
PDE HW Notes for Problems 9, 11, and 7
November 19, 2024

1. Problem 9: Consider a circular cylinder of radius R “ 4.00 cm and
height H “ 20.0 cm that obeys the steady-state heat equation

urr `
1
r

ur ` uzz “ 0.

Find the temperature distribution, upr, zq, given that upr, 0q “ 0˝C,
upr, 20q “ 20˝C, and heat is lost through the sides due to Newton’s
Law of Cooling,

rur ` husr“4 “ 0,

for h “ 1.0 cm´1.
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ur ` hu “ 0

Figure 1: Geometry for the cylinder in
Problem 9.

Show that separating variables gives the boundary value problems

Z2 ´ λ2Z “ 0, Zp0q “ 0, (1)

φ2 `
1
r

φ1 ` λ2φ “ 0, rφ1 ` hφsr“R “ 0. (2)

Equation (2) is a Bessel equation with solutions finite at the origin,
φprq “ J0pλrq, satisfying

λJ10pλRq ` J0pλRq “ 0. (3)

The solution of (transcendental) Equation (3) will give the eigen-
values, λn. In Figure 2 we show the plot of

f pxq “ xJ10pxq ` J0pxq “ ´xJ1pxq ` J0pxq,

where x “ λR. If we call the roots jn, satisfying ´jn J10pjnq ` J0pjnq “ 0,
then the eigenvalues are given in terms of these roots, λn “ jn{R. You
need to numerically find several of these to obtain an approximate
solution.

Figure 2: A plot of f pxq “ xJ10pxq `
J0pxq “ ´xJ1pxq ` J0pxq in Problem 11.9
showing the location of the zeros.

Boundary value problem (1) leads to product solutions and even-
tually the general solution,

upr, zq “
8
ÿ

n“1

An J0pλnrq sinh λnz.
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The condition on the top of the cylinder, upr, Hq “ 20, gives

20 “
8
ÿ

n“1

pAn sinh λn HqJ0pλnrq.

This is a Fourier-Bessel series. Finding the Fourier coefficients re-
quires some manipulation of Green’s Identity to enforce an orthogo-
nality condition.

This is tricky for the mixed boundary conditions. So, I’ll just state
the following: In general, if

f prq “
8
ÿ

n“1

an J0pλnrqr dr

where jn J10pjnq ` J0pjnq “ 0 and λn “ jn{R, then the Fourier-Bessel
coefficients are given by

an “
2

R2 J2
0pjnq

j2n
j2n ` R

ż R

0
f prqJ0p

jn
R

rqr dr.

If done correctly, you will need to integrate
ż R

0
J0pλnrqr dr “

1
λ2

n

ż λnR

0
J0pyqy dy

“
1

λ2
n

ż jn

0

d
dy
ryJ1pyqs dy

“
R2

jn
J1pjnq.

2. Problem 11: Determine the steady-state temperature of a spheri-
cal ball maintained at the temperature

upx, y, zq “ x2 ` 2y2 ` 3z2, ρ “ 1.

[Hint: Rewrite the problem in spherical coordinates and use the
properties of spherical harmonics.]

From the text we have that solutions can be written as

upρ, θ, φq “
8
ÿ

`“0

ÿ̀

m“´`

a`mρ`Pm
` pcos θqeimφ.

[One can take real part to get a real valued solution.]
At ρ “ 1, we have

x2 ` 2y2 ` 3z2 “

8
ÿ

`“0

ÿ̀

m“´`

a`mPm
` pcos θqeimφ.

So, you need only write the Cartesian form of the initial condition
in terms of associated Legendre functions. Write x, y, z in spherical
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Pm
n pxq Pm

n pcos θq

P0
0 pxq 1 1

P0
1 pxq x cos θ

P1
1 pxq ´p1´ x2q

1
2 ´ sin θ

P0
2 pxq

1
2 p3x2 ´ 1q 1

2 p3 cos2 θ ´ 1q
P1

2 pxq ´3xp1´ x2q
1
2 ´3 cos θ sin θ

P2
2 pxq 3p1´ x2q 3 sin2 θ

Table 1: Associated Legendre Functions,
Pm

n pxq.

coordinates and write out a few terms of the right hand side in terms
of trigonometric functions.

Using the the spherical coordinate transformation and Table 1 of
associated Legendre functions, we have

x2 ` 2y2 ` 3z2 “ sin2 θ cos2 φ` 2 sin2 θ sin2 φ` 3 cos2 θ

“
1
2

sin2 θp1` cos 2φq ` sin2 θp1´ cos 2φq ` 3 cos2 θ

“ ´
1
2

sin2 θ cos 2φ`
3
2

sin2 θ ` 3 cos2 θ

“ ´
1
2

sin2 θ cos 2φ`
1
2
p3 cos2 θ ´ 1q ` 2

“ ´
1
6

P2
2 pcos θq cos 2φ` P0

2 pcos θq ` 2P0
0 pcos θq.

Comparing this with the expansion for the boundary condition,
we can identify a finite number of nonzero coefficients. The general
solution is formed by inserting factors of ρ` in each term. Therefore,
we have

upρ, θ, φq “ ´
1
6

ρ2P2
2 pcos θq cos 2φ` ρ2P0

2 pcos θq ` 2P0
0 pcos θq

“ ´
1
2

ρ2 sin2 θ cos 2φ`
1
2

ρ2p3 cos2 θ ´ 1q ` 2.

Another way to determine the nonzero coefficients is by comput-
ing the general Fourier coefficients. Denoting

up1, θ, φq “ f pθ, φq “ sin2 θ cos2 φ` 2 sin2 θ sin2 φ` 3 cos2 θ,

the coefficients are given by

a`m “

ż π

0

ż 2π

0
f pθ, φqPm

` pcos θqeimφ sin θ dφdθ

şπ
0
ş2π

0

ˇ

ˇ

ˇ
Pm
` pcos θqeimφ

ˇ

ˇ

ˇ

2
sin θ dφdθ

.

However, from the form of f pθ, φq, we only need a00, a20, and a2,˘2.
we can use Table 1 to compute the needed integrals.

a00 “

ż π

0

ż 2π

0
f pθ, φq sin θ dφdθ

şπ
0
ş2π

0 sin θ dφdθ
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“
8π

4π
“ 2. (4)

a20 “

ż π

0

ż 2π

0
f pθ, φqP2pcos θq sin θ dφdθ

şπ
0
ş2π

0 |P2pcos θq|2 sin θ dφdθ

“
5

4π

ż π

0

ż 2π

0
f pθ, φqP2pcos θq sin θ dφdθ “ 1. (5)

a2,˘2 “

ż π

0

ż 2π

0
f pθ, φqP2

2 pcos θqe˘2iφ sin θ dφdθ

şπ
0
ş2π

0

ˇ

ˇ

ˇ
P2

2 pcos θq
ˇ

ˇ

ˇ

2
sin θ dφdθ

“

3
ż π

0

ż 2π

0
f pθ, φqe˘2iφ sin3 θ dφdθ

18π
şπ

0 sin5 θ dθ

“
´8π{15

6πp16{15q
“ ´

1
12

. (6)

Writing,upρ, θ, φq as

a00P0
0 pcos θq` a20ρ2P0

2 pcos θq` a22ρ2P2
2 pcos θqe2iφ` a2,´2ρ2P´2

2 pcos θqe´2iφ,

we obtain the same solution as before.

3. Problem 7: A copper cube 10.0 cm on a side is heated to 100˝

C. The block is placed on a surface that is kept at 0˝ C. The sides of
the block are insulated, so the normal derivatives on the sides are
zero. Heat flows from the top of the block to the air governed by the
gradient uz “ ´10˝C/m. Determine the temperature of the block at
its center after 1.0 minute. Note that the thermal diffusivity is given
by k “ K

ρcp
, where K is the thermal conductivity, ρ is the density, and

cp is the specific heat capacity.
y

z

x

ux “ 0

uz “ ´10

ux “ 0

u “ 0

uy “ 0 uy “ 0

Figure 3: The cube for problem 10.7.

This is a heat conduction problem:

ut “ k
`

uxx ` uyy ` uzz
˘

,

with nonhomogeneous boundary conditions given by (s “ 10.0 cm)

upx, y, 0, tq “ 0, uzpx, y, s, tq “ ´0.1˝C/cm, 0 ď x, y ď s,

uxp0, y, z, tq “ 0, uxp0, y, z, tq “ 0, 0 ď y, z ď s,

uypx, 0, z, tq “ 0, uypx, 0, z, tq “ 0, 0 ď x, z ď s,

and the initial condition is

upx, y, z, 0q “ 100˝C.
Convert to homogeneous boundary
conditions.We assume the solution takes the form

upx, y, z, tq “ vpx, y, z, tq ` f pzq.
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Then, vpx, y, z, tq satisfies the new boundary value problem

vt “ k
“

vxx ` vyy ` vzz ` f 2pzq
‰

,

vpx, y, 0, tq “ ´ f p0q, vzpx, y, s, tq “ ´ f 1psq ´ 0.1,

vxp0, y, z, tq “ 0, vxp0, y, z, tq “ 0,

vypx, 0, z, tq “ 0, vypx, 0, z, tq “ 0,

and the initial condition is given by

vpx, y, z, 0q “ 100´ f pzq.

To make the boundary conditions homogeneous, let f p0q “ 0 and
f 1psq “ ´0.1. The heat equation will be homogeneous if f 2pzq “ 0. So,
we assume that f pzq “ Az` B. The boundary conditions give B “ 0
and A “ ´0.1. This yields f pzq “ ´0.1z.

Now, we solve for vpx, y, z, tq using separation of variables. Let
vpx, y, z, tq “ XpxqYpyqZpzqTptq. Then,

1
k

T1

T
“

X2

X
loomoon

´λ2

`
Y2

Y
loomoon

µ2

`
Z2

Z
loomoon

´ν2

.

Setting the individual spatial terms equal to the given constants, we
have the set of boundary value problems

X2 ` λ2X “ 0, X1p0q “ X1psq “ 0,

Y2 ` µ2Y “ 0, Y1p0q “ Y1psq “ 0,

Z2 ` ν2Z “ 0, Zp0q “ Z1psq “ 0.

The eigenfunctions for these are

Xnpxq “ cos
nπx

s
, Ympyq “ cos

mπy
s

, n, m,“ 0, 1, . . . ,

Zpzq “ sin
p2`` 1qπz

2s
, ` “ 0, 1, . . . ,

and eigenvalues λn “
nπ

s
, µm “

mπ

s
, ν` “

p2`` 1qπ
2s

. The time
dependence is given by

Tnm`ptq “ e´kpλ2
n`µ2

m`ν2
` qt

“ e´pn
2`m2`p2``1q2{4qπ2kt{s2

, n, m, ` “ 0, 1, . . . .

So, the general solution of the homogeneous problem is

vpx, y, z, tq “
8
ÿ

n,m,`“0

Anm` cos
nπx

s
cos

mπy
s

sin
p2`` 1qπz

2s
Tnm`ptq.
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The initial condition, vpx, y, z, tq “ 100` 0.1z, can be used to find
the expansion coefficients,

100` 0.1z “
8
ÿ

n,m,`“0

Anm` cos
nπx

s
cos

mπy
s

sin
p2`` 1qπz

2s
.

Since the left hand side is independent of x and y, only the A00`

terms can be nonzero and the triple sum reduces to

100` 0.1z “
8
ÿ

`“0

A00` sin
p2`` 1qπz

2s
.

Since
ż s

0
sin2 p2`` 1qπz

2s
dz “

s
2

,

we can obtain the Fourier coefficients as

A00` “
2
s

ż s

0
p100` 0.1zq sin

p2`` 1qπz
2s

dz, ` “ 0, 1, . . .

“
2
s

„

´
2s

p2`` 1qπ
p100` 0.1zq cos

p2`` 1qπz
2s

`
0.4s2

p2`` 1q2π2 sin
p2`` 1qπz

2s

s

0

“
2
s

„

200s
p2`` 1qπ

`
0.4s2

p2`` 1q2π2 sin
p2`` 1qπ

2



So, the solution of the original problem can be written as

upx, y, z, tq “ ´0.1z`
2
s

8
ÿ

`“0

b` sin
p2`` 1qqπz

2s
e´p2``1q2qπ2kt{4s2

,

where

b` “
200s

p2`` 1qπ
` p´1q`

0.4s2

p2`` 1q2π2 .

Figure 4: A plot of the temperature at
the center of the cube in Problem 11.7
for t “ 0, 1, . . . , 9 s.

In order to evaluate the temperature of the block at its center after
1.0 minute, we need the thermal diffusivity. We can look it up, to
find it is around 1.15 cm2/s, or we can use k “ K

ρcp
, where K “ 400

W/m˝C is the thermal conductivity, ρ “ 8.96 g/cm3 is the density,
and cp “ 0.385 J/g˝C is the specific heat capacity. In this case, we
find essentially the same value for temperatures around 25˝C to
100˝C. Thus, we can use

k “ 1.15cm2{s “ 1.15ˆ 10´4m2{s.

As most of the units are in centimeters and seconds, we will stick
with those. Thus, we want to find up5, 5, 5, 60q.

up5, 5, 5, 60q “ ´0.5` 0.2
8
ÿ

`“0

b` sin
p2`` 1qqπ

4
e´1.70p2``1q2qπ2

,
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where
b` “

2000
p2`` 1qπ

` p´1q`
40

p2`` 1q2π2 .

Figure 5: A plot of the temperature at
the center of the cube in Problem 11.7
for t “ 10, . . . , 100 s.

In Figure 4 is shown the temperature at the center of the cube
in Problem 11.7 for t “ 0, 1, . . . , 9 s for 201 terms. The initial tem-
perature is seen to be 100˝C, though the convergence is slow. How-
ever, convergence for t ą 0 seems to be quick. In Figure 5 is shown
the temperature at the center of the cube in Problem 11.7 for t “
10, 20 . . . , 100 s for 201 terms. One can find the value of the tempera-
ture at the center after one minute using only one or two terms. It is
up5, 5, 5, 60q “ 17.0˝C.


