## MAT 463 Practice EX III

- 1. Find the eigenfunctions and eigenvalues of the boundary value problem:  $x''(t) + k^2 x(t) = 0$ ,  $x(-\pi) = 0$ ,  $x'(\pi) = 0$ .
- 2. Show that the set  $\{\sin 3nx\}, n = 1, 2, 3, ... \text{ is orthogonal over the interval } [-\pi, \pi].$
- 3. Find the Fourier series expansion of the square wave given by  $f(x) = (-1)^n k$ , n < x < n+1, where k is a constant. Use your result to obtain a series expansion for  $\pi$ .
- 4. Find the eigenfunctions and eigenvalues of the BVP  $x^2y''+3xy'+(\lambda+1)y=0, y(1)=y(e)=0.$
- 5. Consider the heat equation  $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ , 0 < x < 1, t > 0. This describes the temperature u(x,t) of a one-dimensional rod of length one. Given that the temperature is fixed at both ends, u(0,t) = 0 = u(1,t), t > 0, and the initial temperature is given by  $u(x,0) = \sin 3\pi x$ , determine the temperature at later times. Describe what happens for long times.
- 6. Consider the function f(x) = (x<sup>2</sup> 1)<sup>2</sup> on [-1,1].
  a. Find the Fourier Coefficients.
  - b. Use the result of part (a) to find the sum of the infinite series  $\sum_{n=1}^{\infty} \frac{1}{n^4}$ .
- 7. Determine the Fourier coefficients for  $f(x) = 3\sin 2x \cos^2 x$ ,  $x \in [0, 2\pi]$ .

8. Let 
$$f(x) = \begin{cases} x, & 0 < x < 1 \\ 0, & 1 < x < 2 \end{cases}$$
.

- a. Sketch several periods of the following:i. The periodic extension of period 2.
  - ii. The even extension.
  - iii. The odd extension.
- b. Find the Fourier cosine series for this function.
- 9. Consider the function graphed in each part below.





10. Given f(x) = |x|,

- a. Find the Fourier trigonometric series of f(x) over  $-\pi < x < \pi$ .
- b. Find the Fourier sine series of f(x) over  $0 < x < \pi$ .