
5
Non-sinusoidal Harmonics and Special
Functions

“To the pure geometer the radius of curvature is an incidental characteristic - like
the grin of the Cheshire cat. To the physicist it is an indispensable characteristic.
It would be going too far to say that to the physicist the cat is merely incidental
to the grin. Physics is concerned with interrelatedness such as the interrelatedness
of cats and grins. In this case the "cat without a grin" and the "grin without a
cat" are equally set aside as purely mathematical phantasies.” Sir Arthur Stanley
Eddington (1882-1944)

In this chapter we provide a glimpse into generalized Fourier series
in which the normal modes of oscillation are not sinusoidal. For vibrating
strings, we saw that the harmonics were sinusoidal basis functions for a
large, infinite dimensional, function space. Now, we will extend these ideas
to non-sinusoidal harmonics and explore the underlying structure behind
these ideas. In particular, we will explore Legendre polynomials and Bessel
functions which will later arise in problems having cylindrical or spherical
symmetry.

The background for the study of generalized Fourier series is that of
function spaces. We begin by exploring the general context in which one
finds oneself when discussing Fourier series and (later) Fourier transforms.
We can view the sine and cosine functions in the Fourier trigonometric series
representations as basis vectors in an infinite dimensional function space. A
given function in that space may then be represented as a linear combination
over this infinite basis. With this in mind, we might wonder

• Do we have enough basis vectors for the function space?

• Are the infinite series expansions convergent?

• What functions can be represented by such expansions?

In the context of the boundary value problems which typically appear in
physics, one is led to the study of boundary value problems in the form of
Sturm-Liouville eigenvalue problems. These lead to an appropriate set of
basis vectors for the function space under consideration. We will touch a
little on these ideas, leaving some of the deeper results for more advanced
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courses in mathematics. For now, we will turn to function spaces and ex-
plore some typical basis functions, many which originated from the study
of physical problems. The common basis functions are often referred to as
special functions in physics. Examples are the classical orthogonal polyno-
mials (Legendre, Hermite, Laguerre, Tchebychef) and Bessel functions. But
first we will introduce function spaces.

5.1 Function Spaces

Earlier we studied finite dimensional vector spaces. Given a set
of basis vectors, {ak}n

k=1, in vector space V, we showed that we can expand
any vector v ∈ V in terms of this basis, v = ∑n

k=1 vkak. We then spent
some time looking at the simple case of extracting the components vk of the
vector. The keys to doing this simply were to have a scalar product and an
orthogonal basis set. These are also the key ingredients that we will need
in the infinite dimensional case. In fact, we had already done this when we
studied Fourier series.

Recall when we found Fourier trigonometric series representations of
functions, we started with a function (vector) that we wanted to expand in a
set of trigonometric functions (basis) and we sought the Fourier coefficients
(components). In this section we will extend our notions from finite dimen-We note that the above determination

of vector components for finite dimen-
sional spaces is precisely what we had
done to compute the Fourier coefficients
using trigonometric bases. Reading fur-
ther, you will see how this works.

sional spaces to infinite dimensional spaces and we will develop the needed
background in which to think about more general Fourier series expansions.
This conceptual framework is very important in other areas in mathematics
(such as ordinary and partial differential equations) and physics (such as
quantum mechanics and electrodynamics).

We will consider various infinite dimensional function spaces. Functions
in these spaces would differ by their properties. For example, we could con-
sider the space of continuous functions on [0,1], the space of differentiably
continuous functions, or the set of functions integrable from a to b. As you
will see, there are many types of function spaces . In order to view these
spaces as vector spaces, we will need to be able to add functions and multi-
ply them by scalars in such as way that they satisfy the definition of a vector
space as defined in Chapter 3.

We will also need a scalar product defined on this space of functions.
There are several types of scalar products, or inner products, that we can
define. An inner product 〈, 〉 on a real vector space V is a mapping from
V ×V into R such that for u, v, w ∈ V and α ∈ R one has

1. 〈v, v〉 ≥ 0 and 〈v, v〉 = 0 iff v = 0.

2. 〈v, w〉 = 〈w, v〉.

3. 〈αv, w〉 = α〈v, w〉.

4. 〈u + v, w〉 = 〈u, w〉+ 〈v, w〉.

A real vector space equipped with the above inner product leads to what
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is called a real inner product space. For complex inner product spaces the
above properties hold with the third property replaced with 〈v, w〉 = 〈w, v〉.

For the time being, we will only deal with real valued functions and,
thus, we will need an inner product appropriate for such spaces. One such
definition is the following. Let f (x) and g(x) be functions defined on [a, b]
and introduce the weight function σ(x) > 0. Then, we define the inner
product, if the integral exists, as

〈 f , g〉 =
∫ b

a
f (x)g(x)σ(x) dx. (5.1)

Spaces in which 〈 f , f 〉 < ∞ under this inner product are called the space of The space of square integrable functions.

square integrable functions on (a, b) under weight σ and denoted as L2
σ(a, b).

In what follows, we will assume for simplicity that σ(x) = 1. This is possible
to do by using a change of variables.

Now that we have function spaces equipped with an inner product, we
seek a basis for the space. For an n-dimensional space we need n basis
vectors. For an infinite dimensional space, how many will we need? How
do we know when we have enough? We will provide some answers to these
questions later.

Let’s assume that we have a basis of functions {φn(x)}∞
n=1. Given a func-

tion f (x), how can we go about finding the components of f in this basis?
In other words, let

f (x) =
∞

∑
n=1

cnφn(x).

How do we find the cn’s? Does this remind you of Fourier series expan-
sions? Does it remind you of the problem we had earlier for finite dimen-
sional spaces? [You may want to review the discussion at the end of Section
?? as you read the next derivation.]

Formally, we take the inner product of f with each φj and use the prop-
erties of the inner product to find

〈φj, f 〉 = 〈φj,
∞

∑
n=1

cnφn〉

=
∞

∑
n=1

cn〈φj, φn〉. (5.2)

If the basis is an orthogonal basis, then we have

〈φj, φn〉 = Njδjn, (5.3)

where δjn is the Kronecker delta. Recall from Chapter 3 that the Kronecker
delta is defined as

δij =

{
0, i 6= j
1, i = j.

(5.4)

Continuing with the derivation, we have For the generalized Fourier series expan-
sion f (x) = ∑∞

n=1 cnφn(x), we have de-
termined the generalized Fourier coeffi-
cients to be cj = 〈φj, f 〉/〈φj, φj〉.

〈φj, f 〉 =
∞

∑
n=1

cn〈φj, φn〉

=
∞

∑
n=1

cnNjδjn (5.5)
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Expanding the sum, we see that the Kronecker delta picks out one nonzero
term:

〈φj, f 〉 = c1Njδj1 + c2Njδj2 + . . . + cjNjδjj + . . .

= cjNj. (5.6)

So, the expansion coefficients are

cj =
〈φj, f 〉

Nj
=
〈φj, f 〉
〈φj, φj〉

j = 1, 2, . . . .

We summarize this important result:

Generalized Basis Expansion

Let f (x) be represented by an expansion over a basis of orthogonal func-
tions, {φn(x)}∞

n=1,

f (x) =
∞

∑
n=1

cnφn(x).

Then, the expansion coefficients are formally determined as

cn =
〈φn, f 〉
〈φn, φn〉

.

This will be referred to as the general Fourier series expansion and the
cj’s are called the Fourier coefficients. Technically, equality only holds
when the infinite series converges to the given function on the interval of
interest.

Example 5.1. Find the coefficients of the Fourier sine series expansion
of f (x), given by

f (x) =
∞

∑
n=1

bn sin nx, x ∈ [−π, π].

In the last chapter we already established that the set of functions
φn(x) = sin nx for n = 1, 2, . . . is orthogonal on the interval [−π, π].
Recall that using trigonometric identities, we have for n 6= m

〈φn, φm〉 =
∫ π

−π
sin nx sin mx dx = πδnm. (5.7)

Therefore, the set φn(x) = sin nx for n = 1, 2, . . . is an orthogonal set
of functions on the interval [−π, π].

We determine the expansion coefficients using

bn =
〈φn, f 〉

Nn
=
〈φn, f 〉
〈φn, φn〉

=
1
π

∫ π

−π
f (x) sin nx dx.

Does this result look familiar?
Just as with vectors in three dimensions, we can normalize these

basis functions to arrive at an orthonormal basis. This is simply done
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by dividing by the length of the vector. Recall that the length of a
vector is obtained as v =

√
v · v. In the same way, we define the norm

of a function by

‖ f ‖ =
√
〈 f , f 〉.

Note, there are many types of norms, but this induced norm will be
sufficient.1 1 The norm defined here is the natural,

or induced, norm on the inner product
space. Norms are a generalization of the
concept of lengths of vectors. Denoting
‖v‖ the norm of v, it needs to satisfy the
properties

1. ‖v‖ ≥ 0. ‖v‖ = 0 if and only if v = 0.

2. ‖αv‖ = |α|‖v‖.
3. ‖u + v‖ ≤ ‖u‖+ ‖v‖.
Examples of common norms are

1. Euclidean norm:

‖v‖ =
√

v2
1 + · · ·+ v2

n.

2. Taxicab norm:

‖v‖ = |v1|+ · · ·+ |vn|.

3. Lp norm:

‖ f ‖ =
(∫

[ f (x)]p dx
) 1

p
.

For this example, the norms of the basis functions are ‖φn‖ =
√

π.
Defining ψn(x) = 1√

π
φn(x), we can normalize the φn’s and have ob-

tained an orthonormal basis of functions on [−π, π].
We can also use the normalized basis to determine the expansion

coefficients. In this case we have

bn =
〈ψn, f 〉

Nn
= 〈ψn, f 〉 = 1

π

∫ π

−π
f (x) sin nx dx.

5.2 Classical Orthogonal Polynomials

There are other basis functions that can be used to develop series
representations of functions. In this section we introduce the classical or-
thogonal polynomials. We begin by noting that the sequence of functions
{1, x, x2, . . .} is a basis of linearly independent functions. In fact, by the
Stone-Weierstraß Approximation Theorem2 this set is a basis of L2

σ(a, b), the
2 Stone-Weierstraß Approximation The-
orem Suppose f is a continuous function
defined on the interval [a, b]. For every
ε > 0, there exists a polynomial func-
tion P(x) such that for all x ∈ [a, b], we
have | f (x)− P(x)| < ε. Therefore, every
continuous function defined on [a, b] can
be uniformly approximated as closely as
we wish by a polynomial function.

space of square integrable functions over the interval [a, b] relative to weight
σ(x). However, we will show that the sequence of functions {1, x, x2, . . .}
does not provide an orthogonal basis for these spaces. We will then proceed
to find an appropriate orthogonal basis of functions.

We are familiar with being able to expand functions over the basis {1, x, x2, . . .},
since these expansions are just Maclaurin series representations of the func-
tions about x = 0,

f (x) ∼
∞

∑
n=0

cnxn.

However, this basis is not an orthogonal set of basis functions. One can
easily see this by integrating the product of two even, or two odd, basis
functions with σ(x) = 1 and (a, b)=(−1, 1). For example,∫ 1

−1
x0x2 dx =

2
3

.

The Gram-Schmidt Orthogonalization
Process.Since we have found that orthogonal bases have been useful in determin-

ing the coefficients for expansions of given functions, we might ask, “Given
a set of linearly independent basis vectors, can one find an orthogonal basis
of the given space?" The answer is yes. We recall from introductory linear
algebra, which mostly covers finite dimensional vector spaces, that there is
a method for carrying this out called the Gram-Schmidt Orthogonalization
Process. We will review this process for finite dimensional vectors and then
generalize to function spaces.
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Let’s assume that we have three vectors that span the usual three dimen-
sional space, R3, given by a1, a2, and a3 and shown in Figure 5.1. We seek
an orthogonal basis e1, e2, and e3, beginning one vector at a time.

First we take one of the original basis vectors, say a1, and define

e1 = a1.

It is sometimes useful to normalize these basis vectors, denoting such a
normalized vector with a “hat”:

ê1 =
e1

e1
,

where e1 =
√

e1 · e1.a

aa
3 2

1

Figure 5.1: The basis a1, a2, and a3, of
R3.

Next, we want to determine an e2 that is orthogonal to e1. We take an-
other element of the original basis, a2. In Figure 5.2 we show the orientation
of the vectors. Note that the desired orthogonal vector is e2. We can now
write a2 as the sum of e2 and the projection of a2 on e1. Denoting this pro-
jection by pr1a2, we then have

e2 = a2 − pr1a2. (5.8)

e

a
2

1

pr a
1 2

e
2

Figure 5.2: A plot of the vectors e1, a2,
and e2 needed to find the projection of
a2, on e1.

Recall the projection of one vector onto another from your vector calculus
class.

pr1a2 =
a2 · e1

e2
1

e1. (5.9)

This is easily proven by writing the projection as a vector of length a2 cos θ

in direction ê1, where θ is the angle between e1 and a2. Using the definition
of the dot product, a · b = ab cos θ, the projection formula follows.

Combining Equations (5.8)-(5.9), we find that

e2 = a2 −
a2 · e1

e2
1

e1. (5.10)

It is a simple matter to verify that e2 is orthogonal to e1:

e2 · e1 = a2 · e1 −
a2 · e1

e2
1

e1 · e1

= a2 · e1 − a2 · e1 = 0. (5.11)

e

a

a
3

2

1

pr a
1 3

pr a
2 3

e
2

Figure 5.3: A plot of vectors for deter-
mining e3.

Next, we seek a third vector e3 that is orthogonal to both e1 and e2. Picto-
rially, we can write the given vector a3 as a combination of vector projections
along e1 and e2 with the new vector. This is shown in Figure 5.3. Thus, we
can see that

e3 = a3 −
a3 · e1

e2
1

e1 −
a3 · e2

e2
2

e2. (5.12)

Again, it is a simple matter to compute the scalar products with e1 and e2

to verify orthogonality.
We can easily generalize this procedure to the N-dimensional case. Let

an, n = 1, ..., N be a set of linearly independent vectors in RN . Then, an
orthogonal basis can be found by setting e1 = a1 and defining
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en = an −
n−1

∑
j=1

an · ej

e2
j

ej, n = 2, 3, . . . , N. (5.13)

Now, we can generalize this idea to (real) function spaces. Let fn(x),
n ∈ N0 = {0, 1, 2, . . .}, be a linearly independent sequence of continuous
functions defined for x ∈ [a, b]. Then, an orthogonal basis of functions,
φn(x), n ∈ N0 can be found and is given by

φ0(x) = f0(x)

and

φn(x) = fn(x)−
n−1

∑
j=0

〈 fn, φj〉
‖φj‖2 φj(x), n = 1, 2, . . . . (5.14)

Here we are using inner products relative to weight σ(x),

〈 f , g〉 =
∫ b

a
f (x)g(x)σ(x) dx. (5.15)

Note the similarity between the orthogonal basis in (5.14) and the expression
for the finite dimensional case in Equation (5.13).

Example 5.2. Apply the Gram-Schmidt Orthogonalization process to
the set fn(x) = xn, n ∈ N0, when x ∈ (−1, 1) and σ(x) = 1.

First, we have φ0(x) = f0(x) = 1. Note that

∫ 1

−1
φ2

0(x) dx = 2.

We could use this result to fix the normalization of the new basis, but
we will hold off doing that for now.

Now, we compute the second basis element:

φ1(x) = f1(x)− 〈 f1, φ0〉
‖φ0‖2 φ0(x)

= x− 〈x, 1〉
‖1‖2 1 = x, (5.16)

since 〈x, 1〉 is the integral of an odd function over a symmetric interval.
For φ2(x), we have

φ2(x) = f2(x)− 〈 f2, φ0〉
‖φ0‖2 φ0(x)− 〈 f2, φ1〉

‖φ1‖2 φ1(x)

= x2 − 〈x
2, 1〉
‖1‖2 1− 〈x

2, x〉
‖x‖2 x

= x2 −
∫ 1
−1 x2 dx∫ 1
−1 dx

= x2 − 1
3

. (5.17)
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So far, we have the orthogonal set {1, x, x2 − 1
3}. If one chooses to

normalize these by forcing φn(1) = 1, then one obtains the classical
Legendre polynomials, Pn(x). Thus,

P2(x) =
1
2
(3x2 − 1).

Note that this normalization is different than the usual one. In fact,
we see the P2(x) does not have a unit norm,

‖P2‖2 =
∫ 1

−1
P2

2 (x) dx =
2
5

.

The set of Legendre3 polynomials is just one set of classical orthogo-3 Adrien-Marie Legendre (1752-1833)
was a French mathematician who made
many contributions to analysis and
algebra.

nal polynomials that can be obtained in this way. Many of these special
functions had originally appeared as solutions of important boundary value
problems in physics. They all have similar properties and we will just elab-
orate some of these for the Legendre functions in the next section. Others
in this group are shown in Table 5.1.

Table 5.1: Common classical orthogo-
nal polynomials with the interval and
weight function used to define them.

Polynomial Symbol Interval σ(x)
Hermite Hn(x) (−∞, ∞) e−x2

Laguerre Lα
n(x) [0, ∞) e−x

Legendre Pn(x) (-1,1) 1

Gegenbauer Cλ
n (x) (-1,1) (1− x2)λ−1/2

Tchebychef of the 1st kind Tn(x) (-1,1) (1− x2)−1/2

Tchebychef of the 2nd kind Un(x) (-1,1) (1− x2)−1/2

Jacobi P(ν,µ)
n (x) (-1,1) (1− x)ν(1− x)µ

5.3 Fourier-Legendre Series

In the last chapter we saw how useful Fourier series expansions were
for solving the heat and wave equations. In Chapter 6 we will investigate
partial differential equations in higher dimensions and find that problems
with spherical symmetry may lead to the series representations in terms of a
basis of Legendre polynomials. For example, we could consider the steady
state temperature distribution inside a hemispherical igloo, which takes the
form

φ(r, θ) =
∞

∑
n=0

AnrnPn(cos θ)

in spherical coordinates. Evaluating this function at the surface r = a as
φ(a, θ) = f (θ), leads to a Fourier-Legendre series expansion of function f :

f (θ) =
∞

∑
n=0

cnPn(cos θ),

where cn = Anan
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In this section we would like to explore Fourier-Legendre series expan-
sions of functions f (x) defined on (−1, 1):

f (x) ∼
∞

∑
n=0

cnPn(x). (5.18)

As with Fourier trigonometric series, we can determine the expansion coef-
ficients by multiplying both sides of Equation (5.18) by Pm(x) and integrat-
ing for x ∈ [−1, 1]. Orthogonality gives the usual form for the generalized
Fourier coefficients,

cn =
〈 f , Pn〉
‖Pn‖2 , n = 0, 1, . . . .

We will later show that
‖Pn‖2 =

2
2n + 1

.

Therefore, the Fourier-Legendre coefficients are

cn =
2n + 1

2

∫ 1

−1
f (x)Pn(x) dx. (5.19)

5.3.1 Properties of Legendre Polynomials
The Rodrigues Formula.

We can do examples of Fourier-Legendre expansions given just a
few facts about Legendre polynomials. The first property that the Legendre
polynomials have is the Rodrigues formula:

Pn(x) =
1

2nn!
dn

dxn (x2 − 1)n, n ∈ N0. (5.20)

From the Rodrigues formula, one can show that Pn(x) is an nth degree
polynomial. Also, for n odd, the polynomial is an odd function and for n
even, the polynomial is an even function.

Example 5.3. Determine P2(x) from Rodrigues formula:

P2(x) =
1

222!
d2

dx2 (x2 − 1)2

=
1
8

d2

dx2 (x4 − 2x2 + 1)

=
1
8

d
dx

(4x3 − 4x)

=
1
8
(12x2 − 4)

=
1
2
(3x2 − 1). (5.21)

Note that we get the same result as we found in the last section using
orthogonalization.

The first several Legendre polynomials are given in Table 5.2. In Figure
5.4 we show plots of these Legendre polynomials. The Three Term Recursion Formula.
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Table 5.2: Tabular computation of the
Legendre polynomials using the Ro-
drigues formula.

n (x2 − 1)n dn

dxn (x2 − 1)n 1
2nn! Pn(x)

0 1 1 1 1

1 x2 − 1 2x 1
2 x

2 x4 − 2x2 + 1 12x2 − 4 1
8

1
2 (3x2 − 1)

3 x6 − 3x4 + 3x2 − 1 120x3 − 72x 1
48

1
2 (5x3 − 3x)

Figure 5.4: Plots of the Legendre poly-
nomials P2(x), P3(x), P4(x), and P5(x).
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All of the classical orthogonal polynomials satisfy a three term recursion
formula (or, recurrence relation or formula). In the case of the Legendre
polynomials, we have

(n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x), n = 1, 2, . . . . (5.22)

This can also be rewritten by replacing n with n− 1 as

(2n− 1)xPn−1(x) = nPn(x) + (n− 1)Pn−2(x), n = 1, 2, . . . . (5.23)

Example 5.4. Use the recursion formula to find P2(x) and P3(x), given
that P0(x) = 1 and P1(x) = x.

We first begin by inserting n = 1 into Equation (5.22):

2P2(x) = 3xP1(x)− P0(x) = 3x2 − 1.

So, P2(x) = 1
2 (3x2 − 1).

For n = 2, we have

3P3(x) = 5xP2(x)− 2P1(x)

=
5
2

x(3x2 − 1)− 2x

=
1
2
(15x3 − 9x). (5.24)

This gives P3(x) = 1
2 (5x3 − 3x). These expressions agree with the ear-

lier results.
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We will prove the three term recursion formula in two ways. First we
use the orthogonality properties of Legendre polynomials and the following
lemma.

Lemma 5.1. The leading coefficient of xn in Pn(x) is 1
2nn!

(2n)!
n! .

The first proof of the three term recur-
sion formula is based upon the nature of
the Legendre polynomials as an orthog-
onal basis, while the second proof is de-
rived using generating functions.

Proof. We can prove this using the Rodrigues formula. First, we focus on
the leading coefficient of (x2 − 1)n, which is x2n. The first derivative of x2n

is 2nx2n−1. The second derivative is 2n(2n− 1)x2n−2. The jth derivative is

djx2n

dxj = [2n(2n− 1) . . . (2n− j + 1)]x2n−j.

Thus, the nth derivative is given by

dnx2n

dxn = [2n(2n− 1) . . . (n + 1)]xn.

This proves that Pn(x) has degree n. The leading coefficient of Pn(x) can
now be written as

[2n(2n− 1) . . . (n + 1)]
2nn!

=
[2n(2n− 1) . . . (n + 1)]

2nn!
n(n− 1) . . . 1
n(n− 1) . . . 1

=
1

2nn!
(2n)!

n!
. (5.25)

Theorem 5.1. Legendre polynomials satisfy the three term recursion formula

(2n− 1)xPn−1(x) = nPn(x) + (n− 1)Pn−2(x), n = 1, 2, . . . . (5.26)

Proof. In order to prove the three term recursion formula we consider the
expression (2n− 1)xPn−1(x)− nPn(x). While each term is a polynomial of
degree n, the leading order terms cancel. We need only look at the coeffi-
cient of the leading order term first expression. It is

2n− 1
2n−1(n− 1)!

(2n− 2)!
(n− 1)!

=
1

2n−1(n− 1)!
(2n− 1)!
(n− 1)!

=
(2n− 1)!

2n−1 [(n− 1)!]2
.

The coefficient of the leading term for nPn(x) can be written as

n
1

2nn!
(2n)!

n!
= n

(
2n
2n2

)(
1

2n−1(n− 1)!

)
(2n− 1)!
(n− 1)!

(2n− 1)!

2n−1 [(n− 1)!]2
.

It is easy to see that the leading order terms in the expression (2n− 1)xPn−1(x)−
nPn(x) cancel.

The next terms will be of degree n− 2. This is because the Pn’s are either
even or odd functions, thus only containing even, or odd, powers of x. We
conclude that

(2n− 1)xPn−1(x)− nPn(x) = polynomial of degree n− 2.

Therefore, since the Legendre polynomials form a basis, we can write this
polynomial as a linear combination of Legendre polynomials:

(2n− 1)xPn−1(x)− nPn(x) = c0P0(x) + c1P1(x) + . . . + cn−2Pn−2(x). (5.27)
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Multiplying Equation (5.27) by Pm(x) for m = 0, 1, . . . , n− 3, integrating
from −1 to 1, and using orthogonality, we obtain

0 = cm‖Pm‖2, m = 0, 1, . . . , n− 3.

[Note:
∫ 1
−1 xkPn(x) dx = 0 for k ≤ n − 1. Thus,

∫ 1
−1 xPn−1(x)Pm(x) dx = 0

for m ≤ n− 3.]
Thus, all of these cm’s are zero, leaving Equation (5.27) as

(2n− 1)xPn−1(x)− nPn(x) = cn−2Pn−2(x).

The final coefficient can be found by using the normalization condition,
Pn(1) = 1. Thus, cn−2 = (2n− 1)− n = n− 1.

5.3.2 Generating Functions The Generating Function for Legendre Poly-
nomials

A second proof of the three term recursion formula can be ob-
tained from the generating function of the Legendre polynomials. Many
special functions have such generating functions. In this case it is given by

g(x, t) =
1√

1− 2xt + t2
=

∞

∑
n=0

Pn(x)tn, |x| ≤ 1, |t| < 1. (5.28)

This generating function occurs often in applications. In particular, it
arises in potential theory, such as electromagnetic or gravitational potentials.
These potential functions are 1

r type functions.

Figure 5.5: The position vectors used to
describe the tidal force on the Earth due
to the moon. r

2

r
1

r
1

r  -
2

For example, the gravitational potential between the Earth and the moon
is proportional to the reciprocal of the magnitude of the difference between
their positions relative to some coordinate system. An even better example,
would be to place the origin at the center of the Earth and consider the
forces on the non-pointlike Earth due to the moon. Consider a piece of the
Earth at position r1 and the moon at position r2 as shown in Figure 5.5. The
tidal potential Φ is proportional to

Φ ∝
1

|r2 − r1|
=

1√
(r2 − r1) · (r2 − r1)

=
1√

r2
1 − 2r1r2 cos θ + r2

2

,

where θ is the angle between r1 and r2.
Typically, one of the position vectors is much larger than the other. Let’s

assume that r1 � r2. Then, one can write

Φ ∝
1√

r2
1 − 2r1r2 cos θ + r2

2

=
1
r2

1√
1− 2 r1

r2
cos θ +

(
r1
r2

)2
.
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Now, define x = cos θ and t = r1
r2

. We then have that the tidal potential is
proportional to the generating function for the Legendre polynomials! So,
we can write the tidal potential as

Φ ∝
1
r2

∞

∑
n=0

Pn(cos θ)

(
r1

r2

)n
.

The first term in the expansion, 1
r2

, is the gravitational potential that gives
the usual force between the Earth and the moon. [Recall that the gravita-
tional potential for mass m at distance r from M is given by Φ = −GMm

r and

that the force is the gradient of the potential, F = −∇Φ ∝ ∇
(

1
r

)
.] The next

terms will give expressions for the tidal effects.
Now that we have some idea as to where this generating function might

have originated, we can proceed to use it. First of all, the generating function
can be used to obtain special values of the Legendre polynomials.

Example 5.5. Evaluate Pn(0) using the generating function. Pn(0) is
found by considering g(0, t). Setting x = 0 in Equation (5.28), we have

g(0, t) =
1√

1 + t2

=
∞

∑
n=0

Pn(0)tn

= P0(0) + P1(0)t + P2(0)t2 + P3(0)t3 + . . . . (5.29)

We can use the binomial expansion to find the final answer. Namely,
we have

1√
1 + t2

= 1− 1
2

t2 +
3
8

t4 + . . . .

Comparing these expansions, we have the Pn(0) = 0 for n odd and for
even integers one can show (see Problem 12) that4 4 This example can be finished by first

proving that

(2n)!! = 2nn!

and

(2n− 1)!! =
(2n)!
(2n)!!

=
(2n)!
2nn!

.

P2n(0) = (−1)n (2n− 1)!!
(2n)!!

, (5.30)

where n!! is the double factorial,

n!! =


n(n− 2) . . . (3)1, n > 0, odd,
n(n− 2) . . . (4)2, n > 0, even,
1 n = 0,−1

.

Example 5.6. Evaluate Pn(−1). This is a simpler problem. In this case
we have

g(−1, t) =
1√

1 + 2t + t2
=

1
1 + t

= 1− t + t2 − t3 + . . . .

Therefore, Pn(−1) = (−1)n.
Proof of the three term recursion for-
mula using the generating function.Example 5.7. Prove the three term recursion formula,

(k + 1)Pk+1(x)− (2k + 1)xPk(x) + kPk−1(x) = 0, k = 1, 2, . . . ,
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using the generating function.
We can also use the generating function to find recurrence relations.

To prove the three term recursion (5.22) that we introduced above, then
we need only differentiate the generating function with respect to t in
Equation (5.28) and rearrange the result. First note that

∂g
∂t

=
x− t

(1− 2xt + t2)3/2 =
x− t

1− 2xt + t2 g(x, t).

Combining this with

∂g
∂t

=
∞

∑
n=0

nPn(x)tn−1,

we have

(x− t)g(x, t) = (1− 2xt + t2)
∞

∑
n=0

nPn(x)tn−1.

Inserting the series expression for g(x, t) and distributing the sum on
the right side, we obtain

(x− t)
∞

∑
n=0

Pn(x)tn =
∞

∑
n=0

nPn(x)tn−1 −
∞

∑
n=0

2nxPn(x)tn +
∞

∑
n=0

nPn(x)tn+1.

Multiplying out the x− t factor and rearranging, leads to three sepa-
rate sums:

∞

∑
n=0

nPn(x)tn−1 −
∞

∑
n=0

(2n + 1)xPn(x)tn +
∞

∑
n=0

(n + 1)Pn(x)tn+1 = 0. (5.31)

Each term contains powers of t that we would like to combine into
a single sum. This is done by reindexing. For the first sum, we could
use the new index k = n− 1. Then, the first sum can be written

∞

∑
n=0

nPn(x)tn−1 =
∞

∑
k=−1

(k + 1)Pk+1(x)tk.

Using different indices is just another way of writing out the terms.
Note that

∞

∑
n=0

nPn(x)tn−1 = 0 + P1(x) + 2P2(x)t + 3P3(x)t2 + . . .

and
∞

∑
k=−1

(k + 1)Pk+1(x)tk = 0 + P1(x) + 2P2(x)t + 3P3(x)t2 + . . .

actually give the same sum. The indices are sometimes referred to as
dummy indices because they do not show up in the expanded expres-
sion and can be replaced with another letter.

If we want to do so, we could now replace all of the k’s with n’s.
However, we will leave the k’s in the first term and now reindex the
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next sums in Equation (5.31). The second sum just needs the replace-
ment n = k and the last sum we reindex using k = n + 1. Therefore,
Equation (5.31) becomes

∞

∑
k=−1

(k + 1)Pk+1(x)tk −
∞

∑
k=0

(2k + 1)xPk(x)tk +
∞

∑
k=1

kPk−1(x)tk = 0. (5.32)

We can now combine all of the terms, noting the k = −1 term is
automatically zero and the k = 0 terms give

P1(x)− xP0(x) = 0. (5.33)

Of course, we know this already. So, that leaves the k > 0 terms:

∞

∑
k=1

[(k + 1)Pk+1(x)− (2k + 1)xPk(x) + kPk−1(x)] tk = 0. (5.34)

Since this is true for all t, the coefficients of the tk’s are zero, or

(k + 1)Pk+1(x)− (2k + 1)xPk(x) + kPk−1(x) = 0, k = 1, 2, . . . .

While this is the standard form for the three term recurrence relation,
the earlier form is obtained by setting k = n− 1.

There are other recursion relations which we list in the box below. Equa-
tion (5.35) was derived using the generating function. Differentiating it with
respect to x, we find Equation (5.36). Equation (5.37) can be proven using
the generating function by differentiating g(x, t) with respect to x and re-
arranging the resulting infinite series just as in this last manipulation. This
will be left as Problem 4. Combining this result with Equation (5.35), we
can derive Equations (5.38)-(5.39). Adding and subtracting these equations
yields Equations (5.40)-(5.41).

Recursion Formulae for Legendre Polynomials for n = 1, 2, . . . .

(n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x) (5.35)

(n + 1)P′n+1(x) = (2n + 1)[Pn(x) + xP′n(x)]− nP′n−1(x)

(5.36)

Pn(x) = P′n+1(x)− 2xP′n(x) + P′n−1(x) (5.37)

P′n−1(x) = xP′n(x)− nPn(x) (5.38)

P′n+1(x) = xP′n(x) + (n + 1)Pn(x) (5.39)

P′n+1(x) + P′n−1(x) = 2xP′n(x) + Pn(x). (5.40)

P′n+1(x)− P′n−1(x) = (2n + 1)Pn(x). (5.41)

(x2 − 1)P′n(x) = nxPn(x)− nPn−1(x) (5.42)

Finally, Equation (5.42) can be obtained using Equations (5.38) and (5.39).
Just multiply Equation (5.38) by x,

x2P′n(x)− nxPn(x) = xP′n−1(x).
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Now use Equation (5.39), but first replace n with n − 1 to eliminate the
xP′n−1(x) term:

x2P′n(x)− nxPn(x) = P′n(x)− nPn−1(x).

Rearranging gives the Equation (5.42).

Example 5.8. Use the generating function to prove

‖Pn‖2 =
∫ 1

−1
P2

n(x) dx =
2

2n + 1
.

Another use of the generating function is to obtain the normaliza-
tion constant. This can be done by first squaring the generating func-
tion in order to get the products Pn(x)Pm(x), and then integrating over
x.The normalization constant.

Squaring the generating function has to be done with care, as we
need to make proper use of the dummy summation index. So, we first
write

1
1− 2xt + t2 =

[
∞

∑
n=0

Pn(x)tn

]2

=
∞

∑
n=0

∞

∑
m=0

Pn(x)Pm(x)tn+m. (5.43)

Integrating from x = −1 to x = 1 and using the orthogonality of the
Legendre polynomials, we have∫ 1

−1

dx
1− 2xt + t2 =

∞

∑
n=0

∞

∑
m=0

tn+m
∫ 1

−1
Pn(x)Pm(x) dx

=
∞

∑
n=0

t2n
∫ 1

−1
P2

n(x) dx. (5.44)

However, one can show that55 You will need the integral∫ dx
a + bx

=
1
b

ln(a + bx) + C.
∫ 1

−1

dx
1− 2xt + t2 =

1
t

ln
(

1 + t
1− t

)
.

Expanding this expression about t = 0, we obtain66 You will need the series expansion

ln(1 + x) =
∞

∑
n=1

(−1)n+1 xn

n

= x− x2

2
+

x3

3
− · · · .

1
t

ln
(

1 + t
1− t

)
=

∞

∑
n=0

2
2n + 1

t2n.

Comparing this result with Equation (5.44), we find that

‖Pn‖2 =
∫ 1

−1
P2

n(x) dx =
2

2n + 1
. (5.45)

5.3.3 The Differential Equation for Legendre Polynomials

The Legendre polynomials satisfy a second order linear differential
equation. This differential equation occurs naturally in the solution of initial-
boundary value problems in three dimensions which possess some spherical
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symmetry. We will see this in the last chapter. There are two approaches
we could take in showing that the Legendre polynomials satisfy a particular
differential equation. Either we can write down the equations and attempt
to solve it, or we could use the above properties to obtain the equation. For
now, we will seek the differential equation satisfied by Pn(x) using the above
recursion relations.

We begin by differentiating Equation (5.42) and using Equation (5.38) to
simplify:

d
dx

(
(x2 − 1)P′n(x)

)
= nPn(x) + nxP′n(x)− nP′n−1(x)

= nPn(x) + n2Pn(x)

= n(n + 1)Pn(x). (5.46)

Therefore, Legendre polynomials, or Legendre functions of the first kind,
are solutions of the differential equation

(1− x2)y′′ − 2xy′ + n(n + 1)y = 0.

As this is a linear second order differential equation, we expect two linearly A generalization of the Legendre equa-
tion is given by (1 − x2)y′′ − 2xy′ +[

n(n + 1)− m2

1−x2

]
y = 0. Solutions to

this equation, Pm
n (x) and Qm

n (x), are
called the associated Legendre functions
of the first and second kind.

independent solutions. The second solution, called the Legendre function
of the second kind, is given by Qn(x) and is not well behaved at x = ±1.
For example,

Q0(x) =
1
2

ln
1 + x
1− x

.

We will not need these for physically interesting examples in this book.

5.3.4 Fourier-Legendre Series

With these properties of Legendre functions we are now prepared
to compute the expansion coefficients for the Fourier-Legendre series repre-
sentation of a given function.

Example 5.9. Expand f (x) = x3 in a Fourier-Legendre series.
We simply need to compute

cn =
2n + 1

2

∫ 1

−1
x3Pn(x) dx. (5.47)

We first note that∫ 1

−1
xmPn(x) dx = 0 for m > n.

As a result, we have that cn = 0 for n > 3. We could just compute∫ 1
−1 x3Pm(x) dx for m = 0, 1, 2, . . . outright by looking up Legendre

polynomials. But, note that x3 is an odd function. So, c0 = 0 and
c2 = 0.

This leaves us with only two coefficients to compute. We refer to
Table 5.2 and find that

c1 =
3
2

∫ 1

−1
x4 dx =

3
5
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c3 =
7
2

∫ 1

−1
x3
[

1
2
(5x3 − 3x)

]
dx =

2
5

.

Thus,

x3 =
3
5

P1(x) +
2
5

P3(x).

Of course, this is simple to check using Table 5.2:

3
5

P1(x) +
2
5

P3(x) =
3
5

x +
2
5

[
1
2
(5x3 − 3x)

]
= x3.

We could have obtained this result without doing any integration.
Write x3 as a linear combination of P1(x) and P3(x) :

x3 = c1x +
1
2

c2(5x3 − 3x)

= (c1 −
3
2

c2)x +
5
2

c2x3. (5.48)

Equating coefficients of like terms, we have that c2 = 2
5 and c1 = 3

2 c2 =
3
5 .

Example 5.10. Expand the Heaviside7 function in a Fourier-Legendre7 Oliver Heaviside (1850-1925) was an
English mathematician, physicist and
engineer who used complex analysis to
study circuits and was a co-founder of
vector analysis. The Heaviside function
is also called the step function.

series.
The Heaviside function is defined as

H(x) =

{
1, x > 0,
0, x < 0.

(5.49)

In this case, we cannot find the expansion coefficients without some
integration. We have to compute

cn =
2n + 1

2

∫ 1

−1
f (x)Pn(x) dx

=
2n + 1

2

∫ 1

0
Pn(x) dx. (5.50)

We can make use of identity (5.41),

P′n+1(x)− P′n−1(x) = (2n + 1)Pn(x), n > 0. (5.51)

We have for n > 0

cn =
1
2

∫ 1

0
[P′n+1(x)− P′n−1(x)] dx =

1
2
[Pn−1(0)− Pn+1(0)].

For n = 0, we have

c0 =
1
2

∫ 1

0
dx =

1
2

.

This leads to the expansion

f (x) ∼ 1
2
+

1
2

∞

∑
n=1

[Pn−1(0)− Pn+1(0)]Pn(x).
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We still need to evaluate the Fourier-Legendre coefficients

cn =
1
2
[Pn−1(0)− Pn+1(0)].

Since Pn(0) = 0 for n odd, the cn’s vanish for n even. Letting n =

2k− 1, we re-index the sum, obtaining

f (x) ∼ 1
2
+

1
2

∞

∑
k=1

[P2k−2(0)− P2k(0)]P2k−1(x).

We can compute the nonzero Fourier coefficients, c2k−1 = 1
2 [P2k−2(0)−

P2k(0)], using a result from Problem 12:

P2k(0) = (−1)k (2k− 1)!!
(2k)!!

. (5.52)

Namely, we have

c2k−1 =
1
2
[P2k−2(0)− P2k(0)]

=
1
2

[
(−1)k−1 (2k− 3)!!

(2k− 2)!!
− (−1)k (2k− 1)!!

(2k)!!

]
= −1

2
(−1)k (2k− 3)!!

(2k− 2)!!

[
1 +

2k− 1
2k

]
= −1

2
(−1)k (2k− 3)!!

(2k− 2)!!
4k− 1

2k
. (5.53)
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Figure 5.6: Sum of first 21 terms for
Fourier-Legendre series expansion of
Heaviside function.

Thus, the Fourier-Legendre series expansion for the Heaviside func-
tion is given by

f (x) ∼ 1
2
− 1

2

∞

∑
n=1

(−1)n (2n− 3)!!
(2n− 2)!!

4n− 1
2n

P2n−1(x). (5.54)

The sum of the first 21 terms of this series are shown in Figure 5.6.
We note the slow convergence to the Heaviside function. Also, we see
that the Gibbs phenomenon is present due to the jump discontinuity
at x = 0. [See Section 2.7.]

5.4 Gamma Function
The name and symbol for the Gamma
function were first given by Legendre in
1811. However, the search for a gener-
alization of the factorial extends back to
the 1720’s when Euler provided the first
representation of the factorial as an infi-
nite product, later to be modified by oth-
ers like Gauß, Weierstraß, and Legendre.

A function that often occurs in the study of special functions

is the Gamma function. We will need the Gamma function in the next
section on Fourier-Bessel series.

For x > we define the Gamma function as

Γ(x) =
∫ ∞

0
tx−1e−t dt, x > 0. (5.55)

The Gamma function is a generalization of the factorial function and a plot
is shown in Figure 5.7. In fact, we have

Γ(1) = 1
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and

Γ(x + 1) = xΓ(x).

The reader can prove this identity by simply performing an integration by
parts. (See Problem 7.) In particular, for integers n ∈ Z+, we then have

Γ(n + 1) = nΓ(n) = n(n− 1)Γ(n− 2) = n(n− 1) · · · 2Γ(1) = n!.

–6

–4

–2

2

4

1 2 3 4–1–2–3–4–6

x

Figure 5.7: Plot of the Gamma function.

We can also define the Gamma function for negative, non-integer values
of x. We first note that by iteration on n ∈ Z+, we have

Γ(x + n) = (x + n− 1) · · · (x + 1)xΓ(x), x + n > 0.

Solving for Γ(x), we then find

Γ(x) =
Γ(x + n)

(x + n− 1) · · · (x + 1)x
, −n < x < 0

Note that the Gamma function is undefined at zero and the negative inte-
gers.

Example 5.11. We now prove that

Γ
(

1
2

)
=
√

π.

This is done by direct computation of the integral:

Γ
(

1
2

)
=
∫ ∞

0
t−

1
2 e−t dt.

Letting t = z2, we have

Γ
(

1
2

)
= 2

∫ ∞

0
e−z2

dz.

Due to the symmetry of the integrand, we obtain the classic integral

Γ
(

1
2

)
=
∫ ∞

−∞
e−z2

dz,

which can be performed using a standard trick.8 Consider the integral8 In Example ?? we show the more gen-
eral result:∫ ∞

−∞
e−βy2

dy =

√
π

β
. I =

∫ ∞

−∞
e−x2

dx.

Then,

I2 =
∫ ∞

−∞
e−x2

dx
∫ ∞

−∞
e−y2

dy.

Note that we changed the integration variable. This will allow us to
write this product of integrals as a double integral:

I2 =
∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2) dxdy.
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This is an integral over the entire xy-plane. We can transform this
Cartesian integration to an integration over polar coordinates. The
integral becomes

I2 =
∫ 2π

0

∫ ∞

0
e−r2

rdrdθ.

This is simple to integrate and we have I2 = π. So, the final result is
found by taking the square root of both sides:

Γ
(

1
2

)
= I =

√
π.

In Problem 12 the reader will prove the identity

Γ(n +
1
2
) =

(2n− 1)!!
2n

√
π.

Another useful relation, which we only state, is

Γ(x)Γ(1− x) =
π

sin πx
.

The are many other important relations, including infinite products, which
we will not need at this point. The reader is encouraged to read about
these elsewhere. In the meantime, we move on to the discussion of another
important special function in physics and mathematics.

5.5 Fourier-Bessel Series

Bessel functions arise in many problems in physics possessing cylin-
drical symmetry such as the vibrations of circular drumheads and the radial
modes in optical fibers. They also provide us with another orthogonal set
of basis functions.

The first occurrence of Bessel functions (zeroth order) was in the work Bessel functions have a long history
and were named after Friedrich Wilhelm
Bessel (1784-1846).

of Daniel Bernoulli on heavy chains (1738). More general Bessel functions
were studied by Leonhard Euler in 1781 and in his study of the vibrating
membrane in 1764. Joseph Fourier found them in the study of heat conduc-
tion in solid cylinders and Siméon Poisson (1781-1840) in heat conduction
of spheres (1823).

The history of Bessel functions, does not just originate in the study of the
wave and heat equations. These solutions originally came up in the study
of the Kepler problem, describing planetary motion. According to G. N.
Watson in his Treatise on Bessel Functions, the formulation and solution of
Kepler’s Problem was discovered by Joseph-Louis Lagrange (1736-1813), in
1770. Namely, the problem was to express the radial coordinate and what
is called the eccentric anomaly, E, as functions of time. Lagrange found
expressions for the coefficients in the expansions of r and E in trigonometric
functions of time. However, he only computed the first few coefficients. In
1816 Friedrich Wilhelm Bessel (1784-1846) had shown that the coefficients
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in the expansion for r could be given an integral representation. In 1824 he
presented a thorough study of these functions, which are now called Bessel
functions.

You might have seen Bessel functions in a course on differential equations
as solutions of the differential equation

x2y′′ + xy′ + (x2 − p2)y = 0. (5.56)

Solutions to this equation are obtained in the form of series expansions.
Namely, one seeks solutions of the form

y(x) =
∞

∑
j=0

ajxj+n

by determining the for the coefficients must take. We will leave this for a
homework exercise and simply report the results.

One solution of the differential equation is the Bessel function of the first
kind of order p, given as

y(x) = Jp(x) =
∞

∑
n=0

(−1)n

Γ(n + 1)Γ(n + p + 1)

( x
2

)2n+p
. (5.57)

Figure 5.8: Plots of the Bessel functions
J0(x), J1(x), J2(x), and J3(x).
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In Figure 5.8 we display the first few Bessel functions of the first kind
of integer order. Note that these functions can be described as decaying
oscillatory functions.

A second linearly independent solution is obtained for p not an integer as
J−p(x). However, for p an integer, the Γ(n+ p+ 1) factor leads to evaluations
of the Gamma function at zero, or negative integers, when p is negative.
Thus, the above series is not defined in these cases.

Another method for obtaining a second linearly independent solution is
through a linear combination of Jp(x) and J−p(x) as

Np(x) = Yp(x) =
cos πpJp(x)− J−p(x)

sin πp
. (5.58)
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These functions are called the Neumann functions, or Bessel functions of
the second kind of order p.
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Figure 5.9: Plots of the Neumann func-
tions N0(x), N1(x), N2(x), and N3(x).

In Figure 5.9 we display the first few Bessel functions of the second kind
of integer order. Note that these functions are also decaying oscillatory
functions. However, they are singular at x = 0.

In many applications one desires bounded solutions at x = 0. These
functions do not satisfy this boundary condition. For example, we will
later study one standard problem is to describe the oscillations of a circular
drumhead. For this problem one solves the two dimensional wave equation
using separation of variables in cylindrical coordinates. The radial equation
leads to a Bessel equation. The Bessel function solutions describe the radial
part of the solution and one does not expect a singular solution at the center
of the drum. The amplitude of the oscillation must remain finite. Thus, only
Bessel functions of the first kind can be used.

Bessel functions satisfy a variety of properties, which we will only list
at this time for Bessel functions of the first kind. The reader will have the
opportunity to prove these for homework.

Derivative Identities These identities follow directly from the manipula-
tion of the series solution.

d
dx
[
xp Jp(x)

]
= xp Jp−1(x). (5.59)

d
dx
[
x−p Jp(x)

]
= −x−p Jp+1(x). (5.60)

Recursion Formulae The next identities follow from adding, or subtract-
ing, the derivative identities.

Jp−1(x) + Jp+1(x) =
2p
x

Jp(x). (5.61)

Jp−1(x)− Jp+1(x) = 2J′p(x). (5.62)
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Orthogonality As we will see in the next chapter, one can recast the
Bessel equation into an eigenvalue problem whose solutions form an or-
thogonal basis of functions on L2

x(0, a). Using Sturm-Liouville theory, one
can show that

∫ a

0
xJp(jpn

x
a
)Jp(jpm

x
a
) dx =

a2

2
[

Jp+1(jpn)
]2

δn,m, (5.63)

where jpn is the nth root of Jp(x), Jp(jpn) = 0, n = 1, 2, . . . . A list of some
of these roots are provided in Table 5.3.

Table 5.3: The zeros of Bessel Functions,
Jm(jmn) = 0.

n m = 0 m = 1 m = 2 m = 3 m = 4 m = 5
1 2.405 3.832 5.136 6.380 7.588 8.771

2 5.520 7.016 8.417 9.761 11.065 12.339

3 8.654 10.173 11.620 13.015 14.373 15.700

4 11.792 13.324 14.796 16.223 17.616 18.980

5 14.931 16.471 17.960 19.409 20.827 22.218

6 18.071 19.616 21.117 22.583 24.019 25.430

7 21.212 22.760 24.270 25.748 27.199 28.627

8 24.352 25.904 27.421 28.908 30.371 31.812

9 27.493 29.047 30.569 32.065 33.537 34.989

Generating Function

ex(t− 1
t )/2 =

∞

∑
n=−∞

Jn(x)tn, x > 0, t 6= 0. (5.64)

Integral Representation

Jn(x) =
1
π

∫ π

0
cos(x sin θ − nθ) dθ, x > 0, n ∈ Z. (5.65)

Fourier-Bessel Series

Since the Bessel functions are an orthogonal set of functions of a Sturm-
Liouville problem, we can expand square integrable functions in this ba-
sis. In fact, the Sturm-Liouville problem is given in the form

x2y′′ + xy′ + (λx2 − p2)y = 0, x ∈ [0, a], (5.66)

satisfying the boundary conditions: y(x) is bounded at x = 0 and y(a) =
0. The solutions are then of the form Jp(

√
λx), as can be shown by making

the substitution t =
√

λx in the differential equation. Namely, we let
y(x) = u(t) and note that

dy
dx

=
dt
dx

du
dt

=
√

λ
du
dt

.

Then,
t2u′′ + tu′ + (t2 − p2)u = 0,

which has a solution u(t) = Jp(t).
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Using Sturm-Liouville theory, one can show that Jp(jpn
x
a ) is a basis of

eigenfunctions and the resulting Fourier-Bessel series expansion of f (x) de-
fined on x ∈ [0, a] is

f (x) =
∞

∑
n=1

cn Jp(jpn
x
a
), (5.67)

where the Fourier-Bessel coefficients are found using the orthogonality
relation as

cn =
2

a2
[

Jp+1(jpn)
]2 ∫ a

0
x f (x)Jp(jpn

x
a
) dx. (5.68)

In the study of boundary value prob-
lems in differential equations, Sturm-
Liouville problems are a bountiful
source of basis functions for the space of
square integrable functions.

Example 5.12. Expand f (x) = 1 for 0 < x < 1 in a Fourier-Bessel
series of the form

f (x) =
∞

∑
n=1

cn J0(j0nx)

.
We need only compute the Fourier-Bessel coefficients in Equation

(5.68):

cn =
2

[J1(j0n)]
2

∫ 1

0
xJ0(j0nx) dx. (5.69)

From the identity

d
dx
[
xp Jp(x)

]
= xp Jp−1(x). (5.70)

we have ∫ 1

0
xJ0(j0nx) dx =

1
j20n

∫ j0n

0
yJ0(y) dy

=
1

j20n

∫ j0n

0

d
dy

[yJ1(y)] dy

=
1

j20n
[yJ1(y)]

j0n
0

=
1

j0n
J1(j0n). (5.71)

As a result, the desired Fourier-Bessel expansion is given as

1 = 2
∞

∑
n=1

J0(j0nx)
j0n J1(j0n)

, 0 < x < 1. (5.72)

In Figure 5.10 we show the partial sum for the first fifty terms of
this series. Note once again the slow convergence due to the Gibbs
phenomenon.

5.6 Appendix: The Least Squares Approximation

In the first section of this chapter we showed that we can expand
functions over an infinite set of basis functions as

f (x) =
∞

∑
n=1

cnφn(x)
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Figure 5.10: Plot of the first 50 terms
of the Fourier-Bessel series in Equation
(5.72) for f (x) = 1 on 0 < x < 1.
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and that the generalized Fourier coefficients are given by

cn =
< φn, f >

< φn, φn >
.

In this section we turn to a discussion of approximating f (x) by the partial
sums ∑N

n=1 cnφn(x) and showing that the Fourier coefficients are the best
coefficients minimizing the deviation of the partial sum from f (x). This will
lead us to a discussion of the convergence of Fourier series.

More specifically, we set the following goal:

Goal

To find the best approximation of f (x) on [a, b] by SN(x) =
N
∑

n=1
cnφn(x)

for a set of fixed functions φn(x); i.e., to find the expansion coefficients,
cn, such that SN(x) approximates f (x) in the least squares sense.

We want to measure the deviation of the finite sum from the given func-
tion. Essentially, we want to look at the error made in the approximation.
This is done by introducing the mean square deviation:

EN =
∫ b

a
[ f (x)− SN(x)]2ρ(x) dx,

where we have introduced the weight function ρ(x) > 0. It gives us a sense
as to how close the Nth partial sum is to f (x).The mean square deviation.

We want to minimize this deviation by choosing the right cn’s. We begin
by inserting the partial sums and expand the square in the integrand:

EN =
∫ b

a
[ f (x)− SN(x)]2ρ(x) dx

=
∫ b

a

[
f (x)−

N

∑
n=1

cnφn(x)

]2

ρ(x) dx
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=

b∫
a

f 2(x)ρ(x) dx− 2
b∫

a

f (x)
N

∑
n=1

cnφn(x)ρ(x) dx

+

b∫
a

N

∑
n=1

cnφn(x)
N

∑
m=1

cmφm(x)ρ(x) dx (5.73)

Looking at the three resulting integrals, we see that the first term is just
the inner product of f with itself. The other integrations can be rewritten
after interchanging the order of integration and summation. The double
sum can be reduced to a single sum using the orthogonality of the φn’s.
Thus, we have

EN = < f , f > −2
N

∑
n=1

cn < f , φn > +
N

∑
n=1

N

∑
m=1

cncm < φn, φm >

= < f , f > −2
N

∑
n=1

cn < f , φn > +
N

∑
n=1

c2
n < φn, φn > . (5.74)

We are interested in finding the coefficients, so we will complete the
square in cn. Focusing on the last two terms, we have

−2
N

∑
n=1

cn < f , φn > +
N

∑
n=1

c2
n < φn, φn >

=
N

∑
n=1

< φn, φn > c2
n − 2 < f , φn > cn

=
N

∑
n=1

< φn, φn >

[
c2

n −
2 < f , φn >

< φn, φn >
cn

]

=
N

∑
n=1

< φn, φn >

[(
cn −

< f , φn >

< φn, φn >

)2
−
(

< f , φn >

< φn, φn >

)2
]

.

(5.75)

To this point we have shown that the mean square deviation is given as

EN =< f , f > +
N

∑
n=1

< φn, φn >

[(
cn −

< f , φn >

< φn, φn >

)2
−
(

< f , φn >

< φn, φn >

)2
]

.

So, EN is minimized by choosing

cn =
< f , φn >

< φn, φn >
.

However, these are the Fourier Coefficients. This minimization is often re-
ferred to as Minimization in Least Squares Sense. Minimization in Least Squares Sense

Inserting the Fourier coefficients into the mean square deviation yields Bessel’s Inequality.

0 ≤ EN =< f , f > −
N

∑
n=1

c2
n < φn, φn > .
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Thus, we obtain Bessel’s Inequality:

< f , f >≥
N

∑
n=1

c2
n < φn, φn > .

Convergence in the mean.
For convergence, we next let N get large and see if the partial sums con-

verge to the function. In particular, we say that the infinite series converges
in the mean if ∫ b

a
[ f (x)− SN(x)]2ρ(x) dx → 0 as N → ∞.

Letting N get large in Bessel’s inequality shows that the sum ∑N
n=1 c2

n <

φn, φn > converges if

(< f , f >=
∫ b

a
f 2(x)ρ(x) dx < ∞.

The space of all such f is denoted L2
ρ(a, b), the space of square integrable

functions on (a, b) with weight ρ(x).
From the nth term divergence test from calculus we know that ∑ an con-

verges implies that an → 0 as n → ∞. Therefore, in this problem the terms
c2

n < φn, φn > approach zero as n gets large. This is only possible if the cn’s
go to zero as n gets large. Thus, if ∑N

n=1 cnφn converges in the mean to f ,
then

∫ b
a [ f (x)−∑N

n=1 cnφn]2ρ(x) dx approaches zero as N → ∞. This implies
from the above derivation of Bessel’s inequality that

< f , f > −
N

∑
n=1

c2
n(φn, φn)→ 0.

This leads to Parseval’s equality:Parseval’s equality.

< f , f >=
∞

∑
n=1

c2
n < φn, φn > .

Parseval’s equality holds if and only if

lim
N→∞

b∫
a

( f (x)−
N

∑
n=1

cnφn(x))2ρ(x) dx = 0.

If this is true for every square integrable function in L2
ρ(a, b), then the set of

functions {φn(x)}∞
n=1 is said to be complete. One can view these functions

as an infinite dimensional basis for the space of square integrable functions
on (a, b) with weight ρ(x) > 0.

One can extend the above limit cn → 0 as n→ ∞, by assuming that φn(x)
‖φn‖

is uniformly bounded and that
b∫
a
| f (x)|ρ(x) dx < ∞. This is the Riemann-

Lebesgue Lemma, but will not be proven here.

Problems

1. Consider the set of vectors (−1, 1, 1), (1,−1, 1), (1, 1,−1).
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a. Use the Gram-Schmidt process to find an orthonormal basis for R3

using this set in the given order.

b. What do you get if you do reverse the order of these vectors?

2. Use the Gram-Schmidt process to find the first four orthogonal polyno-
mials satisfying the following:

a. Interval: (−∞, ∞) Weight Function: e−x2
.

b. Interval: (0, ∞) Weight Function: e−x.

3. Find P4(x) using

a. The Rodrigues’ Formula in Equation (5.20).

b. The three term recursion formula in Equation (5.22).

4. In Equations (5.35)-(5.42) we provide several identities for Legendre poly-
nomials. Derive the results in Equations (5.36)-(5.42) as described in the text.
Namely,

a. Differentiating Equation (5.35) with respect to x, derive Equation
(5.36).

b. Derive Equation (5.37) by differentiating g(x, t) with respect to x
and rearranging the resulting infinite series.

c. Combining the last result with Equation (5.35), derive Equations
(5.38)-(5.39).

d. Adding and subtracting Equations (5.38)-(5.39), obtain Equations
(5.40)-(5.41).

e. Derive Equation (5.42) using some of the other identities.

5. Use the recursion relation (5.22) to evaluate
∫ 1
−1 xPn(x)Pm(x) dx, n ≤ m.

6. Expand the following in a Fourier-Legendre series for x ∈ (−1, 1).

a. f (x) = x2.

b. f (x) = 5x4 + 2x3 − x + 3.

c. f (x) =

{
−1, −1 < x < 0,
1, 0 < x < 1.

d. f (x) =

{
x, −1 < x < 0,
0, 0 < x < 1.

7. Use integration by parts to show Γ(x + 1) = xΓ(x).

8. Prove the double factorial identities:

(2n)!! = 2nn!

and

(2n− 1)!! =
(2n)!
2nn!

.
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9. Express the following as Gamma functions. Namely, noting the form
Γ(x + 1) =

∫ ∞
0 txe−t dt and using an appropriate substitution, each expres-

sion can be written in terms of a Gamma function.

a.
∫ ∞

0 x2/3e−x dx.

b.
∫ ∞

0 x5e−x2
dx

c.
∫ 1

0

[
ln
(

1
x

)]n
dx

10. The coefficients Cp
k in the binomial expansion for (1 + x)p are given by

Cp
k =

p(p− 1) · · · (p− k + 1)
k!

.

a. Write Cp
k in terms of Gamma functions.

b. For p = 1/2 use the properties of Gamma functions to write C1/2
k

in terms of factorials.

c. Confirm you answer in part b by deriving the Maclaurin series
expansion of (1 + x)1/2.

11. The Hermite polynomials, Hn(x), satisfy the following:

i. < Hn, Hm >=
∫ ∞
−∞ e−x2

Hn(x)Hm(x) dx =
√

π2nn!δn,m.

ii. H′n(x) = 2nHn−1(x).

iii. Hn+1(x) = 2xHn(x)− 2nHn−1(x).

iv. Hn(x) = (−1)nex2 dn

dxn

(
e−x2

)
.

Using these, show that

a. H′′n − 2xH′n + 2nHn = 0. [Use properties ii. and iii.]

b.
∫ ∞
−∞ xe−x2

Hn(x)Hm(x) dx =
√

π2n−1n! [δm,n−1 + 2(n + 1)δm,n+1] .
[Use properties i. and iii.]

c. Hn(0) =

{
0, n odd,

(−1)m (2m)!
m! , n = 2m.

[Let x = 0 in iii. and iterate.

Note from iv. that H0(x) = 1 and H1(x) = 2x. ]

12. In Maple one can type simplify(LegendreP(2*n-2,0)-LegendreP(2*n,0));
to find a value for P2n−2(0)− P2n(0). It gives the result in terms of Gamma
functions. However, in Example 5.10 for Fourier-Legendre series, the value
is given in terms of double factorials! So, we have

P2n−2(0)− P2n(0) =
√

π(4n− 1)
2Γ(n + 1)Γ

( 3
2 − n

) = (−1)n (2n− 3)!!
(2n− 2)!!

4n− 1
2n

.

You will verify that both results are the same by doing the following:

a. Prove that P2n(0) = (−1)n (2n−1)!!
(2n)!! using the generating function

and a binomial expansion.

b. Prove that Γ
(

n + 1
2

)
= (2n−1)!!

2n
√

π using Γ(x) = (x − 1)Γ(x − 1)
and iteration.
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c. Verify the result from Maple that P2n−2(0)− P2n(0) =
√

π(4n−1)
2Γ(n+1)Γ( 3

2−n)
.

d. Can either expression for P2n−2(0)− P2n(0) be simplified further?

13. A solution Bessel’s equation, x2y′′+ xy′+(x2− n2)y = 0, , can be found
using the guess y(x) = ∑∞

j=0 ajxj+n. One obtains the recurrence relation
aj =

−1
j(2n+j) aj−2. Show that for a0 = (n!2n)−1 we get the Bessel function of

the first kind of order n from the even values j = 2k:

Jn(x) =
∞

∑
k=0

(−1)k

k!(n + k)!

( x
2

)n+2k
.

14. Use the infinite series in the last problem to derive the derivative iden-
tities (5.70) and (5.60):

a. d
dx [x

n Jn(x)] = xn Jn−1(x).

b. d
dx [x

−n Jn(x)] = −x−n Jn+1(x).

15. Prove the following identities based on those in the last problem.

a. Jp−1(x) + Jp+1(x) = 2p
x Jp(x).

b. Jp−1(x)− Jp+1(x) = 2J′p(x).

16. Use the derivative identities of Bessel functions,(5.70)-(5.60), and inte-
gration by parts to show that∫

x3 J0(x) dx = x3 J1(x)− 2x2 J2(x) + C.

17. Use the generating function to find Jn(0) and J′n(0).

18. Bessel functions Jp(λx) are solutions of x2y′′ + xy′ + (λ2x2 − p2)y = 0.
Assume that x ∈ (0, 1) and that Jp(λ) = 0 and Jp(0) is finite.

a. Show that this equation can be written in the form

d
dx

(
x

dy
dx

)
+ (λ2x− p2

x
)y = 0.

This is the standard Sturm-Liouville form for Bessel’s equation.

b. Prove that ∫ 1

0
xJp(λx)Jp(µx) dx = 0, λ 6= µ

by considering∫ 1

0

[
Jp(µx)

d
dx

(
x

d
dx

Jp(λx)
)
− Jp(λx)

d
dx

(
x

d
dx

Jp(µx)
)]

dx.

Thus, the solutions corresponding to different eigenvalues (λ, µ)
are orthogonal.

c. Prove that ∫ 1

0
x
[

Jp(λx)
]2 dx =

1
2

J2
p+1(λ) =

1
2

J′2p (λ).
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19. We can rewrite Bessel functions, Jν(x), in a form which will allow the
order to be non-integer by using the gamma function. You will need the

results from Problem 12b for Γ
(

k + 1
2

)
.

a. Extend the series definition of the Bessel function of the first kind
of order ν, Jν(x), for ν ≥ 0 by writing the series solution for y(x)
in Problem 13 using the gamma function.

b. Extend the series to J−ν(x), for ν ≥ 0. Discuss the resulting series
and what happens when ν is a positive integer.

c. Use these results to obtain the closed form expressions

J1/2(x) =

√
2

πx
sin x,

J−1/2(x) =

√
2

πx
cos x.

d. Use the results in part c with the recursion formula for Bessel
functions to obtain a closed form for J3/2(x).

20. In this problem you will derive the expansion

x2 =
c2

2
+ 4

∞

∑
j=2

J0(αjx)
α2

j J0(αjc)
, 0 < x < c,

where the α′js are the positive roots of J1(αc) = 0, by following the below
steps.

a. List the first five values of α for J1(αc) = 0 using the Table 5.3 and
Figure 5.8. [Note: Be careful determining α1.]

b. Show that ‖J0(α1x)‖2 = c2

2 . Recall,

‖J0(αjx)‖2 =
∫ c

0
xJ2

0 (αjx) dx.

c. Show that ‖J0(αjx)‖2 = c2

2
[

J0(αjc)
]2 , j = 2, 3, . . . . (This is the most

involved step.) First note from Problem 18 that y(x) = J0(αjx) is a
solution of

x2y′′ + xy′ + α2
j x2y = 0.

i. Verify the Sturm-Liouville form of this differential equation:
(xy′)′ = −α2

j xy.

ii. Multiply the equation in part i. by y(x) and integrate from
x = 0 to x = c to obtain∫ c

0
(xy′)′y dx = −α2

j

∫ c

0
xy2 dx

= −α2
j

∫ c

0
xJ2

0 (αjx) dx. (5.76)

iii. Noting that y(x) = J0(αjx), integrate the left hand side by parts
and use the following to simplify the resulting equation.
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1. J′0(x) = −J1(x) from Equation (5.60).

2. Equation (5.63).

3. J2(αjc) + J0(αjc) = 0 from Equation (5.61).

iv. Now you should have enough information to complete this
part.

d. Use the results from parts b and c and Problem 16 to derive the
expansion coefficients for

x2 =
∞

∑
j=1

cj J0(αjx)

in order to obtain the desired expansion.
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