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Systems of Differential Equations

2.1 Introduction

In this chapter we will begin our study of systems of differential equations.
After defining first order systems, we will look at constant coefficient systems
and the behavior of solutions for these systems. Also, most of the discussion
will focus on planar, or two dimensional, systems. For such systems we will be
able to look at a variety of graphical representations of the family of solutions
and discuss the qualitative features of systems we can solve in preparation for
the study of systems whose solutions cannot be found in an algebraic form.

A general form for first order systems in the plane is given by a system of
two equations for unknowns z(t) and y(¢) :

2 (t) = P(z,y,t)
y'(t) = Qlz,y,1). (2.1)
An autonomous system is one in which there is no explicit time dependence:
a'(t) = P(x,y)
y'(t) = Q(x,y). (2.2)
Otherwise the system is called nonautonomous.
A linear system takes the form
' =a(t)z + b(t)y + e(t)
Yy =c(t)x+dt)y + f(t). (2.3)
A homogeneous linear system results when e(t) = 0 and f(¢) = 0.
A linear, constant coefficient system of first order differential equations is
given by
¥ =ar+byt+e
Yy =cr+dy+ f. (2.4)
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We will focus on linear, homogeneous systems of constant coefficient first
order differential equations:

' =azx+by
y = cx + dy. (2.5)

As we will see later, such systems can result by a simple translation of the
unknown functions. These equations are said to be coupled if either b # 0 or
c#0.

We begin by noting that the system (2.5) can be rewritten as a second
order constant coefficient linear differential equation, which we already know
how to solve. We differentiate the first equation in system system (2.5) and
systematically replace occurrences of y and y’, since we also know from the
first equation that y = §(2/ — ax). Thus, we have

2 = az' + by
= ax’ + b(cx + dy)
= ax’ + bex + d(x’ — ax). (2.6)

Rewriting the last line, we have

2" — (a+d)z’ + (ad — be)z = 0. (2.7)

This is a linear, homogeneous, constant coefficient ordinary differential
equation. We know that we can solve this by first looking at the roots of the
characteristic equation

r? —(a+d)r+ad—bc=0 (2.8)

and writing down the appropriate general solution for z(t). Then we can find
y(t) using Equation (2.5):
(o'~ az)
= —(a' — ax).
=%

We now demonstrate this for a specific example.
Ezample 2.1. Consider the system of differential equations

2 = —x+ 6y

y =z —2y. (2.9)
Carrying out the above outlined steps, we have that " + 32’ — 4z = 0. This
can be shown as follows:

2 = —a' + 6y
= —1' +6(z — 2y)
!
— 2/ + 60— 12 (I ;x)

—32" + 4z (2.10)
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The resulting differential equation has a characteristic equation of 2437 —
4 = 0. The roots of this equation are r = 1, —4. Therefore, x(t) = cie! +coe™ .
But, we still need y(t). From the first equation of the system we have

1 1
y(t) = 6(1:’ +x)= 6(2clet — 3cge ).

Thus, the solution to our system is

z(t) = cret + coe 4,
y(t) = gcre’ — Lo (2.11)

Sometimes one needs initial conditions. For these systems we would specify
conditions like 2(0) = z¢ and y(0) = yo. These would allow the determination
of the arbitrary constants as before.

Ezxample 2.2. Solve

! —

r = —x+ 6y
y =z —2y. (2.12)

given z(0) = 2, y(0) = 0.
We already have the general solution of this system in (2.11). Inserting
the initial conditions, we have

2 =c1+eco,
0=1c — e (2.13)

Solving for ¢; and ¢q gives ¢; = 6/5 and co = 4/5. Therefore, the solution of
the initial value problem is

(e —e™1). (2.14)

2.2 Equilibrium Solutions and Nearby Behaviors

In studying systems of differential equations, it is often useful to study the
behavior of solutions without obtaining an algebraic form for the solution. This
is done by exploring equilibrium solutions and solutions nearby equilibrium
solutions. Such techniques will be seen to be useful later in studying nonlinear
systems.

We begin this section by studying equilibrium solutions of system (2.4). For
equilibrium solutions the system does not change in time. Therefore, equilib-
rium solutions satisfy the equations ' = 0 and 3’ = 0. Of course, this can only
happen for constant solutions. Let xo and yo be the (constant) equilibrium
solutions. Then, xg and yo must satisfy the system
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0 =axo+ by + e,
0=cxg+dyo+ f. (2.15)

This is a linear system of nonhomogeneous algebraic equations. One only
has a unique solution when the determinant of the system is not zero, i.e.,
ad — be # 0. Using Cramer’s (determinant) Rule for solving such systems, we
have

eb ae
rd cf
o= —7"7, Yo = — . (216)
ab
cd‘ cd‘

If the system is homogeneous, e = f = 0, then we have that the origin
is the equilibrium solution; i.e., (2o, yo) = (0,0). Often we will have this case
since one can always make a change of coordinates from (z,y) to (u,v) by
u=x—x9 and v =y — yo. Then, ug = vy = 0.

Next we are interested in the behavior of solutions near the equilibrium
solutions. Later this behavior will be useful in analyzing more complicated
nonlinear systems. We will look at some simple systems that are readily solved.

Ezample 2.3. Stable Node (sink)
Consider the system

=2z
y = —y. (2.17)
This is a simple uncoupled system. Each equation is simply solved to give

z(t) = cre™?" and y(t) = coe ™.
In this case we see that all solutions tend towards the equilibrium point, (0, 0).
This will be called a stable node, or a sink.

Before looking at other types of solutions, we will explore the stable node
in the above example. There are several methods of looking at the behavior
of solutions. We can look at solution plots of the dependent versus the inde-
pendent variables, or we can look in the zy-plane at the parametric curves
(2(t), y(1).

Solution Plots: One can plot each solution as a function of ¢ given a set
of initial conditions. Examples are are shown in Figure 2.1 for several initial
conditions. Note that the solutions decay for large ¢. Special cases result for
various initial conditions. Note that for ¢ = 0, (0) = ¢; and y(0) = ca. (Of
course, one can provide initial conditions at any t = t¢. It is generally easier
to pick ¢ = 0 in our general explanations.) If we pick an initial condition
with ¢;=0, then z(t) = 0 for all ¢. One obtains similar results when setting

y(0) = 0.
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— X(1)
y(t)

x(®).y(®

Fig. 2.1. Plots of solutions of Example 2.3 for several initial conditions.

Phase Portrait: There are other types of plots which can provide ad-
ditional information about our solutions even if we cannot find the exact
solutions as we can for these simple examples. In particular, one can consider
the solutions x(t) and y(t) as the coordinates along a parameterized path,
or curve, in the plane: r = (z(¢),y(t)) Such curves are called trajectories or
orbits. The zy-plane is called the phase plane and a collection of such orbits
gives a phase portrait for the family of solutions of the given system.

One method for determining the equations of the orbits in the phase plane
is to eliminate the parameter ¢ between the known solutions to get a relation-
ship between x and y. In the above example we can do this, since the solutions
are known. In particular, we have

2
r=cre =¢ (£> = Ay?.

C2

Another way to obtain information about the orbits comes from noting
that the slopes of the orbits in the xy-plane are given by dy/dz. For au-
tonomous systems, we can write this slope just in terms of x and y. This leads
to a first order differential equation, which possibly could be solved analyt-
ically, solved numerically, or just used to produce a direction field. We will
see that direction fields are useful in determining qualitative behaviors of the
solutions without actually finding explicit solutions.

First we will obtain the orbits for Example 2.3 by solving the corresponding
slope equation. First, recall that for trajectories defined parametrically by
x = x(t) and y = y(t), we have from the Chain Rule for y = y(z(t)) that
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dy dydz
dt  dzdt’
Therefore,
dy &
= = . 2.18)
dz (
dz n

For the system in (2.17) we use Equation (2.18) to obtain the equation for
the slope at a point on the orbit:
dy_y
dr 2z
The general solution of this first order differential equation is found using
separation of variables as = Ay? for A an arbitrary constant. Plots of these
solutions in the phase plane are given in Figure 2.2. [Note that this is the
same form for the orbits that we had obtained above by eliminating ¢ from
the solution of the system.|

N
T

y(t)
o

-3 I I I I
-3 -2 -1 0
x(t)

Fig. 2.2. Orbits for Example 2.3.

Once one has solutions to differential equations, we often are interested in
the long time behavior of the solutions. Given a particular initial condition
(20,Y0), how does the solution behave as time increases? For orbits near an
equilibrium solution, do the solutions tend towards, or away from, the equi-
librium point? The answer is obvious when one has the exact solutions z(t)
and y(t). However, this is not always the case.
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Let’s consider the above example for initial conditions in the first quadrant
of the phase plane. For a point in the first quadrant we have that

dx/dt = -2z <0,
meaning that as ¢ — oo, z(t) get more negative. Similarly,
dy/dt = —y < 0,

indicates that y(¢) is also getting smaller for this problem. Thus, these orbits
tend towards the origin as ¢ — co. This qualitative information was obtained
without relying on the known solutions to the problem.

Direction Fields: Another way to determine the behavior of our system
is to draw the direction field. Recall that a direction field is a vector field in
which one plots arrows in the direction of tangents to the orbits. This is done
because the slopes of the tangent lines are given by dy/dxz. For our system
(2.5), the slope is

dy ax+by
dr  cx+dy’

In general, for nonautonomous systems, we obtain a first order differential
equation of the form

W Py

—= = F(z,y).

dx Y

This particular equation can be solved by the reader. See homework problem
2.2.

Ezxample 2.4. Draw the direction field for Example 2.3.
We can use software to draw direction fields. However, one can sketch these
fields by hand. we have that the slope of the tangent at this point is given by

dy _ -y _ Y
dr -2z 22

For each point in the plane one draws a piece of tangent line with this slope. In
Figure 2.3 we show a few of these. For (z,y) = (1, 1) the slope is dy/dx = 1/2.
So, we draw an arrow with slope 1/2 at this point. From system (2.17), we
have that z’ and 3’ are both negative at this point. Therefore, the vector
points down and to the left.

We can do this for several points, as shown in Figure 2.3. Sometimes one
can quickly sketch vectors with the same slope. For this example, when y = 0,
the slope is zero and when x = 0 the slope is infinite. So, several vectors can
be provided. Such vectors are tangent to curves known as isoclines in which
d—z =constant.

It is often difficult to provide an accurate sketch of a direction field. Com-
puter software can be used to provide a better rendition. For Example 2.3 the
direction field is shown in Figure 2.4. Looking at this direction field, one can
begin to “see” the orbits by following the tangent vectors.
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Fig. 2.3. A sketch of several tangent vectors for Example 2.3.
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Fig. 2.4. Direction field for Example 2.3.

w

Of course, one can superimpose the orbits on the direction field. This is
shown in Figure 2.5. Are these the patterns you saw in Figure 2.47

In this example we see all orbits “flow” towards the origin, or equilibrium
point. Again, this is an example of what is called a stable node or a sink.
(Imagine what happens to the water in a sink when the drain is unplugged.)

Ezxample 2.5. Saddle
Consider the system
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Fig. 2.5. Phase portrait for Example 2.3.

Yy =y. (2.19)

This is another uncoupled system. The solutions are again simply gotten
by integration. We have that z(t) = cie™" and y(t) = cee’. Here we have that
x decays as t gets large and y increases as ¢ gets large. In particular, if one
picks initial conditions with ¢y = 0, then orbits follow the z-axis towards the
origin. For initial points with ¢; = 0, orbits originating on the y-axis will flow
away from the origin. Of course, in these cases the origin is an equilibrium
point and once at equilibrium, one remains there.

In fact, there is only one line on which to pick initial conditions such that
the orbit leads towards the equilibrium point. No matter how small cs is,
sooner, or later, the exponential growth term will dominate the solution. One
can see this behavior in Figure 2.6.

Similar to the first example, we can look at a variety of plots. These are
given by Figures 2.6-2.7. The orbits can be obtained from the system as

dy dy/dt y

de — dx/dt —  z

The solution is y = %. For different values of A # 0 we obtain a family of
hyperbolae. These are the same curves one might obtain for the level curves
of a surface known as a saddle surface, z = xy. Thus, this type of equilibrium
point is classified as a saddle point. From the phase portrait we can verify that
there are many orbits that lead away from the origin (equilibrium point), but
there is one line of initial conditions that leads to the origin and that is the
z-axis. In this case, the line of initial conditions is given by the z-axis.
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Fig. 2.7. Phase portrait for Example 2.5, a saddle.

Ezample 2.6. Unstable Node (source)

Yy =v. (2.20)
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This example is similar to Example 2.3. The solutions are obtained by
replacing ¢t with —¢. The solutions, orbits and direction fields can be seen in
Figures 2.8-2.9. This is once again a node, but all orbits lead away from the
equilibrium point. It is called an unstable node or a source.

— Xx(t)
y(®)

x(®).y(®
o

Fig. 2.8. Plots of solutions of Example 2.6 for several initial conditions.

Ezxample 2.7. Center

=y
y = —x. (2.21)

This system is a simple, coupled system. Neither equation can be solved
without some information about the other unknown function. However, we
can differentiate the first equation and use the second equation to obtain

2 +x=0.

We recognize this equation from the last chapter as one that appears in the
study of simple harmonic motion. The solutions are pure sinusoidal oscilla-
tions:

x(t) = cpcost + casint, y(t) = —cysint + ¢z cost.

In the phase plane the trajectories can be determined either by looking at
the direction field, or solving the first order equation
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Fig. 2.9. Phase portrait for Example 2.6, an unstable node or source.

dy _ @

dx Y
Performing a separation of variables and integrating, we find that
2? +y* =C.

Thus, we have a family of circles for C' > 0. (Can you prove this using the gen-
eral solution?) Looking at the results graphically in Figures 2.10-2.11 confirms
this result. This type of point is called a center.

Ezample 2.8. Focus (spiral)

¥ =ar+y
y = —z. (2.22)

In this example, we will see an additional set of behaviors of equilibrium
points in planar systems. We have added one term, ax, to the system in Ex-
ample 2.7. We will consider the effects for two specific values of the parameter:
a = 0.1, —0.2. The resulting behaviors are shown in the remaining graphs. We
see orbits that look like spirals. These orbits are stable and unstable spirals
(or foci, the plural of focus.)

We can understand these behaviors by once again relating the system of
first order differential equations to a second order differential equation. Using
our usual method for obtaining a second order equation form a system, we
find that z(t) satisfies the differential equation
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Fig. 2.11. Phase portrait for Example 2.7, a center.

2 — oz’ +2=0.

We recall from our first course that this is a form of damped simple harmonic
motion. We will explore the different types of solutions that will result for

various «’s.
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Fig. 2.12. Plots of solutions of Example 2.8 for several initial conditions with
a=0.1.

— x(t)
y(®

x(0).y(t)
o

Fig. 2.13. Plots of solutions of Example 2.8 for several initial conditions with
a=—0.2.

2

The characteristic equation is 7“ —ar+1 = 0. The solution of this quadratic

equation is
atva?—4
5 .

T =
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There are five special cases to consider as shown below.

Classification of Solutions of 2"/ — a2’ + 2 =0

1. @ = —2. There is one real solution. This case is called critical
damping since the solution r = —1 leads to exponential decay.
The solution is z(t) = (c1 + cat)e™ .

2. a < —2. There are two real, negative solutions, r = —pu, —v,
w,v > 0. The solution is z(t) = cie "t + coe“t. In this case
we have what is called overdamped motion. There are no oscil-
lations

3. =2 < a < 0. There are two complex conjugate solutions r =
a/2 + i with real part less than zero and 8 = —V42*°‘2. The
solution is x(t) = (c1 cos Bt + cgsin Bt)e®"/2. Since o < 0, this
consists of a decaying exponential times oscillations. This is
often called an underdamped oscillation.

4. a = 0. This leads to simple harmonic motion.

5.0 < a < 2. This is similar to the underdamped case, except
a > 0. The solutions are growing oscillations.

6. a = 2. There is one real solution. The solution is z(t) = (¢1 +
cat)et. Tt leads to unbounded growth in time.

7. For a > 2. There are two real, positive solutions r = p,v > 0.
The solution is z(t) = c1e”t + coe?t, which grows in time.

For o < 0 the solutions are losing energy, so the solutions can oscillate with
a diminishing amplitude. For a > 0, there is a growth in the amplitude, which
is not typical. Of course, there can be overdamped motion if the magnitude
of a is too large.

Ezample 2.9. Degenerate Node

r = —I

y = -2z —y. (2.23)

For this example, we write out the solutions. While it is a coupled system,
only the second equation is coupled. There are two possible approaches.

a. We could solve the first equation to find z(t) = cie~*. Inserting this
solution into the second equation, we have

y +y=—2ce "

This is a relatively simple linear first order equation for y = y(t). The inte-
grating factor is u = ef. The solution is found as y(t) = (ca — 2¢1t)e L.

b. Another method would be to proceed to rewrite this as a second order
equation. Computing =’ does not get us very far. So, we look at
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0=0.1

y@®

Fig. 2.14. Phase portrait for Example 2.8 with o = 0.1. This is an unstable focus,
or spiral.

y// — _2$/ _ y/
=2z —y
= -2y —y. (2.24)

Therefore, y satisfies
y' +2y +y=0.

The characteristic equation has one real root, r = —1. So, we write
y(t) = (k1 + kot)e .

This is a stable degenerate node. Combining this with the solution z(t) =
cre”t, we can show that y(t) = (c2 — 2c1t)e™t as before.

In Figure 2.16 we see several orbits in this system. It differs from the stable
node show in Figure 2.2 in that there is only one direction along which the
orbits approach the origin instead of two. If one picks ¢; = 0, then z(¢) =0
and y(t) = coe™t. This leads to orbits running along the y-axis as seen in the
figure.

Ezxample 2.10. A Line of Equilibria, Zero Root

Yy = -2z +y. (2.25)
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y@®

Fig. 2.15. Phase portrait for Example 2.8 with @ = —0.2. This is a stable focus, or
spiral.

In this last example, we have a coupled set of equations. We rewrite it as
a second order differential equation:
x/l — 2./,[;/ _ yl
=21 — (—2z +vy)
=22' 4+ 22 + (2’ — 2z) = 32, (2.26)
So, the second order equation is

2 =32 =0

and the characteristic equation is 0 = r(r — 3). This gives the general solution
as
x(t) = ¢ + coet

and thus
y =22 —12' =2(c; +c3t) — (3cae3) = 2¢; — coe®.
In Figure 2.17 we show the direction field. The constant slope field seen in
this example is confirmed by a simple computation:

dy —2z+y

= —1.
dx 2 — vy

Furthermore, looking at initial conditions with y = 2x, we have at t = 0,
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Fig. 2.16. Plots of solutions of Example 2.9 for several initial conditions.

2c1 —co = 2(01 + 02) = co=0.
Therefore, points on this line remain on this line forever, (z,y) = (c1,2¢1).

This line of fixed points is called a line of equilibria.

2.2.1 Polar Representation of Spirals

In the examples with a center or a spiral, one might be able to write the
solutions in polar coordinates. Recall that a point in the plane can be described

by either Cartesian (x,y) or polar (r,0) coordinates. Given the polar form,
one can find the Cartesian components using

x =rcosf and y = rsinf.

Given the Cartesian coordinates, one can find the polar coordinates using

r? = 2* +y® and tanf = % (2.27)

Since x and y are functions of ¢, then naturally we can think of r and 6 as
functions of ¢t. The equations that they satisfy are obtained by differentiating
the above relations with respect to t.
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Fig. 2.17. Plots of direction field of Example 2.10.

Differentiating the first equation in (2.27) gives

rr’ =xx’ +yy'.

Inserting the expressions for ’ and 3’ from system 2.5, we have

rr’ = z(ax + by) + y(cx + dy).
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In some cases this may be written entirely in terms of ’s. Similarly, we have

that

g Y~y

r2 ’

which the reader can prove for homework.
In summary, when converting first order equations from rectangular to
polar form, one needs the relations below.

Time Derivatives of Polar Variables

/
r =

zz' + yy’

)
T

g - %Y~y

r2

(2.28)
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Ezxample 2.11. Rewrite the following system in polar form and solve the re-
sulting system.

¥ =ax+by
y' = —bx + ay. (2.29)
We first compute 7’ and '

' = xx’ +yy' = x(ax + by) + y(=bx + ay) = ar’.

120" = xy’ — yx' = x(—bx + ay) — y(ax + by) = —br.

This leads to simpler system

0 = —b. (2.30)

This system is uncoupled. The second equation in this system indicates that
we traverse the orbit at a constant rate in the clockwise direction. Solving
these equations, we have that r(t) = roe®, 6(t) = 6y — bt. Eliminating ¢
between these solutions, we finally find the polar equation of the orbits:

r = rge—a(0—00)t/b,

If you graph this for a # 0, you will get stable or unstable spirals.

Ezample 2.12. Consider the specific system

= —y+x
Y =x+uy. (2.31)
In order to convert this system into polar form, we compute

r' = xa' +yy = a(—y + )yl +y) =%

20 = xy —yr' =x(x +y) —y(—y+2) =r
This leads to simpler system
r=r
9 = 1. (2.32)
Solving these equations yields

r(t) = roe’, O(t) =t + 0.

Eliminating ¢ from this solution gives the orbits in the phase plane, r(6) =
6—00
ro€ .
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A more complicated example arises for a nonlinear system of differential
equations. Consider the following example.

Ezxample 2.13.

v = —y+ax(l—2®—19?)
Yy =z +y(l -z —y?). (2.33)

Transforming to polar coordinates, one can show that In order to convert this
system into polar form, we compute

P =r(1-r%), 0 =1

This uncoupled system can be solved and such nonlinear systems will be
studied in the next chapter.

2.3 Matrix Formulation

We have investigated several linear systems in the plane and in the next
chapter we will use some of these ideas to investigate nonlinear systems. We
need a deeper insight into the solutions of planar systems. So, in this section
we will recast the first order linear systems into matrix form. This will lead
to a better understanding of first order systems and allow for extensions to
higher dimensions and the solution of nonhomogeneous equations later in this
chapter.

We start with the usual homogeneous system in Equation (2.5). Let the
unknowns be represented by the vector

Then we have that

/
;{2\ [fax+by\ [abd T\ _
X_(y’)_(cx—i—dy)_(cd Yy = Ax.
Here we have introduced the coefficient matriz A. This is a first order vector

differential equation,
x = Ax.

Formerly, we can write the solution as

x = xpe.

! The exponential of a matriz is defined using the Maclaurin series expansion





