
3
Numerical Solutions of PDEs

There’s no sense in being precise when you don’t even know what you’re talking
about.- John von Neumann (1903-1957)

Much of the book has dealt with finding exact solutions to some
generic problems. However, many problems of interest cannot be solved ex-
actly. The heat, wave, and Laplace equations are linear partial differential
equations and can be solved using separation of variables in geometries
in which the Laplacian is separable. However, once we introduce nonlin-
earities, or complicated non-constant coefficients into the equations, some
of these methods do not work. Even when separation of variables or the
method of eigenfunction expansions gave us exact results, the computation
of the resulting series had to be done on a computer and inevitably one
could only use a finite number of terms of the expansion. So, therefore, it
is sometimes useful to be able to solve differential equations numerically.
In this chapter we will introduce the idea of numerical solutions of partial
differential equations. We will introduce the finite difference method and
the idea of stability. Other common approaches may be added later.

3.1 The Finite Difference Method

The heat equation can be solved using separation of variables.
However, many partial differential equations cannot be solved exactly and
one needs to turn to numerical solutions. The heat equation is a simple test
case for using numerical methods. Here we will use the simplest method,
finite differences.

Let us consider the heat equation in one dimension,

ut = kuxx.

Boundary conditions and an initial condition will be applied later. The
starting point is figuring out how to approximate the derivatives in this
equation.

104 partial differential equations

Recall that the partial derivative, ut, is defined by

∂u
∂t

= lim
∆t→∞

u(x, t + ∆t)− u(x, t)
∆t

.

Therefore, we can use the approximation

∂u
∂t

≈ u(x, t + ∆t)− u(x, t)
∆t

. (3.1)

This is called a forward difference approximation.Forward difference approximation.

In order to find an approximation to the second derivative, uxx, we start
with the forward difference

∂u
∂x

≈ u(x + ∆x, t)− u(x, t)
∆x

.

Then,
∂ux

∂x
≈ ux(x + ∆x, t)− ux(x, t)

∆x
.

We need to approximate the terms in the numerator. It is customary to
use a backward difference approximation. This is given by letting ∆x →
−∆x in the forward difference form,Backward difference approximation.

∂u
∂x

≈ u(x, t)− u(x − ∆x, t)
∆x

. (3.2)

Applying this to ux evaluated at x = x and x = x + ∆x, we have

ux(x, t) ≈ u(x, t)− u(x − ∆x, t)
∆x

,

and

ux(x + ∆x, t) ≈ u(x + ∆x, t)− u(x, t)
∆x

.

Inserting these expressions into the approximation for uxx, we have

∂2u
∂x2 =

∂ux

∂x

≈ ux(x + ∆x, t)− ux(x, t)
∆x

≈
u(x+∆x,t)−u(x,t)

∆x
∆x

−
u(x,t)−u(x−∆x,t)

∆x
∆x

=
u(x + ∆x, t)− 2u(x, t) + u(x − ∆x, t)

(∆x)2 . (3.3)

This approximation for uxx is called the central difference approximation of
uxx.Central difference approximation of uxx .

Combining Equation (3.1) with (3.3) in the heat equation, we have

u(x, t + ∆t)− u(x, t)
∆t

≈ k
u(x + ∆x, t)− 2u(x, t) + u(x − ∆x, t)

(∆x)2 .

Solving for u(x, t + ∆t), we find

u(x, t + ∆t) ≈ u(x, t) + α [u(x + ∆x, t)− 2u(x, t) + u(x − ∆x, t)] , (3.4)

numerical solutions of pdes 105

where α = k
∆t

(∆x)2 .

In this equation we have a way to determine the solution at position x and
time t + ∆t given that we know the solution at three positions, x, x + ∆x,
and x + 2∆x at time t.

u(x, t + ∆t) ≈ u(x, t) + α [u(x + ∆x, t)− 2u(x, t) + u(x − ∆x, t)] . (3.5)

A shorthand notation is usually used to write out finite difference schemes.
The domain of the solution is x ∈ [a, b] and t ≥ 0. We seek approximate val-
ues of u(x, t) at specific positions and times. We first divide the interval
[a, b] into N subintervals of width ∆x = (b − a)/N. Then, the endpoints of
the subintervals are given by

xi = a + i∆x, i = 0, 1, . . . , N.

Similarly, we take time steps of ∆t, at times

tj = j∆t, j = 0, 1, 2,

This gives a grid of points (xi, tj) in the domain.
At each grid point in the domain we seek an approximate solution to the

heat equation, ui,j ≈ u(xi, tj). Equation (3.5) becomes

ui,j+1 ≈ ui,j + α
[
ui+1,j − 2ui,j + ui−1,j

]
. (3.6)

x

t

ii − 1 i + 1

j

j + 1

Figure 3.1: This stencil indicates the four
types of terms in the finite difference
scheme in Equation (3.6). The black cir-
cles represent the four terms in the equa-
tion, ui,j ui−1,j ui+1,j and ui,j+1.

Equation (3.6) is the finite difference scheme for solving the heat equation.
This equation is represented by the stencil shown in Figure 3.1. The black
circles represent the four terms in the equation, ui,j ui−1,j ui+1,j and ui,j+1.

Let’s assume that the initial condition is given by

u(x, 0) = f (x).

Then, we have ui,0 = f (xi). Knowing these values, denoted by the open
circles in Figure 3.2, we apply the stencil to generate the solution on the
j = 1 row. This is shown in Figure 3.2.

106 partial differential equations

Figure 3.2: Applying the stencil to the
row of initial values gives the solution at
the next time step.

x

t

Figure 3.3: Continuation of the pro-
cess provides solutions at the indicated
points.

x

t

Further rows are generated by successively applying the stencil on each
row, using the known approximations of ui,j at each level. This gives the
values of the solution at the open circles shown in Figure 3.3. We notice that
the solution can only be obtained at a finite number of points on the grid.

In order to obtain the missing values, we need to impose boundary con-
ditions. For example, if we have Dirichlet conditions at x = a,

u(a, t) = 0,

or u0,j = 0 for j = 0, 1, . . . , then we can fill in some of the missing data
points as seen in Figure 3.4.

The process continues until we again go as far as we can. This is shown
in Figure 3.5.

We can fill in the rest of the grid using a boundary condition at x = b.
For Dirichlet conditions at x = b,

u(b, t) = 0,

or uN,j = 0 for j = 0, 1, . . . , then we can fill in the rest of the missing data
points as seen in Figure 3.6.

numerical solutions of pdes 107

x

t Figure 3.4: Knowing the values of the so-
lution at x = a, we can fill in more of the
grid.

x

t Figure 3.5: Knowing the values of the so-
lution at other times, we continue to fill
the grid as far as the stencil can go.

We could also use Neumann conditions. For example, let

ux(a, t) = 0.

The approximation to the derivative gives

∂u
∂x

∣∣∣
x=a

≈ u(a + ∆x, t)− u(a, t)
∆x

= 0.

Then,
u(a + ∆x, t) = u(a, t),

or u0,j = u1,j, for j = 0, 1, Thus, we know the values at the boundary
and can generate the solutions at the grid points as before.

We now have to code this using software. We can use MATLAB to do
this. An example of the code is given below. In this example we specify the
length of the rod, L = 1, and the heat constant, k = 1. The code is run for
t ∈ [0, 0.1].

The grid is created using N = 10 subintervals in space and M = 50 time
steps. This gives dx = ∆x and dt = ∆t. Using these values, we find the
numerical scheme constant α = k∆t/(∆x)2.

108 partial differential equations

Figure 3.6: Using boundary conditions
and the initial condition, the grid can be
fill in through any time level.

x

t

Nest, we define xi = i ∗ dx, i = 0, 1, . . . , N. However, in MATLAB, we
cannot have an index of 0. We need to start with i = 1. Thus, xi = (i− 1) ∗ dx,
i = 1, 2, . . . , N + 1.

Next, we establish the initial condition. We take a simple condition of

u(x, 0) = sin πx.

We have enough information to begin the numerical scheme as developed
earlier. Namely, we cycle through the time steps using the scheme. There is
one loop for each time step. We will generate the new time step from the
last time step in the form

unew
i = uold

i + α
[
uold

i+1 − 2uold
i + uold

i−1

]
. (3.7)

This is done using u0(i) = unew
i and u1(i) = uold

i .

Figure 3.7: Plot of the exact solution and
numerical solution of the heat equation
for ∆t = 0.002 for ∆x = 0.10 (left) and
∆x = 0.20 (right).

At the end of each time loop we update the boundary points so that the
grid can be filled in as discussed. When done, we can plot the final solution.
If we want to show solutions at intermediate steps, we can plot the solution
earlier. In Figure 3.7 we plot the exact solution, u(x, t) = e−π2t sin πx, and
numerical solution of the heat equation for ∆t = 0.002 for ∆x = 0.10 (left)
and ∆x = 0.20 (right). Even though the solution appears good for ∆x = 0.10,
doubling the number of points seems to have produced some strange result.
This is due to the conditional stability of the scheme. In the next two sections

numerical solutions of pdes 109

we discuss the truncation error and stability of this scheme. We conclude
with the MATLAB implementation.

% Solution of the Heat Equation Using a Forward Difference Scheme

% Initialize Data

% Length of Rod, Time Interval

% Number of Points in Space, Number of Time Steps

L=1;

T=0.1;

k=1;

N=10;

M=50;

dx=L/N;

dt=T/M;

alpha=k*dt/dx^2;

% Position

for i=1:N+1

x(i)=(i-1)*dx;

end

% Initial Condition

for i=1:N+1

u0(i)=sin(pi*x(i));

end

% Partial Difference Equation (Numerical Scheme)

for j=1:M

for i=2:N

u1(i)=u0(i)+alpha*(u0(i+1)-2*u0(i)+u0(i-1));

end

u1(1)=0;

u1(N+1)=0;

u0=u1;

end

% Plot solution

plot(x, u1);

3.2 Truncation Error

In the previous section we found a finite difference scheme for
numerically solving the one dimensional heat equation. We have from Equa-
tions (3.5) and (3.6),

u(x, t + ∆t) ≈ u(x, t) + α [u(x + ∆x, t)− 2u(x, t) + u(x − ∆x, t)] ,(3.8)

110 partial differential equations

ui,j+1 ≈ ui,j + α
[
ui+1,j − 2ui,j + ui−1,j

]
, (3.9)

where α = k∆t/(∆x)2. For points x ∈ [a, b] and t ≥ 0, we use the scheme
to find approximate values of u(xi, tj) = ui,j at positions xi = a + i∆x, i =
0, 1, . . . , N, and times tj = j∆t, j = 0, 1, 2,

In implementing the scheme, we have found that there are errors intro-
duced just like when using Euler’s Method for ordinary differential equa-
tions. These truncations errors can be found by applying Taylor approxi-
mations just like we had for ordinary differential equations. In the schemes
(3.8) and (3.9), we have not used equality. In order to replace the approxi-
mation by an equality, we need to estimate the order of the terms neglected
in a Taylor series expansions of the time and space derivatives that we have
approximated.

We begin with the time derivative approximation. We used the forward
difference formula (3.1),

∂u
∂t

≈ u(x, t + ∆t)− u(x, t)
∆t

. (3.10)

This formula can be derived from the Taylor series expansion of u(x, t + ∆t)
about ∆t = 0,

u(x, t + ∆t) = u(x, t) +
∂u
∂t

(x, t)∆t +
1
2!

∂2u
∂t2 (x, t)(∆t)2 + O((∆t)3).

Here we use “big O” notation where O((∆t)3) indicates that the terms not
listed are of the order (∆t)3 or smaller.

Solving for ∂u
∂t (x, t), we obtain

∂u
∂t

(x, t) =
u(x, t + ∆t)− u(x, t)

∆t
− 1

2!
∂2u
∂t2 (x, t)∆t + O((∆t)2).

We see that we have obtained the forward difference approximation (3.1)
with the added benefit of knowing something about the error terms intro-
duced in the approximation. Namely, when we approximate ut with the
forward difference approximation (3.1), we are making an error of

E(x, t, ∆t) = − 1
2!

∂2u
∂t2 (x, t)∆t + O((∆t)2).

We have truncated the Taylor series to obtain this approximation and we say
that

∂u
∂t

=
u(x, t + ∆t)− u(x, t)

∆t
+ O(∆t) (3.11)

is a first order approximation in ∆t.
In a similar manor, we can obtain the truncation error for the uxx− term.

However, instead of starting with the approximation we used in Equation
(3.3), we will derive a term using the Taylor series expansion of u(x + ∆x, t)
about ∆x = 0. Namely, we begin with the expansion

u(x + ∆x, t) = u(x, t) + ux(x, t)∆x +
1
2!

uxx(x, t)(∆x)2 +
1
3!

uxxx(x, t)(∆x)3

+
1
4!

uxxxx(x, t)(∆x)4 + (3.12)

numerical solutions of pdes 111

We want to solve this equation for uxx. However, there are some obstruc-
tions, like needing to know the ux term. So, we seek a way to eliminate
lower order terms. One way is to note that replacing ∆x by −∆x gives

u(x − ∆x, t) = u(x, t)− ux(x, t)∆x +
1
2!

uxx(x, t)(∆x)2 − 1
3!

uxxx(x, t)(∆x)3

+
1
4!

uxxxx(x, t)(∆x)4 + (3.13)

Adding these Taylor series, we have

u(x + ∆x, t) + u(x − ∆x, t) = 2u(x, t) + uxx(x, t)(∆x)2

+
2
4!

uxxxx(x, t)(∆x)4 + O((∆x)6).

(3.14)

We can now solve for uxx to find

uxx(x, t) =
u(x + ∆x, t)− 2u(x, t) + u(x − ∆x, t)

(∆x)2

+
2
4!

uxxxx(x, t)(∆x)2 + O((∆x)4). (3.15)

Thus, we have that

uxx(x, t) =
u(x + ∆x, t)− 2u(x, t) + u(x + ∆x, t)

(∆x)2 + O((∆x)2)

is the second order in ∆x approximation of uxx.
Combining these results, we find that the heat equation is approximated

by

u(x, t + ∆t)− u(x, t)
∆t

=
u(x + ∆x, t)− 2u(x, t) + u(x − ∆x, t)

(∆x)2 +O
(
(∆x)2, ∆t

)
.

This has local truncation error that is first order in time and second order in
space.

3.3 Stability

Another consideration for numerical schemes for the heat equa-
tion is the stability of the scheme. In implementing the finite difference
scheme,

um,j+1 = um,j + α
[
um+1,j − 2um,j + um−1,j

]
, (3.16)

α = k∆t/(∆x)2, one finds that the solution goes crazy when α is too big.
In other words, if you try to push the individual time steps too far into
the future, then something goes haywire. We saw this in Figure 3.7. Even
though ∆x was halved, α went from 0.20 to 0.80. We can determine the onset
of instability by looking at the solution of this equation for um,j. [Note: We
changed index i to m to avoid confusion later in this section.] We will see
that there needs to be a restriction placed on α.

112 partial differential equations

The scheme is actually what is called a partial difference equation for
um,j. We could write it in terms of differences, such as um+1,j − um,j and
um,j+1 − um,j. The time steps are one unit and the spatial points are at most
two units apart. We can see this in the stencils in Figure 3.1. So, this is
a second order partial difference equation similar to the idea that the heat
equation is a second order partial differential equation. The heat equation
can be solved using the method of separation of variables. The difference
scheme can also be solved in a similar fashion. We will show how this leads
to product solutions.

We begin by assuming that umj = XmTj, a product of functions of the
indices m and j. [Recall that sequences are functions whose domain consist
of a subset of integers. For example, Xm = X(m).] Inserting this guess into
the finite difference equation, we have

um,j+1 = um,j + α
[
um+1,j − 2um,j + um−1,j

]
,

XmTj+1 = XmTj + α [Xm+1 − 2Xm + Xm−1] Tj,
Tj+1

Tj
=

αXm+1 + (1 − 2α)Xm + αXm−1

Xm
. (3.17)

Noting that we have a function of j equal to a function of m, then we can
set each of these to a constant, λ. Then, we obtain two ordinary difference
equations:

Tj+1 = λTj, (3.18)

αXm+1 + (1 − 2α)Xm + αXm−1 = λXm. (3.19)

The first equation is a simple first order difference equation and can be
solved by iteration:

Tj+1 = λTj,

= λ(λTj−1) = λ2Tj−1,

= λ3Tj−2,

= λj+1T0, (3.20)

The second difference equation can be solved by making a guess in the
same spirit as solving a second order constant coefficient differential equa-
tion. Namely, let Xm = ξm for some number ξ. This gives

αXm+1 + (1 − 2α)Xm + αXm−1 = λXm,

ξm−1
[
αξ2 + (1 − 2α)ξ + α

]
= λξm

αξ2 + (1 − 2α − λ)ξ + α = 0. (3.21)

This is an equation for ξ in terms of α and λ. Due to the boundary con-
ditions, we expect to have oscillatory solutions. So, we guess that ξ = |ξ|eiθ ,
where i is the imaginary unit.1 We assume that |ξ| = 1, and thus ξ = eiθ

1 Recall Euler’s Formula,

eiθ = cos θ + i sin θ.

So, for real θ, eiθ represents oscillations.
Also, note that |eiθ | = 1. and Xm = ξm = eimθ . Since xm = m∆x, we have Xm = eixmθ/∆x. We define

β = θ/∆x, to give Xm = eiβxm and ξ = eiβ∆x.

numerical solutions of pdes 113

Inserting this value for ξ into the quadratic equation for ξ, we have

0 = αξ2 + (1 − 2α − λ)ξ + α

= αe2iβ∆x + (1 − 2α − λ)eiβ∆x + α

= eiβ∆x
[
α(eiβ∆x + e−iβ∆x) + (1 − 2α − λ)

]
= eiβ∆x [2α cos(β∆x) + (1 − 2α − λ)] .

Solving for λ, we have

λ = 2α cos(β∆x) + 1 − 2α. (3.22)

So, we have found that

umj = XmTj = λm(a cos αxm + b sin αxm), a2 + b2 = h2
0,

with λ given by Equation (3.22). For the solution to remain bounded, or
stable, we need |λ| ≤ 1.

Therefore, we have the inequality

−1 ≤ 2α cos(β∆x) + 1 − 2α ≤ 1.

Since cos(β∆x) ≤ 1, the upper bound is obviously satisfied. Since −1 ≤
cos(β∆x), the lower bound is satisfied for −1 ≤ −2α + 1 − 2α, or α ≤ 1

2 .
Therefore, the stability criterion is satisfied when Stability criterion.

α = k
∆t

∆x2 ≤ 1
2

. (3.23)

3.4 Discretization of Laplace Equation

Let’s consider Laplace’s equation in Cartesian coordinates,

uxx + uyy = 0, 0 < x < L, 0 < y < H

with the boundary conditions

u(0, y) = g1(y), u(L, y) = g2(y), u(x, 0) = f1(x), u(x, H) = f2(x).

The boundary conditions are shown in Figure 6.12. In Chapter 1 we learned
how to seek a solution of this problem using the Method of Separation of
Variables. This generally leads to needing to compute a Fourier series and
represent the solution in an infinite series whose coefficients we hopefully
can compute. However, it might not always be possible. So, seeking a
numerical solution may be an option. In this section we explore one method
for numerically solving Laplace’s equation on a rectangular domain.

We use finite difference approximations to approximate the second or-
der derivatives at grid points. For a function f (x), we can use the central
difference approximation,

f ′′(x) =
y(x + ∆x)− 2y(x) + y(x − ∆x)

∆x2 + O(∆x2).

114 partial differential equations

Figure 3.8: In this figure we show the
domain and boundary conditions for the
example of determining the solution of
Laplace’s equation in a rectangular re-
gion.

x0

y

0 L

H

∇2u = 0

u(x, 0) = f1(x)

u(x, H) = f2(x)

u(0, y) = g1(x) u(L, y) = g2(x)

The domain of the solution is x ∈ [0, L] and y ∈ [0, H]. We seek ap-
proximate values of u(x, y) at specific positions in the domain. We first
divide the intervals into Nx and Ny subintervals of width ∆x = L/Nx. and
∆y = H/Ny, respectively. This gives a grid of points (xi, yj) in the domain,
where

xi = i∆x, i = 0, 1, . . . , Nx, yj = j∆y, i = 0, 1, . . . , Ny.

At each grid point in the domain we seek an approximate solution to the
heat equation, ui,j ≈ u(xi, yj). Then, the finite difference form of Laplace’s
equation for the interior points (i = 1, 2, . . . , Nx − 1, j = 1, 2, . . . , Ny − 1) is
given by

ui+1,j − 2ui,j + ui−1,j

∆x2 +
ui,j+1 − 2ui,j + ui,j−1

∆y2 = 0.

Rearranging,

0 =
∆y2(ui+1,j − 2ui,j + ui−1,j) + ∆x2(ui,j+1 − 2ui,j + ui,j−1)

∆x2∆y2

= ∆y2(ui+1,j − 2ui,j + ui−1,j) + ∆x2(ui,j+1 − 2ui,j + ui,j−1)

= ∆y2(ui+1,j + ui−1,j) + ∆x2(ui,j+1 + ui,j−1)− 2(∆x2 + ∆y2)ui,j

(3.24)

In Figure 3.9 we show the relationships between the terms of this discrete
version of Laplace’s equation.

Figure 3.9: This stencil indicates the five
types of terms in the finite difference
scheme in Equation (3.24). The black cir-
cles represent the four terms in the equa-
tion, ui−1,j ui+1,j ui,j−1 and ui,j+1 and the
empty circle represents ui,j.

ii − 1 i + 1

j

j + 1

j − 1

The method of solution differs from that of the heat equation. The only
information we have is on the boundary of the domain. In Figure 3.10 we

numerical solutions of pdes 115

x

y Figure 3.10: In this figure we indicate
with black circles that the boundary val-
ues are known. Applying the stencil at
various locations in the grid, we see that
we cannot use the boundary values to
approximate a value at other points.

see that we cannot use the boundary values to approximate a value at other
points.

However, we can rearrange Equation (3.24) to get a more suggestive
method. Namely, if we guess the solution across the grid, we can hopefully
get better approximations to the solution. We assume we know approxi-
mate values at the blue circles in Figure 3.10 to compute a new values at
the open circle in the center of the stencil. Thus, defining nx = Nx − 1 and
ny = Ny − 1, we have for the interior points

unew
i,j =

∆y2(ui+1,j + ui−1,j) + ∆x2(ui,j+1 + ui,j−1)

2(∆x2 + ∆y2)
, i = 1, . . . , nx, j = 1, . . . , ny.

(3.25)
For now, we can simplify things a lot by letting ∆x = ∆y. Then, Equation

(3.24) becomes

−4ui,j + ui+1,j + ui−1,j + ui,j+1 + ui,j−1, i = 1, . . . , nx, j = 1, . . . , ny. (3.26)

Let’s consider what this means for nx = ny = n for different n and develop
a matrix form of the scheme.

3.5 Matrix Formulation of the Scheme

For n = 2, we see from Figure 3.11 that there are four interior points. Mak-
ing these points the first term in the scheme (3.26), we arrive at four equa-
tions for the four unknowns, u1,1, u1,2, u2,1, and u2,2,

0 = −4u1,1 + ui2,1 + u0,1 + u1,2 + u1,0

0 = −4u1,2 + ui2,2 + u0,2 + u1,3 + u1,1

0 = −4u2,1 + u3,1 + u1,1 + u2,2 + u2,0

0 = −4u2,2 + u3,2 + u1,2 + u2,3 + u2,1. (3.27)

The highlighted u’s lie on the boundary and their values are known.

116 partial differential equations

Figure 3.11: Example of a 4× 4 grid with
a 2 × 2 inner region. The goal is that
given boundary values on can find ap-
proximate solutions to Laplace’s Equa-
tion using Equation (3.26).

x

y

u1,1

u1,2

u2,1

u2,2

We can rearrange these linear equations into a matrix equation, SΦ = b
−4 1 1 0
1 −4 0 1
1 0 −4 1
0 1 1 −4

u1,1

u1,2

u2,1

u2,2

 = −

u0,1

u0,2

u3,1

u3,2

−

u1,0

u2,0

u1,3

u2,3

We have moved the boundary values to the right hand side and arranged
them into two vectors. The first vector contains boundary conditions on the
sides of the region and the second vector contains values of the solution
along the bottom and top of the region.

The 4 × 4 matrix shows some symmetries. We can write the S matrix us-
ing a tensor product, also known as a direct produce or Kronecker product.
The tensor product between an m × n matrix A and a p × q matrix B gives
a np × mq matrix C = A ⊗ B with elements

crs = aijbkℓ, r = p(i − 1) + k, s = q(j − 1) + ℓ. (3.28)

For example, if A is a 2 × 2 matrix, then

A ⊗ B =

[
a11B a12B
a21B a22B

]

In particular, consider the matrices

M =

[
−2 1
1 −2

]
and I =

[
1 0
0 1

]
.

We can compute two tensor products,

I ⊗ M =

[
1 0
0 1

]
⊗
[

−2 1
1 −2

]

=

−2 1 0 0
1 −2 0 0
0 0 −2 1
0 0 1 −2

M ⊗ I =

[
−2 1
1 −2

]
⊗
[

1 0
0 1

]

numerical solutions of pdes 117

=

−2 0 1 0
0 −2 0 1
1 0 −2 0
0 1 0 −2

 . (3.29)

Adding these, we have the S matrix for the n = 2 case:
−2 1 0 0
1 −2 0 0
0 0 −2 1
0 0 1 −2

+

−2 0 1 0
0 −2 0 1
1 0 −2 0
0 1 0 −2

 =

−4 1 1 0
1 −4 0 1
1 0 −4 1
0 1 1 −4

 .

More compactly, we have shown that

S = M ⊗ I + I ⊗ M.

Similarly, for n = 3 we obtain

−4 1 0 1 0 0 0 0 0
1 −4 1 0 1 0 0 0 0
0 1 −4 0 0 1 0 0 0
1 0 0 −4 1 0 1 0 0
0 1 0 0 −4 0 0 1 0
0 0 1 0 0 −4 0 0 1
0 0 0 1 0 0 −4 1 0
0 0 0 0 1 0 1 −4 1
0 0 0 0 0 1 0 1 −4

u1,1

u1,2

u1,3

u2,1

u2,2

u2,3

u3,1

u3,2

u3,3

= −

u0,1

u0,2

u0,3

0
0
0

u4,1

u4,2

u4,3

−

u1,0

0
u1,3

u2,0

0
u2,3

u3,0

0
u3,3

(3.30)

We see that these matrix equations take the form

SΦ = b, (3.31)

where S is a block tridiagonal matrix and b involves the values of the so-
lution on the boundary. Again we have separated out the vertical and hor-
izontal values as two column vectors for clarity. We have also defined the
vector of unknowns

Φ =

u1,1

u2,1

u3,1

u1,2

u2,2

u3,2

u1,3

u2,3

u3,3

.

It is a simple matter to generalize the process when ∆x = ∆y and nx =

ny = n. In the case for n = 4, we have the 4 × 4 blocks

M =

−4 1 0 0
1 −4 1 0
0 1 −4 1
0 0 1 −4

 and I =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

118 partial differential equations

Figure 3.12: Example of a 5 × 5 grid
with a 3× 3 inner region. The numerical
scheme for solving Laplace’s equation is
in Equation (3.30)

x

y

u1,1

u1,2

u1,3

u2,1

u2,2

u2,3

u3,1

u3,2

u3,3

The S matrix is then,

S =

M I 0 0
I M I 0
0 I M I
0 0 I M

 ,

or written out A is given as

−4 1 0 0 1 0 0 0
1 −4 1 0 0 1 0 0
0 1 −4 1 0 0 1 0
0 0 1 −4 0 0 0 1
1 0 0 0 −4 1 0 0 1 0 0 0
0 1 0 0 1 −4 1 0 0 1 0 0
0 0 1 0 0 1 −4 1 0 0 1 0
0 0 0 1 0 0 1 −4 0 0 0 1

1 0 0 0 −4 1 0 0 1 0 0 0
0 1 0 0 1 −4 1 0 0 1 0 0
0 0 1 0 0 1 −4 1 0 0 1 0
0 0 0 1 0 0 1 −4 0 0 0 1

1 0 0 0 −4 1 0 0
0 1 0 0 1 −4 1 0
0 0 1 0 0 1 −4 1
0 0 0 1 0 0 1 −4

Again, we can use the tensor product of the 4 × 4 identity matrix with

M =

−2 1 0 0
1 −2 1 0
0 1 −2 1
0 0 1 −2

to find that S = M ⊗ I + I ⊗ M.

3.6 Numerical Solution of the 2D Laplace Equation

The goal is to solve Equation (3.31). Since it is a linear system, there are
several ways to approach the solution. We can solve it directly,

Φ = S−1b,

numerical solutions of pdes 119

using Gaussian elimination. We could also use iterative methods as we
alluded to earlier before Equation (3.25). It is best to do a simple example.

Example:
We consider the solution of Laplace’s equation on the unit square,

uxx + uyy = 0, 0 < x < 1, 0 < y < 1,

with the boundary conditions

u(0, y) = 0, u(1, y) = 1, u(x, 0) = sin πx, u(x, 1) = 0.

We learned how to solve Laplace’s equation in the first chapter using sep-
aration of variables. In this problem we have to solve two separate problems
to accommodate the boundary conditions.

wxx + wyy = 0, w(0, y) = w(1, y) = w(x, 1) = 0, w(x, 0) = sin πx,

vxx + vyy = 0, v(0, y) = v(1, y) = v(x, 1) = 0, v(1, y) = 1. (3.32)

Then, u(x, y) = w(x, y) + v(x, y) will solve the original problem.
The product solutions for these two problems are

wn(x, y) = sin nπx sinh nπ(1 − y),

vn(x, y) = sin nπy sinh nπx. (3.33)

This gives the general solution to the full problem as2 2 This problem could have been applied
more generally to a rectangle [0, L] ×
[0, H] and not a unit square. In that
case, the solution and boundary condi-
tions would need to be modified to give
a rescaled model. The solution subject to
the boundary conditions Here u(x, 0) =
sin πx

L and u(L, y) = 1, takes the form

u(x, y) = sin
πx
L

sinh π
L (H − y)

sinh πH
L

+
∞

∑
n=1

2
nπ

(1 − cos nπ) sin
nπy

H
sinh nπx

H

sinh nπL
H

.

u(x, y) =
∞

∑
n=1

an sin nπx sinh nπ(1 − y) +
∞

∑
n=1

bn sin nπy sinh nπx.

You can verify that u(0, y) = 0 and u(x, 1) = 0. We still need to satisfy
u(1, y) = 1 and u(x, 0) = sin πx. For the latter condition, we see that an = 0
for n > 1. This leaves for n = 1

u(x, 0) = a1 sin πx sinh π = sin πx,

or a1 = (sinh π)−1.
For the other condition, we have

u(1, y) =
∞

∑
n=1

(bn sinh nπ) sin nπy = 1.

This is a Fourier sine series for y ∈ [0, 1]. The expansion coefficient for
this sine series is bn sinh nπ. We learned from the previous chapter that the
coefficients are found by integration giving

bn sinh nπ = 2
∫ 1

0
sin nπy dy

=
2

nπ
(1 − cos nπ). (3.34)

So, we have the exact solution

u(x, y) = sin πx
sinh π(1 − y)

sinh π
+

∞

∑
n=1

2
nπ

(1 − cos nπ) sin nπy
sinh nπx
sinh nπ

.

(3.35)

120 partial differential equations

We can now numerically integrate this problem. We do this in MATLAB.
We begin by setting up the problem as seen in the code below. Should be
able to provide Python code.

clear

global L H dx dy Nx Ny x y

% Inside dimensions - so far nx=ny, dx=dy

nx=3;

ny=3;

% Outside dimensions

Nx=nx+1;

Ny=ny+1;

% Domain size

L=1;

H=0.75;

% Increments

dx=L/Nx;

dy=H/Ny;

% Independent variables

x=0:dx:L;

y=0:dy:H;

% Initialize u(x,y) plus Boundary Conditions

U=zeros(Nx+1,Ny+1);

U(1,:)=0; % left

U(Nx+1,:)=1; % right

U(:,1)=sin(pi*x/L); % bottom

U(:,Ny+1)=0; % top

\end{verbatim}

%\end{quote}

Next, we obtain matrices A and $b.$

%\begin{quote}

\begin{verbatim}

% A matrix

k=nx; % Need to adjust for nonsquare grid

A=getA(k);

% Inside boundary values

bvert=zeros(1,k^2);

bhor=zeros(1,k^2);

for i=1:k

bvert(i) = U(1,i+1);

bvert(k^2-i+1) = U(k+2, k-i+2);

bhor((i-1)*k+1) = U(i+1, 1);

numerical solutions of pdes 121

bhor((i-1)*k+k) = U(i+1, k+2);

end

b=-bhor-bvert;

Here we used a function to generate matrix A, called getA. It is given by

function A=getA(k)

e = ones(k,1);

a = spdiags([e -2*e e] , [-1 0 1], k, k);

I = speye (k, k);

A = kron(a,I) + kron(I,a);

end

This code relies on the Kronecker product (tensor product) in Equation
(3.28). In MATLAB is is implemented using the kron function.

Now, we are in a position to solve Equation (3.31). One could compute
A−1, if it exists. But, in MATLAB one can use the backslash to solve a
linear system. This is equivalent to using Gaussian elimination when A is a
square matrix. Also, since b in the above code is a row vector, we first turn it
into a column vector, b’. Then, Phi=A’

¯
produces a column vector. In order

to related the solution to the inner grid points, we reshape Phi into a k × k
matrix. %beginquote

Phi=A\b';

Phi=reshape(Phi,k,k);

U(2:k+1,2:k+1)=Phi';

Ugaussian=U';

myplot(Ugaussian,'Gaussian Solution')

\end\begin{lstlisting}

%\end{quote}

Finally, we plot the solution using {\tt myplot} which provides a

plot of the solution normalized so that the maximum value is

set to one. The resulting plot is in Figure \ref{fig:

gaussian}.

%\begin{quote}

\begin{lstlisting}[style=Matlab-editor]

function myplot(U,mytitle)

global L H dx dy Nx Ny x y

maxU=max(U,[],'all');

nU=U/maxU;

contourf(x,y,nU,200,'linecolor','none')

colormap(jet)

colorbar

caxis([-1,1])

xlabel('x','Interpreter','latex','Fontsize',14)

ylabel('y','Interpreter','latex','Fontsize',14)

122 partial differential equations

title(mytitle,'Interpreter','latex','Fontsize',14)

axis equal

end

Figure 3.13: Solution of the Laplace
equation example for n = 3 us-
ing Gaussian elimination through MAT-
LAB’s backslash operation.

We can compare the solution in Figure 3.13 with the exact solution in
Equation (3.34). That solution involves an infinite sum. So, we plot a partial
sum keeping enough terms to indicate an approximation to the full sum.
One such function to produce the exact solution is below.

function v=exact(N)

global L H dx dy Nx Ny x y

Mx=length(x);

My=length(y);

v=zeros(Mx,My);

for i=1:Mx

for j=1:My

v(i,j)=sin(pi*x(i)/L).*sinh(pi*(H-y(j))/L)/sinh(pi*H/L);

for n=1:N

v(i,j)=v(i,j)...

+2*(1-cos(n*pi))/(n*pi)*sin(n*pi*y(j)/H)...

*sinh(n*pi*x(i)/H)/sinh(n*pi*L/H);

end

end

end

end

In Figure 3.14 we see the exact solution using N = 100 terms of the
Fourier sine series. We see similarities with the plot in Figure 3.13. In
order to compare solutions, we should compute some type of quantitative
difference between the two results.

Another method for solving the finite difference scheme (3.26) is to use
an iterative method. We rewrite the system as3

3 From Equation (3.24), we can also write

ui,j =
∆y2(ui+1,j + ui−1,j) + ∆x2(ui,j+1 + ui,j−1)

2(∆x2 + ∆y2)
.

This would work with a more general
grid.

numerical solutions of pdes 123

Figure 3.14: Solution of the Laplace
equation example for n = 3 using the
exact solution in Equation (3.34).

ui,j =
1
4
(
ui+1,j + ui−1,j + ui,j+1 + ui,j−1

)
, i = 1, . . . , nx, j = 1, . . . , ny.

(3.36)
The idea is to guess ui,j, insert the guess on the right hand side of the equa-
tion and output a better guess. Then, take the new approximation and keep
going until the procedure seems to converge to a solution. If we let the kth
iteration produce u(k)

i,j , then the scheme could be written as

u(k+1)
i,j =

1
4

(
u(k)

i+1,j + u(k)
i−1,j + u(k)

i,j+1 + u(k)
i,j−1

)
, i = 1, . . . , nx, j = 1, . . . , ny,

(3.37)
where we begin with a guess u(0)

i,j . The only thing we currently know are the
boundary values. So, we can use those to generate a better approximation.
For the inside points we can set the values to some approximation based on
the characteristics of the problem or simply set all values to zero.

We will call this process a Jacobi iterative method. The MATLAB code
that captures this with an input of the boundary values and number of
iterations is shown in the function Jacobi and implemented by calling

Ujacobi=Jacobi(U(1,:), U(Nx+1,:),U(:,1),U(:,Ny+1),10);

function W=Jacobi(bcl, bcr,bcb,bct,N)

global L H dx dy Nx Ny x y

W=zeros(Nx+1,Ny+1);

den=2*(dx^2+dy^2);

W(1,:)=bcl; % left

W(Ny+1,:)=bcr; % right

W(:,1)=bcb; % bottom

W(:,Nx+1)=bct; % top

for k=1:N;

for i=2:Nx

124 partial differential equations

for j=2:Ny

W(i,j)=(dy^2*(W(i+1,j)+W(i-1,j)) ...

+dx^2*(W(i,j+1)+W(i,j-1)))/den;

end

end

end

end

For the n = 3 grid and boundary conditions, we iterate the scheme ten
times. In Figure 3.15 we show the results. Again, they look similar to those
in Figures 3.14 and 3.13.

Figure 3.15: Solution of the Laplace
equation example for n = 3 using the
Jacobi iteration scheme for N = 10 itera-
tions.

If we wish to provide more accurate solutions, then we need a finer grid.
So, we let n = 50 and do not change anything else. We show in Figure
3.16 these using the exact solution in Equation (3.34), the Gaussian solution,
and the Jacobi iteration for N = 10, 50. The Gaussian solution has the same
features as the exact solution. However, we see that the Jacobi scheme has
not yet converged.

So, we continue iterating the Jacobi scheme. In Figure 3.17 several plots
as the iteration proceeds. We see that for N = 1000 iterations, the solution
is looking more like the exact solution.

3.7 Jacobi, Gauss-Seidel, and SOR Iterative Schemes

The Jacobi iterative scheme is just one possible iterative scheme. It seems
to converge slowly. Will it always converge? Can we speed up the conver-
gence? Are there better schemes? These are just some of the questions a
numerical analyst might ask. But first, we need to recast the Jacobi scheme
in matrix form.

We begin with the numerical scheme in the form AΦ = b, where b con-
tains the boundary values and A is the full nx × ny matrix. The equivalent
of solving the system for uij would be to move the diagonal elements to

numerical solutions of pdes 125

Figure 3.16: Solution of the Laplace
equation example for n = 50 using the
exact solution in Equation (3.34), the
Gaussian solution, and the Jacobi itera-
tion for N = 10, 50. The Gaussian solu-
tion has the same features as the exact
siolution. However, we see that 10 or 50

iterations of the Jacobi scheme do not ap-
pear correct.

126 partial differential equations

Figure 3.17: Several iterations of the Ja-
cobi scheme for the solution of the 2D
Laplace equation.

numerical solutions of pdes 127

diagonal matrix D. Removing the diagonal will split the elements of A into
those above the diagonal, part of an upper triangular matrix U, and those
below the diagonal, part of an upper triangular matrix L. Thus, we can write
A = L + D + U. Now, we can rewrite AΦ = b as

(L + D + U)Φ = b

DΦ = b − (L + U)Φ

Φ = D−1 [b − (L + U)Φ] . (3.38)

The iterative process then follows as

Φ(k+1) = D−1
[
b − (L + U)Φ(k)

]
, k = 0, 1, 2,

This is the Jacobi matrix iteration scheme. Convergence is based on fixed
point theorems and we will not go into this here.

To implement this in MATLAB we first obtain the decomposition of ma-
trix A. This is done with the following code:

% Obtain upper/lower/diagonal parts of A

[c,r] = meshgrid(1:size(A,1),1:size(A,2));

diagA =A;

diagA(c ~= r) = 0;

trilA = A-diagA;

trilA(c>r) = 0;

triuA = A-diagA;

triuA(c<r) = 0;

triuA;

Now, we can set up the scheme assuming we have already defined the
boundary values as seen previously.

W=zeros(Nx+1,Ny+1);

W(1,:)=U(1,:); % left

W(Ny+1,:)=U(Ny+1,:); % right

W(:,1)=U(:,1); % bottom

W(:,Nx+1)=U(:,Nx+1); % top

% Jacobi

T = -diagA^(-1)*(trilA+triuA);

P=zeros(k*k,1);

M=1000;

for i=1:M

P=T*P+diagA^(-1)*b';

end

W(2:k+1,2:k+1)=reshape(P,k,k)';

myplot(W',['Jacobi Matrix Iteration N=',num2str(M)])

There are other ways to rearrange the matrices before performing the
iteration. Consider the following:

(L + D + U)Φ = b

128 partial differential equations

Figure 3.18: Solution of the Laplace
equation example for n = 50 using the
Jacobi Matrix iteration scheme for N =
1000 iterations.

(L + D)Φ = b − UΦ

Φ = (L + D)−1(b − UΦ). (3.39)

The iterative process that results is called the Gauss-Seidel iterative scheme
and is given by

Φ(k+1) = (L + D)−1(b − UΦ(k)), k = 0, 1, 2,

We implement this in MATLAB:

% Gauss-Seidel

P=zeros(k*k,1);

M=500;

for i=1:M

P=(trilA+diagA)^(-1)*(b'-triuA*P);

end

W(2:k+1,2:k+1)=reshape(P,k,k)';

myplot(W',['Gauss-Seidel Iteration N=',num2str(M)])

We get the plot in Figure 3.19.
Finally, we move around the Gauss-Seidel terms.

Φ(k+1) = (L + D)−1(b − UΦ(k))

(L + D)Φ(k+1) = b − UΦ(k)

DΦ(k+1) = −LΦ(k+1) + b − UΦ(k)

Φ(k+1) = D−1
[
b − LΦ(k+1) + b − UΦ(k)

]
. (3.40)

Now, subtract Φ(k) to obtain the change in the approximation at each step
of the iteration process.

Φ(k+1) − Φ(k) = D−1
[
b − LΦ(k+1) + b − UΦ(k)

]
− Φ(k)

Φ(k+1) − Φ(k) = D−1
[
b − LΦ(k+1) − UΦ(k) − DΦ(k)

]
. (3.41)

numerical solutions of pdes 129

Figure 3.19: Solution of the Laplace
equation example for n = 50 using the
Gauss-Seidel iteration scheme for N =
10 iterations.

Instead of adding this correction to the previous step to get Φ(k+1),

Φ(k+1) = Φ(k) +
(

Φ(k+1) − Φ(k)
)

,

we can add a multiple of it,

Φ(k+1) = Φ(k) + ω
(

Φ(k+1) − Φ(k)
)

,

where if 0 < ω < 1 it is called under-relaxation and if 1 < ω < 2, it is called
over-relaxation. In the later case, we develop a scheme called successive
over-relaxation, or SOR.It is given in terms of matrices as

Φ(k+1) = Φ(k) + ωD−1
[
b − LΦ(k+1) − UΦ(k) − DΦ(k)

]
. (3.42)

An equivalent approach is through a manipulation of the matrix equa-
tions. From AΦ = b, we have

DΦ = b − (L + U)Φ

and for some constant ω we have ωAΦ = ωb. Then, we write

ωLΦ = ωb − ω(D + U)Φ.

Combining these two expressions, we obtain

(D + ωL)Φ = ωb + DΦ − ω(D + U)Φ

= ωb − [ωU + (ω − 1)D]Φ

Φ = (D + ωL)−1ωb − (D + ωL)−1 [ωU + (ω − 1)D]Φ. (3.43)

Writing T = −(D + ωL)−1 [ωU + (ω − 1)D] and c = (D + ωL)−1ωb, we
can write the scheme as

Φ(k+1) = TΦ(k) + c.

The implementation is shown in the code and the solution plot is seen in
Figure 3.20.

130 partial differential equations

% SOR

omega=1.25;

c = (diagA+omega*trilA)^(-1)*b';

T = -(diagA+omega*trilA)^(-1)*(omega*triuA+(omega-1)*diagA);

P=zeros(k*k,1);

M=1000;

for i=1:M

P=T*P+c;

end

W(2:k+1,2:k+1)=reshape(P,k,k)';

myplot(W',['SOR ','$\omega =$',num2str(omega),' N=',num2str(M)])

Figure 3.20: Solution of the Laplace
equation example for n = 3 using the
SOR iteration scheme for N = 10 itera-
tions.

3.8 Heat Equation Project

Each group will be assigned a specific set of initial and boundary conditions
and solve the two-dimensional heat equation both analytically and numeri-
cally. Let u = u(x, y, t) satisfy the following:

∂u
∂t

= k
(

∂2u
∂x2 +

∂2u
∂y2

)
0 < x < L, 0 < y < W, t > 0,(3.44)

u(x, y, 0) = f (x, y) 0 < x < L, 0 < y < W. (3.45)

3.8.1 1D Heat Equation

For the first part of the project you will numerically solve the one-dimensional
heat equation. Below is a copy of the MATLAB code you will be given to
carry out this part of the project.

% Solution of the Heat Equation Using a Forward Difference Scheme

% Initialize Data

numerical solutions of pdes 131

Group L W k x = 0 x = L y = 0 y = W f (x, y)

A 1 1

1
10

u = 0 u = 0 u = 0 u = 0 xy(1 − x)(1 − y)

B 2 1

1
5

u = 0 u = 0 u = 0 uy = 0 xy(2 − x)
(

1 − y
2

)
C 1 2

1
10

ux = 0 u = 0 u = 0 u = 0 y(1 − x2)(2 − y)

D 1 2

1
5

ux = 0 ux = 0 u = 0 u = 0 x2y2
(

1 − 2
3

x
)
(2 − y)

E 1 1

1
10

ux = 0 u = 0 uy = 0 u = 0 (1 − x2)(1 − y2)

F 1 1

1
5

ux = 0 u = 0 u = 0 uy = 0 y(1 − x2)
(

1 − y
2

)
G 1 1

1
5

ux = 0 ux = 0 u = 0 uy = 0 x2y
(

1 − 2
3

x
)(

1 − y
2

)
H 2 2

1
15

u = 0 ux = 0 u = 0 u = 0 xy(4 − x)(2 − y)

I 2 1

1
15

u = 0 u = 0 uy = 0 u = 0 x(2 − x)(1 − y2)

Table 3.1: These are the parameters
and conditions needed for your assigned
group: length, L, width, W, heat con-
stant, k, boundary conditions, and initial
condition.

% Length of Rod, Time Interval

% Number of Points in Space, Number of Time Steps

clear

L=1;

T=0.1;

k=1;

N=50;

M=500;

dx=L/N;

dt=T/M;

alpha=k*dt/dx^2;

t0 = cputime; % Combine with t1 to time the routine

% Position

for i=1:N+1

x(i)=(i-1)*dx;

end

% Initial Condition

for i=1:N+1

u0(i)=x(i)*(1-x(i));

end

% Partial Difference Equation (Numerical Scheme)

for j=1:M

for i=2:N

u1(i)=u0(i)+alpha*(u0(i+1)-2*u0(i)+u0(i-1));

end

132 partial differential equations

u1(1)=0;

u1(N+1)=0;

u0=u1;

% Plot solution

hold on

if mod(j,10)==0

plot(x, u1);

end

hold off

end

t1=cputime;

telapsed = t1-t0

3.8.2 2D Heat Equation

For the second part of the project you will solve the two-dimensional heat
equation by constructing the solution to the initial-boundary value prob-
lem you are assigned from Table 1. You will find the product solutions
ϕn,m(x, y, t) and the Fourier coefficients, cn,m. Be careful as problems D and
G also have coefficients c0,m.

Below is a copy of MATLAB code for plotting the exact solution. Besides
generating a 3D plot of the solution evolving in time, frames are captured
and placed in a movie file. The movie can be played using one of the com-
mands at the end of the file.

% Solution of the 2D Heat Equation Using the series solution.

% u_t = k (u_xx + u_yy)

% Initialize Data

% L, W = Length and Width of Playe,

% T = for Time Interval [0, T]

% Nx, Ny = Number of Points in Space Grid,

% M = Number of Time Steps

% dx, dy = Delta x and Delta y.

% Set your own values of L, W, T, k

clear

L=1;

W=2;

T=1;

k=1/10;

Nx=20;

Ny=20;

dx=L/Nx;

dy=W/Ny;

M=20;

dt = T/M;

numerical solutions of pdes 133

% Spatial grid

[x,y]=meshgrid(0:dx:L,0:dy:W);

% Initialize u % Change to your initial condition

u=zeros(Nx+1,Ny+1);

for n=1:10

for m=1:10

u=u+sin(n*pi*x/L).*sin(m*pi*y/W)/n^2/m^2;

end

end

H=max(max(u));

% Plot initial condition

surf(x,y,u,'FaceColor','red','EdgeColor','none')

camlight left;

lighting phong

xlabel('x')

ylabel('y')

title('Solution at t = 0')

axis([0,L,0,W,0,H])

frame=1;

Mov(frame)=getframe(gcf);

pause(0.5)

% Time evolution

for j=1:M

u=zeros(Nx+1,Ny+1);

t=j*dt;

for n=1:10

for m=1:10

lambda=(n*pi/L)^2+(m*pi/W)^2; % Change lambda

u=u+sin(n*pi*x/L).*sin(m*pi*y/W)/n^2/m^2*exp(-k*
lambda*t);

end

end

% Plot 3D solution every 10 time steps

%if mod(m,10)==0

frame=frame+1;

surf(x,y,u,'FaceColor','red','EdgeColor','none')

camlight left;

lighting phong

xlabel('x')

ylabel('y')

title(['Solution at t = ' num2str(t)])

134 partial differential equations

axis([0,L,0,W,0,H])

Mov(frame)=getframe(gcf);

pause (0.5)

%end

end

% Extra - show or create a movie

% movie(gcf, Mov) % plays movie

% movie(gcf, Mov,1,2) % plays at 2 fps

% movie(gcf, Mov,10,5) % repeats 10 times at 5 fps

% Create movie

% movie2avi(Mov, 'heat2d.avi', 'compression', 'None');

One can also make use of the Symbolic Toolbox in MATLAB. The follow-
ing defines the product solutions and computes the Fourier coefficients.

clear

% Problem Test

syms n x y

n = sym('n','integer');

m = sym('m','integer');

L = 1;

W = 1;

Kx = n*pi/L;

Ky = m*pi/W;

f = sin(pi*x/L)*sin(3*pi*y/W);

phi = sin(Kx*x)*sin(Ky*y);

% Fourier Coefficients

c=simplify(4/L/W*int(int(f*phi, x, [0 L]), y, [0 W]));

\end{minted}

Now one can plot the initial condition

\begin{minted}{matlab}

% Initial Condition

N=5;

M=5;

H=.07;

ff=symsum(symsum(c*phi,n,1,N),m,1,M);

h=fsurf(ff,[0,L,0,W],'FaceColor','red','EdgeColor','none');

camlight left;

lighting phong

xlabel('x')

ylabel('y')

title(['Solution at t = ' num2str(0)])

numerical solutions of pdes 135

axis([0,L,0,W,-1,1])

%frame=1;

%Mov(frame)=getframe(gcf);

\end{minted}

The solution can then be evolved in time.

\begin{minted}{matlab}

k=1/200; % Heat constant

% Time Evolution

T = 1; % Final time

Nt = 20; % Number of steps

dt=T/Nt;

lambda = Kx^2+Ky^2;

for j=1:20

t=j*dt;

% frame=frame+1;

ff=symsum(symsum(c*phi*exp(-k*lambda*t),n,1,N),m,1,M);

%fsurf(ff,[0,L,0,W],'FaceColor','red','EdgeColor','none')

h.Function=ff; % Alternative to using fsurf by updating the

function plotted

title(['Solution at t = ' num2str(t)])

% Mov(frame)=getframe(gcf);

% pause(.05)

end

136 partial differential equations

Problems

1. Use the forward and backward difference formulae to find approximate
values of f ′(x) given the following data.

a.

x f (x)
1.1 0.4990

1.2 0.4348

1.3 0.3477

1.4 0.2380

1.5 0.1061

b.

x f (x)
2.1 -1.7098

2.2 -1.3738

2.3 -1.1192

2.4 -0.9160

2.5 -0.747

c. The functions used to generate the tables we f (x) = x cos x and
tan x, respectively. What were the errors made in parts a and b?

2. Use the central difference approximation to find f ′′(x) given the data in
Problem 1. What error is made using this approximation?

3. Use f (x0), f (x0 ± h), and f (x0 ± 2h), for h = ∆x, to find the most accurate
approximation for f ′(x0). What is the truncation error?

4. What does the finite difference expression
2un,j − 5un−1,j + 4un−2,j − un−3,j

h2
approximate?

5. Consider using a finite difference approximation for the wave equation,
utt = c2uxx on x ∈ [0, L].

a. Use centered differences in space and time to derive a finite differ-
ence model of the wave equation.

b. Draw the appropriate stencil for this difference equation and de-
scribe what conditions would be needed to proceed with numeri-
cally solving the wave equation.

c. Use the initial conditions u(x, 0) = f (x) and ut(x, 0) = g(x) and
boundary conditions u(0, t) = u(L, t) = 0 to fill in the missing
details of the solution in part b.

d. What is the order of the truncation error for this scheme?

	Numerical Solutions of PDEs
	The Finite Difference Method
	Truncation Error
	Stability
	Discretization of Laplace Equation
	Matrix Formulation of the Scheme
	Numerical Solution of the 2D Laplace Equation
	Jacobi, Gauss-Seidel, and SOR Iterative Schemes
	Heat Equation Project
	Problems

