.832 5.136 6.380 7.588 8.771

2 5.520 7.016 8.417 9.761 11.065 12.339

3 8.654 10.173 11.620 13.015 14.373 15.700

4 11.792 13.324 14.796 16.223 17.616 18.980

5 14.931 16.471 17.960 19.409 20.827 22.218

6 18.071 19.616 21.117 22.583 24.019 25.430

7 21.212 22.760 24.270 25.748 27.199 28.627

8 24.352 25.904 27.421 28.908 30.371 31.812

9 27.493 29.047 30.569 32.065 33.537 34.989

Integral Representation

Jn(x) =
1
π

∫ π

0
cos(x sin θ − nθ) dθ, x > 0, n ∈ Z. (5.65)

Fourier-Bessel Series

Since the Bessel functions are an orthogonal set of functions of a Sturm-
Liouville problem, we can expand square integrable functions in this ba-
sis. In fact, the Sturm-Liouville problem is given in the form

x2y′′ + xy′ + (λx2 − p2)y = 0, x ∈ [0, a], (5.66)

satisfying the boundary conditions: y(x) is bounded at x = 0 and y(a) =
0. The solutions are then of the form Jp(

√
λx), as can be shown by making

the substitution t =
√

λx in the differential equation. Namely, we let
y(x) = u(t) and note that

dy
dx

=
dt
dx

du
dt

=
√

λ
du
dt

.

Then,
t2u′′ + tu′ + (t2 − p2)u = 0,

which has a solution u(t) = Jp(t).In the study of boundary value prob-
lems in differential equations, Sturm-
Liouville problems are a bountiful
source of basis functions for the space
of square integrable functions as will be
seen in the next section.

Using Sturm-Liouville theory, one can show that Jp(jpn
x
a ) is a basis

of eigenfunctions and the resulting Fourier-Bessel series expansion of f (x)
defined on x ∈ [0, a] is

f (x) =
∞

∑
n=1

cn Jp(jpn
x
a
), (5.67)

where the Fourier-Bessel coefficients are found using the orthogonality
relation as

cn =
2

a2
[

Jp+1(jpn)
]2 ∫ a

0
x f (x)Jp(jpn

x
a
) dx. (5.68)

Example 5.12. Expand f (x) = 1 for 0 < x < 1 in a Fourier-Bessel series of
the form

f (x) =
∞

∑
n=1

cn J0(j0nx)
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.
We need only compute the Fourier-Bessel coefficients in Equation (5.68):

cn =
2

[J1(j0n)]
2

∫ 1

0
xJ0(j0nx) dx. (5.69)

From the identity

d
dx
[
xp Jp(x)

]
= xp Jp−1(x). (5.70)

we have

∫ 1

0
xJ0(j0nx) dx =

1
j20n

∫ j0n

0
yJ0(y) dy

=
1

j20n

∫ j0n

0

d
dy

[yJ1(y)] dy

=
1

j20n
[yJ1(y)]

j0n
0

=
1

j0n
J1(j0n). (5.71)
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Figure 5.10: Plot of the first 50 terms
of the Fourier-Bessel series in Equation
(5.72) for f (x) = 1 on 0 < x < 1.

As a result, the desired Fourier-Bessel expansion is given as

1 = 2
∞

∑
n=1

J0(j0nx)
j0n J1(j0n)

, 0 < x < 1. (5.72)

In Figure 5.10 we show the partial sum for the first fifty terms of this series.
Note once again the slow convergence due to the Gibbs phenomenon.
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5.6 Appendix: The Least Squares Approximation

In the first section of this chapter we showed that we can expand
functions over an infinite set of basis functions as

f (x) =
∞

∑
n=1

cnφn(x)

and that the generalized Fourier coefficients are given by

cn =
< φn, f >

< φn, φn >
.

In this section we turn to a discussion of approximating f (x) by the partial
sums ∑N

n=1 cnφn(x) and showing that the Fourier coefficients are the best
coefficients minimizing the deviation of the partial sum from f (x). This will
lead us to a discussion of the convergence of Fourier series.

More specifically, we set the following goal:

Goal

To find the best approximation of f (x) on [a, b] by SN(x) =
N
∑

n=1
cnφn(x)

for a set of fixed functions φn(x); i.e., to find the expansion coefficients,
cn, such that SN(x) approximates f (x) in the least squares sense.

We want to measure the deviation of the finite sum from the given func-
tion. Essentially, we want to look at the error made in the approximation.
This is done by introducing the mean square deviation:

EN =
∫ b

a
[ f (x)− SN(x)]2ρ(x) dx,

where we have introduced the weight function ρ(x) > 0. It gives us a sense
as to how close the Nth partial sum is to f (x).The mean square deviation.

We want to minimize this deviation by choosing the right cn’s. We begin
by inserting the partial sums and expand the square in the integrand:

EN =
∫ b

a
[ f (x)− SN(x)]2ρ(x) dx

=
∫ b

a

[
f (x)−

N

∑
n=1

cnφn(x)

]2

ρ(x) dx

=

b∫
a

f 2(x)ρ(x) dx− 2
b∫

a

f (x)
N

∑
n=1

cnφn(x)ρ(x) dx

+

b∫
a

N

∑
n=1

cnφn(x)
N

∑
m=1

cmφm(x)ρ(x) dx (5.73)

Looking at the three resulting integrals, we see that the first term is just
the inner product of f with itself. The other integrations can be rewritten
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after interchanging the order of integration and summation. The double
sum can be reduced to a single sum using the orthogonality of the φn’s.
Thus, we have

EN = < f , f > −2
N

∑
n=1

cn < f , φn > +
N

∑
n=1

N

∑
m=1

cncm < φn, φm >

= < f , f > −2
N

∑
n=1

cn < f , φn > +
N

∑
n=1

c2
n < φn, φn > . (5.74)

We are interested in finding the coefficients, so we will complete the
square in cn. Focusing on the last two terms, we have

−2
N

∑
n=1

cn < f , φn > +
N

∑
n=1

c2
n < φn, φn >

=
N

∑
n=1

< φn, φn > c2
n − 2 < f , φn > cn

=
N

∑
n=1

< φn, φn >

[
c2

n −
2 < f , φn >

< φn, φn >
cn

]

=
N

∑
n=1

< φn, φn >

[(
cn −

< f , φn >

< φn, φn >

)2
−
(

< f , φn >

< φn, φn >

)2
]

.

(5.75)

To this point we have shown that the mean square deviation is given as

EN =< f , f > +
N

∑
n=1

< φn, φn >

[(
cn −

< f , φn >

< φn, φn >

)2
−
(

< f , φn >

< φn, φn >

)2
]

.

So, EN is minimized by choosing

cn =
< f , φn >

< φn, φn >
.

However, these are the Fourier Coefficients. This minimization is often re-
ferred to as Minimization in Least Squares Sense. Minimization in Least Squares Sense

Inserting the Fourier coefficients into the mean square deviation yields Bessel’s Inequality.

0 ≤ EN =< f , f > −
N

∑
n=1

c2
n < φn, φn > .

Thus, we obtain Bessel’s Inequality:

< f , f >≥
N

∑
n=1

c2
n < φn, φn > .

Convergence in the mean.
For convergence, we next let N get large and see if the partial sums con-

verge to the function. In particular, we say that the infinite series converges
in the mean if ∫ b

a
[ f (x)− SN(x)]2ρ(x) dx → 0 as N → ∞.
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Letting N get large in Bessel’s inequality shows that the sum ∑N
n=1 c2

n <

φn, φn > converges if

(< f , f >=
∫ b

a
f 2(x)ρ(x) dx < ∞.

The space of all such f is denoted L2
ρ(a, b), the space of square integrable

functions on (a, b) with weight ρ(x).
From the nth term divergence test from calculus we know that ∑ an con-

verges implies that an → 0 as n → ∞. Therefore, in this problem the terms
c2

n < φn, φn > approach zero as n gets large. This is only possible if the cn’s
go to zero as n gets large. Thus, if ∑N

n=1 cnφn converges in the mean to f ,
then

∫ b
a [ f (x)−∑N

n=1 cnφn]2ρ(x) dx approaches zero as N → ∞. This implies
from the above derivation of Bessel’s inequality that

< f , f > −
N

∑
n=1

c2
n(φn, φn)→ 0.

This leads to Parseval’s equality:Parseval’s equality.

< f , f >=
∞

∑
n=1

c2
n < φn, φn > .

Parseval’s equality holds if and only if

lim
N→∞

b∫
a

( f (x)−
N

∑
n=1

cnφn(x))2ρ(x) dx = 0.

If this is true for every square integrable function in L2
ρ(a, b), then the set of

functions {φn(x)}∞
n=1 is said to be complete. One can view these functions

as an infinite dimensional basis for the space of square integrable functions
on (a, b) with weight ρ(x) > 0.

One can extend the above limit cn → 0 as n→ ∞, by assuming that φn(x)
‖φn‖

is uniformly bounded and that
b∫
a
| f (x)|ρ(x) dx < ∞. This is the Riemann-

Lebesgue Lemma, but will not be proven here.

Problems

1. Consider the set of vectors (−1, 1, 1), (1,−1, 1), (1, 1,−1).

a. Use the Gram-Schmidt process to find an orthonormal basis for R3

using this set in the given order.

b. What do you get if you do reverse the order of these vectors?

2. Use the Gram-Schmidt process to find the first four orthogonal polyno-
mials satisfying the following:

a. Interval: (−∞, ∞) Weight Function: e−x2
.

b. Interval: (0, ∞) Weight Function: e−x.
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3. Find P4(x) using

a. The Rodrigues’ Formula in Equation (5.20).

b. The three term recursion formula in Equation (5.22).

4. In Equations (5.35)-(5.42) we provide several identities for Legendre poly-
nomials. Derive the results in Equations (5.36)-(5.42) as described in the text.
Namely,

a. Differentiating Equation (5.35) with respect to x, derive Equation
(5.36).

b. Derive Equation (5.37) by differentiating g(x, t) with respect to x
and rearranging the resulting infinite series.

c. Combining the last result with Equation (5.35), derive Equations
(5.38)-(5.39).

d. Adding and subtracting Equations (5.38)-(5.39), obtain Equations
(5.40)-(5.41).

e. Derive Equation (5.42) using some of the other identities.

5. Use the recursion relation (5.22) to evaluate
∫ 1
−1 xPn(x)Pm(x) dx, n ≤ m.

6. Expand the following in a Fourier-Legendre series for x ∈ (−1, 1).

a. f (x) = x2.

b. f (x) = 5x4 + 2x3 − x + 3.

c. f (x) =

{
−1, −1 < x < 0,
1, 0 < x < 1.

d. f (x) =

{
x, −1 < x < 0,
0, 0 < x < 1.

7. Use integration by parts to show Γ(x + 1) = xΓ(x).

8. Prove the double factorial identities:

(2n)!! = 2nn!

and

(2n− 1)!! =
(2n)!
2nn!

.

9. Express the following as Gamma functions. Namely, noting the form
Γ(x + 1) =

∫ ∞
0 txe−t dt and using an appropriate substitution, each expres-

sion can be written in terms of a Gamma function.

a.
∫ ∞

0 x2/3e−x dx.

b.
∫ ∞

0 x5e−x2
dx

c.
∫ 1

0

[
ln
(

1
x

)]n
dx
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10. The coefficients Cp
k in the binomial expansion for (1 + x)p are given by

Cp
k =

p(p− 1) · · · (p− k + 1)
k!

.

a. Write Cp
k in terms of Gamma functions.

b. For p = 1/2 use the properties of Gamma functions to write C1/2
k

in terms of factorials.

c. Confirm you answer in part b by deriving the Maclaurin series
expansion of (1 + x)1/2.

11. The Hermite polynomials, Hn(x), satisfy the following:

i. < Hn, Hm >=
∫ ∞
−∞ e−x2

Hn(x)Hm(x) dx =
√

π2nn!δn,m.

ii. H′n(x) = 2nHn−1(x).

iii. Hn+1(x) = 2xHn(x)− 2nHn−1(x).

iv. Hn(x) = (−1)nex2 dn

dxn

(
e−x2

)
.

Using these, show that

a. H′′n − 2xH′n + 2nHn = 0. [Use properties ii. and iii.]

b.
∫ ∞
−∞ xe−x2

Hn(x)Hm(x) dx =
√

π2n−1n! [δm,n−1 + 2(n + 1)δm,n+1] .
[Use properties i. and iii.]

c. Hn(0) =

{
0, n odd,

(−1)m (2m)!
m! , n = 2m.

[Let x = 0 in iii. and iterate.

Note from iv. that H0(x) = 1 and H1(x) = 2x. ]

12. In Maple one can type simplify(LegendreP(2*n-2,0)-LegendreP(2*n,0));
to find a value for P2n−2(0)− P2n(0). It gives the result in terms of Gamma
functions. However, in Example 5.10 for Fourier-Legendre series, the value
is given in terms of double factorials! So, we have

P2n−2(0)− P2n(0) =
√

π(4n− 1)
2Γ(n + 1)Γ

( 3
2 − n

) = (−1)n (2n− 3)!!
(2n− 2)!!

4n− 1
2n

.

You will verify that both results are the same by doing the following:

a. Prove that P2n(0) = (−1)n (2n−1)!!
(2n)!! using the generating function

and a binomial expansion.

b. Prove that Γ
(

n + 1
2

)
= (2n−1)!!

2n
√

π using Γ(x) = (x − 1)Γ(x − 1)
and iteration.

c. Verify the result from Maple that P2n−2(0)− P2n(0) =
√

π(4n−1)
2Γ(n+1)Γ( 3

2−n)
.

d. Can either expression for P2n−2(0)− P2n(0) be simplified further?

13. A solution Bessel’s equation, x2y′′+ xy′+(x2− n2)y = 0, , can be found
using the guess y(x) = ∑∞

j=0 ajxj+n. One obtains the recurrence relation
aj =

−1
j(2n+j) aj−2. Show that for a0 = (n!2n)−1 we get the Bessel function of

the first kind of order n from the even values j = 2k:

Jn(x) =
∞

∑
k=0

(−1)k

k!(n + k)!

( x
2

)n+2k
.
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14. Use the infinite series in the last problem to derive the derivative iden-
tities (5.70) and (5.60):

a. d
dx [x

n Jn(x)] = xn Jn−1(x).

b. d
dx [x

−n Jn(x)] = −x−n Jn+1(x).

15. Prove the following identities based on those in the last problem.

a. Jp−1(x) + Jp+1(x) = 2p
x Jp(x).

b. Jp−1(x)− Jp+1(x) = 2J′p(x).

16. Use the derivative identities of Bessel functions,(5.70)-(5.60), and inte-
gration by parts to show that∫

x3 J0(x) dx = x3 J1(x)− 2x2 J2(x) + C.

17. Use the generating function to find Jn(0) and J′n(0).

18. Bessel functions Jp(λx) are solutions of x2y′′ + xy′ + (λ2x2 − p2)y = 0.
Assume that x ∈ (0, 1) and that Jp(λ) = 0 and Jp(0) is finite.

a. Show that this equation can be written in the form

d
dx

(
x

dy
dx

)
+ (λ2x− p2

x
)y = 0.

This is the standard Sturm-Liouville form for Bessel’s equation.

b. Prove that ∫ 1

0
xJp(λx)Jp(µx) dx = 0, λ 6= µ

by considering∫ 1

0

[
Jp(µx)

d
dx

(
x

d
dx

Jp(λx)
)
− Jp(λx)

d
dx

(
x

d
dx

Jp(µx)
)]

dx.

Thus, the solutions corresponding to different eigenvalues (λ, µ)
are orthogonal.

c. Prove that ∫ 1

0
x
[

Jp(λx)
]2 dx =

1
2

J2
p+1(λ) =

1
2

J′2p (λ).

19. We can rewrite Bessel functions, Jν(x), in a form which will allow the
order to be non-integer by using the gamma function. You will need the

results from Problem 12b for Γ
(

k + 1
2

)
.

a. Extend the series definition of the Bessel function of the first kind
of order ν, Jν(x), for ν ≥ 0 by writing the series solution for y(x)
in Problem 13 using the gamma function.

b. Extend the series to J−ν(x), for ν ≥ 0. Discuss the resulting series
and what happens when ν is a positive integer.
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c. Use these results to obtain the closed form expressions

J1/2(x) =

√
2

πx
sin x,

J−1/2(x) =

√
2

πx
cos x.

d. Use the results in part c with the recursion formula for Bessel
functions to obtain a closed form for J3/2(x).

20. In this problem you will derive the expansion

x2 =
c2

2
+ 4

∞

∑
j=2

J0(αjx)
α2

j J0(αjc)
, 0 < x < c,

where the α′js are the positive roots of J1(αc) = 0, by following the below
steps.

a. List the first five values of α for J1(αc) = 0 using the Table 5.3 and
Figure 5.8. [Note: Be careful determining α1.]

b. Show that ‖J0(α1x)‖2 = c2

2 . Recall,

‖J0(αjx)‖2 =
∫ c

0
xJ2

0 (αjx) dx.

c. Show that ‖J0(αjx)‖2 = c2

2
[

J0(αjc)
]2 , j = 2, 3, . . . . (This is the most

involved step.) First note from Problem 18 that y(x) = J0(αjx) is a
solution of

x2y′′ + xy′ + α2
j x2y = 0.

i. Verify the Sturm-Liouville form of this differential equation:
(xy′)′ = −α2

j xy.
ii. Multiply the equation in part i. by y(x) and integrate from

x = 0 to x = c to obtain∫ c

0
(xy′)′y dx = −α2

j

∫ c

0
xy2 dx

= −α2
j

∫ c

0
xJ2

0 (αjx) dx. (5.76)

iii. Noting that y(x) = J0(αjx), integrate the left hand side by parts
and use the following to simplify the resulting equation.
1. J′0(x) = −J1(x) from Equation (5.60).
2. Equation (5.63).
3. J2(αjc) + J0(αjc) = 0 from Equation (5.61).

iv. Now you should have enough information to complete this
part.

d. Use the results from parts b and c and Problem 16 to derive the
expansion coefficients for

x2 =
∞

∑
j=1

cj J0(αjx)

in order to obtain the desired expansion.



6
Problems in Higher Dimensions

“Equations of such complexity as are the equations of the gravitational field can be
found only through the discovery of a logically simple mathematical condition that
determines the equations completely or at least almost completely.”

“What I have to say about this book can be found inside this book.” Albert
Einstein (1879-1955)

In this chapter we will explore several examples of the solution of
initial-boundary value problems involving higher spatial dimensions. These
are described by higher dimensional partial differential equations, such as
the ones presented in Table 2.1 in Chapter 2. The spatial domains of the
problems span many different geometries, which will necessitate the use of
rectangular, polar, cylindrical, or spherical coordinates.

We will solve many of these problems using the method of separation of
variables, which we first saw in Chapter 2. Using separation of variables
will result in a system of ordinary differential equations for each problem.
Adding the boundary conditions, we will need to solve a variety of eigen-
value problems. The product solutions that result will involve trigonomet-
ric or some of the special functions that we had encountered in Chapter 5.
These methods are used in solving the hydrogen atom and other problems
in quantum mechanics and in electrostatic problems in electrodynamics.
We will bring to this discussion many of the tools from earlier in this book
showing how much of what we have seen can be used to solve some generic
partial differential equations which describe oscillation and diffusion type
problems.

As we proceed through the examples in this chapter, we will see some
common features. For example, the two key equations that we have stud-
ied are the heat equation and the wave equation. For higher dimensional
problems these take the form

ut = k∇2u, (6.1)

utt = c2∇2u. (6.2)

We can separate out the time dependence in each equation. Inserting a
guess of u(r, t) = φ(r)T(t) into the heat and wave equations, we obtain

T′φ = kT∇2φ, (6.3)
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T′′φ = c2T∇2φ. (6.4)

Dividing each equation by φ(r)T(t), we can separate the time and space de-
pendence just as we had in Chapter ??. In each case we find that a function
of time equals a function of the spatial variables. Thus, these functions must
be constant functions. We set these equal to the constant −λ and find the
respective equations

1
k

T′

T
=
∇2φ

φ
= −λ, (6.5)

1
c2

T′′

T
=
∇2φ

φ
= −λ. (6.6)

The sign of λ is chosen because we expect decaying solutions in time for the
heat equation and oscillations in time for the wave equation and will pick
λ > 0.

The respective equations for the temporal functions T(t) are given by

T′ = −λkT, (6.7)

T′′ + c2λT = 0. (6.8)

These are easily solved as we had seen in Chapter ??. We have

T(t) = T(0)e−λkt, (6.9)

T(t) = a cos ωt + b sin ωt, ω = c
√

λ, (6.10)

where T(0), a, and b are integration constants and ω is the angular fre-
quency of vibration.

In both cases the spatial equation is of the same form,The Helmholtz equation.

∇2φ + λφ = 0. (6.11)

This equation is called the Helmholtz equation. For one dimensional prob-The Helmholtz equation is named af-
ter Hermann Ludwig Ferdinand von
Helmholtz (1821-1894). He was both a
physician and a physicist and made sig-
nificant contributions in physiology, op-
tics, acoustics, and electromagnetism.

lems, which we have already solved, the Helmholtz equation takes the form
φ′′ + λφ = 0. We had to impose the boundary conditions and found that
there were a discrete set of eigenvalues, λn, and associated eigenfunctions,
φn.

In higher dimensional problems we need to further separate out the
spatial dependence. We will again use the boundary conditions to find
the eigenvalues, λ, and eigenfunctions, φ(r), for the Helmholtz equation,
though the eigenfunctions will be labeled with more than one index. The
resulting boundary value problems are often second order ordinary dif-
ferential equations, which can be set up as Sturm-Liouville problems. We
know from Chapter 5 that such problems possess an orthogonal set of eigen-
functions. These can then be used to construct a general solution from the
product solutions which may involve elementary, or special, functions, such
as Legendre polynomials and Bessel functions.

We will begin our study of higher dimensional problems by consider-
ing the vibrations of two dimensional membranes. First we will solve the
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problem of a vibrating rectangular membrane and then we will turn our
attention to a vibrating circular membrane. The rest of the chapter will be
devoted to the study of other two and three dimensional problems possess-
ing cylindrical or spherical symmetry.

6.1 Vibrations of Rectangular Membranes

Our first example will be the study of the vibrations of a rectangular
membrane. You can think of this as a drumhead with a rectangular cross
section as shown in Figure 6.1. We stretch the membrane over the drumhead
and fasten the material to the boundary of the rectangle. The height of the
vibrating membrane is described by its height from equilibrium, u(x, y, t).
This problem is a much simpler example of higher dimensional vibrations
than that possessed by the oscillating electric and magnetic fields in the last
chapter.

x

y

H

L0
0

Figure 6.1: The rectangular membrane of
length L and width H. There are fixed
boundary conditions along the edges.

Example 6.1. The vibrating rectangular membrane.
The problem is given by the two dimensional wave equation in Cartesian coordi-

nates,
utt = c2(uxx + uyy), t > 0, 0 < x < L, 0 < y < H, (6.12)

a set of boundary conditions,

u(0, y, t) = 0, u(L, y, t) = 0, t > 0, 0 < y < H,

u(x, 0, t) = 0, u(x, H, t) = 0, t > 0, 0 < x < L, (6.13)

and a pair of initial conditions (since the equation is second order in time),

u(x, y, 0) = f (x, y), ut(x, y, 0) = g(x, y). (6.14)

The first step is to separate the variables: u(x, y, t) = X(x)Y(y)T(t). In-
serting the guess, u(x, y, t) into the wave equation, we have

X(x)Y(y)T′′(t) = c2 (X′′(x)Y(y)T(t) + X(x)Y′′(y)T(t)
)

.

Dividing by both u(x, y, t) and c2, we obtain

1
c2

T′′

T︸ ︷︷ ︸
Function of t

=
X′′

X
+

Y′′

Y︸ ︷︷ ︸
Function of x and y

= −λ. (6.15)

We see that we have a function of t equals a function of x and y. Thus,
both expressions are constant. We expect oscillations in time, so we choose
the constant λ to be positive, λ > 0. (Note: As usual, the primes mean
differentiation with respect to the specific dependent variable. So, there
should be no ambiguity.)

These lead to two equations:

T′′ + c2λT = 0, (6.16)



162 partial differential equations

and
X′′

X
+

Y′′

Y
= −λ. (6.17)

We note that the spatial equation is just the separated form of Helmholtz’s
equation with φ(x, y) = X(x)Y(y).

The first equation is easily solved. We have

T(t) = a cos ωt + b sin ωt, (6.18)

where
ω = c

√
λ. (6.19)

This is the angular frequency in terms of the separation constant, or eigen-
value. It leads to the frequency of oscillations for the various harmonics of
the vibrating membrane as

ν =
ω

2π
=

c
2π

√
λ. (6.20)

Once we know λ, we can compute these frequencies.
Next we solve the spatial equation. We need carry out another separation

of variables. Rearranging the spatial equation, we have

X′′

X︸︷︷︸
Function of x

= −Y′′

Y
− λ︸ ︷︷ ︸

Function of y

= −µ. (6.21)

Here we have a function of x equal to a function of y. So, the two expressions
are constant, which we indicate with a second separation constant, −µ < 0.
We pick the sign in this way because we expect oscillatory solutions for
X(x). This leads to two equations:

X′′ + µX = 0,

Y′′ + (λ− µ)Y = 0. (6.22)

We now impose the boundary conditions. We have u(0, y, t) = 0 for all
t > 0 and 0 < y < H. This implies that X(0)Y(y)T(t) = 0 for all t and
y in the domain. This is only true if X(0) = 0. Similarly, from the other
boundary conditions we find that X(L) = 0, Y(0) = 0, and Y(H) = 0. We
note that homogeneous boundary conditions are important in carrying out
this process. Nonhomogeneous boundary conditions could be imposed just
like we had in Section 7.3, but we still need the solutions for homogeneous
boundary conditions before tackling the more general problems.

In summary, the boundary value problems we need to solve are:

X′′ + µX = 0, X(0) = 0, X(L) = 0.

Y′′ + (λ− µ)Y = 0, Y(0) = 0, Y(H) = 0. (6.23)

We have seen boundary value problems of these forms in Chapter ??. The
solutions of the first eigenvalue problem are

Xn(x) = sin
nπx

L
, µn =

(nπ

L

)2
, n = 1, 2, 3, . . . .
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The second eigenvalue problem is solved in the same manner. The dif-
ferences from the first problem are that the “eigenvalue” is λ− µ, the inde-
pendent variable is y, and the interval is [0, H]. Thus, we can quickly write
down the solutions as

Ym(y) = sin
mπx

H
, λ− µm =

(mπ

H

)2
, m = 1, 2, 3, . . . .

At this point we need to be careful about the indexing of the separation
constants. So far, we have seen that µ depends on n and that the quantity
κ = λ− µ depends on m. Solving for λ, we should write λnm = µn + κm, or

λnm =
(nπ

L

)2
+
(mπ

H

)2
, n, m = 1, 2, . . . . (6.24)

Since ω = c
√

λ, we have that the discrete frequencies of the harmonics are The harmonics for the vibrating rectan-
gular membrane are given by

νnm =
c
2

√( n
L

)2
+
(m

H

)2
,

for n, m = 1, 2, . . . .

given by

ωnm = c

√(nπ

L

)2
+
(mπ

H

)2
, n, m = 1, 2, . . . . (6.25)

We have successfully carried out the separation of variables for the wave
equation for the vibrating rectangular membrane. The product solutions
can be written as

unm = (a cos ωnmt + b sin ωnmt) sin
nπx

L
sin

mπy
H

(6.26)

and the most general solution is written as a linear combination of the prod-
uct solutions,

u(x, y, t) = ∑
n,m

(anm cos ωnmt + bnm sin ωnmt) sin
nπx

L
sin

mπy
H

.

However, before we carry the general solution any further, we will first
concentrate on the two dimensional harmonics of this membrane.

x

y

L0

X1(x) = sin πx
L

x

y

L0

X2(x) = sin 2πx
L

x

y

L0

X3(x) = sin 3πx
L

Figure 6.2: The first harmonics of the vi-
brating string

For the vibrating string the nth harmonic corresponds to the function
sin nπx

L and several are shown in Figure 6.2. The various harmonics corre-
spond to the pure tones supported by the string. These then lead to the
corresponding frequencies that one would hear. The actual shapes of the
harmonics are sketched by locating the nodes, or places on the string that
do not move.

In the same way, we can explore the shapes of the harmonics of the vi-
brating membrane. These are given by the spatial functions

φnm(x, y) = sin
nπx

L
sin

mπy
H

. (6.27)

Instead of nodes, we will look for the nodal curves, or nodal lines. These A discussion of the nodal lines.

are the points (x, y) at which φnm(x, y) = 0. Of course, these depend on the
indices, n and m.

For example, when n = 1 and m = 1, we have

sin
πx
L

sin
πy
H

= 0.
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Figure 6.3: The first few modes of the
vibrating rectangular membrane. The
dashed lines show the nodal lines indi-
cating the points that do not move for
the particular mode. Compare these the
nodal lines to the 3D view in Figure 6.1

n = 1 n = 2 n = 3

m = 1

m = 2

m = 3
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L
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H
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H
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H

L

x

y

H

L

x

y

H

L

x

y

H

L

x

y

H

L

x

y

H

L

These are zero when either

sin
πx
L

= 0, or sin
πy
H

= 0.

Of course, this can only happen for x = 0, L and y = 0, H. Thus, there are
no interior nodal lines.

When n = 2 and m = 1, we have y = 0, H and

sin
2πx

L
= 0,

or, x = 0, L
2 , L. Thus, there is one interior nodal line at x = L

2 . These points
stay fixed during the oscillation and all other points oscillate on either side
of this line. A similar solution shape results for the (1,2)-mode; i.e., n = 1
and m = 2.

In Figure 6.3 we show the nodal lines for several modes for n, m = 1, 2, 3
with different columns corresponding to different n-values while the rows
are labeled with different m-values. The blocked regions appear to vibrate
independently. A better view is the three dimensional view depicted in
Figure 6.1 . The frequencies of vibration are easily computed using the
formula for ωnm.

For completeness, we now return to the general solution and apply the
initial conditions. The general solution is given by a linear superposition of
the product solutions. There are two indices to sum over. Thus, the general
solution isThe general solution for the vibrating

rectangular membrane.

u(x, y, t) =
∞

∑
n=1

∞

∑
m=1

(anm cos ωnmt + bnm sin ωnmt) sin
nπx

L
sin

mπy
H

, (6.28)
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m = 1 m = 2 m = 3

n = 1

n = 2

n = 3

Table 6.1: A three dimensional view of
the vibrating rectangular membrane for
the lowest modes. Compare these im-
ages with the nodal lines in Figure 6.3

where

ωnm = c

√(nπ

L

)2
+
(mπ

H

)2
. (6.29)

The first initial condition is u(x, y, 0) = f (x, y). Setting t = 0 in the gen-
eral solution, we obtain

f (x, y) =
∞

∑
n=1

∞

∑
m=1

anm sin
nπx

L
sin

mπy
H

. (6.30)

This is a double Fourier sine series. The goal is to find the unknown coeffi-
cients anm.

The coefficients anm can be found knowing what we already know about
Fourier sine series. We can write the initial condition as the single sum

f (x, y) =
∞

∑
n=1

An(y) sin
nπx

L
, (6.31)

where

An(y) =
∞

∑
m=1

anm sin
mπy

H
. (6.32)

These are two Fourier sine series. Recalling from Chapter ?? that the
coefficients of Fourier sine series can be computed as integrals, we have

An(y) =
2
L

∫ L

0
f (x, y) sin

nπx
L

dx,

anm =
2
H

∫ H

0
An(y) sin

mπy
H

dy. (6.33)
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Inserting the integral for An(y) into that for anm, we have an integral
representation for the Fourier coefficients in the double Fourier sine series,

anm =
4

LH

∫ H

0

∫ L

0
f (x, y) sin

nπx
L

sin
mπy

H
dxdy. (6.34)

The Fourier coefficients for the double
Fourier sine series. We can carry out the same process for satisfying the second initial condi-

tion, ut(x, y, 0) = g(x, y) for the initial velocity of each point. Inserting the
general solution into this initial condition, we obtain

g(x, y) =
∞

∑
n=1

∞

∑
m=1

bnmωnm sin
nπx

L
sin

mπy
H

. (6.35)

Again, we have a double Fourier sine series. But, now we can quickly de-
termine the Fourier coefficients using the above expression for anm to find
that

bnm =
4

ωnmLH

∫ H

0

∫ L

0
g(x, y) sin

nπx
L

sin
mπy

H
dxdy. (6.36)

This completes the full solution of the vibrating rectangular membrane
problem. Namely, we have obtained the solutionThe full solution of the vibrating rectan-

gular membrane.

u(x, y, t) =
∞

∑
n=1

∞

∑
m=1

(anm cos ωnmt + bnm sin ωnmt) sin
nπx

L
sin

mπy
H

,

(6.37)
where

anm =
4

LH

∫ H

0

∫ L

0
f (x, y) sin

nπx
L

sin
mπy

H
dxdy, (6.38)

bnm =
4

ωnmLH

∫ H

0

∫ L

0
g(x, y) sin

nπx
L

sin
mπy

H
dxdy, (6.39)

and the angular frequencies are given by

ωnm = c

√(nπ

L

)2
+
(mπ

H

)2
. (6.40)

6.2 Vibrations of a Kettle Drum
x

y

a
P

r
θ

Figure 6.4: The circular membrane of ra-
dius a. A general point on the mem-
brane is given by the distance from the
center, r, and the angle, . There are fixed
boundary conditions along the edge at
r = a.

In this section we consider the vibrations of a circular membrane of
radius a as shown in Figure 6.4. Again we are looking for the harmonics
of the vibrating membrane, but with the membrane fixed around the cir-
cular boundary given by x2 + y2 = a2. However, expressing the boundary
condition in Cartesian coordinates is awkward. Namely, we can only write
u(x, y, t) = 0 for x2 + y2 = a2. It is more natural to use polar coordinates
as indicated in Figure 6.4. Let the height of the membrane be given by
u = u(r, θ, t) at time t and position (r, θ). Now the boundary condition is
given as u(a, θ, t) = 0 for all t > 0 and θ ∈ [0, 2π].

Before solving the initial-boundary value problem, we have to cast the
full problem in polar coordinates. This means that we need to rewrite the
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Laplacian in r and θ. To do so would require that we know how to transform
derivatives in x and y into derivatives with respect to r and θ. Using the re-
sults from Section ?? on curvilinear coordinates, we know that the Laplacian
can be written in polar coordinates. In fact, we could use the results from
Problem ?? in Chapter ?? for cylindrical coordinates for functions which are
z-independent, f = f (r, θ). Then, we would have

∇2 f =
1
r

∂

∂r

(
r

∂ f
∂r

)
+

1
r2

∂2 f
∂θ2 .

Derivation of Laplacian in polar coordi-
nates.We can obtain this result using a more direct approach, namely apply-

ing the Chain Rule in higher dimensions. First recall the transformations
between polar and Cartesian coordinates:

x = r cos θ, y = r sin θ

and
r =

√
x2 + y2, tan θ =

y
x

.

Now, consider a function f = f (x(r, θ), y(r, θ)) = g(r, θ). (Technically, once
we transform a given function of Cartesian coordinates we obtain a new
function g of the polar coordinates. Many texts do not rigorously distin-
guish between the two functions.) Thinking of x = x(r, θ) and y = y(r, θ),
we have from the chain rule for functions of two variables:

∂ f
∂x

=
∂g
∂r

∂r
∂x

+
∂g
∂θ

∂θ

∂x

=
∂g
∂r

x
r
− ∂g

∂θ

y
r2

= cos θ
∂g
∂r
− sin θ

r
∂g
∂θ

. (6.41)

Here we have used
∂r
∂x

=
x√

x2 + y2
=

x
r

;

and
∂θ

∂x
=

d
dx

(
tan−1 y

x

)
=
−y/x2

1 +
( y

x
)2 = − y

r2 .

Similarly,

∂ f
∂y

=
∂g
∂r

∂r
∂y

+
∂g
∂θ

∂θ

∂y

=
∂g
∂r

y
r
+

∂g
∂θ

x
r2

= sin θ
∂g
∂r

+
cos θ

r
∂g
∂θ

. (6.42)

The 2D Laplacian can now be computed as

∂2 f
∂x2 +

∂2 f
∂y2 = cos θ

∂

∂r

(
∂ f
∂x

)
− sin θ

r
∂

∂θ

(
∂ f
∂x

)
+ sin θ

∂

∂r

(
∂ f
∂y

)
+

cos θ

r
∂

∂θ

(
∂ f
∂y

)
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= cos θ
∂

∂r

(
cos θ

∂g
∂r
− sin θ

r
∂g
∂θ

)
− sin θ

r
∂

∂θ

(
cos θ

∂g
∂r
− sin θ

r
∂g
∂θ

)
+ sin θ

∂

∂r

(
sin θ

∂g
∂r

+
cos θ

r
∂g
∂θ

)
+

cos θ

r
∂

∂θ

(
sin θ

∂g
∂r

+
cos θ

r
∂g
∂θ

)
= cos θ

(
cos θ

∂2g
∂r2 +

sin θ

r2
∂g
∂θ
− sin θ

r
∂2g
∂r∂θ

)
− sin θ

r

(
cos θ

∂2g
∂θ∂r

− sin θ

r
∂2g
∂θ2 − sin θ

∂g
∂r
− cos θ

r
∂g
∂θ

)
+ sin θ

(
sin θ

∂2g
∂r2 +

cos θ

r
∂2g
∂r∂θ

− cos θ

r2
∂g
∂θ

)
+

cos θ

r

(
sin θ

∂2g
∂θ∂r

+
cos θ

r
∂2g
∂θ2 + cos θ

∂g
∂r
− sin θ

r
∂g
∂θ

)
=

∂2g
∂r2 +

1
r

∂g
∂r

+
1
r2

∂2g
∂θ2

=
1
r

∂

∂r

(
r

∂g
∂r

)
+

1
r2

∂2g
∂θ2 .

(6.43)

The last form often occurs in texts because it is in the form of a Sturm-
Liouville operator. Also, it agrees with the result from using the Laplacian
written in cylindrical coordinates as given in Problem ?? of Chapter ??.

Now that we have written the Laplacian in polar coordinates we can pose
the problem of a vibrating circular membrane.

Example 6.2. The vibrating circular membrane.
This problem is given by a partial differential equation,11 Here we state the problem of a vibrat-

ing circular membrane. We have chosen
−π < θ < π, but could have just as eas-
ily used 0 < θ < 2π. The symmetric in-
terval about θ = 0 will make the use of
boundary conditions simpler.

utt = c2
[

1
r

∂

∂r

(
r

∂u
∂r

)
+

1
r2

∂2u
∂θ2

]
, (6.44)

t > 0, 0 < r < a, −π < θ < π,

the boundary condition,

u(a, θ, t) = 0, t > 0, −π < θ < π, (6.45)

and the initial conditions,

u(r, θ, 0) = f (r, θ), 0 < r < a,−π < θ < π,

ut(r, θ, 0) = g(r, θ), , 0 < r < a,−π < θ < π. (6.46)

Now we are ready to solve this problem using separation of variables. As
before, we can separate out the time dependence. Let u(r, θ, t) = T(t)φ(r, θ).
As usual, T(t) can be written in terms of sines and cosines. This leads to
the Helmholtz equation,

∇2φ + λφ = 0.
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We now separate the Helmholtz equation by letting φ(r, θ) = R(r)Θ(θ). This
gives

1
r

∂

∂r

(
r

∂RΘ
∂r

)
+

1
r2

∂2RΘ
∂θ2 + λRΘ = 0. (6.47)

Dividing by u = RΘ, as usual, leads to

1
rR

d
dr

(
r

dR
dr

)
+

1
r2Θ

d2Θ
dθ2 + λ = 0. (6.48)

The last term is a constant. The first term is a function of r. However, the
middle term involves both r and θ. This can be remedied by multiplying the
equation by r2. Rearranging the resulting equation, we can separate out the
θ-dependence from the radial dependence. Letting µ be another separation
constant, we have

r
R

d
dr

(
r

dR
dr

)
+ λr2 = − 1

Θ
d2Θ
dθ2 = µ. (6.49)

This gives us two ordinary differential equations:

d2Θ
dθ2 + µΘ = 0,

r
d
dr

(
r

dR
dr

)
+ (λr2 − µ)R = 0. (6.50)

Let’s consider the first of these equations. It should look familiar by now.
For µ > 0, the general solution is

Θ(θ) = a cos
√

µθ + b sin
√

µθ.

The next step typically is to apply the boundary conditions in θ. However,
when we look at the given boundary conditions in the problem, we do not
see anything involving θ. This is a case for which the boundary conditions
that are needed are implied and not stated outright.

We can determine the hidden boundary conditions by making some ob-
servations. Let’s consider the solution corresponding to the endpoints θ =

±π. We note that at these θ-values we are at the same physical point for any
r < a. So, we would expect the solution to have the same value at θ = −π as
it has at θ = π. Namely, the solution is continuous at these physical points.
Similarly, we expect the slope of the solution to be the same at these points.
This can be summarized using the boundary conditions The boundary conditions in θ are peri-

odic boundary conditions.

Θ(π) = Θ(−π), Θ′(π) = Θ′(−π).

Such boundary conditions are called periodic boundary conditions.
Let’s apply these conditions to the general solution for Θ(θ). First, we set

Θ(π) = Θ(−π) and use the symmetries of the sine and cosine functions to
obtain

a cos
√

µπ + b sin
√

µπ = a cos
√

µπ − b sin
√

µπ.

This implies that
sin
√

µπ = 0.
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This can only be true for
√

µ = m, for m = 0, 1, 2, 3, . . . . Therefore, the
eigenfunctions are given by

Θm(θ) = a cos mθ + b sin mθ, m = 0, 1, 2, 3, . . . .

For the other half of the periodic boundary conditions, Θ′(π) = Θ′(−π),
we have that

−am sin mπ + bm cos mπ = am sin mπ + bm cos mπ.

But, this gives no new information since this equation boils down to bm =

bm..
To summarize what we know at this point, we have found the general

solutions to the temporal and angular equations. The product solutions will
have various products of {cos ωt, sin ωt} and {cos mθ, sin mθ}∞

m=0. We also
know that µ = m2 and ω = c

√
λ.

We still need to solve the radial equation. Inserting µ = m2, the radial
equation has the form

r
d
dr

(
r

dR
dr

)
+ (λr2 −m2)R = 0. (6.51)

Expanding the derivative term, we have

r2R′′(r) + rR′(r) + (λr2 −m2)R(r) = 0. (6.52)

The reader should recognize this differential equation from Equation (5.66).
It is a Bessel equation with bounded solutions R(r) = Jm(

√
λr).

Recall there are two linearly independent solutions of this second order
equation: Jm(

√
λr), the Bessel function of the first kind of order m, and

Nm(
√

λr), the Bessel function of the second kind of order m, or Neumann
functions. Plots of these functions are shown in Figures 5.8 and 5.9. So, we
have the general solution of the radial equation is

R(r) = c1 Jm(
√

λr) + c2Nm(
√

λr).

Now we are ready to apply the boundary conditions to the radial factor
in the product solutions. Looking at the original problem we find only
one condition: u(a, θ, t) = 0 for t > 0 and −π < < π. This implies that
R(a) = 0. But where is the second condition?

This is another unstated boundary condition. Look again at the plots
of the Bessel functions. Notice that the Neumann functions are not well
behaved at the origin. Do you expect that the solution will become infinite
at the center of the drum? No, the solutions should be finite at the center. So,
this observation leads to the second boundary condition. Namely, |R(0)| <
∞. This implies that c2 = 0.

Now we are left with
R(r) = Jm(

√
λr).

We have set c1 = 1 for simplicity. We can apply the vanishing condition at
r = a. This gives

Jm(
√

λa) = 0.
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Looking again at the plots of Jm(x), we see that there are an infinite number
of zeros, but they are not as easy as π! In Table 6.2 we list the nth zeros of
Jm, which were first seen in Table 5.3.

n m = 0 m = 1 m = 2 m = 3 m = 4 m = 5
1 2.405 3.832 5.136 6.380 7.588 8.771

2 5.520 7.016 8.417 9.761 11.065 12.339

3 8.654 10.173 11.620 13.015 14.373 15.700

4 11.792 13.324 14.796 16.223 17.616 18.980

5 14.931 16.471 17.960 19.409 20.827 22.218

6 18.071 19.616 21.117 22.583 24.019 25.430

7 21.212 22.760 24.270 25.748 27.199 28.627

8 24.352 25.904 27.421 28.908 30.371 31.812

9 27.493 29.047 30.569 32.065 33.537 34.989

Table 6.2: The zeros of Bessel Functions,
Jm(jmn) = 0.

Let’s denote the nth zero of Jm(x) by jmn. Then, the boundary condition
tells us that √

λa = jmn, m = 0, 1, . . . , n = 1, 2, . . . .

This gives us the eigenvalues as

λmn =

(
jmn

a

)2
, m = 0, 1, . . . , n = 1, 2, . . . .

Thus, the radial function satisfying the boundary conditions is

Rmn(r) = Jm

(
jmn

a
r
)

.

We are finally ready to write out the product solutions for the vibrating
circular membrane. They are given by Product solutions for the vibrating circu-

lar membrane.

u(r, θ, t) =

{
cos ωmnt
sin ωmnt

}{
cos mθ

sin mθ

}
Jm(

jmn

a
r). (6.53)

Here we have indicated choices with the braces, leading to four different
types of product solutions. Also, the angular frequency depends on the
zeros of the Bessel functions,

ωmn =
jmn

a
c, m = 0, 1, . . . , n = 1, 2, . . . .

As with the rectangular membrane, we are interested in the shapes of the
harmonics. So, we consider the spatial solution (t = 0)

φ(r, θ) = (cos mθ)Jm

(
jmn

a
r
)

.

Including the solutions involving sin mθ will only rotate these modes. The
nodal curves are given by φ(r, θ) = 0. This can be satisfied if cos mθ = 0,
or Jm(

jmn
a r) = 0. The various nodal curves which result are shown in Figure

6.5.
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Figure 6.5: The first few modes of the vi-
brating circular membrane. The dashed
lines show the nodal lines indicating the
points that do not move for the partic-
ular mode. Compare these nodal lines
with the three dimensional images in
Figure 6.3.

m = 0 m = 1 m = 2

n = 1

n = 2

n = 3

For the angular part, we easily see that the nodal curves are radial lines,
θ =const. For m = 0, there are no solutions, since cos mθ = 1 for m = 0. in
Figure 6.5 this is seen by the absence of radial lines in the first column.

For m = 1, we have cos θ = 0. This implies that θ = ±π
2 . These values

give the vertical line as shown in the second column in Figure 6.5. For
m = 2, cos 2θ = 0 implies that θ = π

4 , 3π
4 . This results in the two lines shown

in the last column of Figure 6.5.
We can also consider the nodal curves defined by the Bessel functions.

We seek values of r for which jmn
a r is a zero of the Bessel function and lies

in the interval [0, a]. Thus, we have

jmn

a
r = jmj, 1 ≤ j ≤ n,

or

r =
jmj

jmn
a, 1 ≤ j ≤ n.

These will give circles of these radii with jmj ≤ jmn, or j ≤ n. For m = 0
and n = 1, there is only one zero and r = a. In fact, for all n = 1 modes,
there is only one zero giving r = a. Thus, the first row in Figure 6.5 shows
no interior nodal circles.

For a three dimensional view, one can look at Figure 6.3. Imagine that
the various regions are oscillating independently and that the points on the
nodal curves are not moving.

We should note that the nodal circles are not evenly spaced and that the
radii can be computed relatively easily. For the n = 2 modes, we have two
circles, r = a and r = jm1

jm2
a as shown in the second row of Figure 6.5. For
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n = 1 n = 2 n = 3

m = 0

m = 1

m = 2

Table 6.3: A three dimensional view of
the vibrating circular membrane for the
lowest modes. Compare these images
with the nodal line plots in Figure 6.5.

m = 0,

r =
2.405
5.520

a ≈ 0.4357a

for the inner circle. For m = 1,

r =
3.832
7.016

a ≈ 0.5462a,

and for m = 2,

r =
5.136
8.417

a ≈ 0.6102a.

For n = 3 we obtain circles of radii

r = a, r =
jm1

jm3
a, and r =

jm2

jm3
a.

For m = 0,

r = a,
5.520
8.654

a ≈ 0.6379a,
2.405
8.654

a ≈ 0.2779a.

Similarly, for m = 1,

r = a,
3.832
10.173

a ≈ 0.3767a,
7.016

10.173
a ≈ 0.6897a,

and for m = 2,

r = a,
5.136
11.620

a ≈ 0.4420a,
8.417

11.620
a ≈ 0.7224a.
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Example 6.3. Vibrating Annulus
More complicated vibrations can be dreamt up for this geometry. Consider an

annulus in which the drum is formed from two concentric circular cylinders and
the membrane is stretch between the two with an annular cross section as shown
in Figure 6.6. The separation would follow as before except now the boundary
conditions are that the membrane is fixed around the two circular boundaries. In
this case we cannot toss out the Neumann functions because the origin is not part
of the drum head.

a
b

x

y

Figure 6.6: An annular membrane with
radii a and b > a. There are fixed bound-
ary conditions along the edges at r = a
and r = b.

The domain for this problem is shown in Figure 6.6 and the problem is given by
the partial differential equation

utt = c2
[

1
r

∂

∂r

(
r

∂u
∂r

)
+

1
r2

∂2u
∂θ2

]
, (6.54)

t > 0, b < r < a, −π < θ < π,

the boundary conditions,

u(b, θ, t) = 0, u(a, θ, t) = 0, t > 0, −π < θ < π, (6.55)

and the initial conditions,

u(r, θ, 0) = f (r, θ), b < r < a,−π < θ < π,

ut(r, θ, 0) = g(r, θ), , b < r < a,−π < θ < π. (6.56)

Since we cannot dispose of the Neumann functions, the product solutions take
the form

u(r, θ, t) =

{
cos ωt
sin ωt

}{
cos mθ

sin mθ

}
Rm(r), (6.57)

where
Rm(r) = c1 Jm(

√
λr) + c2Nm(

√
λr)

and ω = c
√

λ, m = 0, 1, . . . .
For this problem the radial boundary conditions are that the membrane is fixed

at r = a and r = b. Taking b < a, we then have to satisfy the conditions

R(a) = c1 Jm(
√

λa) + c2Nm(
√

λa) = 0,

R(b) = c1 Jm(
√

λb) + c2Nm(
√

λb) = 0. (6.58)

This leads to two homogeneous equations for c1 and c2. The coefficient determi-
nant of this system has to vanish if there are to be nontrivial solutions. This gives
the eigenvalue equation for λ :

Jm(
√

λa)Nm(
√

λb)− Jm(
√

λb)Nm(
√

λa) = 0.

There are an infinite number of zeros of the function

F(λ) = λ : Jm(
√

λa)Nm(
√

λb)− Jm(
√

λb)Nm(
√

λa).

In Figure 6.7 we show a plot of F(λ) for a = 4, b = 2 and m = 0, 1, 2, 3.



problems in higher dimensions 175

Figure 6.7: Plot of the function

F(λ) = Jm(
√

λa)Nm(
√

λb)− Jm(
√

λb)Nm(
√

λa)

for a = 4 and b = 2 and m = 0, 1, 2, 3.

This eigenvalue equation needs to be solved numerically. Choosing a = 2 and
b = 4, we have for the first few modes√

λmn ≈ 1.562, 3.137, 4.709, m = 0

≈ 1.598, 3.156, 4.722, m = 1

≈ 1.703, 3.214, 4.761, m = 2. (6.59)

Note, since ωmn = c
√

λmn, these numbers essentially give us the frequencies of
oscillation.

For these particular roots, we can solve for c1 and c2 up to a multiplicative
constant. A simple solution is to set

c1 = Nm(
√

λmnb), c2 = Jm(
√

λmnb).

This leads to the basic modes of vibration,

Rmn(r)Θm(θ) = cos mθ
(

Nm(
√

λmnb)Jm(
√

λmnr)− Jm(
√

λmnb)Nm(
√

λmnr)
)

,

for m = 0, 1, . . . , and n = 1, 2, . . . . In Figure 6.4 we show various modes for the
particular choice of annular membrane dimensions, a = 2 and b = 4.

6.3 Laplace’s Equation in 2D

Another of the generic partial differential equations is Laplace’s
equation, ∇2u = 0. This equation first appeared in the chapter on complex
variables when we discussed harmonic functions. Another example is the
electric potential for electrostatics. As we described Chapter ??, for static
electromagnetic fields,

∇ · E = ρ/ε0, E = ∇φ.

In regions devoid of charge, these equations yield the Laplace equation
∇2φ = 0.

Another example comes from studying temperature distributions. Con-
sider a thin rectangular plate with the boundaries set at fixed temperatures.
Temperature changes of the plate are governed by the heat equation. The
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Table 6.4: A three dimensional view of
the vibrating annular membrane for the
lowest modes.

n = 1 n = 2 n = 3

m = 0

m = 1

m = 2

solution of the heat equation subject to these boundary conditions is time
dependent. In fact, after a long period of time the plate will reach thermal
equilibrium. If the boundary temperature is zero, then the plate temperature
decays to zero across the plate. However, if the boundaries are maintained
at a fixed nonzero temperature, which means energy is being put into the
system to maintain the boundary conditions, the internal temperature may
reach a nonzero equilibrium temperature. Reaching thermal equilibriumThermodynamic equilibrium, ∇2u = 0.

means that asymptotically in time the solution becomes time independent.
Thus, the equilibrium state is a solution of the time independent heat equa-
tion, which is another Laplace equation, ∇2u = 0.Incompressible, irrotational fluid flow,

∇2φ = 0, for velocity v = ∇φ. As another example we could look at fluid flow. For an incompressible
flow, ∇ · v = 0. If the flow is irrotational, then ∇× v = 0. We can introduce
a velocity potential, v = ∇φ. Thus, ∇× v vanishes by a vector identity and
∇ · v = 0 implies ∇2φ = 0. So, once again we obtain Laplace’s equation.

In this section we will look at examples of Laplace’s equation in two
dimensions. The solutions in these examples could be examples from any
of the application in the above physical situations and the solutions can be
applied appropriately.

Example 6.4. Equilibrium Temperature Distribution for a Rectangular Plate
Let’s consider Laplace’s equation in Cartesian coordinates,

uxx + uyy = 0, 0 < x < L, 0 < y < H
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with the boundary conditions

u(0, y) = 0, u(L, y) = 0, u(x, 0) = f (x), u(x, H) = 0.

The boundary conditions are shown in Figure 6.8

x0

y

0 L

H

∇2u = 0

u(x, 0) = f (x)

u(x, H) = 0

u(0, y) = 0 u(L, y) = 0

Figure 6.8: In this figure we show the
domain and boundary conditions for the
example of determining the equilibrium
temperature distribution for a rectangu-
lar plate.

As with the heat and wave equations, we can solve this problem using the method
of separation of variables. Let u(x, y) = X(x)Y(y). Then, Laplace’s equation be-
comes

X′′Y + XY′′ = 0

and we can separate the x and y dependent functions and introduce a separation
constant, λ,

X′′

X
= −Y′′

Y
= −λ.

Thus, we are led to two differential equations,

X′′ + λX = 0,

Y′′ − λY = 0. (6.60)

From the boundary condition u(0, y) = 0, u(L, y) = 0, we have X(0) =

0, X(L) = 0. So, we have the usual eigenvalue problem for X(x),

X′′ + λX = 0, X(0) = 0, X(L) = 0.

The solutions to this problem are given by

Xn(x) = sin
nπx

L
, λn =

(nπ

L

)2
, n = 1, 2, . . . .

The general solution of the equation for Y(y) is given by

Y(y) = c1e
√

λy + c2e−
√

λy.

The boundary condition u(x, H) = 0 implies Y(H) = 0. So, we have

c1e
√

λH + c2e−
√

λH = 0.

Thus,
c2 = −c1e2

√
λH .

Inserting this result into the expression for Y(y), we have Note: Having carried out this compu-
tation, we can now see that it would
be better to guess this form in the fu-
ture. So, for Y(H) = 0, one would
guess a solution Y(y) = sinh

√
λ(H− y).

For Y(0) = 0, one would guess a so-
lution Y(y) = sinh

√
λy. Similarly, if

Y′(H) = 0, one would guess a solution
Y(y) = cosh

√
λ(H − y).

Y(y) = c1e
√

λy − c1e2
√

λHe−
√

λy

= c1e
√

λH
(

e−
√

λHe
√

λy − e
√

λHe−
√

λy
)

= c1e
√

λH
(

e−
√

λ(H−y) − e
√

λ(H−y)
)

= −2c1e
√

λH sinh
√

λ(H − y). (6.61)

Since we already know the values of the eigenvalues λn from the eigenvalue
problem for X(x), we have that the y-dependence is given by

Yn(y) = sinh
nπ(H − y)

L
.
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So, the product solutions are given by

un(x, y) = sin
nπx

L
sinh

nπ(H − y)
L

, n = 1, 2, . . . .

These solutions satisfy Laplace’s equation and the three homogeneous boundary
conditions and in the problem.

The remaining boundary condition, u(x, 0) = f (x), still needs to be satisfied.
Inserting y = 0 in the product solutions does not satisfy the boundary condition
unless f (x) is proportional to one of the eigenfunctions Xn(x). So, we first write
down the general solution as a linear combination of the product solutions,

u(x, y) =
∞

∑
n=1

an sin
nπx

L
sinh

nπ(H − y)
L

. (6.62)

Now we apply the boundary condition, u(x, 0) = f (x), to find that

f (x) =
∞

∑
n=1

an sinh
nπH

L
sin

nπx
L

. (6.63)

Defining bn = an sinh nπH
L , this becomes

f (x) =
∞

∑
n=1

bn sin
nπx

L
. (6.64)

We see that the determination of the unknown coefficients, bn, is simply done by
recognizing that this is a Fourier sine series. The Fourier coefficients are easily
found as

bn =
2
L

∫ L

0
f (x) sin

nπx
L

dx. (6.65)

Since an = bn/ sinh nπH
L , we can finish solving the problem. The solution is

u(x, y) =
∞

∑
n=1

an sin
nπx

L
sinh

nπ(H − y)
L

, (6.66)

where

an =
2

L sinh nπH
L

∫ L

0
f (x) sin

nπx
L

dx. (6.67)

x0

y

0 L

H

∇2u = 0

u = f1(x)

u = f2(x)

u = g1(y) u = g2(y)

Figure 6.9: In this figure we show the do-
main and general boundary conditions
for the example of determining the equi-
librium temperature distribution for a
rectangular plate.

Example 6.5. Equilibrium Temperature Distribution for a Rectangular Plate for
General Boundary Conditions

A more general problem is to seek solutions to Laplace’s equation in Cartesian
coordinates,

uxx + uyy = 0, 0 < x < L, 0 < y < H

with non-zero boundary conditions on more than one side of the domain,

u(0, y) = g1(y), u(L, y) = g2(y), 0 < y < H,

u(x, 0) = f1(x), u(x, H) = f2(x), 0 < x < L.

These boundary conditions are shown in Figure 6.9
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x0

y

0 L

H

∇2u1 = 0

u1 = f1(x)

u1 = 0

u1 = 0 u1 = 0

x0

y

0 L

H

∇2u2 = 0

u2 = 0

u2 = f2(x)

u2 = 0 u2 = 0

x0

y

0 L

H

∇2u3 = 0

u3 = 0

u3 = 0

u3 = g1(y) u3 = 0

x0

y

0 L

H

∇2u4 = 0

u4 = 0

u4 = 0

u4 = 0 u4 = g2(y)

Figure 6.10: The general boundary value
problem for a rectangular plate can be
written as the sum of these four separate
problems.

The problem with this example is that none of the boundary conditions are ho-
mogeneous. This means that the corresponding eigenvalue problems will not have
the homogeneous boundary conditions which Sturm-Liouville theory in Section 4
needs. However, we can express this problem in terms of four different problems
with nonhomogeneous boundary conditions on only one side of the rectangle.

In Figure 6.10 we show how the problem can be broken up into four separate
problems for functions ui(x, y), i = 1, . . . , 4. Since the boundary conditions and
Laplace’s equation are linear, the solution to the general problem is simply the sum
of the solutions to these four problems,

u(x, y) = u1(x, y) + u2(x, y) + u3(x, y) + u4(x, y).

Then, this solution satisfies Laplace’s equation,

∇2u(x, y) = ∇2u1(x, y) +∇2u2(x, y) +∇2u3(x, y) +∇2u4(x, y) = 0,

and the boundary conditions. For example, using the boundary conditions defined
in Figure 6.10, we have for y = 0,

u(x, 0) = u1(x, 0) + u2(x, 0) + u3(x, 0) + u4(x, 0) = f1(x).

The other boundary conditions can also be shown to hold.
We can solve each of the problems in Figure 6.10 quickly based on the solution we

obtained in the last example. The solution for u1(x, y), which satisfies the boundary
conditions

u1(0, y) = 0, u1(L, y) = 0, 0 < y < H,

u1(x, 0) = f1(x), u1(x, H) = 0, 0 < x < L,
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is the easiest to write down. It is given by

u1(x, y) =
∞

∑
n=1

an sin
nπx

L
sinh

nπ(H − y)
L

. (6.68)

where

an =
2

L sinh nπH
L

∫ L

0
f1(x) sin

nπx
L

dx. (6.69)

For the boundary conditions

u2(0, y) = 0, u2(L, y) = 0, 0 < y < H,

u2(x, 0) = 0, u2(x, H) = f2(x), 0 < x < L.

the boundary conditions for X(x) are X(0) = 0 and X(L) = 0. So, we get the
same form for the eigenvalues and eigenfunctions as before:

Xn(x) = sin
nπx

L
, λn =

(nπ

L

)2
, n = 1, 2, . . . .

The remaining homogeneous boundary condition is now Y(0) = 0. Recalling
that the equation satisfied by Y(y) is

Y′′ − λY = 0,

we can write the general solution as

Y(y) = c1 cosh
√

λy + c2 sinh
√

λy.

Requiring Y(0) = 0, we have c1 = 0, or

Y(y) = c2 sinh
√

λy.

Then, the general solution is

u2(x, y) =
∞

∑
n=1

bn sin
nπx

L
sinh

nπy
L

. (6.70)

We now force the nonhomogeneous boundary condition, u2(x, H) = f2(x),

f2(x) =
∞

∑
n=1

bn sin
nπx

L
sinh

nπH
L

. (6.71)

Once again we have a Fourier sine series. The Fourier coefficients are given by

bn =
2

L sinh nπH
L

∫ L

0
f2(x) sin

nπx
L

dx. (6.72)

Next we turn to the problem with the boundary conditions

u3(0, y) = g1(y), u3(L, y) = 0, 0 < y < H,

u3(x, 0) = 0, u3(x, H) = 0, 0 < x < L.
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In this case the pair of homogeneous boundary conditions u3(x, 0) = 0, u3(x, H) =

0 lead to solutions

Yn(y) = sin
nπy

H
, λn = −

(nπ

H

)2
, n = 1, 2 . . . .

The condition u3(L, 0) = 0 gives X(x) = sinh nπ(L−x)
H .

The general solution satisfying the homogeneous conditions is

u3(x, y) =
∞

∑
n=1

cn sin
nπy

H
sinh

nπ(L− x)
H

. (6.73)

Applying the nonhomogeneous boundary condition, u3(0, y) = g1(y), we obtain
the Fourier sine series

g1(y) =
∞

∑
n=1

cn sin
nπy

H
sinh

nπL
H

. (6.74)

The Fourier coefficients are found as

cn =
2

H sinh nπL
H

∫ H

0
g1(y) sin

nπy
H

dy. (6.75)

Finally, we can find the solution

u4(0, y) = 0, u4(L, y) = g2(y), 0 < y < H,

u4(x, 0) = 0, u4(x, H) = 0, 0 < x < L.

Following the above analysis, we find the general solution

u4(x, y) =
∞

∑
n=1

dn sin
nπy

H
sinh

nπx
H

. (6.76)

The nonhomogeneous boundary condition, u(L, y) = g2(y), is satisfied if

g2(y) =
∞

∑
n=1

dn sin
nπy

H
sinh

nπL
H

. (6.77)

The Fourier coefficients, dn, are given by

dn =
2

H sinh nπL
H

∫ H

0
g1(y) sin

nπy
H

dy. (6.78)

The solution to the general problem is given by the sum of these four solutions.

u(x, y) =
∞

∑
n=1

[(
an sinh

nπ(H − y)
L

+ bn sinh
nπy

L

)
sin

nπx
L

+

(
cn sinh

nπ(L− x)
H

+ dn sinh
nπx

H

)
sin

nπy
H

]
,

(6.79)

where the coefficients are given by the above Fourier integrals.
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Example 6.6. Laplace’s Equation on a Disk
We now turn to solving Laplace’s equation on a disk of radius a as shown in

Figure 6.11. Laplace’s equation in polar coordinates is given by

1
r

∂

∂r

(
r

∂u
∂r

)
+

1
r2

∂2u
∂θ2 = 0, 0 < r < a, −π < θ < π. (6.80)

The boundary conditions are given as

u(a, θ) = f (θ), −π < θ < π, (6.81)

plus periodic boundary conditions in θ.x

y

a

u(a, θ) = f (θ)

Figure 6.11: The disk of radius a with
boundary condition along the edge at
r = a.

Separation of variable proceeds as usual. Let u(r, θ) = R(r)Θ(θ). Then

1
r

∂

∂r

(
r

∂(RΘ)

∂r

)
+

1
r2

∂2(RΘ)

∂θ2 = 0, (6.82)

or
Θ

1
r
(rR′)′ +

1
r2 RΘ′′ = 0. (6.83)

Diving by u(r, θ) = R(r)Θ(θ), multiplying by r2, and rearranging, we have

r
R
(rR′)′ = −Θ′′

Θ
= λ. (6.84)

Since this equation gives a function of r equal to a function of θ, we set the
equation equal to a constant. Thus, we have obtained two differential equations,
which can be written as

r(rR′)′ − λR = 0, (6.85)

Θ′′ + λΘ = 0. (6.86)

We can solve the second equation subject to the periodic boundary conditions in
the θ variable. The reader should be able to confirm that

Θ(θ) = an cos nθ + bn sin nθ, λ = n2, n = 0, 1, 2, . . .

is the solution. Note that the n = 0 case just leads to a constant solution.
Inserting λ = n2 into the radial equation, we find

r2R′′ + rR′ − n2R = 0.

This is a Cauchy-Euler type of ordinary differential equation. Recall that we solve
such equations by guessing a solution of the form R(r) = rm. This leads to the
characteristic equation m2 − n2 = 0. Therefore, m = ±n. So,

R(r) = c1rn + c2r−n.

Since we expect finite solutions at the origin, r = 0, we can set c2 = 0. Thus, the
general solution is

u(r, θ) =
a0

2
+

∞

∑
n=1

(an cos nθ + bn sin nθ) rn. (6.87)
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Note that we have taken the constant term out of the sum and put it into a familiar
form.

Now we can impose the remaining boundary condition, u(a, θ) = f (θ), or

f (θ) =
a0

2
+

∞

∑
n=1

(an cos nθ + bn sin nθ) an. (6.88)

This is a Fourier trigonometric series. The Fourier coefficients can be determined
using the results from Chapter 4:

an =
1

πan

∫ π

−π
f (θ) cos nθ dθ, n = 0, 1, . . . , (6.89)

bn =
1

πan

∫ π

−π
f (θ) sin nθ dθ n = 1, 2 . . . . (6.90)

6.3.1 Poisson Integral Formula

We can put the solution from the last example in a more compact
form by inserting the Fourier coefficients into the general solution. Doing
this, we have

u(r, θ) =
a0

2
+

∞

∑
n=1

(an cos nθ + bn sin nθ) rn

=
1

2π

∫ π

−π
f (φ) dφ

+
1
π

∫ π

−π

∞

∑
n=1

[cos nφ cos nθ + sin nφ sin nθ]
( r

a

)n
f (φ) dφ

=
1
π

∫ π

−π

[
1
2
+

∞

∑
n=1

cos n(θ − φ)
( r

a

)n
]

f (φ) dφ. (6.91)

The term in the brackets can be summed. We note that

cos n(θ − φ)
( r

a

)n
= Re

(
ein(θ−φ)

( r
a

)n)
= Re

( r
a

ei(θ−φ)
)n

. (6.92)

Therefore,

∞

∑
n=1

cos n(θ − φ)
( r

a

)n
= Re

(
∞

∑
n=1

( r
a

ei(θ−φ)
)n
)

.

The right hand side of this equation is a geometric series with common ratio

of r
a ei(θ−φ), which is also the first term of the series. Since

∣∣∣ r
a ei(θ−φ)

∣∣∣ = r
a < 1,

the series converges. Summing the series, we obtain

∞

∑
n=1

( r
a

ei(θ−φ)
)n

=
r
a ei(θ−φ)

1− r
a ei(θ−φ)

=
rei(θ−φ)

a− rei(θ−φ)
(6.93)
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We need to rewrite this result so that we can easily take the real part.
Thus, we multiply and divide by the complex conjugate of the denominator
to obtain

∞

∑
n=1

( r
a

ei(θ−φ)
)n

=
rei(θ−φ)

a− rei(θ−φ)

a− re−i(θ−φ)

a− re−i(θ−φ)

=
are−i(θ−φ) − r2

a2 + r2 − 2ar cos(θ − φ)
. (6.94)

The real part of the sum is given as

Re

(
∞

∑
n=1

( r
a

ei(θ−φ)
)n
)

=
ar cos(θ − φ)− r2

a2 + r2 − 2ar cos(θ − φ)
.

Therefore, the factor in the brackets under the integral in Equation (6.91) is

1
2
+

∞

∑
n=1

cos n(θ − φ)
( r

a

)n
=

1
2
+

ar cos(θ − φ)− r2

a2 + r2 − 2ar cos(θ − φ)

=
a2 − r2

2(a2 + r2 − 2ar cos(θ − φ))
.

(6.95)

Thus, we have shown that the solution of Laplace’s equation on a disk
of radius a with boundary condition u(a, θ) = f (θ) can be written in the
closed formPoisson Integral Formula

u(r, θ) =
1

2π

∫ π

−π

a2 − r2

a2 + r2 − 2ar cos(θ − φ)
f (φ) dφ. (6.96)

This result is called the Poisson Integral Formula and

K(θ, φ) =
a2 − r2

a2 + r2 − 2ar cos(θ − φ)

is called the Poisson kernel.

Example 6.7. Evaluate the solution (6.96) at the center of the disk.
We insert r = 0 into the solution (6.96) to obtain

u(0, θ) =
1

2π

∫ π

−π
f (φ) dφ.

Recalling that the average of a function g(x) on [a, b] is given by

gave =
1

b− a

∫ b

a
g(x) dx,

we see that the value of the solution u at the center of the disk is the average of the
boundary values. This is sometimes referred to as the mean value theorem.

6.4 Three Dimensional Cake Baking

In the rest of the chapter we will extend our studies to three di-
mensional problems. In this section we will solve the heat equation as we
look at examples of baking cakes.



problems in higher dimensions 185

We consider cake batter, which is at room temperature of Ti = 80◦F. It is
placed into an oven, also at a fixed temperature, Tb = 350◦F. For simplicity,
we will assume that the thermal conductivity and cake density are constant.
Of course, this is not quite true. However, it is an approximation which
simplifies the model. We will consider two cases, one in which the cake is a
rectangular solid, such as baking it in a 13′′× 9′′× 2′′ baking pan. The other
case will lead to a cylindrical cake, such as you would obtain from a round
cake pan. This discussion of cake baking is

adapted from R. Wilkinson’s thesis
work. That in turn was inspired by work
done by Dr. Olszewski,(2006) From bak-
ing a cake to solving the diffusion equa-
tion. American Journal of Physics 74(6).

Assuming that the heat constant k is indeed constant and the temperature
is given by T(r, t), we begin with the heat equation in three dimensions,

∂T
∂t

= k∇2T. (6.97)

We will need to specify initial and boundary conditions. Let Ti be the initial
batter temperature, T(x, y, z, 0) = Ti.

We choose the boundary conditions to be fixed at the oven temperature
Tb. However, these boundary conditions are not homogeneous and would
lead to problems when carrying out separation of variables. This is easily
remedied by subtracting the oven temperature from all temperatures in-
volved and defining u(r, t) = T(r, t)− Tb. The heat equation then becomes

∂u
∂t

= k∇2u (6.98)

with initial condition
u(r, 0) = Ti − Tb.

The boundary conditions are now homogeneous. We cannot be any more
specific than this until we specify the geometry.

Example 6.8. Temperature of a Rectangular Cake

x

y

z

W

H

L

Figure 6.12: The dimensions of a rectan-
gular cake.

We will consider a rectangular cake with dimensions 0 ≤ x ≤ W, 0 ≤ y ≤ L,
and 0 ≤ z ≤ H as show in Figure 6.12. For this problem, we seek solutions of the
heat equation plus the conditions

u(x, y, z, 0) = Ti − Tb,

u(0, y, z, t) = u(W, y, z, t) = 0,

u(x, 0, z, t) = u(x, L, z, t) = 0,

u(x, y, 0, t) = u(x, y, H, t) = 0.

Using the method of separation of variables, we seek solutions of the form

u(x, y, z, t) = X(x)Y(y)Z(z)G(t). (6.99)

Substituting this form into the heat equation, we get

1
k

G′

G
=

X′′

X
+

Y′′

Y
+

Z′′

Z
. (6.100)

Setting these expressions equal to −λ, we get

1
k

G′

G
= −λ and

X′′

X
+

Y′′

Y
+

Z′′

Z
= −λ. (6.101)
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Therefore, the equation for G(t) is given by

G′ + kλG = 0.

We further have to separate out the functions of x, y, and z. We anticipate that
the homogeneous boundary conditions will lead to oscillatory solutions in these
variables. Therefore, we expect separation of variables will lead to the eigenvalue
problems

X′′ + µ2X = 0, X(0) = X(W) = 0,

Y′′ + ν2Y = 0, Y(0) = Y(L) = 0,

Z′′ + κ2Z = 0, Z(0) = Z(H) = 0. (6.102)

Noting that
X′′

X
= −µ2,

Y′′

Y
= −ν2,

Z′′

Z
= −κ2,

we find from the heat equation that the separation constants are related,

λ2 = µ2 + ν2 + κ2.

We could have gotten to this point quicker by writing the first separated equation
labeled with the separation constants as

1
k

G′

G︸︷︷︸
−λ

=
X′′

X︸︷︷︸
−µ

+
Y′′

Y︸︷︷︸
−ν

+
Z′′

Z︸︷︷︸
−κ

.

Then, we can read off the eigenvalues problems and determine that λ2 = µ2 + ν2 +

κ2.
From the boundary conditions, we get product solutions for u(x, y, z, t) in the

form
umn`(x, y, z, t) = sin µmx sin νny sin κ`z e−λmn`kt,

for

λmnl = µ2
m + ν2

n + κ2
` =

(mπ

W

)2
+
(nπ

L

)2
+

(
`π

H

)2
, m, n, ` = 1, 2, . . . .

The general solution is a linear combination of all of the product solutions, summed
over three different indices,

u(x, y, z, t) =
∞

∑
m=1

∞

∑
n=1

∞

∑
`=1

Amnl sin µmx sin νny sin κ`z e−λmn`kt, (6.103)

where the Amn`’s are arbitrary constants.
We can use the initial condition u(x, y, z, 0) = Ti − Tb to determine the Amn`’s.

We find

Ti − Tb =
∞

∑
m=1

∞

∑
n=1

∞

∑
`=1

Amnl sin µmx sin νny sin κ`z. (6.104)

This is a triple Fourier sine series.
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We can determine these coefficients in a manner similar to how we handled
double Fourier sine series earlier in the chapter. Defining

bm(y, z) =
∞

∑
n=1

∞

∑
`=1

Amnl sin νny sin κ`z,

we obtain a simple Fourier sine series:

Ti − Tb =
∞

∑
m=1

bm(y, z) sin µmx. (6.105)

The Fourier coefficients can then be found as

bm(y, z) =
2

W

∫ W

0
(Ti − Tb) sin µmx dx.

Using the same technique for the remaining sine series and noting that Ti− Tb is
constant, we can determine the general coefficients Amnl by carrying out the needed
integrations:

Amnl =
8

WLH

∫ H

0

∫ L

0

∫ W

0
(Ti − Tb) sin µmx sin νny sin κ`z dxdydz

= (Ti − Tb)
8

π3

[
cos (mπx

W )

m

]W

0

[
cos ( nπy

L )

n

]L

0

[
cos ( `πz

H )

`

]H

0

= (Ti − Tb)
8

π3

[
cos mπ − 1

m

] [
cos nπ − 1

n

] [
cos `π − 1

`

]
= (Ti − Tb)

8
π3

{
0, for at least one m, n, ` even,[−2

m
] [−2

n
] [−2

`

]
, for m, n, ` all odd.

Since only the odd multiples yield non-zero Amn` we let m = 2m′ − 1, n =

2n′ − 1, and ` = 2`′ − 1 for m′, n′, `′ = 1, 2, . . . . The expansion coefficients can
now be written in the simpler form

Amnl =
64(Tb − Ti)

(2m′ − 1) (2n′ − 1) (2`′ − 1)π3 .

x y

z

W

H

L

Figure 6.13: Rectangular cake showing a
vertical slice.

Substituting this result into general solution and dropping the primes, we find

u(x, y, z, t) =
64(Tb − Ti)

π3

∞

∑
m=1

∞

∑
n=1

∞

∑
`=1

sin µmx sin νny sin κ`z e−λmn`kt

(2m− 1)(2n− 1)(2`− 1)
,

where

λmn` =

(
(2m− 1)π

W

)2

+

(
(2n− 1)π

L

)2

+

(
(2`− 1)π

H

)2

for m, n, ` = 1, 2, . . ..
Recalling that the solution to the physical problem is

T(x, y, z, t) = u(x, y, z, t) + Tb,

we have the final solution is given by

T(x, y, z, t) = Tb +
64(Tb − Ti)

π3

∞

∑
m=1

∞

∑
n=1

∞

∑
`=1

sin µ̂mx sin ν̂ny sin κ̂`z e−λ̂mn`kt

(2m− 1)(2n− 1)(2`− 1)
.
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Figure 6.14: Temperature evolution for
a 13′′ × 9′′ × 2′′ cake shown as vertical
slices at the indicated length in feet.
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We show some temperature distributions in Figure 6.14. Since we cannot cap-
ture the entire cake, we show vertical slices such as depicted in Figure 6.13. Vertical
slices are taken at the positions and times indicated for a 13′′ × 9′′ × 2′′ cake. Ob-
viously, this is not accurate because the cake consistency is changing and this will
affect the parameter k. A more realistic model would be to allow k = k(T(x, y, z, t)).
However, such problems are beyond the simple methods described in this book.

Example 6.9. Circular Cakes

a

H

Figure 6.15: Geometry for a cylindrical
cake.

In this case the geometry of the cake is cylindrical as show in Figure 6.15. There-
fore, we need to express the boundary conditions and heat equation in cylindrical
coordinates. Also, we will assume that the solution, u(r, z, t) = T(r, z, t) − Tb,
is independent of θ due to axial symmetry. This gives the heat equation in θ-
independent cylindrical coordinates as

∂u
∂t

= k
(

1
r

∂

∂r

(
r

∂u
∂r

)
+

∂2u
∂z2

)
, (6.106)

where 0 ≤ r ≤ a and 0 ≤ z ≤ Z. The initial condition is

u(r, z, 0) = Ti − Tb,

and the homogeneous boundary conditions on the side, top, and bottom of the cake
are

u(a, z, t) = 0,

u(r, 0, t) = u(r, Z, t) = 0.
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Again, we seek solutions of the form u(r, z, t) = R(r)H(z)G(t). Separation of
variables leads to

1
k

G′

G︸︷︷︸
−λ

=
1

rR
d
dr
(
rR′
)

︸ ︷︷ ︸
−µ2

+
H′′

H︸︷︷︸
−ν2

. (6.107)

Here we have indicated the separation constants, which lead to three ordinary
differential equations. These equations and the boundary conditions are

G′ + kλG = 0,
d
dr
(
rR′
)
+ µ2rR = 0, R(a) = 0, R(0) is finite,

H′′ + ν2H = 0, H(0) = H(Z) = 0. (6.108)

We further note that the separation constants are related by λ = µ2 + ν2.
We can easily write down the solutions for G(t) and H(z),

G(t) = Ae−λkt

and
Hn(z) = sin

nπz
Z

, n = 1, 2, 3, . . . ,

where ν = nπ
Z . Recalling from the rectangular case that only odd terms arise in

the Fourier sine series coefficients for the constant initial condition, we proceed by
rewriting H(z) as

Hn(z) = sin
(2n− 1)πz

Z
, n = 1, 2, 3, . . . (6.109)

with ν = (2n−1)π
Z .

The radial equation can be written in the form

r2R′′ + rR′ + µ2r2R = 0.

This is a Bessel equation of the first kind of order zero which we had seen in Section
5.5. Therefore, the general solution is a linear combination of Bessel functions of the
first and second kind,

R(r) = c1 J0(µr) + c2N0(µr). (6.110)

Since R(r) is bounded at r = 0 and N0(µr) is not well behaved at r = 0, we set
c2 = 0. Up to a constant factor, the solution becomes

R(r) = J0(µr). (6.111)

The boundary condition R(a) = 0 gives the eigenvalues as

µm =
j0m

a
, m = 1, 2, 3, . . . ,

where j0m is the mth roots of the zeroth-order Bessel function, J0(j0m) = 0.
Therefore, we have found the product solutions

Hn(z)Rm(r)G(t) = sin
(2n− 1)πz

Z
J0

( r
a

j0m

)
e−λnmkt, (6.112)
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where m = 1, 2, 3, . . . , n = 1, 2, . . . . Combining the product solutions, the general
solution is found as

u(r, z, t) =
∞

∑
n=1

∞

∑
m=1

Anm sin
(2n− 1)πz

Z
J0

( r
a

j0m

)
e−λnmkt (6.113)

with

λnm =

(
(2n− 1)π

Z

)2

+

(
j0m

a

)2
,

for n, m = 1, 2, 3, . . . .
Inserting the solution into the constant initial condition, we have

Ti − Tb =
∞

∑
n=1

∞

∑
m=1

Anm sin
(2n− 1)πz

Z
J0

( r
a

j0m

)
.

This is a double Fourier series but it involves a Fourier-Bessel expansion. Writing

bn(r) =
∞

∑
m=1

Anm J0

( r
a

j0m

)
,

the condition becomes

Ti − Tb =
∞

∑
n=1

bn(r) sin
(2n− 1)πz

Z
.

As seen previously, this is a Fourier sine series and the Fourier coefficients are
given by

bn(r) =
2
Z

∫ Z

0
(Ti − Tb) sin

(2n− 1)πz
Z

dz

=
2(Ti − Tb)

Z

[
− Z
(2n− 1)π

cos
(2n− 1)πz

Z

]Z

0

=
4(Ti − Tb)

(2n− 1)π
.

We insert this result into the Fourier-Bessel series,

4(Ti − Tb)

(2n− 1)π
=

∞

∑
m=1

Anm J0

( r
a

j0m

)
,

and recall from Section 5.5 that we can determine the Fourier coefficients Anm using
the Fourier-Bessel series,

f (x) =
∞

∑
n=1

cn Jp(jpn
x
a
), (6.114)

where the Fourier-Bessel coefficients are found as

cn =
2

a2
[

Jp+1(jpn)
]2 ∫ a

0
x f (x)Jp(jpn

x
a
) dx. (6.115)

Comparing these series expansions, we have

Anm =
2

a2 J2
1 (j0m)

4(Ti − Tb)

(2n− 1)π

∫ a

0
J0(µmr)r dr. (6.116)
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In order to evaluate
∫ a

0 J0(µmr)r dr, we let y = µmr and get∫ a

0
J0(µmr)rdr =

∫ µma

0
J0(y)

y
µm

dy
µm

=
1

µ2
m

∫ µma

0
J0(y)y dy

=
1

µ2
m

∫ µma

0

d
dy

(yJ1(y)) dy

=
1

µ2
m
(µma)J1(µma) =

a2

j0m
J1(j0m). (6.117)

Here we have made use of the identity d
dx (xJ1(x)) = J0(x) from Section 5.5.

Substituting the result of this integral computation into the expression for Anm,
we find

Anm =
8(Ti − Tb)

(2n− 1)π
1

j0m J1(j0m)
.

Substituting this result into the original expression for u(r, z, t), gives

u(r, z, t) =
8(Ti − Tb)

π

∞

∑
n=1

∞

∑
m=1

sin (2n−1)πz
Z

(2n− 1)
J0(

r
a j0m)e−λnmkt

j0m J1(j0m)
.

Therefore, T(r, z, t) is found as

T(r, z, t) = Tb +
8(Ti − Tb)

π

∞

∑
n=1

∞

∑
m=1

sin (2n−1)πz
Z

(2n− 1)
J0(

r
a j0m)e−λnmkt

j0m J1(j0m)
,

where

λnm =

(
(2n− 1)π

Z

)2

+

(
j0m

a

)2
, n, m = 1, 2, 3, . . . .

Figure 6.16: Depiction of a sideview of a
vertical slice of a circular cake.

We have therefore found the general solution for the three-dimensional heat equa-
tion in cylindrical coordinates with constant diffusivity. Similar to the solutions
shown in Figure 6.14 of the previous section, we show in Figure 6.17 the tempera-
ture evolution throughout a standard 9′′ round cake pan. These are vertical slices
similar to what is depicted in Figure 6.16.

Again, one could generalize this example to considerations of other types
of cakes with cylindrical symmetry. For example, there are muffins, Boston
steamed bread which is steamed in tall cylindrical cans. One could also
consider an annular pan, such as a bundt cake pan. In fact, such problems
extend beyond baking cakes to possible heating molds in manufacturing.

6.5 Laplace’s Equation and Spherical Symmetry

We have seen that Laplace’s equation, ∇2u = 0, arises in electro-
statics as an equation for electric potential outside a charge distribution and
it occurs as the equation governing equilibrium temperature distributions.
As we had seen in the last chapter, Laplace’s equation generally occurs in
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Figure 6.17: Temperature evolution for a
standard 9′′ cake shown as vertical slices
through the center.

Temperatures for t = 15 min

 

 

-0.2 0 0.2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

100

150

200

250

300

350
Temperatures for t = 20 min

 

 

-0.2 0 0.2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

100

150

200

250

300

350

Temperatures for t = 25 min

 

 

-0.2 0 0.2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

100

150

200

250

300

350
Temperatures for t = 30 min

 

 

-0.2 0 0.2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

100

150

200

250

300

350

the study of potential theory, which also includes the study of gravitational
and fluid potentials. The equation is named after Pierre-Simon Laplace
(1749-1827) who had studied the properties of this equation. Solutions of
Laplace’s equation are called harmonic functions.

Example 6.10. Solve Laplace’s equation in spherical coordinates.

x

y

r

u(r, θ, φ) = g(θ, φ)

Figure 6.18: A sphere of radius r with
the boundary condition u(r, θ, φ) =
g(θ, φ).

We seek solutions of this equation inside a sphere of radius r subject to the bound-
ary condition as shown in Figure 6.18. The problem is given by Laplace’s equation
Laplace’s equation in spherical coordinates22 The Laplacian in spherical coordinates

is given in Problem ?? in Chapter 8.

1
ρ2

∂

∂ρ

(
ρ2 ∂u

∂ρ

)
+

1
ρ2 sin θ

∂

∂θ

(
sin θ

∂u
∂θ

)
+

1
ρ2 sin2 θ

∂2u
∂φ2 = 0, (6.118)

where u = u(ρ, θ, φ).
The boundary conditions are given by

u(r, θ, φ) = g(θ, φ), 0 < φ < 2π, 0 < θ < π,

and the periodic boundary conditions

u(ρ, θ, 0) = u(ρ, θ, 2π), uφ(ρ, θ, 0) = uφ(ρ, θ, 2π),

where 0 < ρ < ∞, and 0 < θ < π.

As before, we perform a separation of variables by seeking product so-
lutions of the form u(ρ, θ, φ) = R(ρ)Θ(θ)Φ(φ). Inserting this form into the
Laplace equation, we obtain

x

y

z

ρ

φ

θ

Figure 6.19: Definition of spherical coor-
dinates (ρ, θ, φ). Note that there are dif-
ferent conventions for labeling spherical
coordinates. This labeling is used often
in physics.
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ΘΦ
ρ2

d
dρ

(
ρ2 dR

dρ

)
+

RΦ
ρ2 sin θ

d
dθ

(
sin θ

dΘ
dθ

)
+

RΘ
ρ2 sin2 θ

d2Φ
dφ2 = 0. (6.119)

Multiplying this equation by ρ2 and dividing by RΘΦ, yields

1
R

d
dρ

(
ρ2 dR

dρ

)
+

1
sin θΘ

d
dθ

(
sin θ

dΘ
dθ

)
+

1
sin2 θΦ

d2Φ
dφ2 = 0. (6.120)

Note that the first term is the only term depending upon ρ. Thus, we can
separate out the radial part. However, there is still more work to do on the
other two terms, which give the angular dependence. Thus, we have

− 1
R

d
dρ

(
ρ2 dR

dρ

)
=

1
sin θΘ

d
dθ

(
sin θ

dΘ
dθ

)
+

1
sin2 θΦ

d2Φ
dφ2 = −λ, (6.121)

where we have introduced the first separation constant. This leads to two
equations:

d
dρ

(
ρ2 dR

dρ

)
− λR = 0 (6.122)

and
1

sin θΘ
d
dθ

(
sin θ

dΘ
dθ

)
+

1
sin2 θΦ

d2Φ
dφ2 = −λ. (6.123)

Equation (6.123) is a key equation which
occurs when studying problems possess-
ing spherical symmetry. It is an eigen-
value problem for Y(θ, φ) = Θ(θ)Φ(φ),
LY = −λY, where

L =
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂φ2 .

The eigenfunctions of this operator are
referred to as spherical harmonics.

The final separation can be performed by multiplying the last equation by
sin2 θ, rearranging the terms, and introducing a second separation constant:

sin θ

Θ
d
dθ

(
sin θ

dΘ
dθ

)
+ λ sin2 θ = − 1

Φ
d2Φ
dφ2 = µ. (6.124)

From this expression we can determine the differential equations satisfied
by Θ(θ) and Φ(φ):

sin θ
d
dθ

(
sin θ

dΘ
dθ

)
+ (λ sin2 θ − µ)Θ = 0, (6.125)

and
d2Φ
dφ2 + µΦ = 0. (6.126)

We now have three ordinary differential equations to solve. These are the
radial equation (6.122) and the two angular equations (6.125)-(6.126). We
note that all three are in Sturm-Liouville form. We will solve each eigen-
value problem subject to appropriate boundary conditions.

The simplest of these differential equations is Equation (6.126) for Φ(φ).
We have seen equations of this form many times and the general solution
is a linear combination of sines and cosines. Furthermore, in this problem
u(ρ, θ, φ) is periodic in φ,

u(ρ, θ, 0) = u(ρ, θ, 2π), uφ(ρ, θ, 0) = uφ(ρ, θ, 2π).

Since these conditions hold for all ρ and θ, we must require that Φ(φ) satisfy
the periodic boundary conditions

Φ(0) = Φ(2π), Φ′(0) = Φ′(2π).
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The eigenfunctions and eigenvalues for Equation (6.126) are then found as

Φ(φ) = {cos mφ, sin mφ} , µ = m2, m = 0, 1, . . . . (6.127)

Next we turn to solving equation, (6.125). We first transform this equation
in order to identify the solutions. Let x = cos θ. Then the derivatives with
respect to θ transform as

d
dθ

=
dx
dθ

d
dx

= − sin θ
d

dx
.

Letting y(x) = Θ(θ) and noting that sin2 θ = 1− x2, Equation (6.125) be-
comes

d
dx

(
(1− x2)

dy
dx

)
+

(
λ− m2

1− x2

)
y = 0. (6.128)

We further note that x ∈ [−1, 1], as can be easily confirmed by the reader.
This is a Sturm-Liouville eigenvalue problem. The solutions consist of a

set of orthogonal eigenfunctions. For the special case that m = 0 Equation
(6.128) becomes

d
dx

(
(1− x2)

dy
dx

)
+ λy = 0. (6.129)

In a course in differential equations one learns to seek solutions of this
equation in the form

y(x) =
∞

∑
n=0

anxn.

This leads to the recursion relation

an+2 =
n(n + 1)− λ

(n + 2)(n + 1)
an.

Setting n = 0 and seeking a series solution, one finds that the resulting series
does not converge for x = ±1. This is remedied by choosing λ = `(`+ 1)
for ` = 0, 1, . . . , leading to the differential equation

d
dx

(
(1− x2)

dy
dx

)
+ `(`+ 1)y = 0. (6.130)

We saw this equation in Chapter 5 in the form

(1− x2)y′′ − 2xy′ + `(`+ 1)y = 0.

The solutions of this differential equation are Legendre polynomials, de-
noted by P`(x).

For the more general case, m 6= 0, the differential equation (6.128) with
λ = `(`+ 1) becomesassociated Legendre functions

d
dx

(
(1− x2)

dy
dx

)
+

(
`(`+ 1)− m2

1− x2

)
y = 0. (6.131)

The solutions of this equation are called the associated Legendre functions.
The two linearly independent solutions are denoted by Pm

` (x) and Qm
` (x).

The latter functions are not well behaved at x = ±1, corresponding to the
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north and south poles of the original problem. So, we can throw out these
solutions in many physical cases, leaving

Θ(θ) = Pm
` (cos θ)

as the needed solutions. In Table 6.5 we list a few of these.

Pm
n (x) Pm

n (cos θ)

P0
0 (x) 1 1

P0
1 (x) x cos θ

P1
1 (x) −(1− x2)

1
2 − sin θ

P0
2 (x) 1

2 (3x2 − 1) 1
2 (3 cos2 θ − 1)

P1
2 (x) −3x(1− x2)

1
2 −3 cos θ sin θ

P2
2 (x) 3(1− x2) 3 sin2 θ

P0
3 (x) 1

2 (5x3 − 3x) 1
2 (5 cos3 θ − 3 cos θ)

P1
3 (x) − 3

2 (5x2 − 1)(1− x2)
1
2 − 3

2 (5 cos2 θ − 1) sin θ

P2
3 (x) 15x(1− x2) 15 cos θ sin2 θ

P3
3 (x) −15(1− x2)

3
2 −15 sin3 θ

Table 6.5: Associated Legendre Func-
tions, Pm

n (x).

The associated Legendre functions are related to the Legendre polynomi-
als by3 3 The factor of (−1)m is known as the

Condon-Shortley phase and is useful in
quantum mechanics in the treatment of
agular momentum. It is sometimes omit-
ted by some

Pm
` (x) = (−1)m(1− x2)m/2 dm

dxm P`(x), (6.132)

for ` = 0, 1, 2, , . . . and m = 0, 1, . . . , `. We further note that P0
` (x) = P`(x),

as one can see in the table. Since P`(x) is a polynomial of degree `, then for
m > `, dm

dxm P`(x) = 0 and Pm
` (x) = 0.

Furthermore, since the differential equation only depends on m2, P−m
` (x)

is proportional to Pm
` (x). One normalization is given by

P−m
` (x) = (−1)m (`−m)!

(`+ m)!
Pm
` (x).

The associated Legendre functions also satisfy the orthogonality condi-
tion Orthogonality relation.∫ 1

−1
Pm
` (x)Pm

`′ (x) dx =
2

2`+ 1
(`+ m)!
(`−m)!

δ``′ . (6.133)

The last differential equation we need to solve is the radial equation. With
λ = `(`+ 1), ` = 0, 1, 2, . . . , the radial equation (6.122) can be written as

ρ2R′′ + 2ρR′ − `(`+ 1)R = 0. (6.134)

The radial equation is a Cauchy-Euler type of equation. So, we can guess
the form of the solution to be R(ρ) = ρs, where s is a yet to be determined
constant. Inserting this guess into the radial equation, we obtain the char-
acteristic equation

s(s + 1) = `(`+ 1).

Solving for s, we have
s = `,−(`+ 1).
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Thus, the general solution of the radial equation is

R(ρ) = aρ` + bρ−(`+1). (6.135)

We would normally apply boundary conditions at this point. The bound-
ary condition u(r, θ, φ) = g(θ, φ) is not a homogeneous boundary condition,
so we will need to hold off using it until we have the general solution to the
three dimensional problem. However, we do have a hidden condition. Since
we are interested in solutions inside the sphere, we need to consider what
happens at ρ = 0. Note that ρ−(`+1) is not defined at the origin. Since the
solution is expected to be bounded at the origin, we can set b = 0. So, in the
current problem we have established that

R(ρ) = aρ`.

When seeking solutions outside the
sphere, one considers the boundary con-
dition R(ρ) → 0 as ρ → ∞. In this case,
R(ρ) = ρ−(`+1).

We have carried out the full separation of Laplace’s equation in spherical
coordinates. The product solutions consist of the forms

u(ρ, θ, φ) = ρ`Pm
` (cos θ) cos mφ

and
u(ρ, θ, φ) = ρ`Pm

` (cos θ) sin mφ

for ` = 0, 1, 2, . . . and m = 0,±1, , . . . ,±`. These solutions can be combined
to give a complex representation of the product solutions as

u(ρ, θ, φ) = ρ`Pm
` (cos θ)eimφ.

The general solution is then given as a linear combination of these product
solutions. As there are two indices, we have a double sum:4

4 While this appears to be a complex-
valued solution, it can be rewritten as
a sum over real functions. The inner
sum contains terms for both m = k and
m = −k. Adding these contributions, we
have that

a`kρ`Pk
` (cos θ)eikφ + a`(−k)ρ

`P−k
` (cos θ)e−ikφ

can be rewritten as

(A`k cos kφ + B`k sin kφ)ρ`Pk
` (cos θ).

u(ρ, θ, φ) =
∞

∑
`=0

`

∑
m=−`

a`mρ`Pm
` (cos θ)eimφ. (6.136)

Example 6.11. Laplace’s Equation with Azimuthal Symmetry
As a simple example we consider the solution of Laplace’s equation in which there

is azimuthal symmetry. Let

u(r, θ, φ) = g(θ) = 1− cos 2θ.

This function is zero at the poles and has a maximum at the equator. So, this could
be a crude model of the temperature distribution of the Earth with zero temperature
at the poles and a maximum near the equator.

x

y

r

u(r, θ, φ) = 1− cos 2θ

Figure 6.20: A sphere of radius r with
the boundary condition

u(r, θ, φ) = 1− cos 2θ.

In problems in which there is no φ-dependence, only the m = 0 terms of the
general solution survives. Thus, we have that

u(ρ, θ, φ) =
∞

∑
`=0

a`ρ`P`(cos θ). (6.137)

Here we have used the fact that P0
` (x) = P`(x). We just need to determine the

unknown expansion coefficients, a`. Imposing the boundary condition at ρ = r, we
are lead to

g(θ) =
∞

∑
`=0

a`r`P`(cos θ). (6.138)
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This is a Fourier-Legendre series representation of g(θ). Since the Legendre poly-
nomials are an orthogonal set of eigenfunctions, we can extract the coefficients.

In Chapter 5 we had proven that∫ π

0
Pn(cos θ)Pm(cos θ) sin θ dθ =

∫ 1

−1
Pn(x)Pm(x) dx =

2
2n + 1

δnm.

So, multiplying the expression for g(θ) by Pm(cos θ) sin θ and integrating, we
obtain the expansion coefficients:

a` =
2`+ 1

2r`

∫ π

0
g(θ)P`(cos θ) sin θ dθ. (6.139)

Sometimes it is easier to rewrite g(θ) as a polynomial in cos θ and avoid the
integration. For this example we see that

g(θ) = 1− cos 2θ

= 2 sin2 θ

= 2− 2 cos2 θ. (6.140)

Thus, setting x = cos θ and G(x) = g(θ(x)), we have G(x) = 2− 2x2.
We seek the form

G(x) = c0P0(x) + c1P1(x) + c2P2(x),

where P0(x) = 1, P1(x) = x, and P2(x) = 1
2 (3x2 − 1). Since G(x) = 2− 2x2

does not have any x terms, we know that c1 = 0. So,

2− 2x2 = c0(1) + c2
1
2
(3x2 − 1) = c0 −

1
2

c2 +
3
2

c2x2.

By observation we have c2 = − 4
3 and thus, c0 = 2 + 1

2 c2 = 4
3 . Therefore,

G(x) = 4
3 P0(x)− 4

3 P2(x).
We have found the expansion of g(θ) in terms of Legendre polynomials,

g(θ) =
4
3

P0(cos θ)− 4
3

P2(cos θ). (6.141)

Therefore, the nonzero coefficients in the general solution become

a0 =
4
3

, a2 =
4
3

1
r2 ,

and the rest of the coefficients are zero. Inserting these into the general solution, we
have the final solution

u(ρ, θ, φ) =
4
3

P0(cos θ)− 4
3

(ρ

r

)2
P2(cos θ)

=
4
3
− 2

3

(ρ

r

)2
(3 cos2 θ − 1). (6.142)

6.5.1 Spherical Harmonics

The solutions of the angular parts of the problem are often com-
bined into one function of two variables, as problems with spherical sym-
metry arise often, leaving the main differences between such problems con-
fined to the radial equation. These functions are referred to as spherical
harmonics, Y`m(θ, φ), which are defined with a special normalization as

Y`m(θ, φ), are the spherical harmonics.
Spherical harmonics are important in
applications from atomic electron con-
figurations to gravitational fields, plane-
tary magnetic fields, and the cosmic mi-
crowave background radiation.
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Y`m(θ, φ) = (−1)m

√
2`+ 1

4π

(`−m)!
(`+ m)!

Pm
` (cos θ)eimφ. (6.143)

These satisfy the simple orthogonality relation∫ π

0

∫ 2π

0
Y`m(θ, φ)Y∗`′m′(θ, φ) sin θ dφ dθ = δ``′δmm′ .

As seen earlier in the chapter, the spherical harmonics are eigenfunctions
of the eigenvalue problem LY = −λY, where

L =
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂φ2 .

This operator appears in many problems in which there is spherical sym-
metry, such as obtaining the solution of Schrödinger’s equation for the hy-
drogen atom as we will see later. Therefore, it is customary to plot spherical
harmonics. Because the Y`m’s are complex functions, one typically plots ei-
ther the real part or the modulus squared. One rendition of |Y`m(θ, φ)|2 is
shown in Figure 6.6 for `, m = 0, 1, 2, 3.

Table 6.6: The first few spherical har-
monics, |Y`m(θ, φ)|2

m = 0 m = 1 m = 2 m = 3

` = 0

` = 1

` = 2

` = 3

We could also look for the nodal curves of the spherical harmonics like
we had for vibrating membranes. Such surface plots on a sphere are shown
in Figure 6.7. The colors provide for the amplitude of the |Y`m(θ, φ)|2. We
can match these with the shapes in Figure 6.6 by coloring the plots with
some of the same colors as shown in Figure 6.7. However, by plotting just
the sign of the spherical harmonics, as in Figure 6.8, we can pick out the
nodal curves much easier.
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m = 0 m = 1 m = 2 m = 3

` = 0

` = 1

` = 2

` = 3

Table 6.7: Spherical harmonic contours
for |Y`m(θ, φ)|2.

m = 0 m = 1 m = 2 m = 3

` = 0

` = 1

` = 2

` = 3

Table 6.8: In these figures we show
the nodal curves of |Y`m(θ, φ)|2 Along
the first column (m = 0) are the zonal
harmonics seen as ` horizontal circles.
Along the top diagonal (m = `) are
the sectional harmonics. These look like
orange sections formed from m vertical
circles. The remaining harmonics are
tesseral harmonics. They look like a
checkerboard pattern formed from inter-
sections of `−m horizontal circles and m
vertical circles.

Figure 6.21: Zonal harmonics, ` = 1,
m = 0.

Figure 6.22: Zonal harmonics, ` = 2,
m = 0.

Figure 6.23: Sectoral harmonics, ` = 2,
m = 2.

Figure 6.24: Tesseral harmonics, ` = 3,
m = 1.

Spherical, or surface, harmonics can be further grouped into zonal, sec-
toral, and tesseral harmonics. Zonal harmonics correspond to the m = 0
modes. In this case, one seeks nodal curves for which P`(cos θ) = 0. So-
lutions of this equation lead to constant θ values such that cos θ is a zero
of the Legendre polynomial, P`(x). The zonal harmonics correspond to the
first column in Figure 6.8. Since P`(x) is a polynomial of degree `, the zonal
harmonics consist of ` latitudinal circles.

Sectoral, or meridional, harmonics result for the case that m = ±`. For
this case, we note that P±`` (x) ∝ (1 − x2)m/2. This function vanishes for
x = ±1, or θ = 0, π. Therefore, the spherical harmonics can only produce
nodal curves for eimφ = 0. Thus, one obtains the meridians satisfying the
condition A cos mφ+ B sin mφ = 0. Solutions of this equation are of the form
φ = constant. These modes can be seen in Figure 6.8 in the top diagonal
and can be described as m circles passing through the poles, or longitudinal
circles.

Tesseral harmonics consist of the rest of the modes, which typically look
like a checker board glued to the surface of a sphere. Examples can be
seen in the pictures of nodal curves, such as Figure 6.8. Looking in Figure
6.8 along the diagonals going downward from left to right, one can see the
same number of latitudinal circles. In fact, there are `−m latitudinal nodal
curves in these figures
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In summary, the spherical harmonics have several representations, as
show in Figures 6.7-6.8. Note that there are ` nodal lines, m meridional
curves, and `−m horizontal curves in these figures. The plots in Figure 6.6
are the typical plots shown in physics for discussion of the wavefunctions
of the hydrogen atom. Those in 6.7 are useful for describing gravitational
or electric potential functions, temperature distributions, or wave modes
on a spherical surface. The relationships between these pictures and the
nodal curves can be better understood by comparing respective plots. Sev-
eral modes were separated out in Figures 6.21-6.26 to make this comparison
easier.

Figure 6.25: Sectoral harmonics, ` = 3,
m = 3.

Figure 6.26: Tesseral harmonics, ` = 4,
m = 3.

6.6 Spherically Symmetric Vibrations

x

y

r

Figure 6.27: A vibrating sphere of radius
r with the initial conditions

u(θ, φ, 0) = f (θ, φ),

ut(θ, φ, 0) = g(θ, φ).

Another application of spherical harmonics is a vibrating spher-
ical membrane, such as a balloon. Just as for the two-dimensional mem-
branes encountered earlier, we let u(θ, φ, t) represent the vibrations of the
surface about a fixed radius obeying the wave equation, utt = c2∇2u, and
satisfying the initial conditions

u(θ, φ, 0) = f (θ, φ), ut(θ, φ, 0) = g(θ, φ).

In spherical coordinates, we have (for ρ = r = constant.)

utt =
c2

r2

(
1

sin θ

∂

∂θ

(
sin θ

∂u
∂θ

)
+

1
sin2 θ

∂2u
∂φ2

)
, (6.144)

where u = u(θ, φ, t).
The boundary conditions are given by the periodic boundary conditions

u(θ, 0, t) = u(θ, 2π, t), uφ(θ, 0, t) = uφ(θ, 2π, t),

where 0 < t, and 0 < θ < π, and that u = u(θ, φ, t) should remain
bounded.

Noting that the wave equation takes the form

utt =
c2

r2 Lu, where LY`m = −`(`+ 1)Y`m

for the spherical harmonics Y`m(θ, φ) = Pm
` (cos θ)eimφ, then we can seek

product solutions of the form

u`m(θ, φ, t) = T(t)Y`m(θ, φ).

Inserting this form into the wave equation in spherical coordinates, we find

T′′Y`m = − c2

r2 T(t)`(`+ 1)Y`m,

or

T′′ + `(`+ 1)
c2

r2 T(t).
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The solutions of this equation are easily found as

T(t) = A cos ω`t + B sin ω`t, ω` =
√
`(`+ 1)

c
r

.

Therefore, the product solutions are given by

u`m(θ, φ, t) = [A cos ω`t + B sin ω`t]Y`m(θ, φ)

for ` = 0, 1, . . . , m = −`,−`+ 1, . . . , `.
In Figure 6.28 we show several solutions for r = c = 1 at t = 10.

Figure 6.28: Modes for a vibrating spher-
ical membrane:
Row 1: (1, 0), (1, 1);
Row 2: (2, 0), (2, 1), (2, 2);
Row 3 (3, 0), (3, 1), (3, 2), (3, 3).

The general solution is found as

u(θ, φ, t) =
∞

∑
`=0

`

∑
m=−`

[A`m cos ω`t + B`m sin ω`t]Y`m(θ, φ).

An interesting problem is to consider hitting the balloon with a velocity
impulse while at rest. An example of such a solution is shown in Figure
6.29. In this images several modes are excited after the impulse.

Figure 6.29: A moment captured from a
simulation of a spherical membrane af-
ter hit with a velocity impulse.

6.7 Baking a Spherical Turkey

During one year as this course was being taught, an instructor returned
from the American holiday of Thanksgiving, where it is customary to cook a
turkey. Such a turkey is shown in Figure 6.30. This reminded the instructor
of a typical problem, such as in Weinberger, (1995, p. 92.), where one is
given a roast of a certain volume and one is asked to find the time it takes
to cook one double the size. In this section, we explore a similar problem
for cooking a turkey.

Often during this time of the year, November, articles appear with some
scientific evidence as to how to gauge how long it takes to cook a turkey of a
given weight. Inevitably it refers to the story, as told in http://today.slac.

stanford.edu/a/2008/11-26.htmhttp://today.slac.stanford.edu/a/2008/11-
26.htm that Pief Panofsky, a former SLAC Director, was determined to find a

http://today.slac.stanford.edu/a/2008/11-26.htm
http://today.slac.stanford.edu/a/2008/11-26.htm
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Figure 6.30: A 12-lb turkey leaving the
oven.

nonlinear equation for determining cooking times instead of using the rule
of thumb of 30 minutes per pound of turkey. He had arrived at the form,

t =
W2/3

1.5
,

where t is the cooking time and W is the weight of the turkey in pounds.
Nowadays, one can go to Wolframalpha.com and enter the question "how
long should you cook a turkey" and get results based on a similar formula.

Before turning to the solution of the heat equation for a turkey, let’s con-
sider a simpler problem.

Example 6.12. If it takes 4 hours to cook a 10 pound turkey in a 350o F oven, then
how long would it take to cook a 20 pound turkey at the same conditions?

In all of our analysis, we will consider a spherical turkey. While the turkey in
Figure 6.30 is not quite spherical, we are free to approximate the turkey as such. If
you prefer, we could imagine a spherical turkey like the one shown in Figure 6.31.

This problem is one of scaling. Thinking of the turkey as being spherically sym-
metric, then the baking follows the heat equation in the form

ut =
k
r2

∂

∂r

(
r2 ∂u

∂r

)
.

We can rescale the variables from coordinates (r, t) to (ρ, τ) as r = βρ, and
t = ατ. Then the derivatives transform as

∂

∂r
=

∂ρ

∂r
∂

∂ρ
=

1
β

∂

∂ρ
,

∂

∂t
=

∂τ

∂t
∂

∂τ
=

1
α

∂

∂τ
. (6.145)

Inserting these transformations into the heat equation, we have

uτ =
α

β2
k
ρ2

∂

∂ρ

(
ρ2 ∂u

∂ρ

)
.

To keep conditions the same, then we need α = β2. So, the transformation that
keeps the form of the heat equation the same, or makes it invariant, is r = βρ, and
t = β2τ. This is also known as a self-similarity transformation.
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Figure 6.31: The depiction of a spherical
turkey.

So, if the radius increases by a factor of β, then the time to cook the turkey
(reaching a given temperature, u), would increase by β2. Returning to the problem,
if the weight of the doubles, then the volume doubles, assuming that the density is
held constant. However, the volume is proportional to r3. So, r increases by a factor
of 21/3. Therefore, the time increases by a factor of 22/3 ≈ 1.587. This give the time
for cooking a 20 lb turkey as t = 4(22/3) = 28/3 ≈ 6.35 hours.

The previous example shows the power of using similarity transforma-
tions to get general information about solutions of differential equations.
However, we have focussed on using the method of separation of variables
for most of the book so far. We should be able to find a solution to the
spherical turkey model using these methods as well. This will be shown in
the next example.

Example 6.13. Find the temperature, T(ρ, t) inside a spherical turkey, initially at
40◦, which is F placed in a 350◦ F. Assume that the turkey is of constant density
and that the surface of the turkey is maintained at the oven temperature. [We will
also neglect convection and radaition processes inside the oven.]

The problem can be formulated as a heat equation problem for T(ρ, t) :

Tt =
k
r2

∂

∂r

(
r2 ∂T

∂r

)
, 0 < ρ < a, t > 0,

T(a, t) = 350, T(ρ, t) finite at ρ = 0, t > 0,

T(ρ, 0) = 40. (6.146)

We note that the boundary condition is not homogeneous. However, we can fix
that by introducing the auxiliary function (the difference between the turkey and
oven temperatures) u(ρ, t) = T(ρ, t)− Ta, where Ta = 350. Then, the problem to
be solved becomes

ut =
k
r2

∂

∂r

(
r2 ∂u

∂r

)
, 0 < ρ < a, t > 0,

u(a, t) = 0, u(ρ, t) finite at ρ = 0, t > 0,

u(ρ, 0) = Tai− Ta = −310, (6.147)
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where Ti = 40.
We can now employ the method of separation of variables. Let u(ρ, t) = R(ρ)G(t).

Inserting into the heat equation for u, we have

1
k

G′

G
=

1
R

(
R′′ +

2
ρ

R′
)
= −λ.

This give the two ordinary differential equations, the temporal equation,

G′ = −kλG, (6.148)

and the radial equation,
ρR′′ + 2R′ + λρR = 0. (6.149)

The temporal equation is easy to solve,

G(t) = G0e−λkt.

However, the radial equation is slightly more difficult. But, making the substitution
R(ρ) = y(ρ)/ρ, it is readily transformed into a simpler form:55 The radial equation almost looks famil-

iar when it is multiplied by ρ :

ρ2R′′ + 2ρR′ + λρ2R = 0.

If it were not for the ’2’, it would be the
zeroth order Bessel equation. This is ac-
tually the zeroth order spherical Bessel
equation. In general, the spherical Bessel
functions, jn(x) and yn(x), satisfy

x2y′′ + 2xy′ + [x2 − n(n + 1)]y = 0.

So, the radial solution of the turkey
problem is

R(ρ) = jn(
√

λρ) =
sin
√

λρ√
λρ

.

We further note that

jn(x) =
√

π

2x
Jn+ 1

2
(x)

y′′ + λy = 0.

The boundary conditions on u(ρ, t) = R(ρ)G(t) transfer to R(a) = 0 and R(ρ)
finite at the origin. In turn, this means that y(a) = 0 and y(ρ) has to vanish near
the origin. If y(ρ) does not vanish near the origin, then R(ρ) is not finite as ρ→ 0.

So, we need to solve the boundary value problem

y′′ + λy = 0, y(0) = 0, y(a) = 0.

This gives the well-known set of eigenfunctions

y(ρ) = sin
nπρ

a
, λn =

(nπ

a

)2
, n = 1, 2, 3, . . . .

Therefore, we have found

R(ρ) =
sin nπρ

a
ρ

, λn =
(nπ

a

)2
, n = 1, 2, 3, . . . .

The general solution to the auxiliary problem is

u(ρ, t) =
∞

∑
n=1

An
sin nπρ

a
ρ

e−(nπ/a)2kt.

This gives the general solution for the temperature as

T(ρ, t) = Ta +
∞

∑
n=1

An
sin nπρ

a
ρ

e−(nπ/a)2kt.

All that remains is to find the solution satisfying the initial condition, T(ρ, 0) =
40. Inserting t = 0, we have

Ti − Ta =
∞

∑
n=1

An
sin nπρ

a
ρ

.
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This is almost a Fourier sine series. Multiplying by ρ, we have

(Ti − Ta)ρ =
∞

∑
n=1

An sin
nπρ

a
.

Now, we can solve for the coefficients,

An =
2
a

∫ a

0
(Ti − Ta)ρ sin

nπρ

a
dρ

=
2a
nπ

(Ti − Ta)(−1)n+1. (6.150)

This gives the final solution,

T(ρ, t) = Ta +
2a(Ti − Ta)

π

∞

∑
n=1

(−1)n+1

n
sin nπρ

a
ρ

e−(nπ/a)2kt.

For generality, the ambient and initial temperature were left in terms of Ta and Ti,
respectively.

It is interesting to use the above solution to compare roasting different
turkeys. We take the same conditions as above. Let the radius of the spheri-
cal turkey be six inches. We will assume that such a turkey takes four hours
to cook, i.e., reach a temperature of 180◦ F. Plotting the solution with 400

terms, one finds that k ≈ 0.000089. This gives a “baking time” of t1 = 239.63.
A plot of the temperature at the center point (ρ = a/2) of the bird is in Fig-
ure 6.32.
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Figure 6.32: The temperature at the cen-
ter of a turkey with radius a = 0.5 ft and
k ≈ 0.000089.

Using the same constants, but increasing the radius of a turkey to a =

0.5(21/3) ft, we obtain the temperature plot in Figure 6.33. This radius cor-
responds to doubling the volume of the turkey. Solving for the time at which
the center temperature (at ρ = a/2) reaches 180◦ F, we obtained t2 = 380.38.



206 partial differential equations

Comparing the two temperatures, we find the ratio (using the full compu-
tation of the solution in Maple)

t2
t1

=
380.3813709
239.6252478

≈ 1.587401054.

The compares well to
22/3 ≈ 1.587401052.

Of course, the temperature is not quite the center of the spherical turkey.
The reader can work out the details for other locations. Perhaps other in-
teresting models would be a spherical shell of turkey with a corse of bread
stuffing. Or, one might consider an ellipsoidal geometry.

Figure 6.33: The temperature at the cen-
ter of a turkey with radius a = 0.5(21/3)
ft and k ≈ 0.000089.
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6.8 Schrödinger Equation in Spherical Coordinates

Another important eigenvalue problem in physics is the Schrödinger
equation. The time-dependent Schrödinger equation is given by

ih̄
∂Ψ
∂t

= − h̄2

2m
∇2Ψ + VΨ. (6.151)

Here Ψ(r, t) is the wave function, which determines the quantum state of
a particle of mass m subject to a (time independent) potential, V(r). From
Planck’s constant, h, one defines h̄ = h

2π . The probability of finding the
particle in an infinitesimal volume, dV, is given by |Ψ(r, t)|2 dV, assuming
the wave function is normalized,∫

all space
|Ψ(r, t)|2 dV = 1.
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One can separate out the time dependence by assuming a special form,
Ψ(r, t) = ψ(r)e−iEt/h̄, where E is the energy of the particular stationary state
solution, or product solution. Inserting this form into the time-dependent
equation, one finds that ψ(r) satisfies the time-independent Schrödinger
equation,

− h̄2

2m
∇2ψ + Vψ = Eψ. (6.152)

Assuming that the potential depends only on the distance from the ori-
gin, V = V(ρ), we can further separate out the radial part of this solution
using spherical coordinates. Recall that the Laplacian in spherical coordi-
nates is given by

∇2 =
1
ρ2

∂

∂ρ

(
ρ2 ∂

∂ρ

)
+

1
ρ2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
ρ2 sin2 θ

∂2

∂φ2 . (6.153)

Then, the time-independent Schrödinger equation can be written as

− h̄2

2m

[
1
ρ2

∂

∂ρ

(
ρ2 ∂ψ

∂ρ

)
+

1
ρ2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1
ρ2 sin2 θ

∂2ψ

∂φ2

]
= [E−V(ρ)]ψ. (6.154)

Let’s continue with the separation of variables. Assuming that the wave
function takes the form ψ(ρ, θ, φ) = R(ρ)Y(θ, φ), we obtain

− h̄2

2m

[
Y
ρ2

d
dρ

(
ρ2 dR

dρ

)
+

R
ρ2 sin θ

∂

∂θ

(
sin θ

∂Y
∂θ

)
+

R
ρ2 sin2 θ

∂2Y
∂φ2

]
= RY[E−V(ρ)]ψ. (6.155)

Dividing by ψ = RY, multiplying by − 2mρ2

h̄2 , and rearranging, we have

1
R

d
dρ

(
ρ2 dR

dρ

)
− 2mρ2

h̄2 [V(ρ)− E] = − 1
Y

LY,

where

L =
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂φ2 .

We have a function of ρ equal to a function of the angular variables. So,
we set each side equal to a constant. We will judiciously write the separation
constant as `(`+ 1). The resulting equations are then

d
dρ

(
ρ2 dR

dρ

)
− 2mρ2

h̄2 [V(ρ)− E] R = `(`+ 1)R, (6.156)

1
sin θ

∂

∂θ

(
sin θ

∂Y
∂θ

)
+

1
sin2 θ

∂2Y
∂φ2 = −`(`+ 1)Y. (6.157)

The second of these equations should look familiar from the last section.
This is the equation for spherical harmonics,

Y`m(θ, φ) =

√
2`+ 1

2
(`−m)!
(`+ m)!

Pm
` eimφ. (6.158)
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So, any further analysis of the problem depends upon the choice of po-
tential, V(ρ), and the solution of the radial equation. For this, we turn to the
determination of the wave function for an electron in orbit about a proton.

Example 6.14. The Hydrogen Atom - ` = 0 States
Historically, the first test of the Schrödinger equation was the determination of

the energy levels in a hydrogen atom. This is modeled by an electron orbiting a
proton. The potential energy is provided by the Coulomb potential,

V(ρ) = − e2

4πε0ρ
.

Thus, the radial equation becomesSolution of the hydrogen problem.

d
dρ

(
ρ2 dR

dρ

)
+

2mρ2

h̄2

[
e2

4πε0ρ
+ E

]
R = `(`+ 1)R. (6.159)

Before looking for solutions, we need to simplify the equation by absorbing some
of the constants. One way to do this is to make an appropriate change of variables.
Let ρ = ar. Then, by the Chain Rule we have

d
dρ

=
dr
dρ

d
dr

=
1
a

d
dr

.

Under this transformation, the radial equation becomes

d
dr

(
r2 du

dr

)
+

2ma2r2

h̄2

[
e2

4πε0ar
+ E

]
u = `(`+ 1)u, (6.160)

where u(r) = R(ρ). Expanding the second term,

2ma2r2

h̄2

[
e2

4πε0ar
+ E

]
u =

[
mae2

2πε0h̄2 r +
2mEa2

h̄2 r2
]

u,

we see that we can define

a =
2πε0h̄2

me2 , (6.161)

ε = −2mEa2

h̄2

= −2(2πε0)
2h̄2

me4 E. (6.162)

Using these constants, the radial equation becomes

d
dr

(
r2 du

dr

)
+ ru− `(`+ 1)u = εr2u. (6.163)

Expanding the derivative and dividing by r2,

u′′ +
2
r

u′ +
1
r

u− `(`+ 1)
r2 u = εu. (6.164)

The first two terms in this differential equation came from the Laplacian. The third
term came from the Coulomb potential. The fourth term can be thought to contribute



problems in higher dimensions 209

to the potential and is attributed to angular momentum. Thus, ` is called the
angular momentum quantum number. This is an eigenvalue problem for the radial
eigenfunctions u(r) and energy eigenvalues ε.

The solutions of this equation are determined in a quantum mechanics course. In
order to get a feeling for the solutions, we will consider the zero angular momentum
case, ` = 0 :

u′′ +
2
r

u′ +
1
r

u = εu. (6.165)

Even this equation is one we have not encountered in this book. Let’s see if we can
find some of the solutions.

First, we consider the behavior of the solutions for large r. For large r the second
and third terms on the left hand side of the equation are negligible. So, we have the
approximate equation

u′′ − εu = 0. (6.166)

Therefore, the solutions behave like u(r) = e±
√

εr for large r. For bounded solutions,
we choose the decaying solution.

This suggests that solutions take the form u(r) = v(r)e−
√

εr for some unknown
function, v(r). Inserting this guess into Equation (6.165), gives an equation for
v(r) :

rv′′ + 2
(
1−
√

εr
)

v′ + (1− 2
√

ε)v = 0. (6.167)

Next we seek a series solution to this equation. Let

v(r) =
∞

∑
k=0

ckrk.

Inserting this series into Equation (6.167), we have

∞

∑
k=1

[k(k− 1) + 2k]ckrk−1 +
∞

∑
k=1

[1− 2
√

ε(k + 1)]ckrk = 0.

We can re-index the dummy variable in each sum. Let k = m in the first sum and
k = m− 1 in the second sum. We then find that

∞

∑
k=1

[
m(m + 1)cm + (1− 2m

√
ε)cm−1

]
rm−1 = 0.

Since this has to hold for all m ≥ 1,

cm =
2m
√

ε− 1
m(m + 1)

cm−1.

Further analysis indicates that the resulting series leads to unbounded solutions
unless the series terminates. This is only possible if the numerator, 2m

√
ε − 1,

vanishes for m = n, n = 1, 2 . . . . Thus,

ε =
1

4n2 .

Since ε is related to the energy eigenvalue, E, we have

En = − me4

2(4πε0)2h̄2n2
.
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Inserting the values for the constants, this gives

En = −13.6 eV
n2 .

This is the well known set of energy levels for the hydrogen atom.Energy levels for the hydrogen atom.

The corresponding eigenfunctions are polynomials, since the infinite series was
forced to terminate. We could obtain these polynomials by iterating the recursion
equation for the cm’s. However, we will instead rewrite the radial equation (6.167).

Let x = 2
√

εr and define y(x) = v(r). Then

d
dr

= 2
√

ε
d

dx
.

This gives

2
√

εxy′′ + (2− x)2
√

εy′ + (1− 2
√

ε)y = 0.

Rearranging, we have

xy′′ + (2− x)y′ +
1

2
√

ε
(1− 2

√
ε)y = 0.

Noting that 2
√

ε = 1
n , this equation becomes

xy′′ + (2− x)y′ + (n− 1)y = 0. (6.168)

The resulting equation is well known. It takes the form

xy′′ + (α + 1− x)y′ + ny = 0. (6.169)

Solutions of this equation are the associated Laguerre polynomials. The solutions
are denoted by Lα

n(x). They can be defined in terms of the Laguerre polynomials,

Ln(x) = ex
(

d
dx

)n
(e−xxn).

The associated Laguerre polynomials are defined as

Lm
n−m(x) = (−1)m

(
d

dx

)m
Ln(x).

Note: The Laguerre polynomials were first encountered in Problem 2 in Chapter 5
as an example of a classical orthogonal polynomial defined on [0, ∞) with weight
w(x) = e−x. Some of these polynomials are listed in Table 6.9 and several Laguerre
polynomials are shown in Figure 6.34.The associated Laguerre polynomials are

named after the French mathematician
Edmond Laguerre (1834-1886).

Comparing Equation (6.168) with Equation (6.169), we find that y(x) = L1
n−1(x).

In summary, we have made the following transformations:In most derivation in quantum mechan-

ics a = a0
2 . where a0 = 4πε0 h̄2

me2 is the Bohr
radius and a0 = 5.2917× 10−11m.

1. R(ρ) = u(r), ρ = ar.

2. u(r) = v(r)e−
√

εr.

3. v(r) = y(x) = L1
n−1(x), x = 2

√
εr.
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Lm
n (x)

L0
0(x) 1

L0
1(x) 1− x

L0
2(x) 1

2 (x2 − 4x + 2)
L0

3(x) 1
6 (−x3 + 9x2 − 18x + 6)

L1
0(x) 1

L1
1(x) 2− x

L1
2(x) 1

2 (x2 − 6x + 6)
L1

3(x) 1
6 (−x3 + 3x2 − 36x + 24)

L2
0(x) 1

L2
1(x) 3− x

L2
2(x) 1

2 (x2 − 8x + 12)
L2

3(x) 1
12 (−2x3 + 30x2 − 120x + 120)

Table 6.9: Associated Laguerre Func-
tions, Lm

n (x). Note that L0
n(x) = Ln(x).

Figure 6.34: Plots of the first few La-
guerre polynomials.
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Figure 6.35: Plots of R(ρ) for a = 1 and
n = 1, 2, 3, 4 for the ` = 0 states.

Therefore,
R(ρ) = e−

√
ερ/aL1

n−1(2
√

ερ/a).

However, we also found that 2
√

ε = 1/n. So,

R(ρ) = e−ρ/2naL1
n−1(ρ/na).

In Figure 6.35 we show a few of these solutions.

Example 6.15. Find the ` ≥ 0 solutions of the radial equation.
For the general case, for all ` ≥ 0, we need to solve the differential equation

u′′ +
2
r

u′ +
1
r

u− `(`+ 1)
r2 u = εu. (6.170)

Instead of letting u(r) = v(r)e−
√

εr, we let

u(r) = v(r)r`e−
√

εr.

This lead to the differential equation

rv′′ + 2(`+ 1−
√

εr)v′ + (1− 2(`+ 1)
√

ε)v = 0. (6.171)

as before, we let x = 2
√

εr to obtain

xy′′ + 2
[
`+ 1− x

2

]
v′ +

[
1

2
√

ε
− `(`+ 1)

]
v = 0.

Noting that 2
√

ε = 1/n, we have

xy′′ + 2 [2(`+ 1)− x] v′ + (n− `(`+ 1))v = 0.

We see that this is once again in the form of the associate Laguerre equation and the
solutions are

y(x) = L2`+1
n−`−1(x).
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So, the solution to the radial equation for the hydrogen atom is given by

R(ρ) = r`e−
√

εrL2`+1
n−`−1(2

√
εr)

=
( ρ

2na

)`
e−ρ/2naL2`+1

n−`−1

( ρ

na

)
. (6.172)

Interpretations of these solutions will be left for your quantum mechanics course.

6.9 Curvilinear Coordinates

In order to study solutions of the wave equation, the heat equa-
tion, or even Schrödinger’s equation in different geometries, we need to see
how differential operators, such as the Laplacian, appear in these geome-
tries. The most common coordinate systems arising in physics are polar
coordinates, cylindrical coordinates, and spherical coordinates. These re-
flect the common geometrical symmetries often encountered in physics.

In such systems it is easier to describe boundary conditions and to make
use of these symmetries. For example, specifying that the electric potential
is 10.0 V on a spherical surface of radius one, we would say φ(x, y, z) = 10
for x2 + y2 + z2 = 1. However, if we use spherical coordinates, (r, θ, φ), then
we would say φ(r, θ, φ) = 10 for r = 1, or φ(1, θ, φ) = 10. This is a much
simpler representation of the boundary condition.

However, this simplicity in boundary conditions leads to a more compli-
cated looking partial differential equation in spherical coordinates. In this
section we will consider general coordinate systems and how the differen-
tial operators are written in the new coordinate systems. This is a more
general approach than that taken earlier in the chapter. For a more modern
and elegant approach, one can use differential forms.

We begin by introducing the general coordinate transformations between
Cartesian coordinates and the more general curvilinear coordinates. Let the
Cartesian coordinates be designated by (x1, x2, x3) and the new coordinates
by (u1, u2, u3). We will assume that these are related through the transfor-
mations

x1 = x1(u1, u2, u3),

x2 = x2(u1, u2, u3),

x3 = x3(u1, u2, u3). (6.173)

Thus, given the curvilinear coordinates (u1, u2, u3) for a specific point in
space, we can determine the Cartesian coordinates, (x1, x2, x3), of that point.
We will assume that we can invert this transformation: Given the Cartesian
coordinates, one can determine the corresponding curvilinear coordinates.

In the Cartesian system we can assign an orthogonal basis, {i, j, k}. As a
particle traces out a path in space, one locates its position by the coordinates
(x1, x2, x3). Picking x2 and x3 constant, the particle lies on the curve x1 =

value of the x1 coordinate. This line lies in the direction of the basis vector
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i. We can do the same with the other coordinates and essentially map out
a grid in three dimensional space as sown in Figure 6.36. All of the xi-
curves intersect at each point orthogonally and the basis vectors {i, j, k}
lie along the grid lines and are mutually orthogonal. We would like to
mimic this construction for general curvilinear coordinates. Requiring the
orthogonality of the resulting basis vectors leads to orthogonal curvilinear
coordinates.

x1
x2

x3

i

j

k

Figure 6.36: Plots of xi-curves forming
an orthogonal Cartesian grid.

As for the Cartesian case, we consider u2 and u3 constant. This leads to
a curve parametrized by u1 : r = x1(u1)i + x2(u1)j + x3(u1)k. We call this
the u1-curve. Similarly, when u1 and u3 are constant we obtain a u2-curve
and for u1 and u2 constant we obtain a u3-curve. We will assume that these
curves intersect such that each pair of curves intersect orthogonally as seen
in Figure 6.37. Furthermore, we will assume that the unit tangent vectors to
these curves form a right handed system similar to the {i, j, k} systems for
Cartesian coordinates. We will denote these as {û1, û2, û3}.

u3

u2

u1

û1

û2û3

Figure 6.37: Plots of general ui-curves
forming an orthogonal grid.

We can determine these tangent vectors from the coordinate transforma-
tions. Consider the position vector as a function of the new coordinates,

r(u1, u2, u3) = x1(u1, u2, u3)i + x2(u1, u2, u3)j + x3(u1, u2, u3)k.

Then, the infinitesimal change in position is given by

dr =
∂r

∂u1
du1 +

∂r
∂u2

du2 +
∂r

∂u3
du3 =

3

∑
i=1

∂r
∂ui

dui.

We note that the vectors ∂r
∂ui

are tangent to the ui-curves. Thus, we define
the unit tangent vectors

ûi =

∂r
∂ui∣∣∣ ∂r
∂ui

∣∣∣ .
Solving for the original tangent vector, we have

∂r
∂ui

= hiûi,

whereThe scale factors, hi ≡
∣∣∣ ∂r

∂ui

∣∣∣ .

hi ≡
∣∣∣∣ ∂r
∂ui

∣∣∣∣ .

The hi’s are called the scale factors for the transformation. The infinitesimal
change in position in the new basis is then given by

dr =
3

∑
i=1

hiuiûi.

Example 6.16. Determine the scale factors for the polar coordinate transformation.
The transformation for polar coordinates is

x = r cos θ, y = r sin θ.

Here we note that x1 = x, x2 = y, u1 = r, and u2 = θ. The u1-curves are curves
with θ = const. Thus, these curves are radial lines. Similarly, the u2-curves have
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r = const. These curves are concentric circles about the origin as shown in Figure
6.38.

The unit vectors are easily found. We will denote them by ûr and ûθ . We can
determine these unit vectors by first computing ∂r

∂ui
. Let

r = x(r, θ)i + y(r, θ)j = r cos θi + r sin θj.

Then,

∂r
∂r

= cos θi + sin θj

∂r
∂θ

= −r sin θi + r cos θj. (6.174)

x

y

θ = const

r = const

ûr

ûθ

Figure 6.38: Plots an orthogonal polar
grid.

.

The first vector already is a unit vector. So,

ûr = cos θi + sin θj.

The second vector has length r since | − r sin θi + r cos θj| = r. Dividing ∂r
∂θ by r,

we have
ûθ = − sin θi + cos θj.

We can see these vectors are orthogonal (ûr · ûθ = 0) and form a right hand
system. That they form a right hand system can be seen by either drawing the
vectors, or computing the cross product,

(cos θi + sin θj)× (− sin θi + cos θj) = cos2 θi× j− sin2 θj× i

= k. (6.175)

Since

∂r
∂r

= ûr,

∂r
∂θ

= rûθ ,

The scale factors are hr = 1 and hθ = r.

x

y

r dθr

ûrûθ

Figure 6.39: Infinitesimal area in polar
coordinates.

Once we know the scale factors, we have that

dr =
3

∑
i=1

hiduiûi.

The infinitesimal arclength is then given by the Euclidean line element

ds2 = dr · dr =
3

∑
i=1

h2
i du2

i

when the system is orthogonal. The h2
i are referred to as the metric coeffi-

cients.

Example 6.17. Verify that dr = drûr + r dθûθ directly from r = r cos θi+ r sin θj
and obtain the Euclidean line element for polar coordinates.
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We begin by computing

dr = d(r cos θi + r sin θj)

= (cos θi + sin θj) dr + r(− sin θi + cos θj) dθ

= drûr + r dθûθ . (6.176)

This agrees with the form dr = ∑3
i=1 hiduiûi when the scale factors for polar coor-

dinates are inserted.
The line element is found as

ds2 = dr · dr

= (drûr + r dθûθ) · (drûr + r dθûθ)

= dr2 + r2 dθ2. (6.177)

This is the Euclidean line element in polar coordinates.

Also, along the ui-curves,

dr = hiduiûi, (no summation).

This can be seen in Figure 6.40 by focusing on the u1 curve. Along this curve,
u2 and u3 are constant. So, du2 = 0 and du3 = 0. This leaves dr = h1du1û1

along the u1-curve. Similar expressions hold along the other two curves.

h1 du1

h3 du2

h3 du3

û1

û2û3

Figure 6.40: Infinitesimal volume ele-
ment with sides of length hi dui .

We can use this result to investigate infinitesimal volume elements for
general coordinate systems as shown in Figure 6.40. At a given point
(u1, u2, u3) we can construct an infinitesimal parallelepiped of sides hidui,
i = 1, 2, 3. This infinitesimal parallelepiped has a volume of size

dV =

∣∣∣∣ ∂r
∂u1
· ∂r

∂u2
× ∂r

∂u3

∣∣∣∣ du1du2du3.

The triple scalar product can be computed using determinants and the re-
sulting determinant is call the Jacobian, and is given by

J =

∣∣∣∣ ∂(x1, x2, x3)

∂(u1, u2, u3)

∣∣∣∣
=

∣∣∣∣ ∂r
∂u1
· ∂r

∂u2
× ∂r

∂u3

∣∣∣∣
=

∣∣∣∣∣∣∣
∂x1
∂u1

∂x2
∂u1

∂x3
∂u1

∂x1
∂u2

∂x2
∂u2

∂x3
∂u2

∂x1
∂u3

∂x2
∂u3

∂x3
∂u3

∣∣∣∣∣∣∣ . (6.178)

Therefore, the volume element can be written as

dV = J du1du2du3 =

∣∣∣∣ ∂(x1, x2, x3)

∂(u1, u2, u3)

∣∣∣∣ du1du2du3.

Example 6.18. Determine the volume element for cylindrical coordinates (r, θ, z),
given by

x = r cos θ, (6.179)

y = r sin θ, (6.180)

z = z. (6.181)
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Here, we have (u1, u2, u3) = (r, θ, z) as displayed in Figure 6.41. Then, the
Jacobian is given by

J =

∣∣∣∣∂(x, y, z)
∂(r, θ, z)

∣∣∣∣
=

∣∣∣∣∣∣∣
∂x
∂r

∂y
∂r

∂z
∂r

∂x
∂θ

∂y
∂θ

∂z
∂θ

∂x
∂z

∂y
∂z

∂z
∂z

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
cos θ sin θ 0
−r sin θ r cos θ 0

0 0 1

∣∣∣∣∣∣∣
= r (6.182)

Thus, the volume element is given as

dV = rdrdθdz.

This result should be familiar from multivariate calculus. x

y

z P

θ
r

z

Figure 6.41: Cylindrical coordinate sys-
tem.

Another approach is to consider the geometry of the infinitesimal volume
element. The directed edge lengths are given by dsi = hiduiûi as seen in
Figure 6.37. The infinitesimal area element of for the face in direction ûk is
found from a simple cross product,

dAk = dsi × dsj = hihjduidujûi × ûj.

Since these are unit vectors, the areas of the faces of the infinitesimal vol-
umes are dAk = hihjduiduj.

The infinitesimal volume is then obtained as

dV = |dsk · dAk| = hihjhkduidujduk|ûi · (ûk × ûj)|.

Thus, dV = h1h2h3du1du1du3. Of course, this should not be a surprise since

J =
∣∣∣∣ ∂r
∂u1
· ∂r

∂u2
× ∂r

∂u3

∣∣∣∣ = |h1û1 · h2û2 × h3û3| = h1h2h3.

Example 6.19. For polar coordinates, determine the infinitesimal area element.
In an earlier example, we found the scale factors for polar coordinates as hr = 1

and hθ = r. Thus, dA = hrhθ drdθ = r drdθ. Also, the last example for cylin-
drical coordinates will yield similar results if we already know the scales factors
without having to compute the Jacobian directly. Furthermore, the area element
perpendicular to the z-coordinate gives the polar coordinate system result.

Next we will derive the forms of the gradient, divergence, and curl in
curvilinear coordinates using several of the identities in section ??. The
results are given here for quick reference.
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∇φ =
3

∑
i=1

ûi
hi

∂φ

∂ui

=
û1

h1

∂φ

∂u1
+

û2

h2

∂φ

∂u2
+

û3

h3

∂φ

∂u3
. (6.183)

∇ · F =
1

h1h2h3

(
∂

∂u1
(h2h3F1) +

∂

∂u2
(h1h3F2) +

∂

∂u3
(h1h2F3)

)
.

(6.184)

∇× F =
1

h1h2h3

∣∣∣∣∣∣∣
h1û1 h2û2 h3û3

∂
∂u1

∂
∂u2

∂
∂u3

F1h1 F2h2 F3h3

∣∣∣∣∣∣∣ . (6.185)

∇2φ =
1

h1h2h3

(
∂

∂u1

(
h2h3

h1

∂φ

∂u1

)
+

∂

∂u2

(
h1h3

h2

∂φ

∂u2

)
+

∂

∂u3

(
h1h2

h3

∂φ

∂u3

))
(6.186)

Gradient, divergence and curl in orthog-
onal curvilinear coordinates.

We begin the derivations of these formulae by looking at the gradient,Derivation of the gradient form.

∇φ, of the scalar function φ(u1, u2, u3). We recall that the gradient operator
appears in the differential change of a scalar function,

dφ = ∇φ · dr =
3

∑
i=1

∂φ

∂ui
dui.

Since

dr =
3

∑
i=1

hiduiûi, (6.187)

we also have that

dφ = ∇φ · dr =
3

∑
i=1

(∇φ)i hidui.

Comparing these two expressions for dφ, we determine that the components
of the del operator can be written as

(∇φ)i =
1
hi

∂φ

∂ui

and thus the gradient is given by

∇φ =
û1

h1

∂φ

∂u1
+

û2

h2

∂φ

∂u2
+

û3

h3

∂φ

∂u3
. (6.188)

Next we compute the divergence,Derivation of the divergence form.

∇ · F =
3

∑
i=1
∇ · (Fiûi) .

We can do this by computing the individual terms in the sum. We will
compute ∇ · (F1û1) .

Using Equation (6.188), we have that

∇ui =
ûi
hi

.
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Then
∇u2 ×∇u3 =

û2 × û3

h2h3
=

û1

h2h3
.

Solving for û1, gives
û1 = h2h3∇u2 ×∇u3.

Inserting this result into ∇ · (F1û1) and using the vector identity 2c from
section ??,

∇ · ( f A) = f∇ ·A + A · ∇ f ,

we have

∇ · (F1û1) = ∇ · (F1h2h3∇u2 ×∇u3)

= ∇ (F1h2h3) · ∇u2 ×∇u3 + F1h2h2∇ · (∇u2 ×∇u3).

(6.189)

The second term of this result vanishes by vector identity 3c,

∇ · (∇ f ×∇g) = 0.

Since ∇u2 ×∇u3 = û1
h2h3

, the first term can be evaluated as

∇ · (F1û1) = ∇ (F1h2h3) ·
û1

h2h3
=

1
h1h2h3

∂

∂u1
(F1h2h3) .

Similar computations can be carried out for the remaining components,
leading to the sought expression for the divergence in curvilinear coordi-
nates:

∇ · F =
1

h1h2h3

(
∂

∂u1
(h2h3F1) +

∂

∂u2
(h1h3F2) +

∂

∂u3
(h1h2F3)

)
. (6.190)

Example 6.20. Write the divergence operator in cylindrical coordinates.
In this case we have

∇ · F =
1

hrhθhz

(
∂

∂r
(hθhzFr) +

∂

∂θ
(hrhzFθ) +

∂

∂θ
(hrhθ Fz)

)
=

1
r

(
∂

∂r
(rFr) +

∂

∂θ
(Fθ) +

∂

∂θ
(rFz)

)
=

1
r

∂

∂r
(rFr) +

1
r

∂

∂θ
(Fθ) +

∂

∂θ
(Fz) . (6.191)

We now turn to the curl operator. In this case, we need to evaluate Derivation of the curl form.

∇× F =
3

∑
i=1
∇× (Fiûi) .

Again we focus on one term, ∇× (F1û1) . Using the vector identity 2e,

∇× ( f A) = f∇×A−A×∇ f ,

we have

∇× (F1û1) = ∇× (F1h1∇u1)

= F1h1∇×∇u1 −∇ (F1h1)×∇u1. (6.192)
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The curl of the gradient vanishes, leaving

∇× (F1û1) = ∇ (F1h1)×∇u1.

Since ∇u1 = û1
h1

, we have

∇× (F1û1) = ∇ (F1h1)×
û1

h1

=

(
3

∑
i=1

ûi
hi

∂ (F1h1)

∂ui

)
× û1

h1

=
û2

h3h1

∂ (F1h1)

∂u3
− û3

h1h2

∂ (F1h1)

∂u2
. (6.193)

The other terms can be handled in a similar manner. The overall result is
that

∇× F =
û1

h2h3

(
∂ (h3F3)

∂u2
− ∂ (h2F2)

∂u3

)
+

û2

h1h3

(
∂ (h1F1)

∂u3
− ∂ (h3F3)

∂u1

)
+

û3

h1h2

(
∂ (h2F2)

∂u1
− ∂ (h1F1)

∂u2

)
(6.194)

This can be written more compactly as

∇× F =
1

h1h2h3

∣∣∣∣∣∣∣
h1û1 h2û2 h3û3

∂
∂u1

∂
∂u2

∂
∂u3

F1h1 F2h2 F3h3

∣∣∣∣∣∣∣ (6.195)

Example 6.21. Write the curl operator in cylindrical coordinates.

∇× F =
1
r

∣∣∣∣∣∣∣
êr rêθ êz
∂
∂r

∂
∂θ

∂
∂z

Fr rFθ Fz

∣∣∣∣∣∣∣
=

(
1
r

∂Fz

∂θ
− ∂Fθ

∂z

)
êr +

(
∂Fr

∂z
− ∂Fz

∂r

)
êθ

+
1
r

(
∂(rFθ)

∂r
− ∂Fr

∂θ

)
êz. (6.196)

Finally, we turn to the Laplacian. In the next chapter we will solve
higher dimensional problems in various geometric settings such as the wave
equation, the heat equation, and Laplace’s equation. These all involve
knowing how to write the Laplacian in different coordinate systems. Since
∇2φ = ∇ · ∇φ, we need only combine the results from Equations (6.188)
and (6.190)for the gradient and the divergence in curvilinear coordinates.
This is straight forward and gives

∇2φ =
1

h1h2h3

(
∂

∂u1

(
h2h3

h1

∂φ

∂u1

)
+

∂

∂u2

(
h1h3

h2

∂φ

∂u2

)
+

∂

∂u3

(
h1h2

h3

∂φ

∂u3

))
. (6.197)

The results of rewriting the standard differential operators in cylindrical
and spherical coordinates are shown in Problems ?? and ??. In particular,
the Laplacians are given as
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Cylindrical Coordinates:

∇2 f =
1
r

∂

∂r

(
r

∂ f
∂r

)
+

1
r2

∂2 f
∂θ2 +

∂2 f
∂z2 . (6.198)

Spherical Coordinates:

∇2 f =
1
ρ2

∂

∂ρ

(
ρ2 ∂ f

∂ρ

)
+

1
ρ2 sin θ

∂

∂θ

(
sin θ

∂ f
∂θ

)
+

1
ρ2 sin2 θ

∂2 f
∂φ2 . (6.199)

Problems

1. A rectangular plate 0 ≤ x ≤ L 0 ≤ y ≤ H with heat diffusivity constant k
is insulated on the edges y = 0, H and is kept at constant zero temperature
on the other two edges. Assuming an initial temperature of u(x, y, 0) =

f (x, y), use separation of variables t find the general solution.

2. Solve the following problem.

uxx + uyy + uzz = 0, 0 < x < 2π, 0 < y < π, 0 < z < 1,

u(x, y, 0) = sin x sin y, u(x, y, z) = 0on other faces.

3. Consider Laplace’s equation on the unit square, uxx + uyy = 0, 0 ≤ x, y ≤
1. Let u(0, y) = 0, u(1, y) = 0 for 0 < y < 1 and uy(x, 0) = 0 for 0 < y < 1.
Carry out the needed separation of variables and write down the product
solutions satisfying these boundary conditions.

4. Consider a cylinder of height H and radius a.

a. Write down Laplace’s Equation for this cylinder in cylindrical coordi-
nates.

b. Carry out the separation of variables and obtain the three ordinary
differential equations that result from this problem.

c. What kind of boundary conditions could be satisfied in this problem
in the independent variables?

5. Consider a square drum of side s and a circular drum of radius a.

a. Rank the modes corresponding to the first 6 frequencies for each.

b. Write each frequency (in Hz) in terms of the fundamental (i.e., the
lowest frequency.)

c. What would the lengths of the sides of the square drum have to be to
have the same fundamental frequency? (Assume that c = 1.0 for each
one.)

6. We presented the full solution of the vibrating rectangular membrane
in Equation 6.37. Finish the solution to the vibrating circular membrane by
writing out a similar full solution.
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7. A copper cube 10.0 cm on a side is heated to 100◦ C. The block is placed
on a surface that is kept at 0◦ C. The sides of the block are insulated, so
the normal derivatives on the sides are zero. Heat flows from the top of
the block to the air governed by the gradient uz = −10◦C/m. Determine
the temperature of the block at its center after 1.0 minutes. Note that the
thermal diffusivity is given by k = K

ρcp
, where K is the thermal conductivity,

ρ is the density, and cp is the specific heat capacity.

8. Consider a spherical balloon of radius a. Small deformations on the
surface can produce waves on the balloon’s surface.

a. Write the wave equation in spherical polar coordinates. (Note: ρ is
constant!)

b. Carry out a separation of variables and find the product solutions for
this problem.

c. Describe the nodal curves for the first six modes.

d. For each mode determine the frequency of oscillation in Hz assuming
c = 1.0 m/s.

9. Consider a circular cylinder of radius R = 4.00 cm and height H = 20.0
cm which obeys the steady state heat equation

urr +
1
r

ur + uzz.

Find the temperature distribution, u(r, z), given that u(r, 0) = 0◦C, u(r, 20) =
20◦C, and heat is lost through the sides due to Newton’s Law of Cooling

[ur + hu]r=4 = 0,

for h = 1.0 cm−1.

10. The spherical surface of a homogeneous ball of radius one in main-
tained at zero temperature. It has an initial temperature distribution u(ρ, 0) =
100o C. Assuming a heat diffusivity constant k, find the temperature through-
out the sphere, u(ρ, θ, φ, t).

11. Determine the steady state temperature of a spherical ball maintained
at the temperature

u(x, y, z) = x2 + 2y2 + 3z2, ρ = 1.

[Hint - Rewrite the problem in spherical coordinates and use the properties
of spherical harmonics.]

12. ) A hot dog initially at temperature 50◦C is put into boiling water at
100◦C. Assume the hot dog is 12.0 cm long, has a radius of 2.00 cm, and the
heat constant is 2.0× 10−5 cm2/s.

a. Find the general solution for the temperature. [Hint: Solve the heat
equation for u(r, z, t) = T(r, z, t)− 100, where T(r, z, t) is the temper-
ature of the hot dog.]
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b. indicate how one might proceed with the remaining information in
order to determine when the hot dog is cooked; i.e., when the center
temperature is 80◦C.





7
Green’s Functions and Nonhomogeneous
Problems

“The young theoretical physicists of a generation or two earlier subscribed to the
belief that: If you haven’t done something important by age 30, you never will.
Obviously, they were unfamiliar with the history of George Green, the miller of
Nottingham.” Julian Schwinger (1918-1994)

The wave equation, heat equation, and Laplace’s equation are
typical homogeneous partial differential equations. They can be written in
the form

Lu(x) = 0,

where L is a differential operator. For example, these equations can be
written as (

∂2

∂t2 − c2∇2
)

u = 0,(
∂

∂t
− k∇2

)
u = 0,

∇2u = 0. (7.1)
George Green (1793-1841), a British
mathematical physicist who had little
formal education and worked as a miller
and a baker, published An Essay on
the Application of Mathematical Analysis
to the Theories of Electricity and Mag-
netism in which he not only introduced
what is now known as Green’s func-
tion, but he also introduced potential
theory and Green’s Theorem in his stud-
ies of electricity and magnetism. Re-
cently his paper was posted at arXiv.org,
arXiv:0807.0088.

In this chapter we will explore solutions of nonhomogeneous partial dif-
ferential equations,

Lu(x) = f (x),

by seeking out the so-called Green’s function. The history of the Green’s
function dates back to 1828, when George Green published work in which
he sought solutions of Poisson’s equation ∇2u = f for the electric potential
u defined inside a bounded volume with specified boundary conditions on
the surface of the volume. He introduced a function now identified as what
Riemann later coined the “Green’s function”. In this chapter we will derive
the initial value Green’s function for ordinary differential equations. Later in
the chapter we will return to boundary value Green’s functions and Green’s
functions for partial differential equations.

As a simple example, consider Poisson’s equation,

∇2u(r) = f (r).
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Let Poisson’s equation hold inside a region Ω bounded by the surface ∂Ω
as shown in Figure 7.1. This is the nonhomogeneous form of Laplace’s
equation. The nonhomogeneous term, f (r), could represent a heat source
in a steady-state problem or a charge distribution (source) in an electrostatic
problem.

∂Ω

Ω

n̂

Figure 7.1: Let Poisson’s equation hold
inside region Ω bounded by surface ∂Ω.

Now think of the source as a point source in which we are interested in
the response of the system to this point source. If the point source is located
at a point r′, then the response to the point source could be felt at points
r. We will call this response G(r, r′). The response function would satisfy a
point source equation of the form

∇2G(r, r′) = δ(r− r′).

Here δ(r− r′) is the Dirac delta function, which we will consider in moreThe Dirac delta function satisfies

δ(r) = 0, r 6= 0,∫
Ω

δ(r) dV = 1.

detail in Section 9.4. A key property of this generalized function is the
sifting property, ∫

Ω
δ(r− r′) f (r) dV = f (r′).

The connection between the Green’s function and the solution to Pois-
son’s equation can be found from Green’s second identity:∫

∂Ω
[φ∇ψ− ψ∇φ] · n dS =

∫
Ω
[φ∇2ψ− ψ∇2φ] dV.

Letting φ = u(r) and ψ = G(r, r′), we have11 We note that in the following the vol-
ume and surface integrals and differen-
tiation using ∇ are performed using the
r-coordinates.

∫
∂Ω

[u(r)∇G(r, r′)− G(r, r′)∇u(r)] · n dS

=
∫

Ω

[
u(r)∇2G(r, r′)− G(r, r′)∇2u(r)

]
dV

=
∫

Ω

[
u(r)δ(r− r′)− G(r, r′) f (r)

]
dV

= u(r′)−
∫

Ω
G(r, r′) f (r) dV. (7.2)

Solving for u(r′), we have

u(r′) =
∫

Ω
G(r, r′) f (r) dV

+
∫

∂Ω
[u(r)∇G(r, r′)− G(r, r′)∇u(r)] · n dS. (7.3)

If both u(r) and G(r, r′) satisfied Dirichlet conditions, u = 0 on ∂Ω, then the
last integral vanishes and we are left with22 In many applications there is a symme-

try,
G(r, r′) = G(r′, r).

Then, the result can be written as

u(r) =
∫

Ω
G(r, r′) f (r′) dV′.

u(r′) =
∫

Ω
G(r, r′) f (r) dV.

So, if we know the Green’s function, we can solve the nonhomogeneous
differential equation. In fact, we can use the Green’s function to solve non-
homogenous boundary value and initial value problems. That is what we
will see develop in this chapter as we explore nonhomogeneous problems
in more detail. We will begin with the search for Green’s functions for ordi-
nary differential equations.
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7.1 Initial Value Green’s Functions

In this section we will investigate the solution of initial value prob-
lems involving nonhomogeneous differential equations using Green’s func-
tions. Our goal is to solve the nonhomogeneous differential equation

a(t)y′′(t) + b(t)y′(t) + c(t)y(t) = f (t), (7.4)

subject to the initial conditions

y(0) = y0 y′(0) = v0.

Since we are interested in initial value problems, we will denote the inde-
pendent variable as a time variable, t.

Equation (7.4) can be written compactly as

L[y] = f ,

where L is the differential operator

L = a(t)
d2

dt2 + b(t)
d
dt

+ c(t).

The solution is formally given by

y = L−1[ f ].

The inverse of a differential operator is an integral operator, which we seek
to write in the form

y(t) =
∫

G(t, τ) f (τ) dτ.

The function G(t, τ) is referred to as the kernel of the integral operator and G(t, τ) is called a Green’s function.

is called the Green’s function.
In the last section we solved nonhomogeneous equations like (7.4) using

the Method of Variation of Parameters. Letting,

yp(t) = c1(t)y1(t) + c2(t)y2(t), (7.5)

we found that we have to solve the system of equations

c′1(t)y1(t) + c′2(t)y2(t) = 0.

c′1(t)y
′
1(t) + c′2(t)y

′
2(t) =

f (t)
q(t)

. (7.6)

This system is easily solved to give

c′1(t) = − f (t)y2(t)
a(t)

[
y1(t)y′2(t)− y′1(t)y2(t)

]
c′2(t) =

f (t)y1(t)
a(t)

[
y1(t)y′2(t)− y′1(t)y2(t)

] . (7.7)
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We note that the denominator in these expressions involves the Wronskian
of the solutions to the homogeneous problem, which is given by the deter-
minant

W(y1, y2)(t) =

∣∣∣∣∣ y1(t) y2(t)
y′1(t) y′2(t)

∣∣∣∣∣ .

When y1(t) and y2(t) are linearly independent, then the Wronskian is not
zero and we are guaranteed a solution to the above system.

So, after an integration, we find the parameters as

c1(t) = −
∫ t

t0

f (τ)y2(τ)

a(τ)W(τ)
dτ

c2(t) =
∫ t

t1

f (τ)y1(τ)

a(τ)W(τ)
dτ, (7.8)

where t0 and t1 are arbitrary constants to be determined from the initial
conditions.

Therefore, the particular solution of (7.4) can be written as

yp(t) = y2(t)
∫ t

t1

f (τ)y1(τ)

a(τ)W(τ)
dτ − y1(t)

∫ t

t0

f (τ)y2(τ)

a(τ)W(τ)
dτ. (7.9)

We begin with the particular solution (7.9) of the nonhomogeneous differ-
ential equation (7.4). This can be combined with the general solution of the
homogeneous problem to give the general solution of the nonhomogeneous
differential equation:

yp(t) = c1y1(t) + c2y2(t) + y2(t)
∫ t

t1

f (τ)y1(τ)

a(τ)W(τ)
dτ − y1(t)

∫ t

t0

f (τ)y2(τ)

a(τ)W(τ)
dτ.

(7.10)
However, an appropriate choice of t0 and t1 can be found so that we

need not explicitly write out the solution to the homogeneous problem,
c1y1(t) + c2y2(t). However, setting up the solution in this form will allow
us to use t0 and t1 to determine particular solutions which satisfies certain
homogeneous conditions. In particular, we will show that Equation (7.10)
can be written in the form

y(t) = c1y1(t) + c2y2(t) +
∫ t

0
G(t, τ) f (τ) dτ, (7.11)

where the function G(t, τ) will be identified as the Green’s function.
The goal is to develop the Green’s function technique to solve the initial

value problem

a(t)y′′(t) + b(t)y′(t) + c(t)y(t) = f (t), y(0) = y0, y′(0) = v0. (7.12)

We first note that we can solve this initial value problem by solving two
separate initial value problems. We assume that the solution of the homo-
geneous problem satisfies the original initial conditions:

a(t)y′′h (t) + b(t)y′h(t) + c(t)yh(t) = 0, yh(0) = y0, y′h(0) = v0. (7.13)
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We then assume that the particular solution satisfies the problem

a(t)y′′p(t) + b(t)y′p(t) + c(t)yp(t) = f (t), yp(0) = 0, y′p(0) = 0. (7.14)

Since the differential equation is linear, then we know that

y(t) = yh(t) + yp(t)

is a solution of the nonhomogeneous equation. Also, this solution satisfies
the initial conditions:

y(0) = yh(0) + yp(0) = y0 + 0 = y0,

y′(0) = y′h(0) + y′p(0) = v0 + 0 = v0.

Therefore, we need only focus on finding a particular solution that satisfies
homogeneous initial conditions. This will be done by finding values for t0

and t1 in Equation (7.9) which satisfy the homogeneous initial conditions,
yp(0) = 0 and y′p(0) = 0.

First, we consider yp(0) = 0. We have

yp(0) = y2(0)
∫ 0

t1

f (τ)y1(τ)

a(τ)W(τ)
dτ − y1(0)

∫ 0

t0

f (τ)y2(τ)

a(τ)W(τ)
dτ. (7.15)

Here, y1(t) and y2(t) are taken to be any solutions of the homogeneous
differential equation. Let’s assume that y1(0) = 0 and y2 6= (0) = 0. Then,
we have

yp(0) = y2(0)
∫ 0

t1

f (τ)y1(τ)

a(τ)W(τ)
dτ (7.16)

We can force yp(0) = 0 if we set t1 = 0.
Now, we consider y′p(0) = 0. First we differentiate the solution and find

that

y′p(t) = y′2(t)
∫ t

0

f (τ)y1(τ)

a(τ)W(τ)
dτ − y′1(t)

∫ t

t0

f (τ)y2(τ)

a(τ)W(τ)
dτ, (7.17)

since the contributions from differentiating the integrals will cancel. Evalu-
ating this result at t = 0, we have

y′p(0) = −y′1(0)
∫ 0

t0

f (τ)y2(τ)

a(τ)W(τ)
dτ. (7.18)

Assuming that y′1(0) 6= 0, we can set t0 = 0.
Thus, we have found that

yp(x) = y2(t)
∫ t

0

f (τ)y1(τ)

a(τ)W(τ)
dτ − y1(t)

∫ t

0

f (τ)y2(τ)

a(τ)W(τ)
dτ

=
∫ t

0

[
y1(τ)y2(t)− y1(t)y2(τ)

a(τ)W(τ)

]
f (τ) dτ. (7.19)

This result is in the correct form and we can identify the temporal, or
initial value, Green’s function. So, the particular solution is given as

yp(t) =
∫ t

0
G(t, τ) f (τ) dτ, (7.20)
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where the initial value Green’s function is defined as

G(t, τ) =
y1(τ)y2(t)− y1(t)y2(τ)

a(τ)W(τ)
.

We summarize

Solution of IVP Using the Green’s Function

The solution of the initial value problem,

a(t)y′′(t) + b(t)y′(t) + c(t)y(t) = f (t), y(0) = y0, y′(0) = v0,

takes the form

y(t) = yh(t) +
∫ t

0
G(t, τ) f (τ) dτ, (7.21)

where

G(t, τ) =
y1(τ)y2(t)− y1(t)y2(τ)

a(τ)W(τ)
(7.22)

is the Green’s function and y1, y2, yh are solutions of the homogeneous
equation satisfying

y1(0) = 0, y2(0) 6= 0, y′1(0) 6= 0, y′2(0) = 0, yh(0) = y0, y′h(0) = v0.

Example 7.1. Solve the forced oscillator problem

x′′ + x = 2 cos t, x(0) = 4, x′(0) = 0.

We first solve the homogeneous problem with nonhomogeneous initial conditions:

x′′h + xh = 0, xh(0) = 4, x′h(0) = 0.

The solution is easily seen to be xh(t) = 4 cos t.
Next, we construct the Green’s function. We need two linearly independent so-

lutions, y1(x), y2(x), to the homogeneous differential equation satisfying different
homogeneous conditions, y1(0) = 0 and y′2(0) = 0. The simplest solutions are
y1(t) = sin t and y2(t) = cos t. The Wronskian is found as

W(t) = y1(t)y′2(t)− y′1(t)y2(t) = − sin2 t− cos2 t = −1.

Since a(t) = 1 in this problem, we compute the Green’s function,

G(t, τ) =
y1(τ)y2(t)− y1(t)y2(τ)

a(τ)W(τ)

= sin t cos τ − sin τ cos t

= sin(t− τ). (7.23)

Note that the Green’s function depends on t − τ. While this is useful in some
contexts, we will use the expanded form when carrying out the integration.

We can now determine the particular solution of the nonhomogeneous differential
equation. We have

xp(t) =
∫ t

0
G(t, τ) f (τ) dτ
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=
∫ t

0
(sin t cos τ − sin τ cos t) (2 cos τ) dτ

= 2 sin t
∫ t

0
cos2 τdτ − 2 cos t

∫ t

0
sin τ cos τdτ

= 2 sin t
[

τ

2
+

1
2

sin 2τ

]t

0
− 2 cos t

[
1
2

sin2 τ

]t

0
= t sin t. (7.24)

Therefore, the solution of the nonhomogeneous problem is the sum of the solution
of the homogeneous problem and this particular solution: x(t) = 4 cos t + t sin t.

7.2 Boundary Value Green’s Functions

We solved nonhomogeneous initial value problems in Section 7.1
using a Green’s function. In this section we will extend this method to the
solution of nonhomogeneous boundary value problems using a boundary
value Green’s function. Recall that the goal is to solve the nonhomogeneous
differential equation

L[y] = f , a ≤ x ≤ b,

where L is a differential operator and y(x) satisfies boundary conditions at
x = a and x = b.. The solution is formally given by

y = L−1[ f ].

The inverse of a differential operator is an integral operator, which we seek
to write in the form

y(x) =
∫ b

a
G(x, ξ) f (ξ) dξ.

The function G(x, ξ) is referred to as the kernel of the integral operator and
is called the Green’s function.

We will consider boundary value problems in Sturm-Liouville form,

d
dx

(
p(x)

dy(x)
dx

)
+ q(x)y(x) = f (x), a < x < b, (7.25)

with fixed values of y(x) at the boundary, y(a) = 0 and y(b) = 0. How-
ever, the general theory works for other forms of homogeneous boundary
conditions.

We seek the Green’s function by first solving the nonhomogeneous dif-
ferential equation using the Method of Variation of Parameters. Recall this
method from Section B.3.3. We assume a particular solution of the form

yp(x) = c1(x)y1(x) + c2(x)y2(x),

which is formed from two linearly independent solution of the homoge-
neous problem, yi(x), i = 1, 2. We had found that the coefficient functions
satisfy the equations

c′1(x)y1(x) + c′2(x)y2(x) = 0

c′1(x)y′1(x) + c′2(x)y′2(x) =
f (x)
p(x)

. (7.26)
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Solving this system, we obtain

c′1(x) = − f y2

pW(y1, y2)
,

c′1(x) =
f y1

pW(y1, y2)
,

where W(y1, y2) = y1y′2 − y′1y2 is the Wronskian. Integrating these forms
and inserting the results back into the particular solution, we find

y(x) = y2(x)
∫ x

x1

f (ξ)y1(ξ)

p(ξ)W(ξ)
dξ − y1(x)

∫ x

x0

f (ξ)y2(ξ)

p(ξ)W(ξ)
dξ,

where x0 and x1 are to be determined using the boundary values. In par-
ticular, we will seek x0 and x1 so that the solution to the boundary value
problem can be written as a single integral involving a Green’s function.
Note that we can absorb the solution to the homogeneous problem, yh(x),
into the integrals with an appropriate choice of limits on the integrals.

We now look to satisfy the conditions y(a) = 0 and y(b) = 0. First we use
solutions of the homogeneous differential equation that satisfy y1(a) = 0,
y2(b) = 0 and y1(b) 6= 0, y2(a) 6= 0. Evaluating y(x) at x = 0, we have

y(a) = y2(a)
∫ a

x1

f (ξ)y1(ξ)

p(ξ)W(ξ)
dξ − y1(a)

∫ a

x0

f (ξ)y2(ξ)

p(ξ)W(ξ)
dξ

= y2(a)
∫ a

x1

f (ξ)y1(ξ)

p(ξ)W(ξ)
dξ. (7.27)

We can satisfy the condition at x = a if we choose x1 = a.
Similarly, at x = b we find that

y(b) = y2(b)
∫ b

x1

f (ξ)y1(ξ)

p(ξ)W(ξ)
dξ − y1(b)

∫ b

x0

f (ξ)y2(ξ)

p(ξ)W(ξ)
dξ

= −y1(b)
∫ b

x0

f (ξ)y2(ξ)

p(ξ)W(ξ)
dξ. (7.28)

This expression vanishes for x0 = b.The general solution of the boundary
value problem. So, we have found that the solution takes the form

y(x) = y2(x)
∫ x

a

f (ξ)y1(ξ)

p(ξ)W(ξ)
dξ − y1(x)

∫ x

b

f (ξ)y2(ξ)

p(ξ)W(ξ)
dξ. (7.29)

This solution can be written in a compact form just like we had done for
the initial value problem in Section 7.1. We seek a Green’s function so that
the solution can be written as a single integral. We can move the functions
of x under the integral. Also, since a < x < b, we can flip the limits in the
second integral. This gives

y(x) =
∫ x

a

f (ξ)y1(ξ)y2(x)
p(ξ)W(ξ)

dξ +
∫ b

x

f (ξ)y1(x)y2(ξ)

p(ξ)W(ξ)
dξ. (7.30)

This result can now be written in a compact form:
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Boundary Value Green’s Function

The solution of the boundary value problem

d
dx

(
p(x)

dy(x)
dx

)
+ q(x)y(x) = f (x), a < x < b,

y(a) = 0, y(b) = 0. (7.31)

takes the form

y(x) =
∫ b

a
G(x, ξ) f (ξ) dξ, (7.32)

where the Green’s function is the piecewise defined function

G(x, ξ) =


y1(ξ)y2(x)

pW
, a ≤ ξ ≤ x,

y1(x)y2(ξ)

pW
, x ≤ ξ ≤ b,

(7.33)

where y1(x) and y2(x) are solutions of the homogeneous problem satis-
fying y1(a) = 0, y2(b) = 0 and y1(b) 6= 0, y2(a) 6= 0.

The Green’s function satisfies several properties, which we will explore
further in the next section. For example, the Green’s function satisfies the
boundary conditions at x = a and x = b. Thus,

G(a, ξ) =
y1(a)y2(ξ)

pW
= 0,

G(b, ξ) =
y1(ξ)y2(b)

pW
= 0.

Also, the Green’s function is symmetric in its arguments. Interchanging the
arguments gives

G(ξ, x) =


y1(x)y2(ξ)

pW
, a ≤ x ≤ ξ,

y1(ξ)y2(x)
pW

. ξ ≤ x ≤ b,
(7.34)

But a careful look at the original form shows that

G(x, ξ) = G(ξ, x).

We will make use of these properties in the next section to quickly deter-
mine the Green’s functions for other boundary value problems.

Example 7.2. Solve the boundary value problem y′′ = x2, y(0) = 0 = y(1)
using the boundary value Green’s function.

We first solve the homogeneous equation, y′′ = 0. After two integrations, we
have y(x) = Ax + B, for A and B constants to be determined.

We need one solution satisfying y1(0) = 0 Thus,

0 = y1(0) = B.
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So, we can pick y1(x) = x, since A is arbitrary.
The other solution has to satisfy y2(1) = 0. So,

0 = y2(1) = A + B.

This can be solved for B = −A. Again, A is arbitrary and we will choose A = −1.
Thus, y2(x) = 1− x.

For this problem p(x) = 1. Thus, for y1(x) = x and y2(x) = 1− x,

p(x)W(x) = y1(x)y′2(x)− y′1(x)y2(x) = x(−1)− 1(1− x) = −1.

Note that p(x)W(x) is a constant, as it should be.
Now we construct the Green’s function. We have

G(x, ξ) =

{
−ξ(1− x), 0 ≤ ξ ≤ x,
−x(1− ξ), x ≤ ξ ≤ 1.

(7.35)

Notice the symmetry between the two branches of the Green’s function. Also, the
Green’s function satisfies homogeneous boundary conditions: G(0, ξ) = 0, from the
lower branch, and G(1, ξ) = 0, from the upper branch.

Finally, we insert the Green’s function into the integral form of the solution and
evaluate the integral.

y(x) =
∫ 1

0
G(x, ξ) f (ξ) dξ

=
∫ 1

0
G(x, ξ)ξ2 dξ

= −
∫ x

0
ξ(1− x)ξ2 dξ −

∫ 1

x
x(1− ξ)ξ2 dξ

= −(1− x)
∫ x

0
ξ3 dξ − x

∫ 1

x
(ξ2 − ξ3) dξ

= −(1− x)
[

ξ4

4

]x

0
− x

[
ξ3

3
− ξ4

4

]1

x

= −1
4
(1− x)x4 − 1

12
x(4− 3) +

1
12

x(4x3 − 3x4)

=
1

12
(x4 − x). (7.36)

Checking the answer, we can easily verify that y′′ = x2, y(0) = 0, and y(1) = 0.

7.2.1 Properties of Green’s Functions

We have noted some properties of Green’s functions in the last
section. In this section we will elaborate on some of these properties as a tool
for quickly constructing Green’s functions for boundary value problems. We
list five basic properties:

1. Differential Equation:

The boundary value Green’s function satisfies the differential equation
∂

∂x

(
p(x) ∂G(x,ξ)

∂x

)
+ q(x)G(x, ξ) = 0, x 6= ξ.
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This is easily established. For x < ξ we are on the second branch
and G(x, ξ) is proportional to y1(x). Thus, since y1(x) is a solution of
the homogeneous equation, then so is G(x, ξ). For x > ξ we are on
the first branch and G(x, ξ) is proportional to y2(x). So, once again
G(x, ξ) is a solution of the homogeneous problem.

2. Boundary Conditions:

In the example in the last section we had seen that G(a, ξ) = 0 and
G(b, ξ) = 0. For example, for x = a we are on the second branch
and G(x, ξ) is proportional to y1(x). Thus, whatever condition y1(x)
satisfies, G(x, ξ) will satisfy. A similar statement can be made for
x = b.

3. Symmetry or Reciprocity: G(x, ξ) = G(ξ, x)

We had shown this reciprocity property in the last section.

4. Continuity of G at x = ξ: G(ξ+, ξ) = G(ξ−, ξ)

Here we define ξ± through the limits of a function as x approaches ξ

from above or below. In particular,

G(ξ+, x) = lim
x↓ξ

G(x, ξ), x > ξ,

G(ξ−, x) = lim
x↑ξ

G(x, ξ), x < ξ.

Setting x = ξ in both branches, we have

y1(ξ)y2(ξ)

pW
=

y1(ξ)y2(ξ)

pW
.

Therefore, we have established the continuity of G(x, ξ) between the
two branches at x = ξ.

5. Jump Discontinuity of ∂G
∂x at x = ξ:

∂G(ξ+, ξ)

∂x
− ∂G(ξ−, ξ)

∂x
=

1
p(ξ)

This case is not as obvious. We first compute the derivatives by not-
ing which branch is involved and then evaluate the derivatives and
subtract them. Thus, we have

∂G(ξ+, ξ)

∂x
− ∂G(ξ−, ξ)

∂x
= − 1

pW
y1(ξ)y′2(ξ) +

1
pW

y′1(ξ)y2(ξ)

= −
y′1(ξ)y2(ξ)− y1(ξ)y′2(ξ)

p(ξ)(y1(ξ)y′2(ξ)− y′1(ξ)y2(ξ))

=
1

p(ξ)
. (7.37)

Here is a summary of the properties of the boundary value Green’s function
based upon the previous solution.
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Properties of the Green’s Function

1. Differential Equation:
∂

∂x

(
p(x) ∂G(x,ξ)

∂x

)
+ q(x)G(x, ξ) = 0, x 6= ξ

2. Boundary Conditions: Whatever conditions y1(x) and y2(x) sat-
isfy, G(x, ξ) will satisfy.

3. Symmetry or Reciprocity: G(x, ξ) = G(ξ, x)

4. Continuity of G at x = ξ: G(ξ+, ξ) = G(ξ−, ξ)

5. Jump Discontinuity of ∂G
∂x at x = ξ:

∂G(ξ+, ξ)

∂x
− ∂G(ξ−, ξ)

∂x
=

1
p(ξ)

We now show how a knowledge of these properties allows one to quickly
construct a Green’s function with an example.

Example 7.3. Construct the Green’s function for the problem

y′′ + ω2y = f (x), 0 < x < 1,

y(0) = 0 = y(1),

with ω 6= 0.

I. Find solutions to the homogeneous equation.

A general solution to the homogeneous equation is given as

yh(x) = c1 sin ωx + c2 cos ωx.

Thus, for x 6= ξ,

G(x, ξ) = c1(ξ) sin ωx + c2(ξ) cos ωx.

II. Boundary Conditions.

First, we have G(0, ξ) = 0 for 0 ≤ x ≤ ξ. So,

G(0, ξ) = c2(ξ) cos ωx = 0.

So,
G(x, ξ) = c1(ξ) sin ωx, 0 ≤ x ≤ ξ.

Second, we have G(1, ξ) = 0 for ξ ≤ x ≤ 1. So,

G(1, ξ) = c1(ξ) sin ω + c2(ξ) cos ω. = 0

A solution can be chosen with

c2(ξ) = −c1(ξ) tan ω.

This gives

G(x, ξ) = c1(ξ) sin ωx− c1(ξ) tan ω cos ωx.
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This can be simplified by factoring out the c1(ξ) and placing the remaining
terms over a common denominator. The result is

G(x, ξ) =
c1(ξ)

cos ω
[sin ωx cos ω− sin ω cos ωx]

= − c1(ξ)

cos ω
sin ω(1− x). (7.38)

Since the coefficient is arbitrary at this point, as can write the result as

G(x, ξ) = d1(ξ) sin ω(1− x), ξ ≤ x ≤ 1.

We note that we could have started with y2(x) = sin ω(1− x) as one of the
linearly independent solutions of the homogeneous problem in anticipation
that y2(x) satisfies the second boundary condition.

III. Symmetry or Reciprocity

We now impose that G(x, ξ) = G(ξ, x). To this point we have that

G(x, ξ) =

{
c1(ξ) sin ωx, 0 ≤ x ≤ ξ,

d1(ξ) sin ω(1− x), ξ ≤ x ≤ 1.

We can make the branches symmetric by picking the right forms for c1(ξ)

and d1(ξ). We choose c1(ξ) = C sin ω(1− ξ) and d1(ξ) = C sin ωξ. Then,

G(x, ξ) =

{
C sin ω(1− ξ) sin ωx, 0 ≤ x ≤ ξ,
C sin ω(1− x) sin ωξ, ξ ≤ x ≤ 1.

Now the Green’s function is symmetric and we still have to determine the
constant C. We note that we could have gotten to this point using the Method
of Variation of Parameters result where C = 1

pW .

IV. Continuity of G(x, ξ)

We already have continuity by virtue of the symmetry imposed in the last
step.

V. Jump Discontinuity in ∂
∂x G(x, ξ).

We still need to determine C. We can do this using the jump discontinuity
in the derivative:

∂G(ξ+, ξ)

∂x
− ∂G(ξ−, ξ)

∂x
=

1
p(ξ)

.

For this problem p(x) = 1. Inserting the Green’s function, we have

1 =
∂G(ξ+, ξ)

∂x
− ∂G(ξ−, ξ)

∂x

=
∂

∂x
[C sin ω(1− x) sin ωξ]x=ξ −

∂

∂x
[C sin ω(1− ξ) sin ωx]x=ξ

= −ωC cos ω(1− ξ) sin ωξ −ωC sin ω(1− ξ) cos ωξ

= −ωC sin ω(ξ + 1− ξ)

= −ωC sin ω. (7.39)
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Therefore,

C = − 1
ω sin ω

.

Finally, we have the Green’s function:

G(x, ξ) =


− sin ω(1− ξ) sin ωx

ω sin ω
, 0 ≤ x ≤ ξ,

− sin ω(1− x) sin ωξ

ω sin ω
, ξ ≤ x ≤ 1.

(7.40)

It is instructive to compare this result to the Variation of Parameters re-
sult.

Example 7.4. Use the Method of Variation of Parameters to solve

y′′ + ω2y = f (x), 0 < x < 1,

y(0) = 0 = y(1), ω 6= 0.

We have the functions y1(x) = sin ωx and y2(x) = sin ω(1− x) as the solu-
tions of the homogeneous equation satisfying y1(0) = 0 and y2(1) = 0. We need
to compute pW:

p(x)W(x) = y1(x)y′2(x)− y′1(x)y2(x)

= −ω sin ωx cos ω(1− x)−ω cos ωx sin ω(1− x)

= −ω sin ω (7.41)

Inserting this result into the Variation of Parameters result for the Green’s function
leads to the same Green’s function as above.

7.2.2 The Differential Equation for the Green’s Function

As we progress in the book we will develop a more general theory
of Green’s functions for ordinary and partial differential equations. Much
of this theory relies on understanding that the Green’s function really is the
system response function to a point source. This begins with recalling that
the boundary value Green’s function satisfies a homogeneous differential
equation for x 6= ξ,

∂

∂x

(
p(x)

∂G(x, ξ)

∂x

)
+ q(x)G(x, ξ) = 0, x 6= ξ. (7.42)

H(x)

x

1

0

Figure 7.2: The Heaviside step function,
H(x).

For x = ξ, we have seen that the derivative has a jump in its value. This
is similar to the step, or Heaviside, function,

H(x) =

{
1, x > 0,
0, x < 0.

This function is shown in Figure 7.2 and we see that the derivative of the
step function is zero everywhere except at the jump, or discontinuity . At
the jump, there is an infinite slope, though technically, we have learned that
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there is no derivative at this point. We will try to remedy this situation by
introducing the Dirac delta function,

δ(x) =
d

dx
H(x).

We will show that the Green’s function satisfies the differential equation

∂

∂x

(
p(x)

∂G(x, ξ)

∂x

)
+ q(x)G(x, ξ) = δ(x− ξ). (7.43)

However, we will first indicate why this knowledge is useful for the general
theory of solving differential equations using Green’s functions. The Dirac delta function is described in

more detail in Section 9.4. The key prop-
erty we will need here is the sifting prop-
erty, ∫ b

a
f (x)δ(x− ξ) dx = f (ξ)

for a < ξ < b.

As noted, the Green’s function satisfies the differential equation

∂

∂x

(
p(x)

∂G(x, ξ)

∂x

)
+ q(x)G(x, ξ) = δ(x− ξ) (7.44)

and satisfies homogeneous conditions. We will use the Green’s function to
solve the nonhomogeneous equation

d
dx

(
p(x)

dy(x)
dx

)
+ q(x)y(x) = f (x). (7.45)

These equations can be written in the more compact forms

L[y] = f (x)

L[G] = δ(x− ξ). (7.46)

Using these equations, we can determine the solution, y(x), in terms of
the Green’s function. Multiplying the first equation by G(x, ξ), the second
equation by y(x), and then subtracting, we have

GL[y]− yL[G] = f (x)G(x, ξ)− δ(x− ξ)y(x).

Now, integrate both sides from x = a to x = b. The left hand side becomes

∫ b

a
[ f (x)G(x, ξ)− δ(x− ξ)y(x)] dx =

∫ b

a
f (x)G(x, ξ) dx− y(ξ).

Using Green’s Identity from Section 4.2.2, the right side is Recall that Green’s identity is given by∫ b

a
(uLv− vLu) dx = [p(uv′ − vu′)]ba.∫ b

a
(GL[y]− yL[G]) dx =

[
p(x)

(
G(x, ξ)y′(x)− y(x)

∂G
∂x

(x, ξ)

)]x=b

x=a
.

Combining these results and rearranging, we obtain The general solution in terms of the
boundary value Green’s function with
corresponding surface terms.

y(ξ) =
∫ b

a
f (x)G(x, ξ) dx

−
[

p(x)
(

y(x)
∂G
∂x

(x, ξ)− G(x, ξ)y′(x)
)]x=b

x=a
. (7.47)
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We will refer to the extra terms in the solution,

S(b, ξ)− S(a, ξ) =

[
p(x)

(
y(x)

∂G
∂x

(x, ξ)− G(x, ξ)y′(x)
)]x=b

x=a
,

as the boundary, or surface, terms. Thus,

y(ξ) =
∫ b

a
f (x)G(x, ξ) dx− [S(b, ξ)− S(a, ξ)].

The result in Equation (7.47) is the key equation in determining the so-
lution of a nonhomogeneous boundary value problem. The particular set
of boundary conditions in the problem will dictate what conditions G(x, ξ)

has to satisfy. For example, if we have the boundary conditions y(a) = 0
and y(b) = 0, then the boundary terms yield

y(ξ) =
∫ b

a
f (x)G(x, ξ) dx−

[
p(b)

(
y(b)

∂G
∂x

(b, ξ)− G(b, ξ)y′(b)
)]

+

[
p(a)

(
y(a)

∂G
∂x

(a, ξ)− G(a, ξ)y′(a)
)]

=
∫ b

a
f (x)G(x, ξ) dx + p(b)G(b, ξ)y′(b)− p(a)G(a, ξ)y′(a).

(7.48)

The right hand side will only vanish if G(x, ξ) also satisfies these homoge-
neous boundary conditions. This then leaves us with the solution

y(ξ) =
∫ b

a
f (x)G(x, ξ) dx.

We should rewrite this as a function of x. So, we replace ξ with x and x
with ξ. This gives

y(x) =
∫ b

a
f (ξ)G(ξ, x) dξ.

However, this is not yet in the desirable form. The arguments of the Green’s
function are reversed. But, in this case G(x, ξ) is symmetric in its arguments.
So, we can simply switch the arguments getting the desired result.

We can now see that the theory works for other boundary conditions. If
we had y′(a) = 0, then the y(a) ∂G

∂x (a, ξ) term in the boundary terms could be
made to vanish if we set ∂G

∂x (a, ξ) = 0. So, this confirms that other boundary
value problems can be posed besides the one elaborated upon in the chapter
so far.

We can even adapt this theory to nonhomogeneous boundary conditions.
We first rewrite Equation (7.47) as

y(x) =
∫ b

a
G(x, ξ) f (ξ) dξ −

[
p(ξ)

(
y(ξ)

∂G
∂ξ

(x, ξ)− G(x, ξ)y′(ξ)
)]ξ=b

ξ=a
.

(7.49)
Let’s consider the boundary conditions y(a) = α and y′(b) = β. We also
assume that G(x, ξ) satisfies homogeneous boundary conditions,

G(a, ξ) = 0,
∂G
∂ξ

(b, ξ) = 0.
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in both x and ξ since the Green’s function is symmetric in its variables.
Then, we need only focus on the boundary terms to examine the effect on
the solution. We have

S(b, x)− S(a, x) =

[
p(b)

(
y(b)

∂G
∂ξ

(x, b)− G(x, b)y′(b)
)]

−
[

p(a)
(

y(a)
∂G
∂ξ

(x, a)− G(x, a)y′(a)
)]

= −βp(b)G(x, b)− αp(a)
∂G
∂ξ

(x, a). (7.50)

Therefore, we have the solution General solution satisfying the nonho-
mogeneous boundary conditions y(a) =
α and y′(b) = β. Here the Green’s
function satisfies homogeneous bound-
ary conditions, G(a, ξ) = 0, ∂G

∂ξ (b, ξ) =
0.

y(x) =
∫ b

a
G(x, ξ) f (ξ) dξ + βp(b)G(x, b) + αp(a)

∂G
∂ξ

(x, a). (7.51)

This solution satisfies the nonhomogeneous boundary conditions.

Example 7.5. Solve y′′ = x2, y(0) = 1, y(1) = 2 using the boundary value
Green’s function.

This is a modification of Example 7.2. We can use the boundary value Green’s
function that we found in that problem,

G(x, ξ) =

{
−ξ(1− x), 0 ≤ ξ ≤ x,
−x(1− ξ), x ≤ ξ ≤ 1.

(7.52)

We insert the Green’s function into the general solution (7.51) and use the given
boundary conditions to obtain

y(x) =
∫ 1

0
G(x, ξ)ξ2 dξ −

[
y(ξ)

∂G
∂ξ

(x, ξ)− G(x, ξ)y′(ξ)
]ξ=1

ξ=0

=
∫ x

0
(x− 1)ξ3 dξ +

∫ 1

x
x(ξ − 1)ξ2 dξ + y(0)

∂G
∂ξ

(x, 0)− y(1)
∂G
∂ξ

(x, 1)

=
(x− 1)x4

4
+

x(1− x4)

4
− x(1− x3)

3
+ (x− 1)− 2x

=
x4

12
+

35
12

x− 1. (7.53)

Of course, this problem can be solved by direct integration. The general solution
is

y(x) =
x4

12
+ c1x + c2.

Inserting this solution into each boundary condition yields the same result.
The Green’s function satisfies a delta
function forced differential equation.We have seen how the introduction of the Dirac delta function in the

differential equation satisfied by the Green’s function, Equation (7.44), can
lead to the solution of boundary value problems. The Dirac delta function
also aids in the interpretation of the Green’s function. We note that the
Green’s function is a solution of an equation in which the nonhomogeneous
function is δ(x− ξ). Note that if we multiply the delta function by f (ξ) and
integrate, we obtain ∫ ∞

−∞
δ(x− ξ) f (ξ) dξ = f (x).
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We can view the delta function as a unit impulse at x = ξ which can be
used to build f (x) as a sum of impulses of different strengths, f (ξ). Thus,
the Green’s function is the response to the impulse as governed by the dif-
ferential equation and given boundary conditions.Derivation of the jump condition for the

Green’s function. In particular, the delta function forced equation can be used to derive the
jump condition. We begin with the equation in the form

∂

∂x

(
p(x)

∂G(x, ξ)

∂x

)
+ q(x)G(x, ξ) = δ(x− ξ). (7.54)

Now, integrate both sides from ξ − ε to ξ + ε and take the limit as ε → 0.
Then,

lim
ε→0

∫ ξ+ε

ξ−ε

[
∂

∂x

(
p(x)

∂G(x, ξ)

∂x

)
+ q(x)G(x, ξ)

]
dx = lim

ε→0

∫ ξ+ε

ξ−ε
δ(x− ξ) dx

= 1. (7.55)

Since the q(x) term is continuous, the limit as ε → 0 of that term vanishes.
Using the Fundamental Theorem of Calculus, we then have

lim
ε→0

[
p(x)

∂G(x, ξ)

∂x

]ξ+ε

ξ−ε

= 1. (7.56)

This is the jump condition that we have been using!

7.2.3 Series Representations of Green’s Functions

There are times that it might not be so simple to find the Green’s
function in the simple closed form that we have seen so far. However,
there is a method for determining the Green’s functions of Sturm-Liouville
boundary value problems in the form of an eigenfunction expansion. We
will finish our discussion of Green’s functions for ordinary differential equa-
tions by showing how one obtains such series representations. (Note that
we are really just repeating the steps towards developing eigenfunction ex-
pansion which we had seen in Section 4.3.)

We will make use of the complete set of eigenfunctions of the differential
operator, L, satisfying the homogeneous boundary conditions:

L[φn] = −λnσφn, n = 1, 2, . . .

We want to find the particular solution y satisfying L[y] = f and homo-
geneous boundary conditions. We assume that

y(x) =
∞

∑
n=1

anφn(x).

Inserting this into the differential equation, we obtain

L[y] =
∞

∑
n=1

anL[φn] = −
∞

∑
n=1

λnanσφn = f .
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This has resulted in the generalized Fourier expansion

f (x) =
∞

∑
n=1

cnσφn(x)

with coefficients
cn = −λnan.

We have seen how to compute these coefficients earlier in section 4.3. We
multiply both sides by φk(x) and integrate. Using the orthogonality of the
eigenfunctions, ∫ b

a
φn(x)φk(x)σ(x) dx = Nkδnk,

one obtains the expansion coefficients (if λk 6= 0)

ak = −
( f , φk)

Nkλk
,

where ( f , φk) ≡
∫ b

a f (x)φk(x) dx.
As before, we can rearrange the solution to obtain the Green’s function.

Namely, we have

y(x) =
∞

∑
n=1

( f , φn)

−Nnλn
φn(x) =

∫ b

a

∞

∑
n=1

φn(x)φn(ξ)

−Nnλn︸ ︷︷ ︸
G(x,ξ)

f (ξ) dξ

Therefore, we have found the Green’s function as an expansion in the
eigenfunctions: Green’s function as an expansion in the

eigenfunctions.
G(x, ξ) =

∞

∑
n=1

φn(x)φn(ξ)

−λnNn
. (7.57)

We will conclude this discussion with an example. We will solve this
problem three different ways in order to summarize the methods we have
used in the text.

Example 7.6. Solve

y′′ + 4y = x2, x ∈ (0, 1), y(0) = y(1) = 0

using the Green’s function eigenfunction expansion. Example using the Green’s function
eigenfunction expansion.The Green’s function for this problem can be constructed fairly quickly for this

problem once the eigenvalue problem is solved. The eigenvalue problem is

φ′′(x) + 4φ(x) = −λφ(x),

where φ(0) = 0 and φ(1) = 0. The general solution is obtained by rewriting the
equation as

φ′′(x) + k2φ(x) = 0,

where
k2 = 4 + λ.
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Solutions satisfying the boundary condition at x = 0 are of the form

φ(x) = A sin kx.

Forcing φ(1) = 0 gives

0 = A sin k⇒ k = nπ, k = 1, 2, 3 . . . .

So, the eigenvalues are

λn = n2π2 − 4, n = 1, 2, . . .

and the eigenfunctions are

φn = sin nπx, n = 1, 2, . . . .

We also need the normalization constant, Nn. We have that

Nn = ‖φn‖2 =
∫ 1

0
sin2 nπx =

1
2

.

We can now construct the Green’s function for this problem using Equation
(7.57).

G(x, ξ) = 2
∞

∑
n=1

sin nπx sin nπξ

(4− n2π2)
. (7.58)

Using this Green’s function, the solution of the boundary value problem becomes

y(x) =
∫ 1

0
G(x, ξ) f (ξ) dξ

=
∫ 1

0

(
2

∞

∑
n=1

sin nπx sin nπξ

(4− n2π2)

)
ξ2 dξ

= 2
∞

∑
n=1

sin nπx
(4− n2π2)

∫ 1

0
ξ2 sin nπξ dξ

= 2
∞

∑
n=1

sin nπx
(4− n2π2)

[
(2− n2π2)(−1)n − 2

n3π3

]
(7.59)

We can compare this solution to the one we would obtain if we did not
employ Green’s functions directly. The eigenfunction expansion method for
solving boundary value problems, which we saw earlier is demonstrated in
the next example.

Example 7.7. Solve

y′′ + 4y = x2, x ∈ (0, 1), y(0) = y(1) = 0

using the eigenfunction expansion method.Example using the eigenfunction expan-
sion method. We assume that the solution of this problem is in the form

y(x) =
∞

∑
n=1

cnφn(x).
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Inserting this solution into the differential equation L[y] = x2, gives

x2 = L
[

∞

∑
n=1

cn sin nπx

]

=
∞

∑
n=1

cn

[
d2

dx2 sin nπx + 4 sin nπx
]

=
∞

∑
n=1

cn[4− n2π2] sin nπx (7.60)

This is a Fourier sine series expansion of f (x) = x2 on [0, 1]. Namely,

f (x) =
∞

∑
n=1

bn sin nπx.

In order to determine the cn’s in Equation (7.60), we will need the Fourier sine
series expansion of x2 on [0, 1]. Thus, we need to compute

bn =
2
1

∫ 1

0
x2 sin nπx

= 2
[
(2− n2π2)(−1)n − 2

n3π3

]
, n = 1, 2, . . . . (7.61)

The resulting Fourier sine series is

x2 = 2
∞

∑
n=1

[
(2− n2π2)(−1)n − 2

n3π3

]
sin nπx.

Inserting this expansion in Equation (7.60), we find

2
∞

∑
n=1

[
(2− n2π2)(−1)n − 2

n3π3

]
sin nπx =

∞

∑
n=1

cn[4− n2π2] sin nπx.

Due to the linear independence of the eigenfunctions, we can solve for the unknown
coefficients to obtain

cn = 2
(2− n2π2)(−1)n − 2

(4− n2π2)n3π3 .

Therefore, the solution using the eigenfunction expansion method is

y(x) =
∞

∑
n=1

cnφn(x)

= 2
∞

∑
n=1

sin nπx
(4− n2π2)

[
(2− n2π2)(−1)n − 2

n3π3

]
. (7.62)

We note that the solution in this example is the same solution as we had
obtained using the Green’s function obtained in series form in the previous
example.

One remaining question is the following: Is there a closed form for the
Green’s function and the solution to this problem? The answer is yes!

Example 7.8. Find the closed form Green’s function for the problem

y′′ + 4y = x2, x ∈ (0, 1), y(0) = y(1) = 0
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and use it to obtain a closed form solution to this boundary value problem.
We note that the differential operator is a special case of the example done in

section 7.2. Namely, we pick ω = 2. The Green’s function was already found in
that section. For this special case, we haveUsing the closed form Green’s function.

G(x, ξ) =


− sin 2(1− ξ) sin 2x

2 sin 2
, 0 ≤ x ≤ ξ,

− sin 2(1− x) sin 2ξ

2 sin 2
, ξ ≤ x ≤ 1.

(7.63)

Using this Green’s function, the solution to the boundary value problem is read-
ily computed

y(x) =
∫ 1

0
G(x, ξ) f (ξ) dξ

= −
∫ x

0

sin 2(1− x) sin 2ξ

2 sin 2
ξ2 dξ +

∫ 1

x

sin 2(ξ − 1) sin 2x
2 sin 2

ξ2 dξ

= − 1
4 sin 2

[
−x2 sin 2 + (1− cos2 x) sin 2 + sin x cos x(1 + cos 2)

]
.

= − 1
4 sin 2

[
−x2 sin 2 + 2 sin2 x sin 1 cos 1 + 2 sin x cos x cos2 1)

]
.

= − 1
8 sin 1 cos 1

[
−x2 sin 2 + 2 sin x cos 1(sin x sin 1 + cos x cos 1)

]
.

=
x2

4
− sin x cos(1− x)

4 sin 1
. (7.64)

In Figure 7.3 we show a plot of this solution along with the first five
terms of the series solution. The series solution converges quickly to the
closed form solution.

Figure 7.3: Plots of the exact solution to
Example 7.6 with the first five terms of
the series solution.
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As one last check, we solve the boundary value problem directly, as we
had done in the last chapter.

Example 7.9. Solve directly:

y′′ + 4y = x2, x ∈ (0, 1), y(0) = y(1) = 0.

Direct solution of the boundary value
problem. The problem has the general solution

y(x) = c1 cos 2x + c2 sin 2x + yp(x),
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where yp is a particular solution of the nonhomogeneous differential equation. Us-
ing the Method of Undetermined Coefficients, we assume a solution of the form

yp(x) = Ax2 + Bx + C.

Inserting this guess into the nonhomogeneous equation, we have

2A + 4(Ax2 + Bx + C) = x2,

Thus, B = 0, 4A = 1 and 2A + 4C = 0. The solution of this system is

A =
1
4

, B = 0, C = −1
8

.

So, the general solution of the nonhomogeneous differential equation is

y(x) = c1 cos 2x + c2 sin 2x +
x2

4
− 1

8
.

We next determine the arbitrary constants using the boundary conditions. We
have

0 = y(0)

= c1 −
1
8

0 = y(1)

= c1 cos 2 + c2 sin 2 +
1
8

(7.65)

Thus, c1 = 1
8 and

c2 = −
1
8 + 1

8 cos 2
sin 2

.

Inserting these constants into the solution we find the same solution as before.

y(x) =
1
8

cos 2x−
[

1
8 + 1

8 cos 2
sin 2

]
sin 2x +

x2

4
− 1

8

=
(cos 2x− 1) sin 2− sin 2x(1 + cos 2)

8 sin 2
+

x2

4

=
(−2 sin2 x)2 sin 1 cos 1− sin 2x(2 cos2 1)

16 sin 1 cos 1
+

x2

4

= − (sin2 x) sin 1 + sin x cos x(cos 1)
4 sin 1

+
x2

4

=
x2

4
− sin x cos(1− x)

4 sin 1
. (7.66)

7.2.4 The Generalized Green’s Function

When solving Lu = f using eigenfuction expansions, there can be
a problem when there are zero eigenvalues. Recall from Section 4.3 the
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solution of this problem is given by

y(x) =
∞

∑
n=1

cnφn(x),

cn = −
∫ b

a f (x)φn(x) dx

λm
∫ b

a φ2
n(x)σ(x) dx

. (7.67)

Here the eigenfunctions, φn(x), satisfy the eigenvalue problem

Lφn(x) = −λnσ(x)φn(x), x ∈ [a, b]

subject to given homogeneous boundary conditions.
Note that if λm = 0 for some value of n = m, then cm is undefined.

However, if we require

( f , φm) =
∫ b

a
f (x)φn(x) dx = 0,

then there is no problem. This is a form of the Fredholm Alternative.The Fredholm Alternative.

Namely, if λn = 0 for some n, then there is no solution unless f , φm) = 0;
i.e., f is orthogonal to φn. In this case, an will be arbitrary and there are an
infinite number of solutions.

Example 7.10. u′′ = f (x), u′(0) = 0, u′(L) = 0.
The eigenfunctions satisfy φ′′n (x) = −λnφn(x), φ′n(0) = 0, φ′n(L) = 0. There

are the usual solutions,

φn(x) = cos
nπx

L
, λn =

(nπ

L

)2
, n = 1, 2, . . . .

However, when λn = 0, φ′′0 (x) = 0. So, φ0(x) = Ax + B. The boundary
conditions are satisfied if A = 0. So, we can take φ0(x) = 1. Therefore, there
exists an eigenfunction corresponding to a zero eigenvalue. Thus, in order to have
a solution, we have to require ∫ L

0
f (x) dx = 0.

Example 7.11. u′′ + π2u = β + 2x, u(0) = 0, u(1) = 0.
In this problem we check to see if there is an eigenfunctions with a zero eigen-

value. The eigenvalue problem is

φ′′ + π2φ = 0, φ(0) = 0, φ(1) = 0.

A solution satisfying this problem is easily founds as

φ(x) = sin πx.

Therefore, there is a zero eigenvalue. For a solution to exist, we need to require

0 =
∫ 1

0
(β + 2x) sin πx dx

= − β

π
cos πx

∣∣1
0 + 2

[
1
π

x cos πx− 1
π2 sin πx

]1

0

= − 2
π
(β + 1). (7.68)

Thus, either β = −1 or there are no solutions.
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Recall the series representation of the Green’s function for a Sturm-Liouville
problem in Equation (7.57),

G(x, ξ) =
∞

∑
n=1

φn(x)φn(ξ)

−λnNn
. (7.69)

We see that if there is a zero eigenvalue, then we also can run into trouble
as one of the terms in the series is undefined.

Recall that the Green’s function satisfies the differential equation LG(x, ξ) =

δ(x− ξ), x, ξ ∈ [a, b] and satisfies some appropriate set of boundary condi-
tions. Using the above analysis, if there is a zero eigenvalue, then Lφh(x) =
0. In order for a solution to exist to the Green’s function differential equa-
tion, then f (x) = δ(x− ξ) and we have to require

0 = ( f , φh) =
∫ b

a
φh(x)δ(x− ξ) dx = φh(ξ),

for and ξ ∈ [a, b]. Therefore, the Green’s function does not exist.
We can fix this problem by introducing a modified Green’s function.

Let’s consider a modified differential equation,

LGM(x, ξ) = δ(x− ξ) + cφh(x)

for some constant c. Now, the orthogonality condition becomes

0 = ( f , φh) =
∫ b

a
φh(x)[δ(x− ξ) + cφh(x)] dx

= φh(ξ) + c
∫ b

a
φ2

h(x) dx. (7.70)

Thus, we can choose

c = − φh(ξ)∫ b
a φ2

h(x) dx

Using the modified Green’s function, we can obtain solutions to Lu = f .
We begin with Green’s identity from Section 4.2.2, given by∫ b

a
(uLv− vLu) dx = [p(uv′ − vu′)]ba.

Letting v = GM, we have

∫ b

a
(GML[u]− uL[GM]) dx =

[
p(x)

(
GM(x, ξ)u′(x)− u(x)

∂GM
∂x

(x, ξ)

)]x=b

x=a
.

Applying homogeneous boundary conditions, the right hand side vanishes.
Then we have

0 =
∫ b

a
(GM(x, ξ)L[u(x)]− u(x)L[GM(x, ξ)]) dx

=
∫ b

a
(GM(x, ξ) f (x)− u(x)[δ(x− ξ) + cφh(x)]) dx

u(ξ) =
∫ b

a
GM(x, ξ) f (x) dx− c

∫ b

a
u(x)φh(x) dx. (7.71)
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Noting that u(x, t) = c1φh(x) + up(x),, the last integral gives

−c
∫ b

a
u(x)φh(x) dx =

φh(ξ)∫ b
a φ2

h(x) dx

∫ b

a
φ2

h(x) dx = c1φh(ξ).

Therefore, the solution can be written as

u(x) =
∫ b

a
f (ξ)GM(x, ξ) dξ + c1φh(x).

Here we see that there are an infinite number of solutions when solutions
exist.

Example 7.12. Use the modified Green’s function to solve u′′ + π2u = 2x − 1,
u(0) = 0, u(1) = 0.

We have already seen that a solution exists for this problem, where we have set
β = −1 in Example 7.11.

We construct the modified Green’s function from the solutions of

φ′′n + π2φn = −λnφn, φ(0) = 0, φ(1) = 0.

The general solutions of this equation are

φn(x) = c1 cos
√

π2 + λnx + c2 sin
√

π2 + λnx.

Applying the boundary conditions, we have c1 = 0 and
√

π2 + λn = nπ. Thus,
the eigenfunctions and eigenvalues are

φn(x) = sin nπx, λn = (n2 − 1)π2, n = 1, 2, 3, . . . .

Note that λ1 = 0.
The modified Green’s function satisfies

d2

dx2 GM(x, ξ) + π2GM(x, ξ) = δ(x− ξ) + cφh(x),

where

c = − φ1(ξ)∫ 1
0 φ2

1(x) dx

= − sin πξ∫ 1
0 sin2 πξ, dx

= −2 sin πξ. (7.72)

We need to solve for GM(x, ξ). The modified Green’s function satisfies

d2

dx2 GM(x, ξ) + π2GM(x, ξ) = δ(x− ξ)− 2 sin πξ sin πx,

and the boundary conditions GM(0, ξ) = 0 and GM(1, ξ) = 0. We assume an
eigenfunction expansion,

GM(x, ξ) =
∞

∑
n=1

cn(ξ) sin nπx.
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Then,

δ(x− ξ)− 2 sin πξ sin πx =
d2

dx2 GM(x, ξ) + π2GM(x, ξ)

= −
∞

∑
n=1

λncn(ξ) sin nπx (7.73)

The coefficients are found as

−λncn = 2
∫ 1

0
[δ(x− ξ)− 2 sin πξ sin πx] sin nπx dx

= 2 sin nπξ − 2 sin πξδn1. (7.74)

Therefore, c1 = 0 and cn = 2 sin nπξ, for n > 1.
We have found the modified Green’s function as

GM(x, ξ) = −2
∞

∑
n=2

sin nπx sin nπξ

λn
.

We can use this to find the solution. Namely, we have (for c1 = 0)

u(x) =
∫ 1

0
(2ξ − 1)GM(x, ξ) dξ

= −2
∞

∑
n=2

sin nπx
λn

∫ 1

0
(2ξ − 1) sin nπξ dx

= −2
∞

∑
n=2

sin nπx
(n2 − 1)π2

[
− 1

nπ
(2ξ − 1) cos nπξ +

1
n2π2 sin nπξ

]1

0

= 2
∞

∑
n=2

1 + cos nπ

n(n2 − 1)π3 sin nπx. (7.75)

We can also solve this problem exactly. The general solution is given by

u(x) = c1 sin πx + c2 cos πx +
2x− 1

π2 .

Imposing the boundary conditions, we obtain

u(x) = c1 sin πx +
1

π2 cos πx +
2x− 1

π2 .

Notice that there are an infinite number of solutions. Choosing c1 = 0, we have the
particular solution

u(x) =
1

π2 cos πx +
2x− 1

π2 .

Figure 7.4: The solution for Example
7.12.

In Figure 7.4 we plot this solution and that obtained using the modified Green’s
function. The result is that they are in complete agreement.

7.3 The Nonhomogeneous Heat Equation

Boundary value Green’s functions do not only arise in the so-
lution of nonhomogeneous ordinary differential equations. They are also
important in arriving at the solution of nonhomogeneous partial differen-
tial equations. In this section we will show that this is the case by turning
to the nonhomogeneous heat equation.
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7.3.1 Nonhomogeneous Time Independent Boundary Conditions

Consider the nonhomogeneous heat equation with nonhomogeneous bound-
ary conditions:

ut − kuxx = h(x), 0 ≤ x ≤ L, t > 0,

u(0, t) = a, u(L, t) = b,

u(x, 0) = f (x). (7.76)

We are interested in finding a particular solution to this initial-boundary
value problem. In fact, we can represent the solution to the general nonho-
mogeneous heat equation as the sum of two solutions that solve different
problems.

First, we let v(x, t) satisfy the homogeneous problem

vt − kvxx = 0, 0 ≤ x ≤ L, t > 0,

v(0, t) = 0, v(L, t) = 0,

v(x, 0) = g(x), (7.77)

which has homogeneous boundary conditions.
We will also need a steady state solution to the original problem. AThe steady state solution, w(t), satisfies

a nonhomogeneous differential equation
with nonhomogeneous boundary condi-
tions. The transient solution, v(t), sat-
isfies the homogeneous heat equation
with homogeneous boundary conditions
and satisfies a modified initial condition.

steady state solution is one that satisfies ut = 0. Let w(x) be the steady state
solution. It satisfies the problem

−kwxx = h(x), 0 ≤ x ≤ L.

w(0, t) = a, w(L, t) = b. (7.78)

Now consider u(x, t) = w(x) + v(x, t), the sum of the steady state so-
lution, w(x), and the transient solution, v(x, t). We first note that u(x, t)
satisfies the nonhomogeneous heat equation,

ut − kuxx = (w + v)t − (w + v)xx

= vt − kvxx − kwxx ≡ h(x). (7.79)

The boundary conditions are also satisfied. Evaluating, u(x, t) at x = 0
and x = L, we have

u(0, t) = w(0) + v(0, t) = a,

u(L, t) = w(L) + v(L, t) = b. (7.80)

Finally, the initial condition givesThe transient solution satisfies

v(x, 0) = f (x)− w(x).
u(x, 0) = w(x) + v(x, 0) = w(x) + g(x).

Thus, if we set g(x) = f (x)− w(x), then u(x, t) = w(x) + v(x, t) will be the
solution of the nonhomogeneous boundary value problem. We all ready
know how to solve the homogeneous problem to obtain v(x, t). So, we only
need to find the steady state solution, w(x).

There are several methods we could use to solve Equation (7.78) for the
steady state solution. One is the Method of Variation of Parameters, which
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is closely related to the Green’s function method for boundary value prob-
lems which we described in the last several sections. However, we will just
integrate the differential equation for the steady state solution directly to
find the solution. From this solution we will be able to read off the Green’s
function.

Integrating the steady state equation (7.78) once, yields

dw
dx

= −1
k

∫ x

0
h(z) dz + A,

where we have been careful to include the integration constant, A = w′(0).
Integrating again, we obtain

w(x) = −1
k

∫ x

0

(∫ y

0
h(z) dz

)
dy + Ax + B,

where a second integration constant has been introduced. This gives the
general solution for Equation (7.78).

The boundary conditions can now be used to determine the constants. It
is clear that B = a for the condition at x = 0 to be satisfied. The second
condition gives

b = w(L) = −1
k

∫ L

0

(∫ y

0
h(z) dz

)
dy + AL + a.

Solving for A, we have

A =
1

kL

∫ L

0

(∫ y

0
h(z) dz

)
dy +

b− a
L

.

Inserting the integration constants, the solution of the boundary value
problem for the steady state solution is then The steady state solution.

w(x) = −1
k

∫ x

0

(∫ y

0
h(z) dz

)
dy +

x
kL

∫ L

0

(∫ y

0
h(z) dz

)
dy +

b− a
L

x + a.

This is sufficient for an answer, but it can be written in a more compact
form. In fact, we will show that the solution can be written in a way that a
Green’s function can be identified.

First, we rewrite the double integrals as single integrals. We can do this
using integration by parts. Consider integral in the first term of the solution,

I =
∫ x

0

(∫ y

0
h(z) dz

)
dy.

Setting u =
∫ y

0 h(z) dz and dv = dy in the standard integration by parts
formula, we obtain

I =
∫ x

0

(∫ y

0
h(z) dz

)
dy

= y
∫ y

0
h(z) dz

∣∣∣x
0
−
∫ x

0
yh(y) dy

=
∫ x

0
(x− y)h(y) dy. (7.81)
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Thus, the double integral has now collapsed to a single integral. Replac-
ing the integral in the solution, the steady state solution becomes

w(x) = −1
k

∫ x

0
(x− y)h(y) dy +

x
kL

∫ L

0
(L− y)h(y) dy +

b− a
L

x + a.

We can make a further simplification by combining these integrals. This
can be done if the integration range, [0, L], in the second integral is split into
two pieces, [0, x] and [x, L]. Writing the second integral as two integrals over
these subintervals, we obtain

w(x) = −1
k

∫ x

0
(x− y)h(y) dy +

x
kL

∫ x

0
(L− y)h(y) dy

+
x

kL

∫ L

x
(L− y)h(y) dy +

b− a
L

x + a. (7.82)

Next, we rewrite the integrands,

w(x) = −1
k

∫ x

0

L(x− y)
L

h(y) dy +
1
k

∫ x

0

x(L− y)
L

h(y) dy

+
1
k

∫ L

x

x(L− y)
L

h(y) dy +
b− a

L
x + a. (7.83)

It can now be seen how we can combine the first two integrals:

w(x) = −1
k

∫ x

0

y(L− x)
L

h(y) dy +
1
k

∫ L

x

x(L− y)
L

h(y) dy +
b− a

L
x + a.

The resulting integrals now take on a similar form and this solution can
be written compactly as

w(x) = −
∫ L

0
G(x, y)[−1

k
h(y)] dy +

b− a
L

x + a,

where

G(x, y) =


x(L− y)

L
, 0 ≤ x ≤ y,

y(L− x)
L

, y ≤ x ≤ L,

is the Green’s function for this problem.The Green’s function for the steady state
problem. The full solution to the original problem can be found by adding to this

steady state solution a solution of the homogeneous problem,

ut − kuxx = 0, 0 ≤ x ≤ L, t > 0,

u(0, t) = 0, u(L, t) = 0,

u(x, 0) = f (x)− w(x). (7.84)

Example 7.13. Solve the nonhomogeneous problem,

ut − uxx = 10, 0 ≤ x ≤ 1, t > 0,

u(0, t) = 20, u(1, t) = 0,

u(x, 0) = 2x(1− x). (7.85)
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In this problem we have a rod initially at a temperature of u(x, 0) = 2x(1− x).
The ends of the rod are maintained at fixed temperatures and the bar is continually
heated at a constant temperature, represented by the source term, 10.

First, we find the steady state temperature, w(x), satisfying

−wxx = 10, 0 ≤ x ≤ 1.

w(0, t) = 20, w(1, t) = 0. (7.86)

Using the general solution, we have

w(x) =
∫ 1

0
10G(x, y) dy− 20x + 20,

where

G(x, y) =

{
x(1− y), 0 ≤ x ≤ y,
y(1− x), y ≤ x ≤ 1,

we compute the solution

w(x) =
∫ x

0
10y(1− x) dy +

∫ 1

x
10x(1− y) dy− 20x + 20

= 5(x− x2)− 20x + 20,

= 20− 15x− 5x2. (7.87)

Checking this solution, it satisfies both the steady state equation and boundary
conditions.

The transient solution satisfies

vt − vxx = 0, 0 ≤ x ≤ 1, t > 0,

v(0, t) = 0, v(1, t) = 0,

v(x, 0) = x(1− x)− 10. (7.88)

Recall, that we have determined the solution of this problem as

v(x, t) =
∞

∑
n=1

bne−n2π2t sin nπx,

where the Fourier sine coefficients are given in terms of the initial temperature
distribution,

bn = 2
∫ 1

0
[x(1− x)− 10] sin nπx dx, n = 1, 2, . . . .

Therefore, the full solution is

u(x, t) =
∞

∑
n=1

bne−n2π2t sin nπx + 20− 15x− 5x2.

Note that for large t, the transient solution tends to zero and we are left with the
steady state solution as expected.
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7.3.2 Time Dependent Boundary Conditions

In the last section we solved problems with time independent boundary con-
ditions using equilibrium solutions satisfying the steady state heat equation
sand nonhomogeneous boundary conditions. When the boundary condi-
tions are time dependent, we can also convert the problem to an auxiliary
problem with homogeneous boundary conditions.

Consider the problem

ut − kuxx = h(x), 0 ≤ x ≤ L, t > 0,

u(0, t) = a(t), u(L, t) = b(t), t > 0,

u(x, 0) = f (x), 0 ≤ x ≤ L. (7.89)

We define u(x, t) = v(x, t) + w(x, t), where w(x, t) is a modified form of
the steady state solution from the last section,

w(x, t) = a(t) +
b(t)− a(t)

L
x.

Noting that

ut = vt + ȧ +
ḃ− ȧ

L
x,

uxx = vxx, (7.90)

we find that v(x, t) is a solution of the problem

vt − kvxx = h(x)−
[

ȧ(t) +
ḃ(t)− ȧ(t)

L
x
]

, 0 ≤ x ≤ L, t > 0,

v(0, t) = 0, v(L, t) = 0, t > 0,

v(x, 0) = f (x)−
[

a(0) +
b(0)− a(0)

L
x
]

, 0 ≤ x ≤ L. (7.91)

Thus, we have converted the original problem into a nonhomogeneous heat
equation with homogeneous boundary conditions and a new source term
and new initial condition.

Example 7.14. Solve the problem

ut − uxx = x, 0 ≤ x ≤ 1, t > 0,

u(0, t) = 2, u(L, t) = t, t > 0

u(x, 0) = 3 sin 2πx + 2(1− x), 0 ≤ x ≤ 1. (7.92)

We first define
u(x, t) = v(x, t) + 2 + (t− 2)x.

Then, v(x, t) satisfies the problem

vt − vxx = 0, 0 ≤ x ≤ 1, t > 0,

v(0, t) = 0, v(L, t) = 0, t > 0,

v(x, 0) = 3 sin 2πx, 0 ≤ x ≤ 1. (7.93)
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This problem is easily solved. The general solution is given by

v(x, t) =
∞

∑
n=1

bn sin nπxe−n2π2t.

We can see that the Fourier coefficients all vanish except for b2. This gives v(x, t) =
3 sin 2πxe−4π2t and, therefore, we have found the solution

u(x, t) = 3 sin 2πxe−4π2t + 2 + (t− 2)x.

7.4 Green’s Functions for 1D Partial Differential Equations

In Section 7.1 we encountered the initial value Green’s func-
tion for initial value problems for ordinary differential equations. In that
case we were able to express the solution of the differential equation L[y] =
f in the form

y(t) =
∫

G(t, τ) f (τ) dτ,

where the Green’s function G(t, τ) was used to handle the nonhomoge-
neous term in the differential equation. In a similar spirit, we can introduce
Green’s functions of different types to handle nonhomogeneous terms, non-
homogeneous boundary conditions, or nonhomogeneous initial conditions.
Occasionally, we will stop and rearrange the solutions of different problems
and recast the solution and identify the Green’s function for the problem.

In this section we will rewrite the solutions of the heat equation and wave
equation on a finite interval to obtain an initial value Green;s function. As-
suming homogeneous boundary conditions and a homogeneous differential
operator, we can write the solution of the heat equation in the form

u(x, t) =
∫ L

0
G(x, ξ; t, t0) f (ξ) dξ.

where u(x, t0) = f (x), and the solution of the wave equation as

u(x, t) =
∫ L

0
Gc(x, ξ, t, t0) f (ξ) dξ +

∫ L

0
Gs(x, ξ, t, t0)g(ξ) dξ.

where u(x, t0) = f (x) and ut(x, t0) = g(x). The functions G(x, ξ; t, t0),
G(x, ξ; t, t0), and G(x, ξ; t, t0) are initial value Green’s functions and we will
need to explore some more methods before we can discuss the properties of
these functions. [For example, see Section.]

We will now turn to showing that for the solutions of the one dimensional
heat and wave equations with fixed, homogeneous boundary conditions, we
can construct the particular Green’s functions.

7.4.1 Heat Equation

In Section 3.5 we obtained the solution to the one dimensional heat
equation on a finite interval satisfying homogeneous Dirichlet conditions,

ut = kuxx, 0 < t, 0 ≤ x ≤ L,
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u(x, 0) = f (x), 0 < x < L,

u(0, t) = 0, t > 0,

u(L, t) = 0, t > 0. (7.94)

The solution we found was the Fourier sine series

u(x, t) =
∞

∑
n=1

bneλnkt sin
nπx

L
,

where
λn = −

(nπ

L

)2

and the Fourier sine coefficients are given in terms of the initial temperature
distribution,

bn =
2
L

∫ L

0
f (x) sin

nπx
L

dx, n = 1, 2, . . . .

Inserting the coefficients bn into the solution, we have

u(x, t) =
∞

∑
n=1

(
2
L

∫ L

0
f (ξ) sin

nπξ

L
dξ

)
eλnkt sin

nπx
L

.

Interchanging the sum and integration, we obtain

u(x, t) =
∫ L

0

(
2
L

∞

∑
n=1

sin
nπx

L
sin

nπξ

L
eλnkt

)
f (ξ) dξ.

This solution is of the form

u(x, t) =
∫ L

0
G(x, ξ; t, 0) f (ξ) dξ.

Here the function G(x, ξ; t, 0) is the initial value Green’s function for the
heat equation in the form

G(x, ξ; t, 0) =
2
L

∞

∑
n=1

sin
nπx

L
sin

nπξ

L
eλnkt.

which involves a sum over eigenfunctions of the spatial eigenvalue problem,
Xn(x) = sin nπx

L .

7.4.2 Wave Equation

The solution of the one dimensional wave equation (2.2),

utt = c2uxx, 0 < t, 0 ≤ x ≤ L,

u(0, t) = 0, u(L, 0) = 0, t > 0,

u(x, 0) = f (x), ut(x, 0) = g(x), 0 < x < L, (7.95)

was found as

u(x, t) =
∞

∑
n=1

[
An cos

nπct
L

+ Bn sin
nπct

L

]
sin

nπx
L

.
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The Fourier coefficients were determined from the initial conditions,

f (x) =
∞

∑
n=1

An sin
nπx

L
,

g(x) =
∞

∑
n=1

nπc
L

Bn sin
nπx

L
, (7.96)

as

An =
2
L

∫ L

0
f (ξ) sin

nπξ

L
dξ,

Bn =
L

nπc
2
L

∫ L

0
f (ξ) sin

nπξ

L
dξ. (7.97)

Inserting these coefficients into the solution and interchanging integra-
tion with summation, we have

u(x, t) =
∫ ∞

0

[
2
L

∞

∑
n=1

sin
nπx

L
sin

nπξ

L
cos

nπct
L

]
f (ξ) dξ

+
∫ ∞

0

[
2
L

∞

∑
n=1

sin
nπx

L
sin

nπξ

L
sin nπct

L
nπc/L

]
g(ξ) dξ

=
∫ L

0
Gc(x, ξ, t, 0) f (ξ) dξ +

∫ L

0
Gs(x, ξ, t, 0)g(ξ) dξ. (7.98)

In this case, we have defined two Green’s functions,

Gc(x, ξ, t, 0) =
2
L

∞

∑
n=1

sin
nπx

L
sin

nπξ

L
cos

nπct
L

,

Gs(x, ξ, t, 0) =
2
L

∞

∑
n=1

sin
nπx

L
sin

nπξ

L
sin nπct

L
nπc/L

. (7.99)

The first, Gc, provides the response to the initial profile and the second, Gs,
to the initial velocity.

7.5 Green’s Functions for the 2D Poisson Equation

C

S r− r′

r = (x, y)

r′ = (ξ, η)

Figure 7.5: Domain for solving Poisson’s
equation.

In this section we consider the two dimensional Poisson equation with
Dirichlet boundary conditions. We consider the problem

∇2u = f , in D,

u = g, on C, (7.100)

for the domain in Figure 7.5
We seek to solve this problem using a Green’s function. As in earlier

discussions, the Green’s function satisfies the differential equation and ho-
mogeneous boundary conditions. The associated problem is given by

∇2G = δ(ξ − x, η − y), in D,

G ≡ 0, on C. (7.101)
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However, we need to be careful as to which variables appear in the dif-
ferentiation. Many times we just make the adjustment after the derivation
of the solution, assuming that the Green’s function is symmetric in its argu-
ments. However, this is not always the case and depends on things such as
the self-adjointedness of the problem. Thus, we will assume that the Green’s
function satisfies

∇2
r′G = δ(ξ − x, η − y),

where the notation ∇r′ means differentiation with respect to the variables ξ

and η. Thus,

∇2
r′G =

∂2G
∂ξ2 +

∂2G
∂η2 .

With this notation in mind, we now apply Green’s second identity for
two dimensions from Problem 8 in Chapter 9. We have∫

D
(u∇2

r′G− G∇2
r′u) dA′ =

∫
C
(u∇r′G− G∇r′u) · ds′. (7.102)

Inserting the differential equations, the left hand side of the equation
becomes ∫

D

[
u∇2

r′G− G∇2
r′u
]

dA′

=
∫

D
[u(ξ, η)δ(ξ − x, η − y)− G(x, y; ξ, η) f (ξ, η)] dξdη

= u(x, y)−
∫

D
G(x, y; ξ, η) f (ξ, η) dξdη. (7.103)

Using the boundary conditions, u(ξ, η) = g(ξ, η) on C and G(x, y; ξ, η) =

0 on C, the right hand side of the equation becomes∫
C
(u∇r′G− G∇r′u) · ds′ =

∫
C

g(ξ, η)∇r′G · ds′. (7.104)

Solving for u(x, y), we have the solution written in terms of the Green’s
function,

u(x, y) =
∫

D
G(x, y; ξ, η) f (ξ, η) dξdη +

∫
C

g(ξ, η)∇r′G · ds′.

Now we need to find the Green’s function. We find the Green’s functions
for several examples.

Example 7.15. Find the two dimensional Green’s function for the antisymmetric
Poisson equation; that is, we seek solutions that are θ-independent.

The problem we need to solve in order to find the Green’s function involves
writing the Laplacian in polar coordinates,

vrr +
1
r

vr = δ(r).

For r 6= 0, this is a Cauchy-Euler type of differential equation. The general solution
is v(r) = A ln r + B.
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Due to the singularity at r = 0, we integrate over a domain in which a small
circle of radius ε is cut form the plane and apply the two dimensional Divergence
Theorem. In particular, we have

1 =
∫

Dε

δ(r) dA

=
∫

Dε

∇2v dA

=
∫

Cε

∇v · ·ds

=
∫

Cε

∂v
∂r

dS = 2πA. (7.105)

Therefore, A = 1/2π. We note that B is arbitrary, so we will take B = 0 in the
remaining discussion.

Using this solution for a source of the form δ(r − r′), we obtain the Green’s
function for Poisson’s equation as

G(r, r′) =
1

2π
ln |r− r′|.

Example 7.16. Find the Green’s function for the infinite plane. Green’s function for the infinite plane.

From Figure 7.5 we have |r − r′| =
√
(x− ξ)2 + (y− η)2. Therefore, the

Green’s function from the last example gives

G(x, y, ξ, η) =
1

4π
ln((ξ − x)2 + (η − y)2).

Example 7.17. Find the Green’s function for the half plane, {(x, y)|y > 0}, using
the Method of Images Green’s function for the half plane using

the Method of Images.This problem can be solved using the result for the Green’s function for the
infinite plane. We use the Method of Images to construct a function such that
G = 0 on the boundary, y = 0. Namely, we use the image of the point (x, y) with
respect to the x-axis, (x,−y).

Imagine that the Green’s function G(x, y, ξ, η) represents a point charge at (x, y)
and G(x, y, ξ, η) provides the electric potential, or response, at (ξ, η). This single
charge cannot yield a zero potential along the x-axis (y=0). One needs an additional
charge to yield a zero equipotential line. This is shown in Figure 7.6.

x

y

G(x, 0; ξ, η) = 0

+

−

(x, y)

(x,−y)

Figure 7.6: The Method of Images: The
source and image source for the Green’s
function for the half plane. Imagine two
opposite charges forming a dipole. The
electric field lines are depicted indicat-
ing that the electric potential, or Green’s
function, is constant along y = 0.

The positive charge has a source of δ(r − r′) at r = (x, y) and the negative
charge is represented by the source −δ(r∗ − r′) at r∗ = (x,−y). We construct the
Green’s functions at these two points and introduce a negative sign for the negative
image source. Thus, we have

G(x, y, ξ, η) =
1

4π
ln((ξ − x)2 + (η − y)2)− 1

4π
ln((ξ − x)2 + (η + y)2).

These functions satisfy the differential equation and the boundary condition

G(x, 0, ξ, η) =
1

4π
ln((ξ − x)2 + (η)2)− 1

4π
ln((ξ − x)2 + (η)2) = 0.

Example 7.18. Solve the homogeneous version of the problem; i.e., solve Laplace’s
equation on the half plane with a specified value on the boundary.
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We want to solve the problem

∇2u = 0, in D,

u = f , on C, (7.106)

This is displayed in Figure 7.7.

x

y

∇2u = 0

u(x, 0) = f (x)

Figure 7.7: This is the domain for a
semi-infinite slab with boundary value
u(x, 0) = f (x) and governed by
Laplace’s equation.

From the previous analysis, the solution takes the form

u(x, y) =
∫

C
f∇G · n ds =

∫
C

f
∂G
∂n

ds.

Since

G(x, y, ξ, η) =
1

4π
ln((ξ − x)2 + (η − y)2)− 1

4π
ln((ξ − x)2 + (η + y)2),

∂G
∂n

=
∂G(x, y, ξ, η)

∂η

∣∣
η=0 =

1
π

y
(ξ − x)2 + y2 .

We have arrived at the same surface Green’s function as we had found in Example
9.11.2 and the solution is

u(x, y) =
1
π

∫ ∞

−∞

y
(x− ξ)2 + y2 f (ξ) dξ.

7.6 Method of Eigenfunction Expansions

We have seen that the use of eigenfunction expansions is another
technique for finding solutions of differential equations. In this section we
will show how we can use eigenfunction expansions to find the solutions to
nonhomogeneous partial differential equations. In particular, we will apply
this technique to solving nonhomogeneous versions of the heat and wave
equations.

7.6.1 The Nonhomogeneous Heat Equation

In this section we solve the one dimensional heat equation

with a source using an eigenfunction expansion. Consider the problem

ut = kuxx + Q(x, t), 0 < x < L, t > 0,

u(0, t) = 0, u(L, t) = 0, t > 0,

u(x, 0) = f (x), 0 < x < L. (7.107)

The homogeneous version of this problem is given by

vt = kvxx, 0 < x < L, t > 0,

v(0, t) = 0, v(L, t) = 0. (7.108)

We know that a separation of variables leads to the eigenvalue problem

φ′′ + λφ = 0, φ(0) = 0, φ(L) = 0.
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The eigenfunctions and eigenvalues are given by

φn(x) = sin
nπx

L
, λn =

(nπ

L

)2
, n = 1, 2, 3, . . . .

We can use these eigenfunctions to obtain a solution of the nonhomoge-
neous problem (7.107). We begin by assuming the solution is given by the
eigenfunction expansion

u(x, t) =
∞

∑
n=1

an(t)φn(x). (7.109)

In general, we assume that v(x, t) and φn(x) satisfy the same boundary
conditions and that v(x, t) and vx(x, t) are continuous functions.Note that
the difference between this eigenfunction expansion and that in Section 4.3
is that the expansion coefficients are functions of time.

In order to carry out the full process, we will also need to expand the ini-
tial profile, f (x), and the source term, Q(x, t), in the basis of eigenfunctions.
Thus, we assume the forms

f (x) = u(x, 0)

=
∞

∑
n=1

an(0)φn(x), (7.110)

Q(x, t) =
∞

∑
n=1

qn(t)φn(x). (7.111)

Recalling from Chapter 4, the generalized Fourier coefficients are given by

an(0) =
〈 f , φn〉
‖φn‖2 =

1
‖φn‖2

∫ L

0
f (x)φn(x) dx, (7.112)

qn(t) =
〈Q, φn〉
‖φn‖2 =

1
‖φn‖2

∫ L

0
Q(x, t)φn(x) dx. (7.113)

The next step is to insert the expansions (7.109) and (7.111) into the non-
homogeneous heat equation (7.107). We first note that

ut(x, t) =
∞

∑
n=1

ȧn(t)φn(x),

uxx(x, t) = −
∞

∑
n=1

an(t)λnφn(x). (7.114)

Inserting these expansions into the heat equation (7.107), we have

ut = kuxx + Q(x, t),
∞

∑
n=1

ȧn(t)φn(x) = −k
∞

∑
n=1

an(t)λnφn(x) +
∞

∑
n=1

qn(t)φn(x). (7.115)

Collecting like terms, we have

∞

∑
n=1

[ȧn(t) + kλnan(t)− qn(t)]φn(x) = 0, ∀x ∈ [0, L].
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Due to the linear independence of the eigenfunctions, we can conclude that

ȧn(t) + kλnan(t) = qn(t), n = 1, 2, 3, . . . .

This is a linear first order ordinary differential equation for the unknown
expansion coefficients.

We further note that the initial condition can be used to specify the initial
condition for this first order ODE. In particular,

f (x) =
∞

∑
n=1

an(0)φn(x).

The coefficients can be found as generalized Fourier coefficients in an ex-
pansion of f (x) in the basis φn(x). These are given by Equation (7.112).

Recall from Appendix B that the solution of a first order ordinary differ-
ential equation of the form

y′(t) + a(t)y(t) = p(t)

is found using the integrating factor

µ(t) = exp
∫ t

a(τ) dτ.

Multiplying the ODE by the integrating factor, one has

d
dt

[
y(t) exp

∫ t
a(τ) dτ

]
= p(t) exp

∫ t
a(τ) dτ.

After integrating, the solution can be found providing the integral is doable.
For the current problem, we have

ȧn(t) + kλnan(t) = qn(t), n = 1, 2, 3, . . . .

Then, the integrating factor is

µ(t) = exp
∫ t

kλn dτ = ekλnt.

Multiplying the differential equation by the integrating factor, we find

[ȧn(t) + kλnan(t)]ekλnt = qn(t)ekλnt

d
dt

(
an(t)ekλnt

)
= qn(t)ekλnt. (7.116)

Integrating, we have

an(t)ekλnt − an(0) =
∫ t

0
qn(τ)ekλnτ dτ,

or

an(t) = an(0)e−kλnt +
∫ t

0
qn(τ)e−kλn(t−τ) dτ.

Using these coefficients, we can write out the general solution.

u(x, t) =
∞

∑
n=1

an(t)φn(x)

=
∞

∑
n=1

[
an(0)e−kλnt +

∫ t

0
qn(τ)e−kλn(t−τ) dτ

]
φn(x). (7.117)
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We will apply this theory to a more specific problem which not only has
a heat source but also has nonhomogeneous boundary conditions.

Example 7.19. Solve the following nonhomogeneous heat problem using eigen-
function expansions:

ut − uxx = x + t sin 3πx, 0 ≤ x ≤ 1, t > 0,

u(0, t) = 2, u(L, t) = t, t > 0

u(x, 0) = 3 sin 2πx + 2(1− x), 0 ≤ x ≤ 1. (7.118)

This problem has the same nonhomogeneous boundary conditions as those in
Example 7.14. Recall that we can define

u(x, t) = v(x, t) + 2 + (t− 2)x

to obtain a new problem for v(x, t). The new problem is

vt − vxx = t sin 3πx, 0 ≤ x ≤ 1, t > 0,

v(0, t) = 0, v(L, t) = 0, t > 0,

v(x, 0) = 3 sin 2πx, 0 ≤ x ≤ 1. (7.119)

We can now apply the method of eigenfunction expansions to find v(x, t). The
eigenfunctions satisfy the homogeneous problem

φ′′n + λnφn = 0, φn(0) = 0, φn(1) = 0.

The solutions are

φn(x) = sin
nπx

L
, λn =

(nπ

L

)2
, n = 1, 2, 3, . . . .

Now, let

v(x, t) =
∞

∑
n=1

an(t) sin nπx.

Inserting v(x, t) into the PDE, we have

∞

∑
n=1

[ȧn(t) + n2π2an(t)] sin nπx = t sin 3πx.

Due to the linear independence of the eigenfunctions, we can equate the coeffi-
cients of the sin nπx terms. This gives

ȧn(t) + n2π2an(t) = 0, n 6= 3,

ȧ3(t) + 9π2a3(t) = t, n = 3. (7.120)

This is a system of first order ordinary differential equations. The first set of equa-
tions are separable and are easily solved. For n 6= 3, we seek solutions of

d
dt

an = −n2π2an(t).

These are given by
an(t) = an(0)e−n2π2t, n 6= 3.
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In the case n = 3, we seek solutions of

d
dt

a3 + 9π2a3(t) = t.

The integrating factor for this first order equation is given by

µ(t) = e9π2t.

Multiplying the differential equation by the integrating factor, we have

d
dt

(
a3(t)e9π2t

)
= te9π2t.

Integrating, we obtain the solution

a3(t) = a3(0)e−9π2t + e−9π2t
∫ t

0
τe9π2τ dτ,

= a3(0)e−9π2t + e−9π2t
[

1
9π2 τe9π2τ − 1

(9π2)2 e9π2τ

]t

0
,

= a3(0)e−9π2t +
1

9π2 t− 1
(9π2)2

[
1− e−9π2τ

]
. (7.121)

Up to this point, we have the solution

u(x, t) = v(x, t) + w(x, t)

=
∞

∑
n=1

an(t) sin nπx + 2 + (t− 2)x, (7.122)

where

an(t) = an(0)e−n2π2t, n 6= 3

a3(t) = a3(0)e−9π2t +
1

9π2 t− 1
(9π2)2

[
1− e−9π2τ

]
. (7.123)

We still need to find an(0), n = 1, 2, 3, . . . .
The initial values of the expansion coefficients are found using the initial condi-

tion

v(x, 0) = 3 sin 2πx =
∞

∑
n=1

an(0) sin nπx.

It is clear that we have an(0) = 0 for n 6= 2 and a2(0) = 3. Thus, the series for
v(x, t) has two nonvanishing coefficients,

a2(t) = 3e−4π2t,

a3(t) =
1

9π2 t− 1
(9π2)2

[
1− e−9π2τ

]
. (7.124)

Therefore, the final solution is given by

u(x, t) = 2 + (t− 2)x + 3e−4π2t sin 2πx +
9π2t− (1− e−9π2τ)

81π4 sin 3πx.
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7.6.2 The Forced Vibrating Membrane

We now consider the forced vibrating membrane. A two-dimensional
membrane is stretched over some domain D. We assume Dirichlet condi-
tions on the boundary, u = 0 on ∂D. The forced membrane can be modeled
as

utt = c2∇2u + Q(r, t), r ∈ D, t > 0,

u(r, t) = 0, r ∈ ∂D, t > 0,

u(r, 0) = f (r), ut(r, 0) = g(r), r ∈ D. (7.125)

The method of eigenfunction expansions relies on the use of eigenfunc-
tions, φα(r), for α ∈ J ⊂ Z2 a set of indices typically of the form (i, j) in some
lattice grid of integers. The eigenfunctions satisfy the eigenvalue equation

∇2φα(r) = −λαφα(r), φα(r) = 0, on ∂D.

We assume that the solution and forcing function can be expanded in the
basis of eigenfunctions,

u(r, t) = ∑
α∈J

aα(t)φα(r),

Q(r, t) = ∑
α∈J

qα(t)φα(r). (7.126)

Inserting this form into the forced wave equation (7.125), we have

utt = c2∇2u + Q(r, t)

∑
α∈J

äα(t)φα(r) = −c2 ∑
α∈J

λαaα(t)φα(r) + ∑
α∈J

qα(t)φα(r)

0 = ∑
α∈J

[äα(t) + c2λαaα(t)− qα(t)]φα(r). (7.127)

The linear independence of the eigenfunctions then gives the ordinary
differential equation

äα(t) + c2λαaα(t) = qα(t).

We can solve this equation with initial conditions aα(0) and ȧα(0) found
from

f (r) = u(r, 0) = ∑
α∈J

aα(0)φα(r),

g(r) = ut(r, 0) = ∑
α∈J

ȧα(0)φα(r). (7.128)

Example 7.20. Periodic Forcing, Q(r, t) = G(r) cos ωt.
It is enough to specify Q(r, t) in order to solve for the time dependence of the

expansion coefficients. A simple example is the case of periodic forcing, Q(r, t) =

h(r) cos ωt. In this case, we expand Q in the basis of eigenfunctions,

Q(r, t) = ∑
α∈J

qα(t)φα(r),

G(r) cos ωt = ∑
α∈J

γα cos ωtφα(r). (7.129)
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Inserting these expressions into the forced wave equation (7.125), we obtain a
system of differential equations for the expansion coefficients,

äα(t) + c2λαaα(t) = γα cos ωt.

In order to solve this equation we borrow the methods from a course on ordinary
differential equations for solving nonhomogeneous equations. In particular we can
use the Method of Undetermined Coefficients as reviewed in Section B.3.1. The
solution of these equations are of the form

aα(t) = aαh(t) + aαp(t),

where aαh(t) satisfies the homogeneous equation,

äαh(t) + c2λαaαh(t) = 0, (7.130)

and aαp(t) is a particular solution of the nonhomogeneous equation,

äαp(t) + c2λαaαp(t) = γα cos ωt. (7.131)

The solution of the homogeneous problem (7.130) is easily founds as

aαh(t) = c1α cos(ω0αt) + c2α sin(ω0αt),

where ω0α = c
√

λα.
The particular solution is found by making the guess aαp(t) = Aα cos ωt. In-

serting this guess into Equation (ceqn2), we have

[−ω2 + c2λα]Aα cos ωt = γα cos ωt.

Solving for Aα, we obtain

Aα =
γα

−ω2 + c2λα
, ω2 6= c2λα.

Then, the general solution is given by

aα(t) = c1α cos(ω0αt) + c2α sin(ω0αt) +
γα

−ω2 + c2λα
cos ωt,

where ω0α = c
√

λα and ω2 6= c2λα.
In the case where ω2 = c2λα, we have a resonant solution. This is discussed in

Section FO on forced oscillations. In this case the Method of Undetermined Coeffi-
cients fails and we need the Modified Method of Undetermined Coefficients. This is
because the driving term, γα cos ωt, is a solution of the homogeneous problem. So,
we make a different guess for the particular solution. We let

aαp(t) = t(Aα cos ωt + Bα sin ωt).

Then, the needed derivatives are

aαp(t) = ωt(−Aα sin ωt + Bα cos ωt) + Aα cos ωt + Bα sin ωt,

aαp(t) = −ω2t(Aα cos ωt + Bα sin ωt)− 2ωAα sin ωt + 2ωBα cos ωt,

= −ω2aαp(t)− 2ωAα sin ωt + 2ωBα cos ωt. (7.132)
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Inserting this guess into Equation (ceqn2) and noting that ω2 = c2λα, we have

−2ωAα sin ωt + 2ωBα cos ωt = γα cos ωt.

Therefore, Aα = 0 and
Bα =

γα

2ω
.

So, the particular solution becomes

aαp(t) =
γα

2ω
t sin ωt.

The full general solution is then

aα(t) = c1α cos(ωt) + c2α sin(ωt) +
γα

2ω
t sin ωt,

where ω = c
√

λα.

Figure 7.8: Plot of a solution showing
resonance.

We see from this result that the solution tends to grow as t gets large. This is
what is called a resonance. Essentially, one is driving the system at its natural
frequency for one of the frequencies in the system. A typical plot of such a solution
is given in Figure 7.8.

7.7 Green’s Function Solution of Nonhomogeneous Heat Equation

We solved the one dimensional heat equation with a source us-
ing an eigenfunction expansion. In this section we rewrite the solution and
identify the Green’s function form of the solution. Recall that the solution
of the nonhomogeneous problem,

ut = kuxx + Q(x, t), 0 < x < L, t > 0,

u(0, t) = 0, u(L, t) = 0, t > 0,

u(x, 0) = f (x), 0 < x < L, (7.133)

is given by Equation (7.117)

u(x, t) =
∞

∑
n=1

an(t)φn(x)

=
∞

∑
n=1

[
an(0)e−kλnt +

∫ t

0
qn(τ)e−kλn(t−τ) dτ

]
φn(x). (7.134)

The generalized Fourier coefficients for an(0) and qn(t) are given by

an(0) =
1
‖φn‖2

∫ L

0
f (x)φn(x) dx, (7.135)

qn(t) =
1
‖φn‖2

∫ L

0
Q(x, t)φn(x) dx. (7.136)

The solution in Equation (7.134) can be rewritten using the Fourier coef-
ficients in Equations (7.135) and (7.136).

u(x, t) =
∞

∑
n=1

[
an(0)e−kλnt +

∫ t

0
qn(τ)e−kλn(t−τ) dτ

]
φn(x)
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=
∞

∑
n=1

an(0)e−kλntφn(x) +
∫ t

0

∞

∑
n=1

(
qn(τ)e−kλn(t−τ)φn(x)

)
dτ

=
∞

∑
n=1

1
‖φn‖2

(∫ L

0
f (ξ)φn(ξ) dξ

)
e−kλntφn(x)

+
∫ t

0

∞

∑
n=1

1
‖φn‖2

(∫ L

0
Q(ξ, τ)φn(ξ) dξ

)
e−kλn(t−τ)φn(x) dτ

=
∫ L

0

(
∞

∑
n=1

φn(x)φn(ξ)e−kλnt

‖φn‖2

)
f (ξ) dξ

+
∫ t

0

∫ L

0

(
∞

∑
n=1

φn(x)φn(ξ)e−kλn(t−τ)

‖φn‖2

)
Q(ξ, τ) dξ dτ. (7.137)

Defining

G(x, t; ξ, τ) =
∞

∑
n=1

φn(x)φn(ξ)e−kλn(t−τ)

‖φn‖2 ,

we see that the solution can be written in the formThe solution can be written in terms
of the initial value Green’s function,
G(x, t; ξ, 0), and the general Green’s
function, G(x, t; ξ, τ). u(x, t) =

∫ L

0
G(x, t; ξ, 0) f (ξ) dξ +

∫ t

0

∫ L

0
G(x, t; ξ, τ)Q(ξ, τ) dξ dτ.

Thus, we see that G(x, t; ξ, 0) is the initial value Green’s function and G(x, t; ξ, τ)

is the general Green’s function for this problem.
The only thing left is to introduce nonhomogeneous boundary conditions

into this solution. So, we modify the original problem to the fully nonho-
mogeneous heat equation:

ut = kuxx + Q(x, t), 0 < x < L, t > 0,

u(0, t) = α(t), u(L, t) = β(t), t > 0,

u(x, 0) = f (x), 0 < x < L, (7.138)

As before, we begin with the expansion of the solution in the basis of
eigenfunctions,

u(x, t) =
∞

∑
n=1

an(t)φn(x).

However, due to potential convergence problems, we cannot expect that uxx

can be obtained by simply differentiating the series twice and expecting the
resulting series to converge to uxx. So, we need to be a little more careful.

We first note that

ut =
∞

∑
n=1

ȧn(t)φn(x) = kuxx + Q(x, t).

Solving for the expansion coefficients, we have

ȧ(t) =

∫ L
0 (kuxx + Q(x, t))φn(x) dx

‖φn‖2 .

In order to proceed, we need an expression for
∫ b

a uxxφn(x) dx. We can find
this using Green’s identity from Section 4.2.2.
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We start with ∫ b

a
(uLv− vLu) dx = [p(uv′ − vu′)]ba

and let v = φn. Then,∫ L

0
(u(x, t)φ′′n (x)− φn(x)uxx(x, t)) dx = [u(x, t)φ′n(x)− φn(x)ux(x, t))]L0∫ L

0
(−λnu(x, t) + uxx(x, t))φn(x) dx = [u(L, t)φ′n(L)− φn(L)ux(L, t))]

−[u(0, t)φ′n(0)− φn(0)ux(0, t))]

−λnan‖φn‖2 −
∫ L

0
uxx(x, t)φn(x) dx = β(t)φ′n(L)− α(t)φ′n(0). (7.139)

Thus, ∫ L

0
uxx(x, t)φn(x) dx = −λnan‖φn‖2 + α(t)φ′n(0)− β(t)φ′n(L).

Inserting this result into the equation for ȧn(t), we have

ȧ(t) = −kλnan(t) + qn(t) + k
α(t)φ′n(0)− β(t)φ′n(L)

‖φn‖2 .

As we had seen before, this first order equation can be solved using the
integrating factor

µ(t) = exp
∫ t

kλn dτ = ekλnt.

Multiplying the differential equation by the integrating factor, we find

[ȧn(t) + kλnan(t)]ekλnt =

[
qn(t) + k

α(t)φ′n(0)− β(t)φ′n(L)
‖φn‖2

]
ekλnt

d
dt

(
an(t)ekλnt

)
=

[
qn(t) + k

α(t)φ′n(0)− β(t)φ′n(L)
‖φn‖2

]
ekλnt.

(7.140)

Integrating, we have

an(t)ekλnt − an(0) =
∫ t

0

[
qn(τ) + k

α(τ)φ′n(0)− β(τ)φ′n(L)
‖φn‖2

]
ekλnτ dτ,

or

an(t) = an(0)e−kλnt +
∫ t

0

[
qn(τ) + k

α(τ)φ′n(0)− β(τ)φ′n(L)
‖φn‖2

]
e−kλn(t−τ) dτ.

We can now insert these coefficients into the solution and see how to
extract the Green’s function contributions. Inserting the coefficients, we
have

u(x, t) =
∞

∑
n=1

an(t)φn(x)

=
∞

∑
n=1

[
an(0)e−kλnt +

∫ t

0
qn(τ)e−kλn(t−τ) dτ

]
φn(x)

+
∞

∑
n=1

(∫ t

0

[
k

α(τ)φ′n(0)− β(τ)φ′n(L)
‖φn‖2

]
e−kλn(t−τ) dτ

)
φn(x).

(7.141)
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Recall that the generalized Fourier coefficients for an(0) and qn(t) are given
by

an(0) =
1
‖φn‖2

∫ L

0
f (x)φn(x) dx, (7.142)

qn(t) =
1
‖φn‖2

∫ L

0
Q(x, t)φn(x) dx. (7.143)

The solution in Equation (7.141) can be rewritten using the Fourier coef-
ficients in Equations (7.142) and (7.143).

u(x, t) =
∞

∑
n=1

[
an(0)e−kλnt +

∫ t

0
qn(τ)e−kλn(t−τ) dτ

]
φn(x)

+
∞

∑
n=1

(∫ t

0

[
k

α(τ)φ′n(0)− β(τ)φ′n(L)
‖φn‖2

]
e−kλn(t−τ) dτ

)
φn(x)

=
∞

∑
n=1

an(0)e−kλntφn(x) +
∫ t

0

∞

∑
n=1

(
qn(τ)e−kλn(t−τ)φn(x)

)
dτ

+
∫ t

0

∞

∑
n=1

([
k

α(τ)φ′n(0)− β(τ)φ′n(L)
‖φn‖2

]
e−kλn(t−τ)

)
φn(x)dτ

=
∞

∑
n=1

1
‖φn‖2

(∫ L

0
f (ξ)φn(ξ) dξ

)
e−kλntφn(x)

+
∫ t

0

∞

∑
n=1

1
‖φn‖2

(∫ L

0
Q(ξ, τ)φn(ξ) dξ

)
e−kλn(t−τ)φn(x) dτ

+
∫ t

0

∞

∑
n=1

([
k

α(τ)φ′n(0)− β(τ)φ′n(L)
‖φn‖2

]
e−kλn(t−τ)

)
φn(x)dτ

=
∫ L

0

(
∞

∑
n=1

φn(x)φn(ξ)e−kλnt

‖φn‖2

)
f (ξ) dξ

+
∫ t

0

∫ L

0

(
∞

∑
n=1

φn(x)φn(ξ)e−kλn(t−τ)

‖φn‖2

)
Q(ξ, τ) dξ dτ.

+k
∫ t

0

(
∞

∑
n=1

φn(x)φ′n(0)e−kλn(t−τ)

‖φn‖2

)
α(τ) dτ

−k
∫ t

0

(
∞

∑
n=1

φn(x)φ′n(L)e−kλn(t−τ)

‖φn‖2

)
β(τ) dτ. (7.144)

As before, we can define the general Green’s function as

G(x, t; ξ, τ) =
∞

∑
n=1

φn(x)φn(ξ)e−kλn(t−τ)

‖φn‖2 .

Then, we can write the solution to the fully homogeneous problem as

u(x, t) =
∫ t

0

∫ L

0
G(x, t; ξ, τ)Q(ξ, τ) dξ dτ +

∫ L

0
G(x, t; ξ, 0) f (ξ) dξ

+k
∫ t

0

[
α(τ)

∂G
∂ξ

(x, 0; t, τ)− β(τ)
∂G
∂ξ

(x, L; t, τ)

]
dτ. (7.145)

The first integral handles the source term, the second integral handles the
initial condition, and the third term handles the fixed boundary conditions.
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This general form can be deduced from the differential equation for the
Green’s function and original differential equation by using a more general
form of Green’s identity. Let the heat equation operator be defined as L =
∂
∂t − k ∂2

∂x2 . The differential equations for u(x, t) and G(x, t; ξ, τ) for 0 ≤ x, ξ ≤
L and t, τ ≥ 0, are taken to be

Lu(x, t) = Q(x, t),

LG(x, t; ξ, τ) = δ(x− ξ)δ(t− τ). (7.146)

Multiplying the first equation by G(x, t; ξ, τ) and the second by u(x, t),
we obtain

G(x, t; ξ, τ)Lu(x, t) = G(x, t; ξ, τ)Q(x, t),

u(x, t)LG(x, t; ξ, τ) = δ(x− ξ)δ(t− τ)u(x, t). (7.147)

Now, we subtract the equations and integrate with respect to x and t.
This gives ∫ ∞

0

∫ L

0
[G(x, t; ξ, τ)Lu(x, t)− u(x, t)LG(x, t; ξ, τ)] dxdt

=
∫ ∞

0

∫ L

0
[G(x, t; ξ, τ)Q(x, t)− δ(x− ξ)δ(t− τ)u(x, t)] dxdt

=
∫ ∞

0

∫ L

0
G(x, t; ξ, τ)Q(x, t) dxdt− u(ξ, τ). (7.148)

and ∫ ∞

0

∫ L

0
[G(x, t; ξ, τ)Lu(x, t)− u(x, t)LG(x, t; ξ, τ)] dxdt

=
∫ L

0

∫ ∞

0
[G(x, t; ξ, τ)ut − u(x, t)Gt(x, t; ξ, τ)] dtdx

−k
∫ ∞

0

∫ L

0
[G(x, t; ξ, τ)uxx(x, t)− u(x, t)Gxx(x, t; ξ, τ)] dxdt

=
∫ L

0

[
G(x, t; ξ, τ)ut

∣∣∞
0 − 2

∫ ∞

0
u(x, t)Gt(x, t; ξ, τ) dt

]
dx

−k
∫ ∞

0

[
G(x, t; ξ, τ)

∂u
∂x

(x, t)− u(x, t)
∂G
∂x

(x, t; ξ, τ)

]L

0
dxdt

(7.149)

Equating these two results and solving for u(ξ, τ), we have

u(ξ, τ) =
∫ ∞

0

∫ L

0
G(x, t; ξ, τ)Q(x, t) dxdt

+k
∫ ∞

0

[
G(x, t; ξ, τ)

∂u
∂x

(x, t)− u(x, t)
∂G
∂x

(x, t; ξ, τ)

]L

0
dxdt

+
∫ L

0

[
G(x, 0; ξ, τ)u(x, 0) + 2

∫ ∞

0
u(x, t)Gt(x, t; ξ, τ) dt

]
dx.

(7.150)

Exchanging (ξ, τ) with (x, t) and assuming that the Green’s function is sym-
metric in these arguments, we have

u(x, t) =
∫ ∞

0

∫ L

0
G(x, t; ξ, τ)Q(ξ, τ) dξdτ
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+k
∫ ∞

0

[
G(x, t; ξ, τ)

∂u
∂ξ

(ξ, τ)− u(ξ, τ)
∂G
∂ξ

(x, t; ξ, τ)

]L

0
dxdt

+
∫ L

0
G(x, t; ξ, 0)u(ξ, 0) dξ + 2

∫ L

0

∫ ∞

0
u(ξ, τ)Gτ(x, t; ξ, τ) dτdξ.

(7.151)

This result is almost in the desired form except for the last integral. Thus,
if ∫ L

0

∫ ∞

0
u(ξ, τ)Gτ(x, t; ξ, τ) dτdξ = 0,

then we have

u(x, t) =
∫ ∞

0

∫ L

0
G(x, t; ξ, τ)Q(ξ, τ) dξdτ +

∫ L

0
G(x, t; ξ, 0)u(ξ, 0) dξ

+k
∫ ∞

0

[
G(x, t; ξ, τ)

∂u
∂ξ

(ξ, τ)− u(ξ, τ)
∂G
∂ξ

(x, t; ξ, τ)

]L

0
dxdt.

(7.152)

7.8 Summary

We have seen throughout the chapter that Green’s functions are the
solutions of a differential equation representing the effect of a point impulse
on either source terms, or initial and boundary conditions. The Green’s
function is obtained from transform methods or as an eigenfunction ex-
pansion. In the text we have occasionally rewritten solutions of differential
equations in term’s of Green’s functions. We will first provide a few of these
examples and then present a compilation of Green’s Functions for generic
partial differential equations.

For example, in section 7.4 we wrote the solution of the one dimensional
heat equation as

u(x, t) =
∫ L

0
G(x, ξ; t, 0) f (ξ) dξ,

where

G(x, ξ; t, 0) =
2
L

∞

∑
n=1

sin
nπx

L
sin

nπξ

L
eλnkt,

and the solution of the wave equation as

u(x, t) =
∫ L

0
Gc(x, ξ, t, 0) f (ξ) dξ +

∫ L

0
Gs(x, ξ, t, 0)g(ξ) dξ,

where

Gc(x, ξ, t, 0) =
2
L

∞

∑
n=1

sin
nπx

L
sin

nπξ

L
cos

nπct
L

,

Gs(x, ξ, t, 0) =
2
L

∞

∑
n=1

sin
nπx

L
sin

nπξ

L
sin nπct

L
nπc/L

.
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We note that setting t = 0 in Gc(x, ξ; t, 0), we obtain

Gc(x, ξ, 0, 0) =
2
L

∞

∑
n=1

sin
nπx

L
sin

nπξ

L
.

This is the Fourier sine series representation of the Dirac delta function,
δ(x − ξ). Similarly, if we differentiate Gs(x, ξ, t, 0) with repsect to t and set
t = 0, we once again obtain the Fourier sine series representation of the
Dirac delta function.

It is also possible to find closed form expression for Green’s functions,
which we had done for the heat equation on the infinite interval,

u(x, t) =
∫ ∞

−∞
G(x, t; ξ, 0) f (ξ) dξ,

where

G(x, t; ξ, 0) =
e−(x−ξ)2/4t
√

4πt
,

and for Poisson’s equation,

φ(r) =
∫

V
G(r, r′) f (r′) d3r′,

where the three dimensional Green’s function is given by

G(r, r′) =
1

|r− r′| .

We can construct Green’s functions for other problems which we have
seen in the book. For example, the solution of the two dimensional wave
equation on a rectangular membrane was found in Equation (6.37) as

u(x, y, t) =
∞

∑
n=1

∞

∑
m=1

(anm cos ωnmt + bnm sin ωnmt) sin
nπx

L
sin

mπy
H

, (7.153)

where

anm =
4

LH

∫ H

0

∫ L

0
f (x, y) sin

nπx
L

sin
mπy

H
dxdy, (7.154)

bnm =
4

ωnmLH

∫ H

0

∫ L

0
g(x, y) sin

nπx
L

sin
mπy

H
dxdy, (7.155)

where the angular frequencies are given by

ωnm = c

√(nπ

L

)2
+
(mπ

H

)2
. (7.156)

Rearranging the solution, we have

u(x, y, t) =
∫ H

0

∫ L

0
[Gc(x, y; ξ, η; t, 0) f (ξ, η) + Gs(x, y; ξ, η; t, 0)g(ξ, η)] dξdη,

where

Gc(x, y; ξ, η; t, 0) =
4

LH

∞

∑
n=1

∞

∑
m=1

sin
nπx

L
sin

nπξ

L
sin

mπy
H

sin
mπη

H
cos ωnmt
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and

Gs(x, y; ξ, η; t, 0) =
4

LH

∞

∑
n=1

∞

∑
m=1

sin
nπx

L
sin

nπξ

L
sin

mπy
H

sin
mπη

H
sin ωnmt

ωnm
.

Once again, we note that setting t = 0 in Gc(x, ξ; t, 0) and setting t = 0
in ∂Gc(x,ξ;t,0)

∂t , we obtain a Fourier series representation of the Dirac delta
function in two dimensions,

δ(x− ξ)δ(y− η) =
4

LH

∞

∑
n=1

∞

∑
m=1

sin
nπx

L
sin

nπξ

L
sin

mπy
H

sin
mπη

H
.

Another example was the solution of the two dimensional Laplace equa-
tion on a disk given by Equation 6.87. We found that

u(r, θ) =
a0

2
+

∞

∑
n=1

(an cos nθ + bn sin nθ) rn. (7.157)

an =
1

πan

∫ π

−π
f (θ) cos nθ dθ, n = 0, 1, . . . , (7.158)

bn =
1

πan

∫ π

−π
f (θ) sin nθ dθ n = 1, 2 . . . . (7.159)

We saw that this solution can be written as

u(r, θ) =
∫ π

−π
G(θ, φ; r, a) f (φ) dφ,

where the Green’s function could be summed giving the Poisson kernel

G(θ, φ; r, a) =
1

2π

a2 − r2

a2 + r2 − 2ar cos(θ − φ)
.

We had also investigated the nonhomogeneous heat equation in section
9.11.4,

ut − kuxx = h(x, t), 0 ≤ x ≤ L, t > 0.

u(0, t) = 0, u(L, t) = 0, t > 0,

u(x, 0) = f (x), 0 ≤ x ≤ . (7.160)

We found that the solution of the heat equation is given by

u(x, t) =
∫ L

0
f (ξ)G(x, ξ; t, 0)dξ +

∫ t

0

∫ L

0
h(ξ, τ)G(x, ξ; t, τ) dξdτ,

where

G(x, ξ; t, τ) =
2
L

∞

∑
n=1

sin
nπx

L
sin

nπξ

L
e−ω2

n(t−τ).

Note that setting t = τ, we again get a Fourier sine series representation of
the Dirac delta function.

In general, Green’s functions based on eigenfunction expansions over
eigenfunctions of Sturm-Liouville eigenvalue problems are a common way
to construct Green’s functions. For example, surface and initial value Green’s
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functions are constructed in terms of a modification of delta function rep-
resentations modified by factors which make the Green’s function a solu-
tion of the given differential equations and a factor taking into account the
boundary or initial condition plus a restoration of the delta function when
applied to the condition. Examples with an indication of these factors are
shown below.

1. Surface Green’s Function: Cube [0, a]× [0, b]× [0, c]

g(x, y, z; x′, y′, c) = ∑
`,n

2
a

sin
`πx

a
sin

`πx′

a
2
b

sin
nπy

b
sin

nπy′

b︸ ︷︷ ︸
δ−function

sinh γ`nz︸ ︷︷ ︸
D.E.

/ sinh γ`nc︸ ︷︷ ︸
restore δ

 .

2. Surface Green’s Function: Sphere [0, a]× [0, π]× [0, 2π]

g(r, φ, θ; a, φ′, θ′) = ∑
`,m

Ym∗
` (ψ′ θ′)Ym∗

` (ψ θ)︸ ︷︷ ︸
δ−function

 r`︸︷︷︸
D.E.

/ a`︸︷︷︸
restore δ

 .

3. Initial Value Green’s Function: 1D Heat Equation on [0, L], kn = nπ
L

g(x, t; x′, t0) = ∑
n

2
L

sin
nπx

L
sin

nπx′

L︸ ︷︷ ︸
δ−function

e−a2k2
nt︸ ︷︷ ︸

D.E.

/ e−a2k2
nt0︸ ︷︷ ︸

restore δ

 .

4. Initial Value Green’s Function: 1D Heat Equation on infinite domain

g(x, t; x′, 0) =
1

2π

∫ ∞

−∞
dkeik(x−x′)︸ ︷︷ ︸

δ−function

e−a2k2t︸ ︷︷ ︸
D.E.

=
e−(x−x′)2/4a2t
√

4πa2t
.

We can extend this analysis to a more general theory of Green’s functions.
This theory is based upon Green’s Theorems, or identities.

1. Green’s First Theorem∮
S

ϕ∇χ · n̂ dS =
∫

V
(∇ϕ · ∇χ + ϕ∇2χ) dV.

This is easily proven starting with the identity

∇ · (ϕ∇χ) = ∇ϕ · ∇χ + ϕ∇2χ,

integrating over a volume of space and using Gauss’ Integral Theo-
rem.

2. Green’s Second Theorem∫
V
(ϕ∇2χ− χ∇2 ϕ) dV =

∮
S
(ϕ∇χ− χ∇ϕ) · n̂ dS.

This is proven by interchanging ϕ and χ in the first theorem and sub-
tracting the two versions of the theorem.
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The next step is to let ϕ = u and χ = G. Then,∫
V
(u∇2G− G∇2u) dV =

∮
S
(u∇G− G∇u) · n̂ dS.

As we had seen earlier for Poisson’s equation, inserting the differential
equation yields

u(x, y) =
∫

V
G f dV +

∮
S
(u∇G− G∇u) · n̂ dS.

If we have the Green’s function, we only need to know the source term and
boundary conditions in order to obtain the solution to a given problem.

In the next sections we provide a summary of these ideas as applied to
some generic partial differential equations.33 This is an adaptation of notes from

J. Franklin’s course on mathematical
physics.

7.8.1 Laplace’s Equation: ∇2ψ = 0.

1. Boundary Conditions

(a) Dirichlet - ψ is given on the surface.

(b) Neumann - n̂ · ∇ψ = ∂ψ
∂n is given on the surface.

Note: Boundary conditions can be Dirichlet on part of the surface and
Neumann on part. If they are Neumann on the whole surface, then
the Divergence Theorem requires the constraint

∫
∂ψ

∂n
dS = 0.

2. Solution by Surface Green’s Function, g(~r,~r′).

(a) Dirichlet conditions

∇2gD(~r,~r′) = 0,

gD(~rs,~r′s) = δ(2)(~rs −~r′s),

ψ(~r) =
∫

gD(~r,~r′s)ψ(~r
′
s) dS′.

(b) Neumann conditions

∇2gN(~r,~r′) = 0,

∂gN
∂n

(~rs,~r′s) = δ(2)(~rs −~r′s),

ψ(~r) =
∫

gN(~r,~r′s)
∂ψ

∂n
(~r′s) dS′.

Note: Use of g is readily generalized to any number of dimensions.



green’s functions and nonhomogeneous problems 279

7.8.2 Homogeneous Time Dependent Equations

1. Typical Equations

(a) Diffusion/Heat Equation ∇2Ψ = 1
a2

∂
∂t Ψ.

(b) Schrödinger Equation −∇2Ψ + UΨ = i ∂
∂t Ψ.

(c) Wave Equation ∇2Ψ = 1
c2

∂2

∂t2 Ψ.
(d) General form: DΨ = T Ψ.

2. Initial Value Green’s Function, g(~r,~r′; t, t′).

(a) Homogeneous Boundary Conditions
i. Diffusion, or Schrödinger Equation (1st order in time),
Dg = T g.

Ψ(~r, t) =
∫

g(~r,~r′; t, t0)Ψ(r ′, t0) d3r′,

where
g(r , r ′; t0, t0) = δ(r − r ′),

g(r s) satisfies homogeneous boundary conditions.

ii. Wave Equation

Ψ(r , t) =
∫
[gc(r , r ′; t, t0)Ψ(r ′, t0)+ gs(r , r ′; t, t0)Ψ̇(r ′, t0)] d3r ′.

The first two properties in (a) above hold, but

gc(r , r ′; t0, t0) = δ(r − r ′)

ġs(r , r ′; t0, t0) = δ(r − r ′)

Note: For the diffusion and Schrödinger equations the ini-
tial condition is Dirichlet in time. For the wave equation
the initial condition is Cauchy, where Ψ and Ψ̇ are given.

(b) Inhomogeneous, Time Independent (steady) Boundary Con-
ditions

i. Solve Laplace’s equation, ∇2ψs = 0, for inhomogeneous
B.C.’s

ii. Solve homogeneous, time-dependent equation for

Ψt(r , t) satisfying Ψt(r , t0) = Ψ(r , t0)− ψs(r ).

iii. Then Ψ(r , t) = Ψt(r , t) + ψs(r ).
Note: Ψt is the transient part and ψs is the steady state part.

3. Time Dependent Boundary Conditions with Homogeneous Initial
Conditions

(a) Use the Boundary Value Green’s Function, h(r , r ′s; t, t′), which
is similar to the surface Green’s function in an earlier section.

Ψ(r , t) =
∫ ∞

t0

hD(r , r ′s; t, t′)Ψ(r ′s, t′) dt′,

or
Ψ(r , t) =

∫ ∞

t0

∂hN
∂n

(r , r ′s; t, t′)Ψ(r ′s, t′) dt′.
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(b) Properties of h(r , r ′s; t, t′):

Dh = T h

hD(r s, r ′s; t, t′) = δ(t− t′), or
∂hN
∂n

(r s, r ′s; t, t′) = δ(t− t′),

h(r , r ′s; t, t′) = 0, t′ > t, (causality).

(c) Note: For inhomogeneous I.C.,

Ψ =
∫

gΨ(r ′, t0) +
∫

dt′hDΨ(r ′s, t′) d3r ′.

7.8.3 Inhomogeneous Steady State Equation

1. Poisson’s Equation

∇2ψ(r , t) = f (r ), ψ(r s) or
∂ψ

∂n
(r s) given.

(a) Green’s Theorem:∫
[ψ(r ′)∇′2G(r , r ′)− G(r , r ′)∇′2ψ(r ′)] d3r ′

=
∫
[ψ(r ′)∇′G(r , r ′)− G(r , r ′)∇′ψ(r ′)] · ~dS

′
,

where ∇′ denotes differentiation with respect to r′.

(b) Properties of G(r , r ′):

i. ∇′2G(r , r ′) = δ(r − r ′).

ii. G|s = 0 or ∂G
∂n′ |s = 0.

iii. Solution

ψ(r ) =
∫

G(r , r ′) f (r ′) d3r ′

+
∫
[ψ(r ′)∇′G(r , r ′)− G(r , r ′)∇′ψ(r ′)] · ~dS

′
.

(7.161)

(c) For the case of pure Neumann B.C.’s, the Divergence Theorem
leads to the constraint∫

∇ψ · ~dS =
∫

f d3r.

If there are pure Neumann conditions and S is finite and
∫

f d3r 6=
0 by symmetry, then ~̂n

′ · ∇′G|s 6= 0 and the Green’s function
method is much more complicated to solve.

(d) From the above result:

~̂n
′ · ∇′G(r , r ′s) = gD(r , r ′s)

or
GN(r , r ′s) = −gN(r , r ′s).

It is often simpler to use G for
∫

d3r ′ and g for
∫
~dS
′
, separately.
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(e) G satisfies a reciprocity property,G(r , r ′) = G(r ′, r ) for either
Dirichlet or Neumann boundary conditions.

(f) G(r , r ′) can be considered as a potential at r due to a point
charge q = −1/4π at r ′, with all surfaces being grounded con-
ductors.

7.8.4 Inhomogeneous, Time Dependent Equations

1. Diffusion/Heat Flow ∇2Ψ− 1
a2 Ψ̇ = f (r , t).

(a)

[∇2 − 1
a2

∂

∂t
]G(r , r ′; t, t′) = [∇′2 + 1

a2
∂

∂t′
]G(r , r ′; t, t′)

= δ(r − r ′)δ(t− t′). (7.162)

(b) Green’s Theorem in 4 dimensions (r , t) yields

Ψ(r , t) =
∫ ∫ ∞

t0

G(r , r ′; t, t′) f (r ′, t′) dt′d3r ′ − 1
a2

∫
G(r , r ′; t, t0)Ψ(r ′, t0) d3r ′

+
∫ ∞

t0

∫
[Ψ(r ′s, t)∇′GD(r , r ′s; t, t′)− GN(r , r ′s; t, t′)∇′Ψ(r ′s, t′)] · ~dS

′
dt′.

(c) Either GD(r ′s) = 0 or GN(r ′s) = 0 on S at any point r ′s.

(d) n̂′ · ∇′GD(r ′s) = hD(r ′s), GN(r ′s) = −hN(r ′s), and− 1
a2 G(r , r ′; t, t0) =

g(r , r ′; t, t0).

2. Wave Equation ∇2Ψ− 1
c2

∂2Ψ
∂2t = f (r , t).

(a)

[∇2 − 1
c2

∂2

∂t2 ]G(r , r ′; t, t′) = [∇′2 − 1
c2

∂2

∂t2 ]G(r , r ′; t, t′)

= δ(r − r ′)δ(t− t′). (7.163)

(b) Green’s Theorem in 4 dimensions (r , t) yields

Ψ(r , t) =
∫ ∫ ∞

t0

G(r , r ′; t, t′) f (r ′, t′) dt′d3r ′

− 1
c2

∫
[G(r , r ′; t, t0)

∂

∂t′
Ψ(r ′, t0)−Ψ(r ′, t0)

∂

∂t′
G(r , r ′; t, t0)] d3r ′

+
∫ ∞

t0

∫
[Ψ(r ′s, t)∇′GD(r , r ′s; t, t′)− GN(r , r ′s; t, t′)∇′ψ(r ′s, t′)] · ~dS

′
dt′.

(c) Cauchy initial conditions are given: Ψ(t0) and Ψ̇(t0).

(d) The wave and diffusion equations satisfy a causality condition
G(t, t′) = 0, t′ > t.

Problems

1. Find the solution of each initial value problem using the appropriate
initial value Green’s function.

a. y′′ − 3y′ + 2y = 20e−2x, y(0) = 0, y′(0) = 6.
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b. y′′ + y = 2 sin 3x, y(0) = 5, y′(0) = 0.

c. y′′ + y = 1 + 2 cos x, y(0) = 2, y′(0) = 0.

d. x2y′′ − 2xy′ + 2y = 3x2 − x, y(1) = π, y′(1) = 0.

2. Use the initial value Green’s function for x′′+ x = f (t), x(0) = 4, x′(0) =
0, to solve the following problems.

a. x′′ + x = 5t2.

b. x′′ + x = 2 tan t.

3. For the problem y′′ − k2y = f (x), y(0) = 0, y′(0) = 1,

a. Find the initial value Green’s function.

b. Use the Green’s function to solve y′′ − y = e−x.

c. Use the Green’s function to solve y′′ − 4y = e2x.

4. Find and use the initial value Green’s function to solve

x2y′′ + 3xy′ − 15y = x4ex, y(1) = 1, y′(1) = 0.

5. Consider the problem y′′ = sin x, y′(0) = 0, y(π) = 0.

a. Solve by direct integration.

b. Determine the Green’s function.

c. Solve the boundary value problem using the Green’s function.

d. Change the boundary conditions to y′(0) = 5, y(π) = −3.

i. Solve by direct integration.

ii. Solve using the Green’s function.

6. Let C be a closed curve and D the enclosed region. Prove the identity∫
C

φ∇φ · n ds =
∫

D
(φ∇2φ +∇φ · ∇φ) dA.

7. Let S be a closed surface and V the enclosed volume. Prove Green’s first
and second identities, respectively.

a.
∫

S φ∇ψ · n dS =
∫

V(φ∇
2ψ +∇φ · ∇ψ) dV.

b.
∫

S[φ∇ψ− ψ∇φ] · n dS =
∫

V(φ∇
2ψ− ψ∇2φ) dV.

8. Let C be a closed curve and D the enclosed region. Prove Green’s iden-
tities in two dimensions.

a. First prove ∫
D
(v∇ · F + F · ∇v) dA =

∫
C
(vF) · ds.

b. Let F = ∇u and obtain Green’s first identity,∫
D
(v∇2u +∇u · ∇v) dA =

∫
C
(v∇u) · ds.
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c. Use Green’s first identity to prove Green’s second identity,∫
D
(u∇2v− v∇2u) dA =

∫
C
(u∇v− v∇u) · ds.

9. Consider the problem:

∂2G
∂x2 = δ(x− x0),

∂G
∂x

(0, x0) = 0, G(π, x0) = 0.

a. Solve by direct integration.

b. Compare this result to the Green’s function in part b of the last prob-
lem.

c. Verify that G is symmetric in its arguments.

10. Consider the boundary value problem: y′′ − y = x, x ∈ (0, 1), with
boundary conditions y(0) = y(1) = 0.

a. Find a closed form solution without using Green’s functions.

b. Determine the closed form Green’s function using the properties of
Green’s functions. Use this Green’s function to obtain a solution of
the boundary value problem.

c. Determine a series representation of the Green’s function. Use this
Green’s function to obtain a solution of the boundary value problem.

d. Confirm that all of the solutions obtained give the same results.

11. Rewrite the solution to Problem 15 and identify the initial value Green’s
function.

12. Rewrite the solution to Problem 16 and identify the initial value Green’s
functions.

13. Find the Green’s function for the homogeneous fixed values on the
boundary of the quarter plane x > 0, y > 0, for Poisson’s equation using
the infinite plane Green’s function for Poisson’s equation. Use the method
of images.

14. Find the Green’s function for the one dimensional heat equation with
boundary conditions u(0, t) = 0 ux(L, t), t > 0.

15. Consider Laplace’s equation on the rectangular plate in Figure 6.8. Con-
struct the Green’s function for this problem.

16. Construct the Green’s function for Laplace’s equation in the spherical
domain in Figure 6.18.





8
Complex Representations of Functions

“He is not a true man of science who does not bring some sympathy to his studies,
and expect to learn something by behavior as well as by application. It is childish
to rest in the discovery of mere coincidences, or of partial and extraneous laws. The
study of geometry is a petty and idle exercise of the mind, if it is applied to no larger
system than the starry one. Mathematics should be mixed not only with physics but
with ethics; that is mixed mathematics. The fact which interests us most is the life
of the naturalist. The purest science is still biographical.” Henry David Thoreau
(1817-1862)

8.1 Complex Representations of Waves

We have seen that we can determine the frequency content of a function
f (t) defined on an interval [0, T] by looking for the Fourier coefficients in
the Fourier series expansion

f (t) =
a0

2
+

∞

∑
n=1

an cos
2πnt

T
+ bn sin

2πnt
T

.

The coefficients take forms like

an =
2
T

∫ T

0
f (t) cos

2πnt
T

dt.

However, trigonometric functions can be written in a complex exponen-
tial form. Using Euler’s formula, which was obtained using the Maclaurin
expansion of ex in Example A.36,

eiθ = cos θ + i sin θ,

the complex conjugate is found by replacing i with −i to obtain

e−iθ = cos θ − i sin θ.

Adding these expressions, we have

2 cos θ = eiθ + e−iθ .

Subtracting the exponentials leads to an expression for the sine function.
Thus, we have the important result that sines and cosines can be written as
complex exponentials:
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cos θ =
eiθ + e−iθ

2
,

sin θ =
eiθ − e−iθ

2i
. (8.1)

So, we can write

cos
2πnt

T
=

1
2
(e

2πint
T + e−

2πint
T ).

Later we will see that we can use this information to rewrite the series as a
sum over complex exponentials in the form

f (t) =
∞

∑
n=−∞

cne
2πint

T ,

where the Fourier coefficients now take the form

cn =
∫ T

0
f (t)e−

2πint
T dt.

In fact, when one considers the representation of analogue signals defined
over an infinite interval and containing a continuum of frequencies, we will
see that Fourier series sums become integrals of complex functions and so
do the Fourier coefficients. Thus, we will naturally find ourselves needing
to work with functions of complex variables and perform complex integrals.

We can also develop a complex representation for waves. Recall from the
discussion in Section 3.6 on finite length strings that a solution to the wave
equation was given by

u(x, t) =
1
2

[
∞

∑
n=1

An sin kn(x + ct) +
∞

∑
n=1

An sin kn(x− ct)

]
. (8.2)

We can replace the sines with their complex forms as

u(x, t) =
1
4i

[
∞

∑
n=1

An

(
eikn(x+ct) − e−ikn(x+ct)

)
+

∞

∑
n=1

An

(
eikn(x−ct) − e−ikn(x−ct)

)]
. (8.3)

Defining k−n = −kn, n = 1, 2, . . . , we can rewrite this solution in the form

u(x, t) =
∞

∑
n=−∞

[
cneikn(x+ct) + dneikn(x−ct)

]
. (8.4)

Such representations are also possible for waves propagating over the
entire real line. In such cases we are not restricted to discrete frequencies
and wave numbers. The sum of the harmonics will then be a sum over a
continuous range, which means that the sums become integrals. So, we are
lead to the complex representation

u(x, t) =
∫ ∞

−∞

[
c(k)eik(x+ct) + d(k)eik(x−ct)

]
dk. (8.5)
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The forms eik(x+ct) and eik(x−ct) are complex representations of what are
called plane waves in one dimension. The integral represents a general wave
form consisting of a sum over plane waves. The Fourier coefficients in the
representation can be complex valued functions and the evaluation of the
integral may be done using methods from complex analysis. We would like
to be able to compute such integrals.

With the above ideas in mind, we will now take a tour of complex anal-
ysis. We will first review some facts about complex numbers and then in-
troduce complex functions. This will lead us to the calculus of functions of
a complex variable, including the differentiation and integration complex
functions. This will set up the methods needed to explore Fourier trans-
forms in the next chapter.

8.2 Complex Numbers

Complex numbers were first introduced in order to solve some sim-
ple problems. The history of complex numbers only extends about five
hundred years. In essence, it was found that we need to find the roots
of equations such as x2 + 1 = 0. The solution is x = ±

√
−1. Due to the

usefulness of this concept, which was not realized at first, a special sym-
bol was introduced - the imaginary unit, i =

√
−1. In particular, Girolamo

Cardano (1501− 1576) was one of the first to use square roots of negative
numbers when providing solutions of cubic equations. However, complex
numbers did not become an important part of mathematics or science un-
til the late seventh and eighteenth centuries after people like Abraham de
Moivre (1667-1754), the Bernoulli1 family and Euler took them seriously.

1 The Bernoulli’s were a family of Swiss
mathematicians spanning three gener-
ations. It all started with Jacob
Bernoulli (1654-1705) and his brother
Johann Bernoulli (1667-1748). Jacob
had a son, Nicolaus Bernoulli (1687-
1759) and Johann (1667-1748) had three
sons, Nicolaus Bernoulli II (1695-1726),
Daniel Bernoulli (1700-1872), and Johann
Bernoulli II (1710-1790). The last gener-
ation consisted of Johann II’s sons, Jo-
hann Bernoulli III (1747-1807) and Ja-
cob Bernoulli II (1759-1789). Johann, Ja-
cob and Daniel Bernoulli were the most
famous of the Bernoulli’s. Jacob stud-
ied with Leibniz, Johann studied under
his older brother and later taught Leon-
hard Euler and Daniel Bernoulli, who is
known for his work in hydrodynamics.

z

x

y

r

θ

Figure 8.1: The Argand diagram for plot-
ting complex numbers in the complex z-
plane.

A complex number is a number of the form z = x + iy, where x and y
are real numbers. x is called the real part of z and y is the imaginary part
of z. Examples of such numbers are 3 + 3i, −1i = −i, 4i and 5. Note that
5 = 5 + 0i and 4i = 0 + 4i.

The complex modulus, |z| =
√

x2 + y2.

There is a geometric representation of complex numbers in a two dimen-
sional plane, known as the complex plane C. This is given by the Argand
diagram as shown in Figure 8.1. Here we can think of the complex number
z = x + iy as a point (x, y) in the z-complex plane or as a vector. The mag-
nitude, or length, of this vector is called the complex modulus of z, denoted
by |z| =

√
x2 + y2. We can also use the geometric picture to develop a po-

lar representation of complex numbers. From Figure 8.1 we can see that in
terms of r and θ we have that

x = r cos θ,

y = r sin θ. (8.6)

Thus, Complex numbers can be represented in
rectangular (Cartesian), z = x + iy, or
polar form, z = reiθ . Here we define the
argument, θ, and modulus, |z| = r of
complex numbers.

z = x + iy = r(cos θ + i sin θ) = reiθ . (8.7)

So, given r and θ we have z = reiθ . However, given the Cartesian form,
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z = x + iy, we can also determine the polar form, since

r =
√

x2 + y2,

tan θ =
y
x

. (8.8)

Note that r = |z|.
Locating 1 + i in the complex plane, it is possible to immediately deter-

mine the polar form from the angle and length of the “complex vector.” This
is shown in Figure 8.2. It is obvious that θ = π

4 and r =
√

2.

−i

i

2i

2−1 1

z = 1 + i

x

y

Figure 8.2: Locating 1 + i in the complex
z-plane.

Example 8.1. Write z = 1 + i in polar form.
If one did not see the polar form from the plot in the z-plane, then one could

systematically determine the results. First, write z = 1 + i in polar form, z = reiθ ,
for some r and θ.

Using the above relations between polar and Cartesian representations, we have
r =

√
x2 + y2 =

√
2 and tan θ = y

x = 1. This gives θ = π
4 . So, we have found

that
1 + i =

√
2eiπ/4.

We can also define binary operations of addition, subtraction, multiplica-
tion and division of complex numbers to produce a new complex number.

The addition of two complex numbers is simply done by adding the realWe can easily add, subtract, multiply
and divide complex numbers. and imaginary parts of each number. So,

(3 + 2i) + (1− i) = 4 + i.

Subtraction is just as easy,

(3 + 2i)− (1− i) = 2 + 3i.

We can multiply two complex numbers just like we multiply any binomials,
though we now can use the fact that i2 = −1. For example, we have

(3 + 2i)(1− i) = 3 + 2i− 3i + 2i(−i) = 5− i.

We can even divide one complex number into another one and get a
complex number as the quotient. Before we do this, we need to introduce
the complex conjugate, z̄, of a complex number. The complex conjugate of
z = x + iy, where x and y are real numbers, is given asThe complex conjugate of z = x + iy, is

given as z = x− iy.

z = x− iy.

Complex conjugates satisfy the following relations for complex numbers
z and w and real number x.

z + w = z + w

zw = zw

z = z

x = x. (8.9)
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One consequence is that the complex conjugate of reiθ is

reiθ = cos θ + i sin θ = cos θ − i sin θ = re−iθ .

Another consequence is that

zz = reiθre−iθ = r2.

Thus, the product of a complex number with its complex conjugate is a real
number. We can also prove this result using the Cartesian form

zz = (x + iy)(x− iy) = x2 + y2 = |z|2.

Now we are in a position to write the quotient of two complex numbers
in the standard form of a real plus an imaginary number.

Example 8.2. Simplify the expression z = 3+2i
1−i .

This simplification is accomplished by multiplying the numerator and denomi-
nator of this expression by the complex conjugate of the denominator:

z =
3 + 2i
1− i

=
3 + 2i
1− i

1 + i
1 + i

=
1 + 5i

2
.

Therefore, the quotient is a complex number and in standard form it is given by
z = 1

2 + 5
2 i.

We can also consider powers of complex numbers. For example,

(1 + i)2 = 2i,

(1 + i)3 = (1 + i)(2i) = 2i− 2.

But, what is (1 + i)1/2 =
√

1 + i?
In general, we want to find the nth root of a complex number. Let t =

z1/n. To find t in this case is the same as asking for the solution of

z = tn

given z. But, this is the root of an nth degree equation, for which we expect
n roots. If we write z in polar form, z = reiθ , then we would naively compute

z1/n =
(

reiθ
)1/n

= r1/neiθ/n

= r1/n
[

cos
θ

n
+ i sin

θ

n

]
. (8.10)

For example,

(1 + i)1/2 =
(√

2eiπ/4
)1/2

= 21/4eiπ/8.

But this is only one solution. We expected two solutions for n = 2.. The function f (z) = z1/n is multivalued.
z1/n = r1/nei(θ+2kπ)/n, k = 0, 1, . . . , n− 1.The reason we only found one solution is that the polar representation

for z is not unique. We note that
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e2kπi = 1, k = 0,±1,±2, . . . .

So, we can rewrite z as z = reiθe2kπi = rei(θ+2kπ). Now, we have that

z1/n = r1/nei(θ+2kπ)/n, k = 0, 1, . . . , n− 1.

Note that these are the only distinct values for the roots. We can see this by
considering the case k = n. Then, we find that

ei(θ+2πin)/n = eiθ/ne2πi = eiθ/n.

So, we have recovered the n = 0 value. Similar results can be shown for the
other k values larger than n.

Now, we can finish the example we had started.

Example 8.3. Determine the square roots of 1 + i, or
√

1 + i.
As we have seen, we first write 1 + i in polar form, 1 + i =

√
2eiπ/4. Then,

introduce e2kπi = 1 and find the roots:

(1 + i)1/2 =
(√

2eiπ/4e2kπi
)1/2

, k = 0, 1,

= 21/4ei(π/8+kπ), k = 0, 1,

= 21/4eiπ/8, 21/4e9πi/8. (8.11)

Finally, what is n
√

1? Our first guess would be n
√

1 = 1. But, we now know
that there should be n roots. These roots are called the nth roots of unity.The nth roots of unity, n√1.

Using the above result with r = 1 and θ = 0, we have that

n√1 =

[
cos

2πk
n

+ i sin
2πk

n

]
, k = 0, . . . , n− 1.

For example, we have

3√1 =

[
cos

2πk
3

+ i sin
2πk

3

]
, k = 0, 1, 2.

These three roots can be written out as

1−1

−i

i

x

y

Figure 8.3: Locating the cube roots of
unity in the complex z-plane.

3√1 = 1,−1
2
+

√
3

2
i,−1

2
−
√

3
2

i.

We can locate these cube roots of unity in the complex plane. In Figure
8.3 we see that these points lie on the unit circle and are at the vertices of an
equilateral triangle. In fact, all nth roots of unity lie on the unit circle and
are the vertices of a regular n-gon with one vertex at z = 1.

8.3 Complex Valued Functions

We would like to next explore complex functions and the calculus
of complex functions. We begin by defining a function that takes complex
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numbers into complex numbers, f : C → C. It is difficult to visualize such
functions. For real functions of one variable, f : R → R, we graph these
functions by first drawing two intersecting copies of R and then proceed to
map the domain into the range of f .

It would be more difficult to do this for complex functions. Imagine plac-
ing together two orthogonal copies of the complex plane, C. One would
need a four dimensional space in order to complete the visualization. In-
stead, typically uses two copies of the complex plane side by side in order to
indicate how such functions behave. Over the years there have been several
ways to visualize complex functions. We will describe a few of these in this
chapter.

We will assume that the domain lies in the z-plane and the image lies in
the w-plane. We will then write the complex function as w = f (z). We show
these planes in Figure 8.4 and the mapping between the planes.

z

w

x

y

u

v
w = f (z)

Figure 8.4: Defining a complex valued
function, w = f (z), on C for z = x + iy
and w = u + iv.

Letting z = x + iy and w = u + iv, we can write the real and imaginary
parts of f (z) :

w = f (z) = f (x + iy) = u(x, y) + iv(x, y).

We see that one can view this function as a function of z or a function of
x and y. Often, we have an interest in writing out the real and imaginary
parts of the function, u(x, y) and v(x, y), which are functions of two real
variables, x and y. We will look at several functions to determine the real
and imaginary parts.

Example 8.4. Find the real and imaginary parts of f (z) = z2.
For example, we can look at the simple function f (z) = z2. It is a simple matter

to determine the real and imaginary parts of this function. Namely, we have

z2 = (x + iy)2 = x2 − y2 + 2ixy.

Therefore, we have that

u(x, y) = x2 − y2, v(x, y) = 2xy.

In Figure 8.5 we show how a grid in the z-plane is mapped by f (z) = z2 into
the w-plane. For example, the horizontal line x = 1 is mapped to u(1, y) = 1− y2
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and v(1, y) = 2y. Eliminating the “parameter” y between these two equations, we
have u = 1− v2/4. This is a parabolic curve. Similarly, the horizontal line y = 1
results in the curve u = v2/4− 1.

If we look at several curves, x =const and y =const, then we get a family of
intersecting parabolae, as shown in Figure 8.5.

Figure 8.5: 2D plot showing how the
function f (z) = z2 maps the lines x = 1
and y = 1 in the z-plane into parabolae
in the w-plane.
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Figure 8.6: 2D plot showing how the
function f (z) = z2 maps a grid in the
z-plane into the w-plane.
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Example 8.5. Find the real and imaginary parts of f (z) = ez.
For this case, we make use of Euler’s Formula.

ez = ex+iy

= exeiy

= ex(cos y + i sin y). (8.12)

Thus, u(x, y) = ex cos y and v(x, y) = ex sin y. In Figure 8.7 we show how a
grid in the z-plane is mapped by f (z) = ez into the w-plane.

Example 8.6. Find the real and imaginary parts of f (z) = z1/2.
We have that

z1/2 =
√

x2 + y2 (cos (θ + kπ) + i sin (θ + kπ)) , k = 0, 1. (8.13)

Thus,
u = |z| cos (θ + kπ) , u = |z| cos (θ + kπ) ,
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Figure 8.7: 2D plot showing how the
function f (z) = ez maps a grid in the
z-plane into the w-plane.

for |z| =
√

x2 + y2 and θ = tan−1(y/x). For each k-value one has a different
surface and curves of constant θ give u/v = c1, and curves of constant nonzero
complex modulus give concentric circles, u2 + v2 = c2, for c1 and c2 constants.
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Figure 8.8: 2D plot showing how the
function f (z) =

√
z maps a grid in the

z-plane into the w-plane.

Example 8.7. Find the real and imaginary parts of f (z) = ln z.
In this case we make use of the polar form of a complex number, z = reiθ . Our

first thought would be to simply compute

ln z = ln r + iθ.

However, the natural logarithm is multivalued, just like the square root function.
Recalling that e2πik = 1 for k an integer, we have z = rei(θ+2πk). Therefore,

ln z = ln r + i(θ + 2πk), k = integer.

The natural logarithm is a multivalued function. In fact there are an infinite
number of values for a given z. Of course, this contradicts the definition of a
function that you were first taught.

Figure 8.9: Domain coloring of the com-
plex z-plane assigning colors to arg(z).

Thus, one typically will only report the principal value, Log z = ln r + iθ, for θ

restricted to some interval of length 2π, such as [0, 2π). In order to account for the
multivaluedness, one introduces a way to extend the complex plane so as to include
all of the branches. This is done by assigning a plane to each branch, using (branch)
cuts along lines, and then gluing the planes together at the branch cuts to form
what is called a Riemann surface. We will not elaborate upon this any further here
and refer the interested reader to more advanced texts. Comparing the multivalued
logarithm to the principal value logarithm, we have

ln z = Log z + 2nπi.

We should not that some books use log z instead of ln z. It should not be confused
with the common logarithm.

8.3.1 Complex Domain Coloring

Another method for visualizing complex functions is domain col-
oring. The idea was described by Frank A. Farris. There are a few ap-
proaches to this method. The main idea is that one colors each point of the
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Figure 8.10: Domain coloring for f (z) =
z2. The left figure shows the phase col-
oring. The right figure show the colored
surface with height | f (z)|.

z-plane (the domain) according to arg(z) as shown in Figure 8.9. The mod-
ulus, | f (z)| is then plotted as a surface. Examples are shown for f (z) = z2

in Figure 8.10 and f (z) = 1/z(1− z) in Figure 8.11.

Figure 8.11: Domain coloring for f (z) =
1/z(1 − z). The left figure shows the
phase coloring. The right figure show
the colored surface with height | f (z)|.

We would like to put all of this information in one plot. We can do this
by adjusting the brightness of the colored domain by using the modulus of
the function. In the plots that follow we use the fractional part of ln |z|. In
Figure 8.12 we show the effect for the z-plane using f (z) = z. In the figures
that follow we look at several other functions. In these plots we have chosen
to view the functions in a circular window.

Figure 8.12: Domain coloring for the
function f (z) = z showing a coloring for
arg(z) and brightness based on | f (z)|.

One can see the rich behavior hidden in these figures. As you progress
in your reading, especially after the next chapter, you should return to these
figures and locate the zeros, poles, branch points and branch cuts. A search
online will lead you to other colorings and superposition of the uv grid on
these figures.

As a final picture, we look at iteration in the complex plane. Consider
the function f (z) = z2− 0.75− 0.2i. Interesting figures result when studying
the iteration in the complex plane. In Figure 8.15 we show f (z) and f 20(z),
which is the iteration of f twenty times. It leads to an interesting coloring.
What happens when one keeps iterating? Such iterations lead to the study
of Julia and Mandelbrot sets . In Figure 8.16 we show six iterations of
f (z) = (1− i/2) sin x.Figure 8.13: Domain coloring for the

function f (z) = z2.
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Figure 8.14: Domain coloring for sev-
eral functions. On the top row the do-
main coloring is shown for f (z) = z4

and f (z) = sin z. On the second row
plots for f (z) =

√
1 + z and f (z) =

1
z(1/2−z)(z−i)(z−i+1) are shown. In the last
row domain colorings for f (z) = ln z
and f (z) = sin(1/z) are shown.

Figure 8.15: Domain coloring for f (z) =
z2 − 0.75− 0.2i. The left figure shows the
phase coloring. On the right is the plot
for f 20(z).

Figure 8.16: Domain coloring for six it-
erations of f (z) = (1− i/2) sin x.
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The following code was used in MATLAB to produce these figures.

fn = @(x) (1-i/2)*sin(x);

xmin=-2; xmax=2; ymin=-2; ymax=2;

Nx=500;

Ny=500;

x=linspace(xmin,xmax,Nx);

y=linspace(ymin,ymax,Ny);

[X,Y] = meshgrid(x,y); z = complex(X,Y);

tmp=z; for n=1:6

tmp = fn(tmp);

end Z=tmp;

XX=real(Z);

YY=imag(Z);

R2=max(max(X.^2));

R=max(max(XX.^2+YY.^2));

circle(:,:,1) = X.^2+Y.^2 < R2;

circle(:,:,2)=circle(:,:,1);

circle(:,:,3)=circle(:,:,1);

addcirc(:,:,1)=circle(:,:,1)==0;

addcirc(:,:,2)=circle(:,:,1)==0;

addcirc(:,:,3)=circle(:,:,1)==0;

warning off MATLAB:divideByZero;

hsvCircle=ones(Nx,Ny,3);

hsvCircle(:,:,1)=atan2(YY,XX)*180/pi+(atan2(YY,XX)*180/pi<0)*360;

hsvCircle(:,:,1)=hsvCircle(:,:,1)/360; lgz=log(XX.^2+YY.^2)/2;

hsvCircle(:,:,2)=0.75; hsvCircle(:,:,3)=1-(lgz-floor(lgz))/2;

hsvCircle(:,:,1) = flipud((hsvCircle(:,:,1)));

hsvCircle(:,:,2) = flipud((hsvCircle(:,:,2)));

hsvCircle(:,:,3) =flipud((hsvCircle(:,:,3)));

rgbCircle=hsv2rgb(hsvCircle);

rgbCircle=rgbCircle.*circle+addcirc;

image(rgbCircle)

axis square

set(gca,’XTickLabel’,{})

set(gca,’YTickLabel’,{})
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8.4 Complex Differentiation

Next we want to differentiate complex functions. We generalize
the definition from single variable calculus,

z

x

y

Figure 8.17: There are many paths that
approach z as ∆z→ 0.

f ′(z) = lim
∆z→0

f (z + ∆z)− f (z)
∆z

, (8.14)

provided this limit exists.
The computation of this limit is similar to what one sees in multivariable

calculus for limits of real functions of two variables. Letting z = x + iy and
δz = δx + iδy, then

z + δx = (x + δx) + i(y + δy).

Letting ∆z → 0 means that we get closer to z. There are many paths that
one can take that will approach z. [See Figure 8.17.]

z

x

y

Figure 8.18: A path that approaches z
with y = constant.

It is sufficient to look at two paths in particular. We first consider the
path y = constant. This horizontal path is shown in Figure 8.18. For this
path, ∆z = ∆x + i∆y = ∆x, since y does not change along the path. The
derivative, if it exists, is then computed as

f ′(z) = lim
∆z→0

f (z + ∆z)− f (z)
∆z

= lim
∆x→0

u(x + ∆x, y) + iv(x + ∆x, y)− (u(x, y) + iv(x, y))
∆x

= lim
∆x→0

u(x + ∆x, y)− u(x, y)
∆x

+ lim
∆x→0

i
v(x + ∆x, y)− v(x, y)

∆x
.

(8.15)

The last two limits are easily identified as partial derivatives of real valued
functions of two variables. Thus, we have shown that when f ′(z) exists,

f ′(z) =
∂u
∂x

+ i
∂v
∂x

. (8.16)

A similar computation can be made if instead we take the vertical path,
x = constant, in Figure 8.17). In this case ∆z = i∆y and

f ′(z) = lim
∆z→0

f (z + ∆z)− f (z)
∆z

= lim
∆y→0

u(x, y + ∆y) + iv(x, y + ∆y)− (u(x, y) + iv(x, y))
i∆y

= lim
∆y→0

u(x, y + ∆y)− u(x, y)
i∆y

+ lim
∆y→0

v(x, y + ∆y)− v(x, y)
∆y

.

(8.17)

Therefore,

f ′(z) =
∂v
∂y
− i

∂u
∂y

. (8.18)
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We have found two different expressions for f ′(z) by following two dif-
ferent paths to z. If the derivative exists, then these two expressions must be
the same. Equating the real and imaginary parts of these expressions, we
haveThe Cauchy-Riemann Equations.

∂u
∂x

=
∂v
∂y

∂v
∂x

= −∂u
∂y

. (8.19)

These are known as the Cauchy-Riemann equations2.2 Augustin-Louis Cauchy (1789-1857)
was a French mathematician well known
for his work in analysis. Georg Friedrich
Bernhard Riemann (1826-1866) was
a German mathematician who made
major contributions to geometry and
analysis.

Theorem 8.1. f (z) is holomorphic (differentiable) if and only if the Cauchy-Riemann
equations are satisfied.

Example 8.8. f (z) = z2.
In this case we have already seen that z2 = x2− y2 + 2ixy. Therefore, u(x, y) =

x2 − y2 and v(x, y) = 2xy. We first check the Cauchy-Riemann equations.

∂u
∂x

= 2x =
∂v
∂y

∂v
∂x

= 2y = −∂u
∂y

. (8.20)

Therefore, f (z) = z2 is differentiable.
We can further compute the derivative using either Equation (8.16) or Equation

(8.18). Thus,

f ′(z) =
∂u
∂x

+ i
∂v
∂x

= 2x + i(2y) = 2z.

This result is not surprising.

Example 8.9. f (z) = z̄.
In this case we have f (z) = x− iy. Therefore, u(x, y) = x and v(x, y) = −y.

But, ∂u
∂x = 1 and ∂v

∂y = −1. Thus, the Cauchy-Riemann equations are not satisfied
and we conclude the f (z) = z̄ is not differentiable.

Harmonic functions satisfy Laplace’s
equation. Another consequence of the Cauchy-Riemann equations is that both u(x, y)

and v(x, y) are harmonic functions. A real-valued function u(x, y) is har-
monic if it satisfies Laplace’s equation in 2D, ∇2u = 0, or

∂2u
∂x2 +

∂2u
∂y2 = 0.

Theorem 8.2. f (z) = u(x, y) + iv(x, y) is differentiable if and only if u and v are
harmonic functions.

This is easily proven using the Cauchy-Riemann equations.

∂2u
∂x2 =

∂

∂x
∂u
∂x

=
∂

∂x
∂v
∂y
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=
∂

∂y
∂v
∂x

= − ∂

∂y
∂u
∂y

= −∂2u
∂y2 . (8.21)

Example 8.10. Is u(x, y) = x2 + y2 harmonic?

∂2u
∂x2 +

∂2u
∂y2 = 2 + 2 6= 0.

No, it is not.

Example 8.11. Is u(x, y) = x2 − y2 harmonic?

∂2u
∂x2 +

∂2u
∂y2 = 2− 2 = 0.

Yes, it is.

Given a harmonic function u(x, y), can one find a function, v(x, y), such The harmonic conjugate function.

f (z) = u(x, y) + iv(x, y) is differentiable? In this case, v are called the har-
monic conjugate of u.

Example 8.12. Find the harmonic conjugate of u(x, y) = x2 − y2 and determine
f (z) = u + iv such that u + iv is differentiable.

The Cauchy-Riemann equations tell us the following about the unknown func-
tion, v(x, y) :

∂v
∂x

= −∂u
∂y

= 2y,

∂v
∂y

=
∂u
∂x

= 2x.

We can integrate the first of these equations to obtain

v(x, y) =
∫

2y dx = 2xy + c(y).

Here c(y) is an arbitrary function of y. One can check to see that this works by
simply differentiating the result with respect to x.

However, the second equation must also hold. So, we differentiate the result with
respect to y to find that

∂v
∂y

= 2x + c′(y).

Since we were supposed to get 2x, we have that c′(y) = 0. Thus, c(y) = k is a
constant.

We have just shown that we get an infinite number of functions,

v(x, y) = 2xy + k,

such that
f (z) = x2 − y2 + i(2xy + k)

is differentiable. In fact, for k = 0 this is nothing other than f (z) = z2.
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8.5 Complex Integration

We have introduced functions of a complex variable. We also
established when functions are differentiable as complex functions, or holo-
morphic. In this chapter we will turn to integration in the complex plane.
We will learn how to compute complex path integrals, or contour integrals.
We will see that contour integral methods are also useful in the computa-
tion of some of the real integrals that we will face when exploring Fourier
transforms in the next chapter.

z1

z2

x

y

Figure 8.19: We would like to integrate a
complex function f (z) over the path Γ in
the complex plane.

8.5.1 Complex Path Integrals

In this section we will investigate the computation of complex path
integrals. Given two points in the complex plane, connected by a path Γ as
shown in Figure 8.19, we would like to define the integral of f (z) along Γ,∫

Γ
f (z) dz.

A natural procedure would be to work in real variables, by writing∫
Γ

f (z) dz =
∫

Γ
[u(x, y) + iv(x, y)] (dx + idy),

since z = x + iy and dz = dx + idy.

Figure 8.20: Examples of (a) a connected
set and (b) a disconnected set.

In order to carry out the integration, we then have to find a parametriza-
tion of the path and use methods from a multivariate calculus class. Namely,
let u and v be continuous in domain D, and Γ a piecewise smooth curve in
D. Let (x(t), y(t)) be a parametrization of Γ for t0 ≤ t ≤ t1 and f (z) =

u(x, y) + iv(x, y) for z = x + iy. Then

∫
Γ

f (z) dz =
∫ t1

t0

[u(x(t), y(t)) + iv(x(t), y(t))] (
dx
dt

+ i
dy
dt

)dt. (8.22)

Here we have used

dz = dx + idy =

(
dx
dt

+ i
dy
dt

)
dt.

Furthermore, a set D is called a domain if it is both open and connected.
Before continuing, we first define open and connected. A set D is con-

nected if and only if for all z1, and z2 in D there exists a piecewise smooth
curve connecting z1 to z2 and lying in D. Otherwise it is called disconnected.
Examples are shown in Figure 8.20

A set D is open if and only if for all z0 in D there exists an open disk
|z− z0| < ρ in D. In Figure 8.21 we show a region with two disks.

Figure 8.21: Locations of open disks in-
side and on the boundary of a region.

For all points on the interior of the region one can find at least one disk
contained entirely in the region. The closer one is to the boundary, the
smaller the radii of such disks. However, for a point on the boundary, every
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such disk would contain points inside and outside the disk. Thus, an open
set in the complex plane would not contain any of its boundary points.

We now have a prescription for computing path integrals. Let’s see how
this works with a couple of examples.

−i

i

2i

2−1 1 x

y

Figure 8.22: Contour for Example 8.13.

Example 8.13. Evaluate
∫

C z2 dz, where C = the arc of the unit circle in the first
quadrant as shown in Figure 8.22.

There are two ways we could carry out the parametrization. First, we note that
the standard parametrization of the unit circle is

(x(θ), y(θ)) = (cos θ, sin θ), 0 ≤ θ ≤ 2π.

For a quarter circle in the first quadrant, 0 ≤ θ ≤ π
2 , we let z = cos θ + i sin θ.

Therefore, dz = (− sin θ + i cos θ) dθ and the path integral becomes∫
C

z2 dz =
∫ π

2

0
(cos θ + i sin θ)2(− sin θ + i cos θ) dθ.

We can expand the integrand and integrate, having to perform some trigonometric
integrations.∫ π

2

0
[sin3 θ − 3 cos2 θ sin θ + i(cos3 θ − 3 cos θ sin2 θ)] dθ.

The reader should work out these trigonometric integrations and confirm the result.
For example, you can use

sin3 θ = sin θ(1− cos2 θ))

to write the real part of the integrand as

sin θ − 4 cos2 θ sin θ.

The resulting antiderivative becomes

− cos θ +
4
3

cos3 θ.

The imaginary integrand can be integrated in a similar fashion.
While this integral is doable, there is a simpler procedure. We first note that

z = eiθ on C. So, dz = ieiθdθ. The integration then becomes∫
C

z2 dz =
∫ π

2

0
(eiθ)2ieiθ dθ

= i
∫ π

2

0
e3iθ dθ

=
ie3iθ

3i

∣∣∣π/2

0

= −1 + i
3

. (8.23)

Example 8.14. Evaluate
∫

Γ z dz, for the path Γ = γ1 ∪ γ2 shown in Figure 8.23.
In this problem we have a path that is a piecewise smooth curve. We can compute

the path integral by computing the values along the two segments of the path and
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adding the results. Let the two segments be called γ1 and γ2 as shown in Figure
8.23 and parametrize each path separately.

Over γ1 we note that y = 0. Thus, z = x for x ∈ [0, 1]. It is natural to take x
as the parameter. So, we let dz = dx to find∫

γ1

z dz =
∫ 1

0
x dx =

1
2

.

For path γ2 we have that z = 1 + iy for y ∈ [0, 1] and dz = i dy. Inserting this
parametrization into the integral, the integral becomes∫

γ2

z dz =
∫ 1

0
(1 + iy) idy = i− 1

2
.

−i

i

2i

2−1 1γ1

γ2
0

1 + i

x

y

Figure 8.23: Contour for Example 8.14

with Γ = γ1 ∪ γ2.

Combining the results for the paths γ1 and γ2, we have
∫

Γ z dz = 1
2 + (i− 1

2 ) =

i.

Example 8.15. Evaluate
∫

γ3
z dz, where γ3, is the path shown in Figure 8.24.

In this case we take a path from z = 0 to z = 1 + i along a different path than
in the last example. Let γ3 = {(x, y)|y = x2, x ∈ [0, 1]} = {z|z = x + ix2, x ∈
[0, 1]}. Then, dz = (1 + 2ix) dx.

−i

i

2i

2−1 1γ1

γ2
γ3

0

1 + i

x

y

Figure 8.24: Contour for Example 8.15.

The integral becomes∫
γ3

z dz =
∫ 1

0
(x + ix2)(1 + 2ix) dx

=
∫ 1

0
(x + 3ix2 − 2x3) dx =

=

[
1
2

x2 + ix3 − 1
2

x4
]1

0
= i. (8.24)

In the last case we found the same answer as we had obtained in Example
8.14. But we should not take this as a general rule for all complex path
integrals. In fact, it is not true that integrating over different paths always
yields the same results. However, when this is true, then we refer to this
property as path independence. In particular, the integral

∫
f (z) dz is path

independent if ∫
Γ1

f (z) dz =
∫

Γ2

f (z) dz

for all paths from z1 to z2 as shown in Figure 8.25.

z1

z2

x

y

Γ1

Γ2

Figure 8.25:
∫

Γ1
f (z) dz =

∫
Γ2

f (z) dz for
all paths from z1 to z2 when the integral
of f (z) is path independent.

We can show that if
∫

f (z) dz is path independent, then the integral of
f (z) over all closed loops is zero,∫

closed loops
f (z) dz = 0.

A common notation for integrating over closed loops is
∮

C f (z) dz. But first
we have to define what we mean by a closed loop. A simple closed contour

A simple closed contour. is a path satisfying

a The end point is the same as the beginning point. (This makes the
loop closed.)
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b The are no self-intersections. (This makes the loop simple.)

A loop in the shape of a figure eight is closed, but it is not simple.
Now, consider an integral over the closed loop C shown in Figure 8.26.

We pick two points on the loop breaking it into two contours, C1 and C2.
Then we make use of the path independence by defining C−2 to be the path
along C2 but in the opposite direction. Then,

∮
C f (z) dz = 0 if the integral is path in-

dependent.

∮
C

f (z) dz =
∫

C1

f (z) dz +
∫

C2

f (z) dz

=
∫

C1

f (z) dz−
∫

C−2
f (z) dz. (8.25)

Assuming that the integrals from point 1 to point 2 are path independent,
then the integrals over C1 and C−2 are equal. Therefore, we have

∮
C f (z) dz =

0.

1

2

C1
C2

x

y

Figure 8.26: The integral
∮

C f (z) dz
around C is zero if the integral

∫
Γ f (z) dz

is path independent.

Example 8.16. Consider the integral
∮

C z dz for C the closed contour shown in
Figure 8.24 starting at z = 0 following path γ1, then γ2 and returning to z = 0.
Based on the earlier examples and the fact that going backwards on γ3 introduces a
negative sign, we have

∮
C

z dz =
∫

γ1

z dz +
∫

γ2

z dz−
∫

γ3

z dz =
1
2
+

(
i− 1

2

)
− i = 0.

8.5.2 Cauchy’s Theorem

Next we want to investigate if we can determine that integrals over
simple closed contours vanish without doing all the work of parametrizing
the contour. First, we need to establish the direction about which we traverse
the contour. We can define the orientation of a curve by referring to the
normal of the curve.

Recall that the normal is a perpendicular to the curve. There are two such
perpendiculars. The above normal points outward and the other normal
points towards the interior of a closed curve. We will define a positively
oriented contour as one that is traversed with the outward normal pointing
to the right. As one follows loops, the interior would then be on the left. A curve with parametriza-

tion (x(t), y(t)) has a normal
(nx , ny) = (− dx

dt , dy
dt ).

We now consider
∮

C(u + iv) dz over a simple closed contour. This can be
written in terms of two real integrals in the xy-plane.∮

C
(u + iv) dz =

∫
C
(u + iv)(dx + i dy)

=
∫

C
u dx− v dy + i

∫
C

v dx + u dy. (8.26)

These integrals in the plane can be evaluated using Green’s Theorem in the
Plane. Recall this theorem from your last semester of calculus:
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Green’s Theorem in the Plane.

Theorem 8.3. Let P(x, y) and Q(x, y) be continuously differentiable functions
on and inside the simple closed curve C as shown in Figure 8.27. Denoting the
enclosed region S, we have∫

C
P dx + Q dy =

∫ ∫
S

(
∂Q
∂x
− ∂P

∂y

)
dxdy. (8.27)

S

C

Figure 8.27: Region used in Green’s The-
orem.

Green’s Theorem in the Plane is one
of the major integral theorems of vec-
tor calculus. It was discovered by
George Green (1793-1841) and published
in 1828, about four years before he en-
tered Cambridge as an undergraduate.

Using Green’s Theorem to rewrite the first integral in (8.26), we have∫
C

u dx− v dy =
∫ ∫

S

(
−∂v
∂x
− ∂u

∂y

)
dxdy.

If u and v satisfy the Cauchy-Riemann equations (8.19), then the integrand
in the double integral vanishes. Therefore,∫

C
u dx− v dy = 0.

In a similar fashion, one can show that∫
C

v dx + u dy = 0.

We have thus proven the following theorem:

Cauchy’s Theorem

Theorem 8.4. If u and v satisfy the Cauchy-Riemann equations (8.19) inside
and on the simple closed contour C, then∮

C
(u + iv) dz = 0. (8.28)

Corollary
∮

C f (z) dz = 0 when f is differentiable in domain D with C ⊂ D.

Either one of these is referred to as Cauchy’s Theorem.

Example 8.17. Evaluate
∮
|z−1|=3 z4 dz.

Since f (z) = z4 is differentiable inside the circle |z − 1| = 3, this integral
vanishes.

We can use Cauchy’s Theorem to show that we can deform one contour
into another, perhaps simpler, contour.

One can deform contours into simpler
ones. Theorem 8.5. If f (z) is holomorphic between two simple closed contours, C and

C′, then
∮

C f (z) dz =
∮

C′ f (z) dz.

Proof. We consider the two curves C and C′ as shown in Figure 8.28. Con-
necting the two contours with contours Γ1 and Γ2 (as shown in the figure),
C is seen to split into contours C1 and C2 and C′ into contours C′1 and C′2.
Note that f (z) is differentiable inside the newly formed regions between the
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curves. Also, the boundaries of these regions are now simple closed curves.
Therefore, Cauchy’s Theorem tells us that the integrals of f (z) over these
regions are zero.

Noting that integrations over contours opposite to the positive orienta-
tion are the negative of integrals that are positively oriented, we have from
Cauchy’s Theorem that∫

C1

f (z) dz +
∫

Γ1

f (z) dz−
∫

C′1
f (z) dz +

∫
Γ2

f (z) dz = 0

and ∫
C2

f (z) dz−
∫

Γ2

f (z) dz−
∫

C′2
f (z) dz−

∫
Γ1

f (z) dz = 0.

In the first integral we have traversed the contours in the following order:
C1, Γ1, C′1 backwards, and Γ2. The second integral denotes the integration
over the lower region, but going backwards over all contours except for C2.

C

Γ2

Γ1

C′1C′2

C1

C2

Figure 8.28: The contours needed to
prove that

∮
C f (z) dz =

∮
C′ f (z) dz when

f (z) is holomorphic between the con-
tours C and C′.Combining these results by adding the two equations above, we have∫

C1

f (z) dz +
∫

C2

f (z) dz−
∫

C′1
f (z) dz−

∫
C′2

f (z) dz = 0.

Noting that C = C1 + C2 and C′ = C′1 + C′2, we have∮
C

f (z) dz =
∮

C′
f (z) dz,

as was to be proven.

Example 8.18. Compute
∮

R
dz
z for R the rectangle [−2, 2]× [−2i, 2i].

−2i

−i

i

2i

−2 2−1 1

γ1

γ2

γ3

γ4

x

y

R

C

Figure 8.29: The contours used to com-
pute

∮
R

dz
z . Note that to compute the in-

tegral around R we can deform the con-
tour to the circle C since f (z) is differ-
entiable in the region between the con-
tours.

We can compute this integral by looking at four separate integrals over the sides
of the rectangle in the complex plane. One simply parametrizes each line segment,
perform the integration and sum the four separate results. From the last theorem,
we can instead integrate over a simpler contour by deforming the rectangle into a
circle as long as f (z) = 1

z is differentiable in the region bounded by the rectangle
and the circle. So, using the unit circle, as shown in Figure 8.29, the integration
might be easier to perform.

More specifically, the last theorem tells us that∮
R

dz
z

=
∮
|z|=1

dz
z

The latter integral can be computed using the parametrization z = eiθ for θ ∈
[0, 2π]. Thus, ∮

|z|=1

dz
z

=
∫ 2π

0

ieiθ dθ

eiθ

= i
∫ 2π

0
dθ = 2πi. (8.29)

Therefore, we have found that
∮

R
dz
z = 2πi by deforming the original simple closed

contour.

−2i

−i

i

2i

−2 2−1 1

γ1

γ2

γ3

γ4

x

y

R

Figure 8.30: The contours used to com-
pute

∮
R

dz
z . The added diagonals are

for the reader to easily see the argu-
ments used in the evaluation of the lim-
its when integrating over the segments
of the square R.

For fun, let’s do this the long way to see how much effort was saved. We will label
the contour as shown in Figure 8.30. The lower segment, γ4 of the square can be
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simple parametrized by noting that along this segment z = x− 2i for x ∈ [−2, 2].
Then, we have∮

γ4

dz
z

=
∫ 2

−2

dx
x− 2i

= ln
∣∣∣x− 2i

∣∣∣2
−2

=

(
ln(2
√

2)− πi
4

)
−
(

ln(2
√

2)− 3πi
4

)
=

πi
2

. (8.30)

We note that the arguments of the logarithms are determined from the angles made
by the diagonals provided in Figure 8.30.

Similarly, the integral along the top segment, z = x + 2i, x ∈ [−2, 2], is com-
puted as ∮

γ2

dz
z

=
∫ −2

2

dx
x + 2i

= ln
∣∣∣x + 2i

∣∣∣−2

2

=

(
ln(2
√

2) +
3πi

4

)
−
(

ln(2
√

2) +
πi
4

)
=

πi
2

. (8.31)

The integral over the right side, z = 2 + iy, y ∈ [−2, 2], is∮
γ1

dz
z

=
∫ 2

−2

idy
2 + iy

= ln
∣∣∣2 + iy

∣∣∣2
−2

=

(
ln(2
√

2) +
πi
4

)
−
(

ln(2
√

2)− πi
4

)
=

πi
2

. (8.32)

Finally, the integral over the left side, z = −2 + iy, y ∈ [−2, 2], is∮
γ3

dz
z

=
∫ −2

2

idy
−2 + iy

= ln
∣∣∣− 2 + iy

∣∣∣2
−2

=

(
ln(2
√

2) +
5πi

4

)
−
(

ln(2
√

2) +
3πi

4

)
=

πi
2

. (8.33)

Therefore, we have that∮
R

dz
z

=
∫

γ1

dz
z

+
∫

γ2

dz
z

+
∫

γ3

dz
z

+
∫

γ4

dz
z
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=
πi
2

+
πi
2

+
πi
2

+
πi
2

= 4
(

πi
2

)
= 2πi. (8.34)

This gives the same answer we had found using a simple contour deformation.

The converse of Cauchy’s Theorem is not true, namely
∮

C f (z) dz = 0
does not always imply that f (z) is differentiable. What we do have is Mor-
era’s Theorem(Giacinto Morera, 1856-1909): Morera’s Theorem.

Theorem 8.6. Let f be continuous in a domain D. Suppose that for every simple
closed contour C in D,

∮
C f (z) dz = 0. Then f is differentiable in D.

The proof is a bit more detailed than we need to go into here. However,
this theorem is useful in the next section.

8.5.3 Analytic Functions and Cauchy’s Integral Formula

In the previous section we saw that Cauchy’s Theorem was useful for
computing particular integrals without having to parametrize the contours
or for deforming contours into simpler contours. The integrand needs to
possess certain differentiability properties. In this section, we will general-
ize the functions that we can integrate slightly so that we can integrate a
larger family of complex functions. This will lead us to the Cauchy’s Inte-
gral Formula, which extends Cauchy’s Theorem to functions analytic in an
annulus. However, first we need to explore the concept of analytic functions.

A function f (z) is analytic in domain D if for every open disk |z− z0| < ρ

lying in D, f (z) can be represented as a power series in z0. Namely,

f (z) =
∞

∑
n=0

cn(z− z0)
n.

This series converges uniformly and absolutely inside the circle of conver-
gence, |z− z0| < R, with radius of convergence R. [See the Appendix for a
review of convergence.]

Since f (z) can be written as a uniformly convergent power series, we can

There are various types of complex-
valued functions.

A holomorphic function is (com-
plex) differentiable in a neighborhood of
every point in its domain.

An analytic function has a conver-
gent Taylor series expansion in a neigh-
borhood of each point in its domain. We
see here that analytic functions are holo-
morphic and vice versa.

If a function is holomorphic
throughout the complex plane, then it is
called an entire function.

Finally, a function which is holomor-
phic on all of its domain except at a set of
isolated poles (to be defined later), then
it is called a meromorphic function.

integrate it term by term over any simple closed contour in D containing z0.
In particular, we have to compute integrals like

∮
C(z− z0)

n dz. As we will
see in the homework exercises, these integrals evaluate to zero for most n.
Thus, we can show that for f (z) analytic in D and on any closed contour C
lying in D,

∮
C f (z) dz = 0. Also, f is a uniformly convergent sum of con-

tinuous functions, so f (z) is also continuous. Thus, by Morera’s Theorem,
we have that f (z) is differentiable if it is analytic. Often terms like analytic,
differentiable and holomorphic are used interchangeably, though there is a
subtle distinction due to their definitions.

As examples of series expansions about a given point, we will consider
series expansions and regions of convergence for f (z) = 1

1+z .
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Example 8.19. Find the series expansion of f (z) = 1
1+z about z0 = 0.

This case is simple. From Chapter 1 we recall that f (z) is the sum of a geometric
series for |z| < 1. We have

f (z) =
1

1 + z
=

∞

∑
n=0

(−z)n.

Thus, this series expansion converges inside the unit circle (|z| < 1) in the complex
plane.

Example 8.20. Find the series expansion of f (z) = 1
1+z about z0 = 1

2 .
We now look into an expansion about a different point. We could compute the

expansion coefficients using Taylor’s formula for the coefficients. However, we can
also make use of the formula for geometric series after rearranging the function. We
seek an expansion in powers of z− 1

2 . So, we rewrite the function in a form that has
is a function of z− 1

2 . Thus,

f (z) =
1

1 + z
=

1
1 + (z− 1

2 + 1
2 )

=
1

3
2 + (z− 1

2 )
.

This is not quite in the form we need. It would be nice if the denominator were
of the form of one plus something. [Note: This is similar to what we had seen in
Example A.35.] We can get the denominator into such a form by factoring out the
3
2 . Then we would have

f (z) =
2
3

1
1 + 2

3 (z−
1
2 )

.

The second factor now has the form 1
1−r , which would be the sum of a geometric se-

ries with first term a = 1 and ratio r = − 2
3 (z−

1
2 ) provided that |r|<1. Therefore,

we have found that

f (z) =
2
3

∞

∑
n=0

[
−2

3
(z− 1

2
)

]n

for ∣∣∣− 2
3
(z− 1

2
)
∣∣∣ < 1.

This convergence interval can be rewritten as∣∣∣z− 1
2

∣∣∣ < 3
2

,

which is a circle centered at z = 1
2 with radius 3

2 .

In Figure 8.31 we show the regions of convergence for the power series
expansions of f (z) = 1

1+z about z = 0 and z = 1
2 . We note that the first

expansion gives that f (z) is at least analytic inside the region |z| < 1. The
second expansion shows that f (z) is analytic in a larger region, |z− 1

2 | <
3
2 .

We will see later that there are expansions which converge outside of these
regions and that some yield expansions involving negative powers of z− z0.

−2i

−i

i

2i

−2 2−1 1 x

y

Figure 8.31: Regions of convergence for
expansions of f (z) = 1

1+z about z = 0
and z = 1

2 . We now present the main theorem of this section:
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Cauchy Integral Formula

Theorem 8.7. Let f (z) be analytic in |z− z0| < ρ and let C be the boundary
(circle) of this disk. Then,

f (z0) =
1

2πi

∮
C

f (z)
z− z0

dz. (8.35)

Proof. In order to prove this, we first make use of the analyticity of f (z). We
insert the power series expansion of f (z) about z0 into the integrand. Then
we have

f (z)
z− z0

=
1

z− z0

[
∞

∑
n=0

cn(z− z0)
n

]

=
1

z− z0

[
c0 + c1(z− z0) + c2(z− z0)

2 + . . .
]

=
c0

z− z0
+ c1 + c2(z− z0) + . . .︸ ︷︷ ︸

analytic function

. (8.36)

As noted the integrand can be written as

f (z)
z− z0

=
c0

z− z0
+ h(z),

where h(z) is an analytic function, since h(z) is representable as a series
expansion about z0. We have already shown that analytic functions are dif-
ferentiable, so by Cauchy’s Theorem

∮
C h(z) dz = 0.

Noting also that c0 = f (z0) is the first term of a Taylor series expansion
about z = z0, we have∮

C

f (z)
z− z0

dz =
∮

C

[
c0

z− z0
+ h(z)

]
dz = f (z0)

∮
C

1
z− z0

dz.

We need only compute the integral
∮

C
1

z−z0
dz to finish the proof of Cauchy’s

Integral Formula. This is done by parametrizing the circle, |z− z0| = ρ, as
shown in Figure 8.32. This is simply done by letting

z− z0 = ρeiθ .

(Note that this has the right complex modulus since |eiθ | = 1. Then dz =

iρeiθdθ. Using this parametrization, we have

∮
C

dz
z− z0

=
∫ 2π

0

iρeiθ dθ

ρeiθ = i
∫ 2π

0
dθ = 2πi.

z0
C

x

y

ρ

Figure 8.32: Circular contour used in
proving the Cauchy Integral Formula.

Therefore, ∮
C

f (z)
z− z0

dz = f (z0)
∮

C

1
z− z0

dz = 2πi f (z0),

as was to be shown.
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Example 8.21. Compute
∮
|z|=4

cos z
z2−6z+5 dz.

In order to apply the Cauchy Integral Formula, we need to factor the denomi-
nator, z2 − 6z + 5 = (z− 1)(z− 5). We next locate the zeros of the denominator.
In Figure 8.33 we show the contour and the points z = 1 and z = 5. The only
point inside the region bounded by the contour is z = 1. Therefore, we can apply
the Cauchy Integral Formula for f (z) = cos z

z−5 to the integral∫
|z|=4

cos z
(z− 1)(z− 5)

dz =
∫
|z|=4

f (z)
(z− 1)

dz = 2πi f (1).

Therefore, we have ∫
|z|=4

cos z
(z− 1)(z− 5)

dz = −πi cos(1)
2

.

We have shown that f (z0) has an integral representation for f (z) analytic
in |z− z0| < ρ. In fact, all derivatives of an analytic function have an integral
representation. This is given by

f (n)(z0) =
n!

2πi

∮
C

f (z)
(z− z0)n+1 dz. (8.37)

−2i

−i

i

2i

−2 2−1 1−3 3−4 4 5

−3i

3i

|z| = 4
ρ = 4

x

y

Figure 8.33: Circular contour used in
computing

∮
|z|=4

cos z
z2−6z+5 dz.

This can be proven following a derivation similar to that for the Cauchy
Integral Formula. Inserting the Taylor series expansion for f (z) into the
integral on the right hand side, we have∮

C

f (z)
(z− z0)n+1 dz =

∞

∑
m=0

cm

∮
C

(z− z0)
m

(z− z0)n+1 dz

=
∞

∑
m=0

cm

∮
C

dz
(z− z0)n−m+1 . (8.38)

Picking k = n − m, the integrals in the sum can be computed by using
the following result: ∮

C

dz
(z− z0)k+1 =

{
0, k 6= 0

2πi, k = 0.
(8.39)

The proof is left for the exercises.
The only nonvanishing integrals,

∮
C

dz
(z−z0)n−m+1 , occur when k = n−m =

0, or m = n. Therefore, the series of integrals collapses to one term and we
have ∮

C

f (z)
(z− z0)n+1 dz = 2πicn.

We finish the proof by recalling that the coefficients of the Taylor series
expansion for f (z) are given by

cn =
f (n)(z0)

n!
.

Then, ∮
C

f (z)
(z− z0)n+1 dz =

2πi
n!

f (n)(z0)

and the result follows.
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8.5.4 Laurent Series

Until this point we have only talked about series whose terms have
nonnegative powers of z− z0. It is possible to have series representations in
which there are negative powers. In the last section we investigated expan-
sions of f (z) = 1

1+z about z = 0 and z = 1
2 . The regions of convergence

for each series was shown in Figure 8.31. Let us reconsider each of these
expansions, but for values of z outside the region of convergence previously
found.

Example 8.22. f (z) = 1
1+z for |z| > 1.

As before, we make use of the geometric series . Since |z| > 1, we instead rewrite
the function as

f (z) =
1

1 + z
=

1
z

1
1 + 1

z
.

We now have the function in a form of the sum of a geometric series with first term
a = 1 and ratio r = − 1

z . We note that |z| > 1 implies that |r| < 1. Thus, we have
the geometric series

f (z) =
1
z

∞

∑
n=0

(
−1

z

)n
.

This can be re-indexed3 as

3 Re-indexing a series is often useful in
series manipulations. In this case, we
have the series

∞

∑
n=0

(−1)nz−n−1 = z−1 − z−2 + z−3 + . . . .

The index is n. You can see that the in-
dex does not appear when the sum is
expanded showing the terms. The sum-
mation index is sometimes referred to
as a dummy index for this reason. Re-
indexing allows one to rewrite the short-
hand summation notation while captur-
ing the same terms. In this example, the
exponents are −n − 1. We can simplify
the notation by letting −n− 1 = −j, or
j = n + 1. Noting that j = 1 when n = 0,
we get the sum ∑∞

j=1(−1)j−1z−j.

f (z) =
∞

∑
n=0

(−1)nz−n−1 =
∞

∑
j=1

(−1)j−1z−j.

Note that this series, which converges outside the unit circle, |z| > 1, has negative
powers of z.

Example 8.23. f (z) = 1
1+z for |z− 1

2 | >
3
2 .

As before, we express this in a form in which we can use a geometric series
expansion. We seek powers of z− 1

2 . So, we add and subtract 1
2 to the z to obtain:

f (z) =
1

1 + z
=

1
1 + (z− 1

2 + 1
2 )

=
1

3
2 + (z− 1

2 )
.

Instead of factoring out the 3
2 as we had done in Example 8.20, we factor out the

(z− 1
2 ) term. Then, we obtain

f (z) =
1

1 + z
=

1
(z− 1

2 )

1[
1 + 3

2 (z−
1
2 )
−1
] .

Now we identify a = 1 and r = − 3
2 (z−

1
2 )
−1. This leads to the series

f (z) =
1

z− 1
2

∞

∑
n=0

(
−3

2
(z− 1

2
)−1
)n

=
∞

∑
n=0

(
−3

2

)n (
z− 1

2

)−n−1
. (8.40)

This converges for |z− 1
2 | >

3
2 and can also be re-indexed to verify that this series

involves negative powers of z− 1
2 .
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This leads to the following theorem:

Theorem 8.8. Let f (z) be analytic in an annulus, R1 < |z− z0| < R2, with C a
positively oriented simple closed curve around z0 and inside the annulus as shown
in Figure 8.34. Then,

f (z) =
∞

∑
j=0

aj(z− z0)
j +

∞

∑
j=1

bj(z− z0)
−j,

with

aj =
1

2πi

∮
C

f (z)
(z− z0)j+1 dz,

and

bj =
1

2πi

∮
C

f (z)
(z− z0)−j+1 dz.

The above series can be written in the more compact form

f (z) =
∞

∑
j=−∞

cj(z− z0)
j.

Such a series expansion is called a Laurent series expansion named after its
discoverer Pierre Alphonse Laurent (1813-1854).

z0

C
R2

R1

x

y

Figure 8.34: This figure shows an an-
nulus, R1 < |z − z0| < R2, with C a
positively oriented simple closed curve
around z0 and inside the annulus.

Example 8.24. Expand f (z) = 1
(1−z)(2+z) in the annulus 1 < |z| < 2.

Using partial fractions , we can write this as

f (z) =
1
3

[
1

1− z
+

1
2 + z

]
.

We can expand the first fraction, 1
1−z , as an analytic function in the region |z| > 1

and the second fraction, 1
2+z , as an analytic function in |z| < 2. This is done as

follows. First, we write

1
2 + z

=
1

2[1− (− z
2 )]

=
1
2

∞

∑
n=0

(
− z

2

)n
.

Then, we write
1

1− z
= − 1

z[1− 1
z ]

= −1
z

∞

∑
n=0

1
zn .

Therefore, in the common region, 1 < |z| < 2, we have that

1
(1− z)(2 + z)

=
1
3

[
1
2

∞

∑
n=0

(
− z

2

)n
−

∞

∑
n=0

1
zn+1

]

=
∞

∑
n=0

(−1)n

6(2n)
zn +

∞

∑
n=1

(−1)
3

z−n. (8.41)

We note that this is not a Taylor series expansion due to the existence of terms with
negative powers in the second sum.
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Example 8.25. Find series representations of f (z) = 1
(1−z)(2+z) throughout the

complex plane.
In the last example we found series representations of f (z) = 1

(1−z)(2+z) in the
annulus 1 < |z| < 2. However, we can also find expansions which converge for
other regions. We first write

f (z) =
1
3

[
1

1− z
+

1
2 + z

]
.

We then expand each term separately.
The first fraction, 1

1−z , can be written as the sum of the geometric series

1
1− z

=
∞

∑
n=0

zn, |z| < 1.

This series converges inside the unit circle. We indicate this by region 1 in Figure
8.35.

In the last example, we showed that the second fraction, 1
2+z , has the series

expansion
1

2 + z
=

1
2[1− (− z

2 )]
=

1
2

∞

∑
n=0

(
− z

2

)n
.

which converges in the circle |z| < 2. This is labeled as region 2 in Figure 8.35.

−2i

−i

i

2i

−2 2−1 1 x

y

1

2

2

3

3

4

Figure 8.35: Regions of convergence for
Laurent expansions of f (z) = 1

1+z .

Regions 1 and 2 intersect for |z| < 1, so, we can combine these two series
representations to obtain

1
(1− z)(2 + z)

=
1
3

[
∞

∑
n=0

zn +
1
2

∞

∑
n=0

(
− z

2

)n
]

, |z| < 1.

In the annulus, 1 < |z| < 2, we had already seen in the last example that we
needed a different expansion for the fraction 1

1−z . We looked for an expansion in
powers of 1/z which would converge for large values of z. We had found that

1
1− z

= − 1

z
(

1− 1
z

) = −1
z

∞

∑
n=0

1
zn , |z| > 1.

This series converges in region 3 in Figure 8.35. Combining this series with the
one for the second fraction, we obtain a series representation that converges in the
overlap of regions 2 and 3. Thus, in the annulus 1 < |z| < 2 we have

1
(1− z)(2 + z)

=
1
3

[
1
2

∞

∑
n=0

(
− z

2

)n
−

∞

∑
n=0

1
zn+1

]
.

So far, we have series representations for |z| < 2. The only region not covered
yet is outside this disk, |z| > 2. In in Figure 8.35 we see that series 3, which
converges in region 3, will converge in the last section of the complex plane. We
just need one more series expansion for 1/(2 + z) for large z. Factoring out a z in
the denominator, we can write this as a geometric series with r = 2/z,

1
2 + z

=
1

z[ 2
z + 1]

=
1
z

∞

∑
n=0

(
−2

z

)n
.
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This series converges for |z| > 2. Therefore, it converges in region 4 and the final
series representation is

1
(1− z)(2 + z)

=
1
3

[
1
z

∞

∑
n=0

(
−2

z

)n
−

∞

∑
n=0

1
zn+1

]
.

8.5.5 Singularities and The Residue Theorem

In the last section we found that we could integrate functions sat-
isfying some analyticity properties along contours without using detailed
parametrizations around the contours. We can deform contours if the func-
tion is analytic in the region between the original and new contour. In this
section we will extend our tools for performing contour integrals.

The integrand in the Cauchy Integral Formula was of the form g(z) =
f (z)

z−z0
, where f (z) is well behaved at z0. The point z = z0 is called a singu-Singularities of complex functions.

larity of g(z), as g(z) is not defined there. More specifically, a singularity of
f (z) is a point at which f (z) fails to be analytic.

We can also classify these singularities. Typically these are isolated sin-
gularities. As we saw from the proof of the Cauchy Integral Formula,
g(z) = f (z)

z−z0
has a Laurent series expansion about z = z0, given by

g(z) =
f (z0)

z− z0
+ f ′(z0) +

1
2

f ′′(z0)(z− z0) + . . . .

It is the nature of the first term that gives information about the type of
singularity that g(z) has. Namely, in order to classify the singularities of
f (z), we look at the principal part of the Laurent series of f (z) about z = z0,
∑∞

j−1 bj(z− z0)
−j, which consists of the negative powers of z− z0.Classification of singularities.

There are three types of singularities, removable, poles, and essential
singularities. They are defined as follows:

1. If f (z) is bounded near z0, then z0 is a removable singularity.

2. If there are a finite number of terms in the principal part of the Lau-
rent series of f (z) about z = z0, then z0 is called a pole.

3. If there are an infinite number of terms in the principal part of the
Laurent series of f (z) about z = z0, then z0 is called an essential
singularity.

Example 8.26. f (z) = sin z
z has a removable singularity at z = 0.

At first it looks like there is a possible singularity at z = 0, since the denomi-
nator is zero at z = 0. However, we know from the first semester of calculus that
limz→0

sin z
z = 1. Furthermore, we can expand sin z about z = 0 and see that

sin z
z

=
1
z
(z− z3

3!
+ . . .) = 1− z2

3!
+ . . . .

Thus, there are only nonnegative powers in the series expansion. So, z = 0 is a
removable singularity.
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Example 8.27. f (z) = ez

(z−1)n has poles at z = 1 for n a positive integer.

For n = 1 we have f (z) = ez

z−1 . This function has a singularity at z = 1. The
series expansion is found by expanding ez about z = 1:

f (z) =
e

z− 1
ez−1 =

e
z− 1

+ e +
e
2!
(z− 1) + . . . .

Note that the principal part of the Laurent series expansion about z = 1 only has
one term, e

z−1 . Therefore, z = 1 is a pole. Since the leading term has an exponent
of −1, z = 1 is called a pole of order one, or a simple pole. Simple pole.

For n = 2 we have f (z) = ez

(z−1)2 . The series expansion is found again by
expanding ez about z = 1:

f (z) =
e

(z− 1)2 ez−1 =
e

(z− 1)2 +
e

z− 1
+

e
2!

+
e
3!
(z− 1) + . . . .

Note that the principal part of the Laurent series has two terms involving (z− 1)−2

and (z− 1)−1. Since the leading term has an exponent of −2, z = 1 is called a pole
of order 2, or a double pole. Double pole.

Example 8.28. f (z) = e
1
z has an essential singularity at z = 0.

In this case we have the series expansion about z = 0 given by

f (z) = e
1
z =

∞

∑
n=0

(
1
z

)n

n!
=

∞

∑
n=0

1
n!

z−n.

We see that there are an infinite number of terms in the principal part of the Laurent
series. So, this function has an essential singularity at z = 0.

In the above examples we have seen poles of order one (a simple pole) Poles of order k.

and two (a double pole). In general, we can say that f (z) has a pole of order
k at z0 if and only if (z − z0)

k f (z) has a removable singularity at z0, but
(z− z0)

k−1 f (z) for k > 0 does not.

Example 8.29. Determine the order of the pole of f (z) = cot z csc z at z = 0.
First we rewrite f (z) in terms of sines and cosines.

f (z) = cot z csc z =
cos z
sin2 z

.

We note that the denominator vanishes at z = 0.
How do we know that the pole is not a simple pole? Well, we check to see if

(z− 0) f (z) has a removable singularity at z = 0:

lim
z→0

(z− 0) f (z) = lim
z→0

z cos z
sin2 z

=

(
lim
z→0

z
sin z

)(
lim
z→0

cos z
sin z

)
= lim

z→0

cos z
sin z

. (8.42)

We see that this limit is undefined. So, now we check to see if (z− 0)2 f (z) has a
removable singularity at z = 0:

lim
z→0

(z− 0)2 f (z) = lim
z→0

z2 cos z
sin2 z
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=

(
lim
z→0

z
sin z

)(
lim
z→0

z cos z
sin z

)
= lim

z→0

z
sin z

cos(0) = 1. (8.43)

In this case, we have obtained a finite, nonzero, result. So, z = 0 is a pole of order
2.

We could have also relied on series expansions. Expanding both the sine and
cosine functions in a Taylor series expansion, we have

f (z) =
cos z
sin2 z

=
1− 1

2! z
2 + . . .

(z− 1
3! z

3 + . . .)2
.

Factoring a z from the expansion in the denominator,

f (z) =
1
z2

1− 1
2! z

2 + . . .

(1− 1
3! z + . . .)2

=
1
z2

(
1 + O(z2)

)
,

we can see that the leading term will be a 1/z2, indicating a pole of order 2.

We will see how knowledge of the poles of a function can aid in the
computation of contour integrals. We now show that if a function, f (z), has
a pole of order k, thenIntegral of a function with a simple pole

inside C. ∮
C

f (z) dz = 2πi Res[ f (z); z0],

where we have defined Res[ f (z); z0] as the residue of f (z) at z = z0. In
particular, for a pole of order k the residue is given by

Residues of a function with poles of or-
der k.

Residues - Poles of order k

Res[ f (z); z0] = lim
z→z0

1
(k− 1)!

dk−1

dzk−1

[
(z− z0)

k f (z)
]

. (8.44)

Proof. Let φ(z) = (z − z0)
k f (z) be an analytic function. Then φ(z) has a

Taylor series expansion about z0. As we had seen in the last section, we can
write the integral representation of any derivative of φ as

φ(k−1)(z0) =
(k− 1)!

2πi

∮
C

φ(z)
(z− z0)k dz.

Inserting the definition of φ(z), we then have

φ(k−1)(z0) =
(k− 1)!

2πi

∮
C

f (z) dz.

Solving for the integral, we have the result∮
C

f (z) dz =
2πi

(k− 1)!
dk−1

dzk−1

[
(z− z0)

k f (z)
]

z=z0

≡ 2πi Res[ f (z); z0] (8.45)
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Note: If z0 is a simple pole, the residue is easily computed as

Res[ f (z); z0] = lim
z→z0

(z− z0) f (z).

The residue for a simple pole.
In fact, one can show (Problem 18) that for g and h analytic functions at z0,
with g(z0) 6= 0, h(z0) = 0, and h′(z0) 6= 0,

Res
[

g(z)
h(z)

; z0

]
=

g(z0)

h′(z0)
.

Example 8.30. Find the residues of f (z) = z−1
(z+1)2(z2+4) .

f (z) has poles at z = −1, z = 2i, and z = −2i. The pole at z = −1 is a double
pole (pole of order 2). The other poles are simple poles. We compute those residues
first:

Res[ f (z); 2i] = lim
z→2i

(z− 2i)
z− 1

(z + 1)2(z + 2i)(z− 2i)

= lim
z→2i

z− 1
(z + 1)2(z + 2i)

=
2i− 1

(2i + 1)2(4i)
= − 1

50
− 11

100
i. (8.46)

Res[ f (z);−2i] = lim
z→−2i

(z + 2i)
z− 1

(z + 1)2(z + 2i)(z− 2i)

= lim
z→−2i

z− 1
(z + 1)2(z− 2i)

=
−2i− 1

(−2i + 1)2(−4i)
= − 1

50
+

11
100

i. (8.47)

For the double pole, we have to do a little more work.

Res[ f (z);−1] = lim
z→−1

d
dz

[
(z + 1)2 z− 1

(z + 1)2(z2 + 4)

]
= lim

z→−1

d
dz

[
z− 1
z2 + 4

]
= lim

z→−1

d
dz

[
z2 + 4− 2z(z− 1)

(z2 + 4)2

]
= lim

z→−1

d
dz

[
−z2 + 2z + 4
(z2 + 4)2

]
=

1
25

. (8.48)

Example 8.31. Find the residue of f (z) = cot z at z = 0.
We write f (z) = cot z = cos z

sin z and note that z = 0 is a simple pole. Thus,

Res[cot z; z = 0] = lim
z→0

z cos z
sin z

= cos(0) = 1.

The residue of f (z) at z0 is the coefficient
of the (z − z0)

−1 term, c−1 = b1, of the
Laurent series expansion about z0.

Another way to find the residue of a function f (z) at a singularity z0 is to
look at the Laurent series expansion about the singularity. This is because
the residue of f (z) at z0 is the coefficient of the (z− z0)

−1 term, or c−1 = b1.
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Example 8.32. Find the residue of f (z) = 1
z(3−z) at z = 0 using a Laurent series

expansion.
First, we need the Laurent series expansion about z = 0 of the form ∑∞

−∞ cnzn.
A partial fraction expansion gives

f (z) =
1

z(3− z)
=

1
3

(
1
z
+

1
3− z

)
.

The first term is a power of z. The second term needs to be written as a convergent
series for small z. This is given by

1
3− z

=
1

3(1− z/3)

=
1
3

∞

∑
n=0

( z
3

)n
. (8.49)

Thus, we have found

f (z) =
1
3

(
1
z
+

1
3

∞

∑
n=0

( z
3

)n
)

.

The coefficient of z−1 can be read off to give Res[ f (z); z = 0] = 1
3 .

Example 8.33. Find the residue of f (z) = z cos 1
z at z = 0 using a Laurent series

expansion.Finding the residue at an essential sin-
gularity. In this case z = 0 is an essential singularity. The only way to find residues at

essential singularities is to use Laurent series. Since

cos z = 1− 1
2!

z2 +
1
4!

z4 − 1
6!

z6 + . . . ,

then we have

f (z) = z
(

1− 1
2!z2 +

1
4!z4 −

1
6!z6 + . . .

)
= z− 1

2!z
+

1
4!z3 −

1
6!z5 + . . . . (8.50)

From the second term we have that Res[ f (z); z = 0] = − 1
2 .

We are now ready to use residues in order to evaluate integrals.
−i

i

−1 1 x

y

|z| = 1

Figure 8.36: Contour for computing∮
|z|=1

dz
sin z .

Example 8.34. Evaluate
∮
|z|=1

dz
sin z .

We begin by looking for the singularities of the integrand. These are located at
values of z for which sin z = 0. Thus, z = 0,±π,±2π, . . . , are the singularities.
However, only z = 0 lies inside the contour, as shown in Figure 8.36. We note
further that z = 0 is a simple pole, since

lim
z→0

(z− 0)
1

sin z
= 1.

Therefore, the residue is one and we have∮
|z|=1

dz
sin z

= 2πi.
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In general, we could have several poles of different orders. For example,
we will be computing ∮

|z|=2

dz
z2 − 1

.

The integrand has singularities at z2 − 1 = 0, or z = ±1. Both poles are
inside the contour, as seen in Figure 8.38. One could do a partial fraction
decomposition and have two integrals with one pole each integral. Then,
the result could be found by adding the residues from each pole.

In general, when there are several poles, we can use the Residue Theorem.
The Residue Theorem.

The Residue Theorem

Theorem 8.9. Let f (z) be a function which has poles zj, j = 1, . . . , N inside a
simple closed contour C and no other singularities in this region. Then,

∮
C

f (z) dz = 2πi
N

∑
j=1

Res[ f (z); zj], (8.51)

where the residues are computed using Equation (8.44),

Res[ f (z); z0] = lim
z→z0

1
(k− 1)!

dk−1

dzk−1

[
(z− z0)

k f (z)
]

.
C

C2

C1

C2

Figure 8.37: A depiction of how one
cuts out poles to prove that the inte-
gral around C is the sum of the integrals
around circles with the poles at the cen-
ter of each.

The proof of this theorem is based upon the contours shown in Figure
8.37. One constructs a new contour C′ by encircling each pole, as show in
the figure. Then one connects a path from C to each circle. In the figure
two separated paths along the cut are shown only to indicate the direction
followed on the cut. The new contour is then obtained by following C and
crossing each cut as it is encountered. Then one goes around a circle in the
negative sense and returns along the cut to proceed around C. The sum of
the contributions to the contour integration involve two integrals for each
cut, which will cancel due to the opposing directions. Thus, we are left with∮

C′
f (z) dz =

∮
C

f (z) dz−
∮

C1

f (z) dz−
∮

C2

f (z) dz−
∮

C3

f (z) dz = 0.

Of course, the sum is zero because f (z) is analytic in the enclosed region,
since all singularities have been cut out. Solving for

∮
C f (z) dz, one has that

this integral is the sum of the integrals around the separate poles, which
can be evaluated with single residue computations. Thus, the result is that∮

C f (z) dz is 2πi times the sum of the residues.

Example 8.35. Evaluate
∮
|z|=2

dz
z2−1 .

We first note that there are two poles in this integral since

1
z2 − 1

=
1

(z− 1)(z + 1)
.

In Figure 8.38 we plot the contour and the two poles, denoted by an “x.” Since both
poles are inside the contour, we need to compute the residues for each one. They are
each simple poles, so we have
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Res
[

1
z2 − 1

; z = 1
]

= lim
z→1

(z− 1)
1

z2 − 1

= lim
z→1

1
z + 1

=
1
2

, (8.52)

and

Res
[

1
z2 − 1

; z = −1
]

= lim
z→−1

(z + 1)
1

z2 − 1

= lim
z→−1

1
z− 1

= −1
2

. (8.53)

−2i

−i

i

2i

−2 2−1 1 x

y

|z| = 2

Figure 8.38: Contour for computing∮
|z|=2

dz
z2−1 .

Then, ∮
|z|=2

dz
z2 − 1

= 2πi(
1
2
− 1

2
) = 0.

Example 8.36. Evaluate
∮
|z|=3

z2+1
(z−1)2(z+2) dz.

In this example there are two poles z = 1,−2 inside the contour. [See Figure
8.39.] z = 1 is a second order pole and z = −2 is a simple pole. Therefore, we need
to compute the residues at each pole of f (z) = z2+1

(z−1)2(z+2) :

Res[ f (z); z = 1] = lim
z→1

1
1!

d
dz

[
(z− 1)2 z2 + 1

(z− 1)2(z + 2)

]
= lim

z→1

(
z2 + 4z− 1
(z + 2)2

)
=

4
9

. (8.54)

Res[ f (z); z = −2] = lim
z→−2

(z + 2)
z2 + 1

(z− 1)2(z + 2)

= lim
z→−2

z2 + 1
(z− 1)2

=
5
9

. (8.55)

−3i

−2i

−i

i

2i

3i

−3 3−2 2−1 1 x

y

|z| = 3

Figure 8.39: Contour for computing∮
|z|=3

z2+1
(z−1)2(z+2) dz.

The evaluation of the integral is found by computing 2πi times the sum of the
residues: ∮

|z|=3

z2 + 1
(z− 1)2(z + 2)

dz = 2πi
(

4
9
+

5
9

)
= 2πi.

Example 8.37. Compute
∮
|z|=2 z3e2/z dz.

In this case, z = 0 is an essential singularity and is inside the contour. A
Laurent series expansion about z = 0 gives

z3e2/z = z3
∞

∑
n=0

1
n!

(
2
z

)n

=
∞

∑
n=0

2n

n!
z3−n

= z3 +
2
2!

z2 +
4
3!

z +
8
4!

+
16
5!z

+ . . . . (8.56)
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The residue is the coefficient of z−1, or Res[z3e2/z; z = 0] = − 2
15 . Therefore,

∮
|z|=2

z3e2/z dz =
4
15

πi.

Example 8.38. Evaluate
∫ 2π

0
dθ

2+cos θ .
Here we have a real integral in which there are no signs of complex functions.

In fact, we could apply simpler methods from a calculus course to do this integral,
attempting to write 1 + cos θ = 2 cos2 θ

2 . However, we do not get very far.
One trick, useful in computing integrals whose integrand is in the form f (cos θ, sin θ),

is to transform the integration to the complex plane through the transformation
z = eiθ . Then,

cos θ =
eiθ + e−iθ

2
=

1
2

(
z +

1
z

)
,

sin θ =
eiθ − e−iθ

2i
= − i

2

(
z− 1

z

)
.

Computation of integrals of functions of
sines and cosines, f (cos θ, sin θ).

Under this transformation, z = eiθ , the integration now takes place around the
unit circle in the complex plane. Noting that dz = ieiθ dθ = iz dθ, we have

∫ 2π

0

dθ

2 + cos θ
=

∮
|z|=1

dz
iz

2 + 1
2

(
z + 1

z

)
= −i

∮
|z|=1

dz
2z + 1

2 (z
2 + 1)

= −2i
∮
|z|=1

dz
z2 + 4z + 1

. (8.57)

−i

i

−4 −3 −2 −1 1 x

y

|z| = 1

Figure 8.40: Contour for computing∫ 2π
0

dθ
2+cos θ .

We can apply the Residue Theorem to the resulting integral. The singularities
occur at the roots of z2 + 4z + 1 = 0. Using the quadratic formula, we have the
roots z = −2±

√
3.

The location of these poles are shown in Figure 8.40. Only z = −2 +
√

3 lies
inside the integration contour. We will therefore need the residue of f (z) = −2i

z2+4z+1
at this simple pole:

Res[ f (z); z = −2 +
√

3] = lim
z→−2+

√
3
(z− (−2 +

√
3))

−2i
z2 + 4z + 1

= −2i lim
z→−2+

√
3

z− (−2 +
√

3)
(z− (−2 +

√
3))(z− (−2−

√
3))

= −2i lim
z→−2+

√
3

1
z− (−2−

√
3)

=
−2i

−2 +
√

3− (−2−
√

3)

=
−i√

3

=
−i
√

3
3

. (8.58)



322 partial differential equations

Therefore, we have

∫ 2π

0

dθ

2 + cos θ
= −2i

∮
|z|=1

dz
z2 + 4z + 1

= 2πi

(
−i
√

3
3

)
=

2π
√

3
3

. (8.59)

Before moving on to further applications, we note that there is another
way to compute the integral in the last example. Karl Theodor Wilhelm
Weierstraß (1815-1897) introduced a substitution method for computing
integrals involving rational functions of sine and cosine. One makes the
substitution t = tan θ

2 and converts the integrand into a rational function of
t. One can show that this substitution implies thatThe Weierstraß substitution method.

sin θ =
2t

1 + t2 , cos θ =
1− t2

1 + t2 ,

and

dθ =
2dt

1 + t2 .

The details are left for Problem 8 and apply the method. In order to see how
it works, we will redo the last problem.

Example 8.39. Apply the Weierstraß substitution method to compute
∫ 2π

0
dθ

2+cos θ .

∫ 2π

0

dθ

2 + cos θ
=

∫ ∞

−∞

1

2 + 1−t2

1+t2

2dt
1 + t2

= 2
∫ ∞

−∞

dt
t2 + 3

=
2
3

√
3

[
tan−1

(√
3

3
t

)]∞

−∞

=
2π
√

3
3

. (8.60)

8.5.6 Infinite Integrals

Infinite integrals of the form

∫ ∞
−∞ f (x) dx occur often in physics.

They can represent wave packets, wave diffraction, Fourier transforms, and
arise in other applications. In this section we will see that such integrals
may be computed by extending the integration to a contour in the complex
plane.

Recall from your calculus experience that these integrals are improper
integrals and the way that one determines if improper integrals exist, or
converge, is to carefully compute these integrals using limits such as

∫ ∞

−∞
f (x) dx = lim

R→∞

∫ R

−R
f (x) dx.

For example, we evaluate the integral of f (x) = x as

∫ ∞

−∞
x dx = lim

R→∞

∫ R

−R
x dx = lim

R→∞

(
R2

2
− (−R)2

2

)
= 0.
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One might also be tempted to carry out this integration by splitting the
integration interval, (−∞, 0] ∪ [0, ∞). However, the integrals

∫ ∞
0 x dx and∫ 0

−∞ x dx do not exist. A simple computation confirms this.

∫ ∞

0
x dx = lim

R→∞

∫ R

0
x dx = lim

R→∞

(
R2

2

)
= ∞.

Therefore, ∫ ∞

−∞
f (x) dx =

∫ 0

−∞
f (x) dx +

∫ ∞

0
f (x) dx

does not exist while limR→∞
∫ R
−R f (x) dx does exist. We will be interested in

computing the latter type of integral. Such an integral is called the Cauchy
Principal Value Integral and is denoted with either a P, PV, or a bar through The Cauchy principal value integral.

the integral:

P
∫ ∞

−∞
f (x) dx = PV

∫ ∞

−∞
f (x) dx = −

∫ ∞

−∞
f (x) dx = lim

R→∞

∫ R

−R
f (x) dx. (8.61)

If there is a discontinuity in the integral, one can further modify this
definition of principal value integral to bypass the singularity. For example,
if f (x) is continuous on a ≤ x ≤ b and not defined at x = x0 ∈ [a, b], then∫ b

a
f (x) dx = lim

ε→0

(∫ x0−ε

a
f (x) dx +

∫ b

x0+ε
f (x) dx

)
.

In our discussions we will be computing integrals over the real line in the
Cauchy principal value sense.

Example 8.40. Compute
∫ 1
−1

dx
x3 in the Cauchy Principal Value sense.

In this case, f (x) = 1
x3 is not defined at x = 0. So, we have

∫ 1

−1

dx
x3 = lim

ε→0

(∫ −ε

−1

dx
x3 +

∫ 1

ε

dx
x3

)
= lim

ε→0

(
− 1

2x2

∣∣∣−ε

−1
− 1

2x2

∣∣∣1
ε

)
= 0. (8.62)

We now proceed to the evaluation of principal value integrals using Computation of real integrals by embed-
ding the problem in the complex plane.complex integration methods. We want to evaluate the integral

∫ ∞
−∞ f (x) dx.

We will extend this into an integration in the complex plane. We extend f (x)
to f (z) and assume that f (z) is analytic in the upper half plane (Im(z) > 0)
except at isolated poles. We then consider the integral

∫ R
−R f (x) dx as an

integral over the interval (−R, R). We view this interval as a piece of a
larger contour CR obtained by completing the contour with a semicircle ΓR

of radius R extending into the upper half plane as shown in Figure 8.41.
Note, a similar construction is sometimes needed extending the integration
into the lower half plane (Im(z) < 0) as we will later see.

R−R x

y

ΓR

R

Figure 8.41: Contours for computing
P
∫ ∞
−∞ f (x) dx.

The integral around the entire contour CR can be computed using the
Residue Theorem and is related to integrations over the pieces of the contour
by ∮

CR

f (z) dz =
∫

ΓR

f (z) dz +
∫ R

−R
f (z) dz. (8.63)
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Taking the limit R → ∞ and noting that the integral over (−R, R) is the
desired integral, we have

P
∫ ∞

−∞
f (x) dx =

∮
C

f (z) dz− lim
R→∞

∫
ΓR

f (z) dz, (8.64)

where we have identified C as the limiting contour as R gets large.
Now the key to carrying out the integration is that the second integral

vanishes in the limit. This is true if R| f (z)| → 0 along ΓR as R → ∞. This
can be seen by the following argument. We parametrize the contour ΓR

using z = Reiθ . Then, when | f (z)| < M(R),∣∣∣∣∫ΓR

f (z) dz
∣∣∣∣ =

∣∣∣∣∫ 2π

0
f (Reiθ)Reiθ dθ

∣∣∣∣
≤ R

∫ 2π

0

∣∣∣ f (Reiθ)
∣∣∣ dθ

< RM(R)
∫ 2π

0
dθ

= 2πRM(R). (8.65)

So, if limR→∞ RM(R) = 0, then limR→∞
∫

ΓR
f (z) dz = 0.

We now demonstrate how to use complex integration methods in evalu-
ating integrals over real valued functions.

Example 8.41. Evaluate
∫ ∞
−∞

dx
1+x2 .

We already know how to do this integral using calculus without complex analy-
sis. We have that∫ ∞

−∞

dx
1 + x2 = lim

R→∞

(
2 tan−1 R

)
= 2

(π

2

)
= π.

We will apply the methods of this section and confirm this result. The needed
contours are shown in Figure 8.42 and the poles of the integrand are at z = ±i. We
first write the integral over the bounded contour CR as the sum of an integral from
−R to R along the real axis plus the integral over the semicircular arc in the upper
half complex plane, ∫

CR

dz
1 + z2 =

∫ R

−R

dx
1 + x2 +

∫
ΓR

dz
1 + z2 .

Next, we let R get large.
R−R x

y

ΓR

i

−i

Figure 8.42: Contour for computing∫ ∞
−∞

dx
1+x2 .

We first note that f (z) = 1
1+z2 goes to zero fast enough on ΓR as R gets large.

R| f (z)| = R
|1 + R2e2iθ| =

R√
1 + 2R2 cos θ + R4

.

Thus, as R→ ∞, R| f (z)| → 0 and CR → C. So,∫ ∞

−∞

dx
1 + x2 =

∮
C

dz
1 + z2 .

We need only compute the residue at the enclosed pole, z = i.

Res[ f (z); z = i] = lim
z→i

(z− i)
1

1 + z2 = lim
z→i

1
z + i

=
1
2i

.
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Then, using the Residue Theorem, we have∫ ∞

−∞

dx
1 + x2 = 2πi

(
1
2i

)
= π.

Example 8.42. Evaluate P
∫ ∞
−∞

sin x
x dx.

For this example the integral is unbounded at z = 0. Constructing the contours
as before we are faced for the first time with a pole lying on the contour. We cannot
ignore this fact. We can proceed with the computation by carefully going around
the pole with a small semicircle of radius ε, as shown in Figure 8.43. Then the
principal value integral computation becomes

P
∫ ∞

−∞

sin x
x

dx = lim
ε→0,R→∞

(∫ −ε

−R

sin x
x

dx +
∫ R

ε

sin x
x

dx
)

. (8.66)

We will also need to rewrite the sine function in term of exponentials in this
integral. There are two approaches that we could take. First, we could employ the
definition of the sine function in terms of complex exponentials. This gives two
integrals to compute:

P
∫ ∞

−∞

sin x
x

dx =
1
2i

(
P
∫ ∞

−∞

eix

x
dx− P

∫ ∞

−∞

e−ix

x
dx
)

. (8.67)

The other approach would be to realize that the sine function is the imaginary part
of an exponential, Im eix = sinx. Then, we would have

P
∫ ∞

−∞

sin x
x

dx = Im
(

P
∫ ∞

−∞

eix

x
dx
)

. (8.68)

ε R−R −ε x

y

Cε

ΓR

Figure 8.43: Contour for computing
P
∫ ∞
−∞

sin x
x dx.

We first consider P
∫ ∞
−∞

eix

x dx, which is common to both approaches. We use the
contour in Figure 8.43. Then we have

∮
CR

eiz

z
dz =

∫
ΓR

eiz

z
dz +

∫ −ε

−R

eiz

z
dz +

∫
Cε

eiz

z
dz +

∫ R

ε

eiz

z
dz.

The integral
∮

CR
eiz

z dz vanishes since there are no poles enclosed in the contour!
The sum of the second and fourth integrals gives the integral we seek as ε → 0
and R→ ∞. The integral over ΓR will vanish as R gets large according to Jordan’s
Lemma.

Jordan’s Lemma give conditions as when integrals over ΓR will vanish as R gets
large. We state a version of Jordan’s Lemma here for reference and give a proof is at
the end of this chapter.

Jordan’s Lemma

If f (z) converges uniformly to zero as z→ ∞, then

lim
R→∞

∫
CR

f (z)eikz dz = 0

where k > 0 and CR is the upper half of the circle |z| = R.
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A similar result applies for k < 0, but one closes the contour in the lower half plane.
[See Section 8.5.8 for the proof of Jordan’s Lemma.]

The remaining integral around the small semicircular arc has to be done sepa-
rately. We have∫

Cε

eiz

z
dz =

∫ 0

π

exp(iεeiθ)

εeiθ iεeiθ dθ = −
∫ π

0
i exp(iεeiθ) dθ.

Taking the limit as ε goes to zero, the integrand goes to i and we have∫
Cε

eiz

z
dz = −πi.

Note that we have not previously done
integrals in which a singularity lies on
the contour. One can show, as in this ex-
ample, that points on the contour can be
accounted for by using half of a residue
(times 2πi). For the semicircle Cε you
can verify this. The negative sign comes
from going clockwise around the semi-
circle.

So far, we have that

P
∫ ∞

−∞

eix

x
dx = − lim

ε→0

∫
Cε

eiz

z
dz = πi.

At this point we can get the answer using the second approach in Equation (8.68).
Namely,

P
∫ ∞

−∞

sin x
x

dx = Im
(

P
∫ ∞

−∞

eix

x
dx
)
= Im(πi) = π. (8.69)

It is instructive to carry out the first approach in Equation (8.67). We will need
to compute P

∫ ∞
−∞

e−ix

x dx. This is done in a similar to the above computation, being
careful with the sign changes due to the orientations of the contours as shown in
Figure 8.44.

We note that the contour is closed in the lower half plane. This is because k < 0
in the application of Jordan’s Lemma. One can understand why this is the case
from the following observation. Consider the exponential in Jordan’s Lemma. Let
z = zR + izI . Then,

eikz = eik(zR+izI) = e−kzI eikzR .

As |z| gets large, the second factor just oscillates. The first factor would go to zero
if kzI > 0. So, if k > 0, we would close the contour in the upper half plane. If
k < 0, then we would close the contour in the lower half plane. In the current
computation, k = −1, so we use the lower half plane.

Working out the details, we find the same value for

P
∫ ∞

−∞

e−ix

x
dx = πi.

ε R−R −ε

x

y

Cε

ΓR

Figure 8.44: Contour in the lower half
plane for computing P

∫ ∞
−∞

e−ix

x dx.

Finally, we can compute the original integral as

P
∫ ∞

−∞

sin x
x

dx =
1
2i

(
P
∫ ∞

−∞

eix

x
dx− P

∫ ∞

−∞

e−ix

x
dx
)

=
1
2i

(πi + πi)

= π. (8.70)

This is the same result as we obtained using Equation(8.68).
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Example 8.43. Evaluate
∮
|z|=1

dz
z2+1 .

In this example there are two simple poles, z = ±i lying on the contour, as
seen in Figure 8.45. This problem is similar to Problem 1c, except we will do it
using contour integration instead of a parametrization. We bypass the two poles
by drawing small semicircles around them. Since the poles are not included in the
closed contour, then the Residue Theorem tells us that the integral over the path
vanishes. We can write the full integration as a sum over three paths, C± for the
semicircles and C for the original contour with the poles cut out. Then we take the
limit as the semicircle radii go to zero. So,

0 =
∫

C

dz
z2 + 1

+
∫

C+

dz
z2 + 1

+
∫

C−

dz
z2 + 1

.

−i

i

−1 1 x

y

|z| = 1

Figure 8.45: Example with poles on con-
tour.

The integral over the semicircle around i can be done using the parametrization
z = i + εeiθ . Then z2 + 1 = 2iεeiθ + ε2e2iθ . This gives

∫
C+

dz
z2 + 1

= lim
ε→0

∫ −π

0

iεeiθ

2iεeiθ + ε2e2iθ dθ =
1
2

∫ −π

0
dθ = −π

2
.

As in the last example, we note that this is just πi times the residue, Res
[

1
z2+1 ; z = i

]
=

1
2i . Since the path is traced clockwise, we find the contribution is −πiRes = −π

2 ,
which is what we obtained above. A Similar computation will give the contribution
from z = −i as π

2 . Adding these values gives the total contribution from C± as
zero. So, the final result is that ∮

|z|=1

dz
z2 + 1

= 0.

Example 8.44. Evaluate
∫ ∞
−∞

eax

1+ex dx, for 0 < a < 1.
In dealing with integrals involving exponentials or hyperbolic functions it is

sometimes useful to use different types of contours. This example is one such case.
We will replace x with z and integrate over the contour in Figure 8.46. Letting
R → ∞, the integral along the real axis is the integral that we desire. The integral
along the path for y = 2π leads to a multiple of this integral since z = x + 2πi
along this path. Integration along the vertical paths vanish as R → ∞. This is
captured in the following integrals:

∮
CR

eaz

1 + ez dz =
∫ R

−R

eax

1 + ex dx +
∫ 2π

0

ea(R+iy)

1 + eR+iy dy

+
∫ −R

R

ea(x+2πi)

1 + ex+2πi dx +
∫ 0

2π

ea(−R+iy)

1 + e−R+iy dy (8.71)

x

y

R

R + 2πi−R + 2πi

−R

Figure 8.46: Example using a rectangular
contour.

We can now let R → ∞. For large R the second integral decays as e(a−1)R and
the fourth integral decays as e−aR. Thus, we are left with

∮
C

eaz

1 + ez dz = lim
R→∞

(∫ R

−R

eax

1 + ex dx− e2πia
∫ R

−R

eax

1 + ex dx
)

= (1− e2πia)
∫ ∞

−∞

eax

1 + ex dx. (8.72)
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We need only evaluate the left contour integral using the Residue Theorem. The
poles are found from

1 + ez = 0.

Within the contour, this is satisfied by z = iπ. So,

Res
[

eaz

1 + ez ; z = iπ
]
= lim

z→iπ
(z− iπ)

eaz

1 + ez = −eiπa.

Applying the Residue Theorem, we have

(1− e2πia)
∫ ∞

−∞

eax

1 + ex dx = −2πieiπa.

Therefore, we have found that∫ ∞

−∞

eax

1 + ex dx =
−2πieiπa

1− e2πia =
π

sin πa
, 0 < a < 1.

8.5.7 Integration Over Multivalued Functions

We have seen that some complex functions inherently possess mul-
tivaluedness; i.e., such “functions” do not evaluate to a single value, but
have many values. The key examples were f (z) = z1/n and f (z) = ln z.
The nth roots have n distinct values and logarithms have an infinite num-
ber of values as determined by the range of the resulting arguments. We
mentioned that the way to handle multivaluedness is to assign different
branches to these functions, introduce a branch cut and glue them together
at the branch cuts to form Riemann surfaces. In this way we can draw con-
tinuous paths along the Riemann surfaces as we move from one Riemann
sheet to another.

Before we do examples of contour integration involving multivalued func-
tions, lets first try to get a handle on multivaluedness in a simple case. We
will consider the square root function,

w = z1/2 = r1/2ei( θ
2+kπ), k = 0, 1.

There are two branches, corresponding to each k value. If we follow a
path not containing the origin, then we stay in the same branch, so the final
argument (θ) will be equal to the initial argument. However, if we follow a
path that encloses the origin, this will not be true. In particular, for an initial
point on the unit circle, z0 = eiθ0 , we have its image as w0 = eiθ0/2. However,
if we go around a full revolution, θ = θ0 + 2π, then

z1 = eiθ0+2πi = eiθ0 ,

but
w1 = e(iθ0+2πi)/2 = eiθ0/2eπi 6= w0.

Here we obtain a final argument (θ) that is not equal to the initial argument!
Somewhere, we have crossed from one branch to another. Points, such as
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the origin in this example, are called branch points. Actually, there are two
branch points, because we can view the closed path around the origin as
a closed path around complex infinity in the compactified complex plane.
However, we will not go into that at this time.

We can demonstrate this in the following figures. In Figure 8.47 we show
how the points A-E are mapped from the z-plane into the w-plane under
the square root function for the principal branch, k = 0. As we trace out the
unit circle in the z-plane, we only trace out a semicircle in the w-plane. If
we consider the branch k = 1, we then trace out a semicircle in the lower
half plane, as shown in Figure 8.48 following the points from F to J.

x

y

A

B

C

D

E
x

y

A

B
C

D

E

Figure 8.47: In this figure we show how
points on the unit circle in the z-plane
are mapped to points in the w-plane un-
der the principal square root function.

x

y

F

G

H

I

J
x

y

F

G
H

I

J

Figure 8.48: In this figure we show how
points on the unit circle in the z-plane
are mapped to points in the w-plane un-
der the square root function for the sec-
ond branch, k = 1.
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x
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I

J

F

G
H

I

J

Figure 8.49: In this figure we show the
combined mapping using two branches
of the square root function.

We can combine these into one mapping depicting how the two complex
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planes corresponding to each branch provide a mapping to the w-plane.
This is shown in Figure 8.49.

A common way to draw this domain, which looks like two separate com-
plex planes, would be to glue them together. Imagine cutting each plane
along the positive x-axis, extending between the two branch points, z = 0
and z = ∞. As one approaches the cut on the principal branch, then one
can move onto the glued second branch. Then one continues around the
origin on this branch until one once again reaches the cut. This cut is glued
to the principal branch in such a way that the path returns to its starting
point. The resulting surface we obtain is the Riemann surface shown in
Figure 8.50. Note that there is nothing that forces us to place the branch
cut at a particular place. For example, the branch cut could be along the
positive real axis, the negative real axis, or any path connecting the origin
and complex infinity.

Figure 8.50: Riemann surface for f (z) =
z1/2.

We now look at examples involving integrals of multivalued functions.

Example 8.45. Evaluate
∫ ∞

0

√
x

1+x2 dx.

We consider the contour integral
∮

C

√
z

1+z2 dz.
The first thing we can see in this problem is the square root function in the

integrand. Being there is a multivalued function, we locate the branch point and
determine where to draw the branch cut. In Figure 8.51 we show the contour that
we will use in this problem. Note that we picked the branch cut along the positive
x-axis.

x

y

CR

Cε

i

−i

Figure 8.51: An example of a contour
which accounts for a branch cut.

We take the contour C to be positively oriented, being careful to enclose the two
poles and to hug the branch cut. It consists of two circles. The outer circle CR is a
circle of radius R and the inner circle Cε will have a radius of ε. The sought answer
will be obtained by letting R → ∞ and ε → 0. On the large circle we have that
the integrand goes to zero fast enough as R → ∞. The integral around the small
circle vanishes as ε → 0. We can see this by parametrizing the circle as z = εeiθ

for θ ∈ [0, 2π] : ∮
Cε

√
z

1 + z2 dz =
∫ 2π

0

√
εeiθ

1 + (εeiθ)2 iεeiθdθ

= iε3/2
∫ 2π

0

e3iθ/2

1 + (ε2e2iθ)
dθ. (8.73)

It should now be easy to see that as ε→ 0 this integral vanishes.
The integral above the branch cut is the one we are seeking,

∫ ∞
0

√
x

1+x2 dx. The
integral under the branch cut, where z = re2πi, is∫ √

z
1 + z2 dz =

∫ 0

∞

√
re2πi

1 + r2e4πi dr

=
∫ ∞

0

√
r

1 + r2 dr. (8.74)

We note that this is the same as that above the cut.
Up to this point, we have that the contour integral, as R→ ∞ and ε→ 0 is∮

C

√
z

1 + z2 dz = 2
∫ ∞

0

√
x

1 + x2 dx.
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In order to finish this problem, we need the residues at the two simple poles.

Res
[ √

z
1 + z2 ; z = i

]
=

√
i

2i
=

√
2

4
(1 + i),

Res
[ √

z
1 + z2 ; z = −i

]
=

√
−i
−2i

=

√
2

4
(1− i).

So,

2
∫ ∞

0

√
x

1 + x2 dx = 2πi

(√
2

4
(1 + i) +

√
2

4
(1− i)

)
= π
√

2.

Finally, we have the value of the integral that we were seeking,∫ ∞

0

√
x

1 + x2 dx =
π
√

2
2

.

Example 8.46. Compute
∫ ∞

a f (x) dx using contour integration involving loga-
rithms.4

4 This approach was originally published
in Neville, E. H., 1945, Indefinite integra-
tion by means of residues. The Mathemat-
ical Student, 13, 16-35, and discussed in
Duffy, D. G., Transform Methods for Solv-
ing Partial Differential Equations, 1994.

In this example we will apply contour integration to the integral∮
C

f (z) ln(a− z) dz

for the contour shown in Figure 8.52. x

y

C2

C4
C1

C3

Figure 8.52: Contour needed to compute∮
C f (z) ln(a− z) dz.

We will assume that f (z) is single valued and vanishes as |z| → ∞. We will
choose the branch cut to span from the origin along the positive real axis. Employing
the Residue Theorem and breaking up the integrals over the pieces of the contour in
Figure 8.52, we have schematically that

2πi ∑ Res[ f (z) ln(a− z)] =
(∫

C1

+
∫

C2

+
∫

C3

+
∫

C4

)
f (z) ln(a− z) dz.

First of all, we assume that f (z) is well behaved at z = a and vanishes fast
enough as |z| = R → ∞. Then, the integrals over C2 and C4 will vanish. For
example, for the path C4, we let z = a + εeiθ , 0 < θ < 2π. Then,∫

C4

f (z) ln(a− z) dz. = lim
ε→0

∫ 0

2π
f (a + εeiθ) ln(εeiθ)iεeiθ dθ.

If f (a) is well behaved, then we only need to show that limε→0 ε ln ε = 0. This is
left to the reader.

Similarly, we consider the integral over C2 as R gets large,∫
C2

f (z) ln(a− z) dz = lim
R→∞

∫ 2π

0
f (Reiθ) ln(Reiθ)iReiθ dθ.

Thus, we need only require that

lim
R→∞

R ln R| f (Reiθ)| = 0.

Next, we consider the two straight line pieces. For C1, the integration along the
real axis occurs for z = x, so∫

C1

f (z) ln(a− z) dz =
∫ ∞

a
f (x) ln(a− x) dz.
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However, integration over C3 requires noting that we need the branch for the loga-
rithm such that ln z = ln(a− x) + 2πi. Then,∫

C3

f (z) ln(a− z) dz =
∫ a

∞
f (x)[ln(a− x) + 2πi] dz.

Combining these results, we have

2πi ∑ Res[ f (z) ln(a− z)] =
∫ ∞

a
f (x) ln(a− x) dz

+
∫ a

∞
f (x)[ln(a− x) + 2πi] dz.

= −2πi
∫ ∞

a
f (x) dz. (8.75)

Therefore, ∫ ∞

a
f (x) dx = −∑ Res[ f (z) ln(a− z)].x

y

C

1
2- 1

2

Figure 8.53: Contour needed to compute∫ ∞
1

dx
4x2−1 .

Example 8.47. Compute
∫ ∞

1
dx

4x2−1 .
We can apply the last example to this case. We see from Figure 8.53 that the two

poles at z = ± 1
2 are inside contour C. So, we compute the residues of ln(1−z)

4z2−1 at
these poles and find that∫ ∞

1

dx
4x2 − 1

= −Res
[

ln(1− z)
4z2 − 1

;
1
2

]
− Res

[
ln(1− z)
4z2 − 1

;−1
2

]
= −

ln 1
2

4
+

ln 3
2

4
=

ln 3
4

. (8.76)

8.5.8 Appendix: Jordan’s Lemma

For completeness, we prove Jordan’s Lemma.

Theorem 8.10. If f (z) converges uniformly to zero as z→ ∞, then

lim
R→∞

∫
CR

f (z)eikz dz = 0

where k > 0 and CR is the upper half of the circle |z| = R.

Proof. We consider the integral

IR =
∫

CR

f (z)eikz dz,

where k > 0 and CR is the upper half of the circle |z| = R in the complex
plane. Let z = Reiθ be a parametrization of CR. Then,

IR =
∫ π

0
f (Reiθ)eikR cos θ−aR sin θ iReiθ dθ.

Since
lim
|z|→∞

f (z) = 0, 0 ≤ arg z ≤ π,
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then for large |R|, | f (z)| < ε for some ε > 0. Then,

|IR| =

∣∣∣∣∫ π

0
f (Reiθ)eikR cos θ−aR sin θ iReiθ dθ

∣∣∣∣
≤

∫ π

0

∣∣∣ f (Reiθ)
∣∣∣ ∣∣∣eikR cos θ

∣∣∣ ∣∣∣e−aR sin θ
∣∣∣ ∣∣∣iReiθ

∣∣∣ dθ

≤ εR
∫ π

0
e−aR sin θ dθ

= 2εR
∫ π/2

0
e−aR sin θ dθ. (8.77)

0 π
2

π

0.5

1

1.5

θ

Figure 8.54: Plots of y = sin θ and y =
2
π θ to show where sin θ ≥ 2

π θ.

The last integral still cannot be computed, but we can get a bound on it
over the range θ ∈ [0, π/2]. Note from Figure 8.54 that

sin θ ≥ 2
π

θ, θ ∈ [0, π/2].

Therefore, we have

|IR| ≤ 2εR
∫ π/2

0
e−2aRθ/π dθ =

2εR
2aR/π

(1− e−aR).

For large R we have

lim
R→∞

|IR| ≤
πε

a
.

So, as ε→ 0, the integral vanishes.

8.6 Laplace’s Equation in 2D, Revisited

Harmonic functions are solutions of Laplace’s equation. We
have seen that the real and imaginary parts of a holomorphic function are
harmonic. So, there must be a connection between complex functions and
solutions of the two-dimensional Laplace equation. In this section we will
describe how conformal mapping can be used to find solutions of Laplace’s
equation in two dimensional regions.

In Section 2.5 we had first seen applications in two-dimensional steady-
state heat flow (or, diffusion), electrostatics, and fluid flow. For example,
letting φ(r) be the electric potential, one has for a static charge distribution,
ρ(r), that the electric field, E = ∇φ, satisfies

∇ · E = ρ/ε0.

In regions devoid of charge, these equations yield the Laplace equation,
∇2φ = 0.

Similarly, we can derive Laplace’s equation for an incompressible, ∇ · v =

0, irrotational, ,∇× v = 0, fluid flow. From well-known vector identities, we
know that ∇×∇φ = 0 for a scalar function, φ. Therefore, we can introduce
a velocity potential, φ, such that v = ∇φ. Thus, ∇ · v = 0 implies ∇2φ = 0.
So, the velocity potential satisfies Laplace’s equation.
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Fluid flow is probably the simplest and most interesting application of
complex variable techniques for solving Laplace’s equation. So, we will
spend some time discussing how conformal mappings have been used to
study two-dimensional ideal fluid flow, leading to the study of airfoil de-
sign.

8.6.1 Fluid Flow

The study of fluid flow and conformal mappings dates back to Euler, Rie-
mann, and others.5 The method was further elaborated upon by physicists5 “On the Use of Conformal Mapping in

Shaping Wing Profiles,” MAA lecture by
R. S. Burington, 1939, published (1940)
in ... 362-373

like Lord Rayleigh (1877) and applications to airfoil theory we presented in
papers by Kutta (1902) and Joukowski (1906) on later to be improved upon
by others.

The physics behind flight and the dynamics of wing theory relies on the
ideas of drag and lift. Namely, as the the cross section of a wing, the airfoil,
goes through the air, it will experience several forces. The air speed above
and belong the wing will differ due to the distance the air has to travel
across the top and bottom of the wing. According to Bernoulli’s Principle,
steady fluid flow satisfies the conservation of energy in the form

P +
1
2

ρU2 + ρgh = constant

at points on either side of the wing profile. Here P is the pressure, ρ is the air
density, U is the fluid speed, h is a reference height, and g is the acceleration
due to gravity. The gravitational potential energy, ρgh, is roughly constant
on either side of the wing. So, this reduces to

P +
1
2

ρU2 = constant.

Therefore, if the speed of the air below the wing is lower that than above
the wing, the pressure below the wing will be higher, resulting in a net
upward pressure. Since the pressure is the force per area, this will result
in an upward force, a lift force, acting on the wing. This is the simplified
version for the lift force. There is also a drag force acting in the direction of
the flow. In general, we want to use complex variable methods to model the
streamlines of the airflow as the air flows around an airfoil.

We begin by considering the fluid flow across a curve, C as shown in
Figure 8.55. We assume that it is an ideal fluid with zero viscosity (i.e.,
does not flow like molasses) and is incompressible. It is a continuous, ho-
mogeneous flow with a constant thickness and represented by a velocity
U = (u(x, y), v(x, y)), where u and v are the horizontal components of the
flow as shown in Figure 8.55.

x

y

A

B

C

u

v
Vs

U

Figure 8.55: Fluid flow U across curve C
between the points A and B.

We are interested in the flow of fluid across a given curve which crosses
several streamlines. The mass that flows over C per unit thickness in time
dt can be given by

dm = ρU · n̂ dAdt.
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Here n̂ dA is the normal area to the flow and for unit thickness can be
written as n̂ dA = i dy− i dx. Therefore, for a unit thickness the mass flow
rate is given by

dm
dt

= ρ(u dy− v dx).

Since the total mass flowing across ds in time dt is given by dm = ρdV, for
constant density, this also gives the volume flow rate,

dV
dt

= u dy− v dx,

over a section of the curve. The total volume flow over C is therefore

dV
dt
∣∣
total =

∫
C

u dy− v dx.

x

y

A

B

C

dt

U
n̂

Figure 8.56: An amount of fluid crossing
curve c in unit time.

If this flow is independent of the curve, i.e., the path, then we have

∂u
∂x

= −∂v
∂y

.

[This is just a consequence of Green’s Theorem in the Plane. See Equation
( 8.3).] Another way to say this is that there exists a function, ψ(x, t), such
that dψ = u dy− v dx. Then,∫

C
u dy− v dx =

∫ B

A
dψ = ψB − ψA.

However, from basic calculus of several variables, we know that

dψ =
∂ψ

∂x
dx +

∂ψ

∂y
dy = u dy− v dx.

Therefore,

u =
∂ψ

∂y
, v = −∂ψ

∂x
.

It follows that if ψ(x, y) has continuous second derivatives, then ux = −vy.
This function is called the streamline function. Streamline functions.

Furthermore, for constant density, we have

∇ · (ρU) = ρ

(
∂u
∂x

+
∂v
∂y

)
= ρ

(
∂2ψ

∂y∂x
∂2ψ

∂x∂y

)
= 0. (8.78)

This is the conservation of mass formula for constant density fluid flow. Velocity potential curves.

We can also assume that the flow is irrotational. This means that the
vorticity of the flow vanishes; i.e., ∇×U = 0. Since the curl of the velocity
field is zero, we can assume that the velocity is the gradient of a scalar
function, U = ∇φ. Then, a standard vector identity automatically gives

∇×U = ∇×∇φ = 0.
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For the two-dimensional flow with U = (u, v), we have

u =
∂φ

∂x
, v =

∂φ

∂y
.

This is the velocity potential function for the flow.
Let’s place the two-dimensional flow in the complex plane. Let an arbi-

trary point be z = (x, y). Then, we have found two real-valued functions,
ψ(x, y) and ψ(x, y), satisfying the relations

u =
∂φ

∂x
=

∂ψ

∂y

v =
∂φ

∂y
= −∂ψ

∂x
(8.79)

These are the Cauchy-Riemann relations for the real and imaginary parts of
a complex differentiable function,

F(z(x, y) = φ(x, y) + iψ(x, y).
From its form, dF

dz is called the complex

velocity and
√∣∣∣ dF

dz

∣∣∣ = √u2 + v2 is the

flow speed.

Furthermore, we have

dF
dz

=
∂φ

∂x
+ i

∂ψ

∂x
= u− iv.

Integrating, we have

F =
∫

C
(u− iv) dz

φ(x, y) + iψ(x, y) =
∫ (x,y)

(x0,y0)
[u(x, y) dx + v(x, y) dy]

+i
∫ (x,y)

(x0,y0)
[−v(x, y) dx + u(x, y) dy]. (8.80)

Therefore, the streamline and potential functions are given by the integral
forms

φ(x, y) =
∫ (x,y)

(x0,y0)
[u(x, y) dx + v(x, y) dy],

ψ(x, y) =
∫ (x,y)

(x0,y0)
[−v(x, y) dx + u(x, y) dy]. (8.81)

These integrals give the circulation
∫

C Vs ds =
∫

C u dx + v dy and the fluid
flow per time,

∫
C −v dx + u dy.

The streamlines for the flow are given by the level curves ψ(x, y) = c1

and the potential lines are given by the level curves φ(x, y) = c2. These are
two orthogonal families of curves; i.e., these families of curves intersect each
other orthogonally at each point as we will see in the examples. Note that
these families of curves also provide the field lines and equipotential curves
for electrostatic problems.Streamliners and potential curves are or-

thogonal families of curves.
Example 8.48. Show that φ(x, y) = c1 and ψ(x, y) = c2 are an orthogonal family
of curves when F(z) = φ(x, y) + iψ(x, y) is holomorphic.
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In order to show that these curves are orthogonal, we need to find the slopes of the
curves at an arbitrary point, (x, y). For φ(x, y) = c1, we recall from multivaribale
calculus that

dφ =
∂φ

∂x
dx +

∂φ

∂y
dy = 0.

So, the slope is found as
dy
dx

= −
∂φ
∂x
∂φ
∂y

.

Similarly, we have
dy
dx

= −
∂ψ
∂x
∂ψ
∂y

.

Since F(z) is differentiable, we can use the Cauchy-Riemann equations to find the
product of the slopes satisfy

∂φ
∂x
∂φ
∂y

∂ψ
∂x
∂ψ
∂y

= −
∂ψ
∂y
∂ψ
∂x

∂ψ
∂x
∂ψ
∂y

= −1.

Therefore, φ(x, y) = c1 and ψ(x, y) = c2 form an orthogonal family of curves.

x

y Figure 8.57: Plot of the orthogonal fam-
ilies φ = x2 − y2 = c1 (dashed) and
φ(x, y) = 2xy = c2.

As an example, consider F(z) = z2 = x2− y2 + 2ixy. Then, φ(x, y) = x2− y2

and ψ(x, y) = 2xy. The slopes of the families of curves are given by

dy
dx

= −
∂φ
∂x
∂φ
∂y

= − 2x
−2y

=
x
y

.

dy
dx

= −
∂ψ
∂x
∂ψ
∂y

= −2y
2x

= − y
x

. (8.82)
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The products of these slopes is −1. The orthogonal families are depicted in Figure
8.57.

We will now turn to some typical examples by writing down some dif-
ferentiable functions, F(z), and determining the types of flows that result
from these examples. We will then turn in the next section to using these
basic forms to solve problems in slightly different domains through the use
of conformal mappings.

Example 8.49. Describe the fluid flow associated with F(z) = U0e−iαz, where U0

and α are real.
For this example, we have

dF
dz

= U0e−iα = u− iv.

Thus, the velocity is constant,

U = (U0 cos α, U0 sin α).

Thus, the velocity is a uniform flow at an angle of α.

x

y

α

Figure 8.58: Stream lines (solid) and po-
tential lines (dashed) for uniform flow at
an angle of α, given by F(z) = U0e−iαz.

Since

F(z) = U0e−iαz = U0(x cos α + y sin α) + iU0(y cos α− x sin α).

Thus, we have

φ(x, y) = U0(x cos α + y sin α),

ψ(x, y) = U0(y cos α− x sin α). (8.83)

An example of this family of curves is shown in Figure ??.

Example 8.50. Describe the flow given by F(z) = U0e−iα

z−z0
.

We write

F(z) =
U0e−iα

z− z0

=
U0(cos α + i sin α)

(x− x0)2 + (y− y0)2 [(x− x0)− i(y− y0)]

=
U0

(x− x0)2 + (y− y0)2 [(x− x0) cos α + (y− y0) sin α]

+i
U0

(x− x0)2 + (y− y0)2 [−(y− y0) cos α + (x− x0) sin α].

(8.84)

The level curves become

φ(x, y) =
U0

(x− x0)2 + (y− y0)2 [(x− x0) cos α + (y− y0) sin α] = c1,

ψ(x, y) =
U0

(x− x0)2 + (y− y0)2 [−(y− y0) cos α + (x− x0) sin α] = c2.

(8.85)
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x

y Figure 8.59: Stream lines (solid) and po-
tential lines (dashed) for the flow given

by F(z) = U0e−iα

z for α = 0.

The level curves for the stream and potential functions satisfy equations of the
form

βi(∆x2 + ∆y2)− cos(α + δi)∆x− sin(α + δi)∆y = 0,

where ∆x = x− x0, ∆y = y− y0, βi =
ci

U0
, δ1 = 0, and δ2 = π/2., These can be

written in the more suggestive form

(∆x− γi cos(α− δi))
2 + (∆y− γi sin(α− δi))

2 = γ2
i

for γi =
ci

2U0
, i = 1, 2. Thus, the stream and potential curves are circles with vary-

ing radii (γi) and centers ((x0 + γi cos(α− δi), y0 + γi sin(α− δi))). Examples of
this family of curves is shown for α = 0 in in Figure 8.59 and for α = π/6 in in
Figure 8.60.

x

y Figure 8.60: Stream lines (solid) and po-
tential lines (dashed) for the flow given

by F(z) = U0e−iα

z for α = π/6.
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The components of the velocity field for α = 0 are found from

dF
dz

=
d
dz

(
U0

z− z0

)
= − U0

(z− z0)2

= −U0[(x− x0)− i(y− y0)]
2

[(x− x0)2 + (y− y0)2]2

= −U0[(x− x0)
2 + (y− y0)

2 − 2i(x− x0)(y− y0)]

[(x− x0)2 + (y− y0)2]2

= −U0[(x− x0)
2 + (y− y0)

2]

[(x− x0)2 + (y− y0)2]2
+ i

U0[2(x− x0)(y− y0)]

[(x− x0)2 + (y− y0)2]2

= − U0

[(x− x0)2 + (y− y0)2]
+ i

U0[2(x− x0)(y− y0)]

[(x− x0)2 + (y− y0)2]2
. (8.86)

Thus, we have

u = − U0

[(x− x0)2 + (y− y0)2]
,

v =
U0[2(x− x0)(y− y0)]

[(x− x0)2 + (y− y0)2]2
. (8.87)

Example 8.51. Describe the flow given by F(z) = m
2π ln(z− z0).

We write F(z) in terms of its real and imaginary parts:

F(z) =
m
2π

ln(z− z0)

=
m
2π

[
ln
√
(x− x0)2 + (y− y0)2 + i tan−1 y− y0

x− x0

]
. (8.88)

The level curves become

φ(x, y) =
m
2π

ln
√
(x− x0)2 + (y− y0)2 = c1,

ψ(x, y) =
m
2π

tan−1 y− y0

x− x0
= c2.

(8.89)

Rewriting these equations, we have

(x− x0)
2 + (y− y0)

2 = e4πc1/m,

y− y0 = (x− x0) tan
2πc2

m
.

(8.90)

In Figure 8.61 we see that the stream lines are those for a source or sink depending
if m > 0 or m < 0, respectively.

Example 8.52. Describe the flow given by F(z) = − iΓ
2π ln z−z0

a .
We write F(z) in terms of its real and imaginary parts:

F(z) = − iΓ
2π

ln
z− z0

a

= −i
Γ

2π
ln

√(
x− x0

a

)2
+

(
y− y0

a

)2
+

Γ
2π

tan−1 y− y0

x− x0
.(8.91)
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x

y Figure 8.61: Stream lines (solid) and po-
tential lines (dashed) for the flow given
by F(z) = m

2π ln(z − z0) for (x0, y0) =
(2, 1).

The level curves become

φ(x, y) =
Γ

2π
tan−1 y− y0

x− x0
= c1,

ψ(x, y) = − Γ
2π

ln

√(
x− x0

a

)2
+

(
y− y0

a

)2
= c2.

(8.92)

Rewriting these equations, we have

y− y0 = (x− x0) tan
2πc1

Γ
,(

x− x0

a

)2
+

(
y− y0

a

)2
= e−2πc2/Γ.

(8.93)

In Figure 8.62 we see that the stream lines circles, indicating rotational motion.
Therefore, we have a vortex of counterclockwise, or clockwise flow, depending if
Γ > 0 or Γ < 0, respectively.

Example 8.53. Flow around a cylinder, F(z) = U0

(
z + a2

z

)
, a, U0 ∈ R.

For this example, we have

F(z) = U0

(
z +

a2

z

)
= U0

(
x + iy +

a2

x + iy

)
= U0

(
x + iy +

a2

x2 + y2 (x− iy)
)

= U0x
(

1 +
a2

x2 + y2

)
+ iU0y

(
1− a2

x2 + y2

)
. (8.94)
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Figure 8.62: Stream lines (solid) and po-
tential lines (dashed) for the flow given
by F(z) = m

2π ln(z − z0) for (x0, y0) =
(2, 1).

x

y

Figure 8.63: Stream lines for the flow

given by F(z) = U0

(
z + a2

z

)
.
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The level curves become

φ(x, y) = U0x
(

1 +
a2

x2 + y2

)
= c1,

ψ(x, y) = U0y
(

1− a2

x2 + y2

)
= c2.

(8.95)

Note that for the streamlines when |z| is large, then ψ ∼ Vy, or horizontal lines.
For x2 + y2 = a2, we have ψ = 0. This behavior is shown in Figure 8.63 where we
have graphed the solution for r ≥ a.

The level curves in Figure 8.63 can be obtained using the implicitplot feature of
Maple. An example is shown below:

restart: with(plots):

k0:=20:

for k from 0 to k0 do

P[k]:=implicitplot(sin(t)*(r-1/r)*1=(k0/2-k)/20, r=1..5,

t=0..2*Pi, coords=polar,view=[-2..2, -1..1], axes=none,

grid=[150,150],color=black):

od:

display({seq(P[k],k=1..k0)},scaling=constrained);

A slight modification of the last example is if a circulation term is added:

F(z) = U0

(
z +

a2

z

)
− iΓ

2π
ln

r
a

.

The combination of the two terms gives the streamlines,

ψ(x, y) = U0y
(

1− a2

x2 + y2

)
− Γ

2π
ln

r
a

,

which are seen in Figure 8.64. We can see interesting features in this flow
including what is called a stagnation point. A stagnation point is a point

where the flow speed,
∣∣∣ dF

dz

∣∣∣ = 0.

Example 8.54. Find the stagnation point for the flow F(z) =
(

z + 1
z

)
− i ln z.

Since the flow speed vanishes at the stagnation points, we consider

dF
dz

= 1− 1
z2 −

i
z
= 0.

This can be rewritten as
z2 − iz− 1 = 0.

The solutions are z = 1
2 (i ±

√
3). Thus, there are two stagnation points on the

cylinder about which the flow is circulating. These are shown in Figure 8.65.

Example 8.55. Consider the complex potentials F(z) = k
2π ln z−a

z−b , where k = q
and k = −iq for q real.
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Figure 8.64: Stream lines for the flow

given by F(z) = U0

(
z + a2

z

)
− Γ

2π ln z
a .

Figure 8.65: Stagnation points (red) on
the cylinder are shown for the flow given

by F(z) =
(

z + 1
z

)
− i ln z.



complex representations of functions 345

We first note that for z = x + iy,

ln
z− a
z− b

= ln
√
(x− a)2 + y2 − ln

√
(x− a)2 + y2,

+i tan−1 y
x− a

− i tan−1 y
x− b

. (8.96)

For k = q, we have

ψ(x, y) =
q

2π

[
ln
√
(x− a)2 + y2 − ln

√
(x− a)2 + y2

]
= c1,

φ(x, y) =
q

2π

[
tan−1 y

x− a
− tan−1 y

x− b

]
= c2. (8.97)

The potential lines are circles and the streamlines are circular arcs as shown in
Figure 8.66. These correspond to a source at z = a and a sink at z = b. One can
also view these as the electric field lines and equipotentials for an electric dipole
consisting of two point charges of opposite sign at the points z = a and z = b.

The equations for the curves are found from6 6 The streamlines are found using the
identity

tan−1 α− tan−1 β = tan−1 α− β

1 + αβ
.

(x− a)2 + y2 = C1[(x− b)2 + y2],

(x− a)(x− b) + y2 = C2y(a− b), (8.98)

where these can be rewritten, respectively, in the more suggestive forms(
x− a− bC1

1− C1

)2
+ y2 =

C1(a− b)2

(1− C1)2 ,(
x− a + b

2

)2
+

(
y− C2(a− b)

2

)2

= (1 + C2
2)

(
a− b

2

)2
. (8.99)

Note that the first family of curves are the potential curves and the second give the
streamlines.

x

y Figure 8.66: The electric field lines
(solid) and equipotentials (dashed) for
a dipole given by the complex potential
F(z) = q

2π ln z−a
z−b for b = −a.
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In the case that k = −iq we have

F(z) =
−iq
2π

ln
z− a
z− b

=
−iq
2π

[
ln
√
(x− a)2 + y2 − ln

√
(x− a)2 + y2

]
,

+
q

2π

[
tan−1 y

x− a
− tan−1 y

x− b

]
. (8.100)

So, the roles of the streamlines and potential lines are reversed and the corresponding
plots give a flow for a pair of vortices as shown in Figure 8.67.

Figure 8.67: The streamlines (solid) and
potentials (dashed) for a pair of vortices
given by the complex potential F(z) =

q
2πi ln z−a

z−b for b = −a.

x

y

8.6.2 Conformal Mappings

It would be nice if the complex potentials in the last section could
be mapped to a region of the complex plane such that the new stream func-
tions and velocity potentials represent new flows. In order for this to be
true, we would need the new families to once again be orthogonal fami-
lies of curves. Thus, the mappings we seek must preserve angles. Such
mappings are called conformal mappings.

We let w = f (z) map points in the z−plane, (x, y), to points in the w-
plane, (u, v) by f (x + iy) = u + iv. We have shown this in Figure 8.4.

Example 8.56. Map lines in the z-plane to curves in the w-plane under f (z) = z2.
We have seen how grid lines in the z-plane is mapped by f (z) = z2 into the w-

plane in Figure 8.5, which is reproduced in Figure 8.68. The horizontal line x = 1
is mapped to u(1, y) = 1 − y2 and v(1, y) = 2y. Eliminating the “parameter”
y between these two equations, we have u = 1− v2/4. This is a parabolic curve.
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w = f (z)

x

y

1 + i

1

1

u

v

2i

Figure 8.68: 2D plot showing how the
function f (z) = z2 maps the lines x = 1
and y = 1 in the z-plane into parabolae
in the w-plane.

Similarly, the horizontal line y = 1 results in the curve u = v2/4− 1. These curves
intersect at w = 2i.

The lines in the z-plane intersect at z = 1 + i at right angles. In the w-plane
we see that the curves u = 1− v2/4 and u = v2/4− 1 intersect at w = 2i. The
slopes of the tangent lines at (0, 2) are −1 and 1, respectively, as shown in Figure
8.69.

u

v

2i

Figure 8.69: The tangents to the images
of x = 1 and y = 1 under f (z) = z2 are
orthogonal.

In general, if two curves in the z-plane intersect orthogonally at z = z0

and the corresponding curves in the w-plane under the mapping w = f (z)
are orthogonal at w0 = f (z0), then the mapping is conformal. As we have
seen, holomorphic functions are conformal, but only at points where f ′(z) 6=
0. Holomorphic functions are conformal at

points where f ′(z) 6= 0.
Example 8.57. Images of the real and imaginary axes under f (z) = z2.

The line z = iy maps to w = z2 = −y2 and the line z = x maps to w = z2 =

x2. The point of intersection z0 = 0 maps to w0 = 0. However, the image lines
are the same line, the real axis in the w-plane. Obviously, the image lines are not
orthogonal at the origin. Note that f ′(0) = 0.

One special mapping is the inversion mapping, which is given by

f (z) =
1
z

.

This mapping maps the interior of the unit circle to the exterior of the unit
circle in the w-plane as shown in Figure 8.70.

Let z = x + iy, where x2 + y2 < 1. Then,

w =
1

x + iy
=

x
x2 + y2 − i

y
x2 + y2 .

Thus, u = x
x2+y2 and v = − y

x2+y2 , and

u2 + v2 =

(
x

x2 + y2

)2
+

(
− y

x2 + y2

)2

=
x2 + y2

(x2 + y2)2 =
1

x2 + y2 . (8.101)

Thus, for x2 + y2 < 1, u2 +U2 > 1. Furthermore, for x2 + y2 > 1, u2 +U2 <

1, and for x2 + y2 = 1, u2 + U2 = 1.
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Figure 8.70: The inversion, f (z) = 1
z ,

maps the interior of a unit circle to the
external of a unit circle. Also, segments
of aline through the origin, y = 2x, are
mapped to the line u = −2v.

f (z) =
1
z

x

y

1

1

−1

−1

x

y

1

1

−1

−1

In fact, an inversion maps circles into circles. Namely, for z = z0 + reiθ ,
we have

w =
1

z0 + reiθ

=
z̄0 + re−iθ

|z0 + reiθ |2

= w0 + Re−iθ . (8.102)

Also, lines through the origin in the z-plane map into lines through the
origin in the w-plane. Let z = x + imx. This corresponds to a line with slope
m in the z-plane, y = mx. It maps to

f (z) =
1
z

=
1

x + imx

=
x− imx
(1 + m2)x

. (8.103)

So, u = x
(1+m2)x and v = − mx

(1+m2)x = −mu. This is a line through the origin
in the w-plane with slope −m. This is shown in Figure 8.70 Note how the
potion of the line y = 2x that is inside the unit disk maps to the outside of
the disk in the w-plane.The bilinear transformation.

Another interesting class of transformation, of which the inversion is con-
tained, is the bilinear transformation. The bilinear transformation is given
by

w = f (z) =
az + b
cz + d

, ad− bc 6= 0,

where a, b, c, and d are complex constants. These transformations were
studied by mappings was studied by August Ferdinand Möbius (1790-1868)
and are also called Möbius transformations, or linear fractional transforma-
tions. We further note that if ad− bc = 0, then the transformation reduces
to the constat function.

We can seek to invert the transformation. Namely, solving for z, we have

z = f−1(w) =
−dw + b
cw− a

, w 6= a
c

.
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Since f−1(w) is not defined for w 6= a
c , we can say that w 6= a

c maps to the
point at infinity, or f−1 ( a

c
)
= ∞. Similarly, we can let z→ ∞ to obtain

f (∞) = lim
n→∞

f (z) = −d
c

.

Thus, we have that the bilinear transformation is a one-to-one mapping of
the extended complex z-plane to the extended complex w-plane. The extended complex plane is the

union of the complex plane plus the
point at infinity. This is usually de-
scribed in more detail using stereo-
graphic projection, which we will not re-
view here.

If c = 0, f (z) is easily seen to be a linear transformation. Linear transfor-
mations transform lines into lines and circles into circles.

When c 6= 0, we can write

f (z) =
az + b
cz + d

=
c(az + b)
c(cz + d)

=
acz + ad− ad + bc

c(cz + d)

=
a(cz + d)− ad + bc

c(cz + d)

=
a
c
+

bc− ad
c

1
cz + d

. (8.104)

We note that if bc− ad = 0, then f (z) = a
c is a constant, as noted above. The

new form for f (z) shows that it is the composition of a linear function ζ =

cz + d, an inversion, g(ζ) = 1
ζ , and another linear transformation, h(ζ) =

a
c +

bc−ad
c ζ. Since linear transformations and inversions transform the set of

circles and lines in the extended complex plane into circles and lines in the
extended complex plane, then a bilinear does so as well.

What is important in out applications of complex analysis to the solution
of Laplace’s equation in the transformation of regions of the complex plane
into other regions of the complex plane. Needed transformations can be
found using the following property of bilinear transformations:

A given set of three points in the z-plane can be transformed into a given set of
points in the w-plane using a bilinear transformation.

This statement is based on the following observation: There are three
independent numbers that determine a bilinear transformation. If a 6= 0,
then

f (z) =
az + b
cz + d

=
z + b

a
c
a z + d

a

≡ z + α

βz + γ
. (8.105)

For w = z+α
βz+γ , we have

w =
z + α

βz + γ

w(βz + γ) = z + α

−α + wzβ + wγ = z. (8.106)
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Now, let wi = f (zi), i = 1, 2, 3. This gives three equations for the three
unknowns α, β, and γ. Namely,

−α + w1z1β + w1γ = z1,

−α + w2z2β + w2γ = z2,

−α + w3z3β + w3γ = z3. (8.107)

This systems of linear equation can be put into matrix form as −1 w1z1 w1

−1 w2z2 w2

−1 w3z3 w3


 α

β

γ

 =

 z1

z2

z3

 .

It is only a matter of solving this system for (α, β, γ)T in order to find the
bilinear transformation.

A quicker method is to use the implicit form of the transformation,

(z− z1)(z2 − z3)

(z− z3)(z2 − z1)
=

(w− w1)(w2 − w3)

(w− w3)(w2 − w1)
.

Note that this implicit relation works upon insertion of the values wi, zi, for
i = 1, 2, 3.

Example 8.58. Find the bilinear transformation that maps the points −1, i, 1 to
the points −1, 0, 1.

The implicit form of the transformation becomes

(z + 1)(i− 1)
(z− 1)(i + 1)

=
(w + 1)(0− 1)
(w− 1)(0 + 1)

z + 1
z− 1

i− 1
i + 1

= −w + 1
w− 1

. (8.108)

Solving for w, we have

w = f (z) =
(i− 1)z + 1 + i
(1 + i)z− 1 + i

.

We can use the transformation in the last example to map the unit disk
containing the points −1, i, and 1 to the half plane w > 0. We see that the
unit circle gets mapped to the real axis with z = −i mapped to the point at
infinity. The point z = 0 gets mapped to

w =
1 + i
−1 + i

=
1 + i
−1 + i

−1− i
−1− i

=
2
2
= 1.

Thus, interior points of the unit disk get mapped to the upper half plane.
This is shown in Figure 8.71.

Problems

1. Write the following in standard form.

a. (4 + 5i)(2− 3i).



complex representations of functions 351

Figure 8.71: The bilinear transformation
f (z) = (i−1)z+1+i

(1+i)z−1+i maps the unit disk to
the upper half plane.

f (z) =
(i− 1)z + 1 + i
(1 + i)z− 1 + i

x

y

1

i

−1
x

y

10−1

Figure 8.72: Flow ...

x

y
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b. (1 + i)3.

c. 5+3i
1−i .

2. Write the following in polar form, z = reiθ .

a. i− 1.

b. −2i.

c.
√

3 + 3i.

3. Write the following in rectangular form, z = a + ib.

a. 4eiπ/6.

b.
√

2e5iπ/4.

c. (1− i)100.

4. Find all z such that z4 = 16i. Write the solutions in rectangular form,
z = a + ib, with no decimal approximation or trig functions.

5. Show that sin(x + iy) = sin x cosh y + i cos x sinh y using trigonometric
identities and the exponential forms of these functions.

6. Find all z such that cos z = 2, or explain why there are none. You will
need to consider cos(x + iy) and equate real and imaginary parts of the
resulting expression similar to problem 5.

7. Find the principal value of ii. Rewrite the base, i, as an exponential first.

8. Consider the circle |z− 1| = 1.

a. Rewrite the equation in rectangular coordinates by setting z =

x + iy.

b. Sketch the resulting circle using part a.

c. Consider the image of the circle under the mapping f (z) = z2,
given by |z2 − 1| = 1.

i. By inserting z = reiθ = r(cos θ + i sin θ), find the equation of the
image curve in polar coordinates.

ii. Sketch the image curve. You may need to refer to your Calculus
II text for polar plots. [Maple might help.]

9. Find the real and imaginary parts of the functions:

a. f (z) = z3.

b. f (z) = sinh(z).

c. f (z) = cos z.

10. Find the derivative of each function in Problem 9 when the derivative
exists. Otherwise, show that the derivative does not exist.

11. Let f (z) = u + iv be differentiable. Consider the vector field given by
F = vi+ uj. Show that the equations∇ · F = 0 and ∇× F = 0 are equivalent
to the Cauchy-Riemann equations. [You will need to recall from multivari-
able calculus the del operator, ∇ = i ∂

∂x + j ∂
∂y + k ∂

∂z .]
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12. What parametric curve is described by the function

γ(t) = (t− 3) + i(2t + 1),

0 ≤ t ≤ 2? [Hint: What would you do if you were instead considering the
parametric equations x = t− 3 and y = 2t + 1?]

13. Write the equation that describes the circle of radius 3 which is centered
at z = 2− i in a) Cartesian form (in terms of x and y); b) polar form (in terms
of θ and r); c) complex form (in terms of z, r, and eiθ).

14. Consider the function u(x, y) = x3 − 3xy2.

a. Show that u(x, y) is harmonic; i.e., ∇2u = 0.

b. Find its harmonic conjugate, v(x, y).

c. Find a differentiable function, f (z), for which u(x, y) is the real
part.

d. Determine f ′(z) for the function in part c. [Use f ′(z) = ∂u
∂x + i ∂v

∂x
and rewrite your answer as a function of z.]

15. Evaluate the following integrals:

a.
∫

C z dz, where C is the parabola y = x2 from z = 0 to z = 1 + i.

b.
∫

C f (z) dz, where f (z) = 2z − z and C is the path from z = 0 to
z = 2 + i consisting of two line segments from z = 0 to z = 2 and
then z = 2 to z = 2 + i.

c.
∫

C
1

z2+4 dz for C the positively oriented circle, |z| = 2. [Hint: Parametrize
the circle as z = 2eiθ , multiply numerator and denominator by e−iθ ,
and put in trigonometric form.]

16. Let C be the positively oriented ellipse 3x2 + y2 = 9. Define

F(z0) =
∫

C

z2 + 2z
z− z0

dz.

Find F(2i) and F(2). [Hint: Sketch the ellipse in the complex plane. Use the
Cauchy Integral Theorem with an appropriate f (z), or Cauchy’s Theorem if
z0 is outside the contour.]

17. Show that ∫
C

dz
(z− 1− i)n+1 =

{
0, n 6= 0,

2πi, n = 0,

for C the boundary of the square 0 ≤ x ≤ 2, 0 ≤ y ≤ 2 taken counterclock-
wise. [Hint: Use the fact that contours can be deformed into simpler shapes
(like a circle) as long as the integrand is analytic in the region between them.
After picking a simpler contour, integrate using parametrization.]

18. Show that for g and h analytic functions at z0, with g(z0) 6= 0, h(z0) = 0,
and h′(z0) 6= 0,

Res
[

g(z)
h(z)

; z0

]
=

g(z0)

h′(z0)
.
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19. For the following determine if the given point is a removable singularity,
an essential singularity, or a pole (indicate its order).

a. 1−cos z
z2 , z = 0.

b. sin z
z2 , z = 0.

c. z2−1
(z−1)2 , z = 1.

d. ze1/z, z = 0.

e. cos π
z−π , z = π.

20. Find the Laurent series expansion for f (z) = sinh z
z3 about z = 0. [Hint:

You need to first do a MacLaurin series expansion for the hyperbolic sine.]

21. Find series representations for all indicated regions.

a. f (z) = z
z−1 , |z| < 1, |z| > 1.

b. f (z) = 1
(z−i)(z+2) , |z| < 1, 1 < |z| < 2, |z| > 2. [Hint: Use partial

fractions to write this as a sum of two functions first.]

22. Find the residues at the given points:

a. 2z2+3z
z−1 at z = 1.

b. ln(1+2z)
z at z = 0.

c. cos z
(2z−π)3 at z = π

2 .

23. Consider the integral
∫ 2π

0
dθ

5−4 cos θ .

a. Evaluate this integral by making the substitution 2 cos θ = z + 1
z ,

z = eiθ and using complex integration methods.

b. In the 1800’s Weierstrass introduced a method for computing in-
tegrals involving rational functions of sine and cosine. One makes
the substitution t = tan θ

2 and converts the integrand into a ratio-
nal function of t. Note that the integration around the unit circle
corresponds to t ∈ (−∞, ∞).

i. Show that

sin θ =
2t

1 + t2 , cos θ =
1− t2

1 + t2 .

ii. Show that
dθ =

2dt
1 + t2

iii. Use the Weierstrass substitution to compute the above integral.

24. Do the following integrals.

a. ∮
|z−i|=3

ez

z2 + π2 dz.

b. ∮
|z−i|=3

z2 − 3z + 4
z2 − 4z + 3

dz.
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c. ∫ ∞

−∞

sin x
x2 + 4

dx.

[Hint: This is Im
∫ ∞
−∞

eix

x2+4 dx.]

25. Evaluate the integral
∫ ∞

0
(ln x)2

1+x2 dx.
[Hint: Replace x with z = et and use the rectangular contour in Figure

8.73 with R→ ∞.]

x

y

R

R + 2πi−R + 2πi

−R

Figure 8.73: Rectangular contour for
Problem 25.

26. Do the following integrals for fun!

a. For C the boundary of the square |x| ≤ 2, |y| ≤ 2,∮
C

dz
z(z− 1)(z− 3)2 .

b. ∫ π

0

sin2 θ

13− 12 cos θ
dθ.

c. ∫ ∞

−∞

dx
x2 + 5x + 6

.

d. ∫ ∞

0

cos πx
1− 9x2 dx.

e. ∫ ∞

0

dx
(x2 + 9)(1− x)2 .

f. ∫ ∞

0

√
x

(1 + x)2 dx.

g. ∫ ∞

0

√
x

(1 + x)2 dx.





9
Transform Techniques in Physics

“There is no branch of mathematics, however abstract, which may not some day be
applied to phenomena of the real world.”, Nikolai Lobatchevsky (1792-1856)

9.1 Introduction

Some of the most powerful tools for solving problems in physics are In this chapter we will explore the use
of integral transforms. Given a function
f (x), we define an integral transform to
a new function F(k) as

F(k) =
∫ b

a
f (x)K(x, k) dx.

Here K(x, k) is called the kernel of the
transform. We will concentrate specifi-
cally on Fourier transforms,

f̂ (k) =
∫ ∞

−∞
f (x)eikx dx,

and Laplace transforms

F(s) =
∫ ∞

0
f (t)e−st dt.

transform methods. The idea is that one can transform the problem at hand
to a new problem in a different space, hoping that the problem in the new
space is easier to solve. Such transforms appear in many forms.

As we had seen in Chapter 3 and will see later in the book, the solutions
of linear partial differential equations can be found by using the method
of separation of variables to reduce solving partial differential equations
(PDEs) to solving ordinary differential equations (ODEs). We can also use
transform methods to transform the given PDE into ODEs or algebraic equa-
tions. Solving these equations, we then construct solutions of the PDE (or,
the ODE) using an inverse transform. A schematic of these processes is
shown below and we will describe in this chapter how one can use Fourier
and Laplace transforms to this effect.

PDE

ODE

AlgEq

Transforms

Inverse Transforms

Figure 9.1: Schematic indicating that
PDEs and ODEs can be transformed to
simpler problems, solved in the new
space and transformed back to the origi-
nal space.
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9.1.1 Example 1 - The Linearized KdV Equation

As a relatively simple example, we consider the linearized Korteweg-
de Vries (KdV) equation:

ut + cux + βuxxx = 0, −∞ < x < ∞. (9.1)

This equation governs the propagation of some small amplitude water waves.
Its nonlinear counterpart has been at the center of attention in the last 40

years as a generic nonlinear wave equation.The nonlinear counterpart to this equa-
tion is the Korteweg-de Vries (KdV)
equation: ut + 6uux + uxxx = 0. This
equation was derived by Diederik Jo-
hannes Korteweg (1848-1941) and his
student Gustav de Vries (1866-1934).
This equation governs the propagation
of traveling waves called solitons. These
were first observed by John Scott Rus-
sell (1808-1882) and were the source of
a long debate on the existence of such
waves. The history of this debate is in-
teresting and the KdV turned up as a
generic equation in many other fields in
the latter part of the last century leading
to many papers on nonlinear evolution
equations.

We seek solutions that oscillate in space. So, we assume a solution of the
form

u(x, t) = A(t)eikx. (9.2)

Such behavior was seen in Chapters 3 and 6 for the wave equation for vi-
brating strings. In that case, we found plane wave solutions of the form
eik(x±ct), which we could write as ei(kx±ωt) by defining ω = kc. We further
note that one often seeks complex solutions as a linear combination of such
forms and then takes the real part in order to obtain physical solutions. In
this case, we will find plane wave solutions for which the angular frequency
ω = ω(k) is a function of the wavenumber.

Inserting the guess (9.2) into the linearized KdV equation, we find that

dA
dt

+ i(ck− βk3)A = 0. (9.3)

Thus, we have converted the problem of seeking a solution of the partial dif-
ferential equation into seeking a solution to an ordinary differential equa-
tion. This new problem is easier to solve. In fact, given an initial value,
A(0), we have

A(t) = A(0)e−i(ck−βk3)t. (9.4)

Therefore, the solution of the partial differential equation is

u(x, t) = A(0)eik(x−(c−βk2)t). (9.5)

We note that this solution takes the form ei(kx−ωt), where

ω = ck− βk3.

In general, the equation ω = ω(k) gives the angular frequency as aA dispersion relation is an expression
giving the angular frequency as a func-
tion of the wave number, ω = ω(k).

function of the wave number, k, and is called a dispersion relation. For
β = 0, we see that c is nothing but the wave speed. For β 6= 0, the wave
speed is given as

v =
ω

k
= c− βk2.

This suggests that waves with different wave numbers will travel at different
speeds. Recalling that wave numbers are related to wavelengths, k = 2π

λ ,
this means that waves with different wavelengths will travel at different
speeds. For example, an initial localized wave packet will not maintain its
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shape. It is said to disperse, as the component waves of differing wave-
lengths will tend to part company.

For a general initial condition, we write the solutions to the linearized
KdV as a superposition of plane waves. We can do this since the partial
differential equation is linear. This should remind you of what we had done
when using separation of variables. We first sought product solutions and
then took a linear combination of the product solutions to obtain the general
solution.

For this problem, we will sum over all wave numbers. The wave numbers
are not restricted to discrete values. We instead have a continuous range of
values. Thus, “summing” over k means that we have to integrate over the
wave numbers. Thus, we have the general solution1

1 The extra 2π has been introduced to
be consistent with the definition of the
Fourier transform which is given later in
the chapter.

u(x, t) =
1

2π

∫ ∞

−∞
A(k, 0)eik(x−(c−βk2)t) dk. (9.6)

Note that we have indicated that A is a function of k. This is similar to
introducing the An’s and Bn’s in the series solution for waves on a string.

How do we determine the A(k, 0)’s? We introduce as an initial condition
the initial wave profile u(x, 0) = f (x). Then, we have

f (x) = u(x, 0) =
1

2π

∫ ∞

−∞
A(k, 0)eikx dk. (9.7)

Thus, given f (x), we seek A(k, 0). In this chapter we will see that

A(k, 0) =
∫ ∞

−∞
f (x)e−ikx dx.

This is what is called the Fourier transform of f (x). It is just one of the
so-called integral transforms that we will consider in this chapter.

In Figure 9.2 we summarize the transform scheme. One can use methods
like separation of variables to solve the partial differential equation directly,
evolving the initial condition u(x, 0) into the solution u(x, t) at a later time.

u(x, 0)

PDE

u(x, t)

A(k, 0)

ODE

A(k, t)

Fourier Transform

Inverse Fourier Transform

Figure 9.2: Schematic of using Fourier
transforms to solve a linear evolution
equation.

The transform method works as follows. Starting with the initial condi-
tion, one computes its Fourier Transform (FT) as2 2 Note: The Fourier transform as used

in this section and the next section are
defined slightly differently than how we
will define them later. The sign of the
exponentials has been reversed.

A(k, 0) =
∫ ∞

−∞
f (x)e−ikx dx.
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Applying the transform on the partial differential equation, one obtains an
ordinary differential equation satisfied by A(k, t) which is simpler to solve
than the original partial differential equation. Once A(k, t) has been found,
then one applies the Inverse Fourier Transform (IFT) to A(k, t) in order to
get the desired solution:

u(x, t) =
1

2π

∫ ∞

−∞
A(k, t)eikx dk

=
1

2π

∫ ∞

−∞
A(k, 0)eik(x−(c−βk2)t) dk. (9.8)

9.1.2 Example 2 - The Free Particle Wave Function

A more familiar example in physics comes from quantum mechanics.
The Schrödinger equation gives the wave function Ψ(x, t) for a particle un-
der the influence of forces, represented through the corresponding potential
function V(x). The one dimensional time dependent Schrödinger equation
is given byThe one dimensional time dependent

Schrödinger equation.
ih̄Ψt = −

h̄2

2m
Ψxx + VΨ. (9.9)

We consider the case of a free particle in which there are no forces, V = 0.
Then we have

ih̄Ψt = −
h̄2

2m
Ψxx. (9.10)

Taking a hint from the study of the linearized KdV equation, we will
assume that solutions of Equation (9.10) take the form

Ψ(x, t) =
1

2π

∫ ∞

−∞
φ(k, t)eikx dk.

[Here we have opted to use the more traditional notation, φ(k, t) instead of
A(k, t) as above.]

Inserting the expression for Ψ(x, t) into (9.10), we have

ih̄
∫ ∞

−∞

dφ(k, t)
dt

eikx dk = − h̄2

2m

∫ ∞

−∞
φ(k, t)(ik)2eikx dk.

Since this is true for all t, we can equate the integrands, giving

ih̄
dφ(k, t)

dt
=

h̄2k2

2m
φ(k, t).

As with the last example, we have obtained a simple ordinary differential
equation. The solution of this equation is given by

φ(k, t) = φ(k, 0)e−i h̄k2
2m t.

Applying the inverse Fourier transform, the general solution to the time
dependent problem for a free particle is found as

Ψ(x, t) =
1

2π

∫ ∞

−∞
φ(k, 0)eik(x− h̄k

2m t) dk.



transform techniques in physics 361

We note that this takes the familiar form

Ψ(x, t) =
1

2π

∫ ∞

−∞
φ(k, 0)ei(kx−ωt) dk,

where the dispersion relation is found as

ω =
h̄k2

2m
.

The wave speed is given as

v =
ω

k
=

h̄k
2m

.

As a special note, we see that this is not the particle velocity! Recall that the
momentum is given as p = h̄k.3 So, this wave speed is v = p

2m , which is only 3 Since p = h̄k, we also see that the dis-
persion relation is given by

ω =
h̄k2

2m
=

p2

2mh̄
=

E
h̄

.

half the classical particle velocity! A simple manipulation of this result will
clarify the “problem.”

We assume that particles can be represented by a localized wave function.
This is the case if the major contributions to the integral are centered about
a central wave number, k0. Thus, we can expand ω(k) about k0:

ω(k) = ω0 + ω′0(k− k0)t + . . . . (9.11)

Here ω0 = ω(k0) and ω′0 = ω′(k0). Inserting this expression into the inte-
gral representation for Ψ(x, t), we have

Ψ(x, t) =
1

2π

∫ ∞

−∞
φ(k, 0)ei(kx−ω0t−ω′0(k−k0)t−...) dk,

We now make the change of variables, s = k− k0, and rearrange the result-
ing factors to find

Ψ(x, t) ≈ 1
2π

∫ ∞

−∞
φ(k0 + s, 0)ei((k0+s)x−(ω0+ω′0s)t) ds

=
1

2π
ei(−ω0t+k0ω′0t)

∫ ∞

−∞
φ(k0 + s, 0)ei(k0+s)(x−ω′0t) ds

= ei(−ω0t+k0ω′0t)Ψ(x−ω′0t, 0). (9.12)
Group and phase velocities, vg = dω

dk ,
vp = ω

k .Summarizing, for an initially localized wave packet, Ψ(x, 0) with wave
numbers grouped around k0 the wave function,Ψ(x, t), is a translated ver-
sion of the initial wave function up to a phase factor. In quantum mechanics
we are more interested in the probability density for locating a particle, so
from

|Ψ(x, t)|2 = |Ψ(x−ω′0t, 0)|2

we see that the “velocity of the wave packet” is found to be

ω′0 =
dω

dk

∣∣∣
k=k0

=
h̄k
m

.

This corresponds to the classical velocity of the particle (vpart = p/m).
Thus, one usually defines ω′0 to be the group velocity,

vg =
dω

dk
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and the former velocity as the phase velocity,

vp =
ω

k
.

9.1.3 Transform Schemes

These examples have illustrated one of the features of transform the-
ory. Given a partial differential equation, we can transform the equation
from spatial variables to wave number space, or time variables to frequency
space. In the new space the time evolution is simpler. In these cases, the
evolution was governed by an ordinary differential equation. One solves the
problem in the new space and then transforms back to the original space.
This is depicted in Figure 9.3 for the Schrödinger equation and was shown
in Figure 9.2 for the linearized KdV equation.

Figure 9.3: The scheme for solving
the Schrödinger equation using Fourier
transforms. The goal is to solve for
Ψ(x, t) given Ψ(x, 0). Instead of a direct
solution in coordinate space (on the left
side), one can first transform the initial
condition obtaining φ(k, 0) in wave num-
ber space. The governing equation in the
new space is found by transforming the
PDE to get an ODE. This simpler equa-
tion is solved to obtain φ(k, t). Then an
inverse transform yields the solution of
the original equation.

Ψ(x, 0)

Ψ(x, t)

φ(k, 0)

φ(k, t)

Fourier Transform

Inverse Fourier Transform

Schrödinger
Equation

for Ψ(x, t)

ODE for
φ(k, t)

This is similar to the solution of the system of ordinary differential equa-
tions in Chapter 3, ẋ = Ax. In that case we diagonalized the system using
the transformation x = Sy. This lead to a simpler system ẏ = Λy, where
Λ = S−1 AS. Solving for y, we inverted the solution to obtain x. Similarly,
one can apply this diagonalization to the solution of linear algebraic systems
of equations. The general scheme is shown in Figure 9.4.

Figure 9.4: This shows the scheme for
solving the linear system of ODEs ẋ =
Ax. One finds a transformation between
x and y of the form x = Sy which diago-
nalizes the system. The resulting system
is easier to solve for y. Then, one uses
the inverse transformation to obtain the
solution to the original problem.

A

x(t)

Λ

y(t)

Transform: x = Sy, Λ = S−1 AS

Inverse Transform: x = S−1y

ODE
ẋ = Ax

ODE
ẏ = Λy

Similar transform constructions occur for many other type of problems.
We will end this chapter with a study of Laplace transforms, which are
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useful in the study of initial value problems, particularly for linear ordinary
differential equations with constant coefficients. A similar scheme for using
Laplace transforms is depicted in Figure 9.30.

In this chapter we will begin with the study of Fourier transforms. These
will provide an integral representation of functions defined on the real line.
Such functions can also represent analog signals. Analog signals are con-
tinuous signals which can be represented as a sum over a continuous set of
frequencies, as opposed to the sum over discrete frequencies, which Fourier
series were used to represent in an earlier chapter. We will then investi-
gate a related transform, the Laplace transform, which is useful in solving
initial value problems such as those encountered in ordinary differential
equations.

9.2 Complex Exponential Fourier Series

Before deriving the Fourier transform, we will need to rewrite
the trigonometric Fourier series representation as a complex exponential
Fourier series. We first recall from Chapter ?? the trigonometric Fourier se-
ries representation of a function defined on [−π, π] with period 2π. The
Fourier series is given by

f (x) ∼ a0

2
+

∞

∑
n=1

(an cos nx + bn sin nx) , (9.13)

where the Fourier coefficients were found as

an =
1
π

∫ π

−π
f (x) cos nx dx, n = 0, 1, . . . ,

bn =
1
π

∫ π

−π
f (x) sin nx dx, n = 1, 2, . . . . (9.14)

In order to derive the exponential Fourier series, we replace the trigono-
metric functions with exponential functions and collect like exponential
terms. This gives

f (x) ∼ a0

2
+

∞

∑
n=1

[
an

(
einx + e−inx

2

)
+ bn

(
einx − e−inx

2i

)]
=

a0

2
+

∞

∑
n=1

(
an − ibn

2

)
einx +

∞

∑
n=1

(
an + ibn

2

)
e−inx. (9.15)

The coefficients of the complex exponentials can be rewritten by defining

cn =
1
2
(an + ibn), n = 1, 2, . . . . (9.16)

This implies that

c̄n =
1
2
(an − ibn), n = 1, 2, . . . . (9.17)

So far the representation is rewritten as

f (x) ∼ a0

2
+

∞

∑
n=1

c̄neinx +
∞

∑
n=1

cne−inx.



364 partial differential equations

Re-indexing the first sum, by introducing k = −n, we can write

f (x) ∼ a0

2
+
−∞

∑
k=−1

c̄−ke−ikx +
∞

∑
n=1

cne−inx.

Since k is a dummy index, we replace it with a new n as

f (x) ∼ a0

2
+
−∞

∑
n=−1

c̄−ne−inx +
∞

∑
n=1

cne−inx.

We can now combine all of the terms into a simple sum. We first define
cn for negative n’s by

cn = c̄−n, n = −1,−2, . . . .

Letting c0 = a0
2 , we can write the complex exponential Fourier series repre-

sentation as

f (x) ∼
∞

∑
n=−∞

cne−inx, (9.18)

where

cn =
1
2
(an + ibn), n = 1, 2, . . .

cn =
1
2
(a−n − ib−n), n = −1,−2, . . .

c0 =
a0

2
. (9.19)

Given such a representation, we would like to write out the integral forms
of the coefficients, cn. So, we replace the an’s and bn’s with their integral
representations and replace the trigonometric functions with complex expo-
nential functions. Doing this, we have for n = 1, 2, . . . .

cn =
1
2
(an + ibn)

=
1
2

[
1
π

∫ π

−π
f (x) cos nx dx +

i
π

∫ π

−π
f (x) sin nx dx

]
=

1
2π

∫ π

−π
f (x)

(
einx + e−inx

2

)
dx +

i
2π

∫ π

−π
f (x)

(
einx − e−inx

2i

)
dx

=
1

2π

∫ π

−π
f (x)einx dx. (9.20)

It is a simple matter to determine the cn’s for other values of n. For n = 0,
we have that

c0 =
a0

2
=

1
2π

∫ π

−π
f (x) dx.

For n = −1,−2, . . ., we find that

cn = c̄n =
1

2π

∫ π

−π
f (x)e−inx dx =

1
2π

∫ π

−π
f (x)einx dx.

Therefore, we have obtained the complex exponential Fourier series coeffi-
cients for all n. Now we can define the complex exponential Fourier series
for the function f (x) defined on [−π, π] as shown below.
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Complex Exponential Series for f (x) defined on [−π, π].

f (x) ∼
∞

∑
n=−∞

cne−inx, (9.21)

cn =
1

2π

∫ π

−π
f (x)einx dx. (9.22)

We can easily extend the above analysis to other intervals. For example,
for x ∈ [−L, L] the Fourier trigonometric series is

f (x) ∼ a0

2
+

∞

∑
n=1

(
an cos

nπx
L

+ bn sin
nπx

L

)
with Fourier coefficients

an =
1
L

∫ L

−L
f (x) cos

nπx
L

dx, n = 0, 1, . . . ,

bn =
1
L

∫ L

−L
f (x) sin

nπx
L

dx, n = 1, 2, . . . .

This can be rewritten as an exponential Fourier series of the form

Complex Exponential Series for f (x) defined on [−L, L].

f (x) ∼
∞

∑
n=−∞

cne−inπx/L, (9.23)

cn =
1

2L

∫ L

−L
f (x)einπx/L dx. (9.24)

We can now use this complex exponential Fourier series for function de-
fined on [−L, L] to derive the Fourier transform by letting L get large. This
will lead to a sum over a continuous set of frequencies, as opposed to the
sum over discrete frequencies, which Fourier series represent.

9.3 Exponential Fourier Transform

Both the trigonometric and complex exponential Fourier series
provide us with representations of a class of functions of finite period in
terms of sums over a discrete set of frequencies. In particular, for functions
defined on x ∈ [−L, L], the period of the Fourier series representation is
2L. We can write the arguments in the exponentials, e−inπx/L, in terms of
the angular frequency, ωn = nπ/L, as e−iωnx. We note that the frequencies,
νn, are then defined through ωn = 2πνn = nπ

L . Therefore, the complex
exponential series is seen to be a sum over a discrete, or countable, set of
frequencies.

We would now like to extend the finite interval to an infinite interval,
x ∈ (−∞, ∞), and to extend the discrete set of (angular) frequencies to a
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continuous range of frequencies, ω ∈ (−∞, ∞). One can do this rigorously.
It amounts to letting L and n get large and keeping n

L fixed.
We first define ∆ω = π

L , so that ωn = n∆ω. Inserting the Fourier coeffi-
cients (9.24) into Equation (9.23), we have

f (x) ∼
∞

∑
n=−∞

cne−inπx/L

=
∞

∑
n=−∞

(
1

2L

∫ L

−L
f (ξ)einπξ/L dξ

)
e−inπx/L

=
∞

∑
n=−∞

(
∆ω

2π

∫ L

−L
f (ξ)eiωnξ dξ

)
e−iωnx. (9.25)

Now, we let L get large, so that ∆ω becomes small and ωn approaches
the angular frequency ω. Then,

f (x) ∼ lim
∆ω→0,L→∞

1
2π

∞

∑
n=−∞

(∫ L

−L
f (ξ)eiωnξ dξ

)
e−iωnx∆ω

=
1

2π

∫ ∞

−∞

(∫ ∞

−∞
f (ξ)eiωξ dξ

)
e−iωx dω. (9.26)

Looking at this last result, we formally arrive at the definition of theDefinitions of the Fourier transform and
the inverse Fourier transform. Fourier transform. It is embodied in the inner integral and can be written

as

F[ f ] = f̂ (ω) =
∫ ∞

−∞
f (x)eiωx dx. (9.27)

This is a generalization of the Fourier coefficients (9.24).
Once we know the Fourier transform, f̂ (ω), then we can reconstruct the

original function, f (x), using the inverse Fourier transform, which is given
by the outer integration,

F−1[ f̂ ] = f (x) =
1

2π

∫ ∞

−∞
f̂ (ω)e−iωx dω. (9.28)

We note that it can be proven that the Fourier transform exists when f (x) is
absolutely integrable, i.e.,

∫ ∞

−∞
| f (x)| dx < ∞.

Such functions are said to be L1.
We combine these results below, defining the Fourier and inverse Fourier

transforms and indicating that they are inverse operations of each other.
We will then prove the first of the equations, (9.31). [The second equation,
(9.32), follows in a similar way.]
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The Fourier transform and inverse Fourier transform are inverse opera-
tions. Defining the Fourier transform as

F[ f ] = f̂ (ω) =
∫ ∞

−∞
f (x)eiωx dx. (9.29)

and the inverse Fourier transform as

F−1[ f̂ ] = f (x) =
1

2π

∫ ∞

−∞
f̂ (ω)e−iωx dω. (9.30)

then
F−1[F[ f ]] = f (x) (9.31)

and
F[F−1[ f̂ ]] = f̂ (ω). (9.32)

Proof. The proof is carried out by inserting the definition of the Fourier
transform, (9.29), into the inverse transform definition, (9.30), and then in-
terchanging the orders of integration. Thus, we have

F−1[F[ f ]] =
1

2π

∫ ∞

−∞
F[ f ]e−iωx dω

=
1

2π

∫ ∞

−∞

[∫ ∞

−∞
f (ξ)eiωξ dξ

]
e−iωx dω

=
1

2π

∫ ∞

−∞

∫ ∞

−∞
f (ξ)eiω(ξ−x) dξdω

=
1

2π

∫ ∞

−∞

[∫ ∞

−∞
eiω(ξ−x) dω

]
f (ξ) dξ. (9.33)

In order to complete the proof, we need to evaluate the inside integral,
which does not depend upon f (x). This is an improper integral, so we first
define

DΩ(x) =
∫ Ω

−Ω
eiωx dω

and compute the inner integral as∫ ∞

−∞
eiω(ξ−x) dω = lim

Ω→∞
DΩ(ξ − x).

x

y

−5 5

−2

8

Figure 9.5: A plot of the function DΩ(x)
for Ω = 4.

We can compute DΩ(x). A simple evaluation yields

DΩ(x) =
∫ Ω

−Ω
eiωx dω

=
eiωx

ix

∣∣∣∣Ω
−Ω

=
eixΩ − e−ixΩ

2ix

=
2 sin xΩ

x
. (9.34)

A plot of this function is in Figure 9.5 for Ω = 4. For large Ω the peak
grows and the values of DΩ(x) for x 6= 0 tend to zero as shown in Figure
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9.6. In fact, as x approaches 0, DΩ(x) approaches 2Ω. For x 6= 0, the DΩ(x)
function tends to zero.

We further note that

lim
Ω→∞

DΩ(x) = 0, x 6= 0,

and limΩ→∞ DΩ(x) is infinite at x = 0. However, the area is constant for
each Ω. In fact, ∫ ∞

−∞
DΩ(x) dx = 2π.

We can show this by recalling the computation in Example 8.42,∫ ∞

−∞

sin x
x

dx = π.

Then,

x

y

−3 3

−20

80

Figure 9.6: A plot of the function DΩ(x)
for Ω = 40.

∫ ∞

−∞
DΩ(x) dx =

∫ ∞

−∞

2 sin xΩ
x

dx

=
∫ ∞

−∞
2

sin y
y

dy

= 2π. (9.35)

x1
2- 1

2
1
4- 1

4
1
8- 1

8

1

2

4

Figure 9.7: A plot of the functions fn(x)
for n = 2, 4, 8.

Another way to look at DΩ(x) is to consider the sequence of functions
fn(x) = sin nx

πx , n = 1, 2, . . . . Then we have shown that this sequence of
functions satisfies the two properties,

lim
n→∞

fn(x) = 0, x 6= 0,

∫ ∞

−∞
fn(x) dx = 1.

This is a key representation of such generalized functions. The limiting
value vanishes at all but one point, but the area is finite.

Such behavior can be seen for the limit of other sequences of functions.
For example, consider the sequence of functions

fn(x) =

{
0, |x| > 1

n ,
n
2 , |x| <≤ f rac1n.

This is a sequence of functions as shown in Figure 9.7. As n → ∞, we find
the limit is zero for x 6= 0 and is infinite for x = 0. However, the area under
each member of the sequences is one. Thus, the limiting function is zero at
most points but has area one.

The limit is not really a function. It is a generalized function. It is called
the Dirac delta function, which is defined by

1. δ(x) = 0 for x 6= 0.

2.
∫ ∞
−∞ δ(x) dx = 1.
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Before returning to the proof that the inverse Fourier transform of the
Fourier transform is the identity, we state one more property of the Dirac
delta function, which we will prove in the next section. Namely, we will
show that ∫ ∞

−∞
δ(x− a) f (x) dx = f (a).

Returning to the proof, we now have that∫ ∞

−∞
eiω(ξ−x) dω = lim

Ω→∞
DΩ(ξ − x) = 2πδ(ξ − x).

Inserting this into (9.33), we have

F−1[F[ f ]] =
1

2π

∫ ∞

−∞

[∫ ∞

−∞
eiω(ξ−x) dω

]
f (ξ) dξ.

=
1

2π

∫ ∞

−∞
2πδ(ξ − x) f (ξ) dξ.

= f (x). (9.36)

Thus, we have proven that the inverse transform of the Fourier transform of
f is f .

9.4 The Dirac Delta Function

In the last section we introduced the Dirac delta function, δ(x). P. A. M. Dirac (1902-1984) introduced
the δ function in his book, The Principles
of Quantum Mechanics, 4th Ed., Oxford
University Press, 1958, originally pub-
lished in 1930, as part of his orthogonal-
ity statement for a basis of functions in
a Hilbert space, < ξ ′|ξ ′′ >= cδ(ξ ′ − ξ ′′)
in the same way we introduced discrete
orthogonality using the Kronecker delta.

As noted above, this is one example of what is known as a generalized
function, or a distribution. Dirac had introduced this function in the 1930’s
in his study of quantum mechanics as a useful tool. It was later studied
in a general theory of distributions and found to be more than a simple
tool used by physicists. The Dirac delta function, as any distribution, only
makes sense under an integral.

Two properties were used in the last section. First one has that the area
under the delta function is one,∫ ∞

−∞
δ(x) dx = 1.

Integration over more general intervals gives

∫ b

a
δ(x) dx =

{
1, 0 ∈ [a, b],
0, 0 6∈ [a, b].

(9.37)

The other property that was used was the sifting property:∫ ∞

−∞
δ(x− a) f (x) dx = f (a).

This can be seen by noting that the delta function is zero everywhere except
at x = a. Therefore, the integrand is zero everywhere and the only contribu-
tion from f (x) will be from x = a. So, we can replace f (x) with f (a) under
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the integral. Since f (a) is a constant, we have that∫ ∞

−∞
δ(x− a) f (x) dx =

∫ ∞

−∞
δ(x− a) f (a) dx

= f (a)
∫ ∞

−∞
δ(x− a) dx = f (a). (9.38)

Properties of the Dirac δ-function:∫ ∞

−∞
δ(x− a) f (x) dx = f (a).

∫ ∞

−∞
δ(ax) dx =

1
|a|

∫ ∞

−∞
δ(y) dy.

∫ ∞

−∞
δ( f (x)) dx =

∫ ∞

−∞

n

∑
j=1

δ(x− xj)

| f ′(xj)|
dx.

(For n simple roots.)
These and other properties are often

written outside the integral:

δ(ax) =
1
|a| δ(x).

δ(−x) = δ(x).

δ((x− a)(x− b)) =
[δ(x− a) + δ(x− a)]

|a− b| .

δ( f (x)) = ∑
j

δ(x− xj)

| f ′(xj)|
,

for f (xj) = 0, f ′(xj) 6= 0.

Another property results from using a scaled argument, ax. In this case
we show that

δ(ax) = |a|−1δ(x). (9.39)

As usual, this only has meaning under an integral sign. So, we place δ(ax)
inside an integral and make a substitution y = ax:∫ ∞

−∞
δ(ax) dx = lim

L→∞

∫ L

−L
δ(ax) dx

= lim
L→∞

1
a

∫ aL

−aL
δ(y) dy. (9.40)

If a > 0 then ∫ ∞

−∞
δ(ax) dx =

1
a

∫ ∞

−∞
δ(y) dy.

However, if a < 0 then∫ ∞

−∞
δ(ax) dx =

1
a

∫ −∞

∞
δ(y) dy = −1

a

∫ ∞

−∞
δ(y) dy.

The overall difference in a multiplicative minus sign can be absorbed into
one expression by changing the factor 1/a to 1/|a|. Thus,∫ ∞

−∞
δ(ax) dx =

1
|a|

∫ ∞

−∞
δ(y) dy. (9.41)

Example 9.1. Evaluate
∫ ∞
−∞(5x + 1)δ(4(x − 2)) dx. This is a straight forward

integration:∫ ∞

−∞
(5x + 1)δ(4(x− 2)) dx =

1
4

∫ ∞

−∞
(5x + 1)δ(x− 2) dx =

11
4

.

The first strep is to write δ(4(x− 2)) = 1
4 δ(x− 2). Then, the final evaluation

is given by
1
4

∫ ∞

−∞
(5x + 1)δ(x− 2) dx =

1
4
(5(2) + 1) =

11
4

.

Even more general than δ(ax) is the delta function δ( f (x)). The integral
of δ( f (x)) can be evaluated depending upon the number of zeros of f (x). If
there is only one zero, f (x1) = 0, then one has that∫ ∞

−∞
δ( f (x)) dx =

∫ ∞

−∞

1
| f ′(x1)|

δ(x− x1) dx.

This can be proven using the substitution y = f (x) and is left as an exercise
for the reader. This result is often written as

δ( f (x)) =
1

| f ′(x1)|
δ(x− x1),

again keeping in mind that this only has meaning when placed under an
integral.
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Example 9.2. Evaluate
∫ ∞
−∞ δ(3x− 2)x2 dx.

This is not a simple δ(x− a). So, we need to find the zeros of f (x) = 3x− 2.
There is only one, x = 2

3 . Also, | f ′(x)| = 3. Therefore, we have

∫ ∞

−∞
δ(3x− 2)x2 dx =

∫ ∞

−∞

1
3

δ(x− 2
3
)x2 dx =

1
3

(
2
3

)2
=

4
27

.

Note that this integral can be evaluated the long way by using the substitution
y = 3x− 2. Then, dy = 3 dx and x = (y + 2)/3. This gives

∫ ∞

−∞
δ(3x− 2)x2 dx =

1
3

∫ ∞

−∞
δ(y)

(
y + 2

3

)2
dy =

1
3

(
4
9

)
=

4
27

.

More generally, one can show that when f (xj) = 0 and f ′(xj) 6= 0 for
j = 1, 2, . . . , n, (i.e.; when one has n simple zeros), then

δ( f (x)) =
n

∑
j=1

1
| f ′(xj)|

δ(x− xj).

Example 9.3. Evaluate
∫ 2π

0 cos x δ(x2 − π2) dx.
In this case the argument of the delta function has two simple roots. Namely,

f (x) = x2 − π2 = 0 when x = ±π. Furthermore, f ′(x) = 2x. Therefore,
| f ′(±π)| = 2π. This gives

δ(x2 − π2) =
1

2π
[δ(x− π) + δ(x + π)].

Inserting this expression into the integral and noting that x = −π is not in the
integration interval, we have

∫ 2π

0
cos x δ(x2 − π2) dx =

1
2π

∫ 2π

0
cos x [δ(x− π) + δ(x + π)] dx

=
1

2π
cos π = − 1

2π
. (9.42)

H(x)

x

1

0

Figure 9.8: The Heaviside step function,
H(x).

Example 9.4. Show H′(x) = δ(x), where the Heaviside function (or, step func-
tion) is defined as

H(x) =

{
0, x < 0
1, x > 0

and is shown in Figure 9.8.
Looking at the plot, it is easy to see that H′(x) = 0 for x 6= 0. In order to check

that this gives the delta function, we need to compute the area integral. Therefore,
we have ∫ ∞

−∞
H′(x) dx = H(x)

∣∣∣∞
−∞

= 1− 0 = 1.

Thus, H′(x) satisfies the two properties of the Dirac delta function.
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9.5 Properties of the Fourier Transform

We now return to the Fourier transform. Before actually comput-
ing the Fourier transform of some functions, we prove a few of the proper-
ties of the Fourier transform.

First we note that there are several forms that one may encounter for the
Fourier transform. In applications functions can either be functions of time,
f (t), or space, f (x). The corresponding Fourier transforms are then written
as

f̂ (ω) =
∫ ∞

−∞
f (t)eiωt dt, (9.43)

or

f̂ (k) =
∫ ∞

−∞
f (x)eikx dx. (9.44)

ω is called the angular frequency and is related to the frequency ν by ω =

2πν. The units of frequency are typically given in Hertz (Hz). Sometimes
the frequency is denoted by f when there is no confusion. k is called the
wavenumber. It has units of inverse length and is related to the wavelength,
λ, by k = 2π

λ .
We explore a few basic properties of the Fourier transform and use them

in examples in the next section.

1. Linearity: For any functions f (x) and g(x) for which the Fourier
transform exists and constant a, we have

F[ f + g] = F[ f ] + F[g]

and

F[a f ] = aF[ f ].

These simply follow from the properties of integration and establish
the linearity of the Fourier transform.

2. Transform of a Derivative: F
[

d f
dx

]
= −ik f̂ (k)

Here we compute the Fourier transform (9.29) of the derivative by
inserting the derivative in the Fourier integral and using integration
by parts.

F
[

d f
dx

]
=

∫ ∞

−∞

d f
dx

eikx dx

= lim
L→∞

[
f (x)eikx

]L

−L
− ik

∫ ∞

−∞
f (x)eikx dx.

(9.45)

The limit will vanish if we assume that limx→±∞ f (x) = 0. The last
integral is recognized as the Fourier transform of f , proving the given
property.
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3. Higher Order Derivatives: F
[

dn f
dxn

]
= (−ik)n f̂ (k)

The proof of this property follows from the last result, or doing several
integration by parts. We will consider the case when n = 2. Noting
that the second derivative is the derivative of f ′(x) and applying the
last result, we have

F
[

d2 f
dx2

]
= F

[
d

dx
f ′
]

= −ikF
[

d f
dx

]
= (−ik)2 f̂ (k). (9.46)

This result will be true if

lim
x→±∞

f (x) = 0 and lim
x→±∞

f ′(x) = 0.

The generalization to the transform of the nth derivative easily fol-
lows.

4. Multiplication by x: F [x f (x)] = −i d
dk f̂ (k)

This property can be shown by using the fact that d
dk eikx = ixeikx and

the ability to differentiate an integral with respect to a parameter.

F[x f (x)] =
∫ ∞

−∞
x f (x)eikx dx

=
∫ ∞

−∞
f (x)

d
dk

(
1
i

eikx
)

dx

= −i
d
dk

∫ ∞

−∞
f (x)eikx dx

= −i
d
dk

f̂ (k). (9.47)

This result can be generalized to F [xn f (x)] as an exercise.

5. Shifting Properties: For constant a, we have the following shifting
properties:

f (x− a)↔ eika f̂ (k), (9.48)

f (x)e−iax ↔ f̂ (k− a). (9.49)

Here we have denoted the Fourier transform pairs using a double
arrow as f (x)↔ f̂ (k). These are easily proven by inserting the desired
forms into the definition of the Fourier transform (9.29), or inverse
Fourier transform (9.30). The first shift property (9.48) is shown by
the following argument. We evaluate the Fourier transform.

F[ f (x− a)] =
∫ ∞

−∞
f (x− a)eikx dx.

Now perform the substitution y = x− a. Then,

F[ f (x− a)] =
∫ ∞

−∞
f (y)eik(y+a) dy

= eika
∫ ∞

−∞
f (y)eiky dy

= eika f̂ (k). (9.50)
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The second shift property (9.49) follows in a similar way.

6. Convolution of Functions: We define the convolution of two func-
tions f (x) and g(x) as

( f ∗ g)(x) =
∫ ∞

−∞
f (t)g(x− t) dx. (9.51)

Then, the Fourier transform of the convolution is the product of the
Fourier transforms of the individual functions:

F[ f ∗ g] = f̂ (k)ĝ(k). (9.52)

We will return to the proof of this property in Section 9.6.

9.5.1 Fourier Transform Examples

In this section we will compute the Fourier transforms of several func-
tions.

Example 9.5. Find the Fourier transform of a Gaussian, f (x) = e−ax2/2.
x

e−ax2/2

Figure 9.9: Plots of the Gaussian func-
tion f (x) = e−ax2/2 for a = 1, 2, 3. This function, shown in Figure 9.9 is called the Gaussian function. It has many

applications in areas such as quantum mechanics, molecular theory, probability and
heat diffusion. We will compute the Fourier transform of this function and show
that the Fourier transform of a Gaussian is a Gaussian. In the derivation we will
introduce classic techniques for computing such integrals.

We begin by applying the definition of the Fourier transform,

f̂ (k) =
∫ ∞

−∞
f (x)eikx dx =

∫ ∞

−∞
e−ax2/2+ikx dx. (9.53)

The first step in computing this integral is to complete the square in the argument
of the exponential. Our goal is to rewrite this integral so that a simple substitution
will lead to a classic integral of the form

∫ ∞
−∞ eβy2

dy, which we can integrate. The
completion of the square follows as usual:

− a
2

x2 + ikx = − a
2

[
x2 − 2ik

a
x
]

= − a
2

[
x2 − 2ik

a
x +

(
− ik

a

)2
−
(
− ik

a

)2
]

= − a
2

(
x− ik

a

)2
− k2

2a
. (9.54)

We now put this expression into the integral and make the substitutions y =

x− ik
a and β = a

2 .

f̂ (k) =
∫ ∞

−∞
e−ax2/2+ikx dx

= e−
k2
2a

∫ ∞

−∞
e−

a
2 (x− ik

a )
2

dx

= e−
k2
2a

∫ ∞− ik
a

−∞− ik
a

e−βy2
dy. (9.55)
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One would be tempted to absorb the − ik
a terms in the limits of integration.

However, we know from our previous study that the integration takes place over a
contour in the complex plane as shown in Figure 9.10.

x

y

z = x− ik
a

Figure 9.10: Simple horizontal contour.

In this case we can deform this horizontal contour to a contour along the real
axis since we will not cross any singularities of the integrand. So, we now safely
write

f̂ (k) = e−
k2
2a

∫ ∞

−∞
e−βy2

dy.

The resulting integral is a classic integral and can be performed using a standard
trick. Define I by4

4 Here we show∫ ∞

−∞
e−βy2

dy =

√
π

β
.

Note that we solved the β = 1 case in
Example 5.11, so a simple variable trans-
formation z =

√
βy is all that is needed

to get the answer. However, it cannot
hurt to see this classic derivation again.

I =
∫ ∞

−∞
e−βy2

dy.

Then,
I2 =

∫ ∞

−∞
e−βy2

dy
∫ ∞

−∞
e−βx2

dx.

Note that we needed to change the integration variable so that we can write this
product as a double integral:

I2 =
∫ ∞

−∞

∫ ∞

−∞
e−β(x2+y2) dxdy.

This is an integral over the entire xy-plane. We now transform to polar coordinates
to obtain

I2 =
∫ 2π

0

∫ ∞

0
e−βr2

rdrdθ

= 2π
∫ ∞

0
e−βr2

rdr

= −π

β

[
e−βr2

]∞

0
=

π

β
. (9.56)

The final result is gotten by taking the square root, yielding

I =
√

π

β
.

We can now insert this result to give the Fourier transform of the Gaussian
function:

f̂ (k) =

√
2π

a
e−k2/2a. (9.57)

Therefore, we have shown that the Fourier transform of a Gaussian is a Gaussian. The Fourier transform of a Gaussian is a
Gaussian.

Example 9.6. Find the Fourier transform of the Box, or Gate, Function,

f (x) =

{
b, |x| ≤ a
0, |x| > a

.

y

x

b

a−a

Figure 9.11: A plot of the box function in
Example 9.6.

This function is called the box function, or gate function. It is shown in Figure
9.11. The Fourier transform of the box function is relatively easy to compute. It is
given by

f̂ (k) =
∫ ∞

−∞
f (x)eikx dx
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=
∫ a

−a
beikx dx

=
b
ik

eikx
∣∣∣a
−a

=
2b
k

sin ka. (9.58)

We can rewrite this as

f̂ (k) = 2ab
sin ka

ka
≡ 2ab sinc ka.

Here we introduced the sinc function,

sinc x =
sin x

x
.

A plot of this function is shown in Figure 9.12. This function appears often in
signal analysis and it plays a role in the study of diffraction.

x

y

−20 −10 10 20

−0.5

0.5

1

Figure 9.12: A plot of the Fourier trans-
form of the box function in Example 9.6.
This is the general shape of the sinc func-
tion.

We will now consider special limiting values for the box function and its trans-
form. This will lead us to the Uncertainty Principle for signals, connecting the
relationship between the localization properties of a signal and its transform.

1. a→ ∞ and b fixed.

In this case, as a gets large the box function approaches the constant function
f (x) = b. At the same time, we see that the Fourier transform approaches a
Dirac delta function. We had seen this function earlier when we first defined
the Dirac delta function. Compare Figure 9.12 with Figure 9.5. In fact,
f̂ (k) = bDa(k). [Recall the definition of DΩ(x) in Equation (9.34).] So, in
the limit we obtain f̂ (k) = 2πbδ(k). This limit implies fact that the Fourier
transform of f (x) = 1 is f̂ (k) = 2πδ(k). As the width of the box becomes
wider, the Fourier transform becomes more localized. In fact, we have arrived
at the important result that

∫ ∞

−∞
eikx = 2πδ(k). (9.59)

2. b→ ∞, a→ 0, and 2ab = 1.

In this case the box narrows and becomes steeper while maintaining a con-
stant area of one. This is the way we had found a representation of the Dirac
delta function previously. The Fourier transform approaches a constant in
this limit. As a approaches zero, the sinc function approaches one, leaving
f̂ (k) → 2ab = 1. Thus, the Fourier transform of the Dirac delta function is
one. Namely, we have

∫ ∞

−∞
δ(x)eikx = 1. (9.60)

In this case we have that the more localized the function f (x) is, the more
spread out the Fourier transform, f̂ (k), is. We will summarize these no-
tions in the next item by relating the widths of the function and its Fourier
transform.
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3. The Uncertainty Principle, ∆x∆k = 4π.

The widths of the box function and its Fourier transform are related as we
have seen in the last two limiting cases. It is natural to define the width, ∆x
of the box function as

∆x = 2a.

The width of the Fourier transform is a little trickier. This function actually
extends along the entire k-axis. However, as f̂ (k) became more localized, the
central peak in Figure 9.12 became narrower. So, we define the width of this
function, ∆k as the distance between the first zeros on either side of the main
lobe as shown in Figure 9.13. This gives

∆k =
2π

a
.

x

y
2ab

π

a
−π

a

Figure 9.13: The width of the function
2ab sin ka

ka is defined as the distance be-
tween the smallest magnitude zeros.

Combining these two relations, we find that

∆x∆k = 4π.

Thus, the more localized a signal, the less localized its transform and vice
versa. This notion is referred to as the Uncertainty Principle. For general
signals, one needs to define the effective widths more carefully, but the main
idea holds:

∆x∆k ≥ c > 0.

More formally, the uncertainty principle
for signals is about the relation between
duration and bandwidth, which are de-
fined by ∆t = ‖t f ‖2

‖ f ‖2
and ∆ω = ‖ω f̂ ‖2

‖ f̂ ‖2
, re-

spectively, where ‖ f ‖2 =
∫ ∞
−∞ | f (t)|

2 dt
and ‖ f̂ ‖2 = 1

2π

∫ ∞
−∞ | f̂ (ω)|2 dω. Under

appropriate conditions, one can prove
that ∆t∆ω ≥ 1

2 . Equality holds for Gaus-
sian signals. Werner Heisenberg (1901-
1976) introduced the uncertainty princi-
ple into quantum physics in 1926, relat-
ing uncertainties in the position (∆x) and
momentum (∆px) of particles. In this
case, ∆x∆px ≥ 1

2 h̄. Here, the uncertain-
ties are defined as the positive square
roots of the quantum mechanical vari-
ances of the position and momentum.

We now turn to other examples of Fourier transforms.

Example 9.7. Find the Fourier transform of f (x) =

{
e−ax, x ≥ 0

0, x < 0
, a > 0.

The Fourier transform of this function is

f̂ (k) =
∫ ∞

−∞
f (x)eikx dx

=
∫ ∞

0
eikx−ax dx

=
1

a− ik
. (9.61)

Next, we will compute the inverse Fourier transform of this result and recover
the original function.

Example 9.8. Find the inverse Fourier transform of f̂ (k) = 1
a−ik .

The inverse Fourier transform of this function is

f (x) =
1

2π

∫ ∞

−∞
f̂ (k)e−ikx dk =

1
2π

∫ ∞

−∞

e−ikx

a− ik
dk.

This integral can be evaluated using contour integral methods. We evaluate the
integral

I =
∫ ∞

−∞

e−ixz

a− iz
dz,
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using Jordan’s Lemma from Section 8.5.8. According to Jordan’s Lemma, we need
to enclose the contour with a semicircle in the upper half plane for x < 0 and in the
lower half plane for x > 0 as shown in Figure 9.14.

The integrations along the semicircles will vanish and we will have

f (x) =
1

2π

∫ ∞

−∞

e−ikx

a− ik
dk

= ± 1
2π

∮
C

e−ixz

a− iz
dz

=

{
0, x < 0

− 1
2π 2πi Res [z = −ia], x > 0

=

{
0, x < 0

e−ax, x > 0
. (9.62)

R−R x

y

CR

−ia

R−R
x

y

CR

−ia

Figure 9.14: Contours for inverting
f̂ (k) = 1

a−ik .

Note that without paying careful attention to Jordan’s Lemma one might not
retrieve the function from the last example.

Example 9.9. Find the inverse Fourier transform of f̂ (ω) = πδ(ω + ω0) +

πδ(ω−ω0).
We would like to find the inverse Fourier transform of this function. Instead of

carrying out any integration, we will make use of the properties of Fourier trans-
forms. Since the transforms of sums are the sums of transforms, we can look at each
term individually. Consider δ(ω − ω0). This is a shifted function. From the shift
theorems in Equations (9.48)-(9.49) we have the Fourier transform pair

eiω0t f (t)↔ f̂ (ω−ω0).

Recalling from Example 9.6 that∫ ∞

−∞
eiωt dt = 2πδ(ω),

we have from the shift property that

F−1[δ(ω−ω0)] =
1

2π
e−iω0t.

The second term can be transformed similarly. Therefore, we have

F−1[πδ(ω + ω0) + πδ(ω−ω0] =
1
2

eiω0t +
1
2

e−iω0t = cos ω0t.

Example 9.10. Find the Fourier transform of the finite wave train.

f (t) =

{
cos ω0t, |t| ≤ a

0, |t| > a
.

For the last example, we consider the finite wave train, which will reappear in
the last chapter on signal analysis. In Figure 9.15 we show a plot of this function.

a0
t

f (t)

Figure 9.15: A plot of the finite wave
train.

A straight forward computation gives

f̂ (ω) =
∫ ∞

−∞
f (t)eiωt dt
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=
∫ a

−a
[cos ω0t + i sin ω0t]eiωt dt

=
∫ a

−a
cos ω0t cos ωt dt + i

∫ a

−a
sin ω0t sin ωt dt

=
1
2

∫ a

−a
[cos((ω + ω0)t) + cos((ω−ω0)t)] dt

=
sin((ω + ω0)a)

ω + ω0
+

sin((ω−ω0)a)
ω−ω0

. (9.63)

9.6 The Convolution Operation

In the list of properties of the Fourier transform, we defined the
convolution of two functions, f (x) and g(x) to be the integral

( f ∗ g)(x) =
∫ ∞

−∞
f (t)g(x− t) dt. (9.64)

In some sense one is looking at a sum of the overlaps of one of the functions
and all of the shifted versions of the other function. The German word
for convolution is faltung, which means “folding” and in old texts this is
referred to as the Faltung Theorem. In this section we will look into the
convolution operation and its Fourier transform.

Before we get too involved with the convolution operation, it should be
noted that there are really two things you need to take away from this dis-
cussion. The rest is detail. First, the convolution of two functions is a new
functions as defined by 9.64 when dealing wit the Fourier transform. The
second and most relevant is that the Fourier transform of the convolution of
two functions is the product of the transforms of each function. The rest is
all about the use and consequences of these two statements. In this section
we will show how the convolution works and how it is useful. The convolution is commutative.

First, we note that the convolution is commutative: f ∗ g = g ∗ f . This is
easily shown by replacing x− t with a new variable, y = x− t and dy = −dt.

(g ∗ f )(x) =
∫ ∞

−∞
g(t) f (x− t) dt

= −
∫ −∞

∞
g(x− y) f (y) dy

=
∫ ∞

−∞
f (y)g(x− y) dy

= ( f ∗ g)(x). (9.65)

The best way to understand the folding of the functions in the convolu-
tion is to take two functions and convolve them. The next example gives
a graphical rendition followed by a direct computation of the convolution.
The reader is encouraged to carry out these analyses for other functions.

Example 9.11. Graphical Convolution of the box function and a triangle function.
In order to understand the convolution operation, we need to apply it to specific
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functions. We will first do this graphically for the box function

f (x) =

{
1, |x| ≤ 1,
0, |x| > 1

and the triangular function

g(x) =

{
x, 0 ≤ x ≤ 1,
0, otherwise

as shown in Figure 9.16.

x

f (x)

1−1

1

x

g(x)

1−1

1

Figure 9.16: A plot of the box function
f (x) and the triangle function g(x).

t

g(−t)

1−1

1

Figure 9.17: A plot of the reflected trian-
gle function, g(−t).

Next, we determine the contributions to the integrand. We consider the shifted
and reflected function g(t− x) in Equation 9.64 for various values of t. For t = 0,
we have g(x − 0) = g(−x). This function is a reflection of the triangle function,
g(x), as shown in Figure 9.17.

We then translate the triangle function performing horizontal shifts by t. In
Figure 9.18 we show such a shifted and reflected g(x) for t = 2, or g(2− x).

t

g(2− t)

1−1

1

2

Figure 9.18: A plot of the reflected trian-
gle function shifted by 2 units, g(2− t).

In Figure 9.18 we show several plots of other shifts, g(x− t), superimposed on
f (x).

The integrand is the product of f (t) and g(x− t) and the integral of the product
f (t)g(x− t) is given by the sum of the shaded areas for each value of x.

In the first plot of Figure 9.19 the area is zero, as there is no overlap of the
functions. Intermediate shift values are displayed in the other plots in Figure 9.19.
The value of the convolution at x is shown by the area under the product of the two
functions for each value of x.

Plots of the areas of the convolution of the box and triangle functions for several
values of x are given in Figure 9.18. We see that the value of the convolution
integral builds up and then quickly drops to zero as a function of x. In Figure 9.20
the values of these areas is shown as a function of x.

t

y

t

y

t

y

t

y

t

y

t

y

t

y

t

y

t

y

Figure 9.19: A plot of the box and trian-
gle functions with the overlap indicated
by the shaded area.

The plot of the convolution in Figure 9.20 is not easily determined using
the graphical method. However, we can directly compute the convolution
as shown in the next example.



transform techniques in physics 381

Example 9.12. Analytically find the convolution of the box function and the tri-
angle function.

x

( f ∗ g)(x)

1−1

0.5

2

Figure 9.20: A plot of the convolution of
the box and triangle functions.

The nonvanishing contributions to the convolution integral are when both f (t)
and g(x− t) do not vanish. f (t) is nonzero for |t| ≤ 1, or −1 ≤ t ≤ 1. g(x− t)
is nonzero for 0 ≤ x− t ≤ 1, or x− 1 ≤ t ≤ x. These two regions are shown in
Figure 9.21. On this region, f (t)g(x− t) = x− t.

x

t

−1

−1

1

1

2

2

g(x)

f (x)

Figure 9.21: Intersection of the support
of g(x) and f (x).

Isolating the intersection in Figure 9.22, we see in Figure 9.22 that there are
three regions as shown by different shadings. These regions lead to a piecewise
defined function with three different branches of nonzero values for −1 < x < 0,
0 < x < 1, and 1 < x < 2.

x

t

−1

−1

1

1

2

2

g(x)

f (x)

Figure 9.22: Intersection of the support
of g(x) and f (x) showing the integration
regions.

The values of the convolution can be determined through careful integration. The
resulting integrals are given as

( f ∗ g)(x) =
∫ ∞

−∞
f (t)g(x− t) dt

=


∫ x
−1(x− t) dt, −1 < x < 0∫ x

x−1(x− t) dt, 0 < x < 1∫ 1
x−1(x− t) dt, 1 < x < 2

=


1
2 (x + 1)2, −1 < x < 0

1
2 , 0 < x < 1

1
2
[
1− (x− 1)2] 1 < x < 2

(9.66)
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A plot of this function is shown in Figure 9.20.

9.6.1 Convolution Theorem for Fourier Transforms

In this section we compute the Fourier transform of the convolution in-
tegral and show that the Fourier transform of the convolution is the product
of the transforms of each function,

F[ f ∗ g] = f̂ (k)ĝ(k). (9.67)

First, we use the definitions of the Fourier transform and the convolution
to write the transform as

F[ f ∗ g] =
∫ ∞

−∞
( f ∗ g)(x)eikx dx

=
∫ ∞

−∞

(∫ ∞

−∞
f (t)g(x− t) dt

)
eikx dx

=
∫ ∞

−∞

(∫ ∞

−∞
g(x− t)eikx dx

)
f (t) dt. (9.68)

We now substitute y = x− t on the inside integral and separate the integrals:

F[ f ∗ g] =
∫ ∞

−∞

(∫ ∞

−∞
g(x− t)eikx dx

)
f (t) dt

=
∫ ∞

−∞

(∫ ∞

−∞
g(y)eik(y+t) dy

)
f (t) dt

=
∫ ∞

−∞

(∫ ∞

−∞
g(y)eiky dy

)
f (t)eikt dt.

=

(∫ ∞

−∞
f (t)eikt dt

)(∫ ∞

−∞
g(y)eiky dy

)
. (9.69)

We see that the two integrals are just the Fourier transforms of f and g.
Therefore, the Fourier transform of a convolution is the product of the
Fourier transforms of the functions involved:

F[ f ∗ g] = f̂ (k)ĝ(k).

Example 9.13. Compute the convolution of the box function of height one and
width two with itself.

Let f̂ (k) be the Fourier transform of f (x). Then, the Convolution Theorem says
that F[ f ∗ f ](k) = f̂ 2(k), or

( f ∗ f )(x) = F−1[ f̂ 2(k)].

For the box function, we have already found that

f̂ (k) =
2
k

sin k.

So, we need to compute

( f ∗ f )(x) = F−1[
4
k2 sin2 k]

=
1

2π

∫ ∞

−∞

(
4
k2 sin2 k

)
e−ikx dk. (9.70)
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One way to compute this integral is to extend the computation into the complex
k-plane. We first need to rewrite the integrand. Thus,

( f ∗ f )(x) =
1

2π

∫ ∞

−∞

4
k2 sin2 ke−ikx dk

=
1
π

∫ ∞

−∞

1
k2 [1− cos 2k]e−ikx dk

=
1
π

∫ ∞

−∞

1
k2

[
1− 1

2
(eik + e−ik)

]
e−ikx dk

=
1
π

∫ ∞

−∞

1
k2

[
e−ikx − 1

2
(e−i(1−k) + e−i(1+k))

]
dk. (9.71)

We can compute the above integrals if we know how to compute the integral

I(y) =
1
π

∫ ∞

−∞

e−iky

k2 dk.

Then, the result can be found in terms of I(y) as

( f ∗ f )(x) = I(x)− 1
2
[I(1− k) + I(1 + k)].

We consider the integral ∮
C

e−iyz

πz2 dz

over the contour in Figure 9.23.

ε R−R −ε x

y

Cε

ΓR

Figure 9.23: Contour for computing
P
∫ ∞
−∞

e−iyz

πz2 dz.

We can see that there is a double pole at z = 0. The pole is on the real axis. So,
we will need to cut out the pole as we seek the value of the principal value integral.

Recall from Chapter 8 that∮
CR

e−iyz

πz2 dz =
∫

ΓR

e−iyz

πz2 dz +
∫ −ε

−R

e−iyz

πz2 dz +
∫

Cε

e−iyz

πz2 dz +
∫ R

ε

e−iyz

πz2 dz.

The integral
∮

CR
e−iyz

πz2 dz vanishes since there are no poles enclosed in the contour!
The sum of the second and fourth integrals gives the integral we seek as ε → 0
and R→ ∞. The integral over ΓR will vanish as R gets large according to Jordan’s
Lemma provided y < 0. That leaves the integral over the small semicircle.

As before, we can show that

lim
ε→0

∫
Cε

f (z) dz = −πi Res[ f (z); z = 0].

Therefore, we find

I(y) = P
∫ ∞

−∞

e−iyz

πz2 dz = πi Res
[

e−iyz

πz2 ; z = 0
]

.

A simple computation of the reside gives I(y) = −y, for y < 0.
When y > 0, we need to close the contour in the lower half plane in order to

apply Jordan’s Lemma. Carrying out the computation, one finds I(y) = y, for
y > 0. Thus,

I(y) =

{
−y, y > 0,
y, y < 0,

(9.72)
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We are now ready to finish the computation of the convolution. We have to
combine the integrals I(y), I(y + 1), and I(y − 1), since ( f ∗ f )(x) = I(x) −
1
2 [I(1− k) + I(1 + k)]. This gives different results in four intervals:

( f ∗ f )(x) = x− 1
2
[(x− 2) + (x + 2)] = 0, x < −2,

= x− 1
2
[(x− 2)− (x + 2)] = 2 + x − 2 < x < 0,

= −x− 1
2
[(x− 2)− (x + 2)] = 2− x, 0 < x < 2,

= −x− 1
2
[−(x− 2)− (x + 2)] = 0, x > 2. (9.73)

A plot of this solution is the triangle function,

( f ∗ f )(x) =


0, x < −2

2 + x, −2 < x < 0
2− x, 0 < x < 2

0, x > 2,

(9.74)

which was shown in the last example.

Example 9.14. Find the convolution of the box function of height one and width
two with itself using a direct computation of the convolution integral.

The nonvanishing contributions to the convolution integral are when both f (t)
and f (x− t) do not vanish. f (t) is nonzero for |t| ≤ 1, or −1 ≤ t ≤ 1. f (x− t)
is nonzero for |x− t| ≤ 1, or x− 1 ≤ t ≤ x + 1. These two regions are shown in
Figure 9.25. On this region, f (t)g(x− t) = 1.

Figure 9.24: Plot of the regions of sup-
port for f (t) and f (x− t)..

x

t

−1
−1

1

1

2

2

−2

−2

3

−3

t = x + 1

t = x− 1

t = −1

t = 1
f (x− t)

f (t)

Thus, the nonzero contributions to the convolution are

( f ∗ f )(x) =

{ ∫ x+1
−1 dt, 0 ≤ x ≤ 2,∫ 1
x−1 dt, −2 ≤ x ≤ 0,

=

{
2 + x, 0 ≤ x ≤ 2,
2− x, −2 ≤ x ≤ 0.

Once again, we arrive at the triangle function.

In the last section we showed the graphical convolution. For complete-
ness, we do the same for this example. In figure 9.25 we show the results.
We see that the convolution of two box functions is a triangle function.
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t

f (x− t) f (t)

t

t

t

t

t

t

t

t

x1-1 2-2

2
( f ∗ g)(x)

Figure 9.25: A plot of the convolution of
a box function with itself. The areas of
the overlaps of as f (x − t) is translated
across f (t) are shown as well. The result
is the triangular function.

Example 9.15. Show the graphical convolution of the box function of height one
and width two with itself.

Let’s consider a slightly more complicated example, the convolution of
two Gaussian functions.

Example 9.16. Convolution of two Gaussian functions f (x) = e−ax2
.

In this example we will compute the convolution of two Gaussian functions with
different widths. Let f (x) = e−ax2

and g(x) = e−bx2
. A direct evaluation of the

integral would be to compute

( f ∗ g)(x) =
∫ ∞

−∞
f (t)g(x− t) dt =

∫ ∞

−∞
e−at2−b(x−t)2

dt.

This integral can be rewritten as

( f ∗ g)(x) = e−bx2
∫ ∞

−∞
e−(a+b)t2+2bxt dt.

One could proceed to complete the square and finish carrying out the integration.
However, we will use the Convolution Theorem to evaluate the convolution and
leave the evaluation of this integral to Problem 12.

Recalling the Fourier transform of a Gaussian from Example 9.5, we have

f̂ (k) = F[e−ax2
] =

√
π

a
e−k2/4a (9.75)

and

ĝ(k) = F[e−bx2
] =

√
π

b
e−k2/4b.

Denoting the convolution function by h(x) = ( f ∗ g)(x), the Convolution Theorem
gives

ĥ(k) = f̂ (k)ĝ(k) =
π√
ab

e−k2/4ae−k2/4b.

This is another Gaussian function, as seen by rewriting the Fourier transform of
h(x) as

ĥ(k) =
π√
ab

e−
1
4 (

1
a +

1
b )k2

=
π√
ab

e−
a+b
4ab k2

. (9.76)
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In order to complete the evaluation of the convolution of these two Gaussian
functions, we need to find the inverse transform of the Gaussian in Equation (9.76).
We can do this by looking at Equation (9.75). We have first that

F−1
[√

π

a
e−k2/4a

]
= e−ax2

.

Moving the constants, we then obtain

F−1[e−k2/4a] =

√
a
π

e−ax2
.

We now make the substitution α = 1
4a ,

F−1[e−αk2
] =

√
1

4πα
e−x2/4α.

This is in the form needed to invert (9.76). Thus, for α = a+b
4ab we find

( f ∗ g)(x) = h(x) =
√

π

a + b
e−

ab
a+b x2

.

9.6.2 Application to Signal Analysis

f (t)

t

f̂ (ω)

ω

Figure 9.26: Schematic plot of a signal
f (t) and its Fourier transform f̂ (ω).

There are many applications of the convolution operation. One of
these areas is the study of analog signals. An analog signal is a continuous
signal and may contain either a finite, or continuous, set of frequencies.
Fourier transforms can be used to represent such signals as a sum over the
frequency content of these signals. In this section we will describe how
convolutions can be used in studying signal analysis.Filtering signals.

The first application is filtering. For a given signal there might be some
noise in the signal, or some undesirable high frequencies. For example, a
device used for recording an analog signal might naturally not be able to
record high frequencies. Let f (t) denote the amplitude of a given analog
signal and f̂ (ω) be the Fourier transform of this signal such the example
provided in Figure 9.26. Recall that the Fourier transform gives the fre-
quency content of the signal.

f̂ (ω)

ω

(a)

pω0 (ω)

ω-ω0 ω0

(b)

ĝ(ω)

ω

(c)

Figure 9.27: (a) Plot of the Fourier trans-
form f̂ (ω) of a signal. (b) The gate func-
tion pω0 (ω) used to filter out high fre-
quencies. (c) The product of the func-
tions, ĝ(ω) = f̂ (ω)pω0 (ω), in (a) and (b)
shows how the filters cuts out high fre-
quencies, |ω| > ω0.

There are many ways to filter out unwanted frequencies. The simplest
would be to just drop all of the high (angular) frequencies. For example,
for some cutoff frequency ω0 frequencies |ω| > ω0 will be removed. The
Fourier transform of the filtered signal would then be zero for |ω| > ω0.
This could be accomplished by multiplying the Fourier transform of the
signal by a function that vanishes for |ω| > ω0. For example, we could use
the gate function

pω0(ω) =

{
1, |ω| ≤ ω0

0, |ω| > ω0
, (9.77)

as shown in Figure 9.27.
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In general, we multiply the Fourier transform of the signal by some fil-
tering function ĥ(t) to get the Fourier transform of the filtered signal,

ĝ(ω) = f̂ (ω)ĥ(ω).

The new signal, g(t) is then the inverse Fourier transform of this product,
giving the new signal as a convolution:

g(t) = F−1[ f̂ (ω)ĥ(ω)] =
∫ ∞

−∞
h(t− τ) f (τ) dτ. (9.78)

Such processes occur often in systems theory as well. One thinks of
f (t) as the input signal into some filtering device which in turn produces
the output, g(t). The function h(t) is called the impulse response. This is
because it is a response to the impulse function, δ(t). In this case, one has∫ ∞

−∞
h(t− τ)δ(τ) dτ = h(t).

Windowing signals.
Another application of the convolution is in windowing. This represents

what happens when one measures a real signal. Real signals cannot be
recorded for all values of time. Instead data is collected over a finite time
interval. If the length of time the data is collected is T, then the resulting
signal is zero outside this time interval. This can be modeled in the same
way as with filtering, except the new signal will be the product of the old
signal with the windowing function. The resulting Fourier transform of the
new signal will be a convolution of the Fourier transforms of the original
signal and the windowing function.

Example 9.17. Finite Wave Train, Revisited.
We return to the finite wave train in Example 9.10 given by

h(t) =

{
cos ω0t, |t| ≤ a

0, |t| > a
.

a0
t

f (t)

Figure 9.28: A plot of the finite wave
train.

We can view this as a windowed version of f (t) = cos ω0t obtained by multi-
plying f (t) by the gate function

ga(t) =

{
1, |x| ≤ a
0, |x| > a

. (9.79)

This is shown in Figure 9.28. Then, the Fourier transform is given as a convolution, The convolution in spectral space is de-
fined with an extra factor of 1/2π so
as to preserve the idea that the inverse
Fourier transform of a convolution is the
product of the corresponding signals.

ĥ(ω) = ( f̂ ∗ ĝa)(ω)

=
1

2π

∫ ∞

−∞
f̂ (ω− ν)ĝa(ν) dν. (9.80)

Note that the convolution in frequency space requires the extra factor of 1/(2π).
We need the Fourier transforms of f and ga in order to finish the computation.

The Fourier transform of the box function was found in Example 9.6 as

ĝa(ω) =
2
ω

sin ωa.
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The Fourier transform of the cosine function, f (t) = cos ω0t, is

f̂ (ω) =
∫ ∞

−∞
cos(ω0t)eiωt dt

=
∫ ∞

−∞

1
2

(
eiω0t + e−iω0t

)
eiωt dt

=
1
2

∫ ∞

−∞

(
ei(ω+ω0)t + ei(ω−ω0)t

)
dt

= π [δ(ω + ω0) + δ(ω−ω0)] . (9.81)

Note that we had earlier computed the inverse Fourier transform of this function in
Example 9.9.

Inserting these results in the convolution integral, we have

ĥ(ω) =
1

2π

∫ ∞

−∞
f̂ (ω− ν)ĝa(ν) dν

=
1

2π

∫ ∞

−∞
π [δ(ω− ν + ω0) + δ(ω− ν−ω0)]

2
ν

sin νa dν

=
sin(ω + ω0)a

ω + ω0
+

sin(ω−ω0)a
ω−ω0

. (9.82)

This is the same result we had obtained in Example 9.10.

9.6.3 Parseval’s Equality
The integral/sum of the (modulus)
square of a function is the integral/sum
of the (modulus) square of the trans-
form. As another example of the convolution theorem, we derive Par-

seval’s Equality (named after Marc-Antoine Parseval (1755-1836)):∫ ∞

−∞
| f (t)|2 dt =

1
2π

∫ ∞

−∞
| f̂ (ω)|2 dω. (9.83)

This equality has a physical meaning for signals. The integral on the left
side is a measure of the energy content of the signal in the time domain.
The right side provides a measure of the energy content of the transform
of the signal. Parseval’s equality, is simply a statement that the energy is
invariant under the Fourier transform. Parseval’s equality is a special case
of Plancherel’s formula (named after Michel Plancherel, 1885-1967).

Let’s rewrite the Convolution Theorem in its inverse form

F−1[ f̂ (k)ĝ(k)] = ( f ∗ g)(t). (9.84)

Then, by the definition of the inverse Fourier transform, we have∫ ∞

−∞
f (t− u)g(u) du =

1
2π

∫ ∞

−∞
f̂ (ω)ĝ(ω)e−iωt dω.

Setting t = 0,∫ ∞

−∞
f (−u)g(u) du =

1
2π

∫ ∞

−∞
f̂ (ω)ĝ(ω) dω. (9.85)
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Now, let g(t) = f (−t), or f (−t) = g(t). We note that the Fourier transform
of g(t) is related to the Fourier transform of f (t) :

ĝ(ω) =
∫ ∞

−∞
f (−t)eiωt dt

= −
∫ −∞

∞
f (τ)e−iωτ dτ

=
∫ ∞

−∞
f (τ)eiωτ dτ = f̂ (ω). (9.86)

So, inserting this result into Equation (9.85), we find that∫ ∞

−∞
f (−u) f (−u) du =

1
2π

∫ ∞

−∞
| f̂ (ω)|2 dω

which yields Parseval’s Equality in the form (9.83) after substituting t = −u
on the left.

As noted above, the forms in Equations (9.83) and (9.85) are often referred
to as the Plancherel formula or Parseval formula. A more commonly defined
Parseval equation is that given for Fourier series. For example, for a function
f (x) defined on [−π, π], which has a Fourier series representation, we have

a2
0

2
+

∞

∑
n=1

(a2
n + b2

n) =
1
π

∫ π

−π
[ f (x)]2 dx.

In general, there is a Parseval identity for functions that can be expanded
in a complete sets of orthonormal functions, {φn(x)}, n = 1, 2, . . . , which is
given by

∞

∑
n=1

< f , φn >2= ‖ f ‖2.

Here ‖ f ‖2 =< f , f > . The Fourier series example is just a special case of
this formula.

9.7 The Laplace Transform
The Laplace transform is named af-
ter Pierre-Simon de Laplace (1749-1827).
Laplace made major contributions, espe-
cially to celestial mechanics, tidal analy-
sis, and probability.

Up to this point we have only explored Fourier exponential trans-
forms as one type of integral transform. The Fourier transform is useful
on infinite domains. However, students are often introduced to another
integral transform, called the Laplace transform, in their introductory dif-
ferential equations class. These transforms are defined over semi-infinite
domains and are useful for solving initial value problems for ordinary dif-
ferential equations. Integral transform on [a, b] with respect

to the integral kernel, K(x, k).The Fourier and Laplace transforms are examples of a broader class of
transforms known as integral transforms . For a function f (x) defined on
an interval (a, b), we define the integral transform

F(k) =
∫ b

a
K(x, k) f (x) dx,
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where K(x, k) is a specified kernel of the transform. Looking at the Fourier
transform, we see that the interval is stretched over the entire real axis and
the kernel is of the form, K(x, k) = eikx. In Table 9.1 we show several types
of integral transforms.

Table 9.1: A table of common integral
transforms.

Laplace Transform F(s) =
∫ ∞

0 e−sx f (x) dx
Fourier Transform F(k) =

∫ ∞
−∞ eikx f (x) dx

Fourier Cosine Transform F(k) =
∫ ∞

0 cos(kx) f (x) dx
Fourier Sine Transform F(k) =

∫ ∞
0 sin(kx) f (x) dx

Mellin Transform F(k) =
∫ ∞

0 xk−1 f (x) dx
Hankel Transform F(k) =

∫ ∞
0 xJn(kx) f (x) dx

It should be noted that these integral transforms inherit the linearity of
integration. Namely. let h(x) = α f (x) + βg(x), where α and β are constants.
Then,

H(k) =
∫ b

a
K(x, k)h(x) dx,

=
∫ b

a
K(x, k)(α f (x) + βg(x)) dx,

= α
∫ b

a
K(x, k) f (x) dx + β

∫ b

a
K(x, k)g(x) dx,

= αF(x) + βG(x). (9.87)

Therefore, we have shown linearity of the integral transforms. We have seen
the linearity property used for Fourier transforms and we will use linearity
in the study of Laplace transforms.The Laplace transform of f , F = L[ f ].

We now turn to Laplace transforms. The Laplace transform of a function
f (t) is defined as

F(s) = L[ f ](s) =
∫ ∞

0
f (t)e−st dt, s > 0. (9.88)

This is an improper integral and one needs

lim
t→∞

f (t)e−st = 0

to guarantee convergence.
Laplace transforms also have proven useful in engineering for solving

circuit problems and doing systems analysis. In Figure 9.29 it is shown that
a signal x(t) is provided as input to a linear system, indicated by h(t). One
is interested in the system output, y(t), which is given by a convolution
of the input and system functions. By considering the transforms of x(t)
and h(t), the transform of the output is given as a product of the Laplace
transforms in the s-domain. In order to obtain the output, one needs to
compute a convolution product for Laplace transforms similar to the convo-
lution operation we had seen for Fourier transforms earlier in the chapter.
Of course, for us to do this in practice, we have to know how to compute
Laplace transforms.
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x(t)

Laplace
Transform

X(s)

h(t)

H(s)

y(t) = h(t) ∗ x(t)

Inverse Laplace
Transform

Y(s) = H(s)X(s)

Figure 9.29: A schematic depicting the
use of Laplace transforms in systems
theory.

9.7.1 Properties and Examples of Laplace Transforms

It is typical that one makes use of Laplace transforms by referring to
a Table of transform pairs. A sample of such pairs is given in Table 9.2.
Combining some of these simple Laplace transforms with the properties of
the Laplace transform, as shown in Table 9.3, we can deal with many ap-
plications of the Laplace transform. We will first prove a few of the given
Laplace transforms and show how they can be used to obtain new trans-
form pairs. In the next section we will show how these transforms can be
used to sum infinite series and to solve initial value problems for ordinary
differential equations.

f (t) F(s) f (t) F(s)

c
c
s

eat 1
s− a

, s > a

tn n!
sn+1 , s > 0 tneat n!

(s− a)n+1

sin ωt
ω

s2 + ω2 eat sin ωt ω
(s−a)2+ω2

cos ωt
s

s2 + ω2 eat cos ωt
s− a

(s− a)2 + ω2

t sin ωt
2ωs

(s2 + ω2)2 t cos ωt
s2 −ω2

(s2 + ω2)2

sinh at
a

s2 − a2 cosh at
s

s2 − a2

H(t− a)
e−as

s
, s > 0 δ(t− a) e−as, a ≥ 0, s > 0

Table 9.2: Table of selected Laplace
transform pairs.

We begin with some simple transforms. These are found by simply using
the definition of the Laplace transform.

Example 9.18. Show that L[1] = 1
s .

For this example, we insert f (t) = 1 into the definition of the Laplace transform:

L[1] =
∫ ∞

0
e−st dt.

This is an improper integral and the computation is understood by introducing an
upper limit of a and then letting a → ∞. We will not always write this limit,
but it will be understood that this is how one computes such improper integrals.
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Proceeding with the computation, we have

L[1] =
∫ ∞

0
e−st dt

= lim
a→∞

∫ a

0
e−st dt

= lim
a→∞

(
−1

s
e−st

)a

0

= lim
a→∞

(
−1

s
e−sa +

1
s

)
=

1
s

. (9.89)

Thus, we have found that the Laplace transform of 1 is 1
s . This result

can be extended to any constant c, using the linearity of the transform,
L[c] = cL[1]. Therefore,

L[c] = c
s

.

Example 9.19. Show that L[eat] = 1
s−a , for s > a.

For this example, we can easily compute the transform. Again, we only need to
compute the integral of an exponential function.

L[eat] =
∫ ∞

0
eate−st dt

=
∫ ∞

0
e(a−s)t dt

=

(
1

a− s
e(a−s)t

)∞

0

= lim
t→∞

1
a− s

e(a−s)t − 1
a− s

=
1

s− a
. (9.90)

Note that the last limit was computed as limt→∞ e(a−s)t = 0. This is only true
if a− s < 0, or s > a. [Actually, a could be complex. In this case we would only
need s to be greater than the real part of a, s > Re(a).]

Example 9.20. Show that L[cos at] = s
s2+a2 and L[sin at] = a

s2+a2 .
For these examples, we could again insert the trigonometric functions directly

into the transform and integrate. For example,

L[cos at] =
∫ ∞

0
e−st cos at dt.

Recall how one evaluates integrals involving the product of a trigonometric function
and the exponential function. One integrates by parts two times and then obtains
an integral of the original unknown integral. Rearranging the resulting integral
expressions, one arrives at the desired result. However, there is a much simpler way
to compute these transforms.

Recall that eiat = cos at + i sin at. Making use of the linearity of the Laplace
transform, we have

L[eiat] = L[cos at] + iL[sin at].

Thus, transforming this complex exponential will simultaneously provide the Laplace
transforms for the sine and cosine functions!
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The transform is simply computed as

L[eiat] =
∫ ∞

0
eiate−st dt =

∫ ∞

0
e−(s−ia)t dt =

1
s− ia

.

Note that we could easily have used the result for the transform of an exponential,
which was already proven. In this case s > Re(ia) = 0.

We now extract the real and imaginary parts of the result using the complex
conjugate of the denominator:

1
s− ia

=
1

s− ia
s + ia
s + ia

=
s + ia

s2 + a2 .

Reading off the real and imaginary parts, we find the sought transforms,

L[cos at] =
s

s2 + a2

L[sin at] =
a

s2 + a2 . (9.91)

Example 9.21. Show that L[t] = 1
s2 .

For this example we evaluate

L[t] =
∫ ∞

0
te−st dt.

This integral can be evaluated using the method of integration by parts:∫ ∞

0
te−st dt = −t

1
s

e−st
∣∣∣∞
0
+

1
s

∫ ∞

0
e−st dt

=
1
s2 . (9.92)

Example 9.22. Show that L[tn] = n!
sn+1 for nonnegative integer n.

We have seen the n = 0 and n = 1 cases: L[1] = 1
s and L[t] = 1

s2 . We now
generalize these results to nonnegative integer powers, n > 1, of t. We consider the
integral

L[tn] =
∫ ∞

0
tne−st dt.

Following the previous example, we again integrate by parts:5 5 This integral can just as easily be done
using differentiation. We note that(
− d

ds

)n ∫ ∞

0
e−st dt =

∫ ∞

0
tne−st dt.

Since ∫ ∞

0
e−st dt =

1
s

,∫ ∞

0
tne−st dt =

(
− d

ds

)n 1
s
=

n!
sn+1 .

∫ ∞

0
tne−st dt = −tn 1

s
e−st

∣∣∣∞
0
+

n
s

∫ ∞

0
t−ne−st dt

=
n
s

∫ ∞

0
t−ne−st dt. (9.93)

We could continue to integrate by parts until the final integral is computed.
However, look at the integral that resulted after one integration by parts. It is just
the Laplace transform of tn−1. So, we can write the result as

L[tn] =
n
s
L[tn−1].

We compute
∫ ∞

0 tne−st dt by turning it
into an initial value problem for a first
order difference equation and finding
the solution using an iterative method.

This is an example of a recursive definition of a sequence. In this case we have a
sequence of integrals. Denoting

In = L[tn] =
∫ ∞

0
tne−st dt
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and noting that I0 = L[1] = 1
s , we have the following:

In =
n
s

In−1, I0 =
1
s

. (9.94)

This is also what is called a difference equation. It is a first order difference equation
with an “initial condition,” I0. The next step is to solve this difference equation.

Finding the solution of this first order difference equation is easy to do using
simple iteration. Note that replacing n with n− 1, we have

In−1 =
n− 1

s
In−2.

Repeating the process, we find

In =
n
s

In−1

=
n
s

(
n− 1

s
In−2

)
=

n(n− 1)
s2 In−2

=
n(n− 1)(n− 2)

s3 In−3. (9.95)

We can repeat this process until we get to I0, which we know. We have to
carefully count the number of iterations. We do this by iterating k times and then
figure out how many steps will get us to the known initial value. A list of iterates
is easily written out:

In =
n
s

In−1

=
n(n− 1)

s2 In−2

=
n(n− 1)(n− 2)

s3 In−3

= . . .

=
n(n− 1)(n− 2) . . . (n− k + 1)

sk In−k. (9.96)

Since we know I0 = 1
s , we choose to stop at k = n obtaining

In =
n(n− 1)(n− 2) . . . (2)(1)

sn I0 =
n!

sn+1 .

Therefore, we have shown that L[tn] = n!
sn+1 .

Such iterative techniques are useful in obtaining a variety of integrals, such as
In =

∫ ∞
−∞ x2ne−x2

dx.

As a final note, one can extend this result to cases when n is not an
integer. To do this, we use the Gamma function, which was discussed in
Section 5.4. Recall that the Gamma function is the generalization of the
factorial function and is defined as

Γ(x) =
∫ ∞

0
tx−1e−t dt. (9.97)
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Note the similarity to the Laplace transform of tx−1 :

L[tx−1] =
∫ ∞

0
tx−1e−st dt.

For x− 1 an integer and s = 1, we have that

Γ(x) = (x− 1)!.

Thus, the Gamma function can be viewed as a generalization of the factorial
and we have shown that

L[tp] =
Γ(p + 1)

sp+1

for p > −1.
Now we are ready to introduce additional properties of the Laplace trans-

form in Table 9.3. We have already discussed the first property, which is a
consequence of linearity of the integral transforms. We will prove the other
properties in this and the following sections.

Laplace Transform Properties
L[a f (t) + bg(t)] = aF(s) + bG(s)

L[t f (t)] = − d
ds

F(s)

L
[

d f
dt

]
= sF(s)− f (0)

L
[

d2 f
dt2

]
= s2F(s)− s f (0)− f ′(0)

L[eat f (t)] = F(s− a)
L[H(t− a) f (t− a)] = e−asF(s)

L[( f ∗ g)(t)] = L[
∫ t

0
f (t− u)g(u) du] = F(s)G(s)

Table 9.3: Table of selected Laplace
transform properties.

Example 9.23. Show that L
[

d f
dt

]
= sF(s)− f (0).

We have to compute

L
[

d f
dt

]
=
∫ ∞

0

d f
dt

e−st dt.

We can move the derivative off f by integrating by parts. This is similar to what we
had done when finding the Fourier transform of the derivative of a function. Letting
u = e−st and v = f (t), we have

L
[

d f
dt

]
=

∫ ∞

0

d f
dt

e−st dt

= f (t)e−st
∣∣∣∞
0
+ s

∫ ∞

0
f (t)e−st dt

= − f (0) + sF(s). (9.98)

Here we have assumed that f (t)e−st vanishes for large t.
The final result is that

L
[

d f
dt

]
= sF(s)− f (0).
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Example 6: Show that L
[

d2 f
dt2

]
= s2F(s)− s f (0)− f ′(0).

We can compute this Laplace transform using two integrations by parts, or we
could make use of the last result. Letting g(t) = d f (t)

dt , we have

L
[

d2 f
dt2

]
= L

[
dg
dt

]
= sG(s)− g(0) = sG(s)− f ′(0).

But,

G(s) = L
[

d f
dt

]
= sF(s)− f (0).

So,

L
[

d2 f
dt2

]
= sG(s)− f ′(0)

= s [sF(s)− f (0)]− f ′(0)

= s2F(s)− s f (0)− f ′(0). (9.99)

We will return to the other properties in Table 9.3 after looking at a few
applications.

9.8 Applications of Laplace Transforms

Although the Laplace transform is a very useful transform, it
is often encountered only as a method for solving initial value problems
in introductory differential equations. In this section we will show how to
solve simple differential equations. Along the way we will introduce step
and impulse functions and show how the Convolution Theorem for Laplace
transforms plays a role in finding solutions. However, we will first explore
an unrelated application of Laplace transforms. We will see that the Laplace
transform is useful in finding sums of infinite series.

9.8.1 Series Summation Using Laplace Transforms

We saw in Chapter ?? that Fourier series can be used to sum series.
For example, in Problem ??.13, one proves that

∞

∑
n=1

1
n2 =

π2

6
.

In this section we will show how Laplace transforms can be used to sum
series.6 There is an interesting history of using integral transforms to sum6 Albert D. Wheelon, Tables of Summable

Series and Integrals Involving Bessel Func-
tions, Holden-Day, 1968.

series. For example, Richard Feynman7 (1918-1988) described how one can

7 R. P. Feynman, 1949, Phys. Rev. 76, p.
769

use the convolution theorem for Laplace transforms to sum series with de-
nominators that involved products. We will describe this and simpler sums
in this section.

We begin by considering the Laplace transform of a known function,

F(s) =
∫ ∞

0
f (t)e−st dt.
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Inserting this expression into the sum ∑n F(n) and interchanging the sum
and integral, we find

∞

∑
n=0

F(n) =
∞

∑
n=0

∫ ∞

0
f (t)e−nt dt

=
∫ ∞

0
f (t)

∞

∑
n=0

(
e−t)n dt

=
∫ ∞

0
f (t)

1
1− e−t dt. (9.100)

The last step was obtained using the sum of a geometric series. The key is
being able to carry out the final integral as we show in the next example.

Example 9.24. Evaluate the sum ∑∞
n=1

(−1)n+1

n .
Since, L[1] = 1/s, we have

∞

∑
n=1

(−1)n+1

n
=

∞

∑
n=1

∫ ∞

0
(−1)n+1e−nt dt

=
∫ ∞

0

e−t

1 + e−t dt

=
∫ 2

1

du
u

= ln 2. (9.101)

Example 9.25. Evaluate the sum ∑∞
n=1

1
n2 .

This is a special case of the Riemann zeta function

ζ(s) =
∞

∑
n=1

1
ns . (9.102)

The Riemann zeta function8 is important in the study of prime numbers and more 8 A translation of Riemann, Bernhard
(1859), “Über die Anzahl der Primzahlen
unter einer gegebenen Grösse” is in H.
M. Edwards (1974). Riemann’s Zeta Func-
tion. Academic Press. Riemann had
shown that the Riemann zeta function
can be obtained through contour in-
tegral representation, 2 sin(πs)Γζ(s) =

i
∮

C
(−x)s−1

ex−1 dx, for a specific contour C.

recently has seen applications in the study of dynamical systems. The series in this
example is ζ(2). We have already seen in ??.13 that

ζ(2) =
π2

6
.

Using Laplace transforms, we can provide an integral representation of ζ(2).
The first step is to find the correct Laplace transform pair. The sum involves the

function F(n) = 1/n2. So, we look for a function f (t) whose Laplace transform is
F(s) = 1/s2. We know by now that the inverse Laplace transform of F(s) = 1/s2

is f (t) = t. As before, we replace each term in the series by a Laplace transform,
exchange the summation and integration, and sum the resulting geometric series:

∞

∑
n=1

1
n2 =

∞

∑
n=1

∫ ∞

0
te−nt dt

=
∫ ∞

0

t
et − 1

dt. (9.103)

So, we have that ∫ ∞

0

t
et − 1

dt =
∞

∑
n=1

1
n2 = ζ(2).
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Integrals of this type occur often in statistical mechanics in the form of Bose-
Einstein integrals. These are of the form

Gn(z) =
∫ ∞

0

xn−1

z−1ex − 1
dx.

Note that Gn(1) = Γ(n)ζ(n).

In general the Riemann zeta function has to be tabulated through other
means. In some special cases, one can closed form expressions. For exam-
ple,

ζ(2n) =
22n−1π2n

(2n)!
Bn,

where the Bn’s are the Bernoulli numbers. Bernoulli numbers are defined
through the Maclaurin series expansion

x
ex − 1

=
∞

∑
n=0

Bn

n!
xn.

The first few Riemann zeta functions are

ζ(2) =
π2

6
, ζ(4) =

π4

90
, ζ(6) =

π6

945
.

We can extend this method of using Laplace transforms to summing se-
ries whose terms take special general forms. For example, from Feynman’s
1949 paper we note that

1
(a + bn)2 = − ∂

∂a

∫ ∞

0
e−s(a+bn) ds.

This identity can be shown easily by first noting

∫ ∞

0
e−s(a+bn) ds =

[
−e−s(a+bn)

a + bn

]∞

0

=
1

a + bn
.

Now, differentiate the result with respect to a and the result follows.
The latter identity can be generalized further as

1
(a + bn)k+1 =

(−1)k

k!
∂k

∂ak

∫ ∞

0
e−s(a+bn) ds.

In Feynman’s 1949 paper, he develops methods for handling several other
general sums using the convolution theorem. Wheelon gives more examples
of these. We will just provide one such result and an example. First, we note
that

1
ab

=
∫ 1

0

du
[a(1− u) + bu]2

.

However,
1

[a(1− u) + bu]2
=
∫ ∞

0
te−t[a(1−u)+bu] dt.

So, we have
1
ab

=
∫ 1

0
du
∫ ∞

0
te−t[a(1−u)+bu] dt.

We see in the next example how this representation can be useful.
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Example 9.26. Evaluate ∑∞
n=0

1
(2n+1)(2n+2) .

We sum this series by first letting a = 2n + 1 and b = 2n + 2 in the formula
for 1/ab. Collecting the n-dependent terms, we can sum the series leaving a double
integral computation in ut-space. The details are as follows:

∞

∑
n=0

1
(2n + 1)(2n + 2)

=
∞

∑
n=0

∫ 1

0

du
[(2n + 1)(1− u) + (2n + 2)u]2

=
∞

∑
n=0

∫ 1

0
du
∫ ∞

0
te−t(2n+1+u) dt

=
∫ 1

0
du
∫ ∞

0
te−t(1+u)

∞

∑
n=0

e−2nt dt

=
∫ ∞

0

te−t

1− e−2t

∫ 1

0
e−tu du dt

=
∫ ∞

0

te−t

1− e−2t
1− e−t

t
dt

=
∫ ∞

0

e−t

1 + e−t dt

= − ln(1 + e−t)
∣∣∣∞
0
= ln 2. (9.104)

9.8.2 Solution of ODEs Using Laplace Transforms

One of the typical applications of Laplace transforms is the so-
lution of nonhomogeneous linear constant coefficient differential equations.
In the following examples we will show how this works.

The general idea is that one transforms the equation for an unknown
function y(t) into an algebraic equation for its transform, Y(t). Typically,
the algebraic equation is easy to solve for Y(s) as a function of s. Then,
one transforms back into t-space using Laplace transform tables and the
properties of Laplace transforms. The scheme is shown in Figure 9.30.

L[y] = g

y(t)

F(Y) = G

Y(s)

Laplace Transform

Inverse Laplace Transform

ODE
for y(t)

Algebraic

Equation

Y(s)

Figure 9.30: The scheme for solving
an ordinary differential equation using
Laplace transforms. One transforms the
initial value problem for y(t) and obtains
an algebraic equation for Y(s). Solve for
Y(s) and the inverse transform give the
solution to the initial value problem.

Example 9.27. Solve the initial value problem y′ + 3y = e2t, y(0) = 1.
The first step is to perform a Laplace transform of the initial value problem. The

transform of the left side of the equation is

L[y′ + 3y] = sY− y(0) + 3Y = (s + 3)Y− 1.



400 partial differential equations

Transforming the right hand side, we have

L[e2t] =
1

s− 2
.

Combining these two results, we obtain

(s + 3)Y− 1 =
1

s− 2
.

The next step is to solve for Y(s) :

Y(s) =
1

s + 3
+

1
(s− 2)(s + 3)

.

Now, we need to find the inverse Laplace transform. Namely, we need to figure
out what function has a Laplace transform of the above form. We will use the tables
of Laplace transform pairs. Later we will show that there are other methods for
carrying out the Laplace transform inversion.

The inverse transform of the first term is e−3t. However, we have not seen any-
thing that looks like the second form in the table of transforms that we have compiled;
but, we can rewrite the second term by using a partial fraction decomposition. Let’s
recall how to do this.

The goal is to find constants, A and B, such that

1
(s− 2)(s + 3)

=
A

s− 2
+

B
s + 3

. (9.105)

We picked this form because we know that recombining the two terms into one termThis is an example of carrying out a par-
tial fraction decomposition. will have the same denominator. We just need to make sure the numerators agree

afterwards. So, adding the two terms, we have

1
(s− 2)(s + 3)

=
A(s + 3) + B(s− 2)

(s− 2)(s + 3)
.

Equating numerators,
1 = A(s + 3) + B(s− 2).

There are several ways to proceed at this point.

a. Method 1.

We can rewrite the equation by gathering terms with common powers of s,
we have

(A + B)s + 3A− 2B = 1.

The only way that this can be true for all s is that the coefficients of the
different powers of s agree on both sides. This leads to two equations for A
and B:

A + B = 0

3A− 2B = 1. (9.106)

The first equation gives A = −B, so the second equation becomes −5B = 1.
The solution is then A = −B = 1

5 .
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b. Method 2.

Since the equation 1
(s−2)(s+3) = A

s−2 + B
s+3 is true for all s, we can pick

specific values. For s = 2, we find 1 = 5A, or A = 1
5 . For s = −3, we find

1 = −5B, or B = − 1
5 . Thus, we obtain the same result as Method 1, but

much quicker.

1 2

2

4

6

8

t

y(t)

Figure 9.31: A plot of the solution to Ex-
ample 9.27.

c. Method 3.

We could just inspect the original partial fraction problem. Since the numer-
ator has no s terms, we might guess the form

1
(s− 2)(s + 3)

=
1

s− 2
− 1

s + 3
.

But, recombining the terms on the right hand side, we see that

1
s− 2

− 1
s + 3

=
5

(s− 2)(s + 3)
.

Since we were off by 5, we divide the partial fractions by 5 to obtain

1
(s− 2)(s + 3)

=
1
5

[
1

s− 2
− 1

s + 3

]
,

which once again gives the desired form.

Returning to the problem, we have found that

Y(s) =
1

s + 3
+

1
5

(
1

s− 2
− 1

s + 3

)
.

We can now see that the function with this Laplace transform is given by

y(t) = L−1
[

1
s + 3

+
1
5

(
1

s− 2
− 1

s + 3

)]
= e−3t +

1
5

(
e2t − e−3t

)
works. Simplifying, we have the solution of the initial value problem

y(t) =
1
5

e2t +
4
5

e−3t.

We can verify that we have solved the initial value problem.

y′ + 3y =
2
5

e2t − 12
5

e−3t + 3(
1
5

e2t +
4
5

e−3t) = e2t

and y(0) = 1
5 + 4

5 = 1.

Example 9.28. Solve the initial value problem y′′ + 4y = 0, y(0) = 1, y′(0) = 3.
We can probably solve this without Laplace transforms, but it is a simple exercise.

Transforming the equation, we have

0 = s2Y− sy(0)− y′(0) + 4Y

= (s2 + 4)Y− s− 3. (9.107)

Solving for Y, we have

Y(s) =
s + 3
s2 + 4

.
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We now ask if we recognize the transform pair needed. The denominator looks
like the type needed for the transform of a sine or cosine. We just need to play with
the numerator. Splitting the expression into two terms, we have

Y(s) =
s

s2 + 4
+

3
s2 + 4

.
2 4 6 8

−2

2

t

y(t)

Figure 9.32: A plot of the solution to Ex-
ample 9.28.

The first term is now recognizable as the transform of cos 2t. The second term
is not the transform of sin 2t. It would be if the numerator were a 2. This can be
corrected by multiplying and dividing by 2:

3
s2 + 4

=
3
2

(
2

s2 + 4

)
.

The solution is then found as

y(t) = L−1
[

s
s2 + 4

+
3
2

(
2

s2 + 4

)]
= cos 2t +

3
2

sin 2t.

The reader can verify that this is the solution of the initial value problem.

9.8.3 Step and Impulse Functions

Often the initial value problems that one faces in differential
equations courses can be solved using either the Method of Undetermined
Coefficients or the Method of Variation of Parameters. However, using the
latter can be messy and involves some skill with integration. Many circuit
designs can be modeled with systems of differential equations using Kir-
choff’s Rules. Such systems can get fairly complicated. However, Laplace
transforms can be used to solve such systems and electrical engineers have
long used such methods in circuit analysis.

In this section we add a couple of more transform pairs and transform
properties that are useful in accounting for things like turning on a driving
force, using periodic functions like a square wave, or introducing impulse
forces.

We first recall the Heaviside step function, given by

H(t) =

{
0, t < 0,
1, t > 0.

(9.108)

t

H(t− a)

1

a

Figure 9.33: A shifted Heaviside func-
tion, H(t− a).

A more general version of the step function is the horizontally shifted
step function, H(t− a). This function is shown in Figure 9.33. The Laplace
transform of this function is found for a > 0 as

L[H(t− a)] =
∫ ∞

0
H(t− a)e−st dt

=
∫ ∞

a
e−st dt

=
e−st

s

∣∣∣∞
a
=

e−as

s
. (9.109)
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Just like the Fourier transform, the Laplace transform has two shift the-
orems involving the multiplication of the function, f (t), or its transform,
F(s), by exponentials. The first and second shifting properties/theorems
are given by The Shift Theorems.

L[eat f (t)] = F(s− a) (9.110)

L[ f (t− a)H(t− a)] = e−asF(s). (9.111)

We prove the First Shift Theorem and leave the other proof as an exercise
for the reader. Namely,

L[eat f (t)] =
∫ ∞

0
eat f (t)e−st dt

=
∫ ∞

0
f (t)e−(s−a)t dt = F(s− a). (9.112)

Example 9.29. Compute the Laplace transform of e−at sin ωt.
This function arises as the solution of the underdamped harmonic oscillator. We

first note that the exponential multiplies a sine function. The shift theorem tells us
that we first need the transform of the sine function. So, for f (t) = sin ωt, we have

F(s) =
ω

s2 + ω2 .

Using this transform, we can obtain the solution to this problem as

L[e−at sin ωt] = F(s + a) =
ω

(s + a)2 + ω2 .

More interesting examples can be found using piecewise defined func-
tions. First we consider the function H(t)− H(t− a). For t < 0 both terms
are zero. In the interval [0, a] the function H(t) = 1 and H(t− a) = 0. There-
fore, H(t)− H(t− a) = 1 for t ∈ [0, a]. Finally, for t > a, both functions are
one and therefore the difference is zero. The graph of H(t) − H(t − a) is
shown in Figure 9.34. t

1

0 a

Figure 9.34: The box function, H(t) −
H(t− a).

We now consider the piecewise defined function

g(t) =

{
f (t), 0 ≤ t ≤ a,
0, t < 0, t > a.

This function can be rewritten in terms of step functions. We only need to
multiply f (t) by the above box function,

g(t) = f (t)[H(t)− H(t− a)].

We depict this in Figure 9.35. t

1

0 a

Figure 9.35: Formation of a piecewise
function, f (t)[H(t)− H(t− a)].

Even more complicated functions can be written in terms of step func-
tions. We only need to look at sums of functions of the form f (t)[H(t −
a) − H(t − b)] for b > a. This is similar to a box function. It is nonzero
between a and b and has height f (t).
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We show as an example the square wave function in Figure 9.36. It can
be represented as a sum of an infinite number of boxes,

f (t) =
∞

∑
n=−∞

[H(t− 2na)− H(t− (2n + 1)a)],

for a > 0.

Example 9.30. Find the Laplace Transform of a square wave “turned on” at t = 0.
.

Figure 9.36: A square wave, f (t) =

∑∞
n=−∞[H(t− 2na)− H(t− (2n + 1)a)].

t
-2a 0 a 2a 4a 6a

We let

f (t) =
∞

∑
n=0

[H(t− 2na)− H(t− (2n + 1)a)], a > 0.

Using the properties of the Heaviside function, we have

L[ f (t)] =
∞

∑
n=0

[L[H(t− 2na)]−L[H(t− (2n + 1)a)]]

=
∞

∑
n=0

[
e−2nas

s
− e−(2n+1)as

s

]

=
1− e−as

s

∞

∑
n=0

(
e−2as

)n

=
1− e−as

s

(
1

1− e−2as

)
=

1− e−as

s(1− e−2as)
. (9.113)

Note that the third line in the derivation is a geometric series. We summed this
series to get the answer in a compact form since e−2as < 1.

f (x)

x
a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

Figure 9.37: Plot representing im-
pulse forces of height f (ai). The sum
∑n

i=1 f (ai)δ(x − ai) describes a general
impulse function.

Other interesting examples are provided by the delta function. The Dirac
delta function can be used to represent a unit impulse. Summing over a
number of impulses, or point sources, we can describe a general function as
shown in Figure 9.37. The sum of impulses located at points ai, i = 1, . . . , n
with strengths f (ai) would be given by

f (x) =
n

∑
i=1

f (ai)δ(x− ai).

A continuous sum could be written as

f (x) =
∫ ∞

−∞
f (ξ)δ(x− ξ) dξ.
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This is simply an application of the sifting property of the delta function.
We will investigate a case when one would use a single impulse. While a
mass on a spring is undergoing simple harmonic motion, we hit it for an
instant at time t = a. In such a case, we could represent the force as a
multiple of δ(t− a). L[δ(t− a)] = e−as.

One would then need the Laplace transform of the delta function to solve
the associated initial value problem. Inserting the delta function into the
Laplace transform, we find that for a > 0

L[δ(t− a)] =
∫ ∞

0
δ(t− a)e−st dt

=
∫ ∞

−∞
δ(t− a)e−st dt

= e−as. (9.114)

Example 9.31. Solve the initial value problem y′′ + 4π2y = δ(t − 2), y(0) =

y′(0) = 0.
This initial value problem models a spring oscillation with an impulse force.

Without the forcing term, given by the delta function, this spring is initially at rest
and not stretched. The delta function models a unit impulse at t = 2. Of course,
we anticipate that at this time the spring will begin to oscillate. We will solve this
problem using Laplace transforms.

First, we transform the differential equation:

s2Y− sy(0)− y′(0) + 4π2Y = e−2s.

Inserting the initial conditions, we have

(s2 + 4π2)Y = e−2s.

Solving for Y(s), we obtain

Y(s) =
e−2s

s2 + 4π2 .

We now seek the function for which this is the Laplace transform. The form of
this function is an exponential times some Laplace transform, F(s). Thus, we need
the Second Shift Theorem since the solution is of the form Y(s) = e−2sF(s) for

F(s) =
1

s2 + 4π2 .

We need to find the corresponding f (t) of the Laplace transform pair. The de-
nominator in F(s) suggests a sine or cosine. Since the numerator is constant, we
pick sine. From the tables of transforms, we have

L[sin 2πt] =
2π

s2 + 4π2 .

So, we write

F(s) =
1

2π

2π

s2 + 4π2 .

This gives f (t) = (2π)−1 sin 2πt.
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We now apply the Second Shift Theorem, L[ f (t− a)H(t− a)] = e−asF(s), or

y(t) = L−1
[
e−2sF(s)

]
= H(t− 2) f (t− 2)

=
1

2π
H(t− 2) sin 2π(t− 2). (9.115)

5 10 15 20

−0.2

0.2

t

y(t)

Figure 9.38: A plot of the solution to Ex-
ample 9.31 in which a spring at rest ex-
periences an impulse force at t = 2.

This solution tells us that the mass is at rest until t = 2 and then begins to
oscillate at its natural frequency. A plot of this solution is shown in Figure 9.38

Example 9.32. Solve the initial value problem

y′′ + y = f (t), y(0) = 0, y′(0) = 0,

where

f (t) =

{
cosπt, 0 ≤ t ≤ 2,

0, otherwise.

We need the Laplace transform of f (t). This function can be written in terms
of a Heaviside function, f (t) = cos πtH(t − 2). In order to apply the Second
Shift Theorem, we need a shifted version of the cosine function. We find the shifted
version by noting that cos π(t− 2) = cos πt. Thus, we have

f (t) = cos πt [H(t)− H(t− 2)]

= cos πt− cos π(t− 2)H(t− 2), t ≥ 0. (9.116)

The Laplace transform of this driving term is

F(s) = (1− e−2s)L[cos πt] = (1− e−2s)
s

s2 + π2 .

Now we can proceed to solve the initial value problem. The Laplace transform of
the initial value problem yields

(s2 + 1)Y(s) = (1− e−2s)
s

s2 + π2 .

Therefore,
Y(s) = (1− e−2s)

s
(s2 + π2)(s2 + 1)

.

We can retrieve the solution to the initial value problem using the Second Shift
Theorem. The solution is of the form Y(s) = (1− e−2s)G(s) for

G(s) =
s

(s2 + π2)(s2 + 1)
.

Then, the final solution takes the form

y(t) = g(t)− g(t− 2)H(t− 2).

We only need to find g(t) in order to finish the problem. This is easily done by
using the partial fraction decomposition

G(s) =
s

(s2 + π2)(s2 + 1)
=

1
π2 − 1

[
s

s2 + 1
− s

s2 + π2

]
.
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Then,

g(t) = L−1
[

s
(s2 + π2)(s2 + 1)

]
=

1
π2 − 1

(cos t− cos πt) .

The final solution is then given by

y(t) =
1

π2 − 1
[cos t− cos πt− H(t− 2)(cos(t− 2)− cos πt)] .

A plot of this solution is shown in Figure 9.39
5 10

−0.4

−0.2

0.2

0.4

t

y(t)

Figure 9.39: A plot of the solution to Ex-
ample 9.32 in which a spring at rest ex-
periences an piecewise defined force.

9.9 The Convolution Theorem

Finally, we consider the convolution of two functions. Often we
are faced with having the product of two Laplace transforms that we know
and we seek the inverse transform of the product. For example, let’s say
we have obtained Y(s) = 1

(s−1)(s−2) while trying to solve an initial value
problem. In this case we could find a partial fraction decomposition. But,
are other ways to find the inverse transform, especially if we cannot perform
a partial fraction decomposition. We could use the Convolution Theorem for
Laplace transforms or we could compute the inverse transform directly. We
will look into these methods in the next two sections.We begin with defining
the convolution.

We define the convolution of two functions defined on [0, ∞) much the
same way as we had done for the Fourier transform. The convolution f ∗ g
is defined as

( f ∗ g)(t) =
∫ t

0
f (u)g(t− u) du. (9.117)

Note that the convolution integral has finite limits as opposed to the Fourier
transform case.

The convolution operation has two important properties:
The convolution is commutative.

1. The convolution is commutative: f ∗ g = g ∗ f

Proof. The key is to make a substitution y = t− u in the integral. This
makes f a simple function of the integration variable.

(g ∗ f )(t) =
∫ t

0
g(u) f (t− u) du

= −
∫ 0

t
g(t− y) f (y) dy

=
∫ t

0
f (y)g(t− y) dy

= ( f ∗ g)(t). (9.118)

The Convolution Theorem for Laplace
transforms.

2. The Convolution Theorem: The Laplace transform of a convolution is
the product of the Laplace transforms of the individual functions:

L[ f ∗ g] = F(s)G(s)
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Proof. Proving this theorem takes a bit more work. We will make
some assumptions that will work in many cases. First, we assume that
the functions are causal, f (t) = 0 and g(t) = 0 for t < 0. Secondly,
we will assume that we can interchange integrals, which needs more
rigorous attention than will be provided here. The first assumption
will allow us to write the finite integral as an infinite integral. Then
a change of variables will allow us to split the integral into the prod-
uct of two integrals that are recognized as a product of two Laplace
transforms.

Carrying out the computation, we have

L[ f ∗ g] =
∫ ∞

0

(∫ t

0
f (u)g(t− u) du

)
e−st dt

=
∫ ∞

0

(∫ ∞

0
f (u)g(t− u) du

)
e−st dt

=
∫ ∞

0
f (u)

(∫ ∞

0
g(t− u)e−st dt

)
du (9.119)

Now, make the substitution τ = t− u. We note that

int∞
0 f (u)

(∫ ∞

0
g(t− u)e−st dt

)
du =

∫ ∞

0
f (u)

(∫ ∞

−u
g(τ)e−s(τ+u) dτ

)
du

However, since g(τ) is a causal function, we have that it vanishes for
τ < 0 and we can change the integration interval to [0, ∞). So, after a
little rearranging, we can proceed to the result.

L[ f ∗ g] =
∫ ∞

0
f (u)

(∫ ∞

0
g(τ)e−s(τ+u) dτ

)
du

=
∫ ∞

0
f (u)e−su

(∫ ∞

0
g(τ)e−sτ dτ

)
du

=

(∫ ∞

0
f (u)e−su du

)(∫ ∞

0
g(τ)e−sτ dτ

)
= F(s)G(s). (9.120)

We make use of the Convolution Theorem to do the following examples.

Example 9.33. Find y(t) = L−1
[

1
(s−1)(s−2)

]
.

We note that this is a product of two functions

Y(s) =
1

(s− 1)(s− 2)
=

1
s− 1

1
s− 2

= F(s)G(s).

We know the inverse transforms of the factors: f (t) = et and g(t) = e2t.
Using the Convolution Theorem, we find y(t) = ( f ∗ g)(t). We compute the

convolution:

y(t) =
∫ t

0
f (u)g(t− u) du
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=
∫ t

0
eue2(t−u) du

= e2t
∫ t

0
e−u du

= e2t[−et + 1] = e2t − et. (9.121)

One can also confirm this by carrying out a partial fraction decomposition.

Example 9.34. Consider the initial value problem, y′′ + 9y = 2 sin 3t, y(0) = 1,
y′(0) = 0.

The Laplace transform of this problem is given by

(s2 + 9)Y− s =
6

s2 + 9
.

Solving for Y(s), we obtain

Y(s) =
6

(s2 + 9)2 +
s

s2 + 9
.

The inverse Laplace transform of the second term is easily found as cos(3t); however,
the first term is more complicated.

We can use the Convolution Theorem to find the Laplace transform of the first
term. We note that

6
(s2 + 9)2 =

2
3

3
(s2 + 9)

3
(s2 + 9)

is a product of two Laplace transforms (up to the constant factor). Thus,

L−1
[

6
(s2 + 9)2

]
=

2
3
( f ∗ g)(t),

where f (t) = g(t) = sin3t. Evaluating this convolution product, we have

L−1
[

6
(s2 + 9)2

]
=

2
3
( f ∗ g)(t)

=
2
3

∫ t

0
sin 3u sin 3(t− u) du

=
1
3

∫ t

0
[cos 3(2u− t)− cos 3t] du

=
1
3

[
1
6

sin(6u− 3t)− u cos 3t
]t

0

=
1
9

sin 3t− 1
3

t cos 3t. (9.122)
2 4 6 8

−2

2

t

y(t)

Figure 9.40: Plot of the solution to Exam-
ple 9.34 showing a resonance.

Combining this with the inverse transform of the second term of Y(s), the solu-
tion to the initial value problem is

y(t) = −1
3

t cos 3t +
1
9

sin 3t + cos 3t.

Note that the amplitude of the solution will grow in time from the first term. You
can see this in Figure 9.40. This is known as a resonance.
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Example 9.35. Find L−1[ 6
(s2+9)2 ] using partial fraction decomposition.

If we look at Table 9.2, we see that the Laplace transform pairs with the denomi-
nator (s2 + ω2)2 are

L[t sin ωt] =
2ωs

(s2 + ω2)2 ,

and

L[t cos ωt] =
s2 −ω2

(s2 + ω2)2 .

So, we might consider rewriting a partial fraction decomposition as

6
(s2 + 9)2 =

A6s
(s2 + 9)2 +

B(s2 − 9)
(s2 + 9)2 +

Cs + D
s2 + 9

.

Combining the terms on the right over a common denominator, we find

6 = 6As + B(s2 − 9) + (Cs + D)(s2 + 9).

Collecting like powers of s, we have

Cs3 + (D + B)s2 + 6As + (D− B) = 6.

Therefore, C = 0, A = 0, D + B = 0, and D − B = 2
3 . Solving the last two

equations, we find D = −B = 1
3 .

Using these results, we find

6
(s2 + 9)2 = −1

3
(s2 − 9)
(s2 + 9)2 +

1
3

1
s2 + 9

.

This is the result we had obtained in the last example using the Convolution Theo-
rem.

9.10 The Inverse Laplace Transform

Until this point we have seen that the inverse Laplace transform can be
found by making use of Laplace transform tables and properties of Laplace
transforms. This is typically the way Laplace transforms are taught and
used in a differential equations course. One can do the same for Fourier
transforms. However, in the case of Fourier transforms we introduced an
inverse transform in the form of an integral. Does such an inverse integral
transform exist for the Laplace transform? Yes, it does! In this section we
will derive the inverse Laplace transform integral and show how it is used.

We begin by considering a causal function f (t) which vanishes for t < 0
and define the function g(t) = f (t)e−ct with c > 0. For g(t) absolutely
integrable,A function f (t) is said to be of exponen-

tial order if
∫ ∞

0 | f (t)|e
−ct dt < ∞

∫ ∞

−∞
|g(t)| dt =

∫ ∞

0
| f (t)|e−ct dt < ∞,

we can write the Fourier transform,

ĝ(ω) =
∫ ∞

−∞
g(t)eiωtdt =

∫ ∞

0
f (t)eiωt−ctdt



transform techniques in physics 411

and the inverse Fourier transform,

g(t) = f (t)e−ct =
1

2π

∫ ∞

−∞
ĝ(ω)e−iωt dω.

Multiplying by ect and inserting ĝ(ω) into the integral for g(t), we find

f (t) =
1

2π

∫ ∞

−∞

∫ ∞

0
f (τ)e(iω−c)τdτe−(iω−c)t dω.

Letting s = c− iω (so dω = ids), we have

f (t) =
i

2π

∫ c−i∞

c+i∞

∫ ∞

0
f (τ)e−sτdτest ds.

Note that the inside integral is simply F(s). So, we have

f (t) =
1

2πi

∫ c+i∞

c−i∞
F(s)est ds. (9.123)

The integral in the last equation is the inverse Laplace transform, called
the Bromwich integral and is named after Thomas John I’Anson Bromwich
(1875-1929) . This inverse transform is not usually covered in differen-
tial equations courses because the integration takes place in the complex
plane. This integral is evaluated along a path in the complex plane called
the Bromwich contour. The typical way to compute this integral is to first
chose c so that all poles are to the left of the contour. This guarantees that
f (t) is of exponential type. The contour is closed a semicircle enclosing all
of the poles. One then relies on a generalization of Jordan’s lemma to the
second and third quadrants.9

9 Closing the contour to the left of the
contour can be reasoned in a manner
similar to what we saw in Jordan’s
Lemma. Write the exponential as est =
e(sR+isI )t = esR teisI t. The second factor is
an oscillating factor and the growth in
the exponential can only come from the
first factor. In order for the exponential
to decay as the radius of the semicircle
grows, sRt < 0. Since t > 0, we need
s < 0 which is done by closing the con-
tour to the left. If t < 0, then the contour
to the right would enclose no singulari-
ties and preserve the causality of f (t).

c + iR

c− iR

x

y

CR

-1 c

Figure 9.41: The contour used for apply-
ing the Bromwich integral to the Laplace
transform F(s) = 1

s(s+1) .

Example 9.36. Find the inverse Laplace transform of F(s) = 1
s(s+1) .

The integral we have to compute is

f (t) =
1

2πi

∫ c+i∞

c−i∞

est

s(s + 1)
ds.

This integral has poles at s = 0 and s = −1. The contour we will use is shown
in Figure 9.41. We enclose the contour with a semicircle to the left of the path in
the complex s-plane. One has to verify that the integral over the semicircle vanishes
as the radius goes to infinity. Assuming that we have done this, then the result is
simply obtained as 2πi times the sum of the residues. The residues in this case are:

Res
[

ezt

z(z + 1)
; z = 0

]
= lim

z→0

ezt

(z + 1)
= 1

and

Res
[

ezt

z(z + 1)
; z = −1

]
= lim

z→−1

ezt

z
= −e−t.

Therefore, we have

f (t) = 2πi
[

1
2πi

(1) +
1

2πi
(−e−t)

]
= 1− e−t.
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We can verify this result using the Convolution Theorem or using a partial
fraction decomposition. The latter method is simplest. We note that

1
s(s + 1)

=
1
s
− 1

s + 1
.

The first term leads to an inverse transform of 1 and the second term gives e−t. So,

L−1
[

1
s
− 1

s + 1

]
= 1− e−t.

Thus, we have verified the result from doing contour integration.

Example 9.37. Find the inverse Laplace transform of F(s) = 1
s(1+es)

.
In this case, we need to compute

f (t) =
1

2πi

∫ c+i∞

c−i∞

est

s(1 + es)
ds.

This integral has poles at complex values of s such that 1 + es = 0, or es = −1.
Letting s = x + iy, we see that

es = ex+iy = ex(cos y + i sin y) = −1.

We see x = 0 and y satisfies cos y = −1 and sin y = 0. Therefore, y = nπ for n
an odd integer. Therefore, the integrand has an infinite number of simple poles at
s = nπi, n = ±1,±3, . . . . It also has a simple pole at s = 0.

c + iR

c− iR
−7π

−5π

−3π

3π

5π

7π

π

−π
x

y

CR

c

Figure 9.42: The contour used for apply-
ing the Bromwich integral to the Laplace
transform F(s) = 1

1+es .

In Figure 9.42 we indicate the poles. We need to compute the resides at each pole.
At s = nπi we have

Res
[

est

s(1 + es)
; s = nπi

]
= lim

s→nπi
(s− nπi)

est

s(1 + es)

= lim
s→nπi

est

ses

= − enπit

nπi
, n odd. (9.124)

At s = 0, the residue is

Res
[

est

s(1 + es)
; s = 0

]
= lim

s→0

est

1 + es =
1
2

.

Summing the residues and noting the exponentials for ±n can be combined to
form sine functions, we arrive at the inverse transform.

f (t) =
1
2
− ∑

n odd

enπit

nπi

=
1
2
− 2

∞

∑
k=1

sin (2k− 1)πt
(2k− 1)π

. (9.125)

The series in this example might look familiar. It is a Fourier sine series with
odd harmonics whose amplitudes decay like 1/n. It is a vertically shifted square
wave. In fact, we had computed the Laplace transform of a general square wave in
Example 9.30.
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Figure 9.43: Plot of the square wave re-
sult as the inverse Laplace transform of
F(s) = 1

s(1+es with 50 terms.

In that example we found

L
[

∞

∑
n=0

[H(t− 2na)− H(t− (2n + 1)a)]

]
=

1− e−as

s(1− e−2as)

=
1

s(1 + e−as)
. (9.126)

In this example, one can show that

f (t) =
∞

∑
n=0

[H(t− 2n + 1)− H(t− 2n)].

The reader should verify that this result is indeed the square wave shown in Figure
9.43.

9.11 Transforms and Partial Differential Equations

As another application of the transforms, we will see that we
can use transforms to solve some linear partial differential equations. We
will first solve the one dimensional heat equation and the two dimensional
Laplace equations using Fourier transforms. The transforms of the partial
differential equations lead to ordinary differential equations which are eas-
ier to solve. The final solutions are then obtained using inverse transforms.

We could go further by applying a Fourier transform in space and a
Laplace transform in time to convert the heat equation into an algebraic
equation. We will also show that we can use a finite sine transform to
solve nonhomogeneous problems on finite intervals. Along the way we will
identify several Green’s functions.

9.11.1 Fourier Transform and the Heat Equation

We will first consider the solution of the heat equation on
an infinite interval using Fourier transforms. The basic scheme has been
discussed earlier and is outlined in Figure 9.44.
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Figure 9.44: Using Fourier transforms to
solve a linear partial differential equa-
tion. u(x, 0)

ut = αuxx

u(x, t)

û(k, 0)

ût = −αk2û

û(k, t)

Fourier Transform

Inverse Fourier Transform

Consider the heat equation on the infinite line,

ut = αuxx, −∞ < x < ∞, t > 0.

u(x, 0) = f (x), −∞ < x < ∞. (9.127)

We can Fourier transform the heat equation using the Fourier transform of
u(x, t),

F [u(x, t)] = û(k, t) =
∫ ∞

−∞
u(x, t)eikx dx.

We need to transform the derivatives in the equation. First we note that

F [ut] =
∫ ∞

−∞

∂u(x, t)
∂t

eikx dx

=
∂

∂t

∫ ∞

−∞
u(x, t)eikx dx

=
∂û(k, t)

∂t
. (9.128)

Assuming that lim|x|→∞ u(x, t) = 0 and lim|x|→∞ ux(x, t) = 0, then we
also have that

F [uxx] =
∫ ∞

−∞

∂2u(x, t)
∂x2 eikx dx

= −k2û(k, t). (9.129)

Therefore, the heat equation becomesThe transformed heat equation.

∂û(k, t)
∂t

= −αk2û(k, t).

This is a first order differential equation which is readily solved as

û(k, t) = A(k)e−αk2t,

where A(k) is an arbitrary function of k. The inverse Fourier transform is

u(x, t) =
1

2π

∫ ∞

−∞
û(k, t)e−ikx dk.

=
1

2π

∫ ∞

−∞
Â(k)e−αk2te−ikx dk. (9.130)
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We can determine A(k) using the initial condition. Note that

F [u(x, 0)] = û(k, 0) =
∫ ∞

−∞
f (x)eikx dx.

But we also have from the solution,

u(x, 0) =
1

2π

∫ ∞

−∞
Â(k)e−ikx dk.

Comparing these two expressions for û(k, 0), we see that

A(k) = F [ f (x)].

We note that û(k, t) is given by the product of two Fourier transforms,
û(k, t) = A(k)e−αk2t. So, by the Convolution Theorem, we expect that u(x, t)
is the convolution of the inverse transforms,

u(x, t) = ( f ∗ g)(x, t) =
1

2π

∫ ∞

−∞
f (ξ, t)g(x− ξ, t) dξ,

where
g(x, t) = F−1[e−αk2t].

In order to determine g(x, t), we need only recall example 9.5. In that
example we saw that the Fourier transform of a Gaussian is a Gaussian.
Namely, we found that

F [e−ax2/2] =

√
2π

a
e−k2/2a,

or,

F−1[

√
2π

a
e−k2/2a] = e−ax2/2.

Applying this to the current problem, we have

g(x) = F−1[e−αk2t] =

√
π

αt
e−x2/4t.

Finally, we can write down the solution to the problem:

u(x, t) = ( f ∗ g)(x, t) =
∫ ∞

−∞
f (ξ, t)

e−(x−ξ)2/4t
√

4παt
dξ,

The function in the integrand,

K(x, t) =
e−x2/4t
√

4παt

is called the heat kernel. K(x, t) is called the heat kernel.

9.11.2 Laplace’s Equation on the Half Plane

We consider a steady state solution in two dimensions. In particular,
we look for the steady state solution, u(x, y), satisfying the two-dimensional
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Laplace equation on a semi-infinite slab with given boundary conditions as
shown in Figure 9.45. The boundary value problem is given as

uxx + uyy = 0, −∞ < x < ∞, y > 0,

u(x, 0) = f (x), −∞ < x < ∞

lim
y→∞

u(x, y) = 0, lim
|x|→∞

u(x, y) = 0. (9.131)
x

y

∇2u = 0

u(x, 0) = f (x)

Figure 9.45: This is the domain for a
semi-infinite slab with boundary value
u(x, 0) = f (x) and governed by
Laplace’s equation.

This problem can be solved using a Fourier transform of u(x, y) with
respect to x. The transform scheme for doing this is shown in Figure 9.46.
We begin by defining the Fourier transform

û(k, y) = F [u] =
∫ ∞

−∞
u(x, y)eikx dx.

We can transform Laplace’s equation. We first note from the properties
of Fourier transforms that

F
[

∂2u
∂x2

]
= −k2û(k, y),

if lim|x|→∞ u(x, y) = 0 and lim|x|→∞ ux(x, y) = 0. Also,

F
[

∂2u
∂y2

]
=

∂2û(k, y)
∂y2 .

Thus, the transform of Laplace’s equation gives ûyy = k2û.

Figure 9.46: The transform scheme used
to convert Laplace’s equation to an ordi-
nary differential equation which is easier
to solve.

u(x, 0)

uxx + uyy = 0

u(x, y)

û(k, 0)

ûyy = k2û

û(k, y)

Fourier Transform

Inverse Fourier Transform

This is a simple ordinary differential equation. We can solve this equation
using the boundary conditions. The general solution isThe transformed Laplace equation.

û(k, y) = a(k)eky + b(k)e−ky.

Since limy→∞ u(x, y) = 0 and k can be positive or negative, we have that
û(k, y) = a(k)e−|k|y. The coefficient a(k) can be determined using the re-
maining boundary condition, u(x, 0) = f (x). We find that a(k) = f̂ (k) since

a(k) = û(k, 0) =
∫ ∞

−∞
u(x, 0)eikx dx =

∫ ∞

−∞
f (x)eikx dx = f̂ (k).

We have found that û(k, y) = f̂ (k)e−|k|y. We can obtain the solution using
the inverse Fourier transform,

u(x, t) = F−1[ f̂ (k)e−|k|y].
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We note that this is a product of Fourier transforms and use the Convolution
Theorem for Fourier transforms. Namely, we have that a(k) = F [ f ] and
e−|k|y = F [g] for g(x, y) = 2y

x2+y2 . This last result is essentially proven in
Problem 6.

Then, the Convolution Theorem gives the solution

u(x, y) =
1

2π

∫ ∞

−∞
f (ξ)g(x− ξ) dξ

=
1

2π

∫ ∞

−∞
f (ξ)

2y
(x− ξ)2 + y2 dξ. (9.132)

We note for future use, that this solution is in the form

u(x, y) =
∫ ∞

−∞
f (ξ)G(x, ξ; y, 0) dξ,

where
G(x, ξ; y, 0) =

2y
π((x− ξ)2 + y2)

is the Green’s function for this problem. The Green’s function for the Laplace
equation.

9.11.3 Heat Equation on Infinite Interval, Revisited

We will reconsider the initial value problem for the heat equation
on an infinite interval,

ut = uxx, −∞ < x < ∞, t > 0,

u(x, 0) = f (x), −∞ < x < ∞. (9.133)

We can apply both a Fourier and a Laplace transform to convert this to an
algebraic problem. The general solution will then be written in terms of an
initial value Green’s function as

u(x, t) =
∫ ∞

−∞
G(x, t; ξ, 0) f (ξ) dξ.

For the time dependence we can use the Laplace transform and for the
spatial dependence we use the Fourier transform. These combined trans-
forms lead us to define

û(k, s) = F [L[u]] =
∫ ∞

−∞

∫ ∞

0
u(x, t)e−steikx dtdx.

Applying this to the terms in the heat equation, we have

F [L[ut]] = sû(k, s)−F [u(x, 0)]

= sû(k, s)− f̂ (k)

F [L[uxx]] = −k2û(k, s). (9.134)

Here we have assumed that

lim
t→∞

u(x, t)e−st = 0, lim
|x|→∞

u(x, t) = 0, lim
|x|→∞

ux(x, t) = 0.
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Therefore, the heat equation can be turned into an algebraic equation for
the transformed solution,

(s + k2)û(k, s) = f̂ (k),

or

û(k, s) =
f̂ (k)

s + k2 .

The transformed heat equation.

The solution to the heat equation is obtained using the inverse transforms
for both the Fourier and Laplace transform. Thus, we have

u(x, t) = F−1[L−1[û]]

=
1

2π

∫ ∞

−∞

(
1

2πi

∫ c+∞

c−i∞

f̂ (k)
s + k2 est ds

)
e−ikx dk. (9.135)

Since the inside integral has a simple pole at s = −k2, we can compute
the Bromwich integral by choosing c > −k2. Thus,

1
2πi

∫ c+∞

c−i∞

f̂ (k)
s + k2 est ds = Res

[
f̂ (k)

s + k2 est; s = −k2

]
= e−k2t f̂ (k).

Inserting this result into the solution, we have

u(x, t) = F−1[L−1[û]]

=
1

2π

∫ ∞

−∞
f̂ (k)e−k2te−ikx dk. (9.136)

This solution is of the form

u(x, t) = F−1[ f̂ ĝ]

for ĝ(k) = e−k2t. So, by the Convolution Theorem for Fourier transforms,the
solution is a convolution,

u(x, t) =
∫ ∞

−∞
f (ξ)g(x− ξ) dξ.

All we need is the inverse transform of ĝ(k).
We note that ĝ(k) = e−k2t is a Gaussian. Since the Fourier transform of a

Gaussian is a Gaussian, we need only recall Example 9.5,

F [e−ax2/2] =

√
2π

a
e−k2/2a.

Setting a = 1/2t, this becomes

F [e−x2/4t] =
√

4πte−k2t.

So,

g(x) = F−1[e−k2t] =
e−x2/4t
√

4πt
.
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Inserting g(x) into the solution, we have

u(x, t) =
1√
4πt

∫ ∞

−∞
f (ξ)e−(x−ξ)2/4t dξ

=
∫ ∞

−∞
G(x, t; ξ, 0) f (ξ) dξ. (9.137)

Here we have identified the initial value Green’s function

G(x, t; ξ, 0) =
1√
4πt

e−(x−ξ)2/4t.

The initial value Green’s function for the
heat equation.

9.11.4 Nonhomogeneous Heat Equation

We now consider the nonhomogeneous heat equation with homo-
geneous boundary conditions defined on a finite interval.

ut − kuxx = h(x, t), 0 ≤ x ≤ L, t > 0.

u(0, t) = 0, u(L, t) = 0, t > 0,

u(x, 0) = f (x), 0 ≤ x ≤ . (9.138)

We know that when h(x, t) ≡ 0 the solution takes the form

u(x, t) =
∞

∑
n=1

bn sin
nπx

L
.

So, when h(x, t) 6= 0, we might assume that the solution takes the form

u(x, t) =
∞

∑
n=1

bn(t) sin
nπx

L

where the bn’s are the finite Fourier sine transform of the desired solution,

bn(t) = Fs[u] =
2
L

∫ L

0
u(x, t) sin

nπx
L

dx

Note that the finite Fourier sine transform is essentially the Fourier sine
transform which we encountered in Section 3.4.

u(x, 0)

ut − uxx = h(x, t)

u(x, t)

A(k, 0)

dbn
dt + ω2

nbb = Bn(t)

A(k, t)

Finite Fourier Sine Transform

Inverse Finite Fourier Sine Transform

Figure 9.47: Using finite Fourier trans-
forms to solve the heat equation by solv-
ing an ODE instead of a PDE.

The idea behind using the finite Fourier Sine Transform is to solve the
given heat equation by transforming the heat equation to a simpler equation
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for the transform, bn(t), solve for bn(t), and then do an inverse transform,
i.e., insert the bn(t)’s back into the series representation. This is depicted
in Figure 9.47. Note that we had explored similar diagram earlier when
discussing the use of transforms to solve differential equations.

First, we need to transform the partial differential equation. The finite
transforms of the derivative terms are given by

Fs[ut] =
2
L

∫ L

0

∂u
∂t

(x, t) sin
nπx

L
dx

=
d
dt

(
2
L

∫ L

0
u(x, t) sin

nπx
L

dx
)

=
dbn

dt
. (9.139)

Fs[uxx] =
2
L

∫ L

0

∂2u
∂x2 (x, t) sin

nπx
L

dx

=
[
ux sin

nπx
L

]L

0
−
(nπ

L

) 2
L

∫ L

0

∂u
∂x

(x, t) cos
nπx

L
dx

= −
[nπ

L
u cos

nπx
L

]L

0
−
(nπ

L

)2 2
L

∫ L

0
u(x, t) sin

nπx
L

dx

=
nπ

L
[u(0, t)− u(L, 0) cos nπ]−

(nπ

L

)2
b2

n

= −ω2
nb2

n, (9.140)

where ωn = nπ
L .

Furthermore, we define

Hn(t) = Fs[h] =
2
L

∫ L

0
h(x, t) sin

nπx
L

dx.

Then, the heat equation is transformed to

dbn

dt
+ ω2

nbn = Hn(t), n = 1, 2, 3, . . . .

This is a simple linear first order differential equation. We can supple-
ment this equation with the initial condition

bn(0) =
2
L

∫ L

0
u(x, 0) sin

nπx
L

dx.

The differential equation for bn is easily solved using the integrating factor,
µ(t) = eω2

nt. Thus,
d
dt

(
eω2

ntbn(t)
)
= Hn(t)eω2

nt

and the solution is

bn(t) = bn(0)e−ω2
nt +

∫ t

0
Hn(τ)e−ω2

n(t−τ) dτ.

The final step is to insert these coefficients (finite Fourier sine transform)
into the series expansion (inverse finite Fourier sine transform) for u(x, t).
The result is

u(x, t) =
∞

∑
n=1

bn(0)e−ω2
nt sin

nπx
L

+
∞

∑
n=1

[∫ t

0
Hn(τ)e−ω2

n(t−τ) dτ

]
sin

nπx
L

.
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This solution can be written in a more compact form in order to identify
the Green’s function. We insert the expressions for bn(0) and Hn(t) in terms
of the initial profile and source term and interchange sums and integrals.
This leads to

u(x, t) =
∞

∑
n=1

(
2
L

∫ L

0
u(ξ, 0) sin

nπξ

L
dξ

)
e−ω2

nt sin
nπx

L

+
∞

∑
n=1

[∫ t

0

(
2
L

∫ L

0
h(ξ, τ) sin

nπξ

L
dξ

)
e−ω2

n(t−τ) dτ

]
sin

nπx
L

=
∫ L

0
u(ξ, 0)

[
2
L

∞

∑
n=1

sin
nπx

L
sin

nπξ

L
e−ω2

nt

]
dξ

+
∫ t

0

∫ L

0
h(ξ, τ)

[
2
L

∞

∑
n=1

sin
nπx

L
sin

nπξ

L
e−ω2

n(t−τ)

]

=
∫ L

0
u(ξ, 0)G(x, ξ; t, 0)dξ +

∫ t

0

∫ L

0
h(ξ, τ)G(x, ξ; t, τ) dξdτ.

(9.141)

Here we have defined the Green’s function

G(x, ξ; t, τ) =
2
L

∞

∑
n=1

sin
nπx

L
sin

nπξ

L
e−ω2

n(t−τ).

We note that G(x, ξ; t, 0) gives the initial value Green’s function.
Note that at t = τ,

G(x, ξ; t, t) =
2
L

∞

∑
n=1

sin
nπx

L
sin

nπξ

L
.

This is actually the series representation of the Dirac delta function. The
Fourier sine transform of the delta function is

Fs[δ(x− ξ)] =
2
L

∫ L

0
δ(x− ξ) sin

nπx
L

dx =
2
L

sin
nπξ

L
.

Then, the representation becomes

δ(x− ξ) =
2
L

∞

∑
n=1

sin
nπx

L
sin

nπξ

L
.

Also, we note that
∂G
∂t

= −ω2
nG

∂2G
∂x2 = −

(nπ

L

)2
G.

Therefore, Gt = Gxx at least for τ 6= t and ξ 6= x.
We can modify this problem by adding nonhomogeneous boundary con-

ditions.

ut − kuxx = h(x, t), 0 ≤ x ≤ L, t > 0,

u(0, t) = A, u(L, t) = B, t > 0,

u(x, 0) = f (x), 0 ≤ x ≤ L. (9.142)
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One way to treat these conditions is to assume u(x, t) = w(x)+ v(x, t) where
vt − kvxx = h(x, t) and wxx = 0. Then, u(x, t) = w(x) + v(x, t) satisfies the
original nonhomogeneous heat equation.

If v(x, t) satisfies v(0, t) = v(L, t) = 0 and w(x) satisfies w(0) = A and
w(L) = B, then u(0, t) = w(0) + v(0, t) = A u(L, t) = w(L) + v(L, t) = B

Finally, we note that

v(x, 0) = u(x, 0)− w(x) = f (x)− w(x).

Therefore, u(x, t) = w(x) + v(x, t) satisfies the original problem if

vt − kvxx = h(x, t), 0 ≤ x ≤ L, t > 0,

v(0, t) = 0, v(L, t) = 0, t > 0,

v(x, 0) = f (x)− w(x), 0 ≤ x ≤ L. (9.143)

and

wxx = 0, 0 ≤ x ≤ L,

w(0) = A, w(L) = B. (9.144)

We can solve the last problem to obtain w(x) = A + B−A
L x. The solution

to the problem for v(x, t) is simply the problem we had solved already in
terms of Green’s functions with the new initial condition, f (x)− A− B−A

L x.

9.11.5 Solution of the 3D Poisson Equation

We recall from electrostatics that the gradient of the elec-
tric potential gives the electric field, E = −∇φ. However, we also have
from Gauss’ Law for electric fields ∇ · E = ρ

ε0
, where ρ(r) is the charge dis-

tribution at position r. Combining these equations, we arrive at Poisson’s
equation for the electric potential,Poisson’s equation for the electric poten-

tial.

∇2φ = − ρ

ε0
.

We note that Poisson’s equation also arises in Newton’s theory of gravitation
for the gravitational potential in the form ∇2φ = −4πGρ where ρ is the
matter density.Poisson’s equation for the gravitational

potential. We consider Poisson’s equation in the form

∇2φ(r) = −4π f (r)

for r defined throughout all space. We will seek a solution for the potential
function using a three dimensional Fourier transform. In the electrostatic
problem f = ρ(r)/4πε0 and the gravitational problem has f = Gρ(r)

The Fourier transform can be generalized to three dimensions as

φ̂(k) =
∫

V
φ(r)eik·r d3r,
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where the integration is over all space, V, d3r = dxdydz, and k is a three di-
mensional wavenumber, k = kxi + kyj + kzk. The inverse Fourier transform
can then be written as

φ(r) =
1

(2π)3

∫
Vk

φ̂(k)e−ik·r d3k,

where d3k = dkxdkydkz and Vk is all of k-space. Three dimensional Fourier transform.

The Fourier transform of the Laplacian follows from computing Fourier
transforms of any derivatives that are present. Assuming that φ and its
gradient vanish for large distances, then

F [∇2φ] = −(k2
x + k2

y + k2
z)φ̂(k).

Defining k2 = k2
x + k2

y + k2
z, then Poisson’s equation becomes the algebraic

equation
k2φ̂(k) = 4π f̂ (k).

Solving for φ̂(k), we have

φ(k) =
4π

k2 f̂ (k).

The solution to Poisson’s equation is then determined from the inverse
Fourier transform,

φ(r) =
4π

(2π)3

∫
Vk

f̂ (k)
e−ik·r

k2 d3k. (9.145)

First we will consider an example of a point charge (or mass in the grav-
itational case) at the origin. We will set f (r) = f0δ3(r) in order to represent
a point source. For a unit point charge, f0 = 1/4πε0. The three dimensional Dirac delta func-

tion, δ3(r− r0).Here we have introduced the three dimensional Dirac delta function
which, like the one dimensional case, vanishes outside the origin and satis-
fies a unit volume condition, ∫

V
δ3(r) d3r = 1.

Also, there is a sifting property, which takes the form∫
V

δ3(r− r0) f (r) d3r = f (r0).

In Cartesian coordinates,

δ3(r) = δ(x)δ(y)δ(z),∫
V

δ3(r) d3r =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
δ(x)δ(y)δ(z) dxdydz = 1,

and∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
δ(x− x0)δ(y− y0)δ(z− z0) f (x, y, z) dxdydz = f (x0, y0, z0).

One can define similar delta functions operating in two dimensions and n
dimensions.
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We can also transform the Cartesian form into curvilinear coordinates.
From Section 6.9 we have that the volume element in curvilinear coordinates
is

d3r = dxdydz = h1h2h3du1du2du3,

where .
This gives ∫

V
δ3(r) d3r =

∫
V

δ3(r) h1h2h3du1du2du3 = 1.

Therefore,

δ3(r) =
δ(u1)∣∣ ∂r

∂u1

∣∣ δ(u2)∣∣ ∂r
∂u2

∣∣ δ(u3)∣∣ ∂r
∂u2

∣∣
=

1
h1h2h3

δ(u1)δ(u2)δ(u3). (9.146)

So, for cylindrical coordinates,

δ3(r) =
1
r

δ(r)δ(θ)δ(z).

Example 9.38. Find the solution of Poisson’s equation for a point source of the
form f (r) = f0δ3(r).

The solution is found by inserting the Fourier transform of this source into Equa-
tion (9.145) and carrying out the integration. The transform of f (r) is found as

f̂ (k) =
∫

V
f0δ3(r)eik·r d3r = f0.

Inserting f̂ (k) into the inverse transform in Equation (9.145) and carrying out
the integration using spherical coordinates in k-space, we find

φ(r) =
4π

(2π)3

∫
Vk

f0
e−ik·r

k2 d3k

=
f0

2π2

∫ 2π

0

∫ π

0

∫ ∞

0

e−ikx cos θ

k2 k2 sin θ dkdθdφ

=
f0

π

∫ π

0

∫ ∞

0
e−ikx cos θ sin θ dkdθ

=
f0

π

∫ ∞

0

∫ 1

−1
e−ikxy dkdy, y = cos θ,

=
2 f0

πr

∫ ∞

0

sin z
z

dz =
f0

r
. (9.147)

If the last example is applied to a unit point charge, then f0 = 1/4πε0.
So, the electric potential outside a unit point charge located at the origin
becomes

φ(r) =
1

4πε0r
.

This is the form familiar from introductory physics.
Also, by setting f0 = 1, we have also shown in the last example that

∇2
(

1
r

)
= −4πδ3(r).



transform techniques in physics 425

Since ∇
(

1
r

)
= − r

r3 , then we have also shown that

∇ ·
( r

r3

)
= 4πδ3(r).

Problems

1. In this problem you will show that the sequence of functions

fn(x) =
n
π

(
1

1 + n2x2

)
approaches δ(x) as n→ ∞. Use the following to support your argument:

a. Show that limn→∞ fn(x) = 0 for x 6= 0.

b. Show that the area under each function is one.

2. Verify that the sequence of functions { fn(x)}∞
n=1, defined by fn(x) =

n
2 e−n|x|, approaches a delta function.

3. Evaluate the following integrals:

a.
∫ π

0 sin xδ
(

x− π
2
)

dx.

b.
∫ ∞
−∞ δ

( x−5
3 e2x) (3x2 − 7x + 2

)
dx.

c.
∫ π

0 x2δ
(

x + π
2
)

dx.

d.
∫ ∞

0 e−2xδ(x2 − 5x + 6) dx. [See Problem 4.]

e.
∫ ∞
−∞(x2 − 2x + 3)δ(x2 − 9) dx. [See Problem 4.]

4. For the case that a function has multiple roots, f (xi) = 0, i = 1, 2, . . . , it
can be shown that

δ( f (x)) =
n

∑
i=1

δ(x− xi)

| f ′(xi)|
.

Use this result to evaluate
∫ ∞
−∞ δ(x2 − 5x− 6)(3x2 − 7x + 2) dx.

5. Find a Fourier series representation of the Dirac delta function, δ(x), on
[−L, L].

6. For a > 0, find the Fourier transform, f̂ (k), of f (x) = e−a|x|.

7. Use the result from the last problem plus properties of the Fourier trans-
form to find the Fourier transform, of f (x) = x2e−a|x| for a > 0.

8. Find the Fourier transform, f̂ (k), of f (x) = e−2x2+x.

9. Prove the second shift property in the form

F
[
eiβx f (x)

]
= f̂ (k + β).

10. A damped harmonic oscillator is given by

f (t) =

{
Ae−αteiω0t, t ≥ 0,

0, t < 0.
.
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a. Find f̂ (ω) and

b. the frequency distribution | f̂ (ω)|2.

c. Sketch the frequency distribution.

11. Show that the convolution operation is associative: ( f ∗ (g ∗ h))(t) =

(( f ∗ g) ∗ h)(t).

12. In this problem you will directly compute the convolution of two Gaus-
sian functions in two steps.

a. Use completing the square to evaluate∫ ∞

−∞
e−αt2+βt dt.

b. Use the result from part a to directly compute the convolution in
example 9.16:

( f ∗ g)(x) = e−bx2
∫ ∞

−∞
e−(a+b)t2+2bxt dt.

13. You will compute the (Fourier) convolution of two box functions of the
same width. Recall the box function is given by

fa(x) =

{
1, |x| ≤ a
0, |x| > a.

Consider ( fa ∗ fa)(x) for different intervals of x. A few preliminary sketches
would help. In Figure 9.48 the factors in the convolution integrand are show
for one value of x. The integrand is the product of the first two functions.
The convolution at x is the area of the overlap in the third figure. Think
about how these pictures change as you vary x. Plot the resulting areas as a
function of x. This is the graph of the desired convolution.

14. Define the integrals In =
∫ ∞
−∞ x2ne−x2

dx. Noting that I0 =
√

π,

a. Find a recursive relation between In and In−1.

b. Use this relation to determine I1, I2 and I3.

c. Find an expression in terms of n for In.

15. Find the Laplace transform of the following functions.

a. f (t) = 9t2 − 7.

b. f (t) = e5t−3.

c. f (t) = cos 7t.

d. f (t) = e4t sin 2t.

e. f (t) = e2t(t + cosh t).

f. f (t) = t2H(t− 1).

g. f (t) =

{
sin t, t < 4π,

sin t + cos t, t > 4π
.
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fa(t)

b

a−a

fa(x− t)

b

a + x−a + x

fa(t) fa(x− t)

a−a

x

Figure 9.48: Sketch used to compute the
convolution of the box function with it-
self. In the top figure is the box function.
The second figure shows the box shifted
by x. The last figure indicates the over-
lap of the functions.

h. f (t) =
∫ t

0 (t− u)2 sin u du.

i. f (t) = (t + 5)2 + te2t cos 3t and write the answer in the simplest
form.

16. Find the inverse Laplace transform of the following functions using the
properties of Laplace transforms and the table of Laplace transform pairs.

a. F(s) =
18
s3 +

7
s

.

b. F(s) =
1

s− 5
− 2

s2 + 4
.

c. F(s) =
s + 1
s2 + 1

.

d. F(s) =
3

s2 + 2s + 2
.

e. F(s) =
1

(s− 1)2 .

f. F(s) =
e−3s

s2 − 1
.

g. F(s) =
1

s2 + 4s− 5
.

h. F(s) =
s + 3

s2 + 8s + 17
.

17. Compute the convolution ( f ∗ g)(t) (in the Laplace transform sense) and
its corresponding Laplace transform L[ f ∗ g] for the following functions:

a. f (t) = t2, g(t) = t3.

b. f (t) = t2, g(t) = cos 2t.
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c. f (t) = 3t2 − 2t + 1, g(t) = e−3t.

d. f (t) = δ
(
t− π

4
)

, g(t) = sin 5t.

18. For the following problems draw the given function and find the Laplace
transform in closed form.

a. f (t) = 1 + ∑∞
n=1(−1)n H(t− n).

b. f (t) = ∑∞
n=0[H(t− 2n + 1)− H(t− 2n)].

c. f (t) = ∑∞
n=0(t− 2n)[H(t− 2n)−H(t− 2n− 1)]+ (2n+ 2− t)[H(t−

2n− 1)− H(t− 2n− 2)].

19. Use the convolution theorem to compute the inverse transform of the
following:

a. F(s) =
2

s2(s2 + 1)
.

b. F(s) =
e−3s

s2 .

c. F(s) =
1

s(s2 + 2s + 5)
.

20. Find the inverse Laplace transform two different ways: i) Use Tables.
ii) Use the Bromwich Integral.

a. F(s) =
1

s3(s + 4)2 .

b. F(s) =
1

s2 − 4s− 5
.

c. F(s) =
s + 3

s2 + 8s + 17
.

d. F(s) =
s + 1

(s− 2)2(s + 4)
.

e. F(s) =
s2 + 8s− 3

(s2 + 2s + 1)(s2 + 1)
.

21. Use Laplace transforms to solve the following initial value problems.
Where possible, describe the solution behavior in terms of oscillation and
decay.

a. y′′ − 5y′ + 6y = 0, y(0) = 2, y′(0) = 0.

b. y′′ − y = te2t, y(0) = 0, y′(0) = 1.

c. y′′ + 4y = δ(t− 1), y(0) = 3, y′(0) = 0.

d. y′′ + 6y′ + 18y = 2H(π − t), y(0) = 0, y′(0) = 0.

22. Use Laplace transforms to convert the following system of differential
equations into an algebraic system and find the solution of the differential
equations.

x′′ = 3x− 6y, x(0) = 1, x′(0) = 0,

y′′ = x + y, y(0) = 0, y′(0) = 0.



transform techniques in physics 429

23. Use Laplace transforms to convert the following nonhomogeneous sys-
tems of differential equations into an algebraic system and find the solutions
of the differential equations.

a.

x′ = 2x + 3y + 2 sin 2t, x(0) = 1,

y′ = −3x + 2y, y(0) = 0.

b.

x′ = −4x− y + e−t, x(0) = 2,

y′ = x− 2y + 2e−3t, y(0) = −1.

c.

x′ = x− y + 2 cos t, x(0) = 3,

y′ = x + y− 3 sin t, y(0) = 2.

24. Consider the series circuit in Problem 2.20 and in Figure ?? with L =

1.00 H, R = 1.00× 102 Ω, C = 1.00× 10−4 F, and V0 = 1.00× 103 V.

a. Write the second order differential equation for this circuit.

b. Suppose that no charge is present and no current is flowing at
time t = 0 when V0 is applied. Use Laplace transforms to find the
current and the charge on the capacitor as functions of time.

b. Replace the battery with the alternating source V(t) = V0 sin 2π f t
with V0 = 1.00× 103 V and f = 150Hz. Again, suppose that no
charge is present and no current is flowing at time t = 0 when the
AC source is applied. Use Laplace transforms to find the current
and the charge on the capacitor as functions of time.

d. Plot your solutions and describe how the system behaves over
time.

25. Use Laplace transforms to sum the following series.

a.
∞

∑
n=0

(−1)n

1 + 2n
.

b.
∞

∑
n=1

1
n(n + 3)

.

c.
∞

∑
n=1

(−1)n

n(n + 3)
.

d.
∞

∑
n=0

(−1)n

n2 − a2 .

e.
∞

∑
n=0

1
(2n + 1)2 − a2 .
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f.
∞

∑
n=1

1
n

e−an.

26. Use Laplace transforms to prove

∞

∑
n=1

1
(n + a)(n + b)

=
1

b− a

∫ 1

0

ua − ub

1− u
du.

Use this result to evaluate the sums

a.
∞

∑
n=1

1
n(n + 1)

.

b.
∞

∑
n=1

1
(n + 2)(n + 3)

.

27. Do the following.

a. Find the first four nonvanishing terms of the Maclaurin series ex-

pansion of f (x) =
x

ex − 1
.

b. Use the result in part a. to determine the first four nonvanishing
Bernoulli numbers, Bn.

c. Use these results to compute ζ(2n) for n = 1, 2, 3, 4.

28. Given the following Laplace transforms, F(s), find the function f (t).
Note that in each case there are an infinite number of poles, resulting in an
infinite series representation.

a. F(s) =
1

s2(1 + e−s)
.

b. F(s) =
1

s sinh s
.

c. F(s) =
sinh s

s2 cosh s
.

d. F(s) =
sinh(β

√
sx)

s sinh(β
√

sL)
.

29. Consider the initial boundary value problem for the heat equation:

ut = 2uxx, 0 < t, 0 ≤ x ≤ 1,
u(x, 0) = x(1− x), 0 < x < 1,

u(0, t) = 0, t > 0,
u(1, t) = 0, t > 0.

Use the finite transform method to solve this problem. Namely, assume
that the solution takes the form u(x, t) = ∑∞

n=1 bn(t) sin nπx and obtain an
ordinary differential equation for bn and solve for the bn’s for each n.



10
Numerical Solutions of PDEs

There’s no sense in being precise when you don’t even know what you’re talking
about.- John von Neumann (1903-1957)

Most of the book has dealt with finding exact solutions to some
generic problems. However, most problems of interest cannot be solved ex-
actly. The heat, wave, and Laplace equations are linear partial differential
equations and can be solved using separation of variables in geometries
in which the Laplacian is separable. However, once we introduce nonlin-
earities, or complicated non-constant coefficients intro the equations, some
of these methods do not work. Even when separation of variables or the
method of eigenfunction expansions gave us exact results, the computation
of the resulting series had to be done on a computer and inevitably one
could only use a finite number of terms of the expansion. So, therefore, it is
sometimes useful to be able to solve differential equations numerically.

In this chapter we will introduce the idea of numerical solutions of partial
differential equations. However, we will first begin with a discussion of the
solution of ordinary differential equations in order to get a feel for some
common problems in the solution of differential equations and the notion
of convergence rates of numerical schemes. Then, we turn to the finite
difference method and the ideas of stability. Other common approaches
may be added later.

10.1 Ordinary Differential Equations

10.1.1 Euler’s Method

In this section we will look at the simplest method for solving
first order equations, Euler’s Method. While it is not the most efficient
method, it does provide us with a picture of how one proceeds and can be
improved by introducing better techniques, which are typically covered in
a numerical analysis text.

Let’s consider the class of first order initial value problems of the form

dy
dx

= f (x, y), y(x0) = y0. (10.1)
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We are interested in finding the solution y(x) of this equation which passes
through the initial point (x0, y0) in the xy-plane for values of x in the interval
[a, b], where a = x0. We will seek approximations of the solution at N
points, labeled xn for n = 1, . . . , N. For equally spaced points we have
∆x = x1 − x0 = x2 − x1, etc. We can write these as

xn = x0 + n∆x.

In Figure 10.1 we show three such points on the x-axis.

Figure 10.1: The basics of Euler’s
Method are shown. An interval of the
x axis is broken into N subintervals.
The approximations to the solutions are
found using the slope of the tangent to
the solution, given by f (x, y). Knowing
previous approximations at (xn−1, yn−1),
one can determine the next approxima-
tion, yn.

y

x

(x0, y0)

(x1, y(x1))

(x2, y(x2))

y0

x0

y1

x1

y2

x2

The first step of Euler’s Method is to use the initial condition. We repre-
sent this as a point on the solution curve, (x0, y(x0)) = (x0, y0), as shown in
Figure 10.1. The next step is to develop a method for obtaining approxima-
tions to the solution for the other xn’s.

We first note that the differential equation gives the slope of the tangent
line at (x, y(x)) of the solution curve since the slope is the derivative, y′(x)′

From the differential equation the slope is f (x, y(x)). Referring to Figure
10.1, we see the tangent line drawn at (x0, y0). We look now at x = x1. The
vertical line x = x1 intersects both the solution curve and the tangent line
passing through (x0, y0). This is shown by a heavy dashed line.

While we do not know the solution at x = x1, we can determine the
tangent line and find the intersection point that it makes with the vertical.
As seen in the figure, this intersection point is in theory close to the point
on the solution curve. So, we will designate y1 as the approximation of the
solution y(x1). We just need to determine y1.

The idea is simple. We approximate the derivative in the differential
equation by its difference quotient:

dy
dx
≈ y1 − y0

x1 − x0
=

y1 − y0

∆x
. (10.2)

Since the slope of the tangent to the curve at (x0, y0) is y′(x0) = f (x0, y0),
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we can write
y1 − y0

∆x
≈ f (x0, y0). (10.3)

Solving this equation for y1, we obtain

y1 = y0 + ∆x f (x0, y0). (10.4)

This gives y1 in terms of quantities that we know.
We now proceed to approximate y(x2). Referring to Figure 10.1, we see

that this can be done by using the slope of the solution curve at (x1, y1).
The corresponding tangent line is shown passing though (x1, y1) and we
can then get the value of y2 from the intersection of the tangent line with a
vertical line, x = x2. Following the previous arguments, we find that

y2 = y1 + ∆x f (x1, y1). (10.5)

Continuing this procedure for all xn, n = 1, . . . N, we arrive at the fol-
lowing scheme for determining a numerical solution to the initial value
problem:

y0 = y(x0),

yn = yn−1 + ∆x f (xn−1, yn−1), n = 1, . . . , N. (10.6)

This is referred to as Euler’s Method.

Example 10.1. Use Euler’s Method to solve the initial value problem dy
dx = x +

y, y(0) = 1 and obtain an approximation for y(1).
First, we will do this by hand. We break up the interval [0, 1], since we want the

solution at x = 1 and the initial value is at x = 0. Let ∆x = 0.50. Then, x0 = 0,
x1 = 0.5 and x2 = 1.0. Note that there are N = b−a

∆x = 2 subintervals and thus
three points.

We next carry out Euler’s Method systematically by setting up a table for the
needed values. Such a table is shown in Table 10.1. Note how the table is set up.
There is a column for each xn and yn. The first row is the initial condition. We also
made use of the function f (x, y) in computing the yn’s from (10.6). This sometimes
makes the computation easier. As a result, we find that the desired approximation
is given as y2 = 2.5.

n xn yn = yn−1 + ∆x f (xn−1, yn−1 = 0.5xn−1 + 1.5yn−1

0 0 1

1 0.5 0.5(0) + 1.5(1.0) = 1.5
2 1.0 0.5(0.5) + 1.5(1.5) = 2.5

Table 10.1: Application of Euler’s
Method for y′ = x + y, y(0) = 1 and
∆x = 0.5.

Is this a good result? Well, we could make the spatial increments smaller. Let’s
repeat the procedure for ∆x = 0.2, or N = 5. The results are in Table 10.2.

Now we see that the approximation is y1 = 2.97664. So, it looks like the value
is near 3, but we cannot say much more. Decreasing ∆x more shows that we are
beginning to converge to a solution. We see this in Table 10.3.
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Table 10.2: Application of Euler’s
Method for y′ = x + y, y(0) = 1 and
∆x = 0.2.

n xn yn = 0.2xn−1 + 1.2yn−1

0 0 1

1 0.2 0.2(0) + 1.2(1.0) = 1.2
2 0.4 0.2(0.2) + 1.2(1.2) = 1.48
3 0.6 0.2(0.4) + 1.2(1.48) = 1.856
4 0.8 0.2(0.6) + 1.2(1.856) = 2.3472
5 1.0 0.2(0.8) + 1.2(2.3472) = 2.97664

Table 10.3: Results of Euler’s Method for
y′ = x + y, y(0) = 1 and varying ∆x

∆x yN ≈ y(1)
0.5 2.5
0.2 2.97664

0.1 3.187484920

0.01 3.409627659

0.001 3.433847864

0.0001 3.436291854

Of course, these values were not done by hand. The last computation
would have taken 1000 lines in the table, or at least 40 pages! One could
use a computer to do this. A simple code in Maple would look like the
following:

> restart:

> f:=(x,y)->y+x;

> a:=0: b:=1: N:=100: h:=(b-a)/N;

> x[0]:=0: y[0]:=1:

for i from 1 to N do

y[i]:=y[i-1]+h*f(x[i-1],y[i-1]):

x[i]:=x[0]+h*(i):

od:

evalf(y[N]);

In this case we could simply use the exact solution. The exact solution is
easily found as

y(x) = 2ex − x− 1.

(The reader can verify this.) So, the value we are seeking is

y(1) = 2e− 2 = 3.4365636 . . . .

Thus, even the last numerical solution was off by about 0.00027.

Figure 10.2: A comparison of the results
Euler’s Method to the exact solution for
y′ = x + y, y(0) = 1 and N = 10.

Adding a few extra lines for plotting, we can visually see how well the
approximations compare to the exact solution. The Maple code for doing
such a plot is given below.

> with(plots):

> Data:=[seq([x[i],y[i]],i=0..N)]:

> P1:=pointplot(Data,symbol=DIAMOND):

> Sol:=t->-t-1+2*exp(t);
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> P2:=plot(Sol(t),t=a..b,Sol=0..Sol(b)):

> display({P1,P2});

We show in Figures 10.2-10.3 the results for N = 10 and N = 100. In
Figure 10.2 we can see how quickly the numerical solution diverges from
the exact solution. In Figure 10.3 we can see that visually the solutions
agree, but we note that from Table 10.3 that for ∆x = 0.01, the solution is
still off in the second decimal place with a relative error of about 0.8%.

Figure 10.3: A comparison of the results
Euler’s Method to the exact solution for
y′ = x + y, y(0) = 1 and N = 100.

Why would we use a numerical method when we have the exact solu-
tion? Exact solutions can serve as test cases for our methods. We can make
sure our code works before applying them to problems whose solution is
not known.

There are many other methods for solving first order equations. One
commonly used method is the fourth order Runge-Kutta method. This
method has smaller errors at each step as compared to Euler’s Method.
It is well suited for programming and comes built-in in many packages like
Maple and MATLAB. Typically, it is set up to handle systems of first order
equations.

In fact, it is well known that nth order equations can be written as a sys-
tem of n first order equations. Consider the simple second order equation

y′′ = f (x, y).

This is a larger class of equations than the second order constant coefficient
equation. We can turn this into a system of two first order differential equa-
tions by letting u = y and v = y′ = u′. Then, v′ = y′′ = f (x, u). So, we have
the first order system

u′ = v,

v′ = f (x, u). (10.7)

We will not go further into the Runge-Kutta Method here. You can find
more about it in a numerical analysis text. However, we will see that systems
of differential equations do arise naturally in physics. Such systems are
often coupled equations and lead to interesting behaviors.

10.1.2 Higher Order Taylor Methods

Euler’s Method for solving differential equations is easy to un-
derstand but is not efficient in the sense that it is what is called a first order
method. The error at each step, the local truncation error, is of order ∆x,
for x the independent variable. The accumulation of the local truncation er-
rors results in what is called the global error. In order to generalize Euler’s
Method, we need to rederive it. Also, since these methods are typically used
for initial value problems, we will cast the problem to be solved as

dy
dt

= f (t, y), y(a) = y0, t ∈ [a, b]. (10.8)
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The first step towards obtaining a numerical approximation to the solu-
tion of this problem is to divide the t-interval, [a, b], into N subintervals,

ti = a + ih, i = 0, 1, . . . , N, t0 = a, tN = b,

where
h =

b− a
N

.

We then seek the numerical solutions

ỹi ≈ y(ti), i = 1, 2, . . . , N,

with ỹ0 = y(t0) = y0. Figure 10.4 graphically shows how these quantities
are related.

y

t
t0 tNti

(ti , ỹi)

(ti , y(ti))

(a, y0)

Figure 10.4: The interval [a, b] is divided
into N equally spaced subintervals. The
exact solution y(ti) is shown with the
numerical solution, ỹi with ti = a + ih,
i = 0, 1, . . . , N.

Euler’s Method can be derived using the Taylor series expansion of of the
solution y(ti + h) about t = ti for i = 1, 2, . . . , N. This is given by

y(ti+1) = y(ti + h)

= y(ti) + y′(ti)h +
h2

2
y′′(ξi), ξi ∈ (ti, ti+1). (10.9)

Here the term h2

2 y′′(ξi) captures all of the higher order terms and represents
the error made using a linear approximation to y(ti + h).

Dropping the remainder term, noting that y′(t) = f (t, y), and defining
the resulting numerical approximations by ỹi ≈ y(ti), we have

ỹi+1 = ỹi + h f (ti, ỹi), i = 0, 1, . . . , N − 1,

ỹ0 = y(a) = y0. (10.10)

This is Euler’s Method.
Euler’s Method is not used in practice since the error is of order h. How-

ever, it is simple enough for understanding the idea of solving differential
equations numerically. Also, it is easy to study the numerical error, which
we will show next.

The error that results for a single step of the method is called the local
truncation error, which is defined by

τi+1(h) =
y(ti+1)− ỹi

h
− f (ti, yi).

A simple computation gives

τi+1(h) =
h
2

y′′(ξi), ξi ∈ (ti, ti+1).

Since the local truncation error is of order h, this scheme is said to be of
order one. More generally, for a numerical scheme of the form

ỹi+1 = ỹi + hF(ti, ỹi), i = 0, 1, . . . , N − 1,

ỹ0 = y(a) = y0, (10.11)

the local truncation error is defined byThe local truncation error.
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τi+1(h) =
y(ti+1)− ỹi

h
− F(ti, yi).

The accumulation of these errors leads to the global error. In fact, one
can show that if f is continuous, satisfies the Lipschitz condition,

| f (t, y2)− f (t, y1)| ≤ L|y2 − y1|

for a particular domain D ⊂ R2, and

|y′′(t)| ≤ M, t ∈ [a, b],

then
|y(ti)− ỹ| ≤

hM
2L

(
eL(ti−a) − 1

)
, i = 0, 1, . . . , N.

Furthermore, if one introduces round-off errors, bounded by δ, in both the
initial condition and at each step, the global error is modified as

|y(ti)− ỹ| ≤
1
L

(
hM

2
+

δ

h

)(
eL(ti−a) − 1

)
+ |δ0|eL(ti−a), i = 0, 1, . . . , N.

Then for small enough steps h, there is a point when the round-off error
will dominate the error. [See Burden and Faires, Numerical Analysis for the
details.]

Can we improve upon Euler’s Method? The natural next step towards
finding a better scheme would be to keep more terms in the Taylor series
expansion. This leads to Taylor series methods of order n.

Taylor series methods of order n take the form

ỹi+1 = ỹi + hT(n)(ti, ỹi), i = 0, 1, . . . , N − 1,

ỹ0 = y0, (10.12)

where we have defined

T(n)(t, y) = y′(t) +
h
2

y′′(t) + · · ·+ h(n−1)

n!
y(n)(t).

However, since y′(t) = f (t, y), we can write

T(n)(t, y) = f (t, y) +
h
2

f ′(t, y) + · · ·+ h(n−1)

n!
f (n−1)(t, y).

We note that for n = 1, we retrieve Euler’s Method as a special case. We
demonstrate a third order Taylor’s Method in the next example.

Example 10.2. Apply the third order Taylor’s Method to

dy
dt

= t + y, y(0) = 1

and obtain an approximation for y(1) for h = 0.1.
The third order Taylor’s Method takes the form

ỹi+1 = ỹi + hT(3)(ti, ỹi), i = 0, 1, . . . , N − 1,

ỹ0 = y0, (10.13)
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where

T(3)(t, y) = f (t, y) +
h
2

f ′(t, y) +
h2

3!
f ′′(t, y)

and f (t, y) = t + y(t).
In order to set up the scheme, we need the first and second derivative of f (t, y) :

f ′(t, y) =
d
dt
(t + y)

= 1 + y′

= 1 + t + y (10.14)

f ′′(t, y) =
d
dt
(1 + t + y)

= 1 + y′

= 1 + t + y (10.15)

Inserting these expressions into the scheme, we have

ỹi+1 = ỹi + h
[
(ti + yi) +

h
2
(1 + ti + yi) +

h2

3!
(1 + ti + yi)

]
,

= ỹi + h(ti + yi) + h2(
1
2
+

h
6
)(1 + ti + yi),

ỹ0 = y0, (10.16)

for i = 0, 1, . . . , N − 1.
In Figure 10.2 we show the results comparing Euler’s Method, the 3rd Order

Taylor’s Method, and the exact solution for N = 10. In Table 10.4 we provide are
the numerical values. The relative error in Euler’s method is about 7% and that
of the 3rd Order Taylor’s Method is about 0.006%. Thus, the 3rd Order Taylor’s
Method is significantly better than Euler’s Method.

Table 10.4: Numerical values for Euler’s
Method, 3rd Order Taylor’s Method, and
exact solution for solving Example 10.2
with N = 10..

Euler Taylor Exact
1.0000 1.0000 1.0000

1.1000 1.1103 1.1103

1.2200 1.2428 1.2428

1.3620 1.3997 1.3997

1.5282 1.5836 1.5836

1.7210 1.7974 1.7974

1.9431 2.0442 2.0442

2.1974 2.3274 2.3275

2.4872 2.6509 2.6511

2.8159 3.0190 3.0192

3.1875 3.4364 3.4366

In the last section we provided some Maple code for performing Euler’s
method. A similar code in MATLAB looks like the following:

a=0;

b=1;
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N=10;

h=(b-a)/N;

% Slope function

f = inline(’t+y’,’t’,’y’);

sol = inline(’2*exp(t)-t-1’,’t’);

% Initial Condition

t(1)=0;

y(1)=1;

% Euler’s Method

for i=2:N+1

y(i)=y(i-1)+h*f(t(i-1),y(i-1));

t(i)=t(i-1)+h;

end

y

t
0 .2 .4 .5 .8 1

1

2

3

4

Figure 10.5: Numerical results for Eu-
ler’s Method (filled circle) and 3rd Order
Taylor’s Method (open circle) for solving
Example 10.2 as compared to exact solu-
tion (solid line).

A simple modification can be made for the 3rd Order Taylor’s Method by
replacing the Euler’s method part of the preceding code by

% Taylor’s Method, Order 3

y(1)=1;

h3 = h^2*(1/2+h/6);

for i=2:N+1

y(i)=y(i-1)+h*f(t(i-1),y(i-1))+h3*(1+t(i-1)+y(i-1));

t(i)=t(i-1)+h;

end

While the accuracy in the last example seemed sufficient, we have to re-
member that we only stopped at one unit of time. How can we be confident
that the scheme would work as well if we carried out the computation for
much longer times. For example, if the time unit were only a second, then
one would need 86,400 times longer to predict a day forward. Of course, the
scale matters. But, often we need to carry out numerical schemes for long
times and we hope that the scheme not only converges to a solution, but
that it converges to the solution to the given problem. Also, the previous
example was relatively easy to program because we could provide a rela-
tively simple form for T(3)(t, y) with a quick computation of the derivatives
of f (t, y). This is not always the case and higher order Taylor methods in
this form are not typically used. Instead, one can approximate T(n)(t, y) by
evaluating the known function f (t, y) at selected values of t and y, leading
to Runge-Kutta methods.
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10.1.3 Runge-Kutta Methods

As we had seen in the last section, we can use higher order Taylor
methods to derive numerical schemes for solving

dy
dt

= f (t, y), y(a) = y0, t ∈ [a, b], (10.17)

using a scheme of the form

ỹi+1 = ỹi + hT(n)(ti, ỹi), i = 0, 1, . . . , N − 1,

ỹ0 = y0, (10.18)

where we have defined

T(n)(t, y) = y′(t) +
h
2

y′′(t) + · · ·+ h(n−1)

n!
y(n)(t).

In this section we will find approximations of T(n)(t, y) which avoid the
need for computing the derivatives.

For example, we could approximate

T(2)(t, y) = f (t, y) +
h
2

f racd f dt(t, y)

by
T(2)(t, y) ≈ a f (t + α, y + β)

for selected values of a, α, and β. This requires use of a generalization of
Taylor’s series to functions of two variables. In particular, for small α and β

we have

a f (t + α, y + β) = a
[

f (t, y) +
∂ f
∂t

(t, y)α +
∂ f
∂y

(t, y)β

+
1
2

(
∂2 f
∂t2 (t, y)α2 + 2

∂2 f
∂t∂y

(t, y)αβ +
∂2 f
∂y2 (t, y)β2

)]
+ higher order terms. (10.19)

Furthermore, we need d f
dt (t, y). Since y = y(t), this can be found using a

generalization of the Chain Rule from Calculus III:

d f
dt

(t, y) =
∂ f
∂t

+
∂ f
∂y

dy
dt

.

Thus,

T(2)(t, y) = f (t, y) +
h
2

[
∂ f
∂t

+
∂ f
∂y

dy
dt

]
.

Comparing this expression to the linear (Taylor series) approximation of
a f (t + α, y + β), we have

T(2) ≈ a f (t + α, y + β)

f +
h
2

∂ f
∂t

+
h
2

f
∂ f
∂y

≈ a f + aα
∂ f
∂t

+ β
∂ f
∂y

. (10.20)
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We see that we can choose

a = 1, α =
h
2

, β =
h
2

f .

This leads to the numerical scheme

ỹi+1 = ỹi + h f
(

ti +
h
2

, ỹi +
h
2

f (ti, ỹi)

)
, i = 0, 1, . . . , N − 1,

ỹ0 = y0, (10.21)

This Runge-Kutta scheme is called the Midpoint Method, or Second Order
Runge-Kutta Method, and it has order 2 if all second order derivatives of
f (t, y) are bounded. The Midpoint or Second Order Runge-

Kutta Method.Often, in implementing Runge-Kutta schemes, one computes the argu-
ments separately as shown in the following MATLAB code snippet. (This
code snippet could replace the Euler’s Method section in the code in the last
section.)

% Midpoint Method

y(1)=1;

for i=2:N+1

k1=h/2*f(t(i-1),y(i-1));

k2=h*f(t(i-1)+h/2,y(i-1)+k1);

y(i)=y(i-1)+k2;

t(i)=t(i-1)+h;

end

Example 10.3. Compare the Midpoint Method with the 2nd Order Taylor’s Method
for the problem

y′ = t2 + y, y(0) = 1, t ∈ [0, 1]. (10.22)

The solution to this problem is y(t) = 3et − 2− 2t− t2. In order to implement
the 2nd Order Taylor’s Method, we need

T(2) = f (t, y) +
h
2

f ′(t, y)

= t2 + y +
h
2
(2t + t2 + y). (10.23)

The results of the implementation are shown in Table 10.3.

There are other way to approximate higher order Taylor polynomials. For
example, we can approximate T(3)(t, y) using four parameters by

T(3)(t, y) ≈ a f (t, y) + b f (t + α, y + β f (t, y).

Expanding this approximation and using

T(3)(t, y) ≈ f (t, y) +
h
2

d f
dt

(t, y) +
h2

6
d f
dt

(t, y),

we find that we cannot get rid of O(h2) terms. Thus, the best we can do is
derive second order schemes. In fact, following a procedure similar to the
derivation of the Midpoint Method, we find that

a + b = 1, , αb =
h
2

, β = α.



442 partial differential equations

Table 10.5: Numerical values for 2nd Or-
der Taylor’s Method, Midpoint Method,
exact solution, and errors for solving Ex-
ample 10.3 with N = 10..

Exact Taylor Error Midpoint Error
1.0000 1.0000 0.0000 1.0000 0.0000

1.1055 1.1050 0.0005 1.1053 0.0003

1.2242 1.2231 0.0011 1.2236 0.0006

1.3596 1.3577 0.0019 1.3585 0.0010

1.5155 1.5127 0.0028 1.5139 0.0016

1.6962 1.6923 0.0038 1.6939 0.0023

1.9064 1.9013 0.0051 1.9032 0.0031

2.1513 2.1447 0.0065 2.1471 0.0041

2.4366 2.4284 0.0083 2.4313 0.0053

2.7688 2.7585 0.0103 2.7620 0.0068

3.1548 3.1422 0.0126 3.1463 0.0085

There are three equations and four unknowns. Therefore there are many
second order methods. Two classic methods are given by the modified Euler
method (a = b = 1

2 , α = β = h) and Huen’s method (a = 1
4 , b = 3

4 ,
α = β = 2

3 h).The Fourth Order Runge-Kutta.

The Fourth Order Runge-Kutta Method, which is most often used, is
given by the scheme

ỹ0 = y0,

k1 = h f (ti, ỹi),

k2 = h f (ti +
h
2

, ỹi +
1
2

k1),

k3 = h f (ti +
h
2

, ỹi +
1
2

k2),

k4 = h f (ti + h, ỹi + k3),

ỹi+1 = ỹi +
1
6
(k1 + 2k2 + 2k3 + k4), i = 0, 1, . . . , N − 1. (10.24)

Again, we can test this on Example 10.3 with N = 10. The MATLAB
implementation is given by

% Runge-Kutta 4th Order to solve dy/dt = f(t,y), y(a)=y0, on [a,b]

clear

a=0;

b=1;

N=10;

h=(b-a)/N;

% Slope function

f = inline(’t^2+y’,’t’,’y’);

sol = inline(’-2-2*t-t^2+3*exp(t)’,’t’);

% Initial Condition

t(1)=0;
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y(1)=1;

% RK4 Method

y1(1)=1;

for i=2:N+1

k1=h*f(t(i-1),y1(i-1));

k2=h*f(t(i-1)+h/2,y1(i-1)+k1/2);

k3=h*f(t(i-1)+h/2,y1(i-1)+k2/2);

k4=h*f(t(i-1)+h,y1(i-1)+k3);

y1(i)=y1(i-1)+(k1+2*k2+2*k3+k4)/6;

t(i)=t(i-1)+h;

end
MATLAB has built-in ODE solvers, as do
other software packages, like Maple and
Mathematica. You should also note that
there are currently open source pack-
ages, such as Python based NumPy and
Matplotlib, or Octave, of which some
packages are contained within the Sage
Project.

MATLAB has built-in ODE solvers, such as ode45 for a fourth order
Runge-Kutta method. Its implementation is given by

[t,y]=ode45(f,[0 1],1);

In this case f is given by an inline function like in the above RK4 code.
The time interval is entered as [0, 1] and the 1 is the initial condition, y(0) =
1.

However, ode45 is not a straight forward RK4 implementation. It is a
hybrid method in which a combination of 4th and 5th order methods are
combined allowing for adaptive methods to handled subintervals of the in-
tegration region which need more care. In this case, it implements a fourth
order Runge-Kutta-Fehlberg method. Running this code for the above ex-
ample actually results in values for N = 41 and not N = 10. If we wanted
to have the routine output numerical solutions at specific times, then one
could use the following form

tspan=0:h:1;

[t,y]=ode45(f,tspan,1);

In Table 10.6 we show the solutions which results for Example 10.3 com-
paring the RK4 snippet above with ode45. As you can see RK4 is much
better than the previous implementation of the second order RK (Midpoint)
Method. However, the MATLAB routine is two orders of magnitude better
that RK4.

There are many ODE solvers in MATLAB. These are typically useful if
RK4 is having difficulty solving particular problems. For the most part, one
is fine using RK4, especially as a starting point. For example, there is ode23,
which is similar to ode45 but combining a second and third order scheme.
Applying the results to Example 10.3 we obtain the results in Table 10.6. We
compare these to the second order Runge-Kutta method. The code snippets
are shown below.

% Second Order RK Method

y1(1)=1;
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Table 10.6: Numerical values for Fourth
Order Runge-Kutta Method, rk45, exact
solution, and errors for solving Example
10.3 with N = 10.

Exact Taylor Error Midpoint Error
1.0000 1.0000 0.0000 1.0000 0.0000

1.1055 1.1055 4.5894e-08 1.1055 -2.5083e-10

1.2242 1.2242 1.2335e-07 1.2242 -6.0935e-10

1.3596 1.3596 2.3850e-07 1.3596 -1.0954e-09

1.5155 1.5155 3.9843e-07 1.5155 -1.7319e-09

1.6962 1.6962 6.1126e-07 1.6962 -2.5451e-09

1.9064 1.9064 8.8636e-07 1.9064 -3.5651e-09

2.1513 2.1513 1.2345e-06 2.1513 -4.8265e-09

2.4366 2.4366 1.6679e-06 2.4366 -6.3686e-09

2.7688 2.7688 2.2008e-06 2.7688 -8.2366e-09

3.1548 3.1548 2.8492e-06 3.1548 -1.0482e-08

for i=2:N+1

k1=h*f(t(i-1),y1(i-1));

k2=h*f(t(i-1)+h/2,y1(i-1)+k1/2);

y1(i)=y1(i-1)+k2;

t(i)=t(i-1)+h;

end

tspan=0:h:1;

[t,y]=ode23(f,tspan,1);

Table 10.7: Numerical values for Second
Order Runge-Kutta Method, rk23, exact
solution, and errors for solving Example
10.3 with N = 10.

Exact Taylor Error Midpoint Error
1.0000 1.0000 0.0000 1.0000 0.0000

1.1055 1.1053 0.0003 1.1055 2.7409e-06

1.2242 1.2236 0.0006 1.2242 8.7114e-06

1.3596 1.3585 0.0010 1.3596 1.6792e-05

1.5155 1.5139 0.0016 1.5154 2.7361e-05

1.6962 1.6939 0.0023 1.6961 4.0853e-05

1.9064 1.9032 0.0031 1.9063 5.7764e-05

2.1513 2.1471 0.0041 2.1512 7.8665e-05

2.4366 2.4313 0.0053 2.4365 0.0001

2.7688 2.7620 0.0068 2.7687 0.0001

3.1548 3.1463 0.0085 3.1547 0.0002

We have seen several numerical schemes for solving initial value prob-
lems. There are other methods, or combinations of methods, which aim
to refine the numerical approximations efficiently as if the step size in the
current methods were taken to be much smaller. Some methods extrapolate
solutions to obtain information outside of the solution interval. Others use
one scheme to get a guess to the solution while refining, or correcting, this
to obtain better solutions as the iteration through time proceeds. Such meth-
ods are described in courses in numerical analysis and in the literature. At
this point we will apply these methods to several physics problems before
continuing with analytical solutions.
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10.2 The Heat Equation

10.2.1 The Finite Difference Method

The heat equation can be solved using separation of variables.
However, many partial differential equations cannot be solved exactly and
one needs to turn to numerical solutions. The heat equation is a simple test
case for using numerical methods. Here we will use the simplest method,
finite differences.

Let us consider the heat equation in one dimension,

ut = kuxx.

Boundary conditions and an initial condition will be applied later. The
starting point is figuring out how to approximate the derivatives in this
equation.

Recall that the partial derivative, ut, is defined by

∂u
∂t

= lim
∆t→∞

u(x, t + ∆t)− u(x, t)
∆t

.

Therefore, we can use the approximation

∂u
∂t
≈ u(x, t + ∆t)− u(x, t)

∆t
. (10.25)

This is called a forward difference approximation.
In order to find an approximation to the second derivative, uxx, we start

with the forward difference

∂u
∂x
≈ u(x + ∆x, t)− u(x, t)

∆x
.

Then,
∂ux

∂x
≈ ux(x + ∆x, t)− ux(x, t)

∆x
.

We need to approximate the terms in the numerator. It is customary to
use a backward difference approximation. This is given by letting ∆x →
−∆x in the forward difference form,

∂u
∂x
≈ u(x, t)− u(x− ∆x, t)

∆t
. (10.26)

Applying this to ux evaluated at x = x and x = x + ∆x, we have

ux(x, t) ≈ u(x, t)− u(x− ∆x, t)
∆x

,

and

ux(x + ∆x, t) ≈ u(x + ∆x, t)− u(x, t)
∆x

.
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Inserting these expressions into the approximation for uxx, we have

∂2u
∂x2 =

∂ux

∂x

≈ ux(x + ∆x, t)− ux(x, t)
∆x

≈
u(x+∆x,t)−u(x,t)

∆x
∆x

−
u(x,t)−u(x−∆x,t)

∆x
∆x

=
u(x + ∆x, t)− 2u(x, t) + u(x− ∆x, t)

(∆x)2 . (10.27)

This approximation for uxx is called the central difference approximation of
uxx.

Combining Equation (10.25) with (10.27) in the heat equation, we have

u(x, t + ∆t)− u(x, t)
∆t

≈ k
u(x + ∆x, t)− 2u(x, t) + u(x− ∆x, t)

(∆x)2 .

Solving for u(x, t + ∆t), we find

u(x, t + ∆t) ≈ u(x, t) + α [u(x + ∆x, t)− 2u(x, t) + u(x− ∆x, t)] , (10.28)

where α = k ∆t
(∆x)2 .

In this equation we have a way to determine the solution at position x and
time t + ∆t given that we know the solution at three positions, x, x + ∆x,
and x + 2∆x at time t.

u(x, t + ∆t) ≈ u(x, t) + α [u(x + ∆x, t)− 2u(x, t) + u(x− ∆x, t)] . (10.29)

A shorthand notation is usually used to write out finite difference schemes.
The domain of the solution is x ∈ [a, b] and t ≥ 0. We seek approximate val-
ues of u(x, t) at specific positions and times. We first divide the interval
[a, b] into N subintervals of width ∆x = (b− a)/N. Then, the endpoints of
the subintervals are given by

xi = a + i∆x, i = 0, 1, . . . , N.

Similarly, we take time steps of ∆t, at times

tj = j∆t, j = 0, 1, 2, . . . .

This gives a grid of points (xi, tj) in the domain.
At each grid point in the domain we seek an approximate solution to the

heat equation, ui,j ≈ u(xi, tj). Equation (10.29) becomes

ui,j+1 ≈ ui,j + α
[
ui+1,j − 2ui,j + ui−1,j

]
. (10.30)

Equation (10.31) is the finite difference scheme for solving the heat equa-
tion. This equation is represented by the stencil shown in Figure 10.6. The
black circles represent the four terms in the equation, ui,j ui−1,j ui+1,j and
ui,j+1.
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x

t

ii− 1 i + 1

j

j + 1

Figure 10.6: This stencil indicates the
four types of terms in the finite differ-
ence scheme in Equation (10.31). The
black circles represent the four terms in
the equation, ui,j ui−1,j ui+1,j and ui,j+1.

x

t Figure 10.7: Applying the stencil to the
row of initial values gives the solution at
the next time step.

Let’s assume that the initial condition is given by

u(x, 0) = f (x).

Then, we have ui,0 = f (xi). Knowing these values, denoted by the open
circles in Figure 10.7, we apply the stencil to generate the solution on the
j = 1 row. This is shown in Figure 10.7.

Further rows are generated by successively applying the stencil on each
row, using the known approximations of ui,j at each level. This gives the
values of the solution at the open circles shown in Figure 10.8. We notice
that the solution can only be obtained at a finite number of points on the
grid.

In order to obtain the missing values, we need to impose boundary con-
ditions. For example, if we have Dirichlet conditions at x = a,

u(a, t) = 0,

or u0,j = 0 for j = 0, 1, . . . , then we can fill in some of the missing data
points as seen in Figure 10.9.

The process continues until we again go as far as we can. This is shown
in Figure 10.10.
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Figure 10.8: Continuation of the pro-
cess provides solutions at the indicated
points.

x

t

Figure 10.9: Knowing the values of the
solution at x = a, we can fill in more of
the grid.

x

t

We can fill in the rest of the grid using a boundary condition at x = b.
For Dirichlet conditions at x = b,

u(b, t) = 0,

or uN,j = 0 for j = 0, 1, . . . , then we can fill in the rest of the missing data
points as seen in Figure 10.11.

We could also use Neumann conditions. For example, let

ux(a, t) = 0.

The approximation to the derivative gives

∂u
∂x

∣∣∣
x=a
≈ u(a + ∆x, t)− u(a, t)

∆x
= 0.

Then,
u(a + ∆x, t)− u(a, t),

or u0,j = u1,j, for j = 0, 1, . . . . Thus, we know the values at the boundary
and can generate the solutions at the grid points as before.
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x

t Figure 10.10: Knowing the values of the
solution at x = a, we can fill in more of
the grid until we stop.

x

t Figure 10.11: Using boundary conditions
and the initial condition, the grid can be
fill in through any time level.

We now have to code this using software. We can use MATLAB to do
this. An example of the code is given below. In this example we specify the
length of the rod, L = 1, and the heat constant, k = 1. The code is run for
t ∈ [0, 0.1].

The grid is created using N = 10 subintervals in space and M = 50 time
steps. This gives dx = ∆x and dt = ∆t. Using these values, we find the
numerical scheme constant α = k∆t/(∆x)2.

Nest, we define xi = i ∗ dx, i = 0, 1, . . . , N. However, in MATLAB, we
cannot have an index of 0. We need to start with i = 1. Thus, xi = (i− 1) ∗ dx,
i = 1, 2, . . . , N + 1.

Next, we establish the initial condition. We take a simple condition of

u(x, 0) = sin πx.

We have enough information to begin the numerical scheme as developed
earlier. Namely, we cycle through the time steps using the scheme. There is
one loop for each time step. We will generate the new time step from the
last time step in the form

unew
i = uold

i + α
[
uold

i+1 − 2uold
i + uold

i−1

]
. (10.31)
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This is done suing u0(i) = unew
i and u1(i) = uold

i .
At the end of each time loop we update the boundary points so that the

grid can be filled in as discussed. When done, we can plot the final solution.
If we want to show solutions at intermediate steps, we can plot the solution
earlier.

% Solution of the Heat Equation Using a Forward Difference Scheme

% Initialize Data

% Length of Rod, Time Interval

% Number of Points in Space, Number of Time Steps

L=1;

T=0.1;

k=1;

N=10;

M=50;

dx=L/N;

dt=T/M;

alpha=k*dt/dx^2;

% Position

for i=1:N+1

x(i)=(i-1)*dx;

end

% Initial Condition

for i=1:N+1

u0(i)=sin(pi*x(i));

end

% Partial Difference Equation (Numerical Scheme)

for j=1:M

for i=2:N

u1(i)=u0(i)+alpha*(u0(i+1)-2*u0(i)+u0(i-1));

end

u1(1)=0;

u1(N+1)=0;

u0=u1;

end

% Plot solution

plot(x, u1);
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10.3 Truncation Error

In the previous section we found a finite difference scheme for
numerically solving the one dimensional heat equation. We have from Equa-
tions (10.29) and (10.31),

u(x, t + ∆t) ≈ u(x, t) + α [u(x + ∆x, t)− 2u(x, t) + u(x− ∆x, t)] .(10.32)

ui,j+1 ≈ ui,j + α
[
ui+1,j − 2ui,j + ui−1,j

]
, (10.33)

where α = k∆t/(∆x)2. For points x ∈ [a, b] and t ≥ 0, we use the scheme
to find approximate values of u(xi, ti) = ui,j at positions xi = a + i∆x, i =
0, 1, . . . , N, and times tj = j∆t, j = 0, 1, 2, . . . .

In implementing the scheme we have found that there are errors intro-
duced just like when using Euler’s Method for ordinary differential equa-
tions. These truncations errors can be found by applying Taylor approxi-
mations just like we had for ordinary differential equations. In the schemes
(10.32) and (10.33), we have not use equality. In order to replace the approx-
imation by an equality, we need t estimate the order of the terms neglected
in a Taylor series approximation of the time and space derivatives we have
approximated.

We begin with the time derivative approximation. We used the forward
difference approximation (10.25),

∂u
∂t
≈ u(x, t + ∆t)− u(x, t)

∆t
. (10.34)

This can be derived from the Tayloer series expansion of u(x, t + ∆t) about
∆t = 0,

u(x, t + ∆t) = u(x, t) +
∂u
∂t

(x, t)∆t +
1
2!

∂2u
∂t2 (x, t)(∆t)2 + O((∆t)3).

Solving for ∂u
∂t (x, t), we obtain

∂u
∂t

(x, t) =
u(x, t + ∆t)− u(x, t)

∆t
− 1

2!
∂2u
∂t2 (x, t)∆t + O((∆t)2).

We see that we have obtained the forward difference approximation (10.25)
with the added benefit of knowing something about the error terms intro-
duced in the approximation. Namely, when we approximate ut with the
forward difference approximation (10.25), we are making an error of

E(x, t, ∆t) = − 1
2!

∂2u
∂t2 (x, t)∆t + O((∆t)2).

We have truncated the Taylor series to obtain this approximation and we say
that

∂u
∂t

=
u(x, t + ∆t)− u(x, t)

∆t
+ O(∆t) (10.35)

is a first order approximation in ∆t.
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In a similar manor, we can obtain the truncation error for the uxx- term.
However, instead of starting with the approximation we used in Equation
??uxx), we will derive a term using the Taylor series expansion of u(x +

∆x, t) about ∆x = 0. Namely, we begin with the expansion

u(x + ∆x, t) = u(x, t) + ux(x, t)∆x +
1
2!

uxx(x, t)(∆x)2 +
1
3!

uxxx(x, t)(∆x)3

+
1
4!

uxxxx(x, t)(∆x)4 + . . . . (10.36)

We want to solve this equation for uxx. However, there are some obstruc-
tions, like needing to know the ux term. So, we seek a way to eliminate
lower order terms. On way is to note that replacing ∆x by −∆x gives

u(x− ∆x, t) = u(x, t)− ux(x, t)∆x +
1
2!

uxx(x, t)(∆x)2 − 1
3!

uxxx(x, t)(∆x)3

+
1
4!

uxxxx(x, t)(∆x)4 + . . . . (10.37)

Adding these Taylor series, we have

u(x + ∆x, t) + u(x + ∆x, t) = 2u(x, t) + uxx(x, t)(∆x)2

+
2
4!

uxxxx(x, t)(∆x)4 + O((∆x)6).

(10.38)

We can now solve for uxx to find

uxx(x, t) =
u(x + ∆x, t)− 2u(x, t) + u(x + ∆x, t)

(∆x)2

+
2
4!

uxxxx(x, t)(∆x)2 + O((∆x)4). (10.39)

Thus, we have that

uxx(x, t) =
u(x + ∆x, t)− 2u(x, t) + u(x + ∆x, t)

(∆x)2 + O((∆x)2)

is the second order in ∆x approximation of uxx.
Combining these results, we find that the heat equation is approximated

by

u(x, t + ∆t)− u(x, t)
∆t

=
u(x + ∆x, t)− 2u(x, t) + u(x + ∆x, t)

(∆x)2 +O
(
(∆x)2, ∆t

)
.

This has local truncation error that is first order in time and second order in
space.

10.4 Stability

Another consideration for numerical schemes for the heat equa-
tion is the stability of the scheme. In implementing the finite difference
scheme,

um,j+1 = um,j + α
[
um+1,j − 2um,j + um−1,j

]
, (10.40)
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α = k∆t/(∆x)2, one finds that the solution goes crazy when α is too big.
In other words, if you try to push the individual time steps too far into
the future, then something goes haywire. We can determine the onset of
instability by looking at the solution of this equation for um,j. [Note: We
changed index i to m to avoid confusion later in this section.]

The scheme is actually what is called a partial difference equation for
um,j. We could write it in terms of difference, such as um+1,j − um,j and
um,j+1 − um,j. The furthest apart the time steps are are one unit and the
spatial points are two units apart. We can see this in the stencils in Figure
10.6. So, this is a second order partial difference equation similar to the idea
that the heat equation is a second order partial differential equation. The
heat equation can be solved using the method of separation of variables.
The difference scheme can also be solved in a similar fashion. We will show
how this can lead to product solutions.

We begin by assuming that umj = XmTj, a product of functions of the
indices m and j. Inserting this guess into the finite difference equation, we
have

um,j+1 = um,j + α
[
um+1,j − 2um,j + um−1,j

]
,

XmTj+1 = XmTj + α [Xm+1 − 2Xm + Xm−1] Tj,
Tj+1

Tj
=

αXm+1 + (1− 2α)Xm + αXm−1

Xm
. (10.41)

Noting that we have a function of j equal to a function of m, then we can
set each of these to a constant, λ. Then, we obtain two ordinary difference
equations:

Tj+1 = λTj, (10.42)

αXm+1 + (1− 2α)Xm + αXm−1 = λXm. (10.43)

The first equation is a simple first order difference equation and can be
solved by iteration:

Tj+1 = λTj,

= λ(λTj−1) = λ2Tj−1,

= λ3Tj−2,

= λj+1T0, (10.44)

The second difference equation can be solved by making a guess in the
same spirit as solving a second order constant coefficient differential equa-
tion.Namely, let Xm = ξm for some number ξ. This gives

αXm+1 + (1− 2α)Xm + αXm−1 = λXm,

ξm−1
[
αξ2 + (1− 2α)ξ + α

]
= λξm

αξ2 + (1− 2α− λ)ξ + α = 0. (10.45)

This is an equation foe ξ in terms of α and λ. Due to the boundary
conditions, we expect to have oscillatory solutions. So, we can guess that
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ξ = |ξ|eiθ , where i here is the imaginary unit. We assume that |ξ| = 1, and
thus ξ = eiθ and Xm = ξm = eimθ . Since xm = m∆x, we have Xm = eixmθ/∆x.
We define β = theta/∆, to give Xm = eiβxm and ξ = eiβ∆x.

Inserting this value for ξ into the quadratic equation for ξ, we have

0 = αξ2 + (1− 2α− λ)ξ + α

= αe2iβ∆x + (1− 2α− λ)eiβ∆x + α

= eiβ∆x
[
α(eiβ∆x + e−iβ∆x) + (1− 2α− λ)

]
= eiβ∆x [2α cos(β∆x) + (1− 2α− λ)]

λ = 2α cos(β∆x) + 1− 2α. (10.46)

So, we have found that

umj = XmTj = λm(a cos αxm + b sin αxm), a2 + b2 = h2
0,

and
λ = 2α cos(β∆x) + 1− 2α.

For the solution to remain bounded, or stable, we need |λ| ≤ 1.
Therefore, we have the inequality

−1 ≤ 2α cos(β∆x) + 1− 2α ≤ 1.

Since cos(β∆x) ≤ 1, the upper bound is obviously satisfied. Since −1 ≤
cos(β∆x), the lower bound is satisfied for −1 ≤ −2s + 1 − 2s, or s ≤ 1

2 .
Therefore, the stability criterion is satisfied when

α = k
∆t

∆x2 ≤
1
2

.

10.5 Matrix Formulation



A
Calculus Review

“Ordinary language is totally unsuited for expressing what physics really asserts,
since the words of everyday life are not sufficiently abstract. Only mathematics and
mathematical logic can say as little as the physicist means to say.” Bertrand Russell
(1872-1970)

Before you begin our study of differential equations perhaps you
should review some things from calculus. You definitely need to know
something before taking this class. It is assumed that you have taken Calcu-
lus and are comfortable with differentiation and integration. Of course, you
are not expected to know every detail from these courses. However, there
are some topics and methods that will come up and it would be useful to
have a handy reference to what it is you should know.

Most importantly, you should still have your calculus text to which you
can refer throughout the course. Looking back on that old material, you
will find that it appears easier than when you first encountered the mate-
rial. That is the nature of learning mathematics and other subjects. Your
understanding is continually evolving as you explore topics more in depth.
It does not always sink in the first time you see it. In this chapter we will
give a quick review of these topics. We will also mention a few new methods
that might be interesting.

A.1 What Do I Need To Know From Calculus?

A.1.1 Introduction

There are two main topics in calculus: derivatives and integrals.
You learned that derivatives are useful in providing rates of change in either
time or space. Integrals provide areas under curves, but also are useful
in providing other types of sums over continuous bodies, such as lengths,
areas, volumes, moments of inertia, or flux integrals. In physics, one can
look at graphs of position versus time and the slope (derivative) of such a
function gives the velocity. (See Figure A.1.) By plotting velocity versus time
you can either look at the derivative to obtain acceleration, or you could look
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at the area under the curve and get the displacement:

x =
∫ t

t0

v dt. (A.1)

This is shown in Figure A.2.

t

x(t)

v

Figure A.1: Plot of position vs time.

t0 t

v(t)

x

Figure A.2: Plot of velocity vs time.

Of course, you need to know how to differentiate and integrate given
functions. Even before getting into differentiation and integration, you need
to have a bag of functions useful in physics. Common functions are the
polynomial and rational functions. You should be fairly familiar with these.
Polynomial functions take the general form

f (x) = anxn + an−1xn−1 + · · ·+ a1x + a0, (A.2)

where an 6= 0. This is the form of a polynomial of degree n. Rational func-
tions, f (x) = g(x)

h(x) , consist of ratios of polynomials. Their graphs can exhibit
vertical and horizontal asymptotes.

Next are the exponential and logarithmic functions. The most common
are the natural exponential and the natural logarithm. The natural exponen-
tial is given by f (x) = ex, where e ≈ 2.718281828 . . . . The natural logarithm
is the inverse to the exponential, denoted by ln x. (One needs to be care-
ful, because some mathematics and physics books use log to mean natural
exponential, whereas many of us were first trained to use this notation to
mean the common logarithm, which is the ‘log base 10’. Here we will use
ln x for the natural logarithm.)

The properties of the exponential function follow from the basic proper-
ties for exponents. Namely, we have:Exponential properties.

e0 = 1, (A.3)

e−a =
1
ea (A.4)

eaeb = ea+b, (A.5)

(ea)b = eab. (A.6)

The relation between the natural logarithm and natural exponential is
given by

y = ex ⇔ x = ln y. (A.7)

Some common logarithmic properties areLogarithmic properties.

ln 1 = 0, (A.8)

ln
1
a

= − ln a, (A.9)

ln(ab) = ln a + ln b, (A.10)

ln
a
b

= ln a− ln b, (A.11)

ln
1
b

= − ln b. (A.12)

We will see applications of these relations as we progress through the
course.
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A.1.2 Trigonometric Functions

Another set of useful functions are the trigonometric functions. These
functions have probably plagued you since high school. They have their
origins as far back as the building of the pyramids. Typical applications in
your introductory math classes probably have included finding the heights
of trees, flag poles, or buildings. It was recognized a long time ago that sim-
ilar right triangles have fixed ratios of any pair of sides of the two similar
triangles. These ratios only change when the non-right angles change.

Thus, the ratio of two sides of a right triangle only depends upon the
angle. Since there are six possible ratios (think about it!), then there are six
possible functions. These are designated as sine, cosine, tangent and their
reciprocals (cosecant, secant and cotangent). In your introductory physics
class, you really only needed the first three. You also learned that they
are represented as the ratios of the opposite to hypotenuse, adjacent to hy-
potenuse, etc. Hopefully, you have this down by now.

You should also know the exact values of these basic trigonometric func-
tions for the special angles θ = 0, π

6 , π
3 , π

4 , π
2 , and their corresponding angles

in the second, third and fourth quadrants. This becomes internalized after
much use, but we provide these values in Table A.1 just in case you need a
reminder.

θ cos θ sin θ tan θ

0 1 0 0

π
6

√
3

2
1
2

√
3

3
π
3

1
2

√
3

2

√
3

π
4

√
2

2

√
2

2 1

π
2 0 1 undefined

Table A.1: Table of Trigonometric Values

The problems students often have using trigonometric functions in later
courses stem from using, or recalling, identities. We will have many an
occasion to do so in this class as well. What is an identity? It is a relation
that holds true all of the time. For example, the most common identity for
trigonometric functions is the Pythagorean identity

sin2 θ + cos2 θ = 1. (A.13)

This holds true for every angle θ! An even simpler identity is

tan θ =
sin θ

cos θ
. (A.14)

Other simple identities can be derived from the Pythagorean identity.
Dividing the identity by cos2 θ, or sin2 θ, yields

tan2 θ + 1 = sec2 θ, (A.15)

1 + cot2 θ = csc2 θ. (A.16)
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Several other useful identities stem from the use of the sine and cosine of
the sum and difference of two angles. Namely, we have thatSum and difference identities.

sin(A± B) = sin A cos B± sin B cos A, (A.17)

cos(A± B) = cos A cos B∓ sin A sin B. (A.18)

Note that the upper (lower) signs are taken together.

Example A.1. Evaluate sin π
12 .

sin
π

12
= sin

(π

3
− π

4

)
= sin

π

3
cos

π

4
− sin

π

4
cos

π

3

=

√
3

2

√
2

2
−
√

2
2

1
2

=

√
2

4

(√
3− 1

)
. (A.19)

The double angle formulae are found by setting A = B :Double angle formulae.

sin(2A) = 2 sin A cos B, (A.20)

cos(2A) = cos2 A− sin2 A. (A.21)

Using Equation (A.13), we can rewrite (A.21) as

cos(2A) = 2 cos2 A− 1, (A.22)

= 1− 2 sin2 A. (A.23)

These, in turn, lead to the half angle formulae. Solving for cos2 A and sin2 A,
we find thatHalf angle formulae.

sin2 A =
1− cos 2A

2
, (A.24)

cos2 A =
1 + cos 2A

2
. (A.25)

Example A.2. Evaluate cos π
12 . In the last example, we used the sum/difference

identities to evaluate a similar expression. We could have also used a half angle
identity. In this example, we have

cos2 π

12
=

1
2

(
1 + cos

π

6

)
=

1
2

(
1 +

√
3

2

)

=
1
4

(
2 +
√

3
)

(A.26)
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So, cos π
12 = 1

2

√
2 +
√

3. This is not the simplest form and is called a nested
radical. In fact, if we proceeded using the difference identity for cosines, then we
would obtain

cos
π

12
=

√
2

4
(1 +

√
3).

So, how does one show that these answers are the same? It is useful at times to know when one
can reduce square roots of such radi-
cals, called denesting. More generally,
one seeks to write

√
a + b

√
q = c + d

√
q.

Following the procedure in this example,
one has d = b

2c and

c2 =
1
2

(
a±

√
a2 − qb2

)
.

As long as a2 − qb2 is a perfect square,
there is a chance to reduce the expres-
sion to a simpler form.

Let’s focus on the factor
√

2 +
√

3. We seek to write this in the form c + d
√

3.
Equating the two expressions and squaring, we have

2 +
√

3 = (c + d
√

3)2

= c2 + 3d2 + 2cd
√

3. (A.27)

In order to solve for c and d, it would seem natural to equate the coefficients of
√

3
and the remaining terms. We obtain a system of two nonlinear algebraic equations,

c2 + 3d2 = 2 (A.28)

2cd = 1. (A.29)

Solving the second equation for d = 1/2c, and substituting the result into the
first equation, we find

4c4 − 8c2 + 3 = 0.

This fourth order equation has four solutions,

c = ±
√

2
2

,±
√

6
2

and

b = ±
√

2
2

,±
√

6
6

.

Thus,

cos
π

12
=

1
2

√
2 +
√

3

= ±1
2

(√
2

2
+

√
2

2

√
3

)

= ±
√

2
4

(1 +
√

3) (A.30)

and

cos
π

12
=

1
2

√
2 +
√

3

= ±1
2

(√
6

2
+

√
6

6

√
3

)

= ±
√

6
12

(3 +
√

3). (A.31)

Of the four solutions, two are negative and we know the value of the cosine for this
angle has to be positive. The remaining two solutions are actually equal! A quick
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computation will verify this:
√

6
12

(3 +
√

3) =

√
3
√

2
12

(3 +
√

3)

=

√
2

12
(3
√

3 + 3)

=

√
2

4
(
√

3 + 1). (A.32)

We could have bypassed this situation be requiring that the solutions for b and c
were not simply proportional to

√
3 like they are in the second case.

Finally, another useful set of identities are the product identities. ForProduct Identities

example, if we add the identities for sin(A + B) and sin(A− B), the second
terms cancel and we have

sin(A + B) + sin(A− B) = 2 sin A cos B.

Thus, we have that

sin A cos B =
1
2
(sin(A + B) + sin(A− B)). (A.33)

Similarly, we have

cos A cos B =
1
2
(cos(A + B) + cos(A− B)). (A.34)

and

sin A sin B =
1
2
(cos(A− B)− cos(A + B)). (A.35)

Know the above boxed identities!
These boxed equations are the most common trigonometric identities.

They appear often and should just roll off of your tongue.
We will also need to understand the behaviors of trigonometric func-

tions. In particular, we know that the sine and cosine functions are periodic.
They are not the only periodic functions, as we shall see. [Just visualize the
teeth on a carpenter’s saw.] However, they are the most common periodic
functions.

A periodic function f (x) satisfies the relationPeriodic functions.

f (x + p) = f (x), for all x

for some constant p. If p is the smallest such number, then p is called the
period. Both the sine and cosine functions have period 2π. This means that
the graph repeats its form every 2π units. Similarly, sin bx and cos bx have
the common period p = 2π

b . We will make use of this fact in later chapters.
Related to these are the inverse trigonometric functions. For example,

f (x) = sin−1 x, or f (x) = arcsin x. Inverse functions give back angles, so

In Feynman’s Surely You’re Joking Mr.
Feynman!, Richard Feynman (1918-1988)
talks about his invention of his own no-
tation for both trigonometric and inverse
trigonometric functions as the standard
notation did not make sense to him.

you should think
θ = sin−1 x ⇔ x = sin θ. (A.36)
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Also, you should recall that y = sin−1 x = arcsin x is only a function if−π
2 ≤

x ≤ π
2 . Similar relations exist for y = cos−1 x = arccos x and tan−1 x =

arctan x.
Once you think about these functions as providing angles, then you can

make sense out of more complicated looking expressions, like tan(sin−1 x).
Such expressions often pop up in evaluations of integrals. We can untangle
this in order to produce a simpler form by referring to expression (A.36).
θ = sin−1 x is simple an angle whose sine is x. Knowing the sine is the
opposite side of a right triangle divided by its hypotenuse, then one just
draws a triangle in this proportion as shown in Figure A.3. Namely, the
side opposite the angle has length x and the hypotenuse has length 1. Using
the Pythagorean Theorem, the missing side (adjacent to the angle) is sim-
ply
√

1− x2. Having obtained the lengths for all three sides, we can now
produce the tangent of the angle as

tan(sin−1 x) =
x√

1− x2
.

θ

1

x

√
1− x2

Figure A.3: θ = sin−1 x ⇒ tan θ =
x√

1−x2

A.1.3 Hyperbolic Functions

Solitons are special solutions to some
generic nonlinear wave equations. They
typically experience elastic collisions
and play special roles in a variety of
fields in physics, such as hydrodynam-
ics and optics. A simple soliton solution
is of the form

u(x, t) = 2η2 sech2 η(x− 4η2t).

So, are there any other functions that are useful in physics? Actu-
ally, there are many more. However, you have probably not see many of
them to date. We will see by the end of the semester that there are many
important functions that arise as solutions of some fairly generic, but im-
portant, physics problems. In your calculus classes you have also seen that
some relations are represented in parametric form. However, there is at
least one other set of elementary functions, which you should already know
about. These are the hyperbolic functions. Such functions are useful in
representing hanging cables, unbounded orbits, and special traveling waves
called solitons. They also play a role in special and general relativity. Hyperbolic functions; We will later see

the connection between the hyperbolic
and trigonometric functions in Chapter
8.

Hyperbolic functions are actually related to the trigonometric functions,
as we shall see after a little bit of complex function theory. For now, we just
want to recall a few definitions and identities. Just as all of the trigonometric
functions can be built from the sine and the cosine, the hyperbolic functions
can be defined in terms of the hyperbolic sine and hyperbolic cosine (shown
in Figure A.4):

sinh x =
ex − e−x

2
, (A.37)

cosh x =
ex + e−x

2
. (A.38) −3 −2 −1 1 2 3

−2

2

cosh x

sinh x

Figure A.4: Plots of cosh x and sinh x.
Note that sinh 0 = 0, cosh 0 = 1, and
cosh x ≥ 1.

There are four other hyperbolic functions. These are defined in terms
of the above functions similar to the relations between the trigonometric
functions. We have

tanh x =
sinh x
cosh x

=
ex − e−x

ex + e−x , (A.39)
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sech x =
1

cosh x
=

2
ex + e−x , (A.40)

csch x =
1

sinh x
=

2
ex − e−x , (A.41)

coth x =
1

tanh x
=

ex + e−x

ex − e−x . (A.42)

There are also a whole set of identities, similar to those for the trigono-
metric functions. For example, the Pythagorean identity for trigonometric
functions, sin2 θ + cos2 θ = 1, is replaced by the identity

cosh2 x− sinh2 x = 1.

This is easily shown by simply using the definitions of these functions. This
identity is also useful for providing a parametric set of equations describing
hyperbolae. Letting x = a cosh t and y = b sinh t, one has

x2

a2 −
y2

b2 = cosh2 t− sinh2 t = 1.

A list of commonly needed hyperbolic function identities are given byHyperbolic identities.

the following:

cosh2 x− sinh2 x = 1, (A.43)

tanh2 x + sech2 x = 1, (A.44)

cosh(A± B) = cosh A cosh B± sinh A sinh B, (A.45)

sinh(A± B) = sinh A cosh B± sinh B cosh A, (A.46)

cosh 2x = cosh2 x + sinh2 x, (A.47)

sinh 2x = 2 sinh x cosh x, (A.48)

cosh2 x =
1
2
(1 + cosh 2x) , (A.49)

sinh2 x =
1
2
(cosh 2x− 1) . (A.50)

Note the similarity with the trigonometric identities. Other identities can be
derived from these.

There also exist inverse hyperbolic functions and these can be written in
terms of logarithms. As with the inverse trigonometric functions, we begin
with the definition

y = sinh−1 x ⇔ x = sinh y. (A.51)

The aim is to write y in terms of x without using the inverse function. First,
we note that

x =
1
2
(
ey − e−y) . (A.52)

Next we solve for ey. This is done by noting that e−y = 1
ey and rewriting the

previous equation as
0 = (ey)2 − 2xey − 1. (A.53)
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This equation is in quadratic form which we can solve using the quadratic
formula as

ey = x +
√

1 + x2.

(There is only one root as we expect the exponential to be positive.)

The inverse hyperbolic functions care
given by

sinh−1 x = ln
(

x +
√

1 + x2
)

,

cosh−1 x = ln
(

x +
√

x2 − 1
)

,

tanh−1 x =
1
2

ln
1 + x
1− x

.

The final step is to solve for y,

y = ln
(

x +
√

1 + x2
)

. (A.54)

A.1.4 Derivatives

Now that we know some elementary functions, we seek their deriva-
tives. We will not spend time exploring the appropriate limits in any rigor-
ous way. We are only interested in the results. We provide these in Table
A.2. We expect that you know the meaning of the derivative and all of the
usual rules, such as the product and quotient rules.

Function Derivative
a 0

xn nxn−1

eax aeax

ln ax 1
x

sin ax a cos ax
cos ax −a sin ax
tan ax a sec2 ax
csc ax −a csc ax cot ax
sec ax a sec ax tan ax
cot ax −a csc2 ax

sinh ax a cosh ax
cosh ax a sinh ax
tanh ax a sech2 ax
csch ax −a csch ax coth ax
sech ax −a sech ax tanh ax
coth ax −a csch2 ax

Table A.2: Table of Common Derivatives
(a is a constant).

Also, you should be familiar with the Chain Rule. Recall that this rule
tells us that if we have a composition of functions, such as the elementary
functions above, then we can compute the derivative of the composite func-
tion. Namely, if h(x) = f (g(x)), then

dh
dx

=
d

dx
( f (g(x))) =

d f
dg

∣∣∣
g(x)

dg
dx

= f ′(g(x))g′(x). (A.55)

Example A.3. Differentiate H(x) = 5 cos
(
π tanh 2x2) .

This is a composition of three functions, H(x) = f (g(h(x))), where f (x) =

5 cos x, g(x) = π tanh x, and h(x) = 2x2. Then the derivative becomes

H′(x) = 5
(
− sin

(
π tanh 2x2

)) d
dx

((
π tanh 2x2

))
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= −5π sin
(

π tanh 2x2
)

sech2 2x2 d
dx

(
2x2
)

= −20πx sin
(

π tanh 2x2
)

sech2 2x2. (A.56)

A.1.5 Integrals

Integration is typically a bit harder. Imagine being given the last
result in (A.56) and having to figure out what was differentiated in order to
get the given function. As you may recall from the Fundamental Theorem
of Calculus, the integral is the inverse operation to differentiation:∫ d f

dx
dx = f (x) + C. (A.57)

It is not always easy to evaluate a given integral. In fact some integrals
are not even doable! However, you learned in calculus that there are some
methods that could yield an answer. While you might be happier using a
computer algebra system, such as Maple or WolframAlpha.com, or a fancy
calculator, you should know a few basic integrals and know how to use
tables for some of the more complicated ones. In fact, it can be exhilarating
when you can do a given integral without reference to a computer or a
Table of Integrals. However, you should be prepared to do some integrals
using what you have been taught in calculus. We will review a few of these
methods and some of the standard integrals in this section.

First of all, there are some integrals you are expected to know without
doing any work. These integrals appear often and are just an application of
the Fundamental Theorem of Calculus to the previous Table A.2. The basic
integrals that students should know off the top of their heads are given in
Table A.3.

These are not the only integrals you should be able to do. We can expand
the list by recalling a few of the techniques that you learned in calculus,
the Method of Substitution, Integration by Parts, integration using partial
fraction decomposition, and trigonometric integrals, and trigonometric sub-
stitution. There are also a few other techniques that you had not seen before.
We will look at several examples.

Example A.4. Evaluate
∫ x√

x2+1
dx.

When confronted with an integral, you should first ask if a simple substitution
would reduce the integral to one you know how to do.

The ugly part of this integral is the x2 + 1 under the square root. So, we let
u = x2 + 1.

Noting that when u = f (x), we have du = f ′(x) dx. For our example, du =

2x dx.
Looking at the integral, part of the integrand can be written as x dx = 1

2 u du.
Then, the integral becomes ∫ x√

x2 + 1
dx =

1
2

∫ du√
u

.
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The substitution has converted our integral into an integral over u. Also, this
integral is doable! It is one of the integrals we should know. Namely, we can write
it as

1
2

∫ du√
u
=

1
2

∫
u−1/2 du.

This is now easily finished after integrating and using the substitution variable to
give ∫ x√

x2 + 1
dx =

1
2

u1/2

1
2

+ C =
√

x2 + 1 + C.

Note that we have added the required integration constant and that the derivative
of the result easily gives the original integrand (after employing the Chain Rule).

Function Indefinite Integral
a ax

xn xn+1

n+1
eax 1

a eax

1
x ln x

sin ax − 1
a cos ax

cos ax 1
a sin ax

sec2 ax 1
a tan ax

sinh ax 1
a cosh ax

cosh ax 1
a sinh ax

sech2 ax 1
a tanh ax

sec x ln | sec x + tan x|
1

a+bx
1
b ln(a + bx)

1
a2+x2

1
a tan−1 x

a
1√

a2−x2 sin−1 x
a

1
x
√

x2−a2
1
a sec−1 x

a
1√

x2−a2 cosh−1 x
a = ln |

√
x2 − a2 + x|

Table A.3: Table of Common Integrals.

Often we are faced with definite integrals, in which we integrate between
two limits. There are several ways to use these limits. However, students
often forget that a change of variables generally means that the limits have
to change.

Example A.5. Evaluate
∫ 2

0
x√

x2+1
dx.

This is the last example but with integration limits added. We proceed as before.
We let u = x2 + 1. As x goes from 0 to 2, u takes values from 1 to 5. So, this
substitution gives∫ 2

0

x√
x2 + 1

dx =
1
2

∫ 5

1

du√
u
=
√

u|51 =
√

5− 1.

When you becomes proficient at integration, you can bypass some of
these steps. In the next example we try to demonstrate the thought pro-
cess involved in using substitution without explicitly using the substitution
variable.
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Example A.6. Evaluate
∫ 2

0
x√

9+4x2 dx

As with the previous example, one sees that the derivative of 9 + 4x2 is propor-
tional to x, which is in the numerator of the integrand. Thus a substitution would
give an integrand of the form u−1/2. So, we expect the answer to be proportional to√

u =
√

9 + 4x2. The starting point is therefore,∫ x√
9 + 4x2

dx = A
√

9 + 4x2,

where A is a constant to be determined.
We can determine A through differentiation since the derivative of the answer

should be the integrand. Thus,

d
dx

A(9 + 4x2)
1
2 = A(9 + 4x2)−

1
2

(
1
2

)
(8x)

= 4xA(9 + 4x2)−
1
2 . (A.58)

Comparing this result with the integrand, we see that the integrand is obtained
when A = 1

4 . Therefore, ∫ x√
9 + 4x2

dx =
1
4

√
9 + 4x2.

We now complete the integral,∫ 2

0

x√
9 + 4x2

dx =
1
4
[5− 3] =

1
2

.

The function

gd(x) =
∫ x

0

dx
cosh x

= 2 tan−1 ex − π

2

is called the Gudermannian and con-
nects trigonometric and hyperbolic func-
tions. This function was named after
Christoph Gudermann (1798-1852), but
introduced by Johann Heinrich Lambert
(1728-1777), who was one of the first to
introduce hyperbolic functions.

Example A.7. Evaluate
∫ dx

cosh x .
This integral can be performed by first using the definition of cosh x followed by

a simple substitution. ∫ dx
cosh x

=
∫ 2

ex + e−x dx

=
∫ 2ex

e2x + 1
dx. (A.59)

Now, we let u = ex and du = exdx. Then,∫ dx
cosh x

=
∫ 2

1 + u2 du

= 2 tan−1 u + C

= 2 tan−1 ex + C. (A.60)

Integration by Parts

When the Method of Substitution fails, there are other methods you can
try. One of the most used is the Method of Integration by Parts. Recall the
Integration by Parts Formula:Integration by Parts Formula.

∫
u dv = uv−

∫
v du. (A.61)
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The idea is that you are given the integral on the left and you can relate it
to an integral on the right. Hopefully, the new integral is one you can do,
or at least it is an easier integral than the one you are trying to evaluate.

However, you are not usually given the functions u and v. You have to
determine them. The integral form that you really have is a function of
another variable, say x. Another form of the Integration by Parts Formula
can be written as∫

f (x)g′(x) dx = f (x)g(x)−
∫

g(x) f ′(x) dx. (A.62)

This form is a bit more complicated in appearance, though it is clearer than
the u-v form as to what is happening. The derivative has been moved from
one function to the other. Recall that this formula was derived by integrating
the product rule for differentiation. (See your calculus text.) Note: Often in physics one needs to

move a derivative between functions in-
side an integrand. The key - use inte-
gration by parts to move the derivative
from one function to the other under an
integral.

These two formulae can be related by using the differential relations

u = f (x) → du = f ′(x) dx,

v = g(x) → dv = g′(x) dx. (A.63)

This also gives a method for applying the Integration by Parts Formula.

Example A.8. Consider the integral
∫

x sin 2x dx. We choose u = x and dv =

sin 2x dx. This gives the correct left side of the Integration by Parts Formula. We
next determine v and du:

du =
du
dx

dx = dx,

v =
∫

dv =
∫

sin 2x dx = −1
2

cos 2x.

We note that one usually does not need the integration constant. Inserting these
expressions into the Integration by Parts Formula, we have∫

x sin 2x dx = −1
2

x cos 2x +
1
2

∫
cos 2x dx.

We see that the new integral is easier to do than the original integral. Had we picked
u = sin 2x and dv = x dx, then the formula still works, but the resulting integral
is not easier.

For completeness, we finish the integration. The result is∫
x sin 2x dx = −1

2
x cos 2x +

1
4

sin 2x + C.

As always, you can check your answer by differentiating the result, a step stu-
dents often forget to do. Namely,

d
dx

(
−1

2
x cos 2x +

1
4

sin 2x + C
)

= −1
2

cos 2x + x sin 2x +
1
4
(2 cos 2x)

= x sin 2x. (A.64)

So, we do get back the integrand in the original integral.
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We can also perform integration by parts on definite integrals. The gen-
eral formula is written as

∫ b

a
f (x)g′(x) dx = f (x)g(x)

∣∣∣∣b
a
−
∫ b

a
g(x) f ′(x) dx. (A.65)

Integration by Parts for Definite Inte-
grals. Example A.9. Consider the integral∫ π

0
x2 cos x dx.

This will require two integrations by parts. First, we let u = x2 and dv = cos x.
Then,

du = 2x dx. v = sin x.

Inserting into the Integration by Parts Formula, we have∫ π

0
x2 cos x dx = x2 sin x

∣∣∣π
0
− 2

∫ π

0
x sin x dx

= −2
∫ π

0
x sin x dx. (A.66)

We note that the resulting integral is easier that the given integral, but we still
cannot do the integral off the top of our head (unless we look at Example 3!). So, we
need to integrate by parts again. (Note: In your calculus class you may recall that
there is a tabular method for carrying out multiple applications of the formula. We
will show this method in the next example.)

We apply integration by parts by letting U = x and dV = sin x dx. This gives
dU = dx and V = − cos x. Therefore, we have∫ π

0
x sin x dx = −x cos x

∣∣∣π
0
+
∫ π

0
cos x dx

= π + sin x
∣∣∣π
0

= π. (A.67)

The final result is ∫ π

0
x2 cos x dx = −2π.

There are other ways to compute integrals of this type. First of all, there
is the Tabular Method to perform integration by parts. A second method is
to use differentiation of parameters under the integral. We will demonstrate
this using examples.

Example A.10. Compute the integral
∫ π

0 x2 cos x dx using the Tabular Method.Using the Tabular Method.

First we identify the two functions under the integral, x2 and cos x. We then
write the two functions and list the derivatives and integrals of each, respectively.
This is shown in Table A.4. Note that we stopped when we reached zero in the left
column.

Next, one draws diagonal arrows, as indicated, with alternating signs attached,
starting with +. The indefinite integral is then obtained by summing the products
of the functions at the ends of the arrows along with the signs on each arrow:∫

x2 cos x dx = x2 sin x + 2x cos x− 2 sin x + C.
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To find the definite integral, one evaluates the antiderivative at the given limits.∫ π

0
x2 cos x dx =

[
x2 sin x + 2x cos x− 2 sin x

]π

0

= (π2 sin π + 2π cos π − 2 sin π)− 0

= −2π. (A.68)

Actually, the Tabular Method works even if a zero does not appear in the
left column. One can go as far as possible, and if a zero does not appear,
then one needs only integrate, if possible, the product of the functions in
the last row, adding the next sign in the alternating sign progression. The
next example shows how this works.

D I

x2 cos x

2x sin x

2 − cos x

0 − sin x

+

−

+

Table A.4: Tabular Method

Example A.11. Use the Tabular Method to compute
∫

e2x sin 3x dx.
As before, we first set up the table as shown in Table A.5.

D I

sin 3x e2x

3 cos 3x 1
2 e2x

−9 sin 3x 1
4 e2x

+

−

Table A.5: Tabular Method, showing a
nonterminating example.

Putting together the pieces, noting that the derivatives in the left column will
never vanish, we have∫

e2x sin 3x dx = (
1
2

sin 3x− 3
4

cos 3x)e2x +
∫

(−9 sin 3x)
(

1
4

e2x
)

dx.

The integral on the right is a multiple of the one on the left, so we can combine
them,

13
4

∫
e2x sin 3x dx = (

1
2

sin 3x− 3
4

cos 3x)e2x,

or ∫
e2x sin 3x dx = (

2
13

sin 3x− 3
13

cos 3x)e2x.
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Differentiation Under the Integral

Another method that one can use to evaluate this integral is to differen-
tiate under the integral sign. This is mentioned in the Richard Feynman’s
memoir Surely You’re Joking, Mr. Feynman!. In the book Feynman recountsDifferentiation Under the Integral Sign

and Feynman’s trick. using this “trick” to be able to do integrals that his MIT classmates could
not do. This is based on a theorem found in Advanced Calculus texts.
Reader’s unfamiliar with partial derivatives should be able to grasp their
use in the following example.

Theorem A.1. Let the functions f (x, t) and ∂ f (x,t)
∂x be continuous in both t, and

x, in the region of the (t, x) plane which includes a(x) ≤ t ≤ b(x), x0 ≤ x ≤ x1,
where the functions a(x) and b(x) are continuous and have continuous derivatives
for x0 ≤ x ≤ x1. Defining

F(x) ≡
∫ b(x)

a(x)
f (x, t) dt,

then

dF(x)
dx

=

(
∂F
∂b

)
db
dx

+

(
∂F
∂a

)
da
dx

+
∫ b(x)

a(x)

∂

∂x
f (x, t) dt

= f (x, b(x)) b′(x)− f (x, a(x)) a′(x) +
∫ b(x)

a(x)

∂

∂x
f (x, t) dt.

(A.69)

for x0 ≤ x ≤ x1. This is a generalized version of the Fundamental Theorem of
Calculus.

In the next examples we show how we can use this theorem to bypass
integration by parts.

Example A.12. Use differentiation under the integral sign to evaluate
∫

xex dx.
First, consider the integral

I(x, a) =
∫

eax dx =
eax

a
.

Then,
∂I(x, a)

∂a
=
∫

xeax dx.

So, ∫
xeax dx =

∂I(x, a)
∂a

=
∂

∂a

(∫
eax dx

)
=

∂

∂a

(
eax

a

)
=

(
x
a
− 1

a2

)
eax. (A.70)
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Evaluating this result at a = 1, we have∫
xex dx = (x− 1)ex.

The reader can verify this result by employing the previous methods or by just
differentiating the result.

Example A.13. We will do the integral
∫ π

0 x2 cos x dx once more. First, consider
the integral

I(a) ≡
∫ π

0
cos ax dx

=
sin ax

a

∣∣∣π
0

=
sin aπ

a
. (A.71)

Differentiating the integral I(a) with respect to a twice gives

d2 I(a)
da2 = −

∫ π

0
x2 cos ax dx. (A.72)

Evaluation of this result at a = 1 leads to the desired result. Namely,

∫ π

0
x2 cos x dx = −d2 I(a)

da2

∣∣∣
a=1

= − d2

da2

(
sin aπ

a

) ∣∣∣
a=1

= − d
da

(
aπ cos aπ − sin aπ

a2

) ∣∣∣
a=1

= −
(

a2π2 sin aπ + 2aπ cos aπ − 2 sin aπ

a3

) ∣∣∣
a=1

= −2π. (A.73)

Trigonometric Integrals

Other types of integrals that you will see often are trigonometric inte-
grals. In particular, integrals involving powers of sines and cosines. For
odd powers, a simple substitution will turn the integrals into simple pow-
ers.

Example A.14. For example, consider∫
cos3 x dx.

This can be rewritten as ∫
cos3 x dx =

∫
cos2 x cos x dx.

Let u = sin x. Then, du = cos x dx. Since cos2 x = 1− sin2 x, we have Integration of odd powers of sine and co-
sine.
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∫
cos3 x dx =

∫
cos2 x cos x dx

=
∫
(1− u2) du

= u− 1
3

u3 + C

= sin x− 1
3

sin3 x + C. (A.74)

A quick check confirms the answer:

d
dx

(
sin x− 1

3
sin3 x + C

)
= cos x− sin2 x cos x

= cos x(1− sin2 x)

= cos3 x. (A.75)

Even powers of sines and cosines are a little more complicated, but doable.
In these cases we need the half angle formulae (A.24)-(A.25).Integration of even powers of sine and

cosine.
Example A.15. As an example, we will compute∫ 2π

0
cos2 x dx.

Substituting the half angle formula for cos2 x, we have∫ 2π

0
cos2 x dx =

1
2

∫ 2π

0
(1 + cos 2x) dx

=
1
2

(
x− 1

2
sin 2x

)2π

0
= π. (A.76)

We note that this result appears often in physics. When looking at rootRecall that RMS averages refer to the
root mean square average. This is com-
puted by first computing the average, or
mean, of the square of some quantity.
Then one takes the square root. Typi-
cal examples are RMS voltage, RMS cur-
rent, and the average energy in an elec-
tromagnetic wave. AC currents oscillate
so fast that the measured value is the
RMS voltage.

mean square averages of sinusoidal waves, one needs the average of the
square of sines and cosines. Recall that the average of a function on interval
[a, b] is given as

fave =
1

b− a

∫ b

a
f (x) dx. (A.77)

So, the average of cos2 x over one period is

1
2π

∫ 2π

0
cos2 x dx =

1
2

. (A.78)

The root mean square is then found by taking the square root, 1√
2

.

Trigonometric Function Substitution

Another class of integrals typically studied in calculus are those involv-
ing the forms

√
1− x2,

√
1 + x2, or

√
x2 − 1. These can be simplified through

the use of trigonometric substitutions. The idea is to combine the two terms
under the radical into one term using trigonometric identities. We will con-
sider some typical examples.



calculus review 473

Example A.16. Evaluate
∫ √

1− x2 dx.
Since 1− sin2 θ = cos2 θ, we perform the sine substitution

x = sin θ, dx = cos θ dθ.

Then, In any of these computations careful at-
tention has to be paid to simplifying the
radical. This is because

√
x2 = |x|.

For example,
√
(−5)2 =

√
25 = 5. For

x = sin θ, one typically specifies the do-
main −π/2 ≤ θ ≤ π/2. In this domain
we have | cos θ| = cos θ.

∫ √
1− x2 dx =

∫ √
1− sin2 θ cos θ dθ

=
∫

cos2 θ dθ. (A.79)

Using the last example, we have∫ √
1− x2 dx =

1
2

(
θ − 1

2
sin 2θ

)
+ C.

However, we need to write the answer in terms of x. We do this by first using
the double angle formula for sin 2θ and cos θ =

√
1− x2 to obtain∫ √

1− x2 dx =
1
2

(
sin−1 x− x

√
1− x2

)
+ C.

Similar trigonometric substitutions result for integrands involving
√

1 + x2

and
√

x2 − 1. The substitutions are summarized in Table A.6. The simpli-
fication of the given form is then obtained using trigonometric identities.
This can also be accomplished by referring to the right triangles shown in
Figure A.5.

Form Substitution Differential√
a2 − x2 x = a sin θ dx = a cos θ dθ√
a2 + x2 x = a tan θ dx = a sec2 θ dθ√
x2 − a2 x = a sec θ dx = a sec θ tan θ dθ

Table A.6: Standard trigonometric sub-
stitutions.

θ

x = sin θ

1

x

√
1− x2

θ

x = tan θ

√
1 + x2

x

1
θ

x = sec θ

x

√
x2 − 1

1

Figure A.5: Geometric relations used in
trigonometric substitution.

Example A.17. Evaluate
∫ 2

0

√
x2 + 4 dx.

Let x = 2 tan θ. Then, dx = 2 sec2 θ dθ and√
x2 + 4 =

√
4 tan2 θ + 4 = 2 sec θ.

So, the integral becomes∫ 2

0

√
x2 + 4 dx = 4

∫ π/4

0
sec3 θ dθ.
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One has to recall, or look up,∫
sec3 θ dθ =

1
2
(tan θ sec θ + ln | sec θ + tan θ|) + C.

This gives ∫ 2

0

√
x2 + 4 dx = 2 [tan θ sec θ + ln | sec θ + tan θ|]π/4

0

= 2
(√

2 + ln |
√

2 + 1| − (0 + ln(1))
)

= 2(
√

2 + ln(
√

2 + 1)). (A.80)

Example A.18. Evaluate
∫ dx√

x2−1
, x ≥ 1.

In this case one needs the secant substitution. This yields∫ dx√
x2 − 1

=
∫ sec θ tan θ dθ√

sec2 θ − 1

=
∫ sec θ tan θ dθ

tan θ

=
∫

sec θdθ

= ln(sec θ + tan θ) + C

= ln(x +
√

x2 − 1) + C. (A.81)

Example A.19. Evaluate
∫ dx

x
√

x2−1
, x ≥ 1.

Again we can use a secant substitution. This yields∫ dx
x
√

x2 − 1
=

∫ sec θ tan θ dθ

sec θ
√

sec2 θ − 1

=
∫ sec θ tan θ

sec θ tan θ
dθ

=
∫

dθ = θ + C = sec−1 x + C. (A.82)

Hyperbolic Function Substitution

Even though trigonometric substitution plays a role in the calculus pro-
gram, students often see hyperbolic function substitution used in physics
courses. The reason might be because hyperbolic function substitution is
sometimes simpler. The idea is the same as for trigonometric substitution.
We use an identity to simplify the radical.

Example A.20. Evaluate
∫ 2

0

√
x2 + 4 dx using the substitution x = 2 sinh u.

Since x = 2 sinh u, we have dx = 2 cosh u du. Also, we can use the identity
cosh2 u− sinh2 u = 1 to rewrite√

x2 + 4 =

√
4 sinh2 u + 4 = 2 cosh u.

The integral can be now be evaluated using these substitutions and some hyper-
bolic function identities,∫ 2

0

√
x2 + 4 dx = 4

∫ sinh−1 1

0
cosh2 u du
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= 2
∫ sinh−1 1

0
(1 + cosh 2u) du

= 2
[

u +
1
2

sinh 2u
]sinh−1 1

0

= 2 [u + sinh u cosh u]sinh−1 1
0

= 2
(

sinh−1 1 +
√

2
)

. (A.83)

In Example A.17 we used a trigonometric substitution and found∫ 2

0

√
x2 + 4 = 2(

√
2 + ln(

√
2 + 1)).

This is the same result since sinh−1 1 = ln(1 +
√

2).

Example A.21. Evaluate
∫ dx√

x2−1
for x ≥ 1 using hyperbolic function substitu-

tion.
This integral was evaluated in Example A.19 using the trigonometric substitu-

tion x = sec θ and the resulting integral of sec θ had to be recalled. Here we will
use the substitution

x = cosh u, dx = sinh u du,
√

x2 − 1 =

√
cosh2 u− 1 = sinh u.

Then, ∫ dx√
x2 − 1

=
∫ sinh u du

sinh u

=
∫

du = u + C

= cosh−1 x + C

=
1
2

ln(x +
√

x2 − 1) + C, x ≥ 1. (A.84)

This is the same result as we had obtained previously, but this derivation was a
little cleaner.

Also, we can extend this result to values x ≤ −1 by letting x = − cosh u. This
gives ∫ dx√

x2 − 1
=

1
2

ln(x +
√

x2 − 1) + C, x ≤ −1.

Combining these results, we have shown∫ dx√
x2 − 1

=
1
2

ln(|x|+
√

x2 − 1) + C, x2 ≥ 1.

We have seen in the last example that the use of hyperbolic function sub-
stitution allows us to bypass integrating the secant function in Example A.19

when using trigonometric substitutions. In fact, we can use hyperbolic sub-
stitutions to evaluate integrals of powers of secants. Comparing Examples
A.19 and A.21, we consider the transformation sec θ = cosh u. The relation
between differentials is found by differentiation, giving

sec θ tan θ dθ = sinh u du.
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Since
tanh2 θ = sec2 θ − 1,

we have tan θ = sinh u, therefore

dθ =
du

cosh u
.

In the next example we show how useful this transformation is.Evaluation of
∫

sec θ dθ.

Example A.22. Evaluate
∫

sec θ dθ using hyperbolic function substitution.
From the discussion in the last paragraph, we have∫

sec θ dθ =
∫

du

= u + C

= cosh−1(sec θ) + C (A.85)

We can express this result in the usual form by using the logarithmic form of the
inverse hyperbolic cosine,

cosh−1 x = ln(x +
√

x2 − 1).

The result is ∫
sec θ dθ = ln(sec θ + tan θ).

This example was fairly simple using the transformation sec θ = cosh u.
Another common integral that arises often is integrations of sec3 θ. In a
typical calculus class this integral is evaluated using integration by parts.
However. that leads to a tricky manipulation that is a bit scary the first time
it is encountered (and probably upon several more encounters.) In the next
example, we will show how hyperbolic function substitution is simpler.Evaluation of

∫
sec3 θ dθ.

Example A.23. Evaluate
∫

sec3 θ dθ using hyperbolic function substitution.
First, we consider the transformation sec θ = cosh u with dθ = du

cosh u . Then,∫
sec3 θ dθ =

∫ du
cosh u

.

This integral was done in Example A.7, leading to∫
sec3 θ dθ = 2 tan−1 eu + C.

While correct, this is not the form usually encountered. Instead, we make the
slightly different transformation tan θ = sinh u. Since sec2 θ = 1 + tan2 θ, we
find sec θ = cosh u. As before, we find

dθ =
du

cosh u
.

Using this transformation and several identities, the integral becomes∫
sec3 θ dθ =

∫
cosh2 u du
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=
1
2

∫
(1 + cosh 2u) du

=
1
2

(
u +

1
2

sinh 2u
)

=
1
2
(u + sinh u cosh u)

=
1
2

(
cosh−1(sec θ) + tan θ sec θ

)
=

1
2
(sec θ tan θ + ln(sec θ + tan θ)) . (A.86)

There are many other integration methods, some of which we will visit
in other parts of the book, such as partial fraction decomposition and nu-
merical integration. Another topic which we will revisit is power series.

A.1.6 Geometric Series

Geometric series are fairly common and
will be used throughout the book. You
should learn to recognize them and
work with them.

Infinite series occur often in mathematics and physics. Two series
which occur often are the geometric series and the binomial series. we will
discuss these next.

A geometric series is of the form

∞

∑
n=0

arn = a + ar + ar2 + . . . + arn + . . . . (A.87)

Here a is the first term and r is called the ratio. It is called the ratio because
the ratio of two consecutive terms in the sum is r.

Example A.24. For example,

1 +
1
2
+

1
4
+

1
8
+ . . .

is an example of a geometric series. We can write this using summation notation,

1 +
1
2
+

1
4
+

1
8
+ . . . =

∞

∑
n=0

1
(

1
2

)n
.

Thus, a = 1 is the first term and r = 1
2 is the common ratio of successive terms.

Next, we seek the sum of this infinite series, if it exists.

The sum of a geometric series, when it exists, can easily be determined.
We consider the nth partial sum:

sn = a + ar + . . . + arn−2 + arn−1. (A.88)

Now, multiply this equation by r.

rsn = ar + ar2 + . . . + arn−1 + arn. (A.89)

Subtracting these two equations, while noting the many cancelations, we
have

(1− r)sn = (a + ar + . . . + arn−2 + arn−1)
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−(ar + ar2 + . . . + arn−1 + arn)

= a− arn

= a(1− rn). (A.90)

Thus, the nth partial sums can be written in the compact form

sn =
a(1− rn)

1− r
. (A.91)

The sum, if it exists, is given by S = limn→∞ sn. Letting n get large in the
partial sum (A.91), we need only evaluate limn→∞ rn. From the special limits
in the Appendix we know that this limit is zero for |r| < 1. Thus, we have

Geometric Series

The sum of the geometric series exists for |r| < 1 and is given by

∞

∑
n=0

arn =
a

1− r
, |r| < 1. (A.92)

The reader should verify that the geometric series diverges for all other
values of r. Namely, consider what happens for the separate cases |r| > 1,
r = 1 and r = −1.

Next, we present a few typical examples of geometric series.

Example A.25. ∑∞
n=0

1
2n

In this case we have that a = 1 and r = 1
2 . Therefore, this infinite series con-

verges and the sum is

S =
1

1− 1
2
= 2.

Example A.26. ∑∞
k=2

4
3k

In this example we first note that the first term occurs for k = 2. It sometimes
helps to write out the terms of the series,

∞

∑
k=2

4
3k =

4
32 +

4
33 +

4
34 +

4
35 + . . . .

Looking at the series, we see that a = 4
9 and r = 1

3 . Since |r|<1, the geometric
series converges. So, the sum of the series is given by

S =
4
9

1− 1
3
=

2
3

.

Example A.27. ∑∞
n=1(

3
2n − 2

5n )

Finally, in this case we do not have a geometric series, but we do have the differ-
ence of two geometric series. Of course, we need to be careful whenever rearranging
infinite series. In this case it is allowed 1. Thus, we have

1 A rearrangement of terms in an infinite
series is allowed when the series is abso-
lutely convergent. (See the Appendix.)

∞

∑
n=1

(
3
2n −

2
5n

)
=

∞

∑
n=1

3
2n −

∞

∑
n=1

2
5n .
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Now we can add both geometric series to obtain

∞

∑
n=1

(
3
2n −

2
5n

)
=

3
2

1− 1
2
−

2
5

1− 1
5
= 3− 1

2
=

5
2

.

Geometric series are important because they are easily recognized and
summed. Other series which can be summed include special cases of Taylor
series and telescoping series. Next, we show an example of a telescoping
series.

Example A.28. ∑∞
n=1

1
n(n+1) The first few terms of this series are

∞

∑
n=1

1
n(n + 1)

=
1
2
+

1
6
+

1
12

+
1

20
+ . . . .

It does not appear that we can sum this infinite series. However, if we used the
partial fraction expansion

1
n(n + 1)

=
1
n
− 1

n + 1
,

then we find the kth partial sum can be written as

sk =
k

∑
n=1

1
n(n + 1)

=
k

∑
n=1

(
1
n
− 1

n + 1

)
=

(
1
1
− 1

2

)
+

(
1
2
− 1

3

)
+ · · ·+

(
1
k
− 1

k + 1

)
. (A.93)

We see that there are many cancelations of neighboring terms, leading to the series
collapsing (like a retractable telescope) to something manageable:

sk = 1− 1
k + 1

.

Taking the limit as k→ ∞, we find ∑∞
n=1

1
n(n+1) = 1.

A.1.7 Power Series

Another example of an infinite series that the student has encoun-
tered in previous courses is the power series. Examples of such series are
provided by Taylor and Maclaurin series.

Actually, what are now known as Taylor
and Maclaurin series were known long
before they were named. James Gregory
(1638-1675) has been recognized for dis-
covering Taylor series, which were later
named after Brook Taylor (1685-1731) .
Similarly, Colin Maclaurin (1698-1746)
did not actually discover Maclaurin se-
ries, but the name was adopted because
of his particular use of series.

A power series expansion about x = a with coefficient sequence cn is
given by ∑∞

n=0 cn(x− a)n. For now we will consider all constants to be real
numbers with x in some subset of the set of real numbers.

Consider the following expansion about x = 0 :

∞

∑
n=0

xn = 1 + x + x2 + . . . . (A.94)
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We would like to make sense of such expansions. For what values of x
will this infinite series converge? Until now we did not pay much attention
to which infinite series might converge. However, this particular series is
already familiar to us. It is a geometric series. Note that each term is gotten
from the previous one through multiplication by r = x. The first term is
a = 1. So, from Equation (A.92), we have that the sum of the series is given
by

∞

∑
n=0

xn =
1

1− x
, |x| < 1.

Figure A.6: (a) Comparison of 1
1−x

(solid) to 1 + x (dashed) for x ∈
[−0.2, 0.2]. (b) Comparison of 1

1−x (solid)
to 1 + x + x2 (dashed) for x ∈ [−0.2, 0.2].
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(a)

f (x)

x
−0.2−0.1 0.1 0.2

0.80

0.90

1.00

1.10

1.20

(b)

In this case we see that the sum, when it exists, is a simple function. In
fact, when x is small, we can use this infinite series to provide approxima-
tions to the function (1− x)−1. If x is small enough, we can write

(1− x)−1 ≈ 1 + x.

In Figure A.6a we see that for small values of x these functions do agree.

f (x)

x
−1.0 −.5 0 .5

1.0

2.0

3.0

Figure A.7: Comparison of 1
1−x (solid) to

1 + x + x2 (dashed) and 1 + x + x2 + x3

(dotted) for x ∈ [−1.0, 0.7].
Of course, if we want better agreement, we select more terms. In Fig-

ure A.6b we see what happens when we do so. The agreement is much
better. But extending the interval, we see in Figure A.7 that keeping only
quadratic terms may not be good enough. Keeping the cubic terms gives
better agreement over the interval.

Finally, in Figure A.8 we show the sum of the first 21 terms over the entire
interval [−1, 1]. Note that there are problems with approximations near the
endpoints of the interval, x = ±1.

f (x)

x
−1.0 −.5 0 .5 1.0

1.0

2.0

3.0

4.0

5.0

Figure A.8: Comparison of 1
1−x (solid) to

∑20
n=0 xn for x ∈ [−1, 1].

Such polynomial approximations are called Taylor polynomials. Thus,
T3(x) = 1 + x + x2 + x3 is the third order Taylor polynomial approximation
of f (x) = 1

1−x .
With this example we have seen how useful a series representation might

be for a given function. However, the series representation was a simple
geometric series, which we already knew how to sum. Is there a way to
begin with a function and then find its series representation? Once we have
such a representation, will the series converge to the function with which
we started? For what values of x will it converge? These questions can be
answered by recalling the definitions of Taylor and Maclaurin series.
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A Taylor series expansion of f (x) about x = a is the series Taylor series expansion.

f (x) ∼
∞

∑
n=0

cn(x− a)n, (A.95)

where

cn =
f (n)(a)

n!
. (A.96)

Note that we use ∼ to indicate that we have yet to determine when the
series may converge to the given function. A special class of series are
those Taylor series for which the expansion is about x = 0. These are called
Maclaurin series.

A Maclaurin series expansion of f (x) is a Taylor series expansion of Maclaurin series expansion.

f (x) about x = 0, or

f (x) ∼
∞

∑
n=0

cnxn, (A.97)

where

cn =
f (n)(0)

n!
. (A.98)

Example A.29. Expand f (x) = ex about x = 0.
We begin by creating a table. In order to compute the expansion coefficients, cn,

we will need to perform repeated differentiations of f (x). So, we provide a table for
these derivatives. Then, we only need to evaluate the second column at x = 0 and
divide by n!.

n f (n)(x) f (n)(0) cn

0 ex e0 = 1 1
0! = 1

1 ex e0 = 1 1
1! = 1

2 ex e0 = 1 1
2!

3 ex e0 = 1 1
3!

Next, we look at the last column and try to determine a pattern so that we can
write down the general term of the series. If there is only a need to get a polynomial
approximation, then the first few terms may be sufficient. In this case, the pattern
is obvious: cn = 1

n! . So,

ex ∼
∞

∑
n=0

xn

n!
.

Example A.30. Expand f (x) = ex about x = 1.
Here we seek an expansion of the form ex ∼ ∑∞

n=0 cn(x− 1)n. We could create
a table like the last example. In fact, the last column would have values of the form
e
n! . (You should confirm this.) However, we will make use of the Maclaurin series
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expansion for ex and get the result quicker. Note that ex = ex−1+1 = eex−1. Now,
apply the known expansion for ex :

ex ∼ e
(

1 + (x− 1) +
(x− 1)2

2
+

(x− 1)3

3!
+ . . .

)
=

∞

∑
n=0

e(x− 1)n

n!
.

Example A.31. Expand f (x) = 1
1−x about x = 0.

This is the example with which we started our discussion. We can set up a table
in order to find the Maclaurin series coefficients. We see from the last column of the
table that we get back the geometric series (A.94).

n f (n)(x) f (n)(0) cn

0 1
1−x 1 1

0! = 1

1 1
(1−x)2 1 1

1! = 1

2 2(1)
(1−x)3 2(1) 2!

2! = 1

3 3(2)(1)
(1−x)4 3(2)(1) 3!

3! = 1

So, we have found
1

1− x
∼

∞

∑
n=0

xn.

We can replace ∼ by equality if we can determine the range of x-values
for which the resulting infinite series converges. We will investigate such
convergence shortly.

Series expansions for many elementary functions arise in a variety of
applications. Some common expansions are provided in Table A.7.

We still need to determine the values of x for which a given power series
converges. The first five of the above expansions converge for all reals, but
the others only converge for |x| < 1.

We consider the convergence of ∑∞
n=0 cn(x − a)n. For x = a the series

obviously converges. Will it converge for other points? One can prove

Theorem A.2. If ∑∞
n=0 cn(b− a)n converges for b 6= a, then

∑∞
n=0 cn(x− a)n converges absolutely for all x satisfying |x− a| < |b− a|.

This leads to three possibilities

1. ∑∞
n=0 cn(x− a)n may only converge at x = a.

2. ∑∞
n=0 cn(x− a)n may converge for all real numbers.

3. ∑∞
n=0 cn(x − a)n converges for |x − a| < R and diverges for |x −

a| > R.

The number R is called the radius of convergence of the power seriesInterval and radius of convergence.
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Series Expansions You Should Know

ex = 1 + x +
x2

2
+

x3

3!
+

x4

4!
+ . . . =

∞

∑
n=0

xn

n!

cos x = 1− x2

2
+

x4

4!
− . . . =

∞

∑
n=0

(−1)n x2n

(2n)!

sin x = x− x3

3!
+

x5

5!
− . . . =

∞

∑
n=0

(−1)n x2n+1

(2n + 1)!

cosh x = 1 +
x2

2
+

x4

4!
+ . . . =

∞

∑
n=0

x2n

(2n)!

sinh x = x +
x3

3!
+

x5

5!
+ . . . =

∞

∑
n=0

x2n+1

(2n + 1)!
1

1− x
= 1 + x + x2 + x3 + . . . =

∞

∑
n=0

xn

1
1 + x

= 1− x + x2 − x3 + . . . =
∞

∑
n=0

(−x)n

tan−1 x = x− x3

3
+

x5

5
− x7

7
+ . . . =

∞

∑
n=0

(−1)n x2n+1

2n + 1

ln(1 + x) = x− x2

2
+

x3

3
− . . . =

∞

∑
n=1

(−1)n+1 xn

n

Table A.7: Common Mclaurin Series Ex-
pansions

and (a− R, a + R) is called the interval of convergence. Convergence at the
endpoints of this interval has to be tested for each power series.

In order to determine the interval of convergence, one needs only note
that when a power series converges, it does so absolutely. So, we need only
test the convergence of ∑∞

n=0 |cn(x− a)n| = ∑∞
n=0 |cn||x− a|n. This is easily

done using either the ratio test or the nth root test. We first identify the
nonnegative terms an = |cn||x − a|n, using the notation from Section ??.
Then, we apply one of the convergence tests.

For example, the nth Root Test gives the convergence condition for an =

|cn||x− a|n,

ρ = lim
n→∞

n
√

an = lim
n→∞

n
√
|cn||x− a| < 1.

Since |x− a| is independent of n,, we can factor it out of the limit and divide
the value of the limit to obtain

|x− a| <
(

lim
n→∞

n
√
|cn|
)−1

≡ R.

Thus, we have found the radius of convergence, R.
Similarly, we can apply the Ratio Test.

ρ = lim
n→∞

an+1

an
= lim

n→∞

|cn+1|
|cn|

|x− a| < 1.

Again, we rewrite this result to determine the radius of convergence:

|x− a| <
(

lim
n→∞

|cn+1|
|cn|

)−1

≡ R.
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Example A.32. Find the radius of convergence of the series ex = ∑∞
n=0

xn

n! .
Since there is a factorial, we will use the Ratio Test.

ρ = lim
n→∞

|n!|
|(n + 1)!| |x| = lim

n→∞

1
n + 1

|x| = 0.

Since ρ = 0, it is independent of |x| and thus the series converges for all x. We also
can say that the radius of convergence is infinite.

Example A.33. Find the radius of convergence of the series 1
1−x = ∑∞

n=0 xn.
In this example we will use the nth Root Test.

ρ = lim
n→∞

n√1|x| = |x| < 1.

Thus, we find that we have absolute convergence for |x| < 1. Setting x = 1 or
x = −1, we find that the resulting series do not converge. So, the endpoints are not
included in the complete interval of convergence.

In this example we could have also used the Ratio Test. Thus,

ρ = lim
n→∞

1
1
|x| = |x| < 1.

We have obtained the same result as when we used the nth Root Test.

Example A.34. Find the radius of convergence of the series ∑∞
n=1

3n(x−2)n

n .
In this example, we have an expansion about x = 2. Using the nth Root Test we

find that

ρ = lim
n→∞

n

√
3n

n
|x− 2| = 3|x− 2| < 1.

Solving for |x− 2| in this inequality, we find |x− 2| < 1
3 . Thus, the radius of

convergence is R = 1
3 and the interval of convergence is

(
2− 1

3 , 2 + 1
3

)
=
( 5

3 , 7
3
)

.

As for the endpoints, we first test the point x = 7
3 . The resulting series is

∑∞
n=1

3n( 1
3 )

n

n = ∑∞
n=1

1
n . This is the harmonic series, and thus it does not converge.

Inserting x = 5
3 , we get the alternating harmonic series. This series does converge.

So, we have convergence on [ 5
3 , 7

3 ). However, it is only conditionally convergent at
the left endpoint, x = 5

3 .

Example A.35. Find an expansion of f (x) = 1
x+2 about x = 1.

Instead of explicitly computing the Taylor series expansion for this function, we
can make use of an already known function. We first write f (x) as a function of
x− 1, since we are expanding about x = 1; i.e., we are seeking a series whose terms
are powers of x− 1.

This expansion is easily done by noting that 1
x+2 = 1

(x−1)+3 . Factoring out a 3,
we can rewrite this expression as a sum of a geometric series. Namely, we use the
expansion for

g(z) =
1

1 + z
= 1− z + z2 − z3 + . . . . (A.99)
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and then we rewrite f (x) as

f (x) =
1

x + 2

=
1

(x− 1) + 3

=
1

3[1 + 1
3 (x− 1)]

=
1
3

1
1 + 1

3 (x− 1)
. (A.100)

Note that f (x) = 1
3 g( 1

3 (x− 1)) for g(z) = 1
1+z . So, the expansion becomes

f (x) =
1
3

[
1− 1

3
(x− 1) +

(
1
3
(x− 1)

)2
−
(

1
3
(x− 1)

)3
+ . . .

]
.

This can further be simplified as

f (x) =
1
3
− 1

9
(x− 1) +

1
27

(x− 1)2 − . . . .

Convergence is easily established. The expansion for g(z) converges for |z| < 1.
So, the expansion for f (x) converges for | − 1

3 (x − 1)| < 1. This implies that
|x − 1| < 3. Putting this inequality in interval notation, we have that the power
series converges absolutely for x ∈ (−2, 4). Inserting the endpoints, one can show
that the series diverges for both x = −2 and x = 4. You should verify this!

Example A.36. Prove Euler’s Formula: eiθ = cos θ + i sin θ.
Euler’s Formula, eiθ = cos θ + i sin θ,
is an important formula and is used
throughout the text.

As a final application, we can derive Euler’s Formula ,

eiθ = cos θ + i sin θ,

where i =
√
−1. We naively use the expansion for ex with x = iθ. This leads us to

eiθ = 1 + iθ +
(iθ)2

2!
+

(iθ)3

3!
+

(iθ)4

4!
+ . . . .

Next we note that each term has a power of i. The sequence of powers of i is
given as {1, i,−1,−i, 1, i,−1,−i, 1, i,−1,−i, . . .}. See the pattern? We conclude
that

in = ir, where r = remainder after dividing n by 4.

This gives

eiθ =

(
1− θ2

2!
+

θ4

4!
− . . .

)
+ i
(

θ − θ3

3!
+

θ5

5!
− . . .

)
.

We recognize the expansions in the parentheses as those for the cosine and sine
functions. Thus, we end with Euler’s Formula.

We further derive relations from this result, which will be important for
our next studies. From Euler’s formula we have that for integer n:

einθ = cos(nθ) + i sin(nθ).
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We also have
einθ =

(
eiθ
)n

= (cos θ + i sin θ)n .

Equating these two expressions, we are led to de Moivre’s Formula, named
after Abraham de Moivre (1667-1754),

(cos θ + i sin θ)n = cos(nθ) + i sin(nθ). (A.101)

de Moivre’s Formula.

This formula is useful for deriving identities relating powers of sines or
cosines to simple functions. For example, if we take n = 2 in Equation
(A.101), we find

cos 2θ + i sin 2θ = (cos θ + i sin θ)2 = cos2 θ − sin2 θ + 2i sin θ cos θ.

Looking at the real and imaginary parts of this result leads to the well
known double angle identities

cos 2θ = cos2 θ − sin2 θ, sin 2θ = 2 sin θ cos θ.

Here we see elegant proofs of well
known trigonometric identities.

cos 2θ = cos2 θ − sin2 θ,(A.102)

sin 2θ = 2 sin θ cos θ,

cos2 θ =
1
2
(1 + cos 2θ),

sin2 θ =
1
2
(1− cos 2θ).

Replacing cos2 θ = 1− sin2 θ or sin2 θ = 1− cos2 θ leads to the half angle
formulae:

cos2 θ =
1
2
(1 + cos 2θ), sin2 θ =

1
2
(1− cos 2θ).

Trigonometric functions can be written
in terms of complex exponentials:

cos θ =
eiθ + e−iθ

2
,

sin θ =
eiθ − e−iθ

2i
.

We can also use Euler’s Formula to write sines and cosines in terms of
complex exponentials. We first note that due to the fact that the cosine is an
even function and the sine is an odd function, we have

e−iθ = cos θ − i sin θ.

Combining this with Euler’s Formula, we have that

cos θ =
eiθ + e−iθ

2
, sin θ =

eiθ − e−iθ

2i
.

Hyperbolic functions and trigonometric
functions are intimately related.

cos(ix) = cosh x,

sin(ix) = −i sinh x.

We finally note that there is a simple relationship between hyperbolic
functions and trigonometric functions. Recall that

cosh x =
ex + e−x

2
.

If we let x = iθ, then we have that cosh(iθ) = cos θ and cos(ix) = cosh x.
Similarly, we can show that sinh(iθ) = i sin θ and sin(ix) = −i sinh x.

A.1.8 The Binomial Expansion

Another series expansion which occurs often in examples and ap-
plications is the binomial expansion. This is simply the expansion of theThe binomial expansion is a special se-

ries expansion used to approximate ex-
pressions of the form (a + b)p for b� a,
or (1 + x)p for |x| � 1.

expression (a + b)p in powers of a and b. We will investigate this expan-
sion first for nonnegative integer powers p and then derive the expansion
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for other values of p. While the binomial expansion can be obtained using
Taylor series, we will provide a more intuitive derivation to show that

(a + b)n =
n

∑
r=0

Cn
r an−rbr, (A.103)

where the Cn
r are called the binomial coefficients.

Lets list some of the common expansions for nonnegative integer powers.

(a + b)0 = 1

(a + b)1 = a + b

(a + b)2 = a2 + 2ab + b2

(a + b)3 = a3 + 3a2b + 3ab2 + b3

(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4

· · · (A.104)

We now look at the patterns of the terms in the expansions. First, we
note that each term consists of a product of a power of a and a power of
b. The powers of a are decreasing from n to 0 in the expansion of (a + b)n.
Similarly, the powers of b increase from 0 to n. The sums of the exponents in
each term is n. So, we can write the (k+ 1)st term in the expansion as an−kbk.
For example, in the expansion of (a + b)51 the 6th term is a51−5b5 = a46b5.
However, we do not yet know the numerical coefficients in the expansion.

Let’s list the coefficients for the above expansions.

n = 0 : 1
n = 1 : 1 1
n = 2 : 1 2 1
n = 3 : 1 3 3 1
n = 4 : 1 4 6 4 1

(A.105)

This pattern is the famous Pascal’s triangle.2 There are many interesting

2 Pascal’s triangle is named after Blaise
Pascal (1623-1662). While such configu-
rations of numbers were known earlier
in history, Pascal published them and
applied them to probability theory.

Pascal’s triangle has many unusual
properties and a variety of uses:

• Horizontal rows add to powers of 2.

• The horizontal rows are powers of 11

(1, 11, 121, 1331, etc.).

• Adding any two successive numbers
in the diagonal 1-3-6-10-15-21-28...
results in a perfect square.

• When the first number to the right of
the 1 in any row is a prime number,
all numbers in that row are divisible
by that prime number. The reader
can readily check this for the n = 5
and n = 7 rows.

• Sums along certain diagonals leads
to the Fibonacci sequence. These
diagonals are parallel to the line con-
necting the first 1 for n = 3 row and
the 2 in the n = 2 row.

features of this triangle. But we will first ask how each row can be generated.
We see that each row begins and ends with a one. The second term and

next to last term have a coefficient of n. Next we note that consecutive pairs
in each row can be added to obtain entries in the next row. For example, we
have for rows n = 2 and n = 3 that 1 + 2 = 3 and 2 + 1 = 3 :

n = 2 : 1 2 1
↘ ↙ ↘ ↙

n = 3 : 1 3 3 1
(A.106)

With this in mind, we can generate the next several rows of our triangle.

n = 3 : 1 3 3 1
n = 4 : 1 4 6 4 1
n = 5 : 1 5 10 10 5 1
n = 6 : 1 6 15 20 15 6 1

(A.107)
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So, we use the numbers in row n = 4 to generate entries in row n = 5 :
1 + 4 = 5, 4 + 6 = 10. We then use row n = 5 to get row n = 6, etc.

Of course, it would take a while to compute each row up to the desired n.
Fortunately, there is a simple expression for computing a specific coefficient.
Consider the kth term in the expansion of (a + b)n. Let r = k − 1, for
k = 1, . . . , n + 1. Then this term is of the form Cn

r an−rbr. We have seen that
the coefficients satisfy

Cn
r = Cn−1

r + Cn−1
r−1 .

Actually, the binomial coefficients, Cn
r , have been found to take a simple

form,

Cn
r =

n!
(n− r)!r!

≡
(

n
r

)
.

This is nothing other than the combinatoric symbol for determining how to
choose n objects r at a time. In the binomial expansions this makes sense.
We have to count the number of ways that we can arrange r products of b
with n− r products of a. There are n slots to place the b’s. For example, the
r = 2 case for n = 4 involves the six products: aabb, abab, abba, baab, baba,
and bbaa. Thus, it is natural to use this notation.Andreas Freiherr von Ettingshausen

(1796-1878) was a German mathemati-
cian and physicist who in 1826 intro-

duced the notation
(

n
r

)
. However,

the binomial coefficients were known by
the Hindus centuries beforehand.

So, we have found that

(a + b)n =
n

∑
r=0

(
n
r

)
an−rbr. (A.108)

Now consider the geometric series 1 + x + x2 + . . . . We have seen that
such this geometric series converges for |x| < 1, giving

1 + x + x2 + . . . =
1

1− x
.

But, 1
1−x = (1− x)−1. This is a binomial to a power, but the power is not an

integer.
It turns out that the coefficients of such a binomial expansion can be

written similar to the form in Equation(A.108). This example suggests that
our sum may no longer be finite. So, for p a real number, a = 1 and b = x,
we generalize Equation(A.108) as

(1 + x)p =
∞

∑
r=0

(
p
r

)
xr (A.109)

and see if the resulting series makes sense. However, we quickly run into
problems with the coefficients in the series.

Consider the coefficient for r = 1 in an expansion of (1 + x)−1. This is
given by (

−1
1

)
=

(−1)!
(−1− 1)!1!

=
(−1)!
(−2)!1!

.

But what is (−1)!? By definition, it is

(−1)! = (−1)(−2)(−3) · · · .
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This product does not seem to exist! But with a little care, we note that

(−1)!
(−2)!

=
(−1)(−2)!

(−2)!
= −1.

So, we need to be careful not to interpret the combinatorial coefficient liter-
ally. There are better ways to write the general binomial expansion. We can
write the general coefficient as(

p
r

)
=

p!
(p− r)!r!

=
p(p− 1) · · · (p− r + 1)(p− r)!

(p− r)!r!

=
p(p− 1) · · · (p− r + 1)

r!
. (A.110)

With this in mind we now state the theorem:

General Binomial Expansion

The general binomial expansion for (1 + x)p is a simple gener-
alization of Equation (A.108). For p real, we have the following
binomial series:

(1 + x)p =
∞

∑
r=0

p(p− 1) · · · (p− r + 1)
r!

xr, |x| < 1. (A.111)

Often in physics we only need the first few terms for the case that x � 1 :

(1 + x)p = 1 + px +
p(p− 1)

2
x2 + O(x3). (A.112)

Example A.37. Approximate γ = 1√
1− v2

c2

for v� c. The factor γ =
(

1− v2

c2

)−1/2
is impor-

tant in special relativity. Namely, this
is the factor relating differences in time
and length measurements by observers
moving relative inertial frames. For ter-
restrial speeds, this gives an appropriate
approximation.

For v� c the first approximation is found inserting v/c = 0. Thus, one obtains
γ = 1. This is the Newtonian approximation and does not provide enough of an
approximation for terrestrial speeds. Thus, we need to expand γ in powers of v/c.

First, we rewrite γ as

γ =
1√

1− v2

c2

=

[
1−

(v
c

)2
]−1/2

.

Using the binomial expansion for p = −1/2, we have

γ ≈ 1 +
(
−1

2

)(
−v2

c2

)
= 1 +

v2

2c2 .

Example A.38. Time Dilation Example
The average speed of a large commercial jet airliner is about 500 mph. If you

flew for an hour (measured from the ground), then how much younger would you
be than if you had not taken the flight, assuming these reference frames obeyed the
postulates of special relativity?
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This is the problem of time dilation. Let ∆t be the elapsed time in a stationary
reference frame on the ground and ∆τ be that in the frame of the moving plane.
Then from the Theory of Special Relativity these are related by

∆t = γ∆τ.

The time differences would then be

∆t− ∆τ = (1− γ−1)∆t

=

(
1−

√
1− v2

c2

)
∆t. (A.113)

The plane speed, 500 mph, is roughly 225 m/s and c = 3.00× 108 m/s. Since
V � c, we would need to use the binomial approximation to get a nonzero result.

∆t− ∆τ =

(
1−

√
1− v2

c2

)
∆t

=

(
1−

(
1− v2

2c2 + . . .
))

∆t

≈ v2

2c2 ∆t

=
(225)2

2(3.00× 108)2 (1 h) = 1.01 ns. (A.114)

Thus, you have aged one nanosecond less than if you did not take the flight.

Example A.39. Small differences in large numbers: Compute f (R, h) =√
R2 + h2 − R for R = 6378.164 km and h = 1.0 m.
Inserting these values into a scientific calculator, one finds that

f (6378164, 1) =
√

63781642 + 1− 6378164 = 1× 10−7 m.

In some calculators one might obtain 0, in other calculators, or computer algebra
systems like Maple, one might obtain other answers. What answer do you get and
how accurate is your answer?

The problem with this computation is that R � h. Therefore, the computation
of f (R, h) depends on how many digits the computing device can handle. The best
way to get an answer is to use the binomial approximation. Writing h = Rx, or
x = h

R , we have

f (R, h) =
√

R2 + h2 − R

= R
√

1 + x2 − R

' R
[

1 +
1
2

x2
]
− R

=
1
2

Rx2

=
1
2

h
R2 = 7.83926× 10−8 m. (A.115)

Of course, you should verify how many digits should be kept in reporting the result.
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In the next examples, we generalize this example. Such general com-
putations appear in proofs involving general expansions without specific
numerical values given.

Example A.40. Obtain an approximation to (a + b)p when a is much larger than
b, denoted by a� b.

If we neglect b then (a + b)p ' ap. How good of an approximation is this?
This is where it would be nice to know the order of the next term in the expansion.
Namely, what is the power of b/a of the first neglected term in this expansion?

In order to do this we first divide out a as

(a + b)p = ap
(

1 +
b
a

)p
.

Now we have a small parameter, b
a . According to what we have seen earlier, we can

use the binomial expansion to write(
1 +

b
a

)n
=

∞

∑
r=0

(
p
r

)(
b
a

)r
. (A.116)

Thus, we have a sum of terms involving powers of b
a . Since a � b, most of these

terms can be neglected. So, we can write(
1 +

b
a

)p
= 1 + p

b
a
+ O

((
b
a

)2
)

.

Here we used O(), big-Oh notation, to indicate the size of the first neglected term.
Summarizing, we have

(a + b)p = ap
(

1 +
b
a

)p

= ap

(
1 + p

b
a
+ O

((
b
a

)2
))

= ap + pap b
a
+ apO

((
b
a

)2
)

. (A.117)

Therefore, we can approximate (a + b)p ' ap + pbap−1, with an error on the order
of b2ap−2. Note that the order of the error does not include the constant factor from
the expansion. We could also use the approximation that (a + b)p ' ap, but it
is not typically good enough in applications because the error in this case is of the
order bap−1.

Example A.41. Approximate f (x) = (a + x)p − ap for x� a.
In an earlier example we computed f (R, h) =

√
R2 + h2 − R for R = 6378.164

km and h = 1.0 m. We can make use of the binomial expansion to determine
the behavior of similar functions in the form f (x) = (a + x)p − ap. Inserting the
binomial expression into f (x), we have as x

a → 0 that

f (x) = (a + x)p − ap
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= ap
[(

1 +
x
a

)p
− 1
]

= ap
[

px
a

+ O
(( x

a

)2
)]

= O
( x

a

)
as

x
a
→ 0. (A.118)

This result might not be the approximation that we desire. So, we could back up
one step in the derivation to write a better approximation as

(a + x)p − ap = ap−1 px + O
(( x

a

)2
)

as
x
a
→ 0.

We now use this approximation to compute f (R, h) =
√

R2 + h2 − R for R =

6378.164 km and h = 1.0 m in the earlier example. We let a = R2, x = 1 and
p = 1

2 . Then, the leading order approximation would be of order

O
(( x

a

)2
)
= O

((
1

63781642

)2
)
∼ 2.4× 10−14.

Thus, we have √
63781642 + 1− 6378164 ≈ ap−1 px

where
ap−1 px = (63781642)−1/2(0.5)1 = 7.83926× 10−8.

This is the same result we had obtained before. However, we have also an estimate
of the size of the error and this might be useful in indicating how many digits we
should trust in the answer.

Problems

1. Prove the following identities using only the definitions of the trigono-
metric functions, the Pythagorean identity, or the identities for sines and
cosines of sums of angles.

a. cos 2x = 2 cos2 x− 1.

b. sin 3x = A sin3 x + B sin x, for what values of A and B?

c. sec θ + tan θ = tan
(

θ

2
+

π

4

)
.

2. Determine the exact values of

a. sin
π

8
.

b. tan 15o.

c. cos 105o.

3. Denest the following if possible.

a.
√

3− 2
√

2.

b.
√

1 +
√

2.
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c.
√

5 + 2
√

6.

d. 3
√√

5 + 2− 3
√√

5− 2.

e. Find the roots of x2 + 6x− 4
√

5 = 0 in simplified form.

4. Determine the exact values of

a. sin
(

cos−1 3
5

)
.

b. tan
(

sin−1 x
7

)
.

c. sin−1
(

sin
3π

2

)
.

5. Do the following.

a. Write (cosh x− sinh x)6 in terms of exponentials.

b. Prove cosh(x − y) = cosh x cosh y − sinh x sinh y using the expo-
nential forms of the hyperbolic functions.

c. Prove cosh 2x = cosh2 x + sinh2 x.

d. If cosh x =
13
12

and x < 0, find sinh x and tanh x.

e. Find the exact value of sinh(arccosh 3).

6. Prove that the inverse hyperbolic functions are the following logarithms:

a. cosh−1 x = ln
(

x +
√

x2 − 1
)

.

b. tanh−1 x =
1
2

ln
1 + x
1− x

.

7. Write the following in terms of logarithms:

a. cosh−1 4
3 .

b. tanh−1 1
2 .

c. sinh−1 2.

8. Solve the following equations for x.

a. cosh(x + ln 3) = 3.

b. 2 tanh−1 x−2
x−1 = ln 2.

c. sinh2 x− 7 cosh x + 13 = 0.

9. Compute the following integrals.

a.
∫

xe2x2
dx.

b.
∫ 3

0
5x√

x2 + 16
dx.

c.
∫

x3 sin 3x dx. (Do this using integration by parts, the Tabular Method,
and differentiation under the integral sign.)

d.
∫

cos4 3x dx.

e.
∫ π/4

0 sec3 x dx.
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f.
∫

ex sinh x dx.

g.
∫ √

9− x2 dx

h.
∫ dx
(4− x2)2 , using the substitution x = 2 tanh u.

i.
∫ 4

0
dx√

9 + x2
, using a hyperbolic function substitution.

j.
∫ dx

1− x2 , using the substitution x = tanh u.

k.
∫ dx
(x2 + 4)3/2 , using the substitutions x = 2 tan θ and x = 2 sinh u.

l.
∫ dx√

3x2 − 6x + 4
.

10. Find the sum for each of the series:

a. 5 + 25
7 + 125

49 + 625
343 + · · · .

b. ∑∞
n=0

(−1)n3
4n .

c. ∑∞
n=2

2
5n .

d. ∑∞
n=−1(−1)n+1

( e
π

)n
.

e. ∑∞
n=0

(
5
2n +

1
3n

)
.

f. ∑∞
n=1

3
n(n + 3)

.

g. What is 0.569̄?

11. A superball is dropped from a 2.00 m height. After it rebounds, it
reaches a new height of 1.65 m. Assuming a constant coefficient of restitu-
tion, find the (ideal) total distance the ball will travel as it keeps bouncing.

12. Here are some telescoping series problems.

a. Verify that

∞

∑
n=1

1
(n + 2)(n + 1)

=
∞

∑
n=1

(
n + 1
n + 2

− n
n + 1

)
.

b. Find the nth partial sum of the series ∑∞
n=1

(
n + 1
n + 2

− n
n + 1

)
and

use it to determine the sum of the resulting telescoping series.

c. Sum the series ∑∞
n=1

[
tan−1 n− tan−1(n + 1)

]
by first writing the

Nth partial sum and then computing limN→∞ sN .

13. Determine the radius and interval of convergence of the following infi-
nite series:

a. ∑∞
n=1(−1)n (x− 1)n

n
.
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b. ∑∞
n=1

xn

2nn!
.

c. ∑∞
n=1

1
n

( x
5

)n
.

d. ∑∞
n=1(−1)n xn

√
n

.

14. Find the Taylor series centered at x = a and its corresponding radius of
convergence for the given function. In most cases, you need not employ the
direct method of computation of the Taylor coefficients.

a. f (x) = sinh x, a = 0.

b. f (x) =
√

1 + x, a = 0.

c. f (x) = ln
1 + x
1− x

, a = 0.

d. f (x) = xex, a = 1.

e. f (x) =
1√
x

, a = 1.

f. f (x) = x4 + x− 2, a = 2.

g. f (x) =
x− 1
2 + x

, a = 1.

15. Consider Gregory’s expansion

tan−1 x = x− x3

3
+

x5

5
− · · · =

∞

∑
k=0

(−1)k

2k + 1
x2k+1.

a. Derive Gregory’s expansion by using the definition

tan−1 x =
∫ x

0

dt
1 + t2 ,

expanding the integrand in a Maclaurin series, and integrating the
resulting series term by term.

b. From this result, derive Gregory’s series for π by inserting an ap-
propriate value for x in the series expansion for tan−1 x.

16. In the event that a series converges uniformly, one can consider the
derivative of the series to arrive at the summation of other infinite series.

a. Differentiate the series representation for f (x) = 1
1−x to sum the

series ∑∞
n=1 nxn, |x| < 1.

b. Use the result from part a to sum the series ∑∞
n=1

n
5n .

c. Sum the series ∑∞
n=2 n(n− 1)xn, |x| < 1.

d. Use the result from part c to sum the series ∑∞
n=2

n2 − n
5n .

e. Use the results from this problem to sum the series ∑∞
n=4

n2

5n .

17. Evaluate the integral
∫ π/6

0 sin2 x dx by doing the following:
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a. Compute the integral exactly.

b. Integrate the first three terms of the Maclaurin series expansion of
the integrand and compare with the exact result.

18. Determine the next term in the time dilation example, A.38. That is,
find the v4

c2 term and determine a better approximation to the time difference
of 1 ns.

19. Evaluate the following expressions at the given point. Use your calcu-
lator or your computer (such as Maple). Then use series expansions to find
an approximation to the value of the expression to as many places as you
trust.

a.
1√

1 + x3
− cos x2 at x = 0.015.

b. ln
√

1 + x
1− x

− tan x at x = 0.0015.

c. f (x) =
1√

1 + 2x2
− 1 + x2 at x = 5.00× 10−3.

d. f (R, h) = R−
√

R2 + h2 for R = 1.374× 103 km and h = 1.00 m.

e. f (x) = 1− 1√
1− x

for x = 2.5× 10−13.



B
Ordinary Differential Equations Review

“The profound study of nature is the most fertile source of mathematical discover-
ies.” - Joseph Fourier (1768-1830)

B.1 First Order Differential Equations

Before moving on, we first define an n-th order ordinary differential
equation. It is an equation for an unknown function y(x) that expresses a n-th order ordinary differential equation

relationship between the unknown function and its first n derivatives. One
could write this generally as

F(y(n)(x), y(n−1)(x), . . . , y′(x), y(x), x) = 0. (B.1)

Here y(n)(x) represents the nth derivative of y(x).
An initial value problem consists of the differential equation plus the Initial value problem.

values of the first n− 1 derivatives at a particular value of the independent
variable, say x0:

y(n−1)(x0) = yn−1, y(n−2)(x0) = yn−2, . . . , y(x0) = y0. (B.2)

A linear nth order differential equation takes the form Linear nth order differential equation

an(x)y(n)(x) + an−1(x)y(n−1)(x) + . . . + a1(x)y′(x) + a0(x)y(x)) = f (x).
(B.3)

If f (x) ≡ 0, then the equation is said to be homogeneous, otherwise it is
called nonhomogeneous. Homogeneous and nonhomogeneous

equations.Typically, the first differential equations encountered are first order equa-
tions. A first order differential equation takes the form First order differential equation

F(y′, y, x) = 0. (B.4)

There are two common first order differential equations for which one can
formally obtain a solution. The first is the separable case and the second is
a first order equation. We indicate that we can formally obtain solutions, as
one can display the needed integration that leads to a solution. However,
the resulting integrals are not always reducible to elementary functions nor
does one obtain explicit solutions when the integrals are doable.
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B.1.1 Separable Equations

A first order equation is separable if it can be written the form

dy
dx

= f (x)g(y). (B.5)

Special cases result when either f (x) = 1 or g(y) = 1. In the first case the
equation is said to be autonomous.

The general solution to equation (B.5) is obtained in terms of two inte-
grals:Separable equations.

∫ dy
g(y)

=
∫

f (x) dx + C, (B.6)

where C is an integration constant. This yields a 1-parameter family of so-
lutions to the differential equation corresponding to different values of C.
If one can solve (B.6) for y(x), then one obtains an explicit solution. Other-
wise, one has a family of implicit solutions. If an initial condition is given
as well, then one might be able to find a member of the family that satisfies
this condition, which is often called a particular solution.

Figure B.1: Plots of solutions from the 1-
parameter family of solutions of Exam-
ple B.1 for several initial conditions.

Example B.1. y′ = 2xy, y(0) = 2.
Applying (B.6), one has ∫ dy

y
=
∫

2x dx + C.

Integrating yields
ln |y| = x2 + C.

Exponentiating, one obtains the general solution,

y(x) = ±ex2+C = Aex2
.

Here we have defined A = ±eC. Since C is an arbitrary constant, A is an arbitrary
constant. Several solutions in this 1-parameter family are shown in Figure B.1.

Next, one seeks a particular solution satisfying the initial condition. For y(0) =
2, one finds that A = 2. So, the particular solution satisfying the initial condition
is y(x) = 2ex2

.

Figure B.2: Plots of solutions of Example
B.2 for several initial conditions.

Example B.2. yy′ = −x. Following the same procedure as in the last example, one
obtains: ∫

y dy = −
∫

x dx + C ⇒ y2 = −x2 + A, where A = 2C.

Thus, we obtain an implicit solution. Writing the solution as x2 + y2 = A, we see
that this is a family of circles for A > 0 and the origin for A = 0. Plots of some
solutions in this family are shown in Figure B.2.
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B.1.2 Linear First Order Equations

The second type of first order equation encountered is the linear
first order differential equation in the standard form

y′(x) + p(x)y(x) = q(x). (B.7)

In this case one seeks an integrating factor, µ(x), which is a function that one
can multiply through the equation making the left side a perfect derivative.
Thus, obtaining,

d
dx

[µ(x)y(x)] = µ(x)q(x). (B.8)

The integrating factor that works is µ(x) = exp(
∫ x p(ξ) dξ). One can

derive µ(x) by expanding the derivative in Equation (B.8),

µ(x)y′(x) + µ′(x)y(x) = µ(x)q(x), (B.9)

and comparing this equation to the one obtained from multiplying (B.7) by
µ(x) :

µ(x)y′(x) + µ(x)p(x)y(x) = µ(x)q(x). (B.10)

Note that these last two equations would be the same if the second terms
were the same. Thus, we will require that

dµ(x)
dx

= µ(x)p(x).

This is a separable first order equation for µ(x) whose solution is the inte-
grating factor: Integrating factor.

µ(x) = exp
(∫ x

p(ξ) dξ

)
. (B.11)

Equation (B.8) is now easily integrated to obtain the general solution to
the linear first order differential equation:

y(x) =
1

µ(x)

[∫ x
µ(ξ)q(ξ) dξ + C

]
. (B.12)

Example B.3. xy′ + y = x, x > 0, y(1) = 0.
One first notes that this is a linear first order differential equation. Solving for

y′, one can see that the equation is not separable. Furthermore, it is not in the
standard form (B.7). So, we first rewrite the equation as

dy
dx

+
1
x

y = 1. (B.13)

Noting that p(x) = 1
x , we determine the integrating factor

µ(x) = exp
[∫ x dξ

ξ

]
= eln x = x.
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Multiplying equation (B.13) by µ(x) = x, we actually get back the original equa-
tion! In this case we have found that xy′ + y must have been the derivative of
something to start. In fact, (xy)′ = xy′ + x. Therefore, the differential equation
becomes

(xy)′ = x.

Integrating, one obtains

xy =
1
2

x2 + C,

or
y(x) =

1
2

x +
C
x

.

Inserting the initial condition into this solution, we have 0 = 1
2 + C. Therefore,

C = − 1
2 . Thus, the solution of the initial value problem is

y(x) =
1
2
(x− 1

x
).

We can verify that this is the solution. Since y′ = 1
2 + 1

2x2 , we have

xy′ + y =
1
2

x +
1

2x
+

1
2

(
x− 1

x

)
= x.

Also, y(1) = 1
2 (1− 1) = 0.

Example B.4. (sin x)y′ + (cos x)y = x2.
Actually, this problem is easy if you realize that the left hand side is a perfect

derivative. Namely,

d
dx

((sin x)y) = (sin x)y′ + (cos x)y.

But, we will go through the process of finding the integrating factor for practice.
First, we rewrite the original differential equation in standard form. We divide

the equation by sin x to obtain

y′ + (cot x)y = x2 csc x.

Then, we compute the integrating factor as

µ(x) = exp
(∫ x

cot ξ dξ

)
= eln(sin x) = sin x.

Using the integrating factor, the standard form equation becomes

d
dx

((sin x)y) = x2.

Integrating, we have

y sin x =
1
3

x3 + C.

So, the solution is

y(x) =
(

1
3

x3 + C
)

csc x.
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B.2 Second Order Linear Differential Equations

Second order differential equations are typically harder than
first order. In most cases students are only exposed to second order linear
differential equations. A general form for a second order linear differential
equation is given by

a(x)y′′(x) + b(x)y′(x) + c(x)y(x) = f (x). (B.14)

One can rewrite this equation using operator terminology. Namely, one
first defines the differential operator L = a(x)D2 + b(x)D + c(x), where
D = d

dx . Then equation (B.14) becomes

Ly = f . (B.15)

The solutions of linear differential equations are found by making use of
the linearity of L. Namely, we consider the vector space1 consisting of real-

1 We assume that the reader has been in-
troduced to concepts in linear algebra.
Later in the text we will recall the def-
inition of a vector space and see that lin-
ear algebra is in the background of the
study of many concepts in the solution
of differential equations.

valued functions over some domain. Let f and g be vectors in this function
space. L is a linear operator if for two vectors f and g and scalar a, we have
that

a. L( f + g) = L f + Lg

b. L(a f ) = aL f .

One typically solves (B.14) by finding the general solution of the homo-
geneous problem,

Lyh = 0

and a particular solution of the nonhomogeneous problem,

Lyp = f .

Then, the general solution of (B.14) is simply given as y = yh + yp. This is
true because of the linearity of L. Namely,

Ly = L(yh + yp)

= Lyh + Lyp

= 0 + f = f . (B.16)

There are methods for finding a particular solution of a nonhomogeneous
differential equation. These methods range from pure guessing, the Method
of Undetermined Coefficients, the Method of Variation of Parameters, or
Green’s functions. We will review these methods later in the chapter.

Determining solutions to the homogeneous problem, Lyh = 0, is not al-
ways easy. However, many now famous mathematicians and physicists have
studied a variety of second order linear equations and they have saved us
the trouble of finding solutions to the differential equations that often ap-
pear in applications. We will encounter many of these in the following
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chapters. We will first begin with some simple homogeneous linear differ-
ential equations.

Linearity is also useful in producing the general solution of a homoge-
neous linear differential equation. If y1 and y2 are solutions of the homoge-
neous equation, then the linear combination y = c1y1 + c2y2 is also a solution
of the homogeneous equation. In fact, if y1 and y2 are linearly independent,22 A set of functions {yi(x)}n

i=1 is a lin-
early independent set if and only if

c1y1(x) + . . . + cnyn(x) = 0

implies ci = 0, for i = 1, . . . , n.
For n = 2, c1y1(x) + c2y2(x) = 0. If

y1 and y2 are linearly dependent, then
the coefficients are not zero and
y2(x) = − c1

c2
y1(x) and is a multiple of

y1(x).

then y = c1y1 + c2y2 is the general solution of the homogeneous problem.
Linear independence can also be established by looking at the Wronskian

of the solutions. For a second order differential equation the Wronskian is
defined as

W(y1, y2) = y1(x)y′2(x)− y′1(x)y2(x). (B.17)

The solutions are linearly independent if the Wronskian is not zero.

B.2.1 Constant Coefficient Equations

The simplest second order differential equations are those with
constant coefficients. The general form for a homogeneous constant coeffi-
cient second order linear differential equation is given as

ay′′(x) + by′(x) + cy(x) = 0, (B.18)

where a, b, and c are constants.
Solutions to (B.18) are obtained by making a guess of y(x) = erx. Inserting

this guess into (B.18) leads to the characteristic equation

ar2 + br + c = 0. (B.19)

Namely, we compute the derivatives of y(x) = erx, to get y(x) = rerx, andThe characteristic equation for
ay′′ + by′ + cy = 0 is ar2 + br + c = 0.
Solutions of this quadratic equation lead
to solutions of the differential equation.

y(x) = r2erx. Inserting into (B.18), we have

0 = ay′′(x) + by′(x) + cy(x) = (ar2 + br + c)erx.

Since the exponential is never zero, we find that ar2 + br + c = 0.Two real, distinct roots, r1 and r2, give
solutions of the form

y(x) = c1er1x + c2er2x .
The roots of this equation, r1, r2, in turn lead to three types of solutions

depending upon the nature of the roots. In general, we have two linearly in-
dependent solutions, y1(x) = er1x and y2(x) = er2x, and the general solution
is given by a linear combination of these solutions,

y(x) = c1er1x + c2er2x.

For two real distinct roots, we are done. However, when the roots are real,
but equal, or complex conjugate roots, we need to do a little more work to
obtain usable solutions.

Example B.5. y′′ − y′ − 6y = 0 y(0) = 2, y′(0) = 0.
The characteristic equation for this problem is r2 − r− 6 = 0. The roots of this

equation are found as r = −2, 3. Therefore, the general solution can be quickly
written down:

y(x) = c1e−2x + c2e3x.
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Note that there are two arbitrary constants in the general solution. Therefore,
one needs two pieces of information to find a particular solution. Of course, we have
the needed information in the form of the initial conditions.

One also needs to evaluate the first derivative

y′(x) = −2c1e−2x + 3c2e3x

in order to attempt to satisfy the initial conditions. Evaluating y and y′ at x = 0
yields

2 = c1 + c2

0 = −2c1 + 3c2 (B.20)

These two equations in two unknowns can readily be solved to give c1 = 6/5
and c2 = 4/5. Therefore, the solution of the initial value problem is obtained as
y(x) = 6

5 e−2x + 4
5 e3x.

Repeated roots, r1 = r2 = r, give solu-
tions of the form

y(x) = (c1 + c2x)erx .

In the case when there is a repeated real root, one has only one solution,
y1(x) = erx. The question is how does one obtain the second linearly in-
dependent solution? Since the solutions should be independent, we must
have that the ratio y2(x)/y1(x) is not a constant. So, we guess the form
y2(x) = v(x)y1(x) = v(x)erx. (This process is called the Method of Reduc-
tion of Order.)

For constant coefficient second order equations, we can write the equa-
tion as

(D− r)2y = 0,

where D = d
dx . We now insert y2(x) = v(x)erx into this equation. First we

compute
(D− r)verx = v′erx.

Then,
0 = (D− r)2verx = (D− r)v′erx = v′′erx.

So, if y2(x) is to be a solution to the differential equation, then v′′(x)erx = 0
for all x. So, v′′(x) = 0, which implies that

v(x) = ax + b.

So,
y2(x) = (ax + b)erx.

Without loss of generality, we can take b = 0 and a = 1 to obtain the second
linearly independent solution, y2(x) = xerx. The general solution is then

y(x) = c1erx + c2xerx.

Example B.6. y′′ + 6y′ + 9y = 0.
In this example we have r2 + 6r + 9 = 0. There is only one root, r = −3. From

the above discussion, we easily find the solution y(x) = (c1 + c2x)e−3x.
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When one has complex roots in the solution of constant coefficient equa-
tions, one needs to look at the solutions

y1,2(x) = e(α±iβ)x.

We make use of Euler’s formula (See Chapter 6 for more on complex vari-
ables)

eiβx = cos βx + i sin βx. (B.21)

Then, the linear combination of y1(x) and y2(x) becomes

Ae(α+iβ)x + Be(α−iβ)x = eαx
[

Aeiβx + Be−iβx
]

= eαx [(A + B) cos βx + i(A− B) sin βx]

≡ eαx(c1 cos βx + c2 sin βx). (B.22)

Thus, we see that we have a linear combination of two real, linearly inde-
pendent solutions, eαx cos βx and eαx sin βx.Complex roots, r = α± iβ, give solutions

of the form

y(x) = eαx(c1 cos βx + c2 sin βx). Example B.7. y′′ + 4y = 0.
The characteristic equation in this case is r2 + 4 = 0. The roots are pure imag-

inary roots, r = ±2i, and the general solution consists purely of sinusoidal func-
tions, y(x) = c1 cos(2x) + c2 sin(2x), since α = 0 and β = 2.

Example B.8. y′′ + 2y′ + 4y = 0.
The characteristic equation in this case is r2 + 2r+ 4 = 0. The roots are complex,

r = −1±
√

3i and the general solution can be written as

y(x) =
[
c1 cos(

√
3x) + c2 sin(

√
3x)
]

e−x.

Example B.9. y′′ + 4y = sin x.
This is an example of a nonhomogeneous problem. The homogeneous problem

was actually solved in Example B.7. According to the theory, we need only seek a
particular solution to the nonhomogeneous problem and add it to the solution of the
last example to get the general solution.

The particular solution can be obtained by purely guessing, making an educated
guess, or using the Method of Variation of Parameters. We will not review all of
these techniques at this time. Due to the simple form of the driving term, we will
make an intelligent guess of yp(x) = A sin x and determine what A needs to be.
Inserting this guess into the differential equation gives (−A + 4A) sin x = sin x.
So, we see that A = 1/3 works. The general solution of the nonhomogeneous
problem is therefore y(x) = c1 cos(2x) + c2 sin(2x) + 1

3 sin x.

The three cases for constant coefficient linear second order differential
equations are summarized below.
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Classification of Roots of the Characteristic Equation
for Second Order Constant Coefficient ODEs

1. Real, distinct roots r1, r2. In this case the solutions corresponding to
each root are linearly independent. Therefore, the general solution is
simply y(x) = c1er1x + c2er2x.

2. Real, equal roots r1 = r2 = r. In this case the solutions corresponding
to each root are linearly dependent. To find a second linearly inde-
pendent solution, one uses the Method of Reduction of Order. This gives
the second solution as xerx. Therefore, the general solution is found as
y(x) = (c1 + c2x)erx.

3. Complex conjugate roots r1, r2 = α ± iβ. In this case the solutions
corresponding to each root are linearly independent. Making use of
Euler’s identity, eiθ = cos(θ) + i sin(θ), these complex exponentials
can be rewritten in terms of trigonometric functions. Namely, one
has that eαx cos(βx) and eαx sin(βx) are two linearly independent solu-
tions. Therefore, the general solution becomes y(x) = eαx(c1 cos(βx) +
c2 sin(βx)).

B.3 Forced Systems

Many problems can be modeled by nonhomogeneous second order
equations. Thus, we want to find solutions of equations of the form

Ly(x) = a(x)y′′(x) + b(x)y′(x) + c(x)y(x) = f (x). (B.23)

As noted in Section B.2, one solves this equation by finding the general
solution of the homogeneous problem,

Lyh = 0

and a particular solution of the nonhomogeneous problem,

Lyp = f .

Then, the general solution of (B.14) is simply given as y = yh + yp.
So far, we only know how to solve constant coefficient, homogeneous

equations. So, by adding a nonhomogeneous term to such equations we
will need to find the particular solution to the nonhomogeneous equation.

We could guess a solution, but that is not usually possible without a little
bit of experience. So, we need some other methods. There are two main
methods. In the first case, the Method of Undetermined Coefficients, one
makes an intelligent guess based on the form of f (x). In the second method,
one can systematically developed the particular solution. We will come back
to the Method of Variation of Parameters and we will also introduce the
powerful machinery of Green’s functions later in this section.
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B.3.1 Method of Undetermined Coefficients

Let’s solve a simple differential equation highlighting how we can
handle nonhomogeneous equations.

Example B.10. Consider the equation

y′′ + 2y′ − 3y = 4. (B.24)

The first step is to determine the solution of the homogeneous equation. Thus,
we solve

y′′h + 2y′h − 3yh = 0. (B.25)

The characteristic equation is r2 + 2r− 3 = 0. The roots are r = 1,−3. So, we can
immediately write the solution

yh(x) = c1ex + c2e−3x.

The second step is to find a particular solution of (B.24). What possible function
can we insert into this equation such that only a 4 remains? If we try something
proportional to x, then we are left with a linear function after inserting x and its
derivatives. Perhaps a constant function you might think. y = 4 does not work.
But, we could try an arbitrary constant, y = A.

Let’s see. Inserting y = A into (B.24), we obtain

−3A = 4.

Ah ha! We see that we can choose A = − 4
3 and this works. So, we have a particular

solution, yp(x) = − 4
3 . This step is done.

Combining the two solutions, we have the general solution to the original non-
homogeneous equation (B.24). Namely,

y(x) = yh(x) + yp(x) = c1ex + c2e−3x − 4
3

.

Insert this solution into the equation and verify that it is indeed a solution. If we
had been given initial conditions, we could now use them to determine the arbitrary
constants.

Example B.11. What if we had a different source term? Consider the equation

y′′ + 2y′ − 3y = 4x. (B.26)

The only thing that would change is the particular solution. So, we need a guess.
We know a constant function does not work by the last example. So, let’s try

yp = Ax. Inserting this function into Equation (B.26), we obtain

2A− 3Ax = 4x.

Picking A = −4/3 would get rid of the x terms, but will not cancel everything.
We still have a constant left. So, we need something more general.
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Let’s try a linear function, yp(x) = Ax + B. Then we get after substitution into
(B.26)

2A− 3(Ax + B) = 4x.

Equating the coefficients of the different powers of x on both sides, we find a system
of equations for the undetermined coefficients:

2A− 3B = 0

−3A = 4. (B.27)

These are easily solved to obtain

A = −4
3

B =
2
3

A = −8
9

. (B.28)

So, the particular solution is

yp(x) = −4
3

x− 8
9

.

This gives the general solution to the nonhomogeneous problem as

y(x) = yh(x) + yp(x) = c1ex + c2e−3x − 4
3

x− 8
9

.

There are general forms that you can guess based upon the form of the
driving term, f (x). Some examples are given in Table B.1. More general ap-
plications are covered in a standard text on differential equations. However,
the procedure is simple. Given f (x) in a particular form, you make an ap-
propriate guess up to some unknown parameters, or coefficients. Inserting
the guess leads to a system of equations for the unknown coefficients. Solve
the system and you have the solution. This solution is then added to the
general solution of the homogeneous differential equation.

f (x) Guess
anxn + an−1xn−1 + · · ·+ a1x + a0 Anxn + An−1xn−1 + · · ·+ A1x + A0

aebx Aebx

a cos ωx + b sin ωx A cos ωx + B sin ωx

Table B.1: Forms used in the Method of
Undetermined Coefficients.

Example B.12. Solve
y′′ + 2y′ − 3y = 2e−3x. (B.29)

According to the above, we would guess a solution of the form yp = Ae−3x.
Inserting our guess, we find

0 = 2e−3x.

Oops! The coefficient, A, disappeared! We cannot solve for it. What went wrong?
The answer lies in the general solution of the homogeneous problem. Note that ex

and e−3x are solutions to the homogeneous problem. So, a multiple of e−3x will not
get us anywhere. It turns out that there is one further modification of the method.
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If the driving term contains terms that are solutions of the homogeneous problem,
then we need to make a guess consisting of the smallest possible power of x times
the function which is no longer a solution of the homogeneous problem. Namely,
we guess yp(x) = Axe−3x and differentiate this guess to obtain the derivatives
y′p = A(1− 3x)e−3x and y′′p = A(9x− 6)e−3x.

Inserting these derivatives into the differential equation, we obtain

[(9x− 6) + 2(1− 3x)− 3x]Ae−3x = 2e−3x.

Comparing coefficients, we have

−4A = 2.

So, A = −1/2 and yp(x) = − 1
2 xe−3x. Thus, the solution to the problem is

y(x) =
(

2− 1
2

x
)

e−3x.

Modified Method of Undetermined Coefficients

In general, if any term in the guess yp(x) is a solution of the homogeneous
equation, then multiply the guess by xk, where k is the smallest positive
integer such that no term in xkyp(x) is a solution of the homogeneous
problem.

B.3.2 Periodically Forced Oscillations

A special type of forcing is periodic forcing. Realistic oscillations will
dampen and eventually stop if left unattended. For example, mechanical
clocks are driven by compound or torsional pendula and electric oscilla-
tors are often designed with the need to continue for long periods of time.
However, they are not perpetual motion machines and will need a peri-
odic injection of energy. This can be done systematically by adding periodic
forcing. Another simple example is the motion of a child on a swing in the
park. This simple damped pendulum system will naturally slow down to
equilibrium (stopped) if left alone. However, if the child pumps energy into
the swing at the right time, or if an adult pushes the child at the right time,
then the amplitude of the swing can be increased.

There are other systems, such as airplane wings and long bridge spans,
in which external driving forces might cause damage to the system. A well
know example is the wind induced collapse of the Tacoma Narrows Bridge
due to strong winds. Of course, if one is not careful, the child in theThe Tacoma Narrows Bridge opened in

Washington State (U.S.) in mid 1940.
However, in November of the same year
the winds excited a transverse mode of
vibration, which eventually (in a few
hours) lead to large amplitude oscilla-
tions and then collapse.

last example might get too much energy pumped into the system causing a
similar failure of the desired motion.

While there are many types of forced systems, and some fairly compli-
cated, we can easily get to the basic characteristics of forced oscillations by
modifying the mass-spring system by adding an external, time-dependent,
driving force. Such as system satisfies the equation

mẍ + b(̇x) + kx = F(t), (B.30)
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where m is the mass, b is the damping constant, k is the spring constant,
and F(t) is the driving force. If F(t) is of simple form, then we can employ
the Method of Undetermined Coefficients. Since the systems we have con-
sidered so far are similar, one could easily apply the following to pendula
or circuits.

k m

b

F cos w t
0

Figure B.3: An external driving force is
added to the spring-mass-damper sys-
tem.

As the damping term only complicates the solution, we will consider the
simpler case of undamped motion and assume that b = 0. Furthermore,
we will introduce a sinusoidal driving force, F(t) = F0 cos ωt in order to
study periodic forcing. This leads to the simple periodically driven mass on
a spring system

mẍ + kx = F0 cos ωt. (B.31)

In order to find the general solution, we first obtain the solution to the
homogeneous problem,

xh = c1 cos ω0t + c2 sin ω0t,

where ω0 =
√

k
m . Next, we seek a particular solution to the nonhomoge-

neous problem. We will apply the Method of Undetermined Coefficients.
A natural guess for the particular solution would be to use xp = A cos ωt+

B sinωt. However, recall that the guess should not be a solution of the ho-
mogeneous problem. Comparing xp with xh, this would hold if ω 6= ω0.
Otherwise, one would need to use the Modified Method of Undetermined
Coefficients as described in the last section. So, we have two cases to con-
sider. Dividing through by the mass, we solve

the simple driven system,

ẍ + ω2
0 x =

F0

m
cos ωt.

Example B.13. Solve ẍ + ω2
0x = F0

m cos ωt, for ω 6= ω0.
In this case we continue with the guess xp = A cos ωt + B sinωt. Since there

is no damping term, one quickly finds that B = 0. Inserting xp = A cos ωt into
the differential equation, we find that(

−ω2 + ω2
0

)
A cos ωt =

F0

m
cos ωt.

Solving for A, we obtain

A =
F0

m(ω2
0 −ω2)

.

The general solution for this case is thus,

x(t) = c1 cos ω0t + c2 sin ω0t +
F0

m(ω2
0 −ω2)

cos ωt. (B.32)

Example B.14. Solve ẍ + ω2
0x = F0

m cos ω0t.
In this case, we need to employ the Modified Method of Undetermined Coef-

ficients. So, we make the guess xp = t (A cos ω0t + B sinω0t) . Since there is
no damping term, one finds that A = 0. Inserting the guess in to the differential
equation, we find that

B =
F0

2mω0
,

or the general solution is

x(t) = c1 cos ω0t + c2 sin ω0t +
F0

2mω
t sin ωt. (B.33)
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The general solution to the problem is thus

x(t) = c1 cos ω0t + c2 sin ω0t +

{ F0
m(ω2

0−ω2)
cos ωt, ω 6= ω0,

F0
2mω0

t sin ω0t, ω = ω0.
(B.34)

Special cases of these solutions provide interesting physics, which can
be explored by the reader in the homework. In the case that ω = ω0, we
see that the solution tends to grow as t gets large. This is what is called a
resonance. Essentially, one is driving the system at its natural frequency. As
the system is moving to the left, one pushes it to the left. If it is moving to
the right, one is adding energy in that direction. This forces the amplitude
of oscillation to continue to grow until the system breaks. An example of
such an oscillation is shown in Figure B.4.

Figure B.4: Plot of

x(t) = 5 cos 2t +
1
2

t sin 2t,

a solution of ẍ + 4x = 2 cos 2t showing
resonance.

In the case that ω 6= ω0, one can rewrite the solution in a simple form.
Let’s choose the initial conditions that c1 = −F0/(m(ω2

0−ω2)), c2 = 0. Then
one has (see Problem ??)

x(t) =
2F0

m(ω2
0 −ω2)

sin
(ω0 −ω)t

2
sin

(ω0 + ω)t
2

. (B.35)

For values of ω near ω0, one finds the solution consists of a rapid os-
cillation, due to the sin (ω0+ω)t

2 factor, with a slowly varying amplitude,
2F0

m(ω2
0−ω2)

sin (ω0−ω)t
2 . The reader can investigate this solution.

Figure B.5: Plot of

x(t) =
1

249

(
2045 cos 2t− 800 cos

43
20

t
)

,

a solution of ẍ + 4x = 2 cos 2.15t.

This slow variation is called a beat and the beat frequency is given by f =
|ω0−ω|

4π . In Figure B.5 we see the high frequency oscillations are contained
by the lower beat frequency, f = 0.15

4π s. This corresponds to a period of
T = 1/ f ≈ 83.7 Hz, which looks about right from the figure.

Example B.15. Solve ẍ + x = 2 cos ωt, x(0) = 0, ẋ(0) = 0, for ω = 1, 1.15. For
each case, we need the solution of the homogeneous problem,

xh(t) = c1 cos t + c2 sin t.

The particular solution depends on the value of ω.
For ω = 1, the driving term, 2 cos ωt, is a solution of the homogeneous problem.

Thus, we assume
xp(t) = At cos t + Bt sin t.

Inserting this into the differential equation, we find A = 0 and B = 1. So, the
general solution is

x(t) = c1 cos t + c2 sin t + t sin t.

Imposing the initial conditions, we find

x(t) = t sin t.

This solution is shown in Figure B.6.

Figure B.6: Plot of

x(t) = t sin 2t,

a solution of ẍ + x = 2 cos t.

For ω = 1.15, the driving term, 2 cos ω1.15t, is not a solution of the homoge-
neous problem. Thus, we assume

xp(t) = A cos 1.15t + B sin 1.15t.
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Inserting this into the differential equation, we find A = − 800
129 and B = 0. So, the

general solution is

x(t) = c1 cos t + c2 sin t− 800
129

cos t.

Imposing the initial conditions, we find

x(t) =
800
129

(cos t− cos 1.15t) .

This solution is shown in Figure B.7. The beat frequency in this case is the same as
with Figure B.5.

Figure B.7: Plot of

x(t) =
800
129

(
cos t− cos

23
20

t
)

,

a solution of ẍ + x = 2 cos 1.15t.

B.3.3 Method of Variation of Parameters

A more systematic way to find particular solutions is through the use
of the Method of Variation of Parameters. The derivation is a little detailed
and the solution is sometimes messy, but the application of the method is
straight forward if you can do the required integrals. We will first derive
the needed equations and then do some examples.

We begin with the nonhomogeneous equation. Let’s assume it is of the
standard form

a(x)y′′(x) + b(x)y′(x) + c(x)y(x) = f (x). (B.36)

We know that the solution of the homogeneous equation can be written in
terms of two linearly independent solutions, which we will call y1(x) and
y2(x) :

yh(x) = c1y1(x) + c2y2(x).

Replacing the constants with functions, then we no longer have a solution
to the homogeneous equation. Is it possible that we could stumble across
the right functions with which to replace the constants and somehow end
up with f (x) when inserted into the left side of the differential equation? It
turns out that we can.

So, let’s assume that the constants are replaced with two unknown func-
tions, which we will call c1(x) and c2(x). This change of the parameters
is where the name of the method derives. Thus, we are assuming that a
particular solution takes the form We assume the nonhomogeneous equa-

tion has a particular solution of the form

yp(x) = c1(x)y1(x) + c2(x)y2(x).yp(x) = c1(x)y1(x) + c2(x)y2(x). (B.37)

If this is to be a solution, then insertion into the differential equation should
make the equation hold. To do this we will first need to compute some
derivatives.

The first derivative is given by

y′p(x) = c1(x)y′1(x) + c2(x)y′2(x) + c′1(x)y1(x) + c′2(x)y2(x). (B.38)
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Next we will need the second derivative. But, this will yield eight terms.
So, we will first make a simplifying assumption. Let’s assume that the last
two terms add to zero:

c′1(x)y1(x) + c′2(x)y2(x) = 0. (B.39)

It turns out that we will get the same results in the end if we did not assume
this. The important thing is that it works!

Under the assumption the first derivative simplifies to

y′p(x) = c1(x)y′1(x) + c2(x)y′2(x). (B.40)

The second derivative now only has four terms:

y′p(x) = c1(x)y′′1 (x) + c2(x)y′′2 (x) + c′1(x)y′1(x) + c′2(x)y′2(x). (B.41)

Now that we have the derivatives, we can insert the guess into the differ-
ential equation. Thus, we have

f (x) = a(x)
[
c1(x)y′′1 (x) + c2(x)y′′2 (x) + c′1(x)y′1(x) + c′2(x)y′2(x)

]
+b(x)

[
c1(x)y′1(x) + c2(x)y′2(x)

]
+c(x) [c1(x)y1(x) + c2(x)y2(x)] . (B.42)

Regrouping the terms, we obtain

f (x) = c1(x)
[
a(x)y′′1 (x) + b(x)y′1(x) + c(x)y1(x)

]
+c2(x)

[
a(x)y′′2 (x) + b(x)y′2(x) + c(x)y2(x)

]
+a(x)

[
c′1(x)y′1(x) + c′2(x)y′2(x)

]
. (B.43)

Note that the first two rows vanish since y1 and y2 are solutions of the
homogeneous problem. This leaves the equation

f (x) = a(x)
[
c′1(x)y′1(x) + c′2(x)y′2(x)

]
,

which can be rearranged as

c′1(x)y′1(x) + c′2(x)y′2(x) =
f (x)
a(x)

. (B.44)

In summary, we have assumed a particular solution of the form

yp(x) = c1(x)y1(x) + c2(x)y2(x).

This is only possible if the unknown functions c1(x) and c2(x) satisfy the
system of equations

In order to solve the differential equation
Ly = f , we assume

yp(x) = c1(x)y1(x) + c2(x)y2(x),

for Ly1,2 = 0. Then, one need only solve
a simple system of equations (B.45).

c′1(x)y1(x) + c′2(x)y2(x) = 0

c′1(x)y′1(x) + c′2(x)y′2(x) =
f (x)
a(x)

. (B.45)
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System (B.45) can be solved as

c′1(x) = − f y2

aW(y1, y2)
,

c′1(x) =
f y1

aW(y1, y2)
,

where W(y1, y2) = y1y′2 − y′1y2 is the
Wronskian. We use this solution in the
next section.

It is standard to solve this system for the derivatives of the unknown
functions and then present the integrated forms. However, one could just
as easily start from this system and solve the system for each problem en-
countered.

Example B.16. Find the general solution of the nonhomogeneous problem: y′′ −
y = e2x.

The general solution to the homogeneous problem y′′h − yh = 0 is

yh(x) = c1ex + c2e−x.

In order to use the Method of Variation of Parameters, we seek a solution of the
form

yp(x) = c1(x)ex + c2(x)e−x.

We find the unknown functions by solving the system in (B.45), which in this case
becomes

c′1(x)ex + c′2(x)e−x = 0

c′1(x)ex − c′2(x)e−x = e2x. (B.46)

Adding these equations we find that

2c′1ex = e2x → c′1 =
1
2

ex.

Solving for c1(x) we find

c1(x) =
1
2

∫
ex dx =

1
2

ex.

Subtracting the equations in the system yields

2c′2e−x = −e2x → c′2 = −1
2

e3x.

Thus,

c2(x) = −1
2

∫
e3x dx = −1

6
e3x.

The particular solution is found by inserting these results into yp:

yp(x) = c1(x)y1(x) + c2(x)y2(x)

= (
1
2

ex)ex + (−1
6

e3x)e−x

=
1
3

e2x. (B.47)

Thus, we have the general solution of the nonhomogeneous problem as

y(x) = c1ex + c2e−x +
1
3

e2x.
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Example B.17. Now consider the problem: y′′ + 4y = sin x.
The solution to the homogeneous problem is

yh(x) = c1 cos 2x + c2 sin 2x. (B.48)

We now seek a particular solution of the form

yh(x) = c1(x) cos 2x + c2(x) sin 2x.

We let y1(x) = cos 2x and y2(x) = sin 2x, a(x) = 1, f (x) = sin x in system
(B.45):

c′1(x) cos 2x + c′2(x) sin 2x = 0

−2c′1(x) sin 2x + 2c′2(x) cos 2x = sin x. (B.49)

Now, use your favorite method for solving a system of two equations and two
unknowns. In this case, we can multiply the first equation by 2 sin 2x and the
second equation by cos 2x. Adding the resulting equations will eliminate the c′1
terms. Thus, we have

c′2(x) =
1
2

sin x cos 2x =
1
2
(2 cos2 x− 1) sin x.

Inserting this into the first equation of the system, we have

c′1(x) = −c′2(x)
sin 2x
cos 2x

= −1
2

sin x sin 2x = − sin2 x cos x.

These can easily be solved:

c2(x) =
1
2

∫
(2 cos2 x− 1) sin x dx =

1
2
(cos x− 2

3
cos3 x).

c1(x) = −
∫

sinx cos x dx = −1
3

sin3 x.

The final step in getting the particular solution is to insert these functions into
yp(x). This gives

yp(x) = c1(x)y1(x) + c2(x)y2(x)

= (−1
3

sin3 x) cos 2x + (
1
2

cos x− 1
3

cos3 x) sin x

=
1
3

sin x. (B.50)

So, the general solution is

y(x) = c1 cos 2x + c2 sin 2x +
1
3

sin x. (B.51)

B.4 Cauchy-Euler Equations

Another class of solvable linear differential equations that is
of interest are the Cauchy-Euler type of equations, also referred to in some
books as Euler’s equation. These are given by

ax2y′′(x) + bxy′(x) + cy(x) = 0. (B.52)
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Note that in such equations the power of x in each of the coefficients matches
the order of the derivative in that term. These equations are solved in a
manner similar to the constant coefficient equations.

One begins by making the guess y(x) = xr. Inserting this function and
its derivatives,

y′(x) = rxr−1, y′′(x) = r(r− 1)xr−2,

into Equation (B.52), we have

[ar(r− 1) + br + c] xr = 0.

Since this has to be true for all x in the problem domain, we obtain the
characteristic equation The solutions of Cauchy-Euler equations

can be found using the characteristic
equation ar(r− 1) + br + c = 0.ar(r− 1) + br + c = 0. (B.53)

Just like the constant coefficient differential equation, we have a quadratic
equation and the nature of the roots again leads to three classes of solutions.
If there are two real, distinct roots, then the general solution takes the form
y(x) = c1xr1 + c2xr2 . For two real, distinct roots, the general

solution takes the form

y(x) = c1xr1 + c2xr2 .
Example B.18. Find the general solution: x2y′′ + 5xy′ + 12y = 0.

As with the constant coefficient equations, we begin by writing down the char-
acteristic equation. Doing a simple computation,

0 = r(r− 1) + 5r + 12

= r2 + 4r + 12

= (r + 2)2 + 8,

−8 = (r + 2)2, (B.54)

one determines the roots are r = −2 ± 2
√

2i. Therefore, the general solution is
y(x) =

[
c1 cos(2

√
2 ln |x|) + c2 sin(2

√
2 ln |x|)

]
x−2

Deriving the solution for Case 2 for the Cauchy-Euler equations works in
the same way as the second for constant coefficient equations, but it is a bit
messier. First note that for the real root, r = r1, the characteristic equation
has to factor as (r− r1)

2 = 0. Expanding, we have

r2 − 2r1r + r2
1 = 0.

The general characteristic equation is

ar(r− 1) + br + c = 0.

Dividing this equation by a and rewriting, we have

r2 + (
b
a
− 1)r +

c
a
= 0.

Comparing equations, we find

b
a
= 1− 2r1,

c
a
= r2

1.
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So, the Cauchy-Euler equation for this case can be written in the form

x2y′′ + (1− 2r1)xy′ + r2
1y = 0.

Now we seek the second linearly independent solution in the form y2(x) =
v(x)xr1 . We first list this function and its derivatives,

y2(x) = vxr1 ,

y′2(x) = (xv′ + r1v)xr1−1,

y′′2 (x) = (x2v′′ + 2r1xv′ + r1(r1 − 1)v)xr1−2. (B.55)

Inserting these forms into the differential equation, we have

0 = x2y′′ + (1− 2r1)xy′ + r2
1y

= (xv′′ + v′)xr1+1. (B.56)

Thus, we need to solve the equation

xv′′ + v′ = 0,

or
v′′

v′
= − 1

x
.

Integrating, we have
ln |v′| = − ln |x|+ C,

where A = ±eC absorbs C and the signs from the absolute values. Expo-
nentiating, we obtain one last differential equation to solve,

v′ =
A
x

.

Thus,
v(x) = A ln |x|+ k.

So, we have found that the second linearly independent equation can be
written as

y2(x) = xr1 ln |x|.

Therefore, the general solution is found as y(x) = (c1 + c2 ln |x|)xr.

For one root, r1 = r2 = r, the general
solution is of the form

y(x) = (c1 + c2 ln |x|)xr .

Example B.19. Solve the initial value problem: t2y′′ + 3ty′ + y = 0, with the
initial conditions y(1) = 0, y′(1) = 1.

For this example the characteristic equation takes the form

r(r− 1) + 3r + 1 = 0,

or
r2 + 2r + 1 = 0.

There is only one real root, r = −1. Therefore, the general solution is

y(t) = (c1 + c2 ln |t|)t−1.
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However, this problem is an initial value problem. At t = 1 we know the values
of y and y′. Using the general solution, we first have that

0 = y(1) = c1.

Thus, we have so far that y(t) = c2 ln |t|t−1. Now, using the second condition and

y′(t) = c2(1− ln |t|)t−2,

we have

1 = y(1) = c2.

Therefore, the solution of the initial value problem is y(t) = ln |t|t−1.
For complex conjugate roots, r = α± iβ,
the general solution takes the form

y(x) = xα(c1 cos(β ln |x|)+ c2 sin(β ln |x|)).

We now turn to the case of complex conjugate roots, r = α± iβ. When
dealing with the Cauchy-Euler equations, we have solutions of the form
y(x) = xα+iβ. The key to obtaining real solutions is to first rewrite xy :

xy = eln xy
= ey ln x.

Thus, a power can be written as an exponential and the solution can be
written as

y(x) = xα+iβ = xαeiβ ln x, x > 0.

Recalling that

eiβ ln x = cos(β ln |x|) + i sin(β ln |x|),

we can now find two real, linearly independent solutions, xα cos(β ln |x|)
and xα sin(β ln |x|) following the same steps as earlier for the constant coef-
ficient case. This gives the general solution as

y(x) = xα(c1 cos(β ln |x|) + c2 sin(β ln |x|)).

Example B.20. Solve: x2y′′ − xy′ + 5y = 0.
The characteristic equation takes the form

r(r− 1)− r + 5 = 0,

or

r2 − 2r + 5 = 0.

The roots of this equation are complex, r1,2 = 1± 2i. Therefore, the general solution
is y(x) = x(c1 cos(2 ln |x|) + c2 sin(2 ln |x|)).

The three cases are summarized in the table below.
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Classification of Roots of the Characteristic Equation
for Cauchy-Euler Differential Equations

1. Real, distinct roots r1, r2. In this case the solutions corresponding to
each root are linearly independent. Therefore, the general solution is
simply y(x) = c1xr1 + c2xr2 .

2. Real, equal roots r1 = r2 = r. In this case the solutions corresponding
to each root are linearly dependent. To find a second linearly indepen-
dent solution, one uses the Method of Reduction of Order. This gives
the second solution as xr ln |x|. Therefore, the general solution is found
as y(x) = (c1 + c2 ln |x|)xr.

3. Complex conjugate roots r1, r2 = α ± iβ. In this case the solutions
corresponding to each root are linearly independent. These com-
plex exponentials can be rewritten in terms of trigonometric functions.
Namely, one has that xα cos(β ln |x|) and xα sin(β ln |x|) are two lin-
early independent solutions. Therefore, the general solution becomes
y(x) = xα(c1 cos(β ln |x|) + c2 sin(β ln |x|)).

Nonhomogeneous Cauchy-Euler Equations

We can also solve some nonhomogeneous Cauchy-Euler equations using
the Method of Undetermined Coefficients or the Method of Variation of
Parameters. We will demonstrate this with a couple of examples.

Example B.21. Find the solution of x2y′′ − xy′ − 3y = 2x2.
First we find the solution of the homogeneous equation. The characteristic

equation is r2 − 2r − 3 = 0. So, the roots are r = −1, 3 and the solution is
yh(x) = c1x−1 + c2x3.

We next need a particular solution. Let’s guess yp(x) = Ax2. Inserting the
guess into the nonhomogeneous differential equation, we have

2x2 = x2y′′ − xy′ − 3y = 2x2

= 2Ax2 − 2Ax2 − 3Ax2

= −3Ax2. (B.57)

So, A = −2/3. Therefore, the general solution of the problem is

y(x) = c1x−1 + c2x3 − 2
3

x2.

Example B.22. Find the solution of x2y′′ − xy′ − 3y = 2x3.
In this case the nonhomogeneous term is a solution of the homogeneous problem,

which we solved in the last example. So, we will need a modification of the method.
We have a problem of the form

ax2y′′ + bxy′ + cy = dxr,
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where r is a solution of ar(r− 1) + br + c = 0. Let’s guess a solution of the form
y = Axr ln x. Then one finds that the differential equation reduces to Axr(2ar −
a + b) = dxr. [You should verify this for yourself.]

With this in mind, we can now solve the problem at hand. Let yp = Ax3 ln x.
Inserting into the equation, we obtain 4Ax3 = 2x3, or A = 1/2. The general
solution of the problem can now be written as

y(x) = c1x−1 + c2x3 +
1
2

x3 ln x.

Example B.23. Find the solution of x2y′′ − xy′ − 3y = 2x3 using Variation of
Parameters.

As noted in the previous examples, the solution of the homogeneous problem has
two linearly independent solutions, y1(x) = x−1 and y2(x) = x3. Assuming a
particular solution of the form yp(x) = c1(x)y1(x) + c2(x)y2(x), we need to solve
the system (B.45):

c′1(x)x−1 + c′2(x)x3 = 0

−c′1(x)x−2 + 3c′2(x)x2 =
2x3

x2 = 2x. (B.58)

From the first equation of the system we have c′1(x) = −x4c′2(x). Substituting
this into the second equation gives c′2(x) = 1

2x . So, c2(x) = 1
2 ln |x| and, therefore,

c1(x) = 1
8 x4. The particular solution is

yp(x) = c1(x)y1(x) + c2(x)y2(x) =
1
8

x3 +
1
2

x3 ln |x|.

Adding this to the homogeneous solution, we obtain the same solution as in the last
example using the Method of Undetermined Coefficients. However, since 1

8 x3 is a
solution of the homogeneous problem, it can be absorbed into the first terms, leaving

y(x) = c1x−1 + c2x3 +
1
2

x3 ln x.

Problems

1. Find all of the solutions of the first order differential equations. When
an initial condition is given, find the particular solution satisfying that con-
dition.

a.
dy
dx

=
ex

2y
.

b.
dy
dt

= y2(1 + t2), y(0) = 1.

c.
dy
dx

=

√
1− y2

x
.

d. xy′ = y(1− 2y), y(1) = 2.

e. y′ − (sin x)y = sin x.

f. xy′ − 2y = x2, y(1) = 1.
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g.
ds
dt

+ 2s = st2, , s(0) = 1.

h. x′ − 2x = te2t.

i.
dy
dx

+ y = sin x, y(0) = 0.

j.
dy
dx
− 3

x
y = x3, y(1) = 4.

2. Consider the differential equation

dy
dx

=
x
y
− x

1 + y
.

a. Find the 1-parameter family of solutions (general solution) of this
equation.

b. Find the solution of this equation satisfying the initial condition
y(0) = 1. Is this a member of the 1-parameter family?

3. Identify the type of differential equation. Find the general solution and
plot several particular solutions. Also, find the singular solution if one ex-
ists.

a. y = xy′ + 1
y′ .

b. y = 2xy′ + ln y′.

c. y′ + 2xy = 2xy2.

d. y′ + 2xy = y2ex2
.

4. Find all of the solutions of the second order differential equations. When
an initial condition is given, find the particular solution satisfying that con-
dition.

a. y′′ − 9y′ + 20y = 0.

b. y′′ − 3y′ + 4y = 0, y(0) = 0, y′(0) = 1.

c. 8y′′ + 4y′ + y = 0, y(0) = 1, y′(0) = 0.

d. x′′ − x′ − 6x = 0 for x = x(t).

5. Verify that the given function is a solution and use Reduction of Order
to find a second linearly independent solution.

a. x2y′′ − 2xy′ − 4y = 0, y1(x) = x4.

b. xy′′ − y′ + 4x3y = 0, y1(x) = sin(x2).

6. Prove that y1(x) = sinh x and y2(x) = 3 sinh x − 2 cosh x are linearly
independent solutions of y′′ − y = 0. Write y3(x) = cosh x as a linear com-
bination of y1 and y2.

7. Consider the nonhomogeneous differential equation x′′− 3x′+ 2x = 6e3t.

a. Find the general solution of the homogenous equation.

b. Find a particular solution using the Method of Undetermined Co-
efficients by guessing xp(t) = Ae3t.
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c. Use your answers in the previous parts to write down the general
solution for this problem.

8. Find the general solution of the given equation by the method given.

a. y′′ − 3y′ + 2y = 10. Method of Undetermined Coefficients.

b. y′′ + y′ = 3x2. Variation of Parameters.

9. Use the Method of Variation of Parameters to determine the general
solution for the following problems.

a. y′′ + y = tan x.

b. y′′ − 4y′ + 4y = 6xe2x.

10. Instead of assuming that c′1y1 + c′2y2 = 0 in the derivation of the solu-
tion using Variation of Parameters, assume that c′1y1 + c′2y2 = h(x) for an
arbitrary function h(x) and show that one gets the same particular solution.

11. Find all of the solutions of the second order differential equations for
x > 0.. When an initial condition is given, find the particular solution
satisfying that condition.

a. x2y′′ + 3xy′ + 2y = 0.

b. x2y′′ − 3xy′ + 3y = 0.

c. x2y′′ + 5xy′ + 4y = 0.

d. x2y′′ − 2xy′ + 3y = 0.

e. x2y′′ + 3xy′ − 3y = x2.
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