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Green’s Functions and Nonhomogeneous
Problems

“The young theoretical physicists of a generation or two earlier subscribed to the
belief that: If you haven’t done something important by age 30, you never will.
Obviously, they were unfamiliar with the history of George Green, the miller of
Nottingham.” Julian Schwinger (1918-1994)

The wave equation, heat equation, and Laplace’s equation are
typical homogeneous partial differential equations. They can be written in
the form

Lu(x) = 0,

where L is a differential operator. For example, these equations can be
written as (

∂2

∂t2 − c2∇2
)

u = 0,(
∂

∂t
− k∇2

)
u = 0,

∇2u = 0. (7.1)
George Green (1793-1841), a British
mathematical physicist who had little
formal education and worked as a miller
and a baker, published An Essay on
the Application of Mathematical Analysis
to the Theories of Electricity and Mag-
netism in which he not only introduced
what is now known as Green’s func-
tion, but he also introduced potential
theory and Green’s Theorem in his stud-
ies of electricity and magnetism. Re-
cently his paper was posted at arXiv.org,
arXiv:0807.0088.

In this chapter we will explore solutions of nonhomogeneous partial dif-
ferential equations,

Lu(x) = f (x),

by seeking out the so-called Green’s function. The history of the Green’s
function dates back to 1828, when George Green published work in which
he sought solutions of Poisson’s equation ∇2u = f for the electric potential
u defined inside a bounded volume with specified boundary conditions on
the surface of the volume. He introduced a function now identified as what
Riemann later coined the “Green’s function”. In this chapter we will derive
the initial value Green’s function for ordinary differential equations. Later in
the chapter we will return to boundary value Green’s functions and Green’s
functions for partial differential equations.

As a simple example, consider Poisson’s equation,

∇2u(r) = f (r).
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Let Poisson’s equation hold inside a region Ω bounded by the surface ∂Ω
as shown in Figure 7.1. This is the nonhomogeneous form of Laplace’s
equation. The nonhomogeneous term, f (r), could represent a heat source
in a steady-state problem or a charge distribution (source) in an electrostatic
problem.

∂Ω

Ω

n̂

Figure 7.1: Let Poisson’s equation hold
inside region Ω bounded by surface ∂Ω.

Now think of the source as a point source in which we are interested in
the response of the system to this point source. If the point source is located
at a point r′, then the response to the point source could be felt at points
r. We will call this response G(r, r′). The response function would satisfy a
point source equation of the form

∇2G(r, r′) = δ(r− r′).

Here δ(r− r′) is the Dirac delta function, which we will consider in moreThe Dirac delta function satisfies

δ(r) = 0, r 6= 0,∫
Ω

δ(r) dV = 1.

detail in Section 9.4. A key property of this generalized function is the
sifting property, ∫

Ω
δ(r− r′) f (r) dV = f (r′).

The connection between the Green’s function and the solution to Pois-
son’s equation can be found from Green’s second identity:∫

∂Ω
[φ∇ψ− ψ∇φ] · n dS =

∫
Ω
[φ∇2ψ− ψ∇2φ] dV.

Letting φ = u(r) and ψ = G(r, r′), we have11 We note that in the following the vol-
ume and surface integrals and differen-
tiation using ∇ are performed using the
r-coordinates.

∫
∂Ω

[u(r)∇G(r, r′)− G(r, r′)∇u(r)] · n dS

=
∫

Ω

[
u(r)∇2G(r, r′)− G(r, r′)∇2u(r)

]
dV

=
∫

Ω

[
u(r)δ(r− r′)− G(r, r′) f (r)

]
dV

= u(r′)−
∫

Ω
G(r, r′) f (r) dV. (7.2)

Solving for u(r′), we have

u(r′) =
∫

Ω
G(r, r′) f (r) dV

+
∫

∂Ω
[u(r)∇G(r, r′)− G(r, r′)∇u(r)] · n dS. (7.3)

If both u(r) and G(r, r′) satisfied Dirichlet conditions, u = 0 on ∂Ω, then the
last integral vanishes and we are left with22 In many applications there is a symme-

try,
G(r, r′) = G(r′, r).

Then, the result can be written as

u(r) =
∫

Ω
G(r, r′) f (r′) dV′.

u(r′) =
∫

Ω
G(r, r′) f (r) dV.

So, if we know the Green’s function, we can solve the nonhomogeneous
differential equation. In fact, we can use the Green’s function to solve non-
homogenous boundary value and initial value problems. That is what we
will see develop in this chapter as we explore nonhomogeneous problems
in more detail. We will begin with the search for Green’s functions for ordi-
nary differential equations.
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7.1 Initial Value Green’s Functions

In this section we will investigate the solution of initial value prob-
lems involving nonhomogeneous differential equations using Green’s func-
tions. Our goal is to solve the nonhomogeneous differential equation

a(t)y′′(t) + b(t)y′(t) + c(t)y(t) = f (t), (7.4)

subject to the initial conditions

y(0) = y0 y′(0) = v0.

Since we are interested in initial value problems, we will denote the inde-
pendent variable as a time variable, t.

Equation (7.4) can be written compactly as

L[y] = f ,

where L is the differential operator

L = a(t)
d2

dt2 + b(t)
d
dt

+ c(t).

The solution is formally given by

y = L−1[ f ].

The inverse of a differential operator is an integral operator, which we seek
to write in the form

y(t) =
∫

G(t, τ) f (τ) dτ.

The function G(t, τ) is referred to as the kernel of the integral operator and G(t, τ) is called a Green’s function.

is called the Green’s function.
In the last section we solved nonhomogeneous equations like (7.4) using

the Method of Variation of Parameters. Letting,

yp(t) = c1(t)y1(t) + c2(t)y2(t), (7.5)

we found that we have to solve the system of equations

c′1(t)y1(t) + c′2(t)y2(t) = 0.

c′1(t)y
′
1(t) + c′2(t)y

′
2(t) =

f (t)
q(t)

. (7.6)

This system is easily solved to give

c′1(t) = − f (t)y2(t)
a(t)

[
y1(t)y′2(t)− y′1(t)y2(t)

]
c′2(t) =

f (t)y1(t)
a(t)

[
y1(t)y′2(t)− y′1(t)y2(t)

] . (7.7)
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We note that the denominator in these expressions involves the Wronskian
of the solutions to the homogeneous problem, which is given by the deter-
minant

W(y1, y2)(t) =

∣∣∣∣∣ y1(t) y2(t)
y′1(t) y′2(t)

∣∣∣∣∣ .

When y1(t) and y2(t) are linearly independent, then the Wronskian is not
zero and we are guaranteed a solution to the above system.

So, after an integration, we find the parameters as

c1(t) = −
∫ t

t0

f (τ)y2(τ)

a(τ)W(τ)
dτ

c2(t) =
∫ t

t1

f (τ)y1(τ)

a(τ)W(τ)
dτ, (7.8)

where t0 and t1 are arbitrary constants to be determined from the initial
conditions.

Therefore, the particular solution of (7.4) can be written as

yp(t) = y2(t)
∫ t

t1

f (τ)y1(τ)

a(τ)W(τ)
dτ − y1(t)

∫ t

t0

f (τ)y2(τ)

a(τ)W(τ)
dτ. (7.9)

We begin with the particular solution (7.9) of the nonhomogeneous differ-
ential equation (7.4). This can be combined with the general solution of the
homogeneous problem to give the general solution of the nonhomogeneous
differential equation:

yp(t) = c1y1(t) + c2y2(t) + y2(t)
∫ t

t1

f (τ)y1(τ)

a(τ)W(τ)
dτ − y1(t)

∫ t

t0

f (τ)y2(τ)

a(τ)W(τ)
dτ.

(7.10)
However, an appropriate choice of t0 and t1 can be found so that we

need not explicitly write out the solution to the homogeneous problem,
c1y1(t) + c2y2(t). However, setting up the solution in this form will allow
us to use t0 and t1 to determine particular solutions which satisfies certain
homogeneous conditions. In particular, we will show that Equation (7.10)
can be written in the form

y(t) = c1y1(t) + c2y2(t) +
∫ t

0
G(t, τ) f (τ) dτ, (7.11)

where the function G(t, τ) will be identified as the Green’s function.
The goal is to develop the Green’s function technique to solve the initial

value problem

a(t)y′′(t) + b(t)y′(t) + c(t)y(t) = f (t), y(0) = y0, y′(0) = v0. (7.12)

We first note that we can solve this initial value problem by solving two
separate initial value problems. We assume that the solution of the homo-
geneous problem satisfies the original initial conditions:

a(t)y′′h (t) + b(t)y′h(t) + c(t)yh(t) = 0, yh(0) = y0, y′h(0) = v0. (7.13)
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We then assume that the particular solution satisfies the problem

a(t)y′′p(t) + b(t)y′p(t) + c(t)yp(t) = f (t), yp(0) = 0, y′p(0) = 0. (7.14)

Since the differential equation is linear, then we know that

y(t) = yh(t) + yp(t)

is a solution of the nonhomogeneous equation. Also, this solution satisfies
the initial conditions:

y(0) = yh(0) + yp(0) = y0 + 0 = y0,

y′(0) = y′h(0) + y′p(0) = v0 + 0 = v0.

Therefore, we need only focus on finding a particular solution that satisfies
homogeneous initial conditions. This will be done by finding values for t0

and t1 in Equation (7.9) which satisfy the homogeneous initial conditions,
yp(0) = 0 and y′p(0) = 0.

First, we consider yp(0) = 0. We have

yp(0) = y2(0)
∫ 0

t1

f (τ)y1(τ)

a(τ)W(τ)
dτ − y1(0)

∫ 0

t0

f (τ)y2(τ)

a(τ)W(τ)
dτ. (7.15)

Here, y1(t) and y2(t) are taken to be any solutions of the homogeneous
differential equation. Let’s assume that y1(0) = 0 and y2 6= (0) = 0. Then,
we have

yp(0) = y2(0)
∫ 0

t1

f (τ)y1(τ)

a(τ)W(τ)
dτ (7.16)

We can force yp(0) = 0 if we set t1 = 0.
Now, we consider y′p(0) = 0. First we differentiate the solution and find

that

y′p(t) = y′2(t)
∫ t

0

f (τ)y1(τ)

a(τ)W(τ)
dτ − y′1(t)

∫ t

t0

f (τ)y2(τ)

a(τ)W(τ)
dτ, (7.17)

since the contributions from differentiating the integrals will cancel. Evalu-
ating this result at t = 0, we have

y′p(0) = −y′1(0)
∫ 0

t0

f (τ)y2(τ)

a(τ)W(τ)
dτ. (7.18)

Assuming that y′1(0) 6= 0, we can set t0 = 0.
Thus, we have found that

yp(x) = y2(t)
∫ t

0

f (τ)y1(τ)

a(τ)W(τ)
dτ − y1(t)

∫ t

0

f (τ)y2(τ)

a(τ)W(τ)
dτ

=
∫ t

0

[
y1(τ)y2(t)− y1(t)y2(τ)

a(τ)W(τ)

]
f (τ) dτ. (7.19)

This result is in the correct form and we can identify the temporal, or
initial value, Green’s function. So, the particular solution is given as

yp(t) =
∫ t

0
G(t, τ) f (τ) dτ, (7.20)
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where the initial value Green’s function is defined as

G(t, τ) =
y1(τ)y2(t)− y1(t)y2(τ)

a(τ)W(τ)
.

We summarize

Solution of IVP Using the Green’s Function

The solution of the initial value problem,

a(t)y′′(t) + b(t)y′(t) + c(t)y(t) = f (t), y(0) = y0, y′(0) = v0,

takes the form

y(t) = yh(t) +
∫ t

0
G(t, τ) f (τ) dτ, (7.21)

where

G(t, τ) =
y1(τ)y2(t)− y1(t)y2(τ)

a(τ)W(τ)
(7.22)

is the Green’s function and y1, y2, yh are solutions of the homogeneous
equation satisfying

y1(0) = 0, y2(0) 6= 0, y′1(0) 6= 0, y′2(0) = 0, yh(0) = y0, y′h(0) = v0.

Example 7.1. Solve the forced oscillator problem

x′′ + x = 2 cos t, x(0) = 4, x′(0) = 0.

We first solve the homogeneous problem with nonhomogeneous initial conditions:

x′′h + xh = 0, xh(0) = 4, x′h(0) = 0.

The solution is easily seen to be xh(t) = 4 cos t.
Next, we construct the Green’s function. We need two linearly independent so-

lutions, y1(x), y2(x), to the homogeneous differential equation satisfying different
homogeneous conditions, y1(0) = 0 and y′2(0) = 0. The simplest solutions are
y1(t) = sin t and y2(t) = cos t. The Wronskian is found as

W(t) = y1(t)y′2(t)− y′1(t)y2(t) = − sin2 t− cos2 t = −1.

Since a(t) = 1 in this problem, we compute the Green’s function,

G(t, τ) =
y1(τ)y2(t)− y1(t)y2(τ)

a(τ)W(τ)

= sin t cos τ − sin τ cos t

= sin(t− τ). (7.23)

Note that the Green’s function depends on t − τ. While this is useful in some
contexts, we will use the expanded form when carrying out the integration.

We can now determine the particular solution of the nonhomogeneous differential
equation. We have

xp(t) =
∫ t

0
G(t, τ) f (τ) dτ
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=
∫ t

0
(sin t cos τ − sin τ cos t) (2 cos τ) dτ

= 2 sin t
∫ t

0
cos2 τdτ − 2 cos t

∫ t

0
sin τ cos τdτ

= 2 sin t
[

τ

2
+

1
2

sin 2τ

]t

0
− 2 cos t

[
1
2

sin2 τ

]t

0
= t sin t. (7.24)

Therefore, the solution of the nonhomogeneous problem is the sum of the solution
of the homogeneous problem and this particular solution: x(t) = 4 cos t + t sin t.

7.2 Boundary Value Green’s Functions

We solved nonhomogeneous initial value problems in Section 7.1
using a Green’s function. In this section we will extend this method to the
solution of nonhomogeneous boundary value problems using a boundary
value Green’s function. Recall that the goal is to solve the nonhomogeneous
differential equation

L[y] = f , a ≤ x ≤ b,

where L is a differential operator and y(x) satisfies boundary conditions at
x = a and x = b.. The solution is formally given by

y = L−1[ f ].

The inverse of a differential operator is an integral operator, which we seek
to write in the form

y(x) =
∫ b

a
G(x, ξ) f (ξ) dξ.

The function G(x, ξ) is referred to as the kernel of the integral operator and
is called the Green’s function.

We will consider boundary value problems in Sturm-Liouville form,

d
dx

(
p(x)

dy(x)
dx

)
+ q(x)y(x) = f (x), a < x < b, (7.25)

with fixed values of y(x) at the boundary, y(a) = 0 and y(b) = 0. How-
ever, the general theory works for other forms of homogeneous boundary
conditions.

We seek the Green’s function by first solving the nonhomogeneous dif-
ferential equation using the Method of Variation of Parameters. Recall this
method from Section B.3.3. We assume a particular solution of the form

yp(x) = c1(x)y1(x) + c2(x)y2(x),

which is formed from two linearly independent solution of the homoge-
neous problem, yi(x), i = 1, 2. We had found that the coefficient functions
satisfy the equations

c′1(x)y1(x) + c′2(x)y2(x) = 0

c′1(x)y′1(x) + c′2(x)y′2(x) =
f (x)
p(x)

. (7.26)
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Solving this system, we obtain

c′1(x) = − f y2

pW(y1, y2)
,

c′1(x) =
f y1

pW(y1, y2)
,

where W(y1, y2) = y1y′2 − y′1y2 is the Wronskian. Integrating these forms
and inserting the results back into the particular solution, we find

y(x) = y2(x)
∫ x

x1

f (ξ)y1(ξ)

p(ξ)W(ξ)
dξ − y1(x)

∫ x

x0

f (ξ)y2(ξ)

p(ξ)W(ξ)
dξ,

where x0 and x1 are to be determined using the boundary values. In par-
ticular, we will seek x0 and x1 so that the solution to the boundary value
problem can be written as a single integral involving a Green’s function.
Note that we can absorb the solution to the homogeneous problem, yh(x),
into the integrals with an appropriate choice of limits on the integrals.

We now look to satisfy the conditions y(a) = 0 and y(b) = 0. First we use
solutions of the homogeneous differential equation that satisfy y1(a) = 0,
y2(b) = 0 and y1(b) 6= 0, y2(a) 6= 0. Evaluating y(x) at x = 0, we have

y(a) = y2(a)
∫ a

x1

f (ξ)y1(ξ)

p(ξ)W(ξ)
dξ − y1(a)

∫ a

x0

f (ξ)y2(ξ)

p(ξ)W(ξ)
dξ

= y2(a)
∫ a

x1

f (ξ)y1(ξ)

p(ξ)W(ξ)
dξ. (7.27)

We can satisfy the condition at x = a if we choose x1 = a.
Similarly, at x = b we find that

y(b) = y2(b)
∫ b

x1

f (ξ)y1(ξ)

p(ξ)W(ξ)
dξ − y1(b)

∫ b

x0

f (ξ)y2(ξ)

p(ξ)W(ξ)
dξ

= −y1(b)
∫ b

x0

f (ξ)y2(ξ)

p(ξ)W(ξ)
dξ. (7.28)

This expression vanishes for x0 = b.The general solution of the boundary
value problem. So, we have found that the solution takes the form

y(x) = y2(x)
∫ x

a

f (ξ)y1(ξ)

p(ξ)W(ξ)
dξ − y1(x)

∫ x

b

f (ξ)y2(ξ)

p(ξ)W(ξ)
dξ. (7.29)

This solution can be written in a compact form just like we had done for
the initial value problem in Section 7.1. We seek a Green’s function so that
the solution can be written as a single integral. We can move the functions
of x under the integral. Also, since a < x < b, we can flip the limits in the
second integral. This gives

y(x) =
∫ x

a

f (ξ)y1(ξ)y2(x)
p(ξ)W(ξ)

dξ +
∫ b

x

f (ξ)y1(x)y2(ξ)

p(ξ)W(ξ)
dξ. (7.30)

This result can now be written in a compact form:
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Boundary Value Green’s Function

The solution of the boundary value problem

d
dx

(
p(x)

dy(x)
dx

)
+ q(x)y(x) = f (x), a < x < b,

y(a) = 0, y(b) = 0. (7.31)

takes the form

y(x) =
∫ b

a
G(x, ξ) f (ξ) dξ, (7.32)

where the Green’s function is the piecewise defined function

G(x, ξ) =


y1(ξ)y2(x)

pW
, a ≤ ξ ≤ x,

y1(x)y2(ξ)

pW
, x ≤ ξ ≤ b,

(7.33)

where y1(x) and y2(x) are solutions of the homogeneous problem satis-
fying y1(a) = 0, y2(b) = 0 and y1(b) 6= 0, y2(a) 6= 0.

The Green’s function satisfies several properties, which we will explore
further in the next section. For example, the Green’s function satisfies the
boundary conditions at x = a and x = b. Thus,

G(a, ξ) =
y1(a)y2(ξ)

pW
= 0,

G(b, ξ) =
y1(ξ)y2(b)

pW
= 0.

Also, the Green’s function is symmetric in its arguments. Interchanging the
arguments gives

G(ξ, x) =


y1(x)y2(ξ)

pW
, a ≤ x ≤ ξ,

y1(ξ)y2(x)
pW

. ξ ≤ x ≤ b,
(7.34)

But a careful look at the original form shows that

G(x, ξ) = G(ξ, x).

We will make use of these properties in the next section to quickly deter-
mine the Green’s functions for other boundary value problems.

Example 7.2. Solve the boundary value problem y′′ = x2, y(0) = 0 = y(1)
using the boundary value Green’s function.

We first solve the homogeneous equation, y′′ = 0. After two integrations, we
have y(x) = Ax + B, for A and B constants to be determined.

We need one solution satisfying y1(0) = 0 Thus,

0 = y1(0) = B.
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So, we can pick y1(x) = x, since A is arbitrary.
The other solution has to satisfy y2(1) = 0. So,

0 = y2(1) = A + B.

This can be solved for B = −A. Again, A is arbitrary and we will choose A = −1.
Thus, y2(x) = 1− x.

For this problem p(x) = 1. Thus, for y1(x) = x and y2(x) = 1− x,

p(x)W(x) = y1(x)y′2(x)− y′1(x)y2(x) = x(−1)− 1(1− x) = −1.

Note that p(x)W(x) is a constant, as it should be.
Now we construct the Green’s function. We have

G(x, ξ) =

{
−ξ(1− x), 0 ≤ ξ ≤ x,
−x(1− ξ), x ≤ ξ ≤ 1.

(7.35)

Notice the symmetry between the two branches of the Green’s function. Also, the
Green’s function satisfies homogeneous boundary conditions: G(0, ξ) = 0, from the
lower branch, and G(1, ξ) = 0, from the upper branch.

Finally, we insert the Green’s function into the integral form of the solution and
evaluate the integral.

y(x) =
∫ 1

0
G(x, ξ) f (ξ) dξ

=
∫ 1

0
G(x, ξ)ξ2 dξ

= −
∫ x

0
ξ(1− x)ξ2 dξ −

∫ 1

x
x(1− ξ)ξ2 dξ

= −(1− x)
∫ x

0
ξ3 dξ − x

∫ 1

x
(ξ2 − ξ3) dξ

= −(1− x)
[

ξ4

4

]x

0
− x

[
ξ3

3
− ξ4

4

]1

x

= −1
4
(1− x)x4 − 1

12
x(4− 3) +

1
12

x(4x3 − 3x4)

=
1

12
(x4 − x). (7.36)

Checking the answer, we can easily verify that y′′ = x2, y(0) = 0, and y(1) = 0.

7.2.1 Properties of Green’s Functions

We have noted some properties of Green’s functions in the last
section. In this section we will elaborate on some of these properties as a tool
for quickly constructing Green’s functions for boundary value problems. We
list five basic properties:

1. Differential Equation:

The boundary value Green’s function satisfies the differential equation
∂

∂x

(
p(x) ∂G(x,ξ)

∂x

)
+ q(x)G(x, ξ) = 0, x 6= ξ.
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This is easily established. For x < ξ we are on the second branch
and G(x, ξ) is proportional to y1(x). Thus, since y1(x) is a solution of
the homogeneous equation, then so is G(x, ξ). For x > ξ we are on
the first branch and G(x, ξ) is proportional to y2(x). So, once again
G(x, ξ) is a solution of the homogeneous problem.

2. Boundary Conditions:

In the example in the last section we had seen that G(a, ξ) = 0 and
G(b, ξ) = 0. For example, for x = a we are on the second branch
and G(x, ξ) is proportional to y1(x). Thus, whatever condition y1(x)
satisfies, G(x, ξ) will satisfy. A similar statement can be made for
x = b.

3. Symmetry or Reciprocity: G(x, ξ) = G(ξ, x)

We had shown this reciprocity property in the last section.

4. Continuity of G at x = ξ: G(ξ+, ξ) = G(ξ−, ξ)

Here we define ξ± through the limits of a function as x approaches ξ

from above or below. In particular,

G(ξ+, x) = lim
x↓ξ

G(x, ξ), x > ξ,

G(ξ−, x) = lim
x↑ξ

G(x, ξ), x < ξ.

Setting x = ξ in both branches, we have

y1(ξ)y2(ξ)

pW
=

y1(ξ)y2(ξ)

pW
.

Therefore, we have established the continuity of G(x, ξ) between the
two branches at x = ξ.

5. Jump Discontinuity of ∂G
∂x at x = ξ:

∂G(ξ+, ξ)

∂x
− ∂G(ξ−, ξ)

∂x
=

1
p(ξ)

This case is not as obvious. We first compute the derivatives by not-
ing which branch is involved and then evaluate the derivatives and
subtract them. Thus, we have

∂G(ξ+, ξ)

∂x
− ∂G(ξ−, ξ)

∂x
= − 1

pW
y1(ξ)y′2(ξ) +

1
pW

y′1(ξ)y2(ξ)

= −
y′1(ξ)y2(ξ)− y1(ξ)y′2(ξ)

p(ξ)(y1(ξ)y′2(ξ)− y′1(ξ)y2(ξ))

=
1

p(ξ)
. (7.37)

Here is a summary of the properties of the boundary value Green’s function
based upon the previous solution.
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Properties of the Green’s Function

1. Differential Equation:
∂

∂x

(
p(x) ∂G(x,ξ)

∂x

)
+ q(x)G(x, ξ) = 0, x 6= ξ

2. Boundary Conditions: Whatever conditions y1(x) and y2(x) sat-
isfy, G(x, ξ) will satisfy.

3. Symmetry or Reciprocity: G(x, ξ) = G(ξ, x)

4. Continuity of G at x = ξ: G(ξ+, ξ) = G(ξ−, ξ)

5. Jump Discontinuity of ∂G
∂x at x = ξ:

∂G(ξ+, ξ)

∂x
− ∂G(ξ−, ξ)

∂x
=

1
p(ξ)

We now show how a knowledge of these properties allows one to quickly
construct a Green’s function with an example.

Example 7.3. Construct the Green’s function for the problem

y′′ + ω2y = f (x), 0 < x < 1,

y(0) = 0 = y(1),

with ω 6= 0.

I. Find solutions to the homogeneous equation.

A general solution to the homogeneous equation is given as

yh(x) = c1 sin ωx + c2 cos ωx.

Thus, for x 6= ξ,

G(x, ξ) = c1(ξ) sin ωx + c2(ξ) cos ωx.

II. Boundary Conditions.

First, we have G(0, ξ) = 0 for 0 ≤ x ≤ ξ. So,

G(0, ξ) = c2(ξ) cos ωx = 0.

So,
G(x, ξ) = c1(ξ) sin ωx, 0 ≤ x ≤ ξ.

Second, we have G(1, ξ) = 0 for ξ ≤ x ≤ 1. So,

G(1, ξ) = c1(ξ) sin ω + c2(ξ) cos ω. = 0

A solution can be chosen with

c2(ξ) = −c1(ξ) tan ω.

This gives

G(x, ξ) = c1(ξ) sin ωx− c1(ξ) tan ω cos ωx.
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This can be simplified by factoring out the c1(ξ) and placing the remaining
terms over a common denominator. The result is

G(x, ξ) =
c1(ξ)

cos ω
[sin ωx cos ω− sin ω cos ωx]

= − c1(ξ)

cos ω
sin ω(1− x). (7.38)

Since the coefficient is arbitrary at this point, as can write the result as

G(x, ξ) = d1(ξ) sin ω(1− x), ξ ≤ x ≤ 1.

We note that we could have started with y2(x) = sin ω(1− x) as one of the
linearly independent solutions of the homogeneous problem in anticipation
that y2(x) satisfies the second boundary condition.

III. Symmetry or Reciprocity

We now impose that G(x, ξ) = G(ξ, x). To this point we have that

G(x, ξ) =

{
c1(ξ) sin ωx, 0 ≤ x ≤ ξ,

d1(ξ) sin ω(1− x), ξ ≤ x ≤ 1.

We can make the branches symmetric by picking the right forms for c1(ξ)

and d1(ξ). We choose c1(ξ) = C sin ω(1− ξ) and d1(ξ) = C sin ωξ. Then,

G(x, ξ) =

{
C sin ω(1− ξ) sin ωx, 0 ≤ x ≤ ξ,
C sin ω(1− x) sin ωξ, ξ ≤ x ≤ 1.

Now the Green’s function is symmetric and we still have to determine the
constant C. We note that we could have gotten to this point using the Method
of Variation of Parameters result where C = 1

pW .

IV. Continuity of G(x, ξ)

We already have continuity by virtue of the symmetry imposed in the last
step.

V. Jump Discontinuity in ∂
∂x G(x, ξ).

We still need to determine C. We can do this using the jump discontinuity
in the derivative:

∂G(ξ+, ξ)

∂x
− ∂G(ξ−, ξ)

∂x
=

1
p(ξ)

.

For this problem p(x) = 1. Inserting the Green’s function, we have

1 =
∂G(ξ+, ξ)

∂x
− ∂G(ξ−, ξ)

∂x

=
∂

∂x
[C sin ω(1− x) sin ωξ]x=ξ −

∂

∂x
[C sin ω(1− ξ) sin ωx]x=ξ

= −ωC cos ω(1− ξ) sin ωξ −ωC sin ω(1− ξ) cos ωξ

= −ωC sin ω(ξ + 1− ξ)

= −ωC sin ω. (7.39)
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Therefore,

C = − 1
ω sin ω

.

Finally, we have the Green’s function:

G(x, ξ) =


− sin ω(1− ξ) sin ωx

ω sin ω
, 0 ≤ x ≤ ξ,

− sin ω(1− x) sin ωξ

ω sin ω
, ξ ≤ x ≤ 1.

(7.40)

It is instructive to compare this result to the Variation of Parameters re-
sult.

Example 7.4. Use the Method of Variation of Parameters to solve

y′′ + ω2y = f (x), 0 < x < 1,

y(0) = 0 = y(1), ω 6= 0.

We have the functions y1(x) = sin ωx and y2(x) = sin ω(1− x) as the solu-
tions of the homogeneous equation satisfying y1(0) = 0 and y2(1) = 0. We need
to compute pW:

p(x)W(x) = y1(x)y′2(x)− y′1(x)y2(x)

= −ω sin ωx cos ω(1− x)−ω cos ωx sin ω(1− x)

= −ω sin ω (7.41)

Inserting this result into the Variation of Parameters result for the Green’s function
leads to the same Green’s function as above.

7.2.2 The Differential Equation for the Green’s Function

As we progress in the book we will develop a more general theory
of Green’s functions for ordinary and partial differential equations. Much
of this theory relies on understanding that the Green’s function really is the
system response function to a point source. This begins with recalling that
the boundary value Green’s function satisfies a homogeneous differential
equation for x 6= ξ,

∂

∂x

(
p(x)

∂G(x, ξ)

∂x

)
+ q(x)G(x, ξ) = 0, x 6= ξ. (7.42)

H(x)

x

1

0

Figure 7.2: The Heaviside step function,
H(x).

For x = ξ, we have seen that the derivative has a jump in its value. This
is similar to the step, or Heaviside, function,

H(x) =

{
1, x > 0,
0, x < 0.

This function is shown in Figure 7.2 and we see that the derivative of the
step function is zero everywhere except at the jump, or discontinuity . At
the jump, there is an infinite slope, though technically, we have learned that
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there is no derivative at this point. We will try to remedy this situation by
introducing the Dirac delta function,

δ(x) =
d

dx
H(x).

We will show that the Green’s function satisfies the differential equation

∂

∂x

(
p(x)

∂G(x, ξ)

∂x

)
+ q(x)G(x, ξ) = δ(x− ξ). (7.43)

However, we will first indicate why this knowledge is useful for the general
theory of solving differential equations using Green’s functions. The Dirac delta function is described in

more detail in Section 9.4. The key prop-
erty we will need here is the sifting prop-
erty, ∫ b

a
f (x)δ(x− ξ) dx = f (ξ)

for a < ξ < b.

As noted, the Green’s function satisfies the differential equation

∂

∂x

(
p(x)

∂G(x, ξ)

∂x

)
+ q(x)G(x, ξ) = δ(x− ξ) (7.44)

and satisfies homogeneous conditions. We will use the Green’s function to
solve the nonhomogeneous equation

d
dx

(
p(x)

dy(x)
dx

)
+ q(x)y(x) = f (x). (7.45)

These equations can be written in the more compact forms

L[y] = f (x)

L[G] = δ(x− ξ). (7.46)

Using these equations, we can determine the solution, y(x), in terms of
the Green’s function. Multiplying the first equation by G(x, ξ), the second
equation by y(x), and then subtracting, we have

GL[y]− yL[G] = f (x)G(x, ξ)− δ(x− ξ)y(x).

Now, integrate both sides from x = a to x = b. The left hand side becomes

∫ b

a
[ f (x)G(x, ξ)− δ(x− ξ)y(x)] dx =

∫ b

a
f (x)G(x, ξ) dx− y(ξ).

Using Green’s Identity from Section 4.2.2, the right side is Recall that Green’s identity is given by∫ b

a
(uLv− vLu) dx = [p(uv′ − vu′)]ba.∫ b

a
(GL[y]− yL[G]) dx =

[
p(x)

(
G(x, ξ)y′(x)− y(x)

∂G
∂x

(x, ξ)

)]x=b

x=a
.

Combining these results and rearranging, we obtain The general solution in terms of the
boundary value Green’s function with
corresponding surface terms.

y(ξ) =
∫ b

a
f (x)G(x, ξ) dx

−
[

p(x)
(

y(x)
∂G
∂x

(x, ξ)− G(x, ξ)y′(x)
)]x=b

x=a
. (7.47)
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We will refer to the extra terms in the solution,

S(b, ξ)− S(a, ξ) =

[
p(x)

(
y(x)

∂G
∂x

(x, ξ)− G(x, ξ)y′(x)
)]x=b

x=a
,

as the boundary, or surface, terms. Thus,

y(ξ) =
∫ b

a
f (x)G(x, ξ) dx− [S(b, ξ)− S(a, ξ)].

The result in Equation (7.47) is the key equation in determining the so-
lution of a nonhomogeneous boundary value problem. The particular set
of boundary conditions in the problem will dictate what conditions G(x, ξ)

has to satisfy. For example, if we have the boundary conditions y(a) = 0
and y(b) = 0, then the boundary terms yield

y(ξ) =
∫ b

a
f (x)G(x, ξ) dx−

[
p(b)

(
y(b)

∂G
∂x

(b, ξ)− G(b, ξ)y′(b)
)]

+

[
p(a)

(
y(a)

∂G
∂x

(a, ξ)− G(a, ξ)y′(a)
)]

=
∫ b

a
f (x)G(x, ξ) dx + p(b)G(b, ξ)y′(b)− p(a)G(a, ξ)y′(a).

(7.48)

The right hand side will only vanish if G(x, ξ) also satisfies these homoge-
neous boundary conditions. This then leaves us with the solution

y(ξ) =
∫ b

a
f (x)G(x, ξ) dx.

We should rewrite this as a function of x. So, we replace ξ with x and x
with ξ. This gives

y(x) =
∫ b

a
f (ξ)G(ξ, x) dξ.

However, this is not yet in the desirable form. The arguments of the Green’s
function are reversed. But, in this case G(x, ξ) is symmetric in its arguments.
So, we can simply switch the arguments getting the desired result.

We can now see that the theory works for other boundary conditions. If
we had y′(a) = 0, then the y(a) ∂G

∂x (a, ξ) term in the boundary terms could be
made to vanish if we set ∂G

∂x (a, ξ) = 0. So, this confirms that other boundary
value problems can be posed besides the one elaborated upon in the chapter
so far.

We can even adapt this theory to nonhomogeneous boundary conditions.
We first rewrite Equation (7.47) as

y(x) =
∫ b

a
G(x, ξ) f (ξ) dξ −

[
p(ξ)

(
y(ξ)

∂G
∂ξ

(x, ξ)− G(x, ξ)y′(ξ)
)]ξ=b

ξ=a
.

(7.49)
Let’s consider the boundary conditions y(a) = α and y′(b) = β. We also
assume that G(x, ξ) satisfies homogeneous boundary conditions,

G(a, ξ) = 0,
∂G
∂ξ

(b, ξ) = 0.
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in both x and ξ since the Green’s function is symmetric in its variables.
Then, we need only focus on the boundary terms to examine the effect on
the solution. We have

S(b, x)− S(a, x) =

[
p(b)

(
y(b)

∂G
∂ξ

(x, b)− G(x, b)y′(b)
)]

−
[

p(a)
(

y(a)
∂G
∂ξ

(x, a)− G(x, a)y′(a)
)]

= −βp(b)G(x, b)− αp(a)
∂G
∂ξ

(x, a). (7.50)

Therefore, we have the solution General solution satisfying the nonho-
mogeneous boundary conditions y(a) =
α and y′(b) = β. Here the Green’s
function satisfies homogeneous bound-
ary conditions, G(a, ξ) = 0, ∂G

∂ξ (b, ξ) =
0.

y(x) =
∫ b

a
G(x, ξ) f (ξ) dξ + βp(b)G(x, b) + αp(a)

∂G
∂ξ

(x, a). (7.51)

This solution satisfies the nonhomogeneous boundary conditions.

Example 7.5. Solve y′′ = x2, y(0) = 1, y(1) = 2 using the boundary value
Green’s function.

This is a modification of Example 7.2. We can use the boundary value Green’s
function that we found in that problem,

G(x, ξ) =

{
−ξ(1− x), 0 ≤ ξ ≤ x,
−x(1− ξ), x ≤ ξ ≤ 1.

(7.52)

We insert the Green’s function into the general solution (7.51) and use the given
boundary conditions to obtain

y(x) =
∫ 1

0
G(x, ξ)ξ2 dξ −

[
y(ξ)

∂G
∂ξ

(x, ξ)− G(x, ξ)y′(ξ)
]ξ=1

ξ=0

=
∫ x

0
(x− 1)ξ3 dξ +

∫ 1

x
x(ξ − 1)ξ2 dξ + y(0)

∂G
∂ξ

(x, 0)− y(1)
∂G
∂ξ

(x, 1)

=
(x− 1)x4

4
+

x(1− x4)

4
− x(1− x3)

3
+ (x− 1)− 2x

=
x4

12
+

35
12

x− 1. (7.53)

Of course, this problem can be solved by direct integration. The general solution
is

y(x) =
x4

12
+ c1x + c2.

Inserting this solution into each boundary condition yields the same result.
The Green’s function satisfies a delta
function forced differential equation.We have seen how the introduction of the Dirac delta function in the

differential equation satisfied by the Green’s function, Equation (7.44), can
lead to the solution of boundary value problems. The Dirac delta function
also aids in the interpretation of the Green’s function. We note that the
Green’s function is a solution of an equation in which the nonhomogeneous
function is δ(x− ξ). Note that if we multiply the delta function by f (ξ) and
integrate, we obtain ∫ ∞

−∞
δ(x− ξ) f (ξ) dξ = f (x).
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We can view the delta function as a unit impulse at x = ξ which can be
used to build f (x) as a sum of impulses of different strengths, f (ξ). Thus,
the Green’s function is the response to the impulse as governed by the dif-
ferential equation and given boundary conditions.Derivation of the jump condition for the

Green’s function. In particular, the delta function forced equation can be used to derive the
jump condition. We begin with the equation in the form

∂

∂x

(
p(x)

∂G(x, ξ)

∂x

)
+ q(x)G(x, ξ) = δ(x− ξ). (7.54)

Now, integrate both sides from ξ − ε to ξ + ε and take the limit as ε → 0.
Then,

lim
ε→0

∫ ξ+ε

ξ−ε

[
∂

∂x

(
p(x)

∂G(x, ξ)

∂x

)
+ q(x)G(x, ξ)

]
dx = lim

ε→0

∫ ξ+ε

ξ−ε
δ(x− ξ) dx

= 1. (7.55)

Since the q(x) term is continuous, the limit as ε → 0 of that term vanishes.
Using the Fundamental Theorem of Calculus, we then have

lim
ε→0

[
p(x)

∂G(x, ξ)

∂x

]ξ+ε

ξ−ε

= 1. (7.56)

This is the jump condition that we have been using!

7.2.3 Series Representations of Green’s Functions

There are times that it might not be so simple to find the Green’s
function in the simple closed form that we have seen so far. However,
there is a method for determining the Green’s functions of Sturm-Liouville
boundary value problems in the form of an eigenfunction expansion. We
will finish our discussion of Green’s functions for ordinary differential equa-
tions by showing how one obtains such series representations. (Note that
we are really just repeating the steps towards developing eigenfunction ex-
pansion which we had seen in Section 4.3.)

We will make use of the complete set of eigenfunctions of the differential
operator, L, satisfying the homogeneous boundary conditions:

L[φn] = −λnσφn, n = 1, 2, . . .

We want to find the particular solution y satisfying L[y] = f and homo-
geneous boundary conditions. We assume that

y(x) =
∞

∑
n=1

anφn(x).

Inserting this into the differential equation, we obtain

L[y] =
∞

∑
n=1

anL[φn] = −
∞

∑
n=1

λnanσφn = f .
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This has resulted in the generalized Fourier expansion

f (x) =
∞

∑
n=1

cnσφn(x)

with coefficients
cn = −λnan.

We have seen how to compute these coefficients earlier in section 4.3. We
multiply both sides by φk(x) and integrate. Using the orthogonality of the
eigenfunctions, ∫ b

a
φn(x)φk(x)σ(x) dx = Nkδnk,

one obtains the expansion coefficients (if λk 6= 0)

ak = −
( f , φk)

Nkλk
,

where ( f , φk) ≡
∫ b

a f (x)φk(x) dx.
As before, we can rearrange the solution to obtain the Green’s function.

Namely, we have

y(x) =
∞

∑
n=1

( f , φn)

−Nnλn
φn(x) =

∫ b

a

∞

∑
n=1

φn(x)φn(ξ)

−Nnλn︸ ︷︷ ︸
G(x,ξ)

f (ξ) dξ

Therefore, we have found the Green’s function as an expansion in the
eigenfunctions: Green’s function as an expansion in the

eigenfunctions.
G(x, ξ) =

∞

∑
n=1

φn(x)φn(ξ)

−λnNn
. (7.57)

We will conclude this discussion with an example. We will solve this
problem three different ways in order to summarize the methods we have
used in the text.

Example 7.6. Solve

y′′ + 4y = x2, x ∈ (0, 1), y(0) = y(1) = 0

using the Green’s function eigenfunction expansion. Example using the Green’s function
eigenfunction expansion.The Green’s function for this problem can be constructed fairly quickly for this

problem once the eigenvalue problem is solved. The eigenvalue problem is

φ′′(x) + 4φ(x) = −λφ(x),

where φ(0) = 0 and φ(1) = 0. The general solution is obtained by rewriting the
equation as

φ′′(x) + k2φ(x) = 0,

where
k2 = 4 + λ.
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Solutions satisfying the boundary condition at x = 0 are of the form

φ(x) = A sin kx.

Forcing φ(1) = 0 gives

0 = A sin k⇒ k = nπ, k = 1, 2, 3 . . . .

So, the eigenvalues are

λn = n2π2 − 4, n = 1, 2, . . .

and the eigenfunctions are

φn = sin nπx, n = 1, 2, . . . .

We also need the normalization constant, Nn. We have that

Nn = ‖φn‖2 =
∫ 1

0
sin2 nπx =

1
2

.

We can now construct the Green’s function for this problem using Equation
(7.57).

G(x, ξ) = 2
∞

∑
n=1

sin nπx sin nπξ

(4− n2π2)
. (7.58)

Using this Green’s function, the solution of the boundary value problem becomes

y(x) =
∫ 1

0
G(x, ξ) f (ξ) dξ

=
∫ 1

0

(
2

∞

∑
n=1

sin nπx sin nπξ

(4− n2π2)

)
ξ2 dξ

= 2
∞

∑
n=1

sin nπx
(4− n2π2)

∫ 1

0
ξ2 sin nπξ dξ

= 2
∞

∑
n=1

sin nπx
(4− n2π2)

[
(2− n2π2)(−1)n − 2

n3π3

]
(7.59)

We can compare this solution to the one we would obtain if we did not
employ Green’s functions directly. The eigenfunction expansion method for
solving boundary value problems, which we saw earlier is demonstrated in
the next example.

Example 7.7. Solve

y′′ + 4y = x2, x ∈ (0, 1), y(0) = y(1) = 0

using the eigenfunction expansion method.Example using the eigenfunction expan-
sion method. We assume that the solution of this problem is in the form

y(x) =
∞

∑
n=1

cnφn(x).
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Inserting this solution into the differential equation L[y] = x2, gives

x2 = L
[

∞

∑
n=1

cn sin nπx

]

=
∞

∑
n=1

cn

[
d2

dx2 sin nπx + 4 sin nπx
]

=
∞

∑
n=1

cn[4− n2π2] sin nπx (7.60)

This is a Fourier sine series expansion of f (x) = x2 on [0, 1]. Namely,

f (x) =
∞

∑
n=1

bn sin nπx.

In order to determine the cn’s in Equation (7.60), we will need the Fourier sine
series expansion of x2 on [0, 1]. Thus, we need to compute

bn =
2
1

∫ 1

0
x2 sin nπx

= 2
[
(2− n2π2)(−1)n − 2

n3π3

]
, n = 1, 2, . . . . (7.61)

The resulting Fourier sine series is

x2 = 2
∞

∑
n=1

[
(2− n2π2)(−1)n − 2

n3π3

]
sin nπx.

Inserting this expansion in Equation (7.60), we find

2
∞

∑
n=1

[
(2− n2π2)(−1)n − 2

n3π3

]
sin nπx =

∞

∑
n=1

cn[4− n2π2] sin nπx.

Due to the linear independence of the eigenfunctions, we can solve for the unknown
coefficients to obtain

cn = 2
(2− n2π2)(−1)n − 2

(4− n2π2)n3π3 .

Therefore, the solution using the eigenfunction expansion method is

y(x) =
∞

∑
n=1

cnφn(x)

= 2
∞

∑
n=1

sin nπx
(4− n2π2)

[
(2− n2π2)(−1)n − 2

n3π3

]
. (7.62)

We note that the solution in this example is the same solution as we had
obtained using the Green’s function obtained in series form in the previous
example.

One remaining question is the following: Is there a closed form for the
Green’s function and the solution to this problem? The answer is yes!

Example 7.8. Find the closed form Green’s function for the problem

y′′ + 4y = x2, x ∈ (0, 1), y(0) = y(1) = 0
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and use it to obtain a closed form solution to this boundary value problem.
We note that the differential operator is a special case of the example done in

section 7.2. Namely, we pick ω = 2. The Green’s function was already found in
that section. For this special case, we haveUsing the closed form Green’s function.

G(x, ξ) =


− sin 2(1− ξ) sin 2x

2 sin 2
, 0 ≤ x ≤ ξ,

− sin 2(1− x) sin 2ξ

2 sin 2
, ξ ≤ x ≤ 1.

(7.63)

Using this Green’s function, the solution to the boundary value problem is read-
ily computed

y(x) =
∫ 1

0
G(x, ξ) f (ξ) dξ

= −
∫ x

0

sin 2(1− x) sin 2ξ

2 sin 2
ξ2 dξ +

∫ 1

x

sin 2(ξ − 1) sin 2x
2 sin 2

ξ2 dξ

= − 1
4 sin 2

[
−x2 sin 2 + (1− cos2 x) sin 2 + sin x cos x(1 + cos 2)

]
.

= − 1
4 sin 2

[
−x2 sin 2 + 2 sin2 x sin 1 cos 1 + 2 sin x cos x cos2 1)

]
.

= − 1
8 sin 1 cos 1

[
−x2 sin 2 + 2 sin x cos 1(sin x sin 1 + cos x cos 1)

]
.

=
x2

4
− sin x cos(1− x)

4 sin 1
. (7.64)

In Figure 7.3 we show a plot of this solution along with the first five
terms of the series solution. The series solution converges quickly to the
closed form solution.

Figure 7.3: Plots of the exact solution to
Example 7.6 with the first five terms of
the series solution.
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As one last check, we solve the boundary value problem directly, as we
had done in the last chapter.

Example 7.9. Solve directly:

y′′ + 4y = x2, x ∈ (0, 1), y(0) = y(1) = 0.

Direct solution of the boundary value
problem. The problem has the general solution

y(x) = c1 cos 2x + c2 sin 2x + yp(x),
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where yp is a particular solution of the nonhomogeneous differential equation. Us-
ing the Method of Undetermined Coefficients, we assume a solution of the form

yp(x) = Ax2 + Bx + C.

Inserting this guess into the nonhomogeneous equation, we have

2A + 4(Ax2 + Bx + C) = x2,

Thus, B = 0, 4A = 1 and 2A + 4C = 0. The solution of this system is

A =
1
4

, B = 0, C = −1
8

.

So, the general solution of the nonhomogeneous differential equation is

y(x) = c1 cos 2x + c2 sin 2x +
x2

4
− 1

8
.

We next determine the arbitrary constants using the boundary conditions. We
have

0 = y(0)

= c1 −
1
8

0 = y(1)

= c1 cos 2 + c2 sin 2 +
1
8

(7.65)

Thus, c1 = 1
8 and

c2 = −
1
8 + 1

8 cos 2
sin 2

.

Inserting these constants into the solution we find the same solution as before.

y(x) =
1
8

cos 2x−
[

1
8 + 1

8 cos 2
sin 2

]
sin 2x +

x2

4
− 1

8

=
(cos 2x− 1) sin 2− sin 2x(1 + cos 2)

8 sin 2
+

x2

4

=
(−2 sin2 x)2 sin 1 cos 1− sin 2x(2 cos2 1)

16 sin 1 cos 1
+

x2

4

= − (sin2 x) sin 1 + sin x cos x(cos 1)
4 sin 1

+
x2

4

=
x2

4
− sin x cos(1− x)

4 sin 1
. (7.66)

7.2.4 The Generalized Green’s Function

When solving Lu = f using eigenfuction expansions, there can be
a problem when there are zero eigenvalues. Recall from Section 4.3 the
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solution of this problem is given by

y(x) =
∞

∑
n=1

cnφn(x),

cn = −
∫ b

a f (x)φn(x) dx

λm
∫ b

a φ2
n(x)σ(x) dx

. (7.67)

Here the eigenfunctions, φn(x), satisfy the eigenvalue problem

Lφn(x) = −λnσ(x)φn(x), x ∈ [a, b]

subject to given homogeneous boundary conditions.
Note that if λm = 0 for some value of n = m, then cm is undefined.

However, if we require

( f , φm) =
∫ b

a
f (x)φn(x) dx = 0,

then there is no problem. This is a form of the Fredholm Alternative.The Fredholm Alternative.

Namely, if λn = 0 for some n, then there is no solution unless f , φm) = 0;
i.e., f is orthogonal to φn. In this case, an will be arbitrary and there are an
infinite number of solutions.

Example 7.10. u′′ = f (x), u′(0) = 0, u′(L) = 0.
The eigenfunctions satisfy φ′′n (x) = −λnφn(x), φ′n(0) = 0, φ′n(L) = 0. There

are the usual solutions,

φn(x) = cos
nπx

L
, λn =

(nπ

L

)2
, n = 1, 2, . . . .

However, when λn = 0, φ′′0 (x) = 0. So, φ0(x) = Ax + B. The boundary
conditions are satisfied if A = 0. So, we can take φ0(x) = 1. Therefore, there
exists an eigenfunction corresponding to a zero eigenvalue. Thus, in order to have
a solution, we have to require ∫ L

0
f (x) dx = 0.

Example 7.11. u′′ + π2u = β + 2x, u(0) = 0, u(1) = 0.
In this problem we check to see if there is an eigenfunctions with a zero eigen-

value. The eigenvalue problem is

φ′′ + π2φ = 0, φ(0) = 0, φ(1) = 0.

A solution satisfying this problem is easily founds as

φ(x) = sin πx.

Therefore, there is a zero eigenvalue. For a solution to exist, we need to require

0 =
∫ 1

0
(β + 2x) sin πx dx

= − β

π
cos πx

∣∣1
0 + 2

[
1
π

x cos πx− 1
π2 sin πx

]1

0

= − 2
π
(β + 1). (7.68)

Thus, either β = −1 or there are no solutions.
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Recall the series representation of the Green’s function for a Sturm-Liouville
problem in Equation (7.57),

G(x, ξ) =
∞

∑
n=1

φn(x)φn(ξ)

−λnNn
. (7.69)

We see that if there is a zero eigenvalue, then we also can run into trouble
as one of the terms in the series is undefined.

Recall that the Green’s function satisfies the differential equation LG(x, ξ) =

δ(x− ξ), x, ξ ∈ [a, b] and satisfies some appropriate set of boundary condi-
tions. Using the above analysis, if there is a zero eigenvalue, then Lφh(x) =
0. In order for a solution to exist to the Green’s function differential equa-
tion, then f (x) = δ(x− ξ) and we have to require

0 = ( f , φh) =
∫ b

a
φh(x)δ(x− ξ) dx = φh(ξ),

for and ξ ∈ [a, b]. Therefore, the Green’s function does not exist.
We can fix this problem by introducing a modified Green’s function.

Let’s consider a modified differential equation,

LGM(x, ξ) = δ(x− ξ) + cφh(x)

for some constant c. Now, the orthogonality condition becomes

0 = ( f , φh) =
∫ b

a
φh(x)[δ(x− ξ) + cφh(x)] dx

= φh(ξ) + c
∫ b

a
φ2

h(x) dx. (7.70)

Thus, we can choose

c = − φh(ξ)∫ b
a φ2

h(x) dx

Using the modified Green’s function, we can obtain solutions to Lu = f .
We begin with Green’s identity from Section 4.2.2, given by∫ b

a
(uLv− vLu) dx = [p(uv′ − vu′)]ba.

Letting v = GM, we have

∫ b

a
(GML[u]− uL[GM]) dx =

[
p(x)

(
GM(x, ξ)u′(x)− u(x)

∂GM
∂x

(x, ξ)

)]x=b

x=a
.

Applying homogeneous boundary conditions, the right hand side vanishes.
Then we have

0 =
∫ b

a
(GM(x, ξ)L[u(x)]− u(x)L[GM(x, ξ)]) dx

=
∫ b

a
(GM(x, ξ) f (x)− u(x)[δ(x− ξ) + cφh(x)]) dx

u(ξ) =
∫ b

a
GM(x, ξ) f (x) dx− c

∫ b

a
u(x)φh(x) dx. (7.71)
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Noting that u(x, t) = c1φh(x) + up(x),, the last integral gives

−c
∫ b

a
u(x)φh(x) dx =

φh(ξ)∫ b
a φ2

h(x) dx

∫ b

a
φ2

h(x) dx = c1φh(ξ).

Therefore, the solution can be written as

u(x) =
∫ b

a
f (ξ)GM(x, ξ) dξ + c1φh(x).

Here we see that there are an infinite number of solutions when solutions
exist.

Example 7.12. Use the modified Green’s function to solve u′′ + π2u = 2x − 1,
u(0) = 0, u(1) = 0.

We have already seen that a solution exists for this problem, where we have set
β = −1 in Example 7.11.

We construct the modified Green’s function from the solutions of

φ′′n + π2φn = −λnφn, φ(0) = 0, φ(1) = 0.

The general solutions of this equation are

φn(x) = c1 cos
√

π2 + λnx + c2 sin
√

π2 + λnx.

Applying the boundary conditions, we have c1 = 0 and
√

π2 + λn = nπ. Thus,
the eigenfunctions and eigenvalues are

φn(x) = sin nπx, λn = (n2 − 1)π2, n = 1, 2, 3, . . . .

Note that λ1 = 0.
The modified Green’s function satisfies

d2

dx2 GM(x, ξ) + π2GM(x, ξ) = δ(x− ξ) + cφh(x),

where

c = − φ1(ξ)∫ 1
0 φ2

1(x) dx

= − sin πξ∫ 1
0 sin2 πξ, dx

= −2 sin πξ. (7.72)

We need to solve for GM(x, ξ). The modified Green’s function satisfies

d2

dx2 GM(x, ξ) + π2GM(x, ξ) = δ(x− ξ)− 2 sin πξ sin πx,

and the boundary conditions GM(0, ξ) = 0 and GM(1, ξ) = 0. We assume an
eigenfunction expansion,

GM(x, ξ) =
∞

∑
n=1

cn(ξ) sin nπx.
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Then,

δ(x− ξ)− 2 sin πξ sin πx =
d2

dx2 GM(x, ξ) + π2GM(x, ξ)

= −
∞

∑
n=1

λncn(ξ) sin nπx (7.73)

The coefficients are found as

−λncn = 2
∫ 1

0
[δ(x− ξ)− 2 sin πξ sin πx] sin nπx dx

= 2 sin nπξ − 2 sin πξδn1. (7.74)

Therefore, c1 = 0 and cn = 2 sin nπξ, for n > 1.
We have found the modified Green’s function as

GM(x, ξ) = −2
∞

∑
n=2

sin nπx sin nπξ

λn
.

We can use this to find the solution. Namely, we have (for c1 = 0)

u(x) =
∫ 1

0
(2ξ − 1)GM(x, ξ) dξ

= −2
∞

∑
n=2

sin nπx
λn

∫ 1

0
(2ξ − 1) sin nπξ dx

= −2
∞

∑
n=2

sin nπx
(n2 − 1)π2

[
− 1

nπ
(2ξ − 1) cos nπξ +

1
n2π2 sin nπξ

]1

0

= 2
∞

∑
n=2

1 + cos nπ

n(n2 − 1)π3 sin nπx. (7.75)

We can also solve this problem exactly. The general solution is given by

u(x) = c1 sin πx + c2 cos πx +
2x− 1

π2 .

Imposing the boundary conditions, we obtain

u(x) = c1 sin πx +
1

π2 cos πx +
2x− 1

π2 .

Notice that there are an infinite number of solutions. Choosing c1 = 0, we have the
particular solution

u(x) =
1

π2 cos πx +
2x− 1

π2 .

Figure 7.4: The solution for Example
7.12.

In Figure 7.4 we plot this solution and that obtained using the modified Green’s
function. The result is that they are in complete agreement.

7.3 The Nonhomogeneous Heat Equation

Boundary value Green’s functions do not only arise in the so-
lution of nonhomogeneous ordinary differential equations. They are also
important in arriving at the solution of nonhomogeneous partial differen-
tial equations. In this section we will show that this is the case by turning
to the nonhomogeneous heat equation.
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7.3.1 Nonhomogeneous Time Independent Boundary Conditions

Consider the nonhomogeneous heat equation with nonhomogeneous bound-
ary conditions:

ut − kuxx = h(x), 0 ≤ x ≤ L, t > 0,

u(0, t) = a, u(L, t) = b,

u(x, 0) = f (x). (7.76)

We are interested in finding a particular solution to this initial-boundary
value problem. In fact, we can represent the solution to the general nonho-
mogeneous heat equation as the sum of two solutions that solve different
problems.

First, we let v(x, t) satisfy the homogeneous problem

vt − kvxx = 0, 0 ≤ x ≤ L, t > 0,

v(0, t) = 0, v(L, t) = 0,

v(x, 0) = g(x), (7.77)

which has homogeneous boundary conditions.
We will also need a steady state solution to the original problem. AThe steady state solution, w(t), satisfies

a nonhomogeneous differential equation
with nonhomogeneous boundary condi-
tions. The transient solution, v(t), sat-
isfies the homogeneous heat equation
with homogeneous boundary conditions
and satisfies a modified initial condition.

steady state solution is one that satisfies ut = 0. Let w(x) be the steady state
solution. It satisfies the problem

−kwxx = h(x), 0 ≤ x ≤ L.

w(0, t) = a, w(L, t) = b. (7.78)

Now consider u(x, t) = w(x) + v(x, t), the sum of the steady state so-
lution, w(x), and the transient solution, v(x, t). We first note that u(x, t)
satisfies the nonhomogeneous heat equation,

ut − kuxx = (w + v)t − (w + v)xx

= vt − kvxx − kwxx ≡ h(x). (7.79)

The boundary conditions are also satisfied. Evaluating, u(x, t) at x = 0
and x = L, we have

u(0, t) = w(0) + v(0, t) = a,

u(L, t) = w(L) + v(L, t) = b. (7.80)

Finally, the initial condition givesThe transient solution satisfies

v(x, 0) = f (x)− w(x).
u(x, 0) = w(x) + v(x, 0) = w(x) + g(x).

Thus, if we set g(x) = f (x)− w(x), then u(x, t) = w(x) + v(x, t) will be the
solution of the nonhomogeneous boundary value problem. We all ready
know how to solve the homogeneous problem to obtain v(x, t). So, we only
need to find the steady state solution, w(x).

There are several methods we could use to solve Equation (7.78) for the
steady state solution. One is the Method of Variation of Parameters, which
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is closely related to the Green’s function method for boundary value prob-
lems which we described in the last several sections. However, we will just
integrate the differential equation for the steady state solution directly to
find the solution. From this solution we will be able to read off the Green’s
function.

Integrating the steady state equation (7.78) once, yields

dw
dx

= −1
k

∫ x

0
h(z) dz + A,

where we have been careful to include the integration constant, A = w′(0).
Integrating again, we obtain

w(x) = −1
k

∫ x

0

(∫ y

0
h(z) dz

)
dy + Ax + B,

where a second integration constant has been introduced. This gives the
general solution for Equation (7.78).

The boundary conditions can now be used to determine the constants. It
is clear that B = a for the condition at x = 0 to be satisfied. The second
condition gives

b = w(L) = −1
k

∫ L

0

(∫ y

0
h(z) dz

)
dy + AL + a.

Solving for A, we have

A =
1

kL

∫ L

0

(∫ y

0
h(z) dz

)
dy +

b− a
L

.

Inserting the integration constants, the solution of the boundary value
problem for the steady state solution is then The steady state solution.

w(x) = −1
k

∫ x

0

(∫ y

0
h(z) dz

)
dy +

x
kL

∫ L

0

(∫ y

0
h(z) dz

)
dy +

b− a
L

x + a.

This is sufficient for an answer, but it can be written in a more compact
form. In fact, we will show that the solution can be written in a way that a
Green’s function can be identified.

First, we rewrite the double integrals as single integrals. We can do this
using integration by parts. Consider integral in the first term of the solution,

I =
∫ x

0

(∫ y

0
h(z) dz

)
dy.

Setting u =
∫ y

0 h(z) dz and dv = dy in the standard integration by parts
formula, we obtain

I =
∫ x

0

(∫ y

0
h(z) dz

)
dy

= y
∫ y

0
h(z) dz

∣∣∣x
0
−
∫ x

0
yh(y) dy

=
∫ x

0
(x− y)h(y) dy. (7.81)
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Thus, the double integral has now collapsed to a single integral. Replac-
ing the integral in the solution, the steady state solution becomes

w(x) = −1
k

∫ x

0
(x− y)h(y) dy +

x
kL

∫ L

0
(L− y)h(y) dy +

b− a
L

x + a.

We can make a further simplification by combining these integrals. This
can be done if the integration range, [0, L], in the second integral is split into
two pieces, [0, x] and [x, L]. Writing the second integral as two integrals over
these subintervals, we obtain

w(x) = −1
k

∫ x

0
(x− y)h(y) dy +

x
kL

∫ x

0
(L− y)h(y) dy

+
x

kL

∫ L

x
(L− y)h(y) dy +

b− a
L

x + a. (7.82)

Next, we rewrite the integrands,

w(x) = −1
k

∫ x

0

L(x− y)
L

h(y) dy +
1
k

∫ x

0

x(L− y)
L

h(y) dy

+
1
k

∫ L

x

x(L− y)
L

h(y) dy +
b− a

L
x + a. (7.83)

It can now be seen how we can combine the first two integrals:

w(x) = −1
k

∫ x

0

y(L− x)
L

h(y) dy +
1
k

∫ L

x

x(L− y)
L

h(y) dy +
b− a

L
x + a.

The resulting integrals now take on a similar form and this solution can
be written compactly as

w(x) = −
∫ L

0
G(x, y)[−1

k
h(y)] dy +

b− a
L

x + a,

where

G(x, y) =


x(L− y)

L
, 0 ≤ x ≤ y,

y(L− x)
L

, y ≤ x ≤ L,

is the Green’s function for this problem.The Green’s function for the steady state
problem. The full solution to the original problem can be found by adding to this

steady state solution a solution of the homogeneous problem,

ut − kuxx = 0, 0 ≤ x ≤ L, t > 0,

u(0, t) = 0, u(L, t) = 0,

u(x, 0) = f (x)− w(x). (7.84)

Example 7.13. Solve the nonhomogeneous problem,

ut − uxx = 10, 0 ≤ x ≤ 1, t > 0,

u(0, t) = 20, u(1, t) = 0,

u(x, 0) = 2x(1− x). (7.85)
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In this problem we have a rod initially at a temperature of u(x, 0) = 2x(1− x).
The ends of the rod are maintained at fixed temperatures and the bar is continually
heated at a constant temperature, represented by the source term, 10.

First, we find the steady state temperature, w(x), satisfying

−wxx = 10, 0 ≤ x ≤ 1.

w(0, t) = 20, w(1, t) = 0. (7.86)

Using the general solution, we have

w(x) =
∫ 1

0
10G(x, y) dy− 20x + 20,

where

G(x, y) =

{
x(1− y), 0 ≤ x ≤ y,
y(1− x), y ≤ x ≤ 1,

we compute the solution

w(x) =
∫ x

0
10y(1− x) dy +

∫ 1

x
10x(1− y) dy− 20x + 20

= 5(x− x2)− 20x + 20,

= 20− 15x− 5x2. (7.87)

Checking this solution, it satisfies both the steady state equation and boundary
conditions.

The transient solution satisfies

vt − vxx = 0, 0 ≤ x ≤ 1, t > 0,

v(0, t) = 0, v(1, t) = 0,

v(x, 0) = x(1− x)− 10. (7.88)

Recall, that we have determined the solution of this problem as

v(x, t) =
∞

∑
n=1

bne−n2π2t sin nπx,

where the Fourier sine coefficients are given in terms of the initial temperature
distribution,

bn = 2
∫ 1

0
[x(1− x)− 10] sin nπx dx, n = 1, 2, . . . .

Therefore, the full solution is

u(x, t) =
∞

∑
n=1

bne−n2π2t sin nπx + 20− 15x− 5x2.

Note that for large t, the transient solution tends to zero and we are left with the
steady state solution as expected.
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7.3.2 Time Dependent Boundary Conditions

In the last section we solved problems with time independent boundary con-
ditions using equilibrium solutions satisfying the steady state heat equation
sand nonhomogeneous boundary conditions. When the boundary condi-
tions are time dependent, we can also convert the problem to an auxiliary
problem with homogeneous boundary conditions.

Consider the problem

ut − kuxx = h(x), 0 ≤ x ≤ L, t > 0,

u(0, t) = a(t), u(L, t) = b(t), t > 0,

u(x, 0) = f (x), 0 ≤ x ≤ L. (7.89)

We define u(x, t) = v(x, t) + w(x, t), where w(x, t) is a modified form of
the steady state solution from the last section,

w(x, t) = a(t) +
b(t)− a(t)

L
x.

Noting that

ut = vt + ȧ +
ḃ− ȧ

L
x,

uxx = vxx, (7.90)

we find that v(x, t) is a solution of the problem

vt − kvxx = h(x)−
[

ȧ(t) +
ḃ(t)− ȧ(t)

L
x
]

, 0 ≤ x ≤ L, t > 0,

v(0, t) = 0, v(L, t) = 0, t > 0,

v(x, 0) = f (x)−
[

a(0) +
b(0)− a(0)

L
x
]

, 0 ≤ x ≤ L. (7.91)

Thus, we have converted the original problem into a nonhomogeneous heat
equation with homogeneous boundary conditions and a new source term
and new initial condition.

Example 7.14. Solve the problem

ut − uxx = x, 0 ≤ x ≤ 1, t > 0,

u(0, t) = 2, u(L, t) = t, t > 0

u(x, 0) = 3 sin 2πx + 2(1− x), 0 ≤ x ≤ 1. (7.92)

We first define
u(x, t) = v(x, t) + 2 + (t− 2)x.

Then, v(x, t) satisfies the problem

vt − vxx = 0, 0 ≤ x ≤ 1, t > 0,

v(0, t) = 0, v(L, t) = 0, t > 0,

v(x, 0) = 3 sin 2πx, 0 ≤ x ≤ 1. (7.93)
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This problem is easily solved. The general solution is given by

v(x, t) =
∞

∑
n=1

bn sin nπxe−n2π2t.

We can see that the Fourier coefficients all vanish except for b2. This gives v(x, t) =
3 sin 2πxe−4π2t and, therefore, we have found the solution

u(x, t) = 3 sin 2πxe−4π2t + 2 + (t− 2)x.

7.4 Green’s Functions for 1D Partial Differential Equations

In Section 7.1 we encountered the initial value Green’s func-
tion for initial value problems for ordinary differential equations. In that
case we were able to express the solution of the differential equation L[y] =
f in the form

y(t) =
∫

G(t, τ) f (τ) dτ,

where the Green’s function G(t, τ) was used to handle the nonhomoge-
neous term in the differential equation. In a similar spirit, we can introduce
Green’s functions of different types to handle nonhomogeneous terms, non-
homogeneous boundary conditions, or nonhomogeneous initial conditions.
Occasionally, we will stop and rearrange the solutions of different problems
and recast the solution and identify the Green’s function for the problem.

In this section we will rewrite the solutions of the heat equation and wave
equation on a finite interval to obtain an initial value Green;s function. As-
suming homogeneous boundary conditions and a homogeneous differential
operator, we can write the solution of the heat equation in the form

u(x, t) =
∫ L

0
G(x, ξ; t, t0) f (ξ) dξ.

where u(x, t0) = f (x), and the solution of the wave equation as

u(x, t) =
∫ L

0
Gc(x, ξ, t, t0) f (ξ) dξ +

∫ L

0
Gs(x, ξ, t, t0)g(ξ) dξ.

where u(x, t0) = f (x) and ut(x, t0) = g(x). The functions G(x, ξ; t, t0),
G(x, ξ; t, t0), and G(x, ξ; t, t0) are initial value Green’s functions and we will
need to explore some more methods before we can discuss the properties of
these functions. [For example, see Section.]

We will now turn to showing that for the solutions of the one dimensional
heat and wave equations with fixed, homogeneous boundary conditions, we
can construct the particular Green’s functions.

7.4.1 Heat Equation

In Section 3.5 we obtained the solution to the one dimensional heat
equation on a finite interval satisfying homogeneous Dirichlet conditions,

ut = kuxx, 0 < t, 0 ≤ x ≤ L,
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u(x, 0) = f (x), 0 < x < L,

u(0, t) = 0, t > 0,

u(L, t) = 0, t > 0. (7.94)

The solution we found was the Fourier sine series

u(x, t) =
∞

∑
n=1

bneλnkt sin
nπx

L
,

where
λn = −

(nπ

L

)2

and the Fourier sine coefficients are given in terms of the initial temperature
distribution,

bn =
2
L

∫ L

0
f (x) sin

nπx
L

dx, n = 1, 2, . . . .

Inserting the coefficients bn into the solution, we have

u(x, t) =
∞

∑
n=1

(
2
L

∫ L

0
f (ξ) sin

nπξ

L
dξ

)
eλnkt sin

nπx
L

.

Interchanging the sum and integration, we obtain

u(x, t) =
∫ L

0

(
2
L

∞

∑
n=1

sin
nπx

L
sin

nπξ

L
eλnkt

)
f (ξ) dξ.

This solution is of the form

u(x, t) =
∫ L

0
G(x, ξ; t, 0) f (ξ) dξ.

Here the function G(x, ξ; t, 0) is the initial value Green’s function for the
heat equation in the form

G(x, ξ; t, 0) =
2
L

∞

∑
n=1

sin
nπx

L
sin

nπξ

L
eλnkt.

which involves a sum over eigenfunctions of the spatial eigenvalue problem,
Xn(x) = sin nπx

L .

7.4.2 Wave Equation

The solution of the one dimensional wave equation (2.2),

utt = c2uxx, 0 < t, 0 ≤ x ≤ L,

u(0, t) = 0, u(L, 0) = 0, t > 0,

u(x, 0) = f (x), ut(x, 0) = g(x), 0 < x < L, (7.95)

was found as

u(x, t) =
∞

∑
n=1

[
An cos

nπct
L

+ Bn sin
nπct

L

]
sin

nπx
L

.
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The Fourier coefficients were determined from the initial conditions,

f (x) =
∞

∑
n=1

An sin
nπx

L
,

g(x) =
∞

∑
n=1

nπc
L

Bn sin
nπx

L
, (7.96)

as

An =
2
L

∫ L

0
f (ξ) sin

nπξ

L
dξ,

Bn =
L

nπc
2
L

∫ L

0
f (ξ) sin

nπξ

L
dξ. (7.97)

Inserting these coefficients into the solution and interchanging integra-
tion with summation, we have

u(x, t) =
∫ ∞

0

[
2
L

∞

∑
n=1

sin
nπx

L
sin

nπξ

L
cos

nπct
L

]
f (ξ) dξ

+
∫ ∞

0

[
2
L

∞

∑
n=1

sin
nπx

L
sin

nπξ

L
sin nπct

L
nπc/L

]
g(ξ) dξ

=
∫ L

0
Gc(x, ξ, t, 0) f (ξ) dξ +

∫ L

0
Gs(x, ξ, t, 0)g(ξ) dξ. (7.98)

In this case, we have defined two Green’s functions,

Gc(x, ξ, t, 0) =
2
L

∞

∑
n=1

sin
nπx

L
sin

nπξ

L
cos

nπct
L

,

Gs(x, ξ, t, 0) =
2
L

∞

∑
n=1

sin
nπx

L
sin

nπξ

L
sin nπct

L
nπc/L

. (7.99)

The first, Gc, provides the response to the initial profile and the second, Gs,
to the initial velocity.

7.5 Green’s Functions for the 2D Poisson Equation

C

S r− r′

r = (x, y)

r′ = (ξ, η)

Figure 7.5: Domain for solving Poisson’s
equation.

In this section we consider the two dimensional Poisson equation with
Dirichlet boundary conditions. We consider the problem

∇2u = f , in D,

u = g, on C, (7.100)

for the domain in Figure 7.5
We seek to solve this problem using a Green’s function. As in earlier

discussions, the Green’s function satisfies the differential equation and ho-
mogeneous boundary conditions. The associated problem is given by

∇2G = δ(ξ − x, η − y), in D,

G ≡ 0, on C. (7.101)
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However, we need to be careful as to which variables appear in the dif-
ferentiation. Many times we just make the adjustment after the derivation
of the solution, assuming that the Green’s function is symmetric in its argu-
ments. However, this is not always the case and depends on things such as
the self-adjointedness of the problem. Thus, we will assume that the Green’s
function satisfies

∇2
r′G = δ(ξ − x, η − y),

where the notation ∇r′ means differentiation with respect to the variables ξ

and η. Thus,

∇2
r′G =

∂2G
∂ξ2 +

∂2G
∂η2 .

With this notation in mind, we now apply Green’s second identity for
two dimensions from Problem 8 in Chapter 9. We have∫

D
(u∇2

r′G− G∇2
r′u) dA′ =

∫
C
(u∇r′G− G∇r′u) · ds′. (7.102)

Inserting the differential equations, the left hand side of the equation
becomes ∫

D

[
u∇2

r′G− G∇2
r′u
]

dA′

=
∫

D
[u(ξ, η)δ(ξ − x, η − y)− G(x, y; ξ, η) f (ξ, η)] dξdη

= u(x, y)−
∫

D
G(x, y; ξ, η) f (ξ, η) dξdη. (7.103)

Using the boundary conditions, u(ξ, η) = g(ξ, η) on C and G(x, y; ξ, η) =

0 on C, the right hand side of the equation becomes∫
C
(u∇r′G− G∇r′u) · ds′ =

∫
C

g(ξ, η)∇r′G · ds′. (7.104)

Solving for u(x, y), we have the solution written in terms of the Green’s
function,

u(x, y) =
∫

D
G(x, y; ξ, η) f (ξ, η) dξdη +

∫
C

g(ξ, η)∇r′G · ds′.

Now we need to find the Green’s function. We find the Green’s functions
for several examples.

Example 7.15. Find the two dimensional Green’s function for the antisymmetric
Poisson equation; that is, we seek solutions that are θ-independent.

The problem we need to solve in order to find the Green’s function involves
writing the Laplacian in polar coordinates,

vrr +
1
r

vr = δ(r).

For r 6= 0, this is a Cauchy-Euler type of differential equation. The general solution
is v(r) = A ln r + B.
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Due to the singularity at r = 0, we integrate over a domain in which a small
circle of radius ε is cut form the plane and apply the two dimensional Divergence
Theorem. In particular, we have

1 =
∫

Dε

δ(r) dA

=
∫

Dε

∇2v dA

=
∫

Cε

∇v · ·ds

=
∫

Cε

∂v
∂r

dS = 2πA. (7.105)

Therefore, A = 1/2π. We note that B is arbitrary, so we will take B = 0 in the
remaining discussion.

Using this solution for a source of the form δ(r − r′), we obtain the Green’s
function for Poisson’s equation as

G(r, r′) =
1

2π
ln |r− r′|.

Example 7.16. Find the Green’s function for the infinite plane. Green’s function for the infinite plane.

From Figure 7.5 we have |r − r′| =
√
(x− ξ)2 + (y− η)2. Therefore, the

Green’s function from the last example gives

G(x, y, ξ, η) =
1

4π
ln((ξ − x)2 + (η − y)2).

Example 7.17. Find the Green’s function for the half plane, {(x, y)|y > 0}, using
the Method of Images Green’s function for the half plane using

the Method of Images.This problem can be solved using the result for the Green’s function for the
infinite plane. We use the Method of Images to construct a function such that
G = 0 on the boundary, y = 0. Namely, we use the image of the point (x, y) with
respect to the x-axis, (x,−y).

Imagine that the Green’s function G(x, y, ξ, η) represents a point charge at (x, y)
and G(x, y, ξ, η) provides the electric potential, or response, at (ξ, η). This single
charge cannot yield a zero potential along the x-axis (y=0). One needs an additional
charge to yield a zero equipotential line. This is shown in Figure 7.6.

x

y

G(x, 0; ξ, η) = 0

+

−

(x, y)

(x,−y)

Figure 7.6: The Method of Images: The
source and image source for the Green’s
function for the half plane. Imagine two
opposite charges forming a dipole. The
electric field lines are depicted indicat-
ing that the electric potential, or Green’s
function, is constant along y = 0.

The positive charge has a source of δ(r − r′) at r = (x, y) and the negative
charge is represented by the source −δ(r∗ − r′) at r∗ = (x,−y). We construct the
Green’s functions at these two points and introduce a negative sign for the negative
image source. Thus, we have

G(x, y, ξ, η) =
1

4π
ln((ξ − x)2 + (η − y)2)− 1

4π
ln((ξ − x)2 + (η + y)2).

These functions satisfy the differential equation and the boundary condition

G(x, 0, ξ, η) =
1

4π
ln((ξ − x)2 + (η)2)− 1

4π
ln((ξ − x)2 + (η)2) = 0.

Example 7.18. Solve the homogeneous version of the problem; i.e., solve Laplace’s
equation on the half plane with a specified value on the boundary.
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We want to solve the problem

∇2u = 0, in D,

u = f , on C, (7.106)

This is displayed in Figure 7.7.

x

y

∇2u = 0

u(x, 0) = f (x)

Figure 7.7: This is the domain for a
semi-infinite slab with boundary value
u(x, 0) = f (x) and governed by
Laplace’s equation.

From the previous analysis, the solution takes the form

u(x, y) =
∫

C
f∇G · n ds =

∫
C

f
∂G
∂n

ds.

Since

G(x, y, ξ, η) =
1

4π
ln((ξ − x)2 + (η − y)2)− 1

4π
ln((ξ − x)2 + (η + y)2),

∂G
∂n

=
∂G(x, y, ξ, η)

∂η

∣∣
η=0 =

1
π

y
(ξ − x)2 + y2 .

We have arrived at the same surface Green’s function as we had found in Example
9.11.2 and the solution is

u(x, y) =
1
π

∫ ∞

−∞

y
(x− ξ)2 + y2 f (ξ) dξ.

7.6 Method of Eigenfunction Expansions

We have seen that the use of eigenfunction expansions is another
technique for finding solutions of differential equations. In this section we
will show how we can use eigenfunction expansions to find the solutions to
nonhomogeneous partial differential equations. In particular, we will apply
this technique to solving nonhomogeneous versions of the heat and wave
equations.

7.6.1 The Nonhomogeneous Heat Equation

In this section we solve the one dimensional heat equation

with a source using an eigenfunction expansion. Consider the problem

ut = kuxx + Q(x, t), 0 < x < L, t > 0,

u(0, t) = 0, u(L, t) = 0, t > 0,

u(x, 0) = f (x), 0 < x < L. (7.107)

The homogeneous version of this problem is given by

vt = kvxx, 0 < x < L, t > 0,

v(0, t) = 0, v(L, t) = 0. (7.108)

We know that a separation of variables leads to the eigenvalue problem

φ′′ + λφ = 0, φ(0) = 0, φ(L) = 0.
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The eigenfunctions and eigenvalues are given by

φn(x) = sin
nπx

L
, λn =

(nπ

L

)2
, n = 1, 2, 3, . . . .

We can use these eigenfunctions to obtain a solution of the nonhomoge-
neous problem (7.107). We begin by assuming the solution is given by the
eigenfunction expansion

u(x, t) =
∞

∑
n=1

an(t)φn(x). (7.109)

In general, we assume that v(x, t) and φn(x) satisfy the same boundary
conditions and that v(x, t) and vx(x, t) are continuous functions.Note that
the difference between this eigenfunction expansion and that in Section 4.3
is that the expansion coefficients are functions of time.

In order to carry out the full process, we will also need to expand the ini-
tial profile, f (x), and the source term, Q(x, t), in the basis of eigenfunctions.
Thus, we assume the forms

f (x) = u(x, 0)

=
∞

∑
n=1

an(0)φn(x), (7.110)

Q(x, t) =
∞

∑
n=1

qn(t)φn(x). (7.111)

Recalling from Chapter 4, the generalized Fourier coefficients are given by

an(0) =
〈 f , φn〉
‖φn‖2 =

1
‖φn‖2

∫ L

0
f (x)φn(x) dx, (7.112)

qn(t) =
〈Q, φn〉
‖φn‖2 =

1
‖φn‖2

∫ L

0
Q(x, t)φn(x) dx. (7.113)

The next step is to insert the expansions (7.109) and (7.111) into the non-
homogeneous heat equation (7.107). We first note that

ut(x, t) =
∞

∑
n=1

ȧn(t)φn(x),

uxx(x, t) = −
∞

∑
n=1

an(t)λnφn(x). (7.114)

Inserting these expansions into the heat equation (7.107), we have

ut = kuxx + Q(x, t),
∞

∑
n=1

ȧn(t)φn(x) = −k
∞

∑
n=1

an(t)λnφn(x) +
∞

∑
n=1

qn(t)φn(x). (7.115)

Collecting like terms, we have

∞

∑
n=1

[ȧn(t) + kλnan(t)− qn(t)]φn(x) = 0, ∀x ∈ [0, L].
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Due to the linear independence of the eigenfunctions, we can conclude that

ȧn(t) + kλnan(t) = qn(t), n = 1, 2, 3, . . . .

This is a linear first order ordinary differential equation for the unknown
expansion coefficients.

We further note that the initial condition can be used to specify the initial
condition for this first order ODE. In particular,

f (x) =
∞

∑
n=1

an(0)φn(x).

The coefficients can be found as generalized Fourier coefficients in an ex-
pansion of f (x) in the basis φn(x). These are given by Equation (7.112).

Recall from Appendix B that the solution of a first order ordinary differ-
ential equation of the form

y′(t) + a(t)y(t) = p(t)

is found using the integrating factor

µ(t) = exp
∫ t

a(τ) dτ.

Multiplying the ODE by the integrating factor, one has

d
dt

[
y(t) exp

∫ t
a(τ) dτ

]
= p(t) exp

∫ t
a(τ) dτ.

After integrating, the solution can be found providing the integral is doable.
For the current problem, we have

ȧn(t) + kλnan(t) = qn(t), n = 1, 2, 3, . . . .

Then, the integrating factor is

µ(t) = exp
∫ t

kλn dτ = ekλnt.

Multiplying the differential equation by the integrating factor, we find

[ȧn(t) + kλnan(t)]ekλnt = qn(t)ekλnt

d
dt

(
an(t)ekλnt

)
= qn(t)ekλnt. (7.116)

Integrating, we have

an(t)ekλnt − an(0) =
∫ t

0
qn(τ)ekλnτ dτ,

or

an(t) = an(0)e−kλnt +
∫ t

0
qn(τ)e−kλn(t−τ) dτ.

Using these coefficients, we can write out the general solution.

u(x, t) =
∞

∑
n=1

an(t)φn(x)

=
∞

∑
n=1

[
an(0)e−kλnt +

∫ t

0
qn(τ)e−kλn(t−τ) dτ

]
φn(x). (7.117)
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We will apply this theory to a more specific problem which not only has
a heat source but also has nonhomogeneous boundary conditions.

Example 7.19. Solve the following nonhomogeneous heat problem using eigen-
function expansions:

ut − uxx = x + t sin 3πx, 0 ≤ x ≤ 1, t > 0,

u(0, t) = 2, u(L, t) = t, t > 0

u(x, 0) = 3 sin 2πx + 2(1− x), 0 ≤ x ≤ 1. (7.118)

This problem has the same nonhomogeneous boundary conditions as those in
Example 7.14. Recall that we can define

u(x, t) = v(x, t) + 2 + (t− 2)x

to obtain a new problem for v(x, t). The new problem is

vt − vxx = t sin 3πx, 0 ≤ x ≤ 1, t > 0,

v(0, t) = 0, v(L, t) = 0, t > 0,

v(x, 0) = 3 sin 2πx, 0 ≤ x ≤ 1. (7.119)

We can now apply the method of eigenfunction expansions to find v(x, t). The
eigenfunctions satisfy the homogeneous problem

φ′′n + λnφn = 0, φn(0) = 0, φn(1) = 0.

The solutions are

φn(x) = sin
nπx

L
, λn =

(nπ

L

)2
, n = 1, 2, 3, . . . .

Now, let

v(x, t) =
∞

∑
n=1

an(t) sin nπx.

Inserting v(x, t) into the PDE, we have

∞

∑
n=1

[ȧn(t) + n2π2an(t)] sin nπx = t sin 3πx.

Due to the linear independence of the eigenfunctions, we can equate the coeffi-
cients of the sin nπx terms. This gives

ȧn(t) + n2π2an(t) = 0, n 6= 3,

ȧ3(t) + 9π2a3(t) = t, n = 3. (7.120)

This is a system of first order ordinary differential equations. The first set of equa-
tions are separable and are easily solved. For n 6= 3, we seek solutions of

d
dt

an = −n2π2an(t).

These are given by
an(t) = an(0)e−n2π2t, n 6= 3.
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In the case n = 3, we seek solutions of

d
dt

a3 + 9π2a3(t) = t.

The integrating factor for this first order equation is given by

µ(t) = e9π2t.

Multiplying the differential equation by the integrating factor, we have

d
dt

(
a3(t)e9π2t

)
= te9π2t.

Integrating, we obtain the solution

a3(t) = a3(0)e−9π2t + e−9π2t
∫ t

0
τe9π2τ dτ,

= a3(0)e−9π2t + e−9π2t
[

1
9π2 τe9π2τ − 1

(9π2)2 e9π2τ

]t

0
,

= a3(0)e−9π2t +
1

9π2 t− 1
(9π2)2

[
1− e−9π2τ

]
. (7.121)

Up to this point, we have the solution

u(x, t) = v(x, t) + w(x, t)

=
∞

∑
n=1

an(t) sin nπx + 2 + (t− 2)x, (7.122)

where

an(t) = an(0)e−n2π2t, n 6= 3

a3(t) = a3(0)e−9π2t +
1

9π2 t− 1
(9π2)2

[
1− e−9π2τ

]
. (7.123)

We still need to find an(0), n = 1, 2, 3, . . . .
The initial values of the expansion coefficients are found using the initial condi-

tion

v(x, 0) = 3 sin 2πx =
∞

∑
n=1

an(0) sin nπx.

It is clear that we have an(0) = 0 for n 6= 2 and a2(0) = 3. Thus, the series for
v(x, t) has two nonvanishing coefficients,

a2(t) = 3e−4π2t,

a3(t) =
1

9π2 t− 1
(9π2)2

[
1− e−9π2τ

]
. (7.124)

Therefore, the final solution is given by

u(x, t) = 2 + (t− 2)x + 3e−4π2t sin 2πx +
9π2t− (1− e−9π2τ)

81π4 sin 3πx.
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7.6.2 The Forced Vibrating Membrane

We now consider the forced vibrating membrane. A two-dimensional
membrane is stretched over some domain D. We assume Dirichlet condi-
tions on the boundary, u = 0 on ∂D. The forced membrane can be modeled
as

utt = c2∇2u + Q(r, t), r ∈ D, t > 0,

u(r, t) = 0, r ∈ ∂D, t > 0,

u(r, 0) = f (r), ut(r, 0) = g(r), r ∈ D. (7.125)

The method of eigenfunction expansions relies on the use of eigenfunc-
tions, φα(r), for α ∈ J ⊂ Z2 a set of indices typically of the form (i, j) in some
lattice grid of integers. The eigenfunctions satisfy the eigenvalue equation

∇2φα(r) = −λαφα(r), φα(r) = 0, on ∂D.

We assume that the solution and forcing function can be expanded in the
basis of eigenfunctions,

u(r, t) = ∑
α∈J

aα(t)φα(r),

Q(r, t) = ∑
α∈J

qα(t)φα(r). (7.126)

Inserting this form into the forced wave equation (7.125), we have

utt = c2∇2u + Q(r, t)

∑
α∈J

äα(t)φα(r) = −c2 ∑
α∈J

λαaα(t)φα(r) + ∑
α∈J

qα(t)φα(r)

0 = ∑
α∈J

[äα(t) + c2λαaα(t)− qα(t)]φα(r). (7.127)

The linear independence of the eigenfunctions then gives the ordinary
differential equation

äα(t) + c2λαaα(t) = qα(t).

We can solve this equation with initial conditions aα(0) and ȧα(0) found
from

f (r) = u(r, 0) = ∑
α∈J

aα(0)φα(r),

g(r) = ut(r, 0) = ∑
α∈J

ȧα(0)φα(r). (7.128)

Example 7.20. Periodic Forcing, Q(r, t) = G(r) cos ωt.
It is enough to specify Q(r, t) in order to solve for the time dependence of the

expansion coefficients. A simple example is the case of periodic forcing, Q(r, t) =

h(r) cos ωt. In this case, we expand Q in the basis of eigenfunctions,

Q(r, t) = ∑
α∈J

qα(t)φα(r),

G(r) cos ωt = ∑
α∈J

γα cos ωtφα(r). (7.129)
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Inserting these expressions into the forced wave equation (7.125), we obtain a
system of differential equations for the expansion coefficients,

äα(t) + c2λαaα(t) = γα cos ωt.

In order to solve this equation we borrow the methods from a course on ordinary
differential equations for solving nonhomogeneous equations. In particular we can
use the Method of Undetermined Coefficients as reviewed in Section B.3.1. The
solution of these equations are of the form

aα(t) = aαh(t) + aαp(t),

where aαh(t) satisfies the homogeneous equation,

äαh(t) + c2λαaαh(t) = 0, (7.130)

and aαp(t) is a particular solution of the nonhomogeneous equation,

äαp(t) + c2λαaαp(t) = γα cos ωt. (7.131)

The solution of the homogeneous problem (7.130) is easily founds as

aαh(t) = c1α cos(ω0αt) + c2α sin(ω0αt),

where ω0α = c
√

λα.
The particular solution is found by making the guess aαp(t) = Aα cos ωt. In-

serting this guess into Equation (ceqn2), we have

[−ω2 + c2λα]Aα cos ωt = γα cos ωt.

Solving for Aα, we obtain

Aα =
γα

−ω2 + c2λα
, ω2 6= c2λα.

Then, the general solution is given by

aα(t) = c1α cos(ω0αt) + c2α sin(ω0αt) +
γα

−ω2 + c2λα
cos ωt,

where ω0α = c
√

λα and ω2 6= c2λα.
In the case where ω2 = c2λα, we have a resonant solution. This is discussed in

Section FO on forced oscillations. In this case the Method of Undetermined Coeffi-
cients fails and we need the Modified Method of Undetermined Coefficients. This is
because the driving term, γα cos ωt, is a solution of the homogeneous problem. So,
we make a different guess for the particular solution. We let

aαp(t) = t(Aα cos ωt + Bα sin ωt).

Then, the needed derivatives are

aαp(t) = ωt(−Aα sin ωt + Bα cos ωt) + Aα cos ωt + Bα sin ωt,

aαp(t) = −ω2t(Aα cos ωt + Bα sin ωt)− 2ωAα sin ωt + 2ωBα cos ωt,

= −ω2aαp(t)− 2ωAα sin ωt + 2ωBα cos ωt. (7.132)
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Inserting this guess into Equation (ceqn2) and noting that ω2 = c2λα, we have

−2ωAα sin ωt + 2ωBα cos ωt = γα cos ωt.

Therefore, Aα = 0 and
Bα =

γα

2ω
.

So, the particular solution becomes

aαp(t) =
γα

2ω
t sin ωt.

The full general solution is then

aα(t) = c1α cos(ωt) + c2α sin(ωt) +
γα

2ω
t sin ωt,

where ω = c
√

λα.

Figure 7.8: Plot of a solution showing
resonance.

We see from this result that the solution tends to grow as t gets large. This is
what is called a resonance. Essentially, one is driving the system at its natural
frequency for one of the frequencies in the system. A typical plot of such a solution
is given in Figure 7.8.

7.7 Green’s Function Solution of Nonhomogeneous Heat Equation

We solved the one dimensional heat equation with a source us-
ing an eigenfunction expansion. In this section we rewrite the solution and
identify the Green’s function form of the solution. Recall that the solution
of the nonhomogeneous problem,

ut = kuxx + Q(x, t), 0 < x < L, t > 0,

u(0, t) = 0, u(L, t) = 0, t > 0,

u(x, 0) = f (x), 0 < x < L, (7.133)

is given by Equation (7.117)

u(x, t) =
∞

∑
n=1

an(t)φn(x)

=
∞

∑
n=1

[
an(0)e−kλnt +

∫ t

0
qn(τ)e−kλn(t−τ) dτ

]
φn(x). (7.134)

The generalized Fourier coefficients for an(0) and qn(t) are given by

an(0) =
1
‖φn‖2

∫ L

0
f (x)φn(x) dx, (7.135)

qn(t) =
1
‖φn‖2

∫ L

0
Q(x, t)φn(x) dx. (7.136)

The solution in Equation (7.134) can be rewritten using the Fourier coef-
ficients in Equations (7.135) and (7.136).

u(x, t) =
∞

∑
n=1

[
an(0)e−kλnt +

∫ t

0
qn(τ)e−kλn(t−τ) dτ

]
φn(x)
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=
∞

∑
n=1

an(0)e−kλntφn(x) +
∫ t

0

∞

∑
n=1

(
qn(τ)e−kλn(t−τ)φn(x)

)
dτ

=
∞

∑
n=1

1
‖φn‖2

(∫ L

0
f (ξ)φn(ξ) dξ

)
e−kλntφn(x)

+
∫ t

0

∞

∑
n=1

1
‖φn‖2

(∫ L

0
Q(ξ, τ)φn(ξ) dξ

)
e−kλn(t−τ)φn(x) dτ

=
∫ L

0

(
∞

∑
n=1

φn(x)φn(ξ)e−kλnt

‖φn‖2

)
f (ξ) dξ

+
∫ t

0

∫ L

0

(
∞

∑
n=1

φn(x)φn(ξ)e−kλn(t−τ)

‖φn‖2

)
Q(ξ, τ) dξ dτ. (7.137)

Defining

G(x, t; ξ, τ) =
∞

∑
n=1

φn(x)φn(ξ)e−kλn(t−τ)

‖φn‖2 ,

we see that the solution can be written in the formThe solution can be written in terms
of the initial value Green’s function,
G(x, t; ξ, 0), and the general Green’s
function, G(x, t; ξ, τ). u(x, t) =

∫ L

0
G(x, t; ξ, 0) f (ξ) dξ +

∫ t

0

∫ L

0
G(x, t; ξ, τ)Q(ξ, τ) dξ dτ.

Thus, we see that G(x, t; ξ, 0) is the initial value Green’s function and G(x, t; ξ, τ)

is the general Green’s function for this problem.
The only thing left is to introduce nonhomogeneous boundary conditions

into this solution. So, we modify the original problem to the fully nonho-
mogeneous heat equation:

ut = kuxx + Q(x, t), 0 < x < L, t > 0,

u(0, t) = α(t), u(L, t) = β(t), t > 0,

u(x, 0) = f (x), 0 < x < L, (7.138)

As before, we begin with the expansion of the solution in the basis of
eigenfunctions,

u(x, t) =
∞

∑
n=1

an(t)φn(x).

However, due to potential convergence problems, we cannot expect that uxx

can be obtained by simply differentiating the series twice and expecting the
resulting series to converge to uxx. So, we need to be a little more careful.

We first note that

ut =
∞

∑
n=1

ȧn(t)φn(x) = kuxx + Q(x, t).

Solving for the expansion coefficients, we have

ȧ(t) =

∫ L
0 (kuxx + Q(x, t))φn(x) dx

‖φn‖2 .

In order to proceed, we need an expression for
∫ b

a uxxφn(x) dx. We can find
this using Green’s identity from Section 4.2.2.
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We start with ∫ b

a
(uLv− vLu) dx = [p(uv′ − vu′)]ba

and let v = φn. Then,∫ L

0
(u(x, t)φ′′n (x)− φn(x)uxx(x, t)) dx = [u(x, t)φ′n(x)− φn(x)ux(x, t))]L0∫ L

0
(−λnu(x, t) + uxx(x, t))φn(x) dx = [u(L, t)φ′n(L)− φn(L)ux(L, t))]

−[u(0, t)φ′n(0)− φn(0)ux(0, t))]

−λnan‖φn‖2 −
∫ L

0
uxx(x, t)φn(x) dx = β(t)φ′n(L)− α(t)φ′n(0). (7.139)

Thus, ∫ L

0
uxx(x, t)φn(x) dx = −λnan‖φn‖2 + α(t)φ′n(0)− β(t)φ′n(L).

Inserting this result into the equation for ȧn(t), we have

ȧ(t) = −kλnan(t) + qn(t) + k
α(t)φ′n(0)− β(t)φ′n(L)

‖φn‖2 .

As we had seen before, this first order equation can be solved using the
integrating factor

µ(t) = exp
∫ t

kλn dτ = ekλnt.

Multiplying the differential equation by the integrating factor, we find

[ȧn(t) + kλnan(t)]ekλnt =

[
qn(t) + k

α(t)φ′n(0)− β(t)φ′n(L)
‖φn‖2

]
ekλnt

d
dt

(
an(t)ekλnt

)
=

[
qn(t) + k

α(t)φ′n(0)− β(t)φ′n(L)
‖φn‖2

]
ekλnt.

(7.140)

Integrating, we have

an(t)ekλnt − an(0) =
∫ t

0

[
qn(τ) + k

α(τ)φ′n(0)− β(τ)φ′n(L)
‖φn‖2

]
ekλnτ dτ,

or

an(t) = an(0)e−kλnt +
∫ t

0

[
qn(τ) + k

α(τ)φ′n(0)− β(τ)φ′n(L)
‖φn‖2

]
e−kλn(t−τ) dτ.

We can now insert these coefficients into the solution and see how to
extract the Green’s function contributions. Inserting the coefficients, we
have

u(x, t) =
∞

∑
n=1

an(t)φn(x)

=
∞

∑
n=1

[
an(0)e−kλnt +

∫ t

0
qn(τ)e−kλn(t−τ) dτ

]
φn(x)

+
∞

∑
n=1

(∫ t

0

[
k

α(τ)φ′n(0)− β(τ)φ′n(L)
‖φn‖2

]
e−kλn(t−τ) dτ

)
φn(x).

(7.141)
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Recall that the generalized Fourier coefficients for an(0) and qn(t) are given
by

an(0) =
1
‖φn‖2

∫ L

0
f (x)φn(x) dx, (7.142)

qn(t) =
1
‖φn‖2

∫ L

0
Q(x, t)φn(x) dx. (7.143)

The solution in Equation (7.141) can be rewritten using the Fourier coef-
ficients in Equations (7.142) and (7.143).

u(x, t) =
∞

∑
n=1

[
an(0)e−kλnt +

∫ t

0
qn(τ)e−kλn(t−τ) dτ

]
φn(x)

+
∞

∑
n=1

(∫ t

0

[
k

α(τ)φ′n(0)− β(τ)φ′n(L)
‖φn‖2

]
e−kλn(t−τ) dτ

)
φn(x)

=
∞

∑
n=1

an(0)e−kλntφn(x) +
∫ t

0

∞

∑
n=1

(
qn(τ)e−kλn(t−τ)φn(x)

)
dτ

+
∫ t

0

∞

∑
n=1

([
k

α(τ)φ′n(0)− β(τ)φ′n(L)
‖φn‖2

]
e−kλn(t−τ)

)
φn(x)dτ

=
∞

∑
n=1

1
‖φn‖2

(∫ L

0
f (ξ)φn(ξ) dξ

)
e−kλntφn(x)

+
∫ t

0

∞

∑
n=1

1
‖φn‖2

(∫ L

0
Q(ξ, τ)φn(ξ) dξ

)
e−kλn(t−τ)φn(x) dτ

+
∫ t

0

∞

∑
n=1

([
k

α(τ)φ′n(0)− β(τ)φ′n(L)
‖φn‖2

]
e−kλn(t−τ)

)
φn(x)dτ

=
∫ L

0

(
∞

∑
n=1

φn(x)φn(ξ)e−kλnt

‖φn‖2

)
f (ξ) dξ

+
∫ t

0

∫ L

0

(
∞

∑
n=1

φn(x)φn(ξ)e−kλn(t−τ)

‖φn‖2

)
Q(ξ, τ) dξ dτ.

+k
∫ t

0

(
∞

∑
n=1

φn(x)φ′n(0)e−kλn(t−τ)

‖φn‖2

)
α(τ) dτ

−k
∫ t

0

(
∞

∑
n=1

φn(x)φ′n(L)e−kλn(t−τ)

‖φn‖2

)
β(τ) dτ. (7.144)

As before, we can define the general Green’s function as

G(x, t; ξ, τ) =
∞

∑
n=1

φn(x)φn(ξ)e−kλn(t−τ)

‖φn‖2 .

Then, we can write the solution to the fully homogeneous problem as

u(x, t) =
∫ t

0

∫ L

0
G(x, t; ξ, τ)Q(ξ, τ) dξ dτ +

∫ L

0
G(x, t; ξ, 0) f (ξ) dξ

+k
∫ t

0

[
α(τ)

∂G
∂ξ

(x, 0; t, τ)− β(τ)
∂G
∂ξ

(x, L; t, τ)

]
dτ. (7.145)

The first integral handles the source term, the second integral handles the
initial condition, and the third term handles the fixed boundary conditions.
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This general form can be deduced from the differential equation for the
Green’s function and original differential equation by using a more general
form of Green’s identity. Let the heat equation operator be defined as L =
∂
∂t − k ∂2

∂x2 . The differential equations for u(x, t) and G(x, t; ξ, τ) for 0 ≤ x, ξ ≤
L and t, τ ≥ 0, are taken to be

Lu(x, t) = Q(x, t),

LG(x, t; ξ, τ) = δ(x− ξ)δ(t− τ). (7.146)

Multiplying the first equation by G(x, t; ξ, τ) and the second by u(x, t),
we obtain

G(x, t; ξ, τ)Lu(x, t) = G(x, t; ξ, τ)Q(x, t),

u(x, t)LG(x, t; ξ, τ) = δ(x− ξ)δ(t− τ)u(x, t). (7.147)

Now, we subtract the equations and integrate with respect to x and t.
This gives ∫ ∞

0

∫ L

0
[G(x, t; ξ, τ)Lu(x, t)− u(x, t)LG(x, t; ξ, τ)] dxdt

=
∫ ∞

0

∫ L

0
[G(x, t; ξ, τ)Q(x, t)− δ(x− ξ)δ(t− τ)u(x, t)] dxdt

=
∫ ∞

0

∫ L

0
G(x, t; ξ, τ)Q(x, t) dxdt− u(ξ, τ). (7.148)

and ∫ ∞

0

∫ L

0
[G(x, t; ξ, τ)Lu(x, t)− u(x, t)LG(x, t; ξ, τ)] dxdt

=
∫ L

0

∫ ∞

0
[G(x, t; ξ, τ)ut − u(x, t)Gt(x, t; ξ, τ)] dtdx

−k
∫ ∞

0

∫ L

0
[G(x, t; ξ, τ)uxx(x, t)− u(x, t)Gxx(x, t; ξ, τ)] dxdt

=
∫ L

0

[
G(x, t; ξ, τ)ut

∣∣∞
0 − 2

∫ ∞

0
u(x, t)Gt(x, t; ξ, τ) dt

]
dx

−k
∫ ∞

0

[
G(x, t; ξ, τ)

∂u
∂x

(x, t)− u(x, t)
∂G
∂x

(x, t; ξ, τ)

]L

0
dxdt

(7.149)

Equating these two results and solving for u(ξ, τ), we have

u(ξ, τ) =
∫ ∞

0

∫ L

0
G(x, t; ξ, τ)Q(x, t) dxdt

+k
∫ ∞

0

[
G(x, t; ξ, τ)

∂u
∂x

(x, t)− u(x, t)
∂G
∂x

(x, t; ξ, τ)

]L

0
dxdt

+
∫ L

0

[
G(x, 0; ξ, τ)u(x, 0) + 2

∫ ∞

0
u(x, t)Gt(x, t; ξ, τ) dt

]
dx.

(7.150)

Exchanging (ξ, τ) with (x, t) and assuming that the Green’s function is sym-
metric in these arguments, we have

u(x, t) =
∫ ∞

0

∫ L

0
G(x, t; ξ, τ)Q(ξ, τ) dξdτ
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+k
∫ ∞

0

[
G(x, t; ξ, τ)

∂u
∂ξ

(ξ, τ)− u(ξ, τ)
∂G
∂ξ

(x, t; ξ, τ)

]L

0
dxdt

+
∫ L

0
G(x, t; ξ, 0)u(ξ, 0) dξ + 2

∫ L

0

∫ ∞

0
u(ξ, τ)Gτ(x, t; ξ, τ) dτdξ.

(7.151)

This result is almost in the desired form except for the last integral. Thus,
if ∫ L

0

∫ ∞

0
u(ξ, τ)Gτ(x, t; ξ, τ) dτdξ = 0,

then we have

u(x, t) =
∫ ∞

0

∫ L

0
G(x, t; ξ, τ)Q(ξ, τ) dξdτ +

∫ L

0
G(x, t; ξ, 0)u(ξ, 0) dξ

+k
∫ ∞

0

[
G(x, t; ξ, τ)

∂u
∂ξ

(ξ, τ)− u(ξ, τ)
∂G
∂ξ

(x, t; ξ, τ)

]L

0
dxdt.

(7.152)

7.8 Summary

We have seen throughout the chapter that Green’s functions are the
solutions of a differential equation representing the effect of a point impulse
on either source terms, or initial and boundary conditions. The Green’s
function is obtained from transform methods or as an eigenfunction ex-
pansion. In the text we have occasionally rewritten solutions of differential
equations in term’s of Green’s functions. We will first provide a few of these
examples and then present a compilation of Green’s Functions for generic
partial differential equations.

For example, in section 7.4 we wrote the solution of the one dimensional
heat equation as

u(x, t) =
∫ L

0
G(x, ξ; t, 0) f (ξ) dξ,

where

G(x, ξ; t, 0) =
2
L

∞

∑
n=1

sin
nπx

L
sin

nπξ

L
eλnkt,

and the solution of the wave equation as

u(x, t) =
∫ L

0
Gc(x, ξ, t, 0) f (ξ) dξ +

∫ L

0
Gs(x, ξ, t, 0)g(ξ) dξ,

where

Gc(x, ξ, t, 0) =
2
L

∞

∑
n=1

sin
nπx

L
sin

nπξ

L
cos

nπct
L

,

Gs(x, ξ, t, 0) =
2
L

∞

∑
n=1

sin
nπx

L
sin

nπξ

L
sin nπct

L
nπc/L

.
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We note that setting t = 0 in Gc(x, ξ; t, 0), we obtain

Gc(x, ξ, 0, 0) =
2
L

∞

∑
n=1

sin
nπx

L
sin

nπξ

L
.

This is the Fourier sine series representation of the Dirac delta function,
δ(x − ξ). Similarly, if we differentiate Gs(x, ξ, t, 0) with repsect to t and set
t = 0, we once again obtain the Fourier sine series representation of the
Dirac delta function.

It is also possible to find closed form expression for Green’s functions,
which we had done for the heat equation on the infinite interval,

u(x, t) =
∫ ∞

−∞
G(x, t; ξ, 0) f (ξ) dξ,

where

G(x, t; ξ, 0) =
e−(x−ξ)2/4t
√

4πt
,

and for Poisson’s equation,

φ(r) =
∫

V
G(r, r′) f (r′) d3r′,

where the three dimensional Green’s function is given by

G(r, r′) =
1

|r− r′| .

We can construct Green’s functions for other problems which we have
seen in the book. For example, the solution of the two dimensional wave
equation on a rectangular membrane was found in Equation (6.37) as

u(x, y, t) =
∞

∑
n=1

∞

∑
m=1

(anm cos ωnmt + bnm sin ωnmt) sin
nπx

L
sin

mπy
H

, (7.153)

where

anm =
4

LH

∫ H

0

∫ L

0
f (x, y) sin

nπx
L

sin
mπy

H
dxdy, (7.154)

bnm =
4

ωnmLH

∫ H

0

∫ L

0
g(x, y) sin

nπx
L

sin
mπy

H
dxdy, (7.155)

where the angular frequencies are given by

ωnm = c

√(nπ

L

)2
+
(mπ

H

)2
. (7.156)

Rearranging the solution, we have

u(x, y, t) =
∫ H

0

∫ L

0
[Gc(x, y; ξ, η; t, 0) f (ξ, η) + Gs(x, y; ξ, η; t, 0)g(ξ, η)] dξdη,

where

Gc(x, y; ξ, η; t, 0) =
4

LH

∞

∑
n=1

∞

∑
m=1

sin
nπx

L
sin

nπξ

L
sin

mπy
H

sin
mπη

H
cos ωnmt
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and

Gs(x, y; ξ, η; t, 0) =
4

LH

∞

∑
n=1

∞

∑
m=1

sin
nπx

L
sin

nπξ

L
sin

mπy
H

sin
mπη

H
sin ωnmt

ωnm
.

Once again, we note that setting t = 0 in Gc(x, ξ; t, 0) and setting t = 0
in ∂Gc(x,ξ;t,0)

∂t , we obtain a Fourier series representation of the Dirac delta
function in two dimensions,

δ(x− ξ)δ(y− η) =
4

LH

∞

∑
n=1

∞

∑
m=1

sin
nπx

L
sin

nπξ

L
sin

mπy
H

sin
mπη

H
.

Another example was the solution of the two dimensional Laplace equa-
tion on a disk given by Equation 6.87. We found that

u(r, θ) =
a0

2
+

∞

∑
n=1

(an cos nθ + bn sin nθ) rn. (7.157)

an =
1

πan

∫ π

−π
f (θ) cos nθ dθ, n = 0, 1, . . . , (7.158)

bn =
1

πan

∫ π

−π
f (θ) sin nθ dθ n = 1, 2 . . . . (7.159)

We saw that this solution can be written as

u(r, θ) =
∫ π

−π
G(θ, φ; r, a) f (φ) dφ,

where the Green’s function could be summed giving the Poisson kernel

G(θ, φ; r, a) =
1

2π

a2 − r2

a2 + r2 − 2ar cos(θ − φ)
.

We had also investigated the nonhomogeneous heat equation in section
9.11.4,

ut − kuxx = h(x, t), 0 ≤ x ≤ L, t > 0.

u(0, t) = 0, u(L, t) = 0, t > 0,

u(x, 0) = f (x), 0 ≤ x ≤ . (7.160)

We found that the solution of the heat equation is given by

u(x, t) =
∫ L

0
f (ξ)G(x, ξ; t, 0)dξ +

∫ t

0

∫ L

0
h(ξ, τ)G(x, ξ; t, τ) dξdτ,

where

G(x, ξ; t, τ) =
2
L

∞

∑
n=1

sin
nπx

L
sin

nπξ

L
e−ω2

n(t−τ).

Note that setting t = τ, we again get a Fourier sine series representation of
the Dirac delta function.

In general, Green’s functions based on eigenfunction expansions over
eigenfunctions of Sturm-Liouville eigenvalue problems are a common way
to construct Green’s functions. For example, surface and initial value Green’s
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functions are constructed in terms of a modification of delta function rep-
resentations modified by factors which make the Green’s function a solu-
tion of the given differential equations and a factor taking into account the
boundary or initial condition plus a restoration of the delta function when
applied to the condition. Examples with an indication of these factors are
shown below.

1. Surface Green’s Function: Cube [0, a]× [0, b]× [0, c]

g(x, y, z; x′, y′, c) = ∑
`,n

2
a

sin
`πx

a
sin

`πx′

a
2
b

sin
nπy

b
sin

nπy′

b︸ ︷︷ ︸
δ−function

sinh γ`nz︸ ︷︷ ︸
D.E.

/ sinh γ`nc︸ ︷︷ ︸
restore δ

 .

2. Surface Green’s Function: Sphere [0, a]× [0, π]× [0, 2π]

g(r, φ, θ; a, φ′, θ′) = ∑
`,m

Ym∗
` (ψ′ θ′)Ym∗

` (ψ θ)︸ ︷︷ ︸
δ−function

 r`︸︷︷︸
D.E.

/ a`︸︷︷︸
restore δ

 .

3. Initial Value Green’s Function: 1D Heat Equation on [0, L], kn = nπ
L

g(x, t; x′, t0) = ∑
n

2
L

sin
nπx

L
sin

nπx′

L︸ ︷︷ ︸
δ−function

e−a2k2
nt︸ ︷︷ ︸

D.E.

/ e−a2k2
nt0︸ ︷︷ ︸

restore δ

 .

4. Initial Value Green’s Function: 1D Heat Equation on infinite domain

g(x, t; x′, 0) =
1

2π

∫ ∞

−∞
dkeik(x−x′)︸ ︷︷ ︸

δ−function

e−a2k2t︸ ︷︷ ︸
D.E.

=
e−(x−x′)2/4a2t
√

4πa2t
.

We can extend this analysis to a more general theory of Green’s functions.
This theory is based upon Green’s Theorems, or identities.

1. Green’s First Theorem∮
S

ϕ∇χ · n̂ dS =
∫

V
(∇ϕ · ∇χ + ϕ∇2χ) dV.

This is easily proven starting with the identity

∇ · (ϕ∇χ) = ∇ϕ · ∇χ + ϕ∇2χ,

integrating over a volume of space and using Gauss’ Integral Theo-
rem.

2. Green’s Second Theorem∫
V
(ϕ∇2χ− χ∇2 ϕ) dV =

∮
S
(ϕ∇χ− χ∇ϕ) · n̂ dS.

This is proven by interchanging ϕ and χ in the first theorem and sub-
tracting the two versions of the theorem.
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The next step is to let ϕ = u and χ = G. Then,∫
V
(u∇2G− G∇2u) dV =

∮
S
(u∇G− G∇u) · n̂ dS.

As we had seen earlier for Poisson’s equation, inserting the differential
equation yields

u(x, y) =
∫

V
G f dV +

∮
S
(u∇G− G∇u) · n̂ dS.

If we have the Green’s function, we only need to know the source term and
boundary conditions in order to obtain the solution to a given problem.

In the next sections we provide a summary of these ideas as applied to
some generic partial differential equations.33 This is an adaptation of notes from

J. Franklin’s course on mathematical
physics.

7.8.1 Laplace’s Equation: ∇2ψ = 0.

1. Boundary Conditions

(a) Dirichlet - ψ is given on the surface.

(b) Neumann - n̂ · ∇ψ = ∂ψ
∂n is given on the surface.

Note: Boundary conditions can be Dirichlet on part of the surface and
Neumann on part. If they are Neumann on the whole surface, then
the Divergence Theorem requires the constraint

∫
∂ψ

∂n
dS = 0.

2. Solution by Surface Green’s Function, g(~r,~r′).

(a) Dirichlet conditions

∇2gD(~r,~r′) = 0,

gD(~rs,~r′s) = δ(2)(~rs −~r′s),

ψ(~r) =
∫

gD(~r,~r′s)ψ(~r
′
s) dS′.

(b) Neumann conditions

∇2gN(~r,~r′) = 0,

∂gN
∂n

(~rs,~r′s) = δ(2)(~rs −~r′s),

ψ(~r) =
∫

gN(~r,~r′s)
∂ψ

∂n
(~r′s) dS′.

Note: Use of g is readily generalized to any number of dimensions.
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7.8.2 Homogeneous Time Dependent Equations

1. Typical Equations

(a) Diffusion/Heat Equation ∇2Ψ = 1
a2

∂
∂t Ψ.

(b) Schrödinger Equation −∇2Ψ + UΨ = i ∂
∂t Ψ.

(c) Wave Equation ∇2Ψ = 1
c2

∂2

∂t2 Ψ.
(d) General form: DΨ = T Ψ.

2. Initial Value Green’s Function, g(~r,~r′; t, t′).

(a) Homogeneous Boundary Conditions
i. Diffusion, or Schrödinger Equation (1st order in time),
Dg = T g.

Ψ(~r, t) =
∫

g(~r,~r′; t, t0)Ψ(r ′, t0) d3r′,

where
g(r , r ′; t0, t0) = δ(r − r ′),

g(r s) satisfies homogeneous boundary conditions.

ii. Wave Equation

Ψ(r , t) =
∫
[gc(r , r ′; t, t0)Ψ(r ′, t0)+ gs(r , r ′; t, t0)Ψ̇(r ′, t0)] d3r ′.

The first two properties in (a) above hold, but

gc(r , r ′; t0, t0) = δ(r − r ′)

ġs(r , r ′; t0, t0) = δ(r − r ′)

Note: For the diffusion and Schrödinger equations the ini-
tial condition is Dirichlet in time. For the wave equation
the initial condition is Cauchy, where Ψ and Ψ̇ are given.

(b) Inhomogeneous, Time Independent (steady) Boundary Con-
ditions

i. Solve Laplace’s equation, ∇2ψs = 0, for inhomogeneous
B.C.’s

ii. Solve homogeneous, time-dependent equation for

Ψt(r , t) satisfying Ψt(r , t0) = Ψ(r , t0)− ψs(r ).

iii. Then Ψ(r , t) = Ψt(r , t) + ψs(r ).
Note: Ψt is the transient part and ψs is the steady state part.

3. Time Dependent Boundary Conditions with Homogeneous Initial
Conditions

(a) Use the Boundary Value Green’s Function, h(r , r ′s; t, t′), which
is similar to the surface Green’s function in an earlier section.

Ψ(r , t) =
∫ ∞

t0

hD(r , r ′s; t, t′)Ψ(r ′s, t′) dt′,

or
Ψ(r , t) =

∫ ∞

t0

∂hN
∂n

(r , r ′s; t, t′)Ψ(r ′s, t′) dt′.
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(b) Properties of h(r , r ′s; t, t′):

Dh = T h

hD(r s, r ′s; t, t′) = δ(t− t′), or
∂hN
∂n

(r s, r ′s; t, t′) = δ(t− t′),

h(r , r ′s; t, t′) = 0, t′ > t, (causality).

(c) Note: For inhomogeneous I.C.,

Ψ =
∫

gΨ(r ′, t0) +
∫

dt′hDΨ(r ′s, t′) d3r ′.

7.8.3 Inhomogeneous Steady State Equation

1. Poisson’s Equation

∇2ψ(r , t) = f (r ), ψ(r s) or
∂ψ

∂n
(r s) given.

(a) Green’s Theorem:∫
[ψ(r ′)∇′2G(r , r ′)− G(r , r ′)∇′2ψ(r ′)] d3r ′

=
∫
[ψ(r ′)∇′G(r , r ′)− G(r , r ′)∇′ψ(r ′)] · ~dS

′
,

where ∇′ denotes differentiation with respect to r′.

(b) Properties of G(r , r ′):

i. ∇′2G(r , r ′) = δ(r − r ′).

ii. G|s = 0 or ∂G
∂n′ |s = 0.

iii. Solution

ψ(r ) =
∫

G(r , r ′) f (r ′) d3r ′

+
∫
[ψ(r ′)∇′G(r , r ′)− G(r , r ′)∇′ψ(r ′)] · ~dS

′
.

(7.161)

(c) For the case of pure Neumann B.C.’s, the Divergence Theorem
leads to the constraint∫

∇ψ · ~dS =
∫

f d3r.

If there are pure Neumann conditions and S is finite and
∫

f d3r 6=
0 by symmetry, then ~̂n

′ · ∇′G|s 6= 0 and the Green’s function
method is much more complicated to solve.

(d) From the above result:

~̂n
′ · ∇′G(r , r ′s) = gD(r , r ′s)

or
GN(r , r ′s) = −gN(r , r ′s).

It is often simpler to use G for
∫

d3r ′ and g for
∫
~dS
′
, separately.
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(e) G satisfies a reciprocity property,G(r , r ′) = G(r ′, r ) for either
Dirichlet or Neumann boundary conditions.

(f) G(r , r ′) can be considered as a potential at r due to a point
charge q = −1/4π at r ′, with all surfaces being grounded con-
ductors.

7.8.4 Inhomogeneous, Time Dependent Equations

1. Diffusion/Heat Flow ∇2Ψ− 1
a2 Ψ̇ = f (r , t).

(a)

[∇2 − 1
a2

∂

∂t
]G(r , r ′; t, t′) = [∇′2 + 1

a2
∂

∂t′
]G(r , r ′; t, t′)

= δ(r − r ′)δ(t− t′). (7.162)

(b) Green’s Theorem in 4 dimensions (r , t) yields

Ψ(r , t) =
∫ ∫ ∞

t0

G(r , r ′; t, t′) f (r ′, t′) dt′d3r ′ − 1
a2

∫
G(r , r ′; t, t0)Ψ(r ′, t0) d3r ′

+
∫ ∞

t0

∫
[Ψ(r ′s, t)∇′GD(r , r ′s; t, t′)− GN(r , r ′s; t, t′)∇′Ψ(r ′s, t′)] · ~dS

′
dt′.

(c) Either GD(r ′s) = 0 or GN(r ′s) = 0 on S at any point r ′s.

(d) n̂′ · ∇′GD(r ′s) = hD(r ′s), GN(r ′s) = −hN(r ′s), and− 1
a2 G(r , r ′; t, t0) =

g(r , r ′; t, t0).

2. Wave Equation ∇2Ψ− 1
c2

∂2Ψ
∂2t = f (r , t).

(a)

[∇2 − 1
c2

∂2

∂t2 ]G(r , r ′; t, t′) = [∇′2 − 1
c2

∂2

∂t2 ]G(r , r ′; t, t′)

= δ(r − r ′)δ(t− t′). (7.163)

(b) Green’s Theorem in 4 dimensions (r , t) yields

Ψ(r , t) =
∫ ∫ ∞

t0

G(r , r ′; t, t′) f (r ′, t′) dt′d3r ′

− 1
c2

∫
[G(r , r ′; t, t0)

∂

∂t′
Ψ(r ′, t0)−Ψ(r ′, t0)

∂

∂t′
G(r , r ′; t, t0)] d3r ′

+
∫ ∞

t0

∫
[Ψ(r ′s, t)∇′GD(r , r ′s; t, t′)− GN(r , r ′s; t, t′)∇′ψ(r ′s, t′)] · ~dS

′
dt′.

(c) Cauchy initial conditions are given: Ψ(t0) and Ψ̇(t0).

(d) The wave and diffusion equations satisfy a causality condition
G(t, t′) = 0, t′ > t.

Problems

1. Find the solution of each initial value problem using the appropriate
initial value Green’s function.

a. y′′ − 3y′ + 2y = 20e−2x, y(0) = 0, y′(0) = 6.
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b. y′′ + y = 2 sin 3x, y(0) = 5, y′(0) = 0.

c. y′′ + y = 1 + 2 cos x, y(0) = 2, y′(0) = 0.

d. x2y′′ − 2xy′ + 2y = 3x2 − x, y(1) = π, y′(1) = 0.

2. Use the initial value Green’s function for x′′+ x = f (t), x(0) = 4, x′(0) =
0, to solve the following problems.

a. x′′ + x = 5t2.

b. x′′ + x = 2 tan t.

3. For the problem y′′ − k2y = f (x), y(0) = 0, y′(0) = 1,

a. Find the initial value Green’s function.

b. Use the Green’s function to solve y′′ − y = e−x.

c. Use the Green’s function to solve y′′ − 4y = e2x.

4. Find and use the initial value Green’s function to solve

x2y′′ + 3xy′ − 15y = x4ex, y(1) = 1, y′(1) = 0.

5. Consider the problem y′′ = sin x, y′(0) = 0, y(π) = 0.

a. Solve by direct integration.

b. Determine the Green’s function.

c. Solve the boundary value problem using the Green’s function.

d. Change the boundary conditions to y′(0) = 5, y(π) = −3.

i. Solve by direct integration.

ii. Solve using the Green’s function.

6. Let C be a closed curve and D the enclosed region. Prove the identity∫
C

φ∇φ · n ds =
∫

D
(φ∇2φ +∇φ · ∇φ) dA.

7. Let S be a closed surface and V the enclosed volume. Prove Green’s first
and second identities, respectively.

a.
∫

S φ∇ψ · n dS =
∫

V(φ∇
2ψ +∇φ · ∇ψ) dV.

b.
∫

S[φ∇ψ− ψ∇φ] · n dS =
∫

V(φ∇
2ψ− ψ∇2φ) dV.

8. Let C be a closed curve and D the enclosed region. Prove Green’s iden-
tities in two dimensions.

a. First prove ∫
D
(v∇ · F + F · ∇v) dA =

∫
C
(vF) · ds.

b. Let F = ∇u and obtain Green’s first identity,∫
D
(v∇2u +∇u · ∇v) dA =

∫
C
(v∇u) · ds.
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c. Use Green’s first identity to prove Green’s second identity,∫
D
(u∇2v− v∇2u) dA =

∫
C
(u∇v− v∇u) · ds.

9. Consider the problem:

∂2G
∂x2 = δ(x− x0),

∂G
∂x

(0, x0) = 0, G(π, x0) = 0.

a. Solve by direct integration.

b. Compare this result to the Green’s function in part b of the last prob-
lem.

c. Verify that G is symmetric in its arguments.

10. Consider the boundary value problem: y′′ − y = x, x ∈ (0, 1), with
boundary conditions y(0) = y(1) = 0.

a. Find a closed form solution without using Green’s functions.

b. Determine the closed form Green’s function using the properties of
Green’s functions. Use this Green’s function to obtain a solution of
the boundary value problem.

c. Determine a series representation of the Green’s function. Use this
Green’s function to obtain a solution of the boundary value problem.

d. Confirm that all of the solutions obtained give the same results.

11. Rewrite the solution to Problem 15 and identify the initial value Green’s
function.

12. Rewrite the solution to Problem 16 and identify the initial value Green’s
functions.

13. Find the Green’s function for the homogeneous fixed values on the
boundary of the quarter plane x > 0, y > 0, for Poisson’s equation using
the infinite plane Green’s function for Poisson’s equation. Use the method
of images.

14. Find the Green’s function for the one dimensional heat equation with
boundary conditions u(0, t) = 0 ux(L, t), t > 0.

15. Consider Laplace’s equation on the rectangular plate in Figure 6.8. Con-
struct the Green’s function for this problem.

16. Construct the Green’s function for Laplace’s equation in the spherical
domain in Figure 6.18.
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