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First Order Partial Differential Equations

“The profound study of nature is the most fertile source of mathematical discover-
ies.” - Joseph Fourier (1768-1830)

7.1 Introduction

We begin our study of partial differential equations with first
order partial differential equations. Before doing so, we need to define a few
terms.

Recall (see the appendix on differential equations) that an n-th order or-
dinary differential equation is an equation for an unknown function y(x) n-th order ordinary differential equation

that expresses a relationship between the unknown function and its first n
derivatives. One could write this generally as

F(y(n)(x), y(n−1)(x), . . . , y′(x), y(x), x) = 0. (7.1)

Here y(n)(x) represents the nth derivative of y(x). Furthermore, and initial
value problem consists of the differential equation plus the values of the Initial value problem.

first n− 1 derivatives at a particular value of the independent variable, say
x0:

y(n−1)(x0) = yn−1, y(n−2)(x0) = yn−2, . . . , y(x0) = y0. (7.2)

If conditions are instead provided at more than one value of the indepen-
dent variable, then we have a boundary value problem. .

If the unknown function is a function of several variables, then the deriva-
tives are partial derivatives and the resulting equation is a partial differen-
tial equation. Thus, if u = u(x, y, . . .), a general partial differential equation
might take the form

F
(

x, y, . . . , u,
∂u
∂x

,
∂u
∂y

, . . . ,
∂2u
∂x2 , . . .

)
= 0. (7.3)

Since the notation can get cumbersome, there are different ways to write
the partial derivatives. First order derivatives could be written as

∂u
∂x

, ux, ∂xu, Dxu.
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Second order partial derivatives could be written in the forms

∂2u
∂x2 , uxx, ∂xxu, D2

xu.

∂2u
∂x∂y

=
∂2u

∂y∂x
, uxy, ∂xyu, DyDxu.

Note, we are assuming that u(x, y, . . .) has continuous partial derivatives.
Then, according to Clairaut’s Theorem (Alexis Claude Clairaut, 1713-1765) ,
mixed partial derivatives are the same.

Examples of some of the partial differential equation treated in this book
are shown in Table 1.1. However, being that the highest order derivatives in
these equation are of second order, these are second order partial differential
equations. In this chapter we will focus on first order partial differential
equations. Examples are given by

ut + ux = 0.

ut + uux = 0.

ut + uux = u.

3ux − 2uy + u = x.

For function of two variables, which the above are examples, a general
first order partial differential equation for u = u(x, y) is given as

F(x, y, u, ux, uy) = 0, (x, y) ∈ D ⊂ R2. (7.4)

This equation is too general. So, restrictions can be placed on the form,
leading to a classification of first order equations. A linear first order partial
differential equation is of the formLinear first order partial differential

equation.
a(x, y)ux + b(x, y)uy + c(x, y)u = f (x, y). (7.5)

Note that all of the coefficients are independent of u and its derivatives and
each term in linear in u, ux, or uy.

We can relax the conditions on the coefficients a bit. Namely, we could as-
sume that the equation is linear only in ux and uy. This gives the quasilinear
first order partial differential equation in the formQuasilinear first order partial differential

equation.
a(x, y, u)ux + b(x, y, u)uy = f (x, y, u). (7.6)

Note that the u-term was absorbed by f (x, y, u).
In between these two forms we have the semilinear first order partial

differential equation in the formSemilinear first order partial differential
equation.

a(x, y)ux + b(x, y)uy = f (x, y, u). (7.7)

Here the left side of the equation is linear in u, ux and uy. However, the right
hand side can be nonlinear in u.

For the most part, we will introduce the Method of Characteristics for
solving quasilinear equations. But, let us first consider the simpler case of
linear first order constant coefficient partial differential equations.
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7.2 Linear Constant Coefficient Equations

Let’s consider the linear first order constant coefficient par-
tial differential equation

aux + buy + cu = f (x, y), (7.8)

for a, b, and c constants with a2 + b2 > 0. We will consider how such equa-
tions might be solved. We do this by considering two cases, b = 0 and
b 6= 0.

For the first case, b = 0, we have the equation

aux + cu = f .

We can view this as a first order linear (ordinary) differential equation with
y a parameter. Recall that the solution of such equations can be obtained
using an integrating factor. [See the discussion after Equation (??).] First
rewrite the equation as

ux +
c
a

u =
f
a

.

Introducing the integrating factor

µ(x) = exp(
∫ x c

a
dξ) = e

c
a x,

the differential equation can be written as

(µu)x =
f
a

µ.

Integrating this equation and solving for u(x, y), we have

µ(x)u(x, y) =
1
a

∫
f (ξ, y)µ(ξ) dξ + g(y)

e
c
a xu(x, y) =

1
a

∫
f (ξ, y)e

c
a ξ dξ + g(y)

u(x, y) =
1
a

∫
f (ξ, y)e

c
a (ξ−x) dξ + g(y)e−

c
a x. (7.9)

Here g(y) is an arbitrary function of y.
For the second case, b 6= 0, we have to solve the equation

aux + buy + cu = f .

It would help if we could find a transformation which would eliminate one
of the derivative terms reducing this problem to the previous case. That is
what we will do.

We first note that

aux + buy = (ai + bj) · (uxi + uyj)

= (ai + bj) · ∇u. (7.10)
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Recall from multivariable calculus that the last term is nothing but a direc-
tional derivative of u(x, y) in the direction ai + bj. [Actually, it is propor-
tional to the directional derivative if ai + bj is not a unit vector.]

Therefore, we seek to write the partial differential equation as involving a
derivative in the direction ai + bj but not in a directional orthogonal to this.
In Figure 7.1 we depict a new set of coordinates in which the w direction is
orthogonal to ai + bj.x

z = y

w = bx− ay

ai + bj

Figure 7.1: Coordinate systems for trans-
forming aux + buy + cu = f into bvz +
cv = f using the transformation w =
bx− ay and z = y.

We consider the transformation

w = bx− ay,

z = y. (7.11)

We first note that this transformation is invertible,

x =
1
b
(w + az),

y = z. (7.12)

Next we consider how the derivative terms transform. Let u(x, y) =

v(w, z). Then, we have

aux + buy = a
∂

∂x
v(w, z) + b

∂

∂y
v(w, z),

= a
[

∂v
∂w

∂w
∂x

+
∂v
∂z

∂z
∂x

]
+b
[

∂v
∂w

∂w
∂y

+
∂v
∂z

∂z
∂y

]
= a[bvw + 0 · vz] + b[−avw + vz]

= bvz. (7.13)

Therefore, the partial differential equation becomes

bvz + cv = f
(

1
b
(w + az), z

)
.

This is now in the same form as in the first case and can be solved using an
integrating factor.

Example 7.1. Find the general solution of the equation 3ux − 2uy +

u = x.
First, we transform the equation into new coordinates.

w = bx− ay = −2x− 3y,

and z = y. The,

ux − 2uy = 3[−2vw + 0 · vz]− 2[−3vw + vz]

= −2vz. (7.14)

The new partial differential equation for v(w, z) is

−2
∂v
∂z

+ v = x = −1
2
(w + 3z).
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Rewriting this equation,

∂v
∂z
− 1

2
v =

1
4
(w + 3z),

we identify the integrating factor

µ(z) = exp
[
−
∫ z 1

2
dζ

]
= e−z/2.

Using this integrating factor, we can solve the differential equation
for v(w, z).

∂

∂z

(
e−z/2v

)
=

1
4
(w + 3z)e−z/2,

e−z/2v(w, z) =
1
4

∫ z
(w + 3ζ)e−ζ/2 dζ

= −1
2
(w + 6 + 3z)e−z/2 + c(w)

v(w, z) = −1
2
(w + 6 + 3z) + c(w)ez/2

u(x, y) = x− 3 + c(−2x− 3y)ey/2.

(7.15)

7.3 Quasilinear Equations: The Method of Characteristics

7.3.1 Geometric Interpretation

We consider the quasilinear partial differential equation in
two independent variables,

a(x, y, u)ux + b(x, y, u)uy − c(x, y, u) = 0. (7.16)

Let u = u(x, y) be a solution of this equation. Then,

f (x, y, u) = u(x, y)− u = 0

describes the solution surface, or integral surface, Integral surface.

We recall from multivariable, or vector, calculus that the normal to the
integral surface is given by the gradient function,

∇ f = (ux, uy,−1).

Now consider the vector of coefficients, v = (a, b, c) and the dot product
with the gradient above:

v · ∇ f = aux + buy − c.

This is the left hand side of the partial differential equation. Therefore, for
the solution surface we have

v · ∇ f = 0,

or v is perpendicular to ∇ f . Since ∇ f is normal to the surface, v = (a, b, c)
is tangent to the surface. Geometrically, v defines a direction field, called
the characteristic field. These are shown in Figure 7.2. The characteristic field.

∇ f

v

Figure 7.2: The normal to the integral
surface,∇ f = (ux , uy,−1), and the tan-
gent vector, v = (a, b, c), are orthogonal.
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7.3.2 Characteristics

We seek the forms of the characteristic curves such as the one
shown in Figure 7.2. Recall that one can parametrize space curves,

c(t) = (x(t), y(t), u(t)), t ∈ [t1, t2].

The tangent to the curve is then

v(t) =
dc(t)

dt
=

(
dx
dt

,
dy
dt

,
du
dt

)
.

However, in the last section we saw that v(t) = (a, b, c) for the partial dif-
ferential equation a(x, y, u)ux + b(x, y, u)uy − c(x, y, u) = 0. This gives the
parametric form of the characteristic curves as

dx
dt

= a,
dy
dt

= b,
du
dt

= c. (7.17)

Another form of these equations is found by relating the differentials, dx,
dy, du, to the coefficients in the differential equation. Since x = x(t) and
y = y(t), we have

dy
dx

=
dy/dt
dx/dt

=
b
a

.

Similarly, we can show that

du
dx

=
c
a

,
du
dy

=
c
b

.

All of these relations can be summarized in the form

dt =
dx
a

=
dy
b

=
du
c

. (7.18)

How do we use these characteristics to solve quasilinear partial differen-
tial equations? Consider the next example.

Example 7.2. Find the general solution: ux + uy − u = 0.
We first identify a = 1, b = 1, and c = u. The relations between the

differentials is
dx
1

=
dy
1

=
du
u

.

We can pair the differentials in three ways:

dy
dx

= 1,
du
dx

= u,
du
dy

= u.

Only two of these relations are independent. We focus on the first pair.
The first equation gives the characteristic curves in the xy-plane.

This equation is easily solved to give

y = x + c1.

The second equation can be solved to give u = c2ex.
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The goal is to find the general solution to the differential equation.
Since u = u(x, y), the integration “constant” is not really a constant,
but is constant with respect to x. It is in fact an arbitrary constant
function. In fact, we could view it as a function of c1, the constant of
integration in the first equation. Thus, we let c2 = G(c1) for G and
arbitrary function. Since c1 = y− x, we can write the general solution
of the differential equation as

u(x, y) = G(y− x)ex.

Example 7.3. Solve the advection equation, ut + cux = 0, for c a con-
stant, and u = u(x, t), |x| < ∞, t > 0.

The characteristic equations are

dτ =
dt
1

=
dx
c

=
du
0

(7.19)

and the parametric equations are given by

dx
dτ

= c,
du
dτ

= 0. (7.20)

These equations imply that

• u = const. = c1.

• x = ct + const. = ct + c2.
Traveling waves.

As before, we can write c1 as an arbitrary function of c2. However,
before doing so, let’s replace c1 with the variable ξ and then we have
that

ξ = x− ct, u(x, t) = f (ξ) = f (x− ct)

where f is an arbitrary function. Furthermore, we see that u(x, t) =

f (x− ct) indicates that the solution is a wave moving in one direction
in the shape of the initial function, f (x). This is known as a traveling
wave. A typical traveling wave is shown in Figure 7.3.

x

u

f (x) f (x− ct)

c

Figure 7.3: Depiction of a traveling wave.
u(x, t) = f (x) at t = 0 travels without
changing shape.

Note that since u = u(x, t), we have

0 = ut + cux

=
∂u
∂t

+
dx
dt

∂u
∂x

=
du(x(t), t

dt
. (7.21)

This implies that u(x, t) = constant along the characteristics, dx
dt = c.

As with ordinary differential equations, the general solution provides an
infinite number of solutions of the differential equation. If we want to pick
out a particular solution, we need to specify some side conditions. We Side conditions.

investigate this by way of examples.

Example 7.4. Find solutions of ux + uy − u = 0 subject to u(x, 0) = 1.
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We found the general solution to the partial differential equation
as u(x, y) = G(y− x)ex. The side condition tells us that u = 1 along
y = 0. This requires

1 = u(x, 0) = G(−x)ex.

Thus, G(−x) = e−x. Replacing x with −z, we find

G(z) = ez.

Thus, the side condition has allowed for the determination of the ar-
bitrary function G(y− x). Inserting this function, we have

u(x, y) = G(y− x)ex = ey−xex = ey.

Side conditions could be placed on other curves. For the general line,
y = mx + d, we have u(x, mx + d) = g(x) and for x = d, u(d, y) = g(y).
As we will see, it is possible that a given side condition may not yield a
solution. We will see that conditions have to be given on non-characteristic
curves in order to be useful.

Example 7.5. Find solutions of 3ux − 2uy + u = x for a) u(x, x) = x
and b) u(x, y) = 0 on 3y + 2x = 1.

Before applying the side condition, we find the general solution of
the partial differential equation. Rewriting the differential equation in
standard form, we have

3ux − 2uy = x = u.

The characteristic equations are

dx
3

=
dy
−2

=
du

x− u
. (7.22)

These equations imply that

• −2dx = 3dy

This implies that the characteristic curves (lines) are 2x + 3y = c1.

• du
dx = 1

3 (x− u).

This is a linear first order differential equation, du
dx + 1

3 u = 1
3 x. It can be

solved using the integrating factor,

µ(x) = exp
(

1
3

∫ x
dξ

)
= ex/3.

d
dx

(
uex/3

)
=

1
3

xex/3

uex/3 =
1
3

∫ x
ξeξ/3 dξ + c2

= (x− 3)ex/3 + c2

u(x, y) = x− 3 + c2e−x/3. (7.23)
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As before, we write c2 as an arbitrary function of c1 = 2x + 3y. This gives
the general solution

u(x, y) = x− 3 + G(2x + 3y)e−x/3.

Note that this is the same answer that we had found in Example 7.1

Now we can look at any side conditions and use them to determine par-
ticular solutions by picking out specific G’s.

a u(x, x) = x

This states that u = x along the line y = x. Inserting this condition into
the general solution, we have

x = x− 3 + G(5x)e−x/3,

or
G(5x) = 3ex/3.

Letting z = 5x,
G(z) = 3ez/15.

The particular solution satisfying this side condition is

u(x, y) = x− 3 + G(2x + 3y)e−x/3

= x− 3 + 3e(2x+3y)/15e−x/3

= x− 3 + 3e(y−x)/5. (7.24)

This surface is shown in Figure 7.5.

Figure 7.4: Integral surface found in Ex-
ample 7.5.

In Figure 7.5 we superimpose the values of u(x, y) along the character-
istic curves. The characteristic curves are the red lines and the images
of these curves are the black lines. The side condition is indicated with
the blue curve drawn along the surface.

Figure 7.5: Integral surface with side
condition and characteristics for Exam-
ple 7.5.

The values of u(x, y) are found from the side condition as follows. For
x = ξ on the blue curve, we know that y = ξ and u(ξ, ξ) = ξ. Now,
the characteristic lines are given by 2x + 3y = c1. The constant c1 is
found on the blue curve from the point of intersection with one of the
black characteristic lines. For x = y = ξ, we have c1 = 5ξ. Then, the
equation of the characteristic line, which is red in Figure 7.5, is given
by y = 1

3 (5ξ − 2x).

Along these lines we need to find u(x, y) = x − 3 + c2e−x/3. First we
have to find c2. We have on the blue curve, that

ξ = u(ξ, ξ)

= ξ − 3 + c2e−ξ/3. (7.25)

Therefore, c2 = 3eξ/3. Inserting this result into the expression for the
solution, we have

u(x, y) = x− 3 + e(ξ−x)/3.
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So, for each ξ, one can draw a family of spacecurves(
x,

1
3
(5ξ − 2x), x− 3 + e(ξ−x)/3

)
yielding the integral surface.

b u(x, y) = 0 on 3y + 2x = 1.

For this condition, we have

0 = x− 3 + G(1)e−x/3.

We note that G is not a function in this expression. We only have
one value for G. So, we cannot solve for G(x). Geometrically, this side
condition corresponds to one of the black curves in Figure 7.5.

7.4 Applications

7.4.1 Conservation Laws

There are many applications of quasilinear equations, especially
in fluid dynamics. The advection equation is one such example and gener-
alizations of this example to nonlinear equations leads to some interesting
problems. These equations fall into a category of equations called conser-
vation laws. We will first discuss one-dimensional (in space) conservations
laws and then look at simple examples of nonlinear conservation laws.

Conservation laws are useful in modeling several systems. They can be
boiled down to determining the rate of change of some stuff, Q(t), in a
region, a ≤ x ≤ b, as depicted in Figure 7.6. The simples model is to think
of fluid flowing in one dimension, such as water flowing in a stream. Or,
it could be the transport of mass, such as a pollutant. One could think of
traffic flow down a straight road.

Figure 7.6: The rate of change of Q be-
tween x = a and x = b depends on the
rates of flow through each end.

x = a x = b

Q(t)φ(a, t) φ(b, t)

This is an example of a typical mixing problem. The rate of change of
Q(t) is given as

the rate of change of Q = Rate in− Rate Out + source term.

Here the “Rate in” is how much is flowing into the region in Figure 7.6 from
the x = a boundary. Similarly, the “Rate out” is how much is flowing into
the region from the x = b boundary. [Of course, this could be the other way,
but we can imagine for now that q is flowing from left to right.] We can
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describe this flow in terms of the flux, φ(x, t) over the ends of the region.
On the left side we have a gain of φ(a, t) and on the right side of the region
there is a loss of φ(b, t).

The source term would be some other means of adding or removing Q
from the region. In terms of fluid flow, there could be a source of fluid
inside the region such as a faucet adding more water. Or, there could be a
drain letting water escape. We can denote this by the total source over the
interval,

∫ b
a f (x, t) dx. Here f (x, t) is the source density.

In summary, the rate of change of Q(x, t) can be written as

dQ
dt

= φ(a, t)− φ(b, t) +
∫ b

a
f (x, y) dx.

We can write this in a slightly different form by noting that φ(a, t) −
φ(b, t) can be viewed as the evaluation of antiderivatives in the Fundamental
Theorem of Calculus. Namely, we can recall that∫ b

a

∂φ(x, t)
∂x

dx = φ(b, t)− φ(a, t).

The difference is not exactly in the order that we desire, but it is easy to see
that Integral form of conservation law.

dQ
dt

= −
∫ b

a

∂φ(x, t)
∂x

dx +
∫ b

a
f (x, t) dx. (7.26)

This is the integral form of the conservation law.
We can rewrite the conservation law in differential form. First, we intro-

duce the density function, u(x, t), so that the total amount of stuff at a given
time is

Q(t) =
∫ b

a
u(x, t) dx.

Introducing this form into the integral conservation law, we have

d
dt

∫ b

a
u(x, t) dx = −

∫ b

a

∂φ

∂x
dx +

∫ b

a
f (x, t) dx. (7.27)

Assuming that a and b are fixed in time and that the integrand is continuous,
we can bring the time derivative inside the integrand and collect the three
terms into one to find∫ b

a
(ut(x, t) + φx(x, t)− f (x, t)) dx = 0, ∀x ∈ [a, b].

We cannot simply set the integrant to zero just because the integral van-
ishes. However, if this result holds for every region [a, b], then we can con-
clude the integrand vanishes. So, under that assumption, we have the local
conservation law, Differential form of conservation law.

ut(x, t) + φx(x, t) = f (x, t). (7.28)

This partial differential equation is actually an equation in terms of two
unknown functions, assuming we know something about the source func-
tion. We would like to have a single unknown function. So, we need some
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additional information. This added information comes from the constitutive
relation, a function relating the flux to the density function. Namely, we will
assume that we can find the relationship φ = φ(u). If so, then we can write

∂φ

∂x
=

dφ

du
∂u
∂x

,

or φx = φ′(u)ux.

Example 7.6. Inviscid Burgers’ Equation Find the equation satisfied
by u(x, t) for φ(u) = 1

2 u2 and f (x, t) ≡ 0.
For this flux function we have φx = φ′(u)ux = uux. The resulting

equation is then ut + uux = 0. This is the inviscid Burgers’ equation.
We will later discuss Burgers’ equation.

Example 7.7. Traffic Flow
This is a simple model of one-dimensional traffic flow. Let u(x, t) be

the density of cars. Assume that there is no source term. For example,
there is no way for a car to disappear from the flow by turning off the
road or falling into a sinkhole. Also, there is no source of additional
cars.

Let φ(x, t) denote the number of cars per hour passing position x
at time t. Note that the units are given by cars/mi times mi/hr. Thus,
we can write the flux as φ = uv, where v is the velocity of the carts at
position x and time t.

u

v

v1

u1

Figure 7.7: Car velocity as a function of
car density.

In order to continue we need to assume a relationship between the
car velocity and the car density. Let’s assume the simplest form, a
linear relationship. The more dense the traffic, we expect the speeds
to slow down. So, a function similar to that in Figure 7.7 is in order.
This is a straight line between the two intercepts (0, v1) and (u1, 0). It
is easy to determine the equation of this line. Namely the relationship
is given as

v = v1 −
v1

u1
u.

This gives the flux as

φ = uv = v1

(
u− u2

u1

)
.

We can now write the equation for the car density,

0 = ut + φ′ux

= ut + v1

(
1− 2u

u1

)
ux. (7.29)

7.4.2 Nonlinear Advection Equations

In this section we consider equations of the form ut + c(u)ux = 0.
When c(u) is a constant function, we have the advection equation. In the last
two examples we have seen cases in which c(u) is not a constant function.
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We will apply the method of characteristics to these equations. First, we will
recall how the method works for the advection equation.

The advection equation is given by ut + cux = 0. The characteristic equa-
tions are given by

dx
dt

= c,
du
dt

= 0.

These are easily solved to give the result that

u(x, t) = constant along the lines x = ct + x0,

where x0 is an arbitrary constant.
The characteristic lines are shown in Figure 7.8. We note that u(x, t) =

u(x0, 0) = f (x0). So, if we know u initially, we can determine what u is at a
later time.

x

t

x0

t = t1

slope = 1/c

u(x0 + ct1, t1) = u(x0, 0)

Figure 7.8: The characteristics lines the
xt-plane.

In Figure 7.8 we see that the value of u(x0, ) at t = 0 and x = x0 propa-
gates along the characteristic to a point at time t = t1. From x− ct = x0, we
can solve for x in terms of t1 and find that u(x0 + ct1, t1) = u(x0, 0).

Plots of solutions u(x, t) versus x for specific times give traveling waves
as shown in Figure 7.3. In Figure 7.9 we show how each wave profile for
different times are constructed for a given initial condition.

x

u

x0

Figure 7.9: For each x = x0 at t = 0,
u(x0 + ct, t) = u(x0, 0).

The nonlinear advection equation is given by ut + c(u)ux = 0, |x| < ∞.
Let u(x, 0) = u0(x) be the initial profile. The characteristic equations are
given by

dx
dt

= c(u),
du
dt

= 0.

These are solved to give the result that

u(x, t) = constant,

along the characteristic curves x′(t) = c(u). The lines passing though u(x0, ) =
u0(x0) have slope 1/c(u0(x0)).

Example 7.8. Solve ut + uux = 0, u(x, 0) = e−x2
.

For this problem u = constant along

dx
dt

= u.
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Since u is constant, this equation can be integrated to yield x = u(x0, 0)t+
x0. Inserting the initial condition, x = e−x2

0 t + x0. Therefore, the solu-
tion is

u(x, t) = e−x2
0 along x = e−x2

0 t + x0.

Figure 7.10: The characteristics lines
the xt-plane for the nonlinear advection
equation.

x

t

slope = ex2
0

In Figure 7.10 the characteristics a shown. In this case we see that
the characteristics intersect. In Figure charlines3 we look more specifi-
cally at the intersection of the characteristic lines for x0 = 0 and x0 = 1.
These are approximately the first lines to intersect; i.e., there are (al-
most) no intersections at earlier times. At the intersection point the
function u(x, t) appears to take on more than one value. For the case
shown, the solution wants to take the values u = 0 and u = 1.

Figure 7.11: The characteristics lines for
x0 = 0, 1 in the xt-plane for the nonlinear
advection equation.

x

t

u = 1
e

u = 1

x0 = 0 x0 = 1

In Figure 7.12 we see the development of the solution. This is found
using a parametric plot of the points (x0 + te−x2

0 , e−x2
0) for different

times. The initial profile propagates to the right with the higher points
traveling faster than the lower points since x′(t) = u > 0. Around
t = 1.0 the wave breaks and becomes multivalued. The time at which
the function becomes multivalued is called the breaking time.

x

u

t =0.0

x

u

t =0.5

x

u

t =1.0

x

u

t =1.5

x

u

t =2.0

Figure 7.12: The development of a gra-
dient catastrophe in Example 7.8 leading
to a multivalued function.

7.4.3 The Breaking Time

In the last example we saw that for nonlinear wave speeds a gradi-
ent catastrophe might occur. The first time at which a catastrophe occurs
is called the breaking time. We will determine the breaking time for the
nonlinear advection equation, ut + c(u)ux = 0. For the characteristic corre-
sponding to x0 = ξ, the wavespeed is given by

F(ξ) = c(u0(ξ))



first order partial differential equations 229

and the characteristic line is given by

x = ξ + tF(ξ).

The value of the wave function along this characteristic is u0(ξ) = u(ξ, 0).

u(x, t) = u(ξ + tF(ξ), t)

= . (7.30)

Therefore, the solution is

u(x, t) = u0(ξ) along x = ξ + tF(ξ).

This means that

ux = u′0(ξ)ξx and ut = u′0(ξ)ξt.

We can determine ξx and ξt using the characteristic line

ξ = x− tF(ξ).

Then, we have

ξx = 1− tF′(ξ)ξx

=
1

1 + tF′(ξ)
.

ξt =
∂

∂t
(x− tF(ξ))

= −F(ξ)− tF′(ξ)ξt

=
−F(ξ)

1 + tF′(ξ)
. (7.31)

Note that ξx and ξt are undefined if the denominator in both expressions
vanishes, 1 + tF′(ξ) = 0, or at time

t = − 1
F′(ξ)

.

The minimum time for this to happen in the breaking time, The breaking time.

tb = min
{
− 1

F′(ξ)

}
. (7.32)

Example 7.9. Find the breaking time for ut + uux = 0, u(x, 0) = e−x2
.

Since c(u) = u, we have

F(ξ) = c(u0(ξ)) = e−ξ2

and
F′(ξ) = −2ξe−ξ2

.

This gives

t =
1

2ξe−ξ2 .
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We need to find the minimum time. Thus, we set the derivative
equal to zero and solve for ξ.

0 =
d

dξ

(
eξ2

2ξ

)

=

(
2− 1

ξ2

)
eξ2

2
. (7.33)

Thus, the minimum occurs for 2− 1
ξ2 = 0, or ξ = 1/

√
2. This gives

tb = t
(

1√
2

)
=

1
2√

2e−1/2

=

√
e
2
≈ 1.16. (7.34)

7.4.4 Shock Waves

Solutions of nonlinear advection equations can become multival-
ued due to a gradient catastrophe. Namely, the derivatives ut and ux become
undefined. We would like to extend solutions past the catastrophe. How-
ever, this leads to the possibility of discontinuous solutions. Such solutions
which may not be differentiable or continuous in the domain are known as
weak solutions. In particular, consider the initial value problemWeak solutions.

ut + φx = 0, x ∈ R, t > 0, u(x, 0) = u0(x).

Then, u(x, t) is a weak solution of this problem if∫ ∞

0

∫ ∞

−∞
[uvt + φvx] dxdt +

∫ ∞

−∞
u0(x)v(x, 0) dx = 0

for all smooth functions v ∈ C∞(R × [0, ∞)) with compact support, i.e.,
v ≡= 0 outside some compact subset of the domain.

x

u

t =1.5

x

u

t =1.75

x

u

t =2.0

Figure 7.13: The shock solution after the
breaking time.

Effectively, the weak solution that evolves will be a piecewise smooth
function with a discontinuity, the shock wave, that propagates with shock
speed. It can be shown that the form of the shock will be the discontinuity
shown in Figure 7.13 such that the areas cut from the solutions will cancel
leaving the total area under the solution constant. [See G. B. Whitham’s
Linear and Nonlinear Waves, 1973.] We will consider the discontinuity as
shown in Figure 7.14.

x

u

u−s

u+
s

Figure 7.14: Depiction of the jump dis-
continuity at the shock position.

We can find the equation for the shock path by using the integral form of
the conservation law,

d
dt

∫ b

a
u(x, t) dx = φ(a, t)− φ(b, t).

Recall that one can differentiate under the integral if u(x, t) and ut(x, t) are
continuous in x and t in an appropriate subset of the domain. In particu-
lar, we will integrate over the interval [a, b] as shown in Figure 7.15. The
domains on either side of shock path are denoted as R+ and R− and the
limits of x(t) and u(x, t) as one approaches from the left of the shock are
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denoted by x−s (t) and u− = u(x−s , t). Similarly, the limits of x(t) and u(x, t)
as one approaches from the right of the shock are denoted by x+s (t) and
u+ = u(x+s , t).

x

t

R+R−

a b

Figure 7.15: Domains on either side of
shock path are denoted as R+ and R−.

We need to be careful in differentiating under the integral,

d
dt

∫ b

a
u(x, t) dx =

d
dt

[∫ x−s (t)

a
u(x, t) dx +

∫ b

x+s (t)
u(x, t) dx

]

=
∫ x−s (t)

a
ut(x, t) dx +

∫ b

x+s (t)
ut(x, t) dx

+u(x−s , t)
dx−s
dt
− u(x+s , t)

dx+s
dt

= φ(a, t)− φ(b, t). (7.35)

Taking the limits a→ x−s and b→ x+s , we have that

(
u(x−s , t)− u(x+s , t)

) dxs

dt
= φ(x−s , t)− φ(x+s , t).

Adopting the notation
[ f ] = f (x+s )− f (x−s ),

we arrive at the Rankine-Hugonoit jump condition The Rankine-Hugonoit jump condition.

dxs

dt
=

[φ]

[u]
. (7.36)

This gives the equation for the shock path as will be shown in the next
example.

Example 7.10. Consider the problem ut + uux = 0, |x| < ∞, t > 0
satisfying the initial condition

u(x, 0) =

{
1, x ≤ 0,
0, x > 0.

x

u
1

x

t

u = 0u = 1

Figure 7.16: Initial condition and charac-
teristics for Example 7.10.

The characteristics for this partial differential equation are familiar
by now. The initial condition and characteristics are shown in Figure
7.16. From x′(t) = u, there are two possibilities. If u = 0, then we have
a constant. If u = 1 along the characteristics, the we have straight lines
of slope one. Therefore, the characteristics are given by

x(t) =

{
x0, x > 0,

t + x0, x < 0.

As seen in Figure 7.16 the characteristics intersect immediately at
t = 0. The shock path is found from the Rankine-Hugonoit jump con-
dition. We first note that φ(u) = 1

2 u2, since φx = uux. Then, we have

dxs

dt
=

[φ]

[u]

=
1
2 u+2 − 1

2 u−2

u+ − u−
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=
1
2
(u+ + u−)(u+ − u−)

u+ − u−

=
1
2
(u+ + u−)

=
1
2
(0 + 1) =

1
2

. (7.37)

Now we need only solve the ordinary differential equation x′s(t) =
1
2 with initial condition xs(0) = 0. This gives xs(t) = t

2 . This line
separates the characteristics on the left and right side of the shock
solution. The solution is given by

u(x, t) =

{
1, x ≤ t/2,
0, x > t/2.

x

t

u = 0u = 1

Figure 7.17: The characteristic lines end
at the shock path (in red). On the left
u = 1 and on the right u = 0.

In Figure 7.17 we show the characteristic lines ending at the shock
path (in red) with u = 0 and on the right and u = 1 on the left of
the shock path. This is consistent with the solution. One just sees
the initial step function moving to the right with speed 1/2 without
changing shape.

7.4.5 Rarefaction Waves

Shocks are not the only type of solutions encountered when the
velocity is a function of u. There may sometimes be regions where the char-
acteristic lines do not appear. A simple example is the following.

Example 7.11. Draw the characteristics for the problem ut + uux = 0,
|x| < ∞, t > 0 satisfying the initial condition

u(x, 0) =

{
0, x ≤ 0,
1, x > 0.

x

u
1

x

t

u = 1u = 0

Figure 7.18: Initial condition and charac-
teristics for Example 7.14.

In this case the solution is zero for negative values of x and positive
for positive values of x as shown in Figure 7.18. Since the wavespeed
is given by u, the u = 1 initial values have the waves on the right
moving to the right and the values on the left stay fixed. This leads
to the characteristics in Figure 7.18 showing a region in the xt-plane
that has no characteristics. In this section we will discover how to fill
in the missing characteristics and, thus, the details about the solution
between the u = 0 and u = 1 values.

As motivation, we consider a smoothed out version of this problem.

Example 7.12. Draw the characteristics for the initial condition

u(x, 0) =


0, x ≤ −ε,

x+ε
2ε , |x| ≤ ε,
1, x > ε.

The function is shown in the top graph in Figure 7.19. The leftmost
and rightmost characteristics are the same as the previous example.
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The only new part is determining the equations of the characteristics
for |x| ≤ ε. These are found using the method of characteristics as

x = ξ + u0(ξ)t, u0(ξ) =
ξ + ε

2ε
t.

These characteristics are drawn in Figure 7.19 in red. Note that these
lines take on slopes varying from infinite slope to slope one, corre-
sponding to speeds going from zero to one.

x

u
1

ε-ε

x

t

u = 1
ε-ε

u = 0

Figure 7.19: The function and character-
istics for the smoothed step function.

Comparing the last two examples, we see that as ε approaches zero, the
last example converges to the previous example. The characteristics in the
region where there were none become a “fan”. We can see this as follows.

Characteristics for rarefaction, or expan-
sion, waves are fan-like characteristics.

Since |ξ| < ε for the fan region, as ε gets small, so does this interval. Let’s
scale ξ as ξ = σε, σ ∈ [−1, 1]. Then,

x = σε + u0(σε)t, u0(σε) =
σε + ε

2ε
t =

1
2
(σ + 1)t.

For each σ ∈ [−1, 1] there is a characteristic. Letting ε→ 0, we have

x = ct, c =
1
2
(σ + 1)t.

Thus, we have a family of straight characteristic lines in the xt-plane passing
through (0, 0) of the form x = ct for c varying from c = 0 to c = 1. These
are shown as the red lines in Figure 7.20.

The fan characteristics can be written as x/t = constant. So, we can
seek to determine these characteristics analytically and in a straight forward
manner by seeking solutions of the form u(x, t) = g( x

t ). x

t

u = 1u = 0

Figure 7.20: The characteristics for Ex-
ample 7.14 showing the “fan” character-
istics.

Example 7.13. Determine solutions of the form u(x, t) = g( x
t ) to ut +

uux = 0.
Inserting this guess into the differential equation, we have

Seek rarefaction fan waves using
u(x, t) = g( x

t ).

0 = ut + uux

=
1
t

g′
(

g− x
t

)
. (7.38)

Thus, either g′ = 0 or g = x
t . The first case will not work since

this gives constant solutions. The second solution is exactly what we
had obtained before. Recall that solutions along characteristics give
u(x, t) = x

t = constant. The characteristics and solutions for t = 0, 1, 2
are shown in Figure rarefactionfig4. At a specific time one can draw a
line (dashed lines in figure) and follow the characteristics back to the
t = 0 values, u(ξ, 0) in order to construct u(x, t).

As a last example, let’s investigate a nonlinear model which possesses
both shock and rarefaction waves.

Example 7.14. Solve the initial value problem ut + u2ux = 0, |x| < ∞,
t > 0 satisfying the initial condition

u(x, 0) =


0, x ≤ 0,
1, 0 < x < 2,
0, x ≥ 2.
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Figure 7.21: The characteristics and so-
lutions for t = 0, 1, 2 for Example 7.14

x

t

u = 1u = 0

t = 1
t = 2

x

u
1

t = 0

x

u
1

t = 1

x

u
1

t = 2

The method of characteristics gives

dx
dt

= u2,
du
dt

= 0.

Therefore,

u(x, t) = u0(ξ) = const. along the lines x(t) = u2
0(ξ)t + ξ.

There are three values of u0(ξ),

u0(ξ) =


0, ξ ≤ 0,
1, 0 < ξ < 2,
0, ξ ≥ 2.

In Figure 7.22 we see that there is a rarefaction and a gradient catas-
trophe.

Figure 7.22: In this example there occurs
a rarefaction and a gradient catastrophe.

x

u
1

20

x

t

u = 1u = 0 u = 0
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In order to fill in the fan characteristics, we need to find solutions
u(x, t) = g(x/t). Inserting this guess into the differential equation, we
have

0 = ut + u2ux

=
1
t

g′
(

g2 − x
t

)
. (7.39)

Thus, either g′ = 0 or g2 = x
t . The first case will not work since this

gives constant solutions. The second solution gives

g
( x

t

)
=

√
x
t

.

. Therefore, along the fan characteristics the solutions are u(x, t) =√
x
t = constant. These fan characteristics are added in Figure 7.23.

x

t

u = 1u = 0 u = 0

Figure 7.23: The fan characteristics are
added to the other characteristic lines.

Next, we turn to the shock path. We see that the first intersection
occurs at the point (x, t) = (2, 0). The Rankine-Hugonoit condition
gives

dxs

dt
=

[φ]

[u]

=
1
3 u+3 − 1

3 u−3

u+ − u−

=
1
3
(u+ − u−)(u+2

+ u+u− + u−2
)

u+ − u−

=
1
3
(u+2

+ u+u− + u−2
)

=
1
3
(0 + 0 + 1) =

1
3

. (7.40)

Thus, the shock path is given by x′s(t) = 1
3 with initial condition

xs(0) = 2. This gives xs(t) = t
3 + 2. In Figure 7.24 the shock path is

shown in red with the fan characteristics and vertical lines meeting the
path. Note that the fan lines and vertical lines cross the shock path.
This leads to a change in the shock path.

The new path is found using the Rankine-Hugonoit condition with

u+ = 0 and u− =
√

x
t . Thus,

dxs

dt
=

[φ]

[u]
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Figure 7.24: The shock path is shown in
red with the fan characteristics and ver-
tical lines meeting the path.

x

t

u = 1u = 0 u = 0

=
1
3 u+3 − 1

3 u−3

u+ − u−

=
1
3
(u+ − u−)(u+2

+ u+u− + u−2
)

u+ − u−

=
1
3
(u+2

+ u+u− + u−2
)

=
1
3
(0 + 0 +

√
xs

t
) =

1
3

√
xs

t
. (7.41)

We need to solve the initial value problem

dxs

dt
=

1
3

√
xs

t
, xs(3) = 3.

This can be done using separation of variables. Namely,∫ dxs√
xs

=
1
3

t√
t
.

This gives the solution

√
xs =

1
3

√
t + c.

Since the second shock solution starts at the point (3, 3), we can deter-
mine c = 2

3

√
3. This gives the shock path as

xs(t) =
(

1
3

√
t +

2
3

√
3
)2

.

In Figure 7.25 we show this shock path and the other characteristics
ending on the path.

It is interesting to construct the solution at different times based on
the characteristics. For a given time, t, one draws a horizontal line
in the xt-plane and reads off the values of u(x, t) using the values at
t = 0 and the rarefaction solutions. This is shown in Figure 7.26. The
right discontinuity in the initial profile continues as a shock front until
t = 3. At that time the back rarefaction wave has caught up to the
shock. After t = 3, the shock propagates forward slightly slower and
the height of the shock begins to decrease. Due to the fact that the
partial differential equation is a conservation law, the area under the
shock remains constant as it stretches and decays in amplitude.
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x

t

u = 1u = 0 u = 0

Figure 7.25: The second shock path is
shown in red with the characteristics
shown in all regions.
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Figure 7.26: Solutions for the shock-
rarefaction example.
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7.4.6 Traffic Flow

An interesting application is that of traffic flow. We had al-
ready derived the flux function. Let’s investigate examples with varying
initial conditions that lead to shock or rarefaction waves. As we had seen
earlier in modeling traffic flow, we can consider the flux function

φ = uv = v1

(
u− u2

u1

)
,

which leads to the conservation law

ut + v1(1−
2u
u1

)ux = 0.

Here u(x, t) represents the density of the traffic and u1 is the maximum
density and v1 is the initial velocity.

First, consider the flow of traffic vas it approaches a red light as shown
in Figure 7.27. The traffic that is stopped has reached the maximum density
u1. The incoming traffic has a lower density, u0. For this red light problem,
we consider the initial condition

u(x, 0) =

{
u0, x < 0,
u1, x ≥ 0.

Figure 7.27: Cars approaching a red
light.

x
u1 cars/miu0 < u1 cars/mi

The characteristics for this problem are given by

x = c(u(x0, t))t + x0,

where

c(u(x0, t)) = v1(1−
2u(x0, 0)

u1
).

Since the initial condition is a piecewise-defined function, we need to con-
sider two cases.

x

u

u0

u1

x

t

u1u0

Figure 7.28: Initial condition and charac-
teristics for the red light problem.

First, for x ≥ 0, we have

c(u(x0, t)) = c(u1) = v1(1−
2u1

u1
) = −v1.

Therefore, the slopes of the characteristics, x = −v1t + x0 are −1/v1.
For x0 < 0, we have

c(u(x0, t)) = c(u0) = v1(1−
2u0

u1
).
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So, the characteristics are x = −v1(1− 2u0
u1

)t + x0.
In Figure 7.28 we plot the initial condition and the characteristics for

x < 0 and x > 0. We see that there are crossing characteristics and the begin
crossing at t = 0. Therefore, the breaking time is tb = 0. We need to find the
shock path satisfying xs(0) = 0. The Rankine-Hugonoit conditions give

dxs

dt
=

[φ]

[u]

=
1
2 u+2 − 1

2 u−2

u+ − u−

=
1
2

0− v1
u2

0
u1

u1 − u0

= −v1
u0

u1
. (7.42)

Thus, the shock path is found as xs(t) = −v1
u0
u1

.

x

t

u1u0

x

t

u1u0

Figure 7.29: The addition of the shock
path for the red light problem.

In Figure 7.29 we show the shock path. In the top figure the red line
shows the path. In the lower figure the characteristics are stopped on the
shock path to give the complete picture of the characteristics. The picture
was drawn with v1 = 2 and u0/u1 = 1/3.

The next problem to consider is stopped traffic as the light turns green.
The cars in Figure 7.30 begin to fan out when the traffic light turns green.
In this model the initial condition is given by

u(x, 0) =

{
u1, x ≤ 0,
0, x > 0.

x
0 cars/miu1 cars/mi

Figure 7.30: Cars begin to fan out when
the traffic light turns green.

Again,

c(u(x0, t)) = v1(1−
2u(x0, 0)

u1
).

Inserting the initial values of u into this expression, we obtain constant
speeds, ±v1. The resulting characteristics are given by

x(t) =

{
−v1t + x0, x ≤ 0,
v1t + x0, x > 0.

This leads to a rarefaction wave with the solution in the rarefaction region
given by

u(x, t) = g(x/t) =
1
2

u1

(
1− 1

v1

x
t

)
.
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The characteristics are shown in Figure 7.30. The full solution is then

u(x, t) =


u1, x ≤ −v1t,

g(x/t), |x| < v1t,
0, x > v1t.

Figure 7.31: The characteristics for the
green light problem.

x

t

u1u0

7.5 General First Order PDEs

We have spent time solving quasilinear first order partial differential
equations. We now turn to nonlinear first order equations of the form

F(x, y, u, ux, uy) = 0,

for u = u(x, y).
If we introduce new variables, p = ux and q = uy, then the differential

equation takes the form
F(x, y, u, p, q) = 0.

Note that for u(x, t) a function with continuous derivatives, we have

py = uxy = uyx = qx.

We can view F = 0 as a surface in a five dimensional space. Since the
arguments are functions of x and y, we have from the multivariable Chain
Rule that

dF
dx

= Fx + Fu
∂u
∂x

+ Fp
∂p
∂x

+ Fq
∂q
∂x

0 = Fx + pFu + pxFp + pyFq. (7.43)

This can be rewritten as a quasilinear equation for p(x, y) :

Fp px + Fq px = −Fx − pFu.

The characteristic equations are

dx
Fp

=
dy
Fq

= − dp
Fx + pFu

.

Similarly, from dF
dy = 0 we have that

dx
Fp

=
dy
Fq

= − dq
Fy + qFu

.
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Furthermore, since u = u(x, y),

du =
∂u
∂x

dx +
∂u
∂y

dy

= pdx + qdy

= pdx + q
Fq

Fp
dx

=

(
p + q

Fq

Fp

)
. (7.44)

Therefore,
dx
Fp

=
du

pFp + qFq
.

Combining these results we have the Charpit Equations

The Charpit equations. These were
named after the French mathematician
Paul Charpit Villecourt, who was proba-
bly the first to present the method in his
thesis the year of his death, 1784. His
work was further extended in 1797 by
Lagrange and given a geometric expla-
nation by Gaspard Monge (1746-1818) in
1808. This method is often called the
Lagrange-Charpit method.

dx
Fp

=
dy
Fq

=
du

pFp + qFq
= − dp

Fx + pFu
= − dq

Fy + qFu
. (7.45)

These equations can be used to find solutions of nonlinear first order partial
differential equations as seen in the following examples.

Example 7.15. Find the general solutio of u2
x + yuy − u = 0.

First, we introduce ux = p and uy = q. Then,

F(x, y, u, p, q) = p2 + qy− u = 0.

Next we identify

Fp = 2p, Fq = y, Fu = −1, Fx = 0, , Fy = q.

Then,

pFp + qFq = 2p2 + qy,

Fx + pFu = −p,

Fy + qFu = q− q = 0.

The Charpit equations are then

dx
2p

=
dy
y

=
du

2p2 + qy
=

dp
p

=
dq
0

.

The first conclusion is that q = c1 = constant. So, from the partial differ-
ential equation we have u = p2 + c1y.

Since du = pdx + qdy = pdx + c1dy, then

du− cdy =
√

u− c1y dx.

Therefore, ∫ d(u− c1y)√
u− c1y

=
∫

dx∫ z√
z
= x + c2

2
√

u− c1y = x + c2. (7.46)
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Solving for u, we have

u(x, y) =
1
4
(x + c2)

2 + c1y.

This example required a few tricks to implement the solution. Sometimes
one needs to find parametric solutions. Also, if an initial condition is given,
one needs to find the particular solution. In the next example we show how
parametric solutions are found to the initial value problem.

Example 7.16. Solve the initial value problem u2
x +uy +u = 0, u(x, 0) =

x.
We consider the parametric form of the Charpit equations,

dt =
dx
Fp

=
dy
Fq

=
du

pFp + qFq
= − dp

Fx + pFu
= − dq

Fy + qFu
. (7.47)

This leads to the system of equations

dx
dt

= Fp = 2p.

dy
dt

= Fq = 1.

du
dt

= pFp + qFq = 2p2 + q.

dp
dt

= −(Fx + pFu) = −p.

dq
dt

= −(Fy + qFu) = −q.

The second, fourth, and fifth equations can be solved to obtain

y = t + c1.

p = c2e−t.

q = c3e−t.

Inserting these results into the remaining equations, we have

dx
dt

= 2c2e−t.

du
dt

= 2c2
2e−2t + c3e−t.

These equations can be integrated to find Inserting these results into
the remaining equations, we have

x = −2c2e−t + c4.

u = −c2
2e−2t − c3e−t + c5.

This is a parametric set of equations for u(x, t). Since

e−t =
x− c4

−2c2
,
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we have

u(x, y) = −c2
2e−2t − c3e−t + c5.

= −c2
2

(
x− c4

−2c2

)2
− c3

(
x− c4

−2c2

)
+ c5

=
1
4
(x− c4)

2 +
c3

2c2
(x− c4). (7.48)

We can use the initial conditions by first parametrizing the con-
ditions. Let x(s, 0) = s and y(s, 0) = 0, Then, u(s, 0) = s. Since
u(x, 0) = x, ux(x, 0) = 1, or p(s, 0) = 1.

From the partial differential equation, we have p2 + q + u = 0.
Therefore,

q(s, 0) = −p2(s, 0)− u(s, 0) = −(1 + s).

These relations imply that

y(s, t)|t−0 = 0⇒ c1 = 0.

p(s, t)|t−0 = 1⇒ c2 = 1.

q(s, t)|t−0 = −(1 + s) = c3.

So,

y(s, t) = t.

p(s, t) = e−t.

q(s, t) = −(1 + s)e−t.

The conditions on x and u give

x(s, t) = (s + 2)− 2e−t,

u(s, t) = (s + 1)e−t − e−2t.

7.6 Modern Nonlinear PDEs

The study of nonlinear partial differential equations is a hot
research topic. We will (eventually) describe some examples of important
evolution equations and discuss their solutions in the last chapter.

Problems

1. Write the following equations in conservation law form, ut + φx = 0 by
finding the flux function φ(u).

a. ut + cux = 0.

b. ut + uux − µuxx = 0.
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c. ut + 6uux + uxxx = 0.

d. ut + u2ux + uxxx = 0.

2. Consider the Klein-Gordon equation, utt − auxx = bu for a and b con-
stants. Find traveling wave solutions u(x, t) = f (x− ct).

3. Find the general solution u(x, y) to the following problems.

a. ux = 0.

b. yux − xuy = 0.

c. 2ux + 3uy = 1.

d. ux + uy = u.

4. Solve the following problems.

a. ux + 2uy = 0, u(x, 0) = sin x.

b. ut + 4ux = 0, u(x, 0) = 1
1+x2 .

c. yux − xuy = 0, u(x, 0) = x.

d. ut + xtux = 0, u(x, 0) = sin x.

e. yux + xuy = 0, u(0, y) = e−y2
.

f. xut − 2xtux = 2tu, u(x, 0) = x2.

g. (y− u)ux + (u− x)uy = x− y, u = 0 on xy = 1.

h. yux + xuy = xy, x, y > 0, for u(x, 0) = e−x2
, x > 0 and u(0, y) =

e−y2
, y > 0.

5. Consider the problem ut + uux = 0, |x| < ∞, t > 0 satisfying the initial
condition u(x, 0) = 1

1+x2 .

a. Find and plot the characteristics.

b. Graphically locate where a gradient catastrophe might occur. Es-
timate from your plot the breaking time.

c. Analytically determine the breaking time.

d. Plot solutions u(x, t) at times before and after the breaking time.

6. Consider the problem ut + u2ux = 0, |x| < ∞, t > 0 satisfying the initial
condition u(x, 0) = 1

1+x2 .

a. Find and plot the characteristics.

b. Graphically locate where a gradient catastrophe might occur. Es-
timate from your plot the breaking time.

c. Analytically determine the breaking time.

d. Plot solutions u(x, t) at times before and after the breaking time.

7. Consider the problem ut + uux = 0, |x| < ∞, t > 0 satisfying the initial
condition

u(x, 0) =

{
2, x ≤ 0,
1, x > 0.
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a. Find and plot the characteristics.

b. Graphically locate where a gradient catastrophe might occur. Es-
timate from your plot the breaking time.

c. Analytically determine the breaking time.

d. Find the shock wave solution.

8. Consider the problem ut + uux = 0, |x| < ∞, t > 0 satisfying the initial
condition

u(x, 0) =

{
1, x ≤ 0,
2, x > 0.

a. Find and plot the characteristics.

b. Graphically locate where a gradient catastrophe might occur. Es-
timate from your plot the breaking time.

c. Analytically determine the breaking time.

d. Find the shock wave solution.

9. Consider the problem ut + uux = 0, |x| < ∞, t > 0 satisfying the initial
condition

u(x, 0) =


0, x ≤ −1,
2, |x| < 1,
1, x > 1.

a. Find and plot the characteristics.

b. Graphically locate where a gradient catastrophe might occur. Es-
timate from your plot the breaking time.

c. Analytically determine the breaking time.

d. Find the shock wave solution.

10. Solve the problem ut + uux = 0, |x| < ∞, t > 0 satisfying the initial
condition

u(x, 0) =


1, x ≤ 0,

1− x
a , 0 < x < a,

0, x ≥ a.

11. Solve the problem ut + uux = 0, |x| < ∞, t > 0 satisfying the initial
condition

u(x, 0) =


0, x ≤ 0,
x
a , 0 < x < a,
1, x ≥ a.

12. Consider the problem ut + u2ux = 0, |x| < ∞, t > 0 satisfying the initial
condition

u(x, 0) =

{
2, x ≤ 0,
1, x > 0.

a. Find and plot the characteristics.

b. Graphically locate where a gradient catastrophe might occur. Es-
timate from your plot the breaking time.
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c. Analytically determine the breaking time.

d. Find the shock wave solution.

13. Consider the problem ut + u2ux = 0, |x| < ∞, t > 0 satisfying the initial
condition

u(x, 0) =

{
1, x ≤ 0,
2, x > 0.

a. Find and plot the characteristics.

b. Find and plot the fan characteristics.

c. Write out the rarefaction wave solution for all regions of the xt-
plane.

14. Solve the initial-value problem ut + uux = 0 |x| < ∞, t > 0 satisfying

u(x, 0) =


1, x ≤ 0,

1− x, 0 ≤ x ≤ 1,
0, x ≥ 1.

15. Consider the stopped traffic problem in a situation where the maximum
car density is 200 cars per mile and the maximum speed is 50 miles per hour.
Assume that the cars are arriving at 30 miles per hour. Find the solution of
this problem and determine the rate at which the traffic is backing up. How
does the answer change if the cars were arriving at 15 miles per hour.

16. Solve the following nonlinear equations where p = ux and q = uy.

a. p2 + q2 = 1, u(x, x) = x.

b. pq = u, u(0, y) = y2.

c. p + q = pq, u(x, 0) = x.

d. pq = u2

e. p2 + qy = u.

17. Find the solution of xp + qy− p2q− u = 0 in parametric form for the
initial conditions at t = 0 :

x(t, s) = s, y(t, s) = 2, u(t, s) = s + 1

.
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