
4
Sturm-Liouville Boundary Value Prob-
lems

We have seen that trigonometric functions and special functions
are the solutions of differential equations. These solutions give orthogonal
sets of functions which can be used to represent functions in generalized
Fourier series expansions. At the same time we would like to generalize
the techniques we had first used to solve the heat equation in order to solve
more general initial-boundary value problems. Namely, we use separation
of variables to separate the given partial differential equation into a set of
ordinary differential equations. A subset of those equations provide us with
a set of boundary value problems whose eigenfunctions are useful in repre-
senting solutions of the partial differential equation. Hopefully, those solu-
tions will form a useful basis in some function space.

A class of problems to which our previous examples belong are the
Sturm-Liouville eigenvalue problems. These problems involve self-adjoint
(differential) operators which play an important role in the spectral theory
of linear operators and the existence of the eigenfunctions needed to solve
the interesting physics problems described by the above initial-boundary
value problems. In this section we will introduce the Sturm-Liouville eigen-
value problem as a general class of boundary value problems containing the
Legendre and Bessel equations and supplying the theory needed to solve a
variety of problems.

4.1 Sturm-Liouville Operators

In physics many problems arise in the form of boundary value prob-
lems involving second order ordinary differential equations. For example,
we will explore the wave equation and the heat equation in three dimen-
sions. Separating out the time dependence leads to a three dimensional
boundary value problem in both cases. Further separation of variables leads
to a set of boundary value problems involving second order ordinary dif-
ferential equations.
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In general, we might obtain equations of the form

a2(x)y′′ + a1(x)y′ + a0(x)y = f (x) (4.1)

subject to boundary conditions. We can write such an equation in operator
form by defining the differential operator

L = a2(x)D2 + a1(x)D + a0(x),

where D = d/dx. Then, Equation (4.1) takes the form

Ly = f .

Recall that we had solved such nonhomogeneous differential equations in
Chapter 2. In this section we will show that these equations can be solved
using eigenfunction expansions. Namely, we seek solutions to the eigen-
value problem

Lφ = λφ

with homogeneous boundary conditions on φ and then seek a solution of
the nonhomogeneous problem, Ly = f , as an expansion over these eigen-
functions. Formally, we let

y(x) =
∞

∑
n=1

cnφn(x).

However, we are not guaranteed a nice set of eigenfunctions. We need an
appropriate set to form a basis in the function space. Also, it would be
nice to have orthogonality so that we can easily solve for the expansion
coefficients.

It turns out that any linear second order differential operator can be
turned into an operator that possesses just the right properties (self-adjointedness)
to carry out this procedure. The resulting operator is referred to as a Sturm-
Liouville operator. We will highlight some of the properties of these opera-
tors and see how they are used in applications.

We define the Sturm-Liouville operator asThe Sturm-Liouville operator.

L =
d

dx
p(x)

d
dx

+ q(x). (4.2)

The Sturm-Liouville eigenvalue problem is given by the differential equa-
tionThe Sturm-Liouville eigenvalue prob-

lem. Ly = −λσ(x)y,

or
d

dx

(
p(x)

dy
dx

)
+ q(x)y + λσ(x)y = 0, (4.3)

for x ∈ (a, b), y = y(x), plus boundary conditions. The functions p(x), p′(x),
q(x) and σ(x) are assumed to be continuous on (a, b) and p(x) > 0, σ(x) > 0
on [a, b]. If the interval is finite and these assumptions on the coefficients
are true on [a, b], then the problem is said to be a regular Sturm-Liouville
problem. Otherwise, it is called a singular Sturm-Liouville problem.
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We also need to impose the set of homogeneous boundary conditions

α1y(a) + β1y′(a) = 0,

α2y(b) + β2y′(b) = 0. (4.4)

The α’s and β’s are constants. For different values, one has special types
of boundary conditions. For βi = 0, we have what are called Dirichlet
boundary conditions. Namely, y(a) = 0 and y(b) = 0. For αi = 0, we Types of boundary conditions:

Dirichlet boundary conditions - the so-
lution takes fixed values on the bound-
ary. These are named after Gustav Leje-
une Dirichlet (1805-1859).

have Neumann boundary conditions. In this case, y′(a) = 0 and y′(b) = 0.
In terms of the heat equation example, Dirichlet conditions correspond

Neumann boundary conditions - the
derivative of the solution takes fixed val-
ues on the boundary. These are named
after Carl Neumann (1832-1925).

to maintaining a fixed temperature at the ends of the rod. The Neumann
boundary conditions would correspond to no heat flow across the ends, or
insulating conditions, as there would be no temperature gradient at those
points. The more general boundary conditions allow for partially insulated
boundaries.

Another type of boundary condition that is often encountered is the pe-
riodic boundary condition. Consider the heated rod that has been bent to
form a circle. Then the two end points are physically the same. So, we
would expect that the temperature and the temperature gradient should
agree at those points. For this case we write y(a) = y(b) and y′(a) = y′(b).
Boundary value problems using these conditions have to be handled differ-
ently than the above homogeneous conditions. These conditions leads to
different types of eigenfunctions and eigenvalues. Differential equations of Sturm-Liouville

form.As previously mentioned, equations of the form (4.1) occur often. We
now show that any second order linear operator can be put into the form
of the Sturm-Liouville operator. In particular, equation (4.1) can be put into
the form

d
dx

(
p(x)

dy
dx

)
+ q(x)y = F(x). (4.5)

Another way to phrase this is provided in the theorem:
The proof of this is straight forward as we soon show. Let’s first consider

the equation (4.1) for the case that a1(x) = a′2(x). Then, we can write the
equation in a form in which the first two terms combine,

f (x) = a2(x)y′′ + a1(x)y′ + a0(x)y

= (a2(x)y′)′ + a0(x)y. (4.6)

The resulting equation is now in Sturm-Liouville form. We just identify
p(x) = a2(x) and q(x) = a0(x).

Not all second order differential equations are as simple to convert. Con-
sider the differential equation

x2y′′ + xy′ + 2y = 0.

In this case a2(x) = x2 and a′2(x) = 2x 6= a1(x). So, this does not fall into
this case. However, we can change the operator in this equation, x2D +

xD, to a Sturm-Liouville operator, Dp(x)D for a p(x) that depends on the
coefficients x2 and x..
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In the Sturm Liouville operator the derivative terms are gathered together
into one perfect derivative, Dp(x)D. This is similar to what we saw in the
Chapter 2 when we solved linear first order equations. In that case we
sought an integrating factor. We can do the same thing here. We seek a
multiplicative function µ(x) that we can multiply through (4.1) so that it
can be written in Sturm-Liouville form.

We first divide out the a2(x), giving

y′′ +
a1(x)
a2(x)

y′ +
a0(x)
a2(x)

y =
f (x)

a2(x)
.

Next, we multiply this differential equation by µ,

µ(x)y′′ + µ(x)
a1(x)
a2(x)

y′ + µ(x)
a0(x)
a2(x)

y = µ(x)
f (x)

a2(x)
.

The first two terms can now be combined into an exact derivative (µy′)′

if the second coefficient is µ′(x). Therefore, µ(x) satisfies a first order, sepa-
rable differential equation:

dµ

dx
= µ(x)

a1(x)
a2(x)

.

This is formally solved to give the sought integrating factor

µ(x) = e
∫ a1(x)

a2(x) dx
.

Thus, the original equation can be multiplied by factor

µ(x)
a2(x)

=
1

a2(x)
e
∫ a1(x)

a2(x) dx

to turn it into Sturm-Liouville form.
In summary,

Equation (4.1),

a2(x)y′′ + a1(x)y′ + a0(x)y = f (x), (4.7)

can be put into the Sturm-Liouville form

d
dx

(
p(x)

dy
dx

)
+ q(x)y = F(x), (4.8)

where

p(x) = e
∫ a1(x)

a2(x) dx
,

q(x) = p(x)
a0(x)
a2(x)

,

F(x) = p(x)
f (x)

a2(x)
. (4.9)
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Example 4.1. Convert x2y′′ + xy′ + 2y = 0 into Sturm-Liouville form.
We can multiply this equation by

µ(x)
a2(x)

=
1
x2 e

∫ dx
x =

1
x

,

to put the equation in Sturm-Liouville form:

Conversion of a linear second order
differential equation to Sturm Liouville
form.

0 = xy′′ + y′ +
2
x

y

= (xy′)′ +
2
x

y. (4.10)

4.2 Properties of Sturm-Liouville Eigenvalue Problems

There are several properties that can be proven for the (regular)
Sturm-Liouville eigenvalue problem in (4.3). However, we will not prove
them all here. We will merely list some of the important facts and focus on
a few of the properties.

Real, countable eigenvalues.

1. The eigenvalues are real, countable, ordered and there is a smallest
eigenvalue. Thus, we can write them as λ1 < λ2 < . . . . However,
there is no largest eigenvalue and n→ ∞, λn → ∞. Oscillatory eigenfunctions.

2. For each eigenvalue λn there exists an eigenfunction φn with n − 1
zeros on (a, b).

3. Eigenfunctions corresponding to different eigenvalues are orthogonal
with respect to the weight function, σ(x). Defining the inner product
of f (x) and g(x) as

〈 f , g〉 =
∫ b

a
f (x)g(x)σ(x) dx, (4.11)

then the orthogonality of the eigenfunctions can be written in the Orthogonality of eigenfunctions.

form
〈φn, φm〉 = 〈φn, φn〉δnm, n, m = 1, 2, . . . . (4.12)

4. The set of eigenfunctions is complete; i.e., any piecewise smooth func-
tion can be represented by a generalized Fourier series expansion of
the eigenfunctions,

f (x) ∼
∞

∑
n=1

cnφn(x),

where

cn =
〈 f , φn〉
〈φn, φn〉

.

Actually, one needs f (x) ∈ L2
σ(a, b), the set of square integrable func-

tions over [a, b] with weight function σ(x). By square integrable, we
mean that 〈 f , f 〉 < ∞. One can show that such a space is isomorphic
to a Hilbert space, a complete inner product space. Hilbert spaces
play a special role in quantum mechanics.

Complete basis of eigenfunctions.
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5. The eigenvalues satisfy the Rayleigh quotient

λn =

−pφn
dφn
dx

∣∣∣b
a
+
∫ b

a

[
p
(

dφn
dx

)2
− qφ2

n

]
dx

〈φn, φn〉
.

The Rayleigh quotient is named after
Lord Rayleigh, John William Strutt, 3rd
Baron Raleigh (1842-1919).

This is verified by multiplying the eigenvalue problem

Lφn = −λnσ(x)φn

by φn and integrating. Solving this result for λn, we obtain the Rayleigh
quotient. The Rayleigh quotient is useful for getting estimates of
eigenvalues and proving some of the other properties.

Example 4.2. Verify some of these properties for the eigenvalue prob-
lem

y′′ = −λy, y(0) = y(π) = 0.

This is a problem we had seen many times. The eigenfunctions for
this eigenvalue problem are φn(x) = sin nx, with eigenvalues λn = n2

for n = 1, 2, . . . . These satisfy the properties listed above.
First of all, the eigenvalues are real, countable and ordered, 1 < 4 <

9 < . . . . There is no largest eigenvalue and there is a first one.

y

x

Figure 4.1: Plot of the eigenfunctions
φn(x) = sin nx for n = 1, 2, 3, 4.

The eigenfunctions corresponding to each eigenvalue have n− 1 ze-
ros 0n (0, π). This is demonstrated for several eigenfunctions in Figure
4.1.

We also know that the set {sin nx}∞
n=1 is an orthogonal set of basis

functions of length

‖φn‖ =
√

π

2
.

Thus, the Rayleigh quotient can be computed using p(x) = 1, q(x) =
0, and the eigenfunctions. It is given by

R =
−φnφ′n

∣∣∣π
0
+
∫ π

0 (φ′n)
2 dx

π
2

=
2
π

∫ π

0

(
−n2 cos nx

)2
dx = n2. (4.13)

Therefore, knowing the eigenfunction, the Rayleigh quotient returns
the eigenvalues as expected.

Example 4.3. We seek the eigenfunctions of the operator found in Ex-
ample 4.1. Namely, we want to solve the eigenvalue problem

Ly = (xy′)′ +
2
x

y = −λσy (4.14)

subject to a set of homogeneous boundary conditions. Let’s use the
boundary conditions

y′(1) = 0, y′(2) = 0.
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[Note that we do not know σ(x) yet, but will choose an appropriate
function to obtain solutions.]

Expanding the derivative, we have

xy′′ + y′ +
2
x

y = −λσy.

Multiply through by x to obtain

x2y′′ + xy′ + (2 + λxσ) y = 0.

Notice that if we choose σ(x) = x−1, then this equation can be made
a Cauchy-Euler type equation. Thus, we have

x2y′′ + xy′ + (λ + 2) y = 0.

The characteristic equation is

r2 + λ + 2 = 0.

For oscillatory solutions, we need λ+ 2 > 0. Thus, the general solution
is

y(x) = c1 cos(
√

λ + 2 ln |x|) + c2 sin(
√

λ + 2 ln |x|). (4.15)

Next we apply the boundary conditions. y′(1) = 0 forces c2 = 0.
This leaves

y(x) = c1 cos(
√

λ + 2 ln x).

The second condition, y′(2) = 0, yields

sin(
√

λ + 2 ln 2) = 0.

This will give nontrivial solutions when
√

λ + 2 ln 2 = nπ, n = 0, 1, 2, 3 . . . .

In summary, the eigenfunctions for this eigenvalue problem are

yn(x) = cos
( nπ

ln 2
ln x

)
, 1 ≤ x ≤ 2

and the eigenvalues are λn =
( nπ

ln 2

)2 − 2 for n = 0, 1, 2, . . . .
Note: We include the n = 0 case because y(x) = constant is a

solution of the λ = −2 case. More specifically, in this case the charac-
teristic equation reduces to r2 = 0. Thus, the general solution of this
Cauchy-Euler equation is

y(x) = c1 + c2 ln |x|.

Setting y′(1) = 0, forces c2 = 0. y′(2) automatically vanishes, leaving
the solution in this case as y(x) = c1.

We note that some of the properties listed in the beginning of the
section hold for this example. The eigenvalues are seen to be real,
countable and ordered. There is a least one, λ0 = −2. Next, one can



102 partial differential equations

find the zeros of each eigenfunction on [1,2]. Then the argument of the
cosine, nπ

ln 2 ln x, takes values 0 to nπ for x ∈ [1, 2]. The cosine function
has n− 1 roots on this interval.

Orthogonality can be checked as well. We set up the integral and
use the substitution y = π ln x/ ln 2. This gives

〈yn, ym〉 =
∫ 2

1
cos

( nπ

ln 2
ln x

)
cos

(mπ

ln 2
ln x

) dx
x

=
ln 2
π

∫ π

0
cos ny cos my dy

=
ln 2

2
δn,m. (4.16)

4.2.1 Adjoint Operators

In the study of the spectral theory of matrices, one learns about
the adjoint of the matrix, A†, and the role that self-adjoint, or Hermitian,
matrices play in diagonalization. Also, one needs the concept of adjoint to
discuss the existence of solutions to the matrix problem y = Ax. In the same
spirit, one is interested in the existence of solutions of the operator equation
Lu = f and solutions of the corresponding eigenvalue problem. The study
of linear operators on a Hilbert space is a generalization of what the reader
had seen in a linear algebra course.

Just as one can find a basis of eigenvectors and diagonalize Hermitian,
or self-adjoint, matrices (or, real symmetric in the case of real matrices), we
will see that the Sturm-Liouville operator is self-adjoint. In this section we
will define the domain of an operator and introduce the notion of adjoint
operators. In the last section we discuss the role the adjoint plays in the
existence of solutions to the operator equation Lu = f .

We begin by defining the adjoint of an operator. The adjoint, L†, of oper-
ator L satisfies

〈u, Lv〉 = 〈L†u, v〉

for all v in the domain of L and u in the domain of L†. Here the domain
of a differential operator L is the set of all u ∈ L2

σ(a, b) satisfying a given
set of homogeneous boundary conditions. This is best understood through
example.

Example 4.4. Find the adjoint of L = a2(x)D2 + a1(x)D + a0(x) for
D = d/dx.

In order to find the adjoint, we place the operator inside an integral.
Consider the inner product

〈u, Lv〉 =
∫ b

a
u(a2v′′ + a1v′ + a0v) dx.

We have to move the operator L from v and determine what operator
is acting on u in order to formally preserve the inner product. For a
simple operator like L = d

dx , this is easily done using integration by
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parts. For the given operator, we will need to apply several integra-
tions by parts to the individual terms. We consider each derivative
term in the integrand separately.

For the a1v′ term, we integrate by parts to find∫ b

a
u(x)a1(x)v′(x) dx = a1(x)u(x)v(x)

∣∣∣b
a
−
∫ b

a
(u(x)a1(x))′v(x) dx. (4.17)

Now, we consider the a2v′′ term. In this case it will take two inte-
grations by parts:∫ b

a
u(x)a2(x)v′′(x) dx = a2(x)u(x)v′(x)

∣∣∣b
a
−
∫ b

a
(u(x)a2(x))′v(x)′ dx

=
[
a2(x)u(x)v′(x)− (a2(x)u(x))′v(x)

] ∣∣∣b
a

+
∫ b

a
(u(x)a2(x))′′v(x) dx. (4.18)

Combining these results, we obtain

〈u, Lv〉 =
∫ b

a
u(a2v′′ + a1v′ + a0v) dx

=
[
a1(x)u(x)v(x) + a2(x)u(x)v′(x)− (a2(x)u(x))′v(x)

] ∣∣∣b
a

+
∫ b

a

[
(a2u)′′ − (a1u)′ + a0u

]
v dx. (4.19)

Inserting the boundary conditions for v, one has to determine bound-
ary conditions for u such that[

a1(x)u(x)v(x) + a2(x)u(x)v′(x)− (a2(x)u(x))′v(x)
] ∣∣∣b

a
= 0.

This leaves

〈u, Lv〉 =
∫ b

a

[
(a2u)′′ − (a1u)′ + a0u

]
v dx ≡ 〈L†u, v〉.

Therefore,

L† =
d2

dx2 a2(x)− d
dx

a1(x) + a0(x). (4.20)
Self-adjoint operators.

When L† = L, the operator is called formally self-adjoint. When the
domain of L is the same as the domain of L†, the term self-adjoint is used.
As the domain is important in establishing self-adjointness, we need to do
a complete example in which the domain of the adjoint is found.

Example 4.5. Determine L† and its domain for operator Lu = du
dx

where u satisfies the boundary conditions u(0) = 2u(1) on [0, 1].
We need to find the adjoint operator satisfying 〈v, Lu〉 = 〈L†v, u〉.

Therefore, we rewrite the integral

〈v, Lu〉 >=
∫ 1

0
v

du
dx

dx = uv
∣∣1
0 −

∫ 1

0
u

dv
dx

dx = 〈L†v, u〉.

From this we have the adjoint problem consisting of an adjoint opera-
tor and the associated boundary condition (or, domain of L†.):
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1. L† = − d
dx .

2. uv
∣∣∣1
0
= 0⇒ 0 = u(1)[v(1)− 2v(0)] ⇒ v(1) = 2v(0).

4.2.2 Lagrange’s and Green’s Identities

Before turning to the proofs that the eigenvalues of a Sturm-Liouville
problem are real and the associated eigenfunctions orthogonal, we will first
need to introduce two important identities. For the Sturm-Liouville opera-
tor,

L =
d

dx

(
p

d
dx

)
+ q,

we have the two identities:

Lagrange’s Identity: uLv− vLu = [p(uv′ − vu′)]′.
Green’s Identity:

∫ b
a (uLv− vLu) dx = [p(uv′ − vu′)]|ba.

The proof of Lagrange’s identity follows by a simple manipulations of
the operator:

uLv− vLu = u
[

d
dx

(
p

dv
dx

)
+ qv

]
− v

[
d

dx

(
p

du
dx

)
+ qu

]
= u

d
dx

(
p

dv
dx

)
− v

d
dx

(
p

du
dx

)
= u

d
dx

(
p

dv
dx

)
+ p

du
dx

dv
dx
− v

d
dx

(
p

du
dx

)
− p

du
dx

dv
dx

=
d

dx

[
pu

dv
dx
− pv

du
dx

]
. (4.21)

Green’s identity is simply proven by integrating Lagrange’s identity.

4.2.3 Orthogonality and Reality

We are now ready to prove that the eigenvalues of a Sturm-Liouville
problem are real and the corresponding eigenfunctions are orthogonal. These
are easily established using Green’s identity, which in turn is a statement
about the Sturm-Liouville operator being self-adjoint.

Example 4.6. The eigenvalues of the Sturm-Liouville problem (4.3) are
real.

Let φn(x) be a solution of the eigenvalue problem associated with
λn:

Lφn = −λnσφn.

We want to show that Namely, we show that λn = λn, where the bar
means complex conjugate. So, we also consider the complex conjugate
of this equation,

Lφn = −λnσφn.
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Now, multiply the first equation by φn, the second equation by φn, and
then subtract the results. We obtain

φnLφn − φnLφn = (λn − λn)σφnφn.

Integrating both sides of this equation, we have

∫ b

a

(
φnLφn − φnLφn

)
dx = (λn − λn)

∫ b

a
σφnφn dx.

We apply Green’s identity to the left hand side to find

[p(φnφ′n − φnφ
′
n)]|

b
a = (λn − λn)

∫ b

a
σφnφn dx.

Using the homogeneous boundary conditions (4.4) for a self-adjoint
operator, the left side vanishes. This leaves

0 = (λn − λn)
∫ b

a
σ‖φn‖2 dx.

The integral is nonnegative, so we must have λn = λn. Therefore, the
eigenvalues are real.

Example 4.7. The eigenfunctions corresponding to different eigenval-
ues of the Sturm-Liouville problem (4.3) are orthogonal.

This is proven similar to the last example. Let φn(x) be a solution
of the eigenvalue problem associated with λn,

Lφn = −λnσφn,

and let φm(x) be a solution of the eigenvalue problem associated with
λm 6= λn,

Lφm = −λmσφm,

Now, multiply the first equation by φm and the second equation by φn.
Subtracting these results, we obtain

φmLφn − φnLφm = (λm − λn)σφnφm

Integrating both sides of the equation, using Green’s identity, and
using the homogeneous boundary conditions, we obtain

0 = (λm − λn)
∫ b

a
σφnφm dx.

Since the eigenvalues are distinct, we can divide by λm−λn, leaving
the desired result, ∫ b

a
σφnφm dx = 0.

Therefore, the eigenfunctions are orthogonal with respect to the weight
function σ(x).
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4.2.4 The Rayleigh Quotient

The Rayleigh quotient is useful for getting estimates of eigenvalues
and proving some of the other properties associated with Sturm-Liouville
eigenvalue problems. The Rayleigh quotient is general and finds applica-
tions for both matrix eigenvalue problems as well as self-adjoint operators.
For a Hermitian matrix M the Rayleigh quotient is given by

R(v) =
〈v, Mv〉
〈v, v〉 .

One can show that the critical values of the Rayleigh quotient, as a function
of v, are the eigenvectors of M and the values of R at these critical values
are the corresponding eigenvectors. In particular, minimizing R(v over the
vector space will give the lowest eigenvalue. This leads to the Rayleigh-Ritz
method for computing the lowest eigenvalues when the eigenvectors are not
known.

This definition can easily be extended to Sturm-Liouville operators,

R(φn) =
〈φnLφn〉
〈φn, φn〉

.

We begin by multiplying the eigenvalue problem

Lφn = −λnσ(x)φn

by φn and integrating. This gives∫ b

a

[
φn

d
dx

(
p

dφn

dx

)
+ qφ2

n

]
dx = −λn

∫ b

a
φ2

nσ dx.

One can solve the last equation for λ to find

λn =
−
∫ b

a

[
φn

d
dx

(
p dφn

dx

)
+ qφ2

n

]
dx∫ b

a φ2
nσ dx

= R(φn).

It appears that we have solved for the eigenvalues and have not needed
the machinery we had developed in Chapter 4 for studying boundary value
problems. However, we really cannot evaluate this expression when we do
not know the eigenfunctions, φn(x) yet. Nevertheless, we will see what we
can determine from the Rayleigh quotient.

One can rewrite this result by performing an integration by parts on the

first term in the numerator. Namely, pick u = φn and dv = d
dx

(
p dφn

dx

)
dx

for the standard integration by parts formula. Then, we have∫ b

a
φn

d
dx

(
p

dφn

dx

)
dx = pφn

dφn

dx

∣∣∣b
a
−
∫ b

a

[
p
(

dφn

dx

)2
− qφ2

n

]
dx.

Inserting the new formula into the expression for λ, leads to the Rayleigh
Quotient

λn =

−pφn
dφn
dx

∣∣∣b
a
+
∫ b

a

[
p
(

dφn
dx

)2
− qφ2

n

]
dx∫ b

a φ2
nσ dx

. (4.22)
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In many applications the sign of the eigenvalue is important. As we had
seen in the solution of the heat equation, T′ + kλT = 0. Since we expect
the heat energy to diffuse, the solutions should decay in time. Thus, we
would expect λ > 0. In studying the wave equation, one expects vibrations
and these are only possible with the correct sign of the eigenvalue (positive
again). Thus, in order to have nonnegative eigenvalues, we see from (4.22)
that

a. q(x) ≤ 0, and

b. −pφn
dφn
dx

∣∣∣b
a
≥ 0.

Furthermore, if λ is a zero eigenvalue, then q(x) ≡ 0 and α1 = α2 = 0
in the homogeneous boundary conditions. This can be seen by setting the
numerator equal to zero. Then, q(x) = 0 and φ′n(x) = 0. The second of
these conditions inserted into the boundary conditions forces the restriction
on the type of boundary conditions.

One of the properties of Sturm-Liouville eigenvalue problems with ho-
mogeneous boundary conditions is that the eigenvalues are ordered, λ1 <

λ2 < . . . . Thus, there is a smallest eigenvalue. It turns out that for any
continuous function, y(x),

λ1 = min
y(x)

−py dy
dx

∣∣∣b
a
+
∫ b

a

[
p
(

dy
dx

)2
− qy2

]
dx∫ b

a y2σ dx
(4.23)

and this minimum is obtained when y(x) = φ1(x). This result can be used
to get estimates of the minimum eigenvalue by using trial functions which
are continuous and satisfy the boundary conditions, but do not necessarily
satisfy the differential equation.

Example 4.8. We have already solved the eigenvalue problem φ′′ +

λφ = 0, φ(0) = 0, φ(1) = 0. In this case, the lowest eigenvalue is λ1 =

π2. We can pick a nice function satisfying the boundary conditions,
say y(x) = x− x2. Inserting this into Equation (4.23), we find

λ1 ≤
∫ 1

0 (1− 2x)2 dx∫ 1
0 (x− x2)2 dx

= 10.

Indeed, 10 ≥ π2.

4.3 The Eigenfunction Expansion Method

In this section we solve the nonhomogeneous problem Ly = f
using expansions over the basis of Sturm-Liouville eigenfunctions. We have
seen that Sturm-Liouville eigenvalue problems have the requisite set of or-
thogonal eigenfunctions. In this section we will apply the eigenfunction
expansion method to solve a particular nonhomogeneous boundary value
problem.
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Recall that one starts with a nonhomogeneous differential equation

Ly = f ,

where y(x) is to satisfy given homogeneous boundary conditions. The
method makes use of the eigenfunctions satisfying the eigenvalue problem

Lφn = −λnσφn

subject to the given boundary conditions. Then, one assumes that y(x) can
be written as an expansion in the eigenfunctions,

y(x) =
∞

∑
n=1

cnφn(x),

and inserts the expansion into the nonhomogeneous equation. This gives

f (x) = L
(

∞

∑
n=1

cnφn(x)

)
= −

∞

∑
n=1

cnλnσ(x)φn(x).

The expansion coefficients are then found by making use of the orthogo-
nality of the eigenfunctions. Namely, we multiply the last equation by φm(x)
and integrate. We obtain∫ b

a
f (x)φm(x) dx = −

∞

∑
n=1

cnλn

∫ b

a
φn(x)φm(x)σ(x) dx.

Orthogonality yields∫ b

a
f (x)φm(x) dx = −cmλm

∫ b

a
φ2

m(x)σ(x) dx.

Solving for cm, we have

cm = −
∫ b

a f (x)φm(x) dx

λm
∫ b

a φ2
m(x)σ(x) dx

.

Example 4.9. As an example, we consider the solution of the bound-
ary value problem

(xy′)′ +
y
x
=

1
x

, x ∈ [1, e], (4.24)

y(1) = 0 = y(e). (4.25)

This equation is already in self-adjoint form. So, we know that the
associated Sturm-Liouville eigenvalue problem has an orthogonal set
of eigenfunctions. We first determine this set. Namely, we need to
solve

(xφ′)′ +
φ

x
= −λσφ, φ(1) = 0 = φ(e). (4.26)

Rearranging the terms and multiplying by x, we have that

x2φ′′ + xφ′ + (1 + λσx)φ = 0.
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This is almost an equation of Cauchy-Euler type. Picking the weight
function σ(x) = 1

x , we have

x2φ′′ + xφ′ + (1 + λ)φ = 0.

This is easily solved. The characteristic equation is

r2 + (1 + λ) = 0.

One obtains nontrivial solutions of the eigenvalue problem satisfying
the boundary conditions when λ > −1. The solutions are

φn(x) = A sin(nπ ln x), n = 1, 2, . . . .

where λn = n2π2 − 1.
It is often useful to normalize the eigenfunctions. This means that

one chooses A so that the norm of each eigenfunction is one. Thus,
we have

1 =
∫ e

1
φn(x)2σ(x) dx

= A2
∫ e

1
sin(nπ ln x)

1
x

dx

= A2
∫ 1

0
sin(nπy) dy =

1
2

A2. (4.27)

Thus, A =
√

2. Several of these eigenfunctions are show in Figure 4.2.
x

1 e

Figure 4.2: Plots of the first five eigen-
functions, y(x) =

√
2 sin(nπ ln x).

We now turn towards solving the nonhomogeneous problem, Ly =
1
x . We first expand the unknown solution in terms of the eigenfunc-
tions,

y(x) =
∞

∑
n=1

cn
√

2 sin(nπ ln x).

Inserting this solution into the differential equation, we have

1
x
= Ly = −

∞

∑
n=1

cnλn
√

2 sin(nπ ln x)
1
x

.

Next, we make use of orthogonality. Multiplying both sides by the
eigenfunction φm(x) =

√
2 sin(mπ ln x) and integrating, gives

λmcm =
∫ e

1

√
2 sin(mπ ln x)

1
x

dx =

√
2

mπ
[(−1)m − 1].

Solving for cm, we have

cm =

√
2

mπ

[(−1)m − 1]
m2π2 − 1

.

Finally, we insert these coefficients into the expansion for y(x). The
solution is then

y(x) =
∞

∑
n=1

2
nπ

[(−1)n − 1]
n2π2 − 1

sin(nπ ln(x)).

We plot this solution in Figure 4.3.
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Figure 4.3: Plot of the solution in Exam-
ple 4.9.
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4.4 Appendix: The Fredholm Alternative Theorem

Given that Ly = f , when can one expect to find a solution? Is it
unique? These questions are answered by the Fredholm Alternative Theo-
rem. This theorem occurs in many forms from a statement about solutions
to systems of algebraic equations to solutions of boundary value problems
and integral equations. The theorem comes in two parts, thus the term
“alternative”. Either the equation has exactly one solution for all f , or the
equation has many solutions for some f ’s and none for the rest.

The reader is familiar with the statements of the Fredholm Alternative
for the solution of systems of algebraic equations. One seeks solutions of
the system Ax = b for A an n×m matrix. Defining the matrix adjoint, A∗

through < Ax, y >=< x, A∗y > for all x, y,∈ Cn, then either

Theorem 4.1. First Alternative
The equation Ax = b has a solution if and only if < b, v >= 0 for all v

satisfying A∗v = 0.

or

Theorem 4.2. Second Alternative
A solution of Ax = b, if it exists, is unique if and only if x = 0 is the only

solution of Ax = 0.

The second alternative is more familiar when given in the form: The
solution of a nonhomogeneous system of n equations and n unknowns is
unique if the only solution to the homogeneous problem is the zero solution.
Or, equivalently, A is invertible, or has nonzero determinant.

Proof. We prove the second theorem first. Assume that Ax = 0 for x 6= 0
and Ax0 = b. Then A(x0 + αx) = b for all α. Therefore, the solution is not
unique. Conversely, if there are two different solutions, x1 and x2, satisfying
Ax1 = b and Ax2 = b, then one has a nonzero solution x = x1 − x2 such
that Ax = A(x1 − x2) = 0.

The proof of the first part of the first theorem is simple. Let A∗v = 0 and
Ax0 = b. Then we have

< b, v >=< Ax0, v >=< x0, A∗v >= 0.

For the second part we assume that < b, v >= 0 for all v such that A∗v = 0.
Write b as the sum of a part that is in the range of A and a part that in the
space orthogonal to the range of A, b = bR + bO. Then, 0 =< bO, Ax >=<

A∗b, x > for all x. Thus, A∗bO. Since < b, v >= 0 for all v in the nullspace
of A∗, then < b, bO >= 0.

Therefore, < b, v >= 0 implies that

0 =< b, bO >=< bR + bO, bO >=< bO, bO > .

This means that bO = 0, giving b = bR is in the range of A. So, Ax = b has
a solution.
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Example 4.10. Determine the allowed forms of b for a solution of
Ax = b to exist, where

A =

(
1 2
3 6

)
.

First note that A∗ = AT . This is seen by looking at

< Ax, y > = < x, A∗y >
n

∑
i=1

n

∑
j=1

aijxjȳi =
n

∑
j=1

xj

n

∑
j=1

aijȳi

=
n

∑
j=1

xj

n

∑
j=1

(āT)ji yi. (4.28)

For this example,

A∗ =

(
1 3
2 6

)
.

We next solve A∗v = 0. This means, v1 + 3v2 = 0. So, the nullspace
of A∗ is spanned by v = (3,−1)T . For a solution of Ax = b to exist, b
would have to be orthogonal to v. Therefore, a solution exists when

b = α

(
1
3

)
.

So, what does the Fredholm Alternative say about solutions of boundary
value problems? We extend the Fredholm Alternative for linear operators.
A more general statement would be

Theorem 4.3. If L is a bounded linear operator on a Hilbert space, then Ly = f
has a solution if and only if < f , v >= 0 for every v such that L†v = 0.

The statement for boundary value problems is similar. However, we need
to be careful to treat the boundary conditions in our statement. As we have
seen, after several integrations by parts we have that

< Lu, v >= S(u, v)+ < u,L†v >,

where S(u, v) involves the boundary conditions on u and v. Note that for
nonhomogeneous boundary conditions, this term may no longer vanish.

Theorem 4.4. The solution of the boundary value problem Lu = f with boundary
conditions Bu = g exists if and only if

< f , v > −S(u, v) = 0

for all v satisfying L†v = 0 and B†v = 0.

Example 4.11. Consider the problem

u′′ + u = f (x), u(0)− u(2π) = α, u′(0)− u′(2π) = β.
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Only certain values of α and β will lead to solutions. We first note that

L = L† =
d2

dx2 + 1.

Solutions of

L†v = 0, v(0)− v(2π) = 0, v′(0)− v′(2π) = 0

are easily found to be linear combinations of v = sin x and v = cos x.
Next, one computes

S(u, v) =
[
u′v− uv′

]2π
0

= u′(2π)v(2π)− u(2π)v′(2π)− u′(0)v(0) + u(0)v′(0).

(4.29)

For v(x) = sin x, this yields

S(u, sin x) = −u(2π) + u(0) = α.

Similarly,
S(u, cos x) = β.

Using < f , v > −S(u, v) = 0, this leads to the conditions that we were
seeking, ∫ 2π

0
f (x) sin x dx = α,

∫ 2π

0
f (x) cos x dx = β.

Problems

1. Prove the if u(x) and v(x) satisfy the general homogeneous boundary
conditions

α1u(a) + β1u′(a) = 0,

α2u(b) + β2u′(b) = 0 (4.30)

at x = a and x = b, then

p(x)[u(x)v′(x)− v(x)u′(x)]x=b
x=a = 0.

2. Prove Green’s Identity
∫ b

a (uLv− vLu) dx = [p(uv′ − vu′)]
∣∣∣b
a

for the gen-

eral Sturm-Liouville operator L.

3. Find the adjoint operator and its domain for Lu = u′′ + 4u′ − 3u, u′(0) +
4u(0) = 0, u′(1) + 4u(1) = 0.

4. Show that a Sturm-Liouville operator with periodic boundary conditions
on [a, b] is self-adjoint if and only if p(a) = p(b). [Recall, periodic boundary
conditions are given as u(a) = u(b) and u′(a) = u′(b).]
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5. The Hermite differential equation is given by y′′− 2xy′+λy = 0. Rewrite
this equation in self-adjoint form. From the Sturm-Liouville form obtained,
verify that the differential operator is self adjoint on (−∞, ∞). Give the
integral form for the orthogonality of the eigenfunctions.

6. Find the eigenvalues and eigenfunctions of the given Sturm-Liouville
problems.

a. y′′ + λy = 0, y′(0) = 0 = y′(π).

b. (xy′)′ + λ
x y = 0, y(1) = y(e2) = 0.

7. The eigenvalue problem x2y′′ − λxy′ + λy = 0 with y(1) = y(2) = 0 is
not a Sturm-Liouville eigenvalue problem. Show that none of the eigenval-
ues are real by solving this eigenvalue problem.

8. In Example 4.8 we found a bound on the lowest eigenvalue for the given
eigenvalue problem.

a. Verify the computation in the example.

b. Apply the method using

y(x) =

{
x, 0 < x < 1

2
1− x, 1

2 < x < 1.

Is this an upper bound on λ1

c. Use the Rayleigh quotient to obtain a good upper bound for the
lowest eigenvalue of the eigenvalue problem: φ′′ + (λ− x2)φ = 0,
φ(0) = 0, φ′(1) = 0.

9. Use the method of eigenfunction expansions to solve the problems:

a. y′′ = x2, y(0) = y(1) = 0.

b. y′′ + 4y = x2, y′(0) = y′(1) = 0.

10. Determine the solvability conditions for the nonhomogeneous bound-
ary value problem: u′′ + 4u = f (x), u(0) = α, u′(π/4) = β.
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