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1

Introduction

These are notes for a second course in differential equations originally taught
in the Spring semester of 2005 at the University of North Carolina Wilmington
to upper level and first year graduate students and later updated in Fall 2007
and Fall 2008. It is assumed that you have had an introductory course in
differential equations. However, we will begin this chapter with a review of
some of the material from your first course in differential equations and then
give an overview of the material we are about to cover.

Typically an introductory course in differential equations introduces stu-
dents to analytical solutions of first order differential equations which are sep-
arable, first order linear differential equations, and sometimes to some other
special types of equations. Students then explore the theory of second order
differential equations generally restricted the study of exact solutions of con-
stant coefficient linear differential equations or even equations of the Cauchy-
Euler type. These are later followed by the study of special techniques, such
as power series methods or Laplace transform methods. If time permits, ones
explores a few special functions, such as Legendre polynomials and Bessel
functions, while exploring power series methods for solving differential equa-
tions.

More recently, variations on this inventory of topics have been introduced
through the early introduction of systems of differential equations, qualitative
studies of these systems and a more intense use of technology for understand-
ing the behavior of solutions of differential equations. This is typically done
at the expense of not covering power series methods, special functions, or
Laplace transforms. In either case, the types of problems solved are initial
value problems in which the differential equation to be solved is accompanied
by a set of initial conditions.

In this course we will assume some exposure to the overlap of these two
approaches. We will first give a quick review of the solution of separable and
linear first order equations. Then we will review second order linear differen-
tial equations and Cauchy-Euler equations. This will then be followed by an
overview of some of the topics covered. As with any course in differential equa-



2 1 Introduction

tions, we will emphasize analytical, graphical and (sometimes) approximate
solutions of differential equations. Throughout we will present applications
from physics, chemistry and biology.

1.1 Review of the First Course

In this section we review a few of the solution techniques encountered in a first
course in differential equations. We will not review the basic theory except in
possible references as reminders as to what we are doing.

We first recall that an n-th order ordinary differential equation is an equa-
tion for an unknown function y(x) that expresses a relationship between the
unknown function and its first n derivatives. One could write this generally
as

F (y(n)(x), y(n−1)(x), . . . , y′(x), y(x), x) = 0. (1.1)

Here y(n)(x) represents the nth derivative of y(x).
An initial value problem consists of the differential equation plus the values

of the first n− 1 derivatives at a particular value of the independent variable,
say x0:

y(n−1)(x0) = yn−1, y(n−2)(x0) = yn−2, . . . , y(x0) = y0. (1.2)

A linear nth order differential equation takes the form

an(x)y(n)(x)+an−1(x)y
(n−1)(x)+ . . .+a1(x)y

′(x)+a0(x)y(x)) = f(x). (1.3)

If f(x) ≡ 0, then the equation is said to be homogeneous, otherwise it is
nonhomogeneous.

1.1.1 First Order Differential Equations

Typically, the first differential equations encountered are first order equations.
A first order differential equation takes the form

F (y′, y, x) = 0. (1.4)

There are two general forms for which one can formally obtain a solution.
The first is the separable case and the second is a first order equation. We
indicate that we can formally obtain solutions, as one can display the needed
integration that leads to a solution. However, the resulting integrals are not
always reducible to elementary functions nor does one obtain explicit solutions
when the integrals are doable.

A first order equation is separable if it can be written the form

dy

dx
= f(x)g(y). (1.5)
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Special cases result when either f(x) = 1 or g(y) = 1. In the first case the
equation is said to be autonomous.

The general solution to equation (1.5) is obtained in terms of two integrals:

∫
dy

g(y)
=

∫

f(x) dx+ C, (1.6)

where C is an integration constant. This yields a 1-parameter family of solu-
tions to the differential equation corresponding to different values of C. If one
can solve (1.6) for y(x), then one obtains an explicit solution. Otherwise, one
has a family of implicit solutions. If an initial condition is given as well, then
one might be able to find a member of the family that satisfies this condition,
which is often called a particular solution.

Example 1.1. y′ = 2xy, y(0) = 2.
Applying (1.6), one has

∫
dy

y
=

∫

2xdx+ C.

Integrating yields
ln |y| = x2 + C.

Exponentiating, one obtains the general solution,

y(x) = ±ex2+C = Aex2

.

Here we have defined A = ±eC . Since C is an arbitrary constant, A is an
arbitrary constant. Several solutions in this 1-parameter family are shown in
Figure 1.1.

Next, one seeks a particular solution satisfying the initial condition. For
y(0) = 2, one finds that A = 2. So, the particular solution satisfying the initial

conditions is y(x) = 2ex2

.

Example 1.2. yy′ = −x.
Following the same procedure as in the last example, one obtains:

∫

y dy = −
∫

xdx + C ⇒ y2 = −x2 +A, where A = 2C.

Thus, we obtain an implicit solution. Writing the solution as x2 + y2 = A, we
see that this is a family of circles for A > 0 and the origin for A = 0. Plots of
some solutions in this family are shown in Figure 1.2.

The second type of first order equation encountered is the linear first order
differential equation in the form

y′(x) + p(x)y(x) = q(x). (1.7)
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Fig. 1.1. Plots of solutions from the 1-parameter family of solutions of Example
1.1 for several initial conditions.

In this case one seeks an integrating factor, µ(x), which is a function that one
can multiply through the equation making the left side a perfect derivative.
Thus, obtaining,

d

dx
[µ(x)y(x)] = µ(x)q(x). (1.8)

The integrating factor that works is µ(x) = exp(
∫ x

p(ξ) dξ). One can show
this by expanding the derivative in Equation (1.8),

µ(x)y′(x) + µ′(x)y(x) = µ(x)q(x), (1.9)

and comparing this equation to the one obtained from multiplying (1.7) by
µ(x) :

µ(x)y′(x) + µ(x)p(x)y(x) = µ(x)q(x). (1.10)

Note that these last two equations would be the same if

dµ(x)

dx
= µ(x)p(x).

This is a separable first order equation whose solution is the above given form
for the integrating factor,
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Fig. 1.2. Plots of solutions of Example 1.2 for several initial conditions.

µ(x) = exp

(∫ x

p(ξ) dξ

)

. (1.11)

Equation (1.8) is easily integrated to obtain

y(x) =
1

µ(x)

[∫ x

µ(ξ)q(ξ) dξ + C

]

. (1.12)

Example 1.3. xy′ + y = x, x > 0, y(1) = 0.
One first notes that this is a linear first order differential equation. Solving

for y′, one can see that the original equation is not separable. However, it is
not in the standard form. So, we first rewrite the equation as

dy

dx
+

1

x
y = 1. (1.13)

Noting that p(x) = 1
x , we determine the integrating factor

µ(x) = exp

[∫ x dξ

ξ

]

= eln x = x.

Multiplying equation (1.13) by µ(x) = x, we actually get back the original
equation! In this case we have found that xy′+y must have been the derivative
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of something to start. In fact, (xy)′ = xy′ + x. Therefore, equation (1.8)
becomes

(xy)′ = x.

Integrating one obtains

xy =
1

2
x2 + C,

or

y(x) =
1

2
x+

C

x
.

Inserting the initial condition into this solution, we have 0 = 1
2 + C.

Therefore, C = − 1
2 . Thus, the solution of the initial value problem is

y(x) = 1
2 (x − 1

x).

Example 1.4. (sinx)y′ + (cosx)y = x2 sinx.
Actually, this problem is easy if you realize that

d

dx
((sinx)y) = (sin x)y′ + (cosx)y.

But, we will go through the process of finding the integrating factor for prac-
tice.

First, rewrite the original differential equation in standard form:

y′ + (cotx)y = x2.

Then, compute the integrating factor as

µ(x) = exp

(∫ x

cot ξ dξ

)

= e− ln(sin x) =
1

sinx
.

Using the integrating factor, the original equation becomes

d

dx
((sinx)y) = x2.

Integrating, we have

y sinx =
1

3
x3 + C.

So, the solution is

y =

(
1

3
x3 + C

)

cscx.

There are other first order equations that one can solve for closed form so-
lutions. However, many equations are not solvable, or one is simply interested
in the behavior of solutions. In such cases one turns to direction fields. We
will return to a discussion of the qualitative behavior of differential equations
later in the course.
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1.1.2 Second Order Linear Differential Equations

Second order differential equations are typically harder than first order. In
most cases students are only exposed to second order linear differential equa-
tions. A general form for a second order linear differential equation is given
by

a(x)y′′(x) + b(x)y′(x) + c(x)y(x) = f(x). (1.14)

One can rewrite this equation using operator terminology. Namely, one first
defines the differential operator L = a(x)D2 + b(x)D + c(x), where D = d

dx .
Then equation (1.14) becomes

Ly = f. (1.15)

The solutions of linear differential equations are found by making use of
the linearity of L. Namely, we consider the vector space 1 consisting of real-
valued functions over some domain. Let f and g be vectors in this function
space. L is a linear operator if for two vectors f and g and scalar a, we have
that

a. L(f + g) = Lf + Lg
b. L(af) = aLf.

One typically solves (1.14) by finding the general solution of the homoge-
neous problem,

Lyh = 0

and a particular solution of the nonhomogeneous problem,

Lyp = f.

Then the general solution of (1.14) is simply given as y = yh +yp. This is true
because of the linearity of L. Namely,

Ly = L(yh + yp)

= Lyh + Lyp

= 0 + f = f. (1.16)

There are methods for finding a particular solution of a differential equa-
tion. These range from pure guessing to the Method of Undetermined Coef-
ficients, or by making use of the Method of Variation of Parameters. We will
review some of these methods later.

Determining solutions to the homogeneous problem, Lyh = 0, is not always
easy. However, others have studied a variety of second order linear equations

1 We assume that the reader has been introduced to concepts in linear algebra.
Late in the text we will recall the definition of a vector space and see that linear
algebra is in the background of the study of many concepts in the solution of
differential equations.
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and have saved us the trouble for some of the differential equations that often
appear in applications.

Again, linearity is useful in producing the general solution of a homoge-
neous linear differential equation. If y1 and y2 are solutions of the homogeneous
equation, then the linear combination y = c1y1 + c2y2 is also a solution of the
homogeneous equation. In fact, if y1 and y2 are linearly independent,2 then
y = c1y1 + c2y2 is the general solution of the homogeneous problem. As you
may recall, linear independence is established if the Wronskian of the solutions
in not zero. In this case, we have

W (y1, y2) = y1(x)y
′
2(x) − y′1(x)y2(x) 6= 0. (1.17)

1.1.3 Constant Coefficient Equations

The simplest and most seen second order differential equations are those with
constant coefficients. The general form for a homogeneous constant coefficient
second order linear differential equation is given as

ay′′(x) + by′(x) + cy(x) = 0, (1.18)

where a, b, and c are constants.
Solutions to (1.18) are obtained by making a guess of y(x) = erx. Inserting

this guess into (1.18) leads to the characteristic equation

ar2 + br + c = 0. (1.19)

The roots of this equation in turn lead to three types of solution depending
upon the nature of the roots as shown below.

Example 1.5. y′′ − y′ − 6y = 0 y(0) = 2, y′(0) = 0.
The characteristic equation for this problem is r2 − r − 6 = 0. The roots

of this equation are found as r = −2, 3. Therefore, the general solution can
be quickly written down:

y(x) = c1e
−2x + c2e

3x.

Note that there are two arbitrary constants in the general solution. There-
fore, one needs two pieces of information to find a particular solution. Of
course, we have the needed information in the form of the initial conditions.

One also needs to evaluate the first derivative

y′(x) = −2c1e
−2x + 3c2e

3x

2 Recall, a set of functions {yi(x)}n
i=1 is a linearly independent set if and only if

c1y(1(x) + . . . + cnyn(x) = 0

implies ci = 0, for i = 1, . . . , n.
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in order to attempt to satisfy the initial conditions. Evaluating y and y′ at
x = 0 yields

2 = c1 + c2

0 = −2c1 + 3c2 (1.20)

These two equations in two unknowns can readily be solved to give c1 = 6/5
and c2 = 4/5. Therefore, the solution of the initial value problem is obtained
as y(x) = 6

5e
−2x + 4

5e
3x.

Classification of Roots of the Characteristic Equation
for Second Order Constant Coefficient ODEs

1. Real, distinct roots r1, r2. In this case the solutions corre-
sponding to each root are linearly independent. Therefore, the
general solution is simply y(x) = c1e

r1x + c2e
r2x.

2. Real, equal roots r1 = r2 = r. In this case the solutions
corresponding to each root are linearly dependent. To find a
second linearly independent solution, one uses the Method of
Reduction of Order. This gives the second solution as xerx.
Therefore, the general solution is found as y(x) = (c1+c2x)e

rx.
[This is covered in the appendix to this chapter.]

3. Complex conjugate roots r1, r2 = α ± iβ. In this case the
solutions corresponding to each root are linearly independent.
Making use of Euler’s identity, eiθ = cos(θ) + i sin(θ), these
complex exponentials can be rewritten in terms of trigonomet-
ric functions. Namely, one has that eαx cos(βx) and eαx sin(βx)
are two linearly independent solutions. Therefore, the general
solution becomes y(x) = eαx(c1 cos(βx) + c2 sin(βx)). [This is
covered in the appendix to this chapter.]

Example 1.6. y′′ + 6y′ + 9y = 0.
In this example we have r2 + 6r + 9 = 0. There is only one root, r = −3.

Again, the solution is easily obtained as y(x) = (c1 + c2x)e
−3x.

Example 1.7. y′′ + 4y = 0.
The characteristic equation in this case is r2 + 4 = 0. The roots are pure

imaginary roots, r = ±2i and the general solution consists purely of sinusoidal
functions: y(x) = c1 cos(2x) + c2 sin(2x).

Example 1.8. y′′ + 2y′ + 4y = 0.
The characteristic equation in this case is r2 + 2r + 4 = 0. The roots are

complex, r = −1 ±
√

3i and the general solution can be written as y(x) =
[
c1 cos(

√
3x) + c2 sin(

√
3x)
]
e−x.
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One of the most important applications of the equations in the last two
examples is in the study of oscillations. Typical systems are a mass on a
spring, or a simple pendulum. For a mass m on a spring with spring constant
k > 0, one has from Hooke’s law that the position as a function of time, x(t),
satisfies the equation

mx′′ + kx = 0.

This constant coefficient equation has pure imaginary roots (α = 0) and the
solutions are pure sines and cosines. Such motion is called simple harmonic
motion.

Adding a damping term and periodic forcing complicates the dynamics,
but is nonetheless solvable. The next example shows a forced harmonic oscil-
lator.

Example 1.9. y′′ + 4y = sinx.
This is an example of a nonhomogeneous problem. The homogeneous prob-

lem was actually solved in Example 1.7. According to the theory, we need only
seek a particular solution to the nonhomogeneous problem and add it to the
solution of the last example to get the general solution.

The particular solution can be obtained by purely guessing, making an
educated guess, or using the Method of Variation of Parameters. We will
not review all of these techniques at this time. Due to the simple form of
the driving term, we will make an intelligent guess of yp(x) = A sinx and
determine what A needs to be. Recall, this is the Method of Undetermined
Coefficients which we review in the next section. Inserting our guess in the
equation gives (−A + 4A) sinx = sinx. So, we see that A = 1/3 works.
The general solution of the nonhomogeneous problem is therefore y(x) =
c1 cos(2x) + c2 sin(2x) + 1

3 sinx.

1.1.4 Method of Undetermined Coefficients

To date, we only know how to solve constant coefficient, homogeneous equa-
tions. How does one solve a nonhomogeneous equation like that in Equation
(1.14),

a(x)y′′(x) + b(x)y′(x) + c(x)y(x) = f(x). (1.21)

Recall, that one solves this equation by finding the general solution of the
homogeneous problem,

Lyh = 0

and a particular solution of the nonhomogeneous problem,

Lyp = f.

Then the general solution of (1.14) is simply given as y = yh + yp. So, how do
we find the particular solution?
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You could guess a solution, but that is not usually possible without a
little bit of experience. So we need some other methods. There are two main
methods. In the first case, the Method of Undetermined Coefficients, one
makes an intelligent guess based on the form of f(x). In the second method,
one can systematically develop the particular solution. We will come back to
this method the Method of Variation of Parameters, later in the book.

Let’s solve a simple differential equation highlighting how we can handle
nonhomogeneous equations.

Example 1.10. Consider the equation

y′′ + 2y′ − 3y = 4. (1.22)

The first step is to determine the solution of the homogeneous equation.
Thus, we solve

y′′h + 2y′h − 3yh = 0. (1.23)

The characteristic equation is r2 + 2r − 3 = 0. The roots are r = 1,−3. So,
we can immediately write the solution

yh(x) = c1e
x + c2e

−3x.

The second step is to find a particular solution of (1.22). What possible
function can we insert into this equation such that only a 4 remains? If we
try something proportional to x, then we are left with a linear function after
inserting x and its derivatives. Perhaps a constant function you might think.
y = 4 does not work. But, we could try an arbitrary constant, y = A.

Let’s see. Inserting y = A into (1.22), we obtain

−3A = 4.

Ah ha! We see that we can choose A = − 4
3 and this works. So, we have a

particular solution, yp(x) = − 4
3 . This step is done.

Combining our two solutions, we have the general solution to the original
nonhomogeneous equation (1.22). Namely,

y(x) = yh(x) + yp(x) = c1e
x + c2e

−3x − 4

3
.

Insert this solution into the equation and verify that it is indeed a solution.
If we had been given initial conditions, we could now use them to determine
our arbitrary constants.

What if we had a different source term? Consider the equation

y′′ + 2y′ − 3y = 4x. (1.24)

The only thing that would change is our particular solution. So, we need a
guess.
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We know a constant function does not work by the last example. So, let’s
try yp = Ax. Inserting this function into Equation (??), we obtain

2A− 3Ax = 4x.

Picking A = −4/3 would get rid of the x terms, but will not cancel everything.
We still have a constant left. So, we need something more general.

Let’s try a linear function, yp(x) = Ax+B. Then we get after substitution
into (1.24)

2A− 3(Ax+B) = 4x.

Equating the coefficients of the different powers of x on both sides, we find a
system of equations for the undetermined coefficients:

2A− 3B = 0

−3A = 4. (1.25)

These are easily solved to obtain

A = −4

3

B =
2

3
A = −8

9
. (1.26)

So, our particular solution is

yp(x) = −4

3
x− 8

9
.

This gives the general solution to the nonhomogeneous problem as

y(x) = yh(x) + yp(x) = c1e
x + c2e

−3x − 4

3
x− 8

9
.

There are general forms that you can guess based upon the form of the
driving term, f(x). Some examples are given in Table 1.1.4. More general ap-
plications are covered in a standard text on differential equations. However,
the procedure is simple. Given f(x) in a particular form, you make an ap-
propriate guess up to some unknown parameters, or coefficients. Inserting the
guess leads to a system of equations for the unknown coefficients. Solve the
system and you have your solution. This solution is then added to the general
solution of the homogeneous differential equation.

f(x) Guess

anxn + an−1x
n−1 + · · · + a1x + a0 Anxn + An−1x

n−1 + · · · + A1x + A0

aebx Aebx

a cos ωx + b sin ωx A cos ωx + B sin ωx
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Example 1.11. As a final example, let’s consider the equation

y′′ + 2y′ − 3y = 2e−3x. (1.27)

According to the above, we would guess a solution of the form yp = Ae−3x.
Inserting our guess, we find

0 = 2e−3x.

Oops! The coefficient, A, disappeared! We cannot solve for it. What went
wrong?

The answer lies in the general solution of the homogeneous problem. Note
that ex and e−3x are solutions to the homogeneous problem. So, a multiple
of e−3x will not get us anywhere. It turns out that there is one further modi-
fication of the method. If our driving term contains terms that are solutions
of the homogeneous problem, then we need to make a guess consisting of the
smallest possible power of x times the function which is no longer a solution of
the homogeneous problem. Namely, we guess yp(x) = Axe−3x. We compute
the derivative of our guess, y′p = A(1 − 3x)e−3x and y′′p = A(9x − 6)e−3x.
Inserting these into the equation, we obtain

[(9x− 6) + 2(1 − 3x) − 3x]Ae−3x = 2e−3x,

or
−4A = 2.

So, A = −1/2 and yp(x) = − 1
2xe

−3x.

Modified Method of Undetermined Coefficients

In general, if any term in the guess yp(x) is a solution of the ho-
mogeneous equation, then multiply the guess by xk, where k is the
smallest positive integer such that no term in xkyp(x) is a solution
of the homogeneous problem.

1.1.5 Cauchy-Euler Equations

Another class of solvable linear differential equations that is of interest are
the Cauchy-Euler type of equations. These are given by

ax2y′′(x) + bxy′(x) + cy(x) = 0. (1.28)

Note that in such equations the power of x in each of the coefficients matches
the order of the derivative in that term. These equations are solved in a
manner similar to the constant coefficient equations.

One begins by making the guess y(x) = xr . Inserting this function and its
derivatives,

y′(x) = rxr−1, y′′(x) = r(r − 1)xr−2,
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into Equation (1.28), we have

[ar(r − 1) + br + c]xr = 0.

Since this has to be true for all x in the problem domain, we obtain the
characteristic equation

ar(r − 1) + br + c = 0. (1.29)

Just like the constant coefficient differential equation, we have a quadratic
equation and the nature of the roots again leads to three classes of solutions.
These are shown below. Some of the details are provided in the next section.

Classification of Roots of the Characteristic Equation
for Cauchy-Euler Differential Equations

1. Real, distinct roots r1, r2. In this case the solutions correspond-
ing to each root are linearly independent. Therefore, the general
solution is simply y(x) = c1x

r1 + c2x
r2 .

2. Real, equal roots r1 = r2 = r. In this case the solutions corre-
sponding to each root are linearly dependent. To find a second
linearly independent solution, one uses the Method of Reduc-
tion of Order. This gives the second solution as xr ln |x|. There-
fore, the general solution is found as y(x) = (c1 + c2 ln |x|)xr .

3. Complex conjugate roots r1, r2 = α ± iβ. In this case
the solutions corresponding to each root are linearly in-
dependent. These complex exponentials can be rewritten
in terms of trigonometric functions. Namely, one has that
xα cos(β ln |x|) and xα sin(β ln |x|) are two linearly indepen-
dent solutions. Therefore, the general solution becomes y(x) =
xα(c1 cos(β ln |x|) + c2 sin(β ln |x|)).

Example 1.12. x2y′′ + 5xy′ + 12y = 0
As with the constant coefficient equations, we begin by writing down the

characteristic equation. Doing a simple computation,

0 = r(r − 1) + 5r + 12

= r2 + 4r + 12

= (r + 2)2 + 8,

−8 = (r + 2)2, (1.30)

one determines the roots are r = −2 ± 2
√

2i. Therefore, the general solution
is y(x) =

[
c1 cos(2

√
2 ln |x|) + c2 sin(2

√
2 ln |x|)

]
x−2



1.1 Review of the First Course 15

Example 1.13. t2y′′ + 3ty′ + y = 0, y(1) = 0, y′(1) = 1.
For this example the characteristic equation takes the form

r(r − 1) + 3r + 1 = 0,

or
r2 + 2r + 1 = 0.

There is only one real root, r = −1. Therefore, the general solution is

y(t) = (c1 + c2 ln |t|)t−1.

However, this problem is an initial value problem. At t = 1 we know the
values of y and y′. Using the general solution, we first have that

0 = y(1) = c1.

Thus, we have so far that y(t) = c2 ln |t|t−1. Now, using the second condition
and

y′(t) = c2(1 − ln |t|)t−2,

we have
1 = y(1) = c2.

Therefore, the solution of the initial value problem is y(t) = ln |t|t−1.

Nonhomogeneous Cauchy-Euler Equations We can also solve some
nonhomogeneous Cauchy-Euler equations using the Method of Undetermined
Coefficients. We will demonstrate this with a couple of examples.

Example 1.14. Find the solution of x2y′′ − xy′ − 3y = 2x2.
First we find the solution of the homogeneous equation. The characteristic

equation is r2 − 2r − 3 = 0. So, the roots are r = −1, 3 and the solution is
yh(x) = c1x

−1 + c2x
3.

We next need a particular solution. Let’s guess yp(x) = Ax2. Inserting the
guess into the nonhomogeneous differential equation, we have

2x2 = x2y′′ − xy′ − 3y = 2x2

= 2Ax2 − 2Ax2 − 3Ax2

= −3Ax2. (1.31)

So, A = −2/3. Therefore, the general solution of the problem is

y(x) = c1x
−1 + c2x

3 − 2

3
x2.

Example 1.15. Find the solution of x2y′′ − xy′ − 3y = 2x3.
In this case the nonhomogeneous term is a solution of the homogeneous

problem, which we solved in the last example. So, we will need a modification
of the method. We have a problem of the form
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ax2y′′ + bxy′ + cy = dxr,

where r is a solution of ar(r − 1) + br + c = 0. Let’s guess a solution of the
form y = Axr lnx. Then one finds that the differential equation reduces to
Axr(2ar − a+ b) = dxr . [You should verify this for yourself.]

With this in mind, we can now solve the problem at hand. Let yp =
Ax3 lnx. Inserting into the equation, we obtain 4Ax3 = 2x3, or A = 1/2. The
general solution of the problem can now be written as

y(x) = c1x
−1 + c2x

3 +
1

2
x3 lnx.

1.2 Overview of the Course

For the most part, your first course in differential equations was about solving
initial value problems. When second order equations did not fall into the above
cases, then you might have learned how to obtain approximate solutions using
power series methods, or even finding new functions from these methods. In
this course we will explore two broad topics: systems of differential equations
and boundary value problems.

We will see that there are interesting initial value problems when studying
systems of differential equations. In fact, many of the second order equations
that you have seen in the past can be written as a system of two first order
equations. For example, the equation for simple harmonic motion,

x′′ + ω2x = 0,

can be written as the system

x′ = y
y′ = −ω2x

.

Just note that x′′ = y′ = −ω2x. Of course, one can generalize this to systems
with more complicated right hand sides. The behavior of such systems can be
fairly interesting and these systems result from a variety of physical models.

In the second part of the course we will explore boundary value problems.
Often these problems evolve from the study of partial differential equations.
Such examples stem from vibrating strings, temperature distributions, bend-
ing beams, etc. Boundary conditions are conditions that are imposed at more
than one point, while for initial value problems the conditions are specified
at one point. For example, we could take the oscillation equation above and
ask when solutions of the equation would satisfy the conditions x(0) = 0 and
x(1) = 0. The general solution, as we have determined earlier, is

x(t) = c1 cosωt+ c2 sinωt.
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Requiring x(0) = 0, we find that c1 = 0, leaving x(t) = c2 sinωt.Also imposing
that 0 = x(1) = c2 sinω, we are forced to make ω = nπ, for n = 1, 2, . . . .
(Making c2 = 0 would not give a nonzero solution of the problem.) Thus,
there are an infinite number of solutions possible, if we have the freedom to
choose our ω. In the second half of the course we will investigate techniques for
solving boundary value problems and look at several applications, including
seeing the connections with partial differential equations and Fourier series.

1.3 Appendix: Reduction of Order and Complex Roots

In this section we provide some of the details leading to the general forms for
the constant coefficient and Cauchy-Euler differential equations. In the first
subsection we review how the Method of Reduction of Order is used to obtain
the second linearly independent solutions for the case of one repeated root.
In the second subsection we review how the complex solutions can be used to
produce two linearly independent real solutions.

Method of Reduction of Order

First we consider constant coefficient equations. In the case when there is a
repeated real root, one has only one independent solution, y1(x) = erx. The
question is how does one obtain the second solution? Since the solutions are
independent, we must have that the ratio y2(x)/y1(x) is not a constant. So, we
guess the form y2(x) = v(x)y1(x) = v(x)erx. For constant coefficient second
order equations, we can write the equation as

(D − r)2y = 0,

where D = d
dx .

We now insert y2(x) into this equation. First we compute

(D − r)verx = v′erx.

Then,
(D − r)2verx = (D − r)v′erx = v′′erx.

So, if y2(x) is to be a solution to the differential equation, (D − r)2y2 = 0,
then v′′(x)erx = 0 for all x. So, v′′(x) = 0, which implies that

v(x) = ax+ b.

So,
y2(x) = (ax+ b)erx.

Without loss of generality, we can take b = 0 and a = 1 to obtain the second
linearly independent solution, y2(x) = xerx.
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Deriving the solution for Case 2 for the Cauchy-Euler equations is messier,
but works in the same way. First note that for the real root, r = r1, the
characteristic equation has to factor as (r − r1)

2 = 0. Expanding, we have

r2 − 2r1r + r21 = 0.

The general characteristic equation is

ar(r − 1) + br + c = 0.

Rewriting this, we have

r2 + (
b

a
− 1)r +

c

a
= 0.

Comparing equations, we find

b

a
= 1 − 2r1,

c

a
= r21 .

So, the general Cauchy-Euler equation in this case takes the form

x2y′′ + (1 − 2r1)xy
′ + r21y = 0.

Now we seek the second linearly independent solution in the form y2(x) =
v(x)xr1 . We first list this function and its derivatives,

y2(x) = vxr1 ,

y′2(x) = (xv′ + r1v)x
r1−1,

y′′2 (x) = (x2v′′ + 2r1xv
′ + r1(r1 − 1)v)xr1−2.

(1.32)

Inserting these forms into the differential equation, we have

0 = x2y′′ + (1 − 2r1)xy
′ + r21y

= (xv′′ + v′)xr1+1. (1.33)

Thus, we need to solve the equation

xv′′ + v′ = 0,

or
v′′

v′
= − 1

x
.

Integrating, we have
ln |v′| = − ln |x| + C.

Exponentiating, we have one last differential equation to solve,
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v′ =
A

x
.

Thus,
v(x) = A ln |x| + k.

So, we have found that the second linearly independent equation can be writ-
ten as

y2(x) = xr1 ln |x|.

Complex Roots

When one has complex roots in the solution of constant coefficient equations,
one needs to look at the solutions

y1,2(x) = e(α±iβ)x.

We make use of Euler’s formula

eiβx = cosβx+ i sinβx. (1.34)

Then the linear combination of y1(x) and y2(x) becomes

Ae(α+iβ)x +Be(α−iβ)x = eαx
[
Aeiβx +Be−iβx

]

= eαx [(A+B) cosβx+ i(A−B) sinβx]

≡ eαx(c1 cosβx+ c2 sinβx). (1.35)

Thus, we see that we have a linear combination of two real, linearly indepen-
dent solutions, eαx cosβx and eαx sinβx.

When dealing with the Cauchy-Euler equations, we have solutions of the
form y(x) = xα+iβ . The key to obtaining real solutions is to first recall that

xy = eln xy

= ey ln x.

Thus, a power can be written as an exponential and the solution can be written
as

y(x) = xα+iβ = xαeiβ ln x, x > 0.

We can now find two real, linearly independent solutions, xα cos(β ln |x|) and
xα sin(β ln |x|) following the same steps as above for the constant coefficient
case.

Problems

1.1. Find all of the solutions of the first order differential equations. When an
initial condition is given, find the particular solution satisfying that condition.
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a. dy
dx =

√
1−y2

x .
b. xy′ = y(1 − 2y), y(1) = 2.
c. y′ − (sinx)y = sinx.
d. xy′ − 2y = x2, y(1) = 1.
e. ds

dt + 2s = st2, , s(0) = 1.
f. x′ − 2x = te2t.

1.2. Find all of the solutions of the second order differential equations. When
an initial condition is given, find the particular solution satisfying that con-
dition.

a. y′′ − 9y′ + 20y = 0.
b. y′′ − 3y′ + 4y = 0, y(0) = 0, y′(0) = 1.
c. x2y′′ + 5xy′ + 4y = 0, x > 0.
d. x2y′′ − 2xy′ + 3y = 0, x > 0.

1.3. Consider the differential equation

dy

dx
=
x

y
− x

1 + y
.

a. Find the 1-parameter family of solutions (general solution) of this equa-
tion.

b. Find the solution of this equation satisfying the initial condition y(0) = 1.
Is this a member of the 1-parameter family?

1.4. The initial value problem

dy

dx
=
y2 + xy

x2
, y(1) = 1

does not fall into the class of problems considered in our review. However,
if one substitutes y(x) = xz(x) into the differential equation, one obtains an
equation for z(x) which can be solved. Use this substitution to solve the initial
value problem for y(x).

1.5. Consider the nonhomogeneous differential equation x′′−3x′ +2x = 6e3t.

a. Find the general solution of the homogenous equation.
b. Find a particular solution using the Method of Undetermined Coefficients

by guessing xp(t) = Ae3t.
c. Use your answers in the previous parts to write down the general solution

for this problem.

1.6. Find the general solution of each differential equation. When an initial
condition is given, find the particular solution satisfying that condition.

a. y′′ − 3y′ + 2y = 20e−2x, y(0) = 0, y′(0) = 6.
b. y′′ + y = 2 sin 3x.
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c. y′′ + y = 1 + 2 cosx.
d. x2y′′ − 2xy′ + 2y = 3x2 − x, x > 0.

1.7. Verify that the given function is a solution and use Reduction of Order
to find a second linearly independent solution.

a. x2y′′ − 2xy′ − 4y = 0, y1(x) = x4.
b. xy′′ − y′ + 4x3y = 0, y1(x) = sin(x2).

1.8. A certain model of the motion of a tossed whiffle ball is given by

mx′′ + cx′ +mg = 0, x(0) = 0, x′(0) = v0.

Here m is the mass of the ball, g=9.8 m/s2 is the acceleration due to gravity
and c is a measure of the damping. Since there is no x term, we can write this
as a first order equation for the velocity v(t) = x′(t) :

mv′ + cv +mg = 0.

a. Find the general solution for the velocity v(t) of the linear first order
differential equation above.

b. Use the solution of part a to find the general solution for the position x(t).
c. Find an expression to determine how long it takes for the ball to reach

it’s maximum height?
d. Assume that c/m = 10 s−1. For v0 = 5, 10, 15, 20 m/s, plot the solution,
x(t), versus the time.

e. From your plots and the expression in part c, determine the rise time. Do
these answers agree?

f. What can you say about the time it takes for the ball to fall as compared
to the rise time?
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Systems of Differential Equations

2.1 Introduction

In this chapter we will begin our study of systems of differential equations.
After defining first order systems, we will look at constant coefficient systems
and the behavior of solutions for these systems. Also, most of the discussion
will focus on planar, or two dimensional, systems. For such systems we will be
able to look at a variety of graphical representations of the family of solutions
and discuss the qualitative features of systems we can solve in preparation for
the study of systems whose solutions cannot be found in an algebraic form.

A general form for first order systems in the plane is given by a system of
two equations for unknowns x(t) and y(t) :

x′(t) = P (x, y, t)

y′(t) = Q(x, y, t). (2.1)

An autonomous system is one in which there is no explicit time dependence:

x′(t) = P (x, y)

y′(t) = Q(x, y). (2.2)

Otherwise the system is called nonautonomous.
A linear system takes the form

x′ = a(t)x+ b(t)y + e(t)

y′ = c(t)x+ d(t)y + f(t). (2.3)

A homogeneous linear system results when e(t) = 0 and f(t) = 0.
A linear, constant coefficient system of first order differential equations is

given by

x′ = ax+ by + e

y′ = cx+ dy + f. (2.4)
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We will focus on linear, homogeneous systems of constant coefficient first
order differential equations:

x′ = ax+ by

y′ = cx+ dy. (2.5)

As we will see later, such systems can result by a simple translation of the
unknown functions. These equations are said to be coupled if either b 6= 0 or
c 6= 0.

We begin by noting that the system (2.5) can be rewritten as a second
order constant coefficient linear differential equation, which we already know
how to solve. We differentiate the first equation in system system (2.5) and
systematically replace occurrences of y and y′, since we also know from the
first equation that y = 1

b (x′ − ax). Thus, we have

x′′ = ax′ + by′

= ax′ + b(cx+ dy)

= ax′ + bcx+ d(x′ − ax). (2.6)

Rewriting the last line, we have

x′′ − (a+ d)x′ + (ad− bc)x = 0. (2.7)

This is a linear, homogeneous, constant coefficient ordinary differential
equation. We know that we can solve this by first looking at the roots of the
characteristic equation

r2 − (a+ d)r + ad− bc = 0 (2.8)

and writing down the appropriate general solution for x(t). Then we can find
y(t) using Equation (2.5):

y =
1

b
(x′ − ax).

We now demonstrate this for a specific example.

Example 2.1. Consider the system of differential equations

x′ = −x+ 6y

y′ = x− 2y. (2.9)

Carrying out the above outlined steps, we have that x′′ + 3x′ − 4x = 0. This
can be shown as follows:

x′′ = −x′ + 6y′

= −x′ + 6(x− 2y)

= −x′ + 6x− 12

(
x′ + x

6

)

= −3x′ + 4x (2.10)
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The resulting differential equation has a characteristic equation of r2+3r−
4 = 0. The roots of this equation are r = 1,−4.Therefore, x(t) = c1e

t+c2e
−4t.

But, we still need y(t). From the first equation of the system we have

y(t) =
1

6
(x′ + x) =

1

6
(2c1e

t − 3c2e
−4t).

Thus, the solution to our system is

x(t) = c1e
t + c2e

−4t,

y(t) = 1
3c1e

t − 1
2c2e

−4t. (2.11)

Sometimes one needs initial conditions. For these systems we would specify
conditions like x(0) = x0 and y(0) = y0. These would allow the determination
of the arbitrary constants as before.

Example 2.2. Solve

x′ = −x+ 6y

y′ = x− 2y. (2.12)

given x(0) = 2, y(0) = 0.
We already have the general solution of this system in (2.11). Inserting

the initial conditions, we have

2 = c1 + c2,

0 = 1
3c1 − 1

2c2. (2.13)

Solving for c1 and c2 gives c1 = 6/5 and c2 = 4/5. Therefore, the solution of
the initial value problem is

x(t) = 2
5

(
3et + 2e−4t

)
,

y(t) = 2
5

(
et − e−4t

)
. (2.14)

2.2 Equilibrium Solutions and Nearby Behaviors

In studying systems of differential equations, it is often useful to study the
behavior of solutions without obtaining an algebraic form for the solution. This
is done by exploring equilibrium solutions and solutions nearby equilibrium
solutions. Such techniques will be seen to be useful later in studying nonlinear
systems.

We begin this section by studying equilibrium solutions of system (2.4). For
equilibrium solutions the system does not change in time. Therefore, equilib-
rium solutions satisfy the equations x′ = 0 and y′ = 0. Of course, this can only
happen for constant solutions. Let x0 and y0 be the (constant) equilibrium
solutions. Then, x0 and y0 must satisfy the system
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0 = ax0 + by0 + e,

0 = cx0 + dy0 + f. (2.15)

This is a linear system of nonhomogeneous algebraic equations. One only
has a unique solution when the determinant of the system is not zero, i.e.,
ad− bc 6= 0. Using Cramer’s (determinant) Rule for solving such systems, we
have

x0 = −

∣
∣
∣
∣

e b
f d

∣
∣
∣
∣

∣
∣
∣
∣

a b
c d

∣
∣
∣
∣

, y0 = −

∣
∣
∣
∣

a e
c f

∣
∣
∣
∣

∣
∣
∣
∣

a b
c d

∣
∣
∣
∣

. (2.16)

If the system is homogeneous, e = f = 0, then we have that the origin
is the equilibrium solution; i.e., (x0, y0) = (0, 0). Often we will have this case
since one can always make a change of coordinates from (x, y) to (u, v) by
u = x− x0 and v = y − y0. Then, u0 = v0 = 0.

Next we are interested in the behavior of solutions near the equilibrium
solutions. Later this behavior will be useful in analyzing more complicated
nonlinear systems. We will look at some simple systems that are readily solved.

Example 2.3. Stable Node (sink)
Consider the system

x′ = −2x

y′ = −y. (2.17)

This is a simple uncoupled system. Each equation is simply solved to give

x(t) = c1e
−2t and y(t) = c2e

−t.

In this case we see that all solutions tend towards the equilibrium point, (0, 0).
This will be called a stable node, or a sink.

Before looking at other types of solutions, we will explore the stable node
in the above example. There are several methods of looking at the behavior
of solutions. We can look at solution plots of the dependent versus the inde-
pendent variables, or we can look in the xy-plane at the parametric curves
(x(t), y(t)).

Solution Plots: One can plot each solution as a function of t given a set
of initial conditions. Examples are are shown in Figure 2.1 for several initial
conditions. Note that the solutions decay for large t. Special cases result for
various initial conditions. Note that for t = 0, x(0) = c1 and y(0) = c2. (Of
course, one can provide initial conditions at any t = t0. It is generally easier
to pick t = 0 in our general explanations.) If we pick an initial condition
with c1=0, then x(t) = 0 for all t. One obtains similar results when setting
y(0) = 0.
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Fig. 2.1. Plots of solutions of Example 2.3 for several initial conditions.

Phase Portrait: There are other types of plots which can provide ad-
ditional information about our solutions even if we cannot find the exact
solutions as we can for these simple examples. In particular, one can consider
the solutions x(t) and y(t) as the coordinates along a parameterized path,
or curve, in the plane: r = (x(t), y(t)) Such curves are called trajectories or
orbits. The xy-plane is called the phase plane and a collection of such orbits
gives a phase portrait for the family of solutions of the given system.

One method for determining the equations of the orbits in the phase plane
is to eliminate the parameter t between the known solutions to get a relation-
ship between x and y. In the above example we can do this, since the solutions
are known. In particular, we have

x = c1e
−2t = c1

(
y

c2

)2

≡ Ay2.

Another way to obtain information about the orbits comes from noting
that the slopes of the orbits in the xy-plane are given by dy/dx. For au-
tonomous systems, we can write this slope just in terms of x and y. This leads
to a first order differential equation, which possibly could be solved analyt-
ically, solved numerically, or just used to produce a direction field. We will
see that direction fields are useful in determining qualitative behaviors of the
solutions without actually finding explicit solutions.

First we will obtain the orbits for Example 2.3 by solving the corresponding
slope equation. First, recall that for trajectories defined parametrically by
x = x(t) and y = y(t), we have from the Chain Rule for y = y(x(t)) that
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dy

dt
=
dy

dx

dx

dt
.

Therefore,

dy

dx
=

dy
dt
dx
dt

. (2.18)

For the system in (2.17) we use Equation (2.18) to obtain the equation for
the slope at a point on the orbit:

dy

dx
=

y

2x
.

The general solution of this first order differential equation is found using
separation of variables as x = Ay2 for A an arbitrary constant. Plots of these
solutions in the phase plane are given in Figure 2.2. [Note that this is the
same form for the orbits that we had obtained above by eliminating t from
the solution of the system.]
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Fig. 2.2. Orbits for Example 2.3.

Once one has solutions to differential equations, we often are interested in
the long time behavior of the solutions. Given a particular initial condition
(x0, y0), how does the solution behave as time increases? For orbits near an
equilibrium solution, do the solutions tend towards, or away from, the equi-
librium point? The answer is obvious when one has the exact solutions x(t)
and y(t). However, this is not always the case.
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Let’s consider the above example for initial conditions in the first quadrant
of the phase plane. For a point in the first quadrant we have that

dx/dt = −2x < 0,

meaning that as t→ ∞, x(t) get more negative. Similarly,

dy/dt = −y < 0,

indicates that y(t) is also getting smaller for this problem. Thus, these orbits
tend towards the origin as t→ ∞. This qualitative information was obtained
without relying on the known solutions to the problem.

Direction Fields: Another way to determine the behavior of our system
is to draw the direction field. Recall that a direction field is a vector field in
which one plots arrows in the direction of tangents to the orbits. This is done
because the slopes of the tangent lines are given by dy/dx. For our system
(2.5), the slope is

dy

dx
=
ax+ by

cx+ dy
.

In general, for nonautonomous systems, we obtain a first order differential
equation of the form

dy

dx
= F (x, y).

This particular equation can be solved by the reader. See homework problem
2.2.

Example 2.4. Draw the direction field for Example 2.3.
We can use software to draw direction fields. However, one can sketch these

fields by hand. we have that the slope of the tangent at this point is given by

dy

dx
=

−y
−2x

=
y

2x
.

For each point in the plane one draws a piece of tangent line with this slope. In
Figure 2.3 we show a few of these. For (x, y) = (1, 1) the slope is dy/dx = 1/2.
So, we draw an arrow with slope 1/2 at this point. From system (2.17), we
have that x′ and y′ are both negative at this point. Therefore, the vector
points down and to the left.

We can do this for several points, as shown in Figure 2.3. Sometimes one
can quickly sketch vectors with the same slope. For this example, when y = 0,
the slope is zero and when x = 0 the slope is infinite. So, several vectors can
be provided. Such vectors are tangent to curves known as isoclines in which
dy
dx =constant.

It is often difficult to provide an accurate sketch of a direction field. Com-
puter software can be used to provide a better rendition. For Example 2.3 the
direction field is shown in Figure 2.4. Looking at this direction field, one can
begin to “see” the orbits by following the tangent vectors.
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Fig. 2.3. A sketch of several tangent vectors for Example 2.3.
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Fig. 2.4. Direction field for Example 2.3.

Of course, one can superimpose the orbits on the direction field. This is
shown in Figure 2.5. Are these the patterns you saw in Figure 2.4?

In this example we see all orbits “flow” towards the origin, or equilibrium
point. Again, this is an example of what is called a stable node or a sink.
(Imagine what happens to the water in a sink when the drain is unplugged.)

Example 2.5. Saddle
Consider the system

x′ = −x
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Fig. 2.5. Phase portrait for Example 2.3.

y′ = y. (2.19)

This is another uncoupled system. The solutions are again simply gotten
by integration. We have that x(t) = c1e

−t and y(t) = c2e
t. Here we have that

x decays as t gets large and y increases as t gets large. In particular, if one
picks initial conditions with c2 = 0, then orbits follow the x-axis towards the
origin. For initial points with c1 = 0, orbits originating on the y-axis will flow
away from the origin. Of course, in these cases the origin is an equilibrium
point and once at equilibrium, one remains there.

In fact, there is only one line on which to pick initial conditions such that
the orbit leads towards the equilibrium point. No matter how small c2 is,
sooner, or later, the exponential growth term will dominate the solution. One
can see this behavior in Figure 2.6.

Similar to the first example, we can look at a variety of plots. These are
given by Figures 2.6-2.7. The orbits can be obtained from the system as

dy

dx
=
dy/dt

dx/dt
= − y

x
.

The solution is y = A
x . For different values of A 6= 0 we obtain a family of

hyperbolae. These are the same curves one might obtain for the level curves
of a surface known as a saddle surface, z = xy. Thus, this type of equilibrium
point is classified as a saddle point. From the phase portrait we can verify that
there are many orbits that lead away from the origin (equilibrium point), but
there is one line of initial conditions that leads to the origin and that is the
x-axis. In this case, the line of initial conditions is given by the x-axis.
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Fig. 2.6. Plots of solutions of Example 2.5 for several initial conditions.
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Fig. 2.7. Phase portrait for Example 2.5, a saddle.

Example 2.6. Unstable Node (source)

x′ = 2x

y′ = y. (2.20)
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This example is similar to Example 2.3. The solutions are obtained by
replacing t with −t. The solutions, orbits and direction fields can be seen in
Figures 2.8-2.9. This is once again a node, but all orbits lead away from the
equilibrium point. It is called an unstable node or a source.
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Fig. 2.8. Plots of solutions of Example 2.6 for several initial conditions.

Example 2.7. Center

x′ = y

y′ = −x. (2.21)

This system is a simple, coupled system. Neither equation can be solved
without some information about the other unknown function. However, we
can differentiate the first equation and use the second equation to obtain

x′′ + x = 0.

We recognize this equation from the last chapter as one that appears in the
study of simple harmonic motion. The solutions are pure sinusoidal oscilla-
tions:

x(t) = c1 cos t+ c2 sin t, y(t) = −c1 sin t+ c2 cos t.

In the phase plane the trajectories can be determined either by looking at
the direction field, or solving the first order equation



34 2 Systems of Differential Equations

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x(t)

y(
t)

Fig. 2.9. Phase portrait for Example 2.6, an unstable node or source.

dy

dx
= −x

y
.

Performing a separation of variables and integrating, we find that

x2 + y2 = C.

Thus, we have a family of circles for C > 0. (Can you prove this using the gen-
eral solution?) Looking at the results graphically in Figures 2.10-2.11 confirms
this result. This type of point is called a center.

Example 2.8. Focus (spiral)

x′ = αx + y

y′ = −x. (2.22)

In this example, we will see an additional set of behaviors of equilibrium
points in planar systems. We have added one term, αx, to the system in Ex-
ample 2.7. We will consider the effects for two specific values of the parameter:
α = 0.1,−0.2. The resulting behaviors are shown in the remaining graphs. We
see orbits that look like spirals. These orbits are stable and unstable spirals
(or foci, the plural of focus.)

We can understand these behaviors by once again relating the system of
first order differential equations to a second order differential equation. Using
our usual method for obtaining a second order equation form a system, we
find that x(t) satisfies the differential equation
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Fig. 2.10. Plots of solutions of Example 2.7 for several initial conditions.
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Fig. 2.11. Phase portrait for Example 2.7, a center.

x′′ − αx′ + x = 0.

We recall from our first course that this is a form of damped simple harmonic
motion. We will explore the different types of solutions that will result for
various α’s.
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Fig. 2.12. Plots of solutions of Example 2.8 for several initial conditions with
α = 0.1.
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Fig. 2.13. Plots of solutions of Example 2.8 for several initial conditions with
α = −0.2.

The characteristic equation is r2−αr+1 = 0. The solution of this quadratic
equation is

r =
α±

√
α2 − 4

2
.
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There are five special cases to consider as shown below.

Classification of Solutions of x′′ − αx′ + x = 0

1. α = −2. There is one real solution. This case is called critical
damping since the solution r = −1 leads to exponential decay.
The solution is x(t) = (c1 + c2t)e

−t.
2. α < −2. There are two real, negative solutions, r = −µ,−ν,
µ, ν > 0. The solution is x(t) = c1e

−µt + c2e
−νt. In this case

we have what is called overdamped motion. There are no oscil-
lations

3. −2 < α < 0. There are two complex conjugate solutions r =

α/2 ± iβ with real part less than zero and β =
√

4−α2

2 . The

solution is x(t) = (c1 cosβt + c2 sinβt)eαt/2. Since α < 0, this
consists of a decaying exponential times oscillations. This is
often called an underdamped oscillation.

4. α = 0. This leads to simple harmonic motion.
5. 0 < α < 2. This is similar to the underdamped case, except
α > 0. The solutions are growing oscillations.

6. α = 2. There is one real solution. The solution is x(t) = (c1 +
c2t)e

t. It leads to unbounded growth in time.
7. For α > 2. There are two real, positive solutions r = µ, ν > 0.

The solution is x(t) = c1e
µt + c2e

νt, which grows in time.

For α < 0 the solutions are losing energy, so the solutions can oscillate with
a diminishing amplitude. For α > 0, there is a growth in the amplitude, which
is not typical. Of course, there can be overdamped motion if the magnitude
of α is too large.

Example 2.9. Degenerate Node

x′ = −x
y′ = −2x− y. (2.23)

For this example, we write out the solutions. While it is a coupled system,
only the second equation is coupled. There are two possible approaches.

a. We could solve the first equation to find x(t) = c1e
−t. Inserting this

solution into the second equation, we have

y′ + y = −2c1e
−t.

This is a relatively simple linear first order equation for y = y(t). The inte-
grating factor is µ = et. The solution is found as y(t) = (c2 − 2c1t)e

−t.
b. Another method would be to proceed to rewrite this as a second order

equation. Computing x′′ does not get us very far. So, we look at
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Fig. 2.14. Phase portrait for Example 2.8 with α = 0.1. This is an unstable focus,
or spiral.

y′′ = −2x′ − y′

= 2x− y′

= −2y′ − y. (2.24)

Therefore, y satisfies
y′′ + 2y′ + y = 0.

The characteristic equation has one real root, r = −1. So, we write

y(t) = (k1 + k2t)e
−t.

This is a stable degenerate node. Combining this with the solution x(t) =
c1e

−t, we can show that y(t) = (c2 − 2c1t)e
−t as before.

In Figure 2.16 we see several orbits in this system. It differs from the stable
node show in Figure 2.2 in that there is only one direction along which the
orbits approach the origin instead of two. If one picks c1 = 0, then x(t) = 0
and y(t) = c2e

−t. This leads to orbits running along the y-axis as seen in the
figure.

Example 2.10. A Line of Equilibria, Zero Root

x′ = 2x− y

y′ = −2x+ y. (2.25)
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Fig. 2.15. Phase portrait for Example 2.8 with α = −0.2. This is a stable focus, or
spiral.

In this last example, we have a coupled set of equations. We rewrite it as
a second order differential equation:

x′′ = 2x′ − y′

= 2x′ − (−2x+ y)

= 2x′ + 2x+ (x′ − 2x) = 3x′. (2.26)

So, the second order equation is

x′′ − 3x′ = 0

and the characteristic equation is 0 = r(r−3). This gives the general solution
as

x(t) = c1 + c2e
3t

and thus
y = 2x− x′ = 2(c1 + c32t) − (3c2e

3t) = 2c1 − c2e
3t.

In Figure 2.17 we show the direction field. The constant slope field seen in
this example is confirmed by a simple computation:

dy

dx
=

−2x+ y

2x− y
= −1.

Furthermore, looking at initial conditions with y = 2x, we have at t = 0,
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Fig. 2.16. Plots of solutions of Example 2.9 for several initial conditions.

2c1 − c2 = 2(c1 + c2) ⇒ c2 = 0.

Therefore, points on this line remain on this line forever, (x, y) = (c1, 2c1).
This line of fixed points is called a line of equilibria.

2.2.1 Polar Representation of Spirals

In the examples with a center or a spiral, one might be able to write the
solutions in polar coordinates. Recall that a point in the plane can be described
by either Cartesian (x, y) or polar (r, θ) coordinates. Given the polar form,
one can find the Cartesian components using

x = r cos θ and y = r sin θ.

Given the Cartesian coordinates, one can find the polar coordinates using

r2 = x2 + y2 and tan θ =
y

x
. (2.27)

Since x and y are functions of t, then naturally we can think of r and θ as
functions of t. The equations that they satisfy are obtained by differentiating
the above relations with respect to t.
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Fig. 2.17. Plots of direction field of Example 2.10.

Differentiating the first equation in (2.27) gives

rr′ = xx′ + yy′.

Inserting the expressions for x′ and y′ from system 2.5, we have

rr′ = x(ax + by) + y(cx+ dy).

In some cases this may be written entirely in terms of r’s. Similarly, we have
that

θ′ =
xy′ − yx′

r2
,

which the reader can prove for homework.
In summary, when converting first order equations from rectangular to

polar form, one needs the relations below.

Time Derivatives of Polar Variables

r′ =
xx′ + yy′

r
,

θ′ =
xy′ − yx′

r2
. (2.28)
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Example 2.11. Rewrite the following system in polar form and solve the re-
sulting system.

x′ = ax+ by

y′ = −bx+ ay. (2.29)

We first compute r′ and θ′:

rr′ = xx′ + yy′ = x(ax + by) + y(−bx+ ay) = ar2.

r2θ′ = xy′ − yx′ = x(−bx+ ay) − y(ax+ by) = −br2.
This leads to simpler system

r′ = ar

θ′ = −b. (2.30)

This system is uncoupled. The second equation in this system indicates that
we traverse the orbit at a constant rate in the clockwise direction. Solving
these equations, we have that r(t) = r0e

at, θ(t) = θ0 − bt. Eliminating t
between these solutions, we finally find the polar equation of the orbits:

r = r0e
−a(θ−θ0)t/b.

If you graph this for a 6= 0, you will get stable or unstable spirals.

Example 2.12. Consider the specific system

x′ = −y + x

y′ = x+ y. (2.31)

In order to convert this system into polar form, we compute

rr′ = xx′ + yy′ = x(−y + x) + y(x+ y) = r2.

r2θ′ = xy′ − yx′ = x(x + y) − y(−y + x) = r2.

This leads to simpler system

r′ = r

θ′ = 1. (2.32)

Solving these equations yields

r(t) = r0e
t, θ(t) = t+ θ0.

Eliminating t from this solution gives the orbits in the phase plane, r(θ) =
r0e

θ−θ0.
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A more complicated example arises for a nonlinear system of differential
equations. Consider the following example.

Example 2.13.

x′ = −y + x(1 − x2 − y2)

y′ = x+ y(1 − x2 − y2). (2.33)

Transforming to polar coordinates, one can show that In order to convert this
system into polar form, we compute

r′ = r(1 − r2), θ′ = 1.

This uncoupled system can be solved and such nonlinear systems will be
studied in the next chapter.

2.3 Matrix Formulation

We have investigated several linear systems in the plane and in the next
chapter we will use some of these ideas to investigate nonlinear systems. We
need a deeper insight into the solutions of planar systems. So, in this section
we will recast the first order linear systems into matrix form. This will lead
to a better understanding of first order systems and allow for extensions to
higher dimensions and the solution of nonhomogeneous equations later in this
chapter.

We start with the usual homogeneous system in Equation (2.5). Let the
unknowns be represented by the vector

x(t) =

(
x(t)
y(t)

)

.

Then we have that

x′ =

(
x′

y′

)

=

(
ax+ by
cx+ dy

)

=

(
a b
c d

)(
x
y

)

≡ Ax.

Here we have introduced the coefficient matrix A. This is a first order vector
differential equation,

x′ = Ax.

Formerly, we can write the solution as

x = x0e
At.

1

1 The exponential of a matrix is defined using the Maclaurin series expansion
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We would like to investigate the solution of our system. Our investigations
will lead to new techniques for solving linear systems using matrix methods.

We begin by recalling the solution to the specific problem (2.12). We ob-
tained the solution to this system as

x(t) = c1e
t + c2e

−4t,

y(t) =
1

3
c1e

t − 1

2
c2e

−4t. (2.35)

This can be rewritten using matrix operations. Namely, we first write the
solution in vector form.

x =

(
x(t)
y(t)

)

=

(
c1e

t + c2e
−4t

1
3c1e

t − 1
2c2e

−4t

)

=

(
c1e

t

1
3c1e

t

)

+

(
c2e

−4t

− 1
2c2e

−4t

)

= c1

(
1
1
3

)

et + c2

(
1
− 1

2

)

e−4t. (2.36)

We see that our solution is in the form of a linear combination of vectors
of the form

x = veλt

with v a constant vector and λ a constant number. This is similar to how we
began to find solutions to second order constant coefficient equations. So, for
the general problem (2.3) we insert this guess. Thus,

x′ = Ax ⇒
λveλt = Aveλt. (2.37)

For this to be true for all t, we have that

Av = λv. (2.38)

This is an eigenvalue problem. A is a 2×2 matrix for our problem, but could
easily be generalized to a system of n first order differential equations. We will
confine our remarks for now to planar systems. However, we need to recall how
to solve eigenvalue problems and then see how solutions of eigenvalue problems
can be used to obtain solutions to our systems of differential equations..

ex =

∞∑

k=0

= 1 + x +
x2

2!
+

x3

3!
+ · · · .

So, we define

eA =

∞∑

k=0

= I + A +
A2

2!
+

A3

3!
+ · · · . (2.34)

In general, it is difficult computing eA unless A is diagonal.
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2.4 Eigenvalue Problems

We seek nontrivial solutions to the eigenvalue problem

Av = λv. (2.39)

We note that v = 0 is an obvious solution. Furthermore, it does not lead
to anything useful. So, it is called a trivial solution. Typically, we are given
the matrix A and have to determine the eigenvalues, λ, and the associated
eigenvectors, v, satisfying the above eigenvalue problem. Later in the course
we will explore other types of eigenvalue problems.

For now we begin to solve the eigenvalue problem for v =

(
v1
v2

)

. Inserting

this into Equation (2.39), we obtain the homogeneous algebraic system

(a− λ)v1 + bv2 = 0,

cv1 + (d− λ)v2 = 0. (2.40)

The solution of such a system would be unique if the determinant of the system
is not zero. However, this would give the trivial solution v1 = 0, v2 = 0. To
get a nontrivial solution, we need to force the determinant to be zero. This
yields the eigenvalue equation

0 =

∣
∣
∣
∣

a− λ b
c d− λ

∣
∣
∣
∣
= (a− λ)(d − λ) − bc.

This is a quadratic equation for the eigenvalues that would lead to nontrivial
solutions. If we expand the right side of the equation, we find that

λ2 − (a+ d)λ+ ad− bc = 0.

This is the same equation as the characteristic equation (2.8) for the general
constant coefficient differential equation considered in the first chapter. Thus,
the eigenvalues correspond to the solutions of the characteristic polynomial
for the system.

Once we find the eigenvalues, then there are possibly an infinite number
solutions to the algebraic system. We will see this in the examples.

So, the process is to

a) Write the coefficient matrix;
b) Find the eigenvalues from the equation det(A− λI) = 0; and,
c) Find the eigenvectors by solving the linear system (A−λI)v = 0 for each

λ.

2.5 Solving Constant Coefficient Systems in 2D

Before proceeding to examples, we first indicate the types of solutions that
could result from the solution of a homogeneous, constant coefficient system
of first order differential equations.
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We begin with the linear system of differential equations in matrix form.

dx

dt
=

(
a b
c d

)

x = Ax. (2.41)

The type of behavior depends upon the eigenvalues of matrix A. The proce-
dure is to determine the eigenvalues and eigenvectors and use them to con-
struct the general solution.

If we have an initial condition, x(t0) = x0, we can determine the two
arbitrary constants in the general solution in order to obtain the particular
solution. Thus, if x1(t) and x2(t) are two linearly independent solutions2, then
the general solution is given as

x(t) = c1x1(t) + c2x2(t).

Then, setting t = 0, we get two linear equations for c1 and c2:

c1x1(0) + c2x2(0) = x0.

The major work is in finding the linearly independent solutions. This de-
pends upon the different types of eigenvalues that one obtains from solving
the eigenvalue equation, det(A− λI) = 0. The nature of these roots indicate
the form of the general solution. On the next page we summarize the classi-
fication of solutions in terms of the eigenvalues of the coefficient matrix. We
first make some general remarks about the plausibility of these solutions and
then provide examples in the following section to clarify the matrix methods
for our two dimensional systems.

The construction of the general solution in Case I is straight forward.
However, the other two cases need a little explanation.

2 Recall that linear independence means c1x1(t)+c2x2(t) = 0 if and only if c1, c2 =
0. The reader should derive the condition on the xi for linear independence.
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Classification of the Solutions for Two
Linear First Order Differential Equations

1. Case I: Two real, distinct roots.
Solve the eigenvalue problem Av = λv for each eigenvalue obtaining
two eigenvectors v1,v2. Then write the general solution as a linear
combination x(t) = c1e

λ1tv1 + c2e
λ2tv2

2. Case II: One Repeated Root
Solve the eigenvalue problem Av = λv for one eigenvalue λ, obtain-
ing the first eigenvector v1. One then needs a second linearly indepen-
dent solution. This is obtained by solving the nonhomogeneous problem
Av2 − λv2 = v1 for v2.
The general solution is then given by x(t) = c1e

λtv1 + c2e
λt(v2 + tv1).

3. Case III: Two complex conjugate roots.
Solve the eigenvalue problem Ax = λx for one eigenvalue, λ = α+ iβ,
obtaining one eigenvector v. Note that this eigenvector may have com-
plex entries. Thus, one can write the vector y(t) = eλtv = eαt(cosβt+
i sinβt)v. Now, construct two linearly independent solutions to the
problem using the real and imaginary parts of y(t) : y1(t) = Re(y(t))
and y2(t) = Im(y(t)). Then the general solution can be written as
x(t) = c1y1(t) + c2y2(t).

Let’s consider Case III. Note that since the original system of equations
does not have any i’s, then we would expect real solutions. So, we look at the
real and imaginary parts of the complex solution. We have that the complex
solution satisfies the equation

d

dt
[Re(y(t)) + iIm(y(t))] = A[Re(y(t)) + iIm(y(t))].

Differentiating the sum and splitting the real and imaginary parts of the
equation, gives

d

dt
Re(y(t)) + i

d

dt
Im(y(t)) = A[Re(y(t))] + iA[Im(y(t))].

Setting the real and imaginary parts equal, we have

d

dt
Re(y(t)) = A[Re(y(t))],

and
d

dt
Im(y(t)) = A[Im(y(t))].

Therefore, the real and imaginary parts each are linearly independent solutions
of the system and the general solution can be written as a linear combination
of these expressions.



48 2 Systems of Differential Equations

We now turn to Case II. Writing the system of first order equations as
a second order equation for x(t) with the sole solution of the characteristic
equation, λ = 1

2 (a+ d), we have that the general solution takes the form

x(t) = (c1 + c2t)e
λt.

This suggests that the second linearly independent solution involves a term
of the form vteλt. It turns out that the guess that works is

x = teλtv1 + eλtv2.

Inserting this guess into the system x′ = Ax yields

(teλtv1 + eλtv2)
′ = A

[
teλtv1 + eλtv2

]
.

eλtv1 + λteλtv1 + λeλtv2 = λteλtv1 + eλtAv2.

eλt (v1 + λv2) = eλtAv2. (2.42)

Noting this is true for all t, we find that

v1 + λv2 = Av2. (2.43)

Therefore,
(A− λI)v2 = v1.

We know everything except for v2. So, we just solve for it and obtain the
second linearly independent solution.

2.6 Examples of the Matrix Method

Here we will give some examples for typical systems for the three cases men-
tioned in the last section.

Example 2.14. A =

(
4 2
3 3

)

.

Eigenvalues: We first determine the eigenvalues.

0 =

∣
∣
∣
∣

4 − λ 2
3 3 − λ

∣
∣
∣
∣

(2.44)

Therefore,

0 = (4 − λ)(3 − λ) − 6

0 = λ2 − 7λ+ 6

0 = (λ− 1)(λ− 6) (2.45)

The eigenvalues are then λ = 1, 6. This is an example of Case I.
Eigenvectors: Next we determine the eigenvectors associated with each

of these eigenvalues. We have to solve the system Av = λv in each case.
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Case λ = 1.
(

4 2
3 3

)(
v1
v2

)

=

(
v1
v2

)

(2.46)

(
3 2
3 2

)(
v1
v2

)

=

(
0
0

)

(2.47)

This gives 3v1 + 2v2 = 0. One possible solution yields an eigenvector of

(
v1
v2

)

=

(
2
−3

)

.

Case λ = 6.

(
4 2
3 3

)(
v1
v2

)

= 6

(
v1
v2

)

(2.48)

(
−2 2
3 −3

)(
v1
v2

)

=

(
0
0

)

(2.49)

For this case we need to solve −2v1 + 2v2 = 0. This yields

(
v1
v2

)

=

(
1
1

)

.

General Solution: We can now construct the general solution.

x(t) = c1e
λ1tv1 + c2e

λ2tv2

= c1e
t

(
2
−3

)

+ c2e
6t

(
1
1

)

=

(
2c1e

t + c2e
6t

−3c1e
t + c2e

6t

)

. (2.50)

Example 2.15. A =

(
3 −5
1 −1

)

.

Eigenvalues: Again, one solves the eigenvalue equation.

0 =

∣
∣
∣
∣

3 − λ −5
1 −1 − λ

∣
∣
∣
∣

(2.51)

Therefore,

0 = (3 − λ)(−1 − λ) + 5

0 = λ2 − 2λ+ 2

λ =
−(−2) ±

√

4 − 4(1)(2)

2
= 1 ± i. (2.52)
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The eigenvalues are then λ = 1 + i, 1 − i. This is an example of Case III.
Eigenvectors: In order to find the general solution, we need only find the

eigenvector associated with 1 + i.
(

3 −5
1 −1

)(
v1
v2

)

= (1 + i)

(
v1
v2

)

(
2 − i −5

1 −2 − i

)(
v1
v2

)

=

(
0
0

)

. (2.53)

We need to solve (2 − i)v1 − 5v2 = 0. Thus,

(
v1
v2

)

=

(
2 + i

1

)

. (2.54)

Complex Solution: In order to get the two real linearly independent
solutions, we need to compute the real and imaginary parts of veλt.

eλt

(
2 + i

1

)

= e(1+i)t

(
2 + i

1

)

= et(cos t+ i sin t)

(
2 + i

1

)

= et

(
(2 + i)(cos t+ i sin t)

cos t+ i sin t

)

= et

(
(2 cos t− sin t) + i(cos t+ 2 sin t)

cos t+ i sin t

)

= et

(
2 cos t− sin t

cos t

)

+ iet

(
cos t+ 2 sin t

sin t

)

.

General Solution: Now we can construct the general solution.

x(t) = c1e
t

(
2 cos t− sin t
cos t

)

+ c2e
t

(
cos t+ 2 sin t

sin t

)

= et

(
c1(2 cos t− sin t) + c2(cos t+ 2 sin t)

c1 cos t+ c2 sin t

)

. (2.55)

Note: This can be rewritten as

x(t) = et cos t

(
2c1 + c2
c1

)

+ et sin t

(
2c2 − c1
c2

)

.

Example 2.16. A =

(
7 −1
9 1

)

.

Eigenvalues:

0 =

∣
∣
∣
∣

7 − λ −1
9 1 − λ

∣
∣
∣
∣

(2.56)
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Therefore,

0 = (7 − λ)(1 − λ) + 9

0 = λ2 − 8λ+ 16

0 = (λ− 4)2. (2.57)

There is only one real eigenvalue, λ = 4. This is an example of Case II.
Eigenvectors: In this case we first solve for v1 and then get the second

linearly independent vector.

(
7 −1
9 1

)(
v1
v2

)

= 4

(
v1
v2

)

(
3 −1
9 −3

)(
v1
v2

)

=

(
0
0

)

. (2.58)

Therefore, we have

3v1 − v2 = 0, ⇒
(
v1
v2

)

=

(
1
3

)

.

Second Linearly Independent Solution:
Now we need to solve Av2 − λv2 = v1.

(
7 −1
9 1

)(
u1

u2

)

− 4

(
u1

u2

)

=

(
1
3

)

(
3 −1
9 −3

)(
u1

u2

)

=

(
1
3

)

. (2.59)

Expanding the matrix product, we obtain the system of equations

3u1 − u2 = 1

9u1 − 3u2 = 3. (2.60)

The solution of this system is

(
u1

u2

)

=

(
1
2

)

.

General Solution: We construct the general solution as

y(t) = c1e
λtv1 + c2e

λt(v2 + tv1).

= c1e
4t

(
1
3

)

+ c2e
4t

[(
1
2

)

+ t

(
1
3

)]

= e4t

(
c1 + c2(1 + t)

3c1 + c2(2 + 3t)

)

. (2.61)
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2.6.1 Planar Systems - Summary

The reader should have noted by now that there is a connection between the
behavior of the solutions obtained in Section 2.2 and the eigenvalues found
from the coefficient matrices in the previous examples. Here we summarize
some of these cases.

Type Figure Eigenvalues Stability

Node Real λ, same signs λ > 0, stable

Saddle Real λ opposite signs Mostly Unstable

Center λ pure imaginary —

Focus/Spiral Complex λ, Re(λ) 6= 0 Re(λ > 0), stable
Degenerate Node Repeated roots, λ > 0, stable
Line of Equilibria One zero eigenvalue λ > 0, stable

Table 2.1. List of typical behaviors in planar systems.

The connection, as we have seen, is that the characteristic equation for
the associated second order differential equation is the same as the eigenvalue
equation of the coefficient matrix for the linear system. However, one should
be a little careful in cases in which the coefficient matrix in not diagonalizable.
In Table 2.2 are three examples of systems with repeated roots. The reader
should look at these systems and look at the commonalities and differences
in these systems and their solutions. In these cases one has unstable nodes,
though they are degenerate in that there is only one accessible eigenvector.

2.7 Theory of Homogeneous Constant Coefficient

Systems

There is a general theory for solving homogeneous, constant coefficient sys-
tems of first order differential equations. We begin by once again recalling the
specific problem (2.12). We obtained the solution to this system as

x(t) = c1e
t + c2e

−4t,

y(t) =
1

3
c1e

t − 1

2
c2e

−4t. (2.62)
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System 1 System 2 System 3

x
K3 K2 K1 0 1 2 3

y

K3

K2

K1

1

2

3
a = 2, b = 0, c = 0, d = 2

x
K3 K2 K1 0 1 2 3

y

K3

K2

K1

1

2

3
a = 0, b = 1, c = -4, d = 4

x
K3 K2 K1 0 1 2 3

y

K3

K2

K1

1

2

3
a = 2, b = 1, c = 0, d = 2

x′ =

(
2 0
0 2

)

x x′ =

(
0 1
−4 4

)

x x′ =

(
2 1
0 2

)

x

Table 2.2. Three examples of systems with a repeated root of λ = 2.

This time we rewrite the solution as

x =

(
c1e

t + c2e
−4t

1
3c1e

t − 1
2c2e

−4t

)

=

(
et e−4t

1
3e

t − 1
2e

−4t

)(
c1
c2

)

≡ Φ(t)C. (2.63)

Thus, we can write the general solution as a 2 × 2 matrix Φ times an arbi-
trary constant vector. The matrix Φ consists of two columns that are linearly
independent solutions of the original system. This matrix is an example of
what we will define as the Fundamental Matrix of solutions of the system. So,
determining the Fundamental Matrix will allow us to find the general solution
of the system upon multiplication by a constant matrix. In fact, we will see
that it will also lead to a simple representation of the solution of the initial
value problem for our system. We will outline the general theory.

Consider the homogeneous, constant coefficient system of first order dif-
ferential equations

dx1

dt
= a11x1 + a12x2 + . . .+ a1nxn,

dx2

dt
= a21x1 + a22x2 + . . .+ a2nxn,

...
dxn

dt
= an1x1 + an2x2 + . . .+ annxn. (2.64)

As we have seen, this can be written in the matrix form x′ = Ax, where
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x =








x1

x2

...
xn








and

A =








a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann







.

Now, consider m vector solutions of this system: φ1(t), φ2(t), . . . φm(t).
These solutions are said to be linearly independent on some domain if

c1φ1(t) + c2φ2(t) + . . .+ cmφm(t) = 0

for all t in the domain implies that c1 = c2 = . . . = cm = 0.
Let φ1(t), φ2(t), . . . φn(t) be a set of n linearly independent set of solutions

of our system, called a fundamental set of solutions. We construct a matrix
from these solutions using these solutions as the column of that matrix. We
define this matrix to be the fundamental matrix solution. This matrix takes
the form

Φ =
(
φ1 . . . φn

)
=








φ11 φ12 · · · φ1n

φ21 φ22 · · · φ2n

...
...

. . .
...

φn1 φn2 · · · φnn







.

What do we mean by a “matrix” solution? We have assumed that each φk

is a solution of our system. Therefore, we have that φ′k = Aφk, for k = 1, . . . , n.
We say that Φ is a matrix solution because we can show that Φ also satisfies
the matrix formulation of the system of differential equations. We can show
this using the properties of matrices.

d

dt
Φ =

(
φ′1 . . . φ

′
n

)

=
(
Aφ1 . . . Aφn

)

= A
(
φ1 . . . φn

)

= AΦ. (2.65)

Given a set of vector solutions of the system, when are they linearly inde-
pendent? We consider a matrix solution Ω(t) of the system in which we have
n vector solutions. Then, we define the Wronskian of Ω(t) to be

W = detΩ(t).

If W (t) 6= 0, then Ω(t) is a fundamental matrix solution.
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Before continuing, we list the fundamental matrix solutions for the set of
examples in the last section. (Refer to the solutions from those examples.) Fur-
thermore, note that the fundamental matrix solutions are not unique as one
can multiply any column by a nonzero constant and still have a fundamental
matrix solution.

Example 2.14 A =

(
4 2
3 3

)

.

Φ(t) =

(
2et e6t

−3et e6t

)

.

We should note in this case that the Wronskian is found as

W = detΦ(t)

=

∣
∣
∣
∣

2et e6t

−3et e6t

∣
∣
∣
∣

= 5e7t 6= 0. (2.66)

Example 2.15 A =

(
3 −5
1 −1

)

.

Φ(t) =

(
et(2 cos t− sin t) et(cos t+ 2 sin t)

et cos t et sin t

)

.

Example 2.16 A =

(
7 −1
9 1

)

.

Φ(t) =

(
e4t e4t(1 + t)
3e4t e4t(2 + 3t)

)

.

So far we have only determined the general solution. This is done by the
following steps:

Procedure for Determining the General Solution

1. Solve the eigenvalue problem (A− λI)v = 0.
2. Construct vector solutions from veλt. The method depends if

one has real or complex conjugate eigenvalues.
3. Form the fundamental solution matrix Φ(t) from the vector

solution.
4. The general solution is given by x(t) = Φ(t)C for C an arbi-

trary constant vector.

We are now ready to solve the initial value problem:

x′ = Ax, x(t0) = x0.

Starting with the general solution, we have that
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x0 = x(t0) = Φ(t0)C.

As usual, we need to solve for the ck’s. Using matrix methods, this is now
easy. Since the Wronskian is not zero, then we can invert Φ at any value of t.
So, we have

C = Φ−1(t0)x0.

Putting C back into the general solution, we obtain the solution to the initial
value problem:

x(t) = Φ(t)Φ−1(t0)x0.

You can easily verify that this is a solution of the system and satisfies the
initial condition at t = t0.

The matrix combination Φ(t)Φ−1(t0) is useful. So, we will define the re-
sulting product to be the principal matrix solution, denoting it by

Ψ(t) = Φ(t)Φ−1(t0).

Thus, the solution of the initial value problem is x(t) = Ψ(t)x0. Furthermore,
we note that Ψ(t) is a solution to the matrix initial value problem

x′ = Ax, x(t0) = I,

where I is the n× n identity matrix.

Matrix Solution of the Homogeneous Problem

In summary, the matrix solution of

dx

dt
= Ax, x(t0) = x0

is given by
x(t) = Ψ(t)x0 = Φ(t)Φ−1(t0)x0,

where Φ(t) is the fundamental matrix solution and Ψ(t) is the prin-
cipal matrix solution.

Example 2.17. Let’s consider the matrix initial value problem

x′ = 5x+ 3y

y′ = −6x− 4y, (2.67)

satisfying x(0) = 1, y(0) = 2. Find the solution of this problem.
We first note that the coefficient matrix is

A =

(
5 3
−6 −4

)

.

The eigenvalue equation is easily found from
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0 = −(5 − λ)(4 + λ) + 18

= λ2 − λ− 2

= (λ− 2)(λ+ 1). (2.68)

So, the eigenvalues are λ = −1, 2. The corresponding eigenvectors are found
to be

v1 =

(
1
−2

)

, v2 =

(
1
−1

)

.

Now we construct the fundamental matrix solution. The columns are ob-
tained using the eigenvectors and the exponentials, eλt :

φ1(t) =

(
1
−2

)

e−t, φ1(t) =

(
1
−1

)

e2t.

So, the fundamental matrix solution is

Φ(t) =

(
e−t e2t

−2e−t −e2t

)

.

The general solution to our problem is then

x(t) =

(
e−t e2t

−2e−t −e2t

)

C

for C is an arbitrary constant vector.
In order to find the particular solution of the initial value problem, we

need the principal matrix solution. We first evaluate Φ(0), then we invert it:

Φ(0) =

(
1 1
−2 −1

)

⇒ Φ−1(0) =

(
−1 −1
2 1

)

.

The particular solution is then

x(t) =

(
e−t e2t

−2e−t −e2t

)(
−1 −1
2 1

)(
1
2

)

=

(
e−t e2t

−2e−t −e2t

)(
−3
4

)

=

(
−3e−t + 4e2t

6e−t − 4e2t

)

(2.69)

Thus, x(t) = −3e−t + 4e2t and y(t) = 6e−t − 4e2t.

2.8 Nonhomogeneous Systems

Before leaving the theory of systems of linear, constant coefficient systems,
we will discuss nonhomogeneous systems. We would like to solve systems of
the form
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x′ = A(t)x + f(t). (2.70)

We will assume that we have found the fundamental matrix solution of the
homogeneous equation. Furthermore, we will assume that A(t) and f(t) are
continuous on some common domain.

As with second order equations, we can look for solutions that are a sum
of the general solution to the homogeneous problem plus a particular solution
of the nonhomogeneous problem. Namely, we can write the general solution
as

x(t) = Φ(t)C + xp(t),

where C is an arbitrary constant vector, Φ(t) is the fundamental matrix so-
lution of x′ = A(t)x, and

x′
p = A(t)xp + f(t).

Such a representation is easily verified.
We need to find the particular solution, xp(t). We can do this by applying

The Method of Variation of Parameters for Systems. We consider a solution in
the form of the solution of the homogeneous problem, but replace the constant
vector by unknown parameter functions. Namely, we assume that

xp(t) = Φ(t)c(t).

Differentiating, we have that

x′
p = Φ′c + Φc′ = AΦc + Φc′,

or
x′

p −Axp = Φc′.

But the left side is f . So, we have that,

Φc′ = f ,

or, since Φ is invertible (why?),

c′ = Φ−1f .

In principle, this can be integrated to give c. Therefore, the particular solution
can be written as

xp(t) = Φ(t)

∫ t

Φ−1(s)f(s) ds. (2.71)

This is the variation of parameters formula.
The general solution of Equation (2.70) has been found as

x(t) = Φ(t)C + Φ(t)

∫ t

Φ−1(s)f(s) ds. (2.72)
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We can use the general solution to find the particular solution of an initial
value problem consisting of Equation (2.70) and the initial condition x(t0) =
x0. This condition is satisfied for a solution of the form

x(t) = Φ(t)C + Φ(t)

∫ t

t0

Φ−1(s)f(s) ds (2.73)

provided
x0 = x(t0) = Φ(t0)C.

This can be solved for C as in the last section. Inserting the solution back
into the general solution (2.73), we have

x(t) = Φ(t)Φ−1(t0)x0 + Φ(t)

∫ t

t0

Φ−1(s)f(s) ds (2.74)

This solution can be written a little neater in terms of the principal matrix
solution, Ψ(t) = Φ(t)Φ−1(t0) :

x(t) = Ψ(t)x0 + Ψ(t)

∫ t

t0

Ψ−1(s)f(s) ds (2.75)

Finally, one further simplification occurs when A is a constant matrix,
which are the only types of problems we have solved in this chapter. In this
case, we have that Ψ−1(t) = Ψ(−t). So, computing Ψ−1(t) is relatively easy.

Example 2.18. x′′ + x = 2 cos t, x(0) = 4, x′(0) = 0. This example can be
solved using the Method of Undetermined Coefficients. However, we will use
the matrix method described in this section.

First, we write the problem in matrix form. The system can be written as

x′ = y
y′ = −x+ 2 cos t.

(2.76)

Thus, we have a nonhomogeneous system of the form

x′ = Ax + f =

(
0 1
−1 0

)(
x
y

)

+

(
0

2 cos t

)

.

Next we need the fundamental matrix of solutions of the homogeneous
problem. We have that

A =

(
0 1
−1 0

)

.

The eigenvalues of this matrix are λ = ±i. An eigenvector associated with

λ = i is easily found as

(
1
i

)

. This leads to a complex solution
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(
1
i

)

eit =

(
cos t+ i sin t
i cos t− sin t

)

.

From this solution we can construct the fundamental solution matrix

Φ(t) =

(
cos t sin t
− sin t cos t

)

.

So, the general solution to the homogeneous problem is

xh = Φ(t)C =

(
c1 cos t+ c2 sin t
−c1 sin t+ c2 cos t

)

.

Next we seek a particular solution to the nonhomogeneous problem. From
Equation (2.73) we see that we need Φ−1(s)f(s). Thus, we have

Φ−1(s)f(s) =

(
cos s − sin s
sin s cos s

)(
0

2 cos s

)

=

(
−2 sin s cos s

2 cos2 s

)

. (2.77)

We now compute

Φ(t)

∫ t

t0

Φ−1(s)f(s) ds =

(
cos t sin t
− sin t cos t

)∫ t

t0

(
−2 sin s cos s

2 cos2 s

)

ds

=

(
cos t sin t
− sin t cos t

)(
− sin2 t

t+ 1
2 sin(2t)

)

=

(
t sin t

sin t+ t cos t

)

. (2.78)

therefore, the general solution is

x =

(
c1 cos t+ c2 sin t
−c1 sin t+ c2 cos t

)

+

(
t sin t

sin t+ t cos t

)

.

The solution to the initial value problem is

x =

(
cos t sin t
− sin t cos t

)(
4
0

)

+

(
t sin t

sin t+ t cos t

)

,

or

x =

(
4 cos t+ t sin t
−3 sin t+ t cos t

)

.

2.9 Applications

In this section we will describe several applications leading to systems of
differential equations. In keeping with common practice in areas like physics,
we will denote differentiation with respect to time as
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ẋ =
dx

dt
.

We will look mostly at linear models and later modify some of these models
to include nonlinear terms.

2.9.1 Spring-Mass Systems

There are many problems in physics that result in systems of equations. This is
because the most basic law of physics is given by Newton’s Second Law, which
states that if a body experiences a net force, it will accelerate. In particular,
the net force is proportional to the acceleration with a proportionality constant
called the mass, m. This is summarized as

∑

F = ma.

Since a = ẍ, Newton’s Second Law is mathematically a system of second
order differential equations for three dimensional problems, or one second
order differential equation for one dimensional problems. If there are several
masses, then we would naturally end up with systems no matter how many
dimensions are involved.

A standard problem encountered in a first course in differential equations
is that of a single block on a spring as shown in Figure 2.18. The net force in
this case is the restoring force of the spring given by Hooke’s Law,

Fs = −kx,

where k > 0 is the spring constant. Here x is the elongation of the spring, or
the displacement of the block from equilibrium. When x is positive, the spring
force is negative and when x is negative the spring force is positive. We have
depicted a horizontal system sitting on a frictionless surface.

A similar model can be provided for vertically oriented springs. Place the
block on a vertically hanging spring. It comes to equilibrium, stretching the
spring by ℓ0. Newton’s Second Law gives

−mg + kℓ0 = 0.

Now, pulling the mass further by x0, and releasing it, the mass begins to
oscillate. Letting x be the displacement from the new equilibrium, Newton’s
Second Law now gives mẍ = −mg + k(ℓ0 − x) = −kx.

In both examples (a horizontally or vetically oscillating mass) Newton’s
Second Law of motion reults in the differential equation

mẍ+ kx = 0. (2.79)

This is the equation for simple harmonic motion which we have already en-
countered in Chapter 1.
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m

k

x

Fig. 2.18. Spring-Mass system.

This second order equation can be written as a system of two first order
equations.

x′ = y

y′ = − k
mx. (2.80)

The coefficient matrix for this system is

A =

(
0 1

−ω2 0

)

,

where ω2 = k
m . The eigenvalues of this system are λ = ±iω and the solutions

are simple sines and cosines,

x(t) = c1 cosωt+ c2 sinωt,

y(t) = ω(−c1 sinωt+ c2 cosωt). (2.81)

We further note that ω is called the angular frequency of oscillation and
is given in rad/s. The frequency of oscillation is

f =
ω

2π
.

It typically has units of s−1, cps, or Hz. The multiplicative inverse has units
of time and is called the period,

T =
1

f
.

Thus, the period of oscillation for a mass m on a spring with spring constant
k is given by

T = 2π

√
m

k
. (2.82)

Of course, we did not need to convert the last problem into a system. In
fact, we had seen this equation in Chapter 1. However, when one considers
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Fig. 2.19. Spring-Mass system for two masses and two springs.

more complicated spring-mass systems, systems of differential equations occur
naturally. Consider two blocks attached with two springs as shown in Figure
2.19. In this case we apply Newton’s second law for each block.

First, consider the forces acting on the first block. The first spring is
stretched by x1. This gives a force of F1 = −k1x1. The second spring may also
exert a force on the block depending if it is stretched, or not. If both blocks
are displaced by the same amount, then the spring is not displaced. So, the
amount by which the spring is displaced depends on the relative displacements
of the two masses. This results in a second force of F2 = k2(x2 − x1).

There is only one spring connected to mass two. Again the force depends
on the relative displacement of the masses. It is just oppositely directed to
the force which mass one feels from this spring.

Combining these forces and using Newton’s Second Law for both masses,
we have the system of second order differential equations

m1ẍ1 = −k1x1 + k2(x2 − x1)

m2ẍ2 = −k2(x2 − x1). (2.83)

One can rewrite this system of two second order equations as a system
of four first order equations. This is done by introducing two new variables
x3 = ẋ1 and x4 = ẋ2. Note that these physically are the velocities of the two
blocks.

The resulting system of first order equations is given as

ẋ1 = x3

ẋ2 = x4

ẋ3 = − k1

m1
x1 +

k2

m1
(x2 − x1)

ẋ4 = − k2

m2
(x2 − x1)

(2.84)
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We can write our new system in matrix form as







ẋ1

ẋ2

ẋ3

ẋ4







=







0 0 1 0
0 0 0 1

−k1+k2

m1

k2

m1
0 0

k2

m2
− k2

m2
0 0













x1

x2

x3

x4







(2.85)

2.9.2 Electrical Circuits

Another problem often encountered in a first year physics class is that of an
LRC series circuit. This circuit is pictured in Figure 2.20. The resistor is a
circuit element satisfying Ohm’s Law. The capacitor is a device that stores
electrical energy and an inductor, or coil, stores magnetic energy.

The physics for this problem stems from Kirchoff’s Rules for circuits. Since
there is only one loop, we will only need Kirchoff’s Loop Rule. Namely, the
sum of the drops in electric potential are set equal to the rises in electric
potential. The potential drops across each circuit element are given by

1. Resistor: VR = IR.
2. Capacitor: VC = q

C .

3. Inductor: VL = L dI
dt .

R C L

V(t)

Fig. 2.20. Series LRC Circuit.

Adding these potential drops and setting the sum equal to the voltage
supplied by the voltage source, V (t), we obtain

IR +
q

C
+ L

dI

dt
= V (t).

Furthermore, we recall that the current is defined as I = dq
dt . where q is the

charge in the circuit. Since both q and I are unknown, we can replace the
current by its expression in terms of the charge to obtain

Lq̈ +Rq̇ +
1

C
q = V (t). (2.86)
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This is a second order differential equation for q(t). One can set up a system
of equations and proceed to solve them. However, this is a constant coefficient
differential equation and can also be solved using the methods in Chapter 1.

In the next examples we will look at special cases that arise for the se-
ries LRC circuit equation. These include RC circuits, solvable by first order
methods and LC circuits, leading to oscillatory behavior.

Example 2.19. RC Circuits
We first consider the case of an RC circuit in which there is no inductor.

Also, we will consider what happens when one charges a capacitor with a DC
battery (V (t) = V0) and when one discharges a charged capacitor (V (t) = 0).

For charging a capacitor, we have the initial value problem

R
dq

dt
+
q

C
= V0, q(0) = 0. (2.87)

This equation is an example of a linear first order equation for q(t). However,
we can also rewrite this equation and solve it as a separable equation, since
V0 is a constant. We will do the former only as another example of finding the
integrating factor.

We first write the equation in standard form:

dq

dt
+

q

RC
=
V0

R
. (2.88)

The integrating factor is then

µ(t) = e
∫

dt
RC = et/RC .

Thus,
d

dt

(

qet/RC
)

=
V0

R
et/RC . (2.89)

Integrating, we have

qet/RC =
V0

R

∫

et/RC dt = CV0e
t/RC +K. (2.90)

Note that we introduced the integration constant, K. Now divide out the
exponential to get the general solution:

q = CV0 +Ke−t/RC . (2.91)

(If we had forgotten the K, we would not have gotten a correct solution for
the differential equation.)

Next, we use the initial condition to get our particular solution. Namely,
setting t = 0, we have that

0 = q(0) = CV0 +K.
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So, K = −CV0. Inserting this into our solution, we have

q(t) = CV0(1 − e−t/RC). (2.92)

Now we can study the behavior of this solution. For large times the second
term goes to zero. Thus, the capacitor charges up, asymptotically, to the final
value of q0 = CV0. This is what we expect, because the current is no longer
flowing over R and this just gives the relation between the potential difference
across the capacitor plates when a charge of q0 is established on the plates.

0.06

0.02

0.04

0
0

Time t

12010080604020

q

0.07

0.05

0.03

0.01

Charging       Capacitor

Fig. 2.21. The charge as a function of time for a charging capacitor with R = 2.00
kΩ, C = 6.00 mF, and V0 = 12 V.

Let’s put in some values for the parameters. We let R = 2.00 kΩ, C = 6.00
mF, and V0 = 12 V. A plot of the solution is given in Figure 2.21. We see
that the charge builds up to the value of CV0 = 72 mC. If we use a smaller
resistance, R = 200 Ω, we see in Figure 2.22 that the capacitor charges to the
same value, but much faster.

The rate at which a capacitor charges, or discharges, is governed by the
time constant, τ = RC. This is the constant factor in the exponential. The
larger it is, the slower the exponential term decays. If we set t = τ , we find
that

q(τ) = CV0(1 − e−1) = (1 − 0.3678794412 . . .)q0 ≈ 0.63q0.
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Thus, at time t = τ , the capacitor has almost charged to two thirds of its final
value. For the first set of parameters, τ = 12s. For the second set, τ = 1.2s.
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0.02

0
20

Charging       Capacitor

Fig. 2.22. The charge as a function of time for a charging capacitor with R = 200
Ω, C = 6.00 mF, and V0 = 12 V.

Now, let’s assume the capacitor is charged with charge ±q0 on its plates. If
we disconnect the battery and reconnect the wires to complete the circuit, the
charge will then move off the plates, discharging the capacitor. The relevant
form of our initial value problem becomes

R
dq

dt
+
q

C
= 0, q(0) = q0. (2.93)

This equation is simpler to solve. Rearranging, we have

dq

dt
= − q

RC
. (2.94)

This is a simple exponential decay problem, which you can solve using sep-
aration of variables. However, by now you should know how to immediately
write down the solution to such problems of the form y′ = ky. The solution is

q(t) = q0e
−t/τ , τ = RC.
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We see that the charge decays exponentially. In principle, the capacitor
never fully discharges. That is why you are often instructed to place a shunt
across a discharged capacitor to fully discharge it.

In Figure 2.23 we show the discharging of our two previous RC circuits.
Once again, τ = RC determines the behavior. At t = τ we have

q(τ) = q0e
−1 = (0.3678794412 . . .)q0 ≈ 0.37q0.

So, at this time the capacitor only has about a third of its original value.

q
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R = 200                 

Fig. 2.23. The charge as a function of time for a discharging capacitor with R = 2.00
kΩ or R = 200 Ω, and C = 6.00 mF, and q0 = 72 mC.
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Example 2.20. LC Circuits
Another simple result comes from studying LC circuits. We will now con-

nect a charged capacitor to an inductor. In this case, we consider the initial
value problem

Lq̈ +
1

C
q = 0, q(0) = q0, q̇(0) = I(0) = 0. (2.95)

Dividing out the inductance, we have

q̈ +
1

LC
q = 0. (2.96)

This equation is a second order, constant coefficient equation. It is of the
same form as the one we saw earlier for simple harmonic motion of a mass on
a spring. So, we expect oscillatory behavior. The characteristic equation is

r2 +
1

LC
= 0.

The solutions are

r1,2 = ± i√
LC

.

Thus, the solution of (2.96) is of the form

q(t) = c1 cos(ωt) + c2 sin(ωt), ω = (LC)−1/2. (2.97)

Inserting the initial conditions yields

q(t) = q0 cos(ωt). (2.98)

The oscillations that result are understandable. As the charge leaves the
plates, the changing current induces a changing magnetic field in the inductor.
The stored electrical energy in the capacitor changes to stored magnetic energy
in the inductor. However, the process continues until the plates are charged
with opposite polarity and then the process begins in reverse. The charged
capacitor then discharges and the capacitor eventually returns to its original
state and the whole system repeats this over and over.

The frequency of this simple harmonic motion is easily found. It is given
by

f =
ω

2π
=

1

2π

1√
LC

. (2.99)

This is called the tuning frequency because of its role in tuning circuits.
Of course, this is an ideal situation. There is always resistance in the

circuit, even if only a small amount from the wires. So, we really need to
account for resistance, or even add a resistor. This leads to a slightly more
complicated system in which damping will be present.
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More complicated circuits are possible by looking at parallel connections,
or other combinations, of resistors, capacitors and inductors. This will result
in several equations for each loop in the circuit, leading to larger systems of
differential equations. an example of another circuit setup is shown in Figure
2.24. This is not a problem that can be covered in the first year physics course.

R

C LV(t)

R1 2

Fig. 2.24. A circuit with two loops containing several different circuit elements.

There are two loops, indicated in Figure 2.25 as traversed clockwise. For
each loop we need to apply Kirchoff’s Loop Rule. There are three oriented
currents, labeled Ii, i = 1, 2, 3. Corresponding to each current is a changing
charge, qi such that

Ii =
dqi
dt
, i = 1, 2, 3.

For loop one we have

I1R1 +
q2
C

= V (t). (2.100)

For loop two

I3R2 + L
dI3
dt

=
q2
C
. (2.101)

Fig. 2.25. The previous parallel circuit with the directions indicated for traversing
the loops in Kirchoff’s Laws.

We have three unknown functions for the charge. Once we know the charge
functions, differentiation will yield the currents. However, we only have two
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equations. We need a third equation. This is found from Kirchoff’s Point
(Junction) Rule. Consider the points A and B in Figure 2.25. Any charge
(current) entering these junctions must be the same as the total charge (cur-
rent) leaving the junctions. For point A we have

I1 = I2 + I3, (2.102)

or
q̇1 = q̇2 + q̇3. (2.103)

Equations (2.100), (2.101), and (2.103) form a coupled system of differen-
tial equations for this problem. There are both first and second order deriva-
tives involved. We can write the whole system in terms of charges as

R1q̇1 +
q2
C

= V (t)

R2q̇3 + Lq̈3 =
q2
C

q̇1 = q̇2 + q̇3. (2.104)

The question is whether, or not, we can write this as a system of first order
differential equations. Since there is only one second order derivative, we can
introduce the new variable q4 = q̇3. The first equation can be solved for q̇1.
The third equation can be solved for q̇2 with appropriate substitutions for the
other terms. q̇3 is gotten from the definition of q4 and the second equation
can be solved for q̈3 and substitutions made to obtain the system

q̇1 =
V

R1
− q2
R1C

q̇2 =
V

R1
− q2
R1C

− q4

q̇3 = q4

q̇4 =
q2
LC

− R2

L
q4.

So, we have a nonhomogeneous first order system of differential equations.
In the last section we learned how to solve such systems.

2.9.3 Love Affairs

The next application is one that has been studied by several authors as a cute
system involving relationships. One considers what happens to the affections
that two people have for each other over time. Let R denote the affection
that Romeo has for Juliet and J be the affection that Juliet has for Romeo.
positive values indicate love and negative values indicate dislike.

One possible model is given by
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dR

dt
= bJ

dJ

dt
= cR (2.105)

with b > 0 and c < 0. In this case Romeo loves Juliet the more she likes him.
But Juliet backs away when she finds his love for her increasing.

A typical system relating the combined changes in affection can be modeled
as

dR

dt
= aR+ bJ

dJ

dt
= cR+ dJ. (2.106)

Several scenarios are possible for various choices of the constants. For
example, if a > 0 and b > 0, Romeo gets more and more excited by Juliet’s
love for him. If c > 0 and d < 0, Juliet is being cautious about her relationship
with Romeo. For specific values of the parameters and initial conditions, one
can explore this match of an overly zealous lover with a cautious lover.

2.9.4 Predator Prey Models

Another common model studied is that of competing species. For example, we
could consider a population of rabbits and foxes. Left to themselves, rabbits
would tend to multiply, thus

dR

dt
= aR,

with a > 0. In such a model the rabbit population would grow exponentially.
Similarly, a population of foxes would decay without the rabbits to feed on.
So, we have that

dF

dt
= −bF

for b > 0.
Now, if we put these populations together on a deserted island, they would

interact. The more foxes, the rabbit population would decrease. However, the
more rabbits, the foxes would have plenty to eat and the population would
thrive. Thus, we could model the competing populations as

dR

dt
= aR− cF,

dF

dt
= −bF + dR, (2.107)

where all of the constants are positive numbers. Studying this coupled system
would lead to as study of the dynamics of these populations. We will discuss
other (nonlinear) systems in the next chapter.
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2.9.5 Mixture Problems

There are many types of mixture problems. Such problems are standard in
a first course on differential equations as examples of first order differential
equations. Typically these examples consist of a tank of brine, water contain-
ing a specific amount of salt with pure water entering and the mixture leaving,
or the flow of a pollutant into, or out of, a lake.

In general one has a rate of flow of some concentration of mixture entering
a region and a mixture leaving the region. The goal is to determine how much
stuff is in the region at a given time. This is governed by the equation

Rate of change of substance = Rate In − Rate Out.

This can be generalized to the case of two interconnected tanks. We provide
some examples.

Example 2.21. Single Tank Problem
A 50 gallon tank of pure water has a brine mixture with concentration of

2 pounds per gallon entering at the rate of 5 gallons per minute. [See Figure
2.26.] At the same time the well-mixed contents drain out at the rate of 5
gallons per minute. Find the amount of salt in the tank at time t. In all such
problems one assumes that the solution is well mixed at each instant of time.

Fig. 2.26. A typical mixing problem.

Let x(t) be the amount of salt at time t. Then the rate at which the salt
in the tank increases is due to the amount of salt entering the tank less that
leaving the tank. To figure out these rates, one notes that dx/dt has units of
pounds per minute. The amount of salt entering per minute is given by the
product of the entering concentration times the rate at which the brine enters.
This gives the correct units:
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(

2
pounds

gal

)(

5
gal

min

)

= 10
pounds

min
.

Similarly, one can determine the rate out as
(
x pounds

50 gal

)(

5
gal

min

)

=
x

10

pounds

min
.

Thus, we have
dx

dt
= 10 − x

10
.

This equation is easily solved using the methods for first order equations.

Example 2.22. Double Tank Problem

X Y

Fig. 2.27. The two tank problem.

One has two tanks connected together, labelled tank X and tank Y, as
shown in Figure 2.27. Let tank X initially have 100 gallons of brine made
with 100 pounds of salt. Tank Y initially has 100 gallons of pure water. Now
pure water is pumped into tank X at a rate of 2.0 gallons per minute. Some of
the mixture of brine and pure water flows into tank Y at 3 gallons per minute.
To keep the tank levels the same, one gallon of the Y mixture flows back into
tank X at a rate of one gallon per minute and 2.0 gallons per minute drains
out. Find the amount of salt at any given time in the tanks. What happens
over a long period of time?

In this problem we set up two equations. Let x(t) be the amount of salt in
tank X and y(t) the amount of salt in tank Y . Again, we carefully look at the
rates into and out of each tank in order to set up the system of differential
equations. We obtain the system

dx

dt
=

y

100
− 3x

100
dy

dt
=

3x

100
− 3y

100
. (2.108)
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This is a linear, homogenous constant coefficient system of two first order
equations, which we know how to solve.

2.9.6 Chemical Kinetics

There are many problems that come from studying chemical reactions. The
simplest reaction is when a chemical A turns into chemical B. This happens
at a certain rate, k > 0. This can be represented by the chemical formula

A
k

// B.

In this case we have that the rates of change of the concentrations of A, [A],
and B, [B], are given by

d[A]

dt
= −k[A]

d[B]

dt
= k[A] (2.109)

Think about this as it is a key to understanding the next reactions.
A more complicated reaction is given by

A
k1

// B
k2

// C.

In this case we can add to the above equation the rates of change of concen-
trations [B] and [C]. The resulting system of equations is

d[A]

dt
= −k1[A],

d[B]

dt
= k1[A] − k2[B],

d[C]

dt
= k2[B]. (2.110)

One can further consider reactions in which a reverse reaction is possible.
Thus, a further generalization occurs for the reaction

A
k1

// B
k3

oo

k2

// C.

The resulting system of equations is

d[A]

dt
= −k1[A] + k3[B],

d[B]

dt
= k1[A] − k2[B] − k3[B],

d[C]

dt
= k2[B]. (2.111)

More complicated chemical reactions will be discussed at a later time.
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2.9.7 Epidemics

Another interesting area of application of differential equation is in predicting
the spread of disease. Typically, one has a population of susceptible people or
animals. Several infected individuals are introduced into the population and
one is interested in how the infection spreads and if the number of infected
people drastically increases or dies off. Such models are typically nonlinear
and we will look at what is called the SIR model in the next chapter. In this
section we will model a simple linear model.

Let break the population into three classes. First, S(t) are the healthy
people, who are susceptible to infection. Let I(t) be the number of infected
people. Of these infected people, some will die from the infection and others
recover. Let’s assume that initially there in one infected person and the rest,
say N, are obviously healthy. Can we predict how many deaths have occurred
by time t?

Let’s try and model this problem using the compartmental analysis we had
seen in the mixing problems. The total rate of change of any population would
be due to those entering the group less those leaving the group. For example,
the number of healthy people decreases due infection and can increase when
some of the infected group recovers. Let’s assume that the rate of infection is
proportional to the number of healthy people,aS. Also, we assume that the
number who recover is proportional to the number of infected, rI. Thus, the
rate of change of the healthy people is found as

dS

dt
= −aS + rI.

Let the number of deaths be D(t). Then, the death rate could be taken to be
proportional to the number of infected people. So,

dD

dt
= dI

Finally, the rate of change of infectives is due to healthy people getting infected
and the infectives who either recover or die. Using the corresponding terms in
the other equations, we can write

dI

dt
= aS − rI − dI.

This linear system can be written in matrix form.

d

dt





S
I
D



 =





−a r 0
a −d− r 0
0 d 0









S
I
D



 . (2.112)

The eigenvalue equation for this system is

λ
[
λ2 + (a+ r + d)λ+ ad

]
= 0.

The reader can find the solutions of this system and determine if this is a
realistic model.
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2.10 Appendix: Diagonalization and Linear Systems

As we have seen, the matrix formulation for linear systems can be power-
ful, especially for n differential equations involving n unknown functions. Our
ability to proceed towards solutions depended upon the solution of eigen-
value problems. However, in the case of repeated eigenvalues we saw some
additional complications. This all depends deeply on the background linear
algebra. Namely, we relied on being able to diagonalize the given coefficient
matrix. In this section we will discuss the limitations of diagonalization and
introduce the Jordan canonical form.

We begin with the notion of similarity. Matrix A is similar to matrix B if
and only if there exists a nonsingular matrix P such that

B = P−1AP. (2.113)

Recall that a nonsingular matrix has a nonzero determinant and is invertible.
We note that the similarity relation is an equivalence relation. Namely, it

satisfies the following

1. A is similar to itself.
2. If A is similar to B, then B is similar to A.
3. If A is similar to B and B is similar to C, the A is similar to C.

Also, if A is similar to B, then they have the same eigenvalues. This follows
from a simple computation of the eigenvalue equation. Namely,

0 = det(B − λI)

= det(P−1AP − λP−1IP )

= det(P )−1 det(A− λI) det(P )

= det(A− λI). (2.114)

Therefore, det(A− λI) = 0 and λ is an eigenvalue of both A and B.
An n×n matrix A is diagonalizable if and only if A is similar to a diagonal

matrix D; i.e., there exists a nonsingular matrix P such that

D = P−1AP. (2.115)

One of the most important theorems in linear algebra is the Spectral The-
orem. This theorem tells us when a matrix can be diagonalized. In fact, it
goes beyond matrices to the diagonalization of linear operators. We learn in
linear algebra that linear operators can be represented by matrices once we
pick a particular representation basis. Diagonalization is simplest for finite
dimensional vector spaces and requires some generalization for infinite dimen-
sional vectors spaces. Examples of operators to which the spectral theorem
applies are self-adjoint operators (more generally normal operators on Hilbert
spaces). We will explore some of these ideas later in the course. The spectral
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theorem provides a canonical decomposition, called the spectral decomposi-
tion, or eigendecomposition, of the underlying vector space on which it acts.

The next theorem tells us how to diagonalize a matrix:

Theorem 2.23. Let A be an n × n matrix. Then A is diagonalizable if and
only if A has n linearly independent eigenvectors. If so, then

D = P−1AP.

If {v1, . . . , vn} are the eigenvectors of A and {λ1, . . . , λn} are the correspond-
ing eigenvalues, then vj is the jth column of P and Djj = λj .

A simpler determination results by noting

Theorem 2.24. Let A be an n×n matrix with n real and distinct eigenvalues.
Then A is diagonalizable.

Therefore, we need only look at the eigenvalues and determine diagonalizabil-
ity. In fact, one also has from linear algebra the following result.

Theorem 2.25. Let A be an n× n real symmetric matrix. Then A is diago-
nalizable.

Recall that a symmetric matrix is one whose transpose is the same as the
matrix, or Aij = Aji.

Example 2.26. Consider the matrix

A =





1 2 2
2 3 0
2 0 3





This is a real symmetric matrix. The characteristic polynomial is found to be

det(A− λI) = −(λ− 5)(λ− 3)(λ+ 1) = 0.

As before, we can determine the corresponding eigenvectors (for λ = −1, 3, 5,
respectively) as





−2
1
1



 ,





0
−1
1



 ,





1
1
1



 .

We can use these to construct the diagonalizing matrix P . Namely, we have

P−1AP =





−2 0 1
1 −1 1
1 1 1





−1



1 2 2
2 3 0
2 0 3









−2 0 1
1 −1 1
1 1 1



 =





−1 0 0
0 3 0
0 0 5



 . (2.116)
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Now diagonalization is an important idea in solving linear systems of first
order equations, as we have seen for simple systems. If our system is originally
diagonal, that means our equations are completely uncoupled. Let our system
take the form

dy

dt
= Dy, (2.117)

where D is diagonal with entries λi, i = 1, . . . , n. The system of equations,
y′i = λiyi, has solutions

yi(t) = cce
λit.

Thus, it is easy to solve a diagonal system.
Let A be similar to this diagonal matrix. Then

dy

dt
= P−1APy. (2.118)

This can be rewritten as
dPy

dt
= APy.

Defining x = Py, we have
dx

dt
= Ax. (2.119)

This simple derivation shows that if A is diagonalizable, then a transfor-
mation of the original system in x to new coordinates, or a new basis, results
in a simpler system in y.

However, it is not always possible to diagonalize a given square matrix.
This is because some matrices do not have enough linearly independent vec-
tors, or we have repeated eigenvalues. However, we have the following theorem:

Theorem 2.27. Every n× n matrix A is similar to a matrix of the form

J = diag[J1, J2, . . . , Jn],

where

Ji =










λi 1 0 · · · 0
0 λi 1 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 λi 1
0 0 · · · 0 λi










(2.120)

We will not go into the details of how one finds this Jordan Canonical
Form or proving the theorem. In practice you can use a computer algebra
system to determine this and the similarity matrix. However, we would still
need to know how to use it to solve our system of differential equations.
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Example 2.28. Let’s consider a simple system with the 3 × 3 Jordan block

A =





2 1 0
0 2 1
0 0 2



 .

The corresponding system of coupled first order differential equations takes
the form

dx1

dt
= 2x1 + x2,

dx2

dt
= 2x2 + x3,

dx3

dt
= 2x3. (2.121)

The last equation is simple to solve, giving x3(t) = c3e
2t. Inserting into

the second equation, you have a

dx2

dt
= 2x2 + c3e

2t.

Using the integrating factor, e−2t, one can solve this equation to get x2(t) =
(c2 + c3t)e

2t. Similarly, one can solve the first equation to obtain x1(t) =
(c1 + c2t+ 1

2c3t
2)e2t.

This should remind you of a problem we had solved earlier leading to the
generalized eigenvalue problem in (2.43). This suggests that there is a more
general theory when there are multiple eigenvalues and relating to Jordan
canonical forms.

Let’s write the solution we just obtained in vector form. We have

x(t) =



c1





1
0
0



+ c2





t
1
0



+ c3





1
2 t

2

t
1







 e2t. (2.122)

It looks like this solution is a linear combination of three linearly indepen-
dent solutions,

x = v1e
2λt

x = (tv1 + v2)e
λt

x = (
1

2
t2v1 + tv2 + v3)e

λt, (2.123)

where λ = 2 and the vectors satisfy the equations

(A− λI)v1 = 0,

(A− λI)v2 = v1,

(A− λI)v3 = v2, (2.124)
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and

(A− λI)v1 = 0,

(A− λI)2v2 = 0,

(A− λI)3v3 = 0. (2.125)

It is easy to generalize this result to build linearly independent solutions
corresponding to multiple roots (eigenvalues) of the characteristic equation.

Problems

2.1. Consider the system

x′ = −4x− y

y′ = x− 2y.

a. Determine the second order differential equation satisfied by x(t).
b. Solve the differential equation for x(t).
c. Using this solution, find y(t).
d. Verify your solutions for x(t) and y(t).
e. Find a particular solution to the system given the initial conditions x(0) =

1 and y(0) = 0.

2.2. Consider the following systems. Determine the families of orbits for each
system and sketch several orbits in the phase plane and classify them by their
type (stable node, etc.)

a.

x′ = 3x

y′ = −2y.

b.

x′ = −y
y′ = −5x.

c.

x′ = 2y

y′ = −3x.

d.

x′ = x− y

y′ = y.
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e.

x′ = 2x+ 3y

y′ = −3x+ 2y.

2.3. Use the transformations relating polar and Cartesian coordinates to prove
that

dθ

dt
=

1

r2

[

x
dy

dt
− y

dx

dt

]

.

2.4. In Equation (2.34) the exponential of a matrix was defined.

a. Let

A =

(
2 0
0 0

)

.

Compute eA.

b. Give a definition of cosA and compute cos

(
1 0
0 2

)

in simplest form.

c. Prove ePAP−1

= PeAP−1.

2.5. Consider the general system

x′ = ax+ by

y′ = cx+ dy.

Can one determine the family of trajectories for the general case? Recall, this
means we have to solve the first order equation

dy

dx
=
cx+ dy

ax+ by
.

[Actually, this equation is homogeneous of degree 0.] It can be written in the
form dy

dx = F
(

y
x

)
. For such equations, one can make the substitution z = y

x ,
or y(x) = xz(x), and obtain a separable equation for z.

a. Using the general system, show that z = z(x) satisfies and equation of the
form

x
dz

dx
= F (z) − z.

Identify the function F (z).
b. Use the equation for z(x) in part a to find the family of trajectories of the

system

x′ = x− y

y′ = x+ y.

First determine the appropriate F (z) and then solve the resulting sepa-
rable equation as a relation between z and x. Then write the solution of
the original equation in terms of x and y.
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c. Use polar coordinates to describe the family of solutions obtained. You can
rewrite the solution in polar coordinates and/or solve the system rewritten
in polar coordinates.

2.6. Find the eigenvalue(s) and eigenvector(s) for the following:

a.

(
4 2
3 3

)

b.

(
3 −5
1 −1

)

c.

(
4 1
0 4

)

d.





1 −1 4
3 2 −1
2 1 −1





2.7. Consider the following systems. For each system determine the coefficient
matrix. When possible, solve the eigenvalue problem for each matrix and use
the eigenvalues and eigenfunctions to provide solutions to the given systems.
Finally, in the common cases which you investigated in Problem 2.2, make
comparisons with your previous answers, such as what type of eigenvalues
correspond to stable nodes.

a.

x′ = 3x− y

y′ = 2x− 2y.

b.

x′ = −y
y′ = −5x.

c.

x′ = x− y

y′ = y.

d.

x′ = 2x+ 3y

y′ = −3x+ 2y.

e.

x′ = −4x− y

y′ = x− 2y.
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f.

x′ = x− y

y′ = x+ y.

2.8. For each of the following matrices consider the system x′ = Ax and

a. Find the fundamental solution matrix.
b. Find the principal solution matrix.

a.

A =

(
1 1
4 1

)

.

b.

A =

(
2 5
0 2

)

.

c.

A =

(
4 −13
2 −6

)

.

d.

A =





1 −1 4
3 2 −1
2 1 −1



 .

2.9. For the following problems

1) Rewrite the problem in matrix form.
2) Find the fundamental matrix solution.
3) Determine the general solution of the nonhomogeneous system.
4) Find the principal matrix solution.
5) Determine the particular solution of the initial value problem.

a. y′′ + y = 2 sin 3x, y(0) = 2, y′(0) = 0.
b. y′′ − 3y′ + 2y = 20e−2x, y(0) = 0, y′(0) = 6.

2.10. Prove Equation (2.75),

x(t) = Ψ(t)x0 + Ψ(t)

∫ t

t0

Ψ−1(s)f(s) ds,

starting with Equation (2.73).

2.11. Add a third spring connected to mass two in the coupled system shown
in Figure 2.19 to a wall on the far right. Assume that the masses are the same
and the springs are the same.

a. Model this system with a set of first order differential equations.
b. If the masses are all 2.0 kg and the spring constants are all 10.0 N/m,

then find the general solution for the system.
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c. Move mass one to the left (of equilibrium) 10.0 cm and mass two to the
right 5.0 cm. Let them go. find the solution and plot it as a function of
time. Where is each mass at 5.0 seconds?

2.12. Consider the series circuit in Figure 2.20 with L = 1.00 H, R = 1.00×102

Ω, C = 1.00 × 10−4 F, and V0 = 1.00 × 103 V.

a. Set up the problem as a system of two first order differential equations for
the charge and the current.

b. Suppose that no charge is present and no current is flowing at time t = 0
when V0 is applied. Find the current and the charge on the capacitor as
functions of time.

c. Plot your solutions and describe how the system behaves over time.

2.13. You live in a cabin in the mountains and you would like to provide
yourself with water from a water tank that is 25 feet above the level of the
pipe going into the cabin. [See Figure 2.28.] The tank is filled from an aquifer
125 ft below the surface and being pumped at a maximum rate of 7 gallons
per minute. As this flow rate is not sufficient to meet your daily needs, you
would like to store water in the tank and have gravity supply the needed
pressure. So, you design a cylindrical tank that is 35 ft high and has a 10 ft
diameter. The water then flows through pipe at the bottom of the tank. You
are interested in the height h of the water at time t. This in turn will allow
you to figure the water pressure.

Fig. 2.28. A water tank problem in the mountains.

First, the differential equation governing the flow of water from a tank
through an orifice is given as

dh

dt
=
K − αa

√
2gh

A
.

Here K is the rate at which water is being pumped into the top of the tank. A
is the cross sectional area of this tank. α is called the contraction coefficient,
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which measures the flow through the orifice, which has cross section a. We
will assume that α = 0.63 and that the water enters in a 6 in diameter PVC
pipe.

a. Assuming that the water tank is initially full, find the minimum flow rate
in the system during the first two hours.

b. What is the minimum water pressure during the first two hours? Namely,
what is the gauge pressure at the house? Note that ∆P = ρgH, where ρ is
the water density and H is the total height of the fluid (tank plus vertical
pipe). Note that ρg = 0.434 psi (pounds per square inch).

c. How long will it take for the tank to drain to 10 ft above the base of the
tank?

Other information you may need is 1 gallon = 231 in2 and g = 32.2 ft/s2.

2.14. Initially a 200 gallon tank is filled with pure water. At time t = 0 a salt
concentration with 3 pounds of salt per gallon is added to the container at
the rate of 4 gallons per minute, and the well-stirred mixture is drained from
the container at the same rate.

a. Find the number of pounds of salt in the container as a function of time.
b. How many minutes does it take for the concentration to reach 2 pounds

per gallon?
c. What does the concentration in the container approach for large values of

time? Does this agree with your intuition?
d. Assuming that the tank holds much more than 200 gallons, and everything

is the same except that the mixture is drained at 3 gallons per minute,
what would the answers to parts a and b become?

2.15. You make two gallons of chili for a party. The recipe calls for two tea-
spoons of hot sauce per gallon, but you had accidentally put in two tablespoons
per gallon. You decide to feed your guests the chili anyway. Assume that the
guests take 1 cup/min of chili and you replace what was taken with beans and
tomatoes without any hot sauce. [1 gal = 16 cups and 1 Tb = 3 tsp.]

a. Write down the differential equation and initial condition for the amount
of hot sauce as a function of time in this mixture-type problem.

b. Solve this initial value problem.
c. How long will it take to get the chili back to the recipe’s suggested con-

centration?

2.16. Consider the chemical reaction leading to the system in (2.111). Let
the rate constants be k1 = 0.20 ms−1, k2 = 0.05 ms−1, and k3 = 0.10 ms−1.
What do the eigenvalues of the coefficient matrix say about the behavior of
the system? Find the solution of the system assuming [A](0) = A0 = 1.0
µmol, [B](0) = 0, and [C](0) = 0. Plot the solutions for t = 0.0 to 50.0 ms
and describe what is happening over this time.



2.10 Appendix: Diagonalization and Linear Systems 87

2.17. Consider the epidemic model leading to the system in (2.112). Choose
the constants as a = 2.0 days−1, d = 3.0 days−1, and r = 1.0 days−1. What
are the eigenvalues of the coefficient matrix? Find the solution of the system
assuming an initial population of 1, 000 and one infected individual. Plot the
solutions for t = 0.0 to 5.0 days and describe what is happening over this
time. Is this model realistic?





3

Nonlinear Systems

3.1 Introduction

Most of your studies of differential equations to date have been the study
linear differential equations and common methods for solving them. However,
the real world is very nonlinear. So, why study linear equations? Because they
are more readily solved. As you may recall, we can use the property of linear
superposition of solutions of linear differential equations to obtain general
solutions. We will see that we can sometimes approximate the solutions of
nonlinear systems with linear systems in small regions of phase space.

In general, nonlinear equations cannot be solved obtaining general solu-
tions. However, we can often investigate the behavior of the solutions without
actually being able to find simple expressions in terms of elementary func-
tions. When we want to follow the evolution of these solutions, we resort to
numerically solving our differential equations. Such numerical methods need
to be executed with care and there are many techniques that can be used.
We will not go into these techniques in this course. However, we can make
use of computer algebra systems, or computer programs, already developed
for obtaining such solutions.

Nonlinear problems occur naturally. We will see problems from many of
the same fields we explored in Section 2.9. One example is that of population
dynamics. Typically, we have a certain population, y(t), and the differential
equation governing the growth behavior of this population is developed in a
manner similar to that used previously for mixing problems. We note that the
rate of change of the population is given by the Rate In minus the Rate Out.
The Rate In is given by the number of the species born per unit time. The
Rate Out is given by the number that die per unit time.

A simple population model can be obtained if one assumes that these rates
are linear in the population. Thus, we assume that the Rate In = by and the
Rate Out = my. Here we have denoted the birth rate as b and the mortality
rate as m, . This gives the rate of change of population as
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dy

dt
= by −my. (3.1)

Generally, these rates could depend upon time. In the case that they are
both constant rates, we can define k = b − m and we obtain the familiar
exponential model:

dy

dt
= ky.

This is easily solved and one obtains exponential growth (k > 0) or decay (k <
0). This model has been named after Malthus1, a clergyman who used this
model to warn of the impending doom of the human race if its reproductive
practices continued.

However, when populations get large enough, there is competition for re-
sources, such as space and food, which can lead to a higher mortality rate.
Thus, the mortality rate may be a function of the population size, m = m(y).
The simplest model would be a linear dependence, m = m̃ + cy. Then, the
previous exponential model takes the form

dy

dt
= ky − cy2. (3.2)

This is known as the logistic model of population growth. Typically, c is small
and the added nonlinear term does not really kick in until the population gets
large enough.

While one can solve this particular equation, it is instructive to study the
qualitative behavior of the solutions without actually writing down the explicit
solutions. Such methods are useful for more difficult nonlinear equations. We
will investigate some simple first order equations in the next section. In the
following section we present the analytic solution for completeness.

We will resume our studies of systems of equations and various applications
throughout the rest of this chapter. We will see that we can get quite a bit
of information about the behavior of solutions by using some of our earlier
methods for linear systems.

3.2 Autonomous First Order Equations

In this section we will review the techniques for studying the stability of
nonlinear first order autonomous equations. We will then extend this study
to looking at families of first order equations which are connected through a
parameter.

Recall that a first order autonomous equation is given in the form

1 Malthus, Thomas Robert. An Essay on the Principle of Population. Library of
Economics and Liberty. Retrieved August 2, 2007 from the World Wide Web:
http://www.econlib.org/library/Malthus/malPop1.html
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dy

dt
= f(y).

We will assume that f and ∂f
∂y are continuous functions of y, so that we know

that solutions of initial value problems exist and are unique.
We will recall the qualitative methods for studying autonomous equations

by considering the example
dy

dt
= y − y2. (3.3)

This is just an example of a logistic equation.
First, one determines the equilibrium, or constant, solutions given by y′ =

0. For this case, we have y − y2 = 0. So, the equilibrium solutions are y = 0
and y = 1. Sketching these solutions, we divide the ty-plane into three regions.
Solutions that originate in one of these regions at t = t0 will remain in that
region for all t > t0 since solutions cannot intersect. [Note that if two solutions
intersect then they have common values y1 at time t1. Using this information,
we could set up an initial value problem for which the initial condition is
y(t1) = y1. Since the two different solutions intersect at this point in the phase
plane, we would have an initial value problem with two different solutions
corresponding to the same initial condition. This contradicts the uniqueness
assumption stated above. We will leave the reader to explore this further in
the homework.]

Next, we determine the behavior of solutions in the three regions. Noting
that dy/dt gives the slope of any solution in the plane, then we find that the
solutions are monotonic in each region. Namely, in regions where dy/dt > 0,
we have monotonically increasing functions. We determine this from the right
side of our equation.

For example, in this problem y − y2 > 0 only for the middle region and
y− y2 < 0 for the other two regions. Thus, the slope is positive in the middle
region, giving a rising solution as shown in Figure 3.1. Note that this solution
does not cross the equilibrium solutions. Similar statements can be made
about the solutions in the other regions.

We further note that the solutions on either side of y = 1 tend to approach
this equilibrium solution for large values of t. In fact, no matter how close one
is to y = 1, eventually one will approach this solution as t → ∞. So, the
equilibrium solution is a stable solution. Similarly, we see that y = 0 is an
unstable equilibrium solution.

If we are only interested in the behavior of the equilibrium solutions, we
could just construct a phase line. In Figure 3.2 we place a vertical line to
the right of the ty-plane plot. On this line one first places dots at the cor-
responding equilibrium solutions and labels the solutions. These points at
the equilibrium solutions are end points for three intervals. In each interval
one then places arrows pointing upward (downward) indicating solutions with
positive (negative) slopes. Looking at the phase line one can now determine if
a given equilibrium is stable (arrows pointing towards the point) or unstable
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t

y

y=1

y=0

Fig. 3.1. Representative solution behavior for y′ = y − y2.

(arrows pointing away from the point). In Figure 3.3 we draw the final phase
line by itself.

t

y

y=1

y=0

Fig. 3.2. Representative solution behavior and phase line for y′ = y − y2.

3.3 Solution of the Logistic Equation

We have seen that one does not need an explicit solution of the logistic equa-
tion (3.2) in order to study the behavior of its solutions. However, the logistic
equation is an example of a nonlinear first order equation that is solvable. It
is an example of a Riccati equation.

The general form of the Riccati equation is
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y=1

y=0

Fig. 3.3. Phase line for y′ = y − y2.

dy

dt
= a(t) + b(t)y + c(t)y2. (3.4)

As long as c(t) 6= 0, this equation can be reduced to a second order linear
differential equation through the transformation

y(t) = − 1

c(t)

ẋ(t)

x(t)
.

We will demonstrate this using the simple case of the logistic equation,

dy

dt
= ky − cy2. (3.5)

We let

y(t) =
1

c

ẋ

x
.

Then

dy

dt
=

1

c

[

ẍ

x
−
(
ẋ

x

)2
]

=
1

c

[
ẍ

x
− (cy)

2

]

=
1

c

ẍ

x
− cy2. (3.6)

Inserting this into the logistic equation (3.5), we have

1

c

ẍ

x
− cy2 = k

1

c

(
ẋ

x

)

− cy2,

or
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ẍ = kẋ.

This equation is readily solved to give

x(t) = A+Bekt.

Therefore, we have the solution to the logistic equation is

y(t) =
1

c

ẋ

x
=

kBekt

c(A+Bekt)
.

It appears that we have two arbitrary constants. But, we started out with
a first order differential equation and expect only one arbitrary constant.
However, we can resolve this by dividing the numerator and denominator by
kBekt and defining C = A

B . Then we have

y(t) =
k/c

1 + Ce−kt
, (3.7)

showing that there really is only one arbitrary constant in the solution.
We should note that this is not the only way to obtain the solution to the

logistic equation, though it does provide an introduction to Riccati equations.
A more direct approach would be to use separation of variables on the logistic
equation. The reader should verify this.

3.4 Bifurcations for First Order Equations

In this section we introduce families of first order differential equations of the
form

dy

dt
= f(y;µ).

Here µ is a parameter that we can change and then observe the resulting effects
on the behaviors of the solutions of the differential equation. When a small
change in the parameter leads to large changes in the behavior of the solution,
then the system is said to undergo a bifurcation. We will turn to some generic
examples, leading to special bifurcations of first order autonomous differential
equations.

Example 3.1. y′ = y2 − µ.
First note that equilibrium solutions occur for y2 = µ. In this problem,

there are three cases to consider.

1. µ > 0.
In this case there are two real solutions, y = ±√

µ. Note that y2 − µ < 0
for |y| < √

µ. So, we have the left phase line in Figure 3.4.
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2. µ = 0.
There is only one equilibrium point at y = 0. The equation becomes
y′ = y2. It is obvious that the right side of this equation is never negative.
So, the phase line is shown as the middle line in Figure 3.4.

3. µ < 0.
In this case there are no equilibrium solutions. Since y2−µ > 0, the slopes
for all solutions are positive as indicated by the last phase line in Figure
3.4.

y=

y=0

y=-

Fig. 3.4. Phase lines for y′ = y2 − µ. On the left µ > 0 and on the right µ < 0.

We can combine these results into one diagram known as a bifurcation
diagram. We plot the equilibrium solutions y vs µ. We begin by lining up the
phase lines for various µ’s. We display these in Figure 3.5. Note the pattern
of equilibrium points satisfies y = µ2 as it should. This is easily seen to be
a parabolic curve. The upper branch of this curve is a collection of unstable
equilibria and the bottom is a stable branch. So, we can dispose of the phase
lines and just keep the equilibria. However, we will draw the unstable branch
as a dashed line and the stable branch as a solid line.

The bifurcation diagram is displayed in Figure 3.6. This type of bifurcation
is called a saddle-node bifurcation. The point µ = 0 at which the behavior
changes is called the bifurcation point. As µ goes from negative to positive, we
go from having no equilibria to having one stable and one unstable equilibrium
point.

Example 3.2. y′ = y2 − µy.
In this example we have two equilibrium points, y = 0 and y = µ. The

behavior of the solutions depends upon the sign of y2 − µy = y(y − µ). This
leads to four cases with the indicated signs of the derivative.

1. y > 0, y − µ > 0 ⇒ y′ > 0.
2. y < 0, y − µ > 0 ⇒ y′ < 0.
3. y > 0, y − µ < 0 ⇒ y′ < 0.
4. y < 0, y − µ < 0 ⇒ y′ > 0.

The corresponding phase lines and superimposed bifurcation diagram are
shown in 3.7. The bifurcation diagram is in Figure 3.8 and this is called a
transcritical bifurcation.
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Fig. 3.5. The typical phase lines for y′ = y2 − µ.

Fig. 3.6. Bifurcation diagram for y′ = y2 − µ. This is an example of a saddle-node
bifurcation.

y=0

Fig. 3.7. Collection of phase lines for y′ = y2 − µy.

Example 3.3. y′ = y3 − µy.
For this last example, we find from y3 −µy = y(y2 −µ) = 0 that there are

two cases.

1. µ < 0 In this case there is only one equilibrium point at y = 0. For positive
values of y we have that y′ > 0 and for negative values of y we have that
y′ < 0. Therefore, this is an unstable equilibrium point.
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Fig. 3.8. Bifurcation diagram for y′ = y2−µy. This is an example of a transcritical
bifurcation.

2. µ > 0 Here we have three equilibria, x = 0,±√
µ. A careful investigation

shows that x = 0. is a stable equilibrium point and that the other two
equilibria are unstable.

In Figure 3.9 we show the phase lines for these two cases. The correspond-
ing bifurcation diagram is then sketched in Figure 3.10. For obvious reasons
this has been labeled a pitchfork bifurcation.

y=0 y=0

y=-

y=

Fig. 3.9. The phase lines for y′ = y3 − µy. The left one corresponds to µ < 0 and
the right phase line is for µ > 0.

Fig. 3.10. Bifurcation diagram for y′ = y3 − µy. This is an example of a pitchfork
bifurcation.
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3.5 Nonlinear Pendulum

In this section we will introduce the nonlinear pendulum as our first example
of periodic motion in a nonlinear system. Oscillations are important in many
areas of physics. We have already seen the motion of a mass on a spring,
leading to simple, damped, and forced harmonic motions. Later we will explore
these effects on a simple nonlinear system. In this section we will introduce
the nonlinear pendulum and determine its period of oscillation.

We begin by deriving the pendulum equation. The simple pendulum con-
sists of a point mass m hanging on a string of length L from some support.
[See Figure 3.11.] One pulls the mass back to some starting angle, θ0, and
releases it. The goal is to find the angular position as a function of time, θ(t).

Fig. 3.11. A simple pendulum consists of a point mass m attached to a string of
length L. It is released from an angle θ0.

There are a couple of derivations possible. We could either use Newton’s
Second Law of Motion, F = ma, or its rotational analogue in terms of torque.
We will use the former only to limit the amount of physics background needed.

There are two forces acting on the point mass, the weight and the tension
in the string. The weight points downward and has a magnitude of mg, where
g is the standard symbol for the acceleration due to gravity. At the surface
of the earth we can take this to be 9.8 m/s2 or 32.2 ft/s2. In Figure 3.12 we
show both the weight and the tension acting on the mass. The net force is
also shown.

The tension balances the projection of the weight vector, leaving an un-
balanced component of the weight in the direction of the motion. Thus, the
magnitude of the sum of the forces is easily found from this unbalanced com-
ponent as F = mg sin θ.

Newton’s Second Law of Motion tells us that the net force is the mass
times the acceleration. So, we can write

mẍ = −mg sin θ.

Next, we need to relate x and θ. x is the distance traveled, which is the length
of the arc traced out by our point mass. The arclength is related to the angle,
provided the angle is measured in radians. Namely, x = rθ for r = L. Thus,
we can write
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Fig. 3.12. There are two forces acting on the mass, the weight mg and the tension
T. The magnitude of the net force is found to be F = mg sin θ.

mLθ̈ = −mg sin θ.

Canceling the masses, leads to the nonlinear pendulum equation

Lθ̈ + g sin θ = 0. (3.8)

There are several variations of Equation (3.8) which will be used in this
text. The first one is the linear pendulum. This is obtained by making a small
angle approximation. For small angles we know that sin θ ≈ θ. Under this
approximation (3.8) becomes

Lθ̈ + gθ = 0. (3.9)

We can also make the system more realistic by adding damping. This could
be due to energy loss in the way the string is attached to the support or due
to the drag on the mass, etc. Assuming that the damping is proportional to
the angular velocity, we have equations for the damped nonlinear and damped
linear pendula:

Lθ̈ + bθ̇ + g sin θ = 0. (3.10)

Lθ̈ + bθ̇ + gθ = 0. (3.11)

Finally, we can add forcing. Imagine that the support is attached to a
device to make the system oscillate horizontally at some frequency. Then we
could have equations such as

Lθ̈ + bθ̇ + g sin θ = F cosωt. (3.12)

We will look at these and other oscillation problems later in the exercises.
These are summarized in the table below.
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Equations for Pendulum Motion

1. Nonlinear Pendulum: Lθ̈ + g sin θ = 0.
2. Damped Nonlinear Pendulum: Lθ̈ + bθ̇ + g sin θ = 0.
3. Linear Pendulum: Lθ̈ + gθ = 0.
4. Damped Linear Pendulum: Lθ̈ + bθ̇ + gθ = 0.
5. Forced Damped Nonlinear Pendulum: Lθ̈ + bθ̇ + g sin θ =
F cosωt.

6. Forced Damped Linear Pendulum: Lθ̈ + bθ̇ + gθ = F cosωt.

3.5.1 In Search of Solutions

Before returning to studying the equilibrium solutions of the nonlinear pen-
dulum, we will look at how far we can get at obtaining analytical solutions.
First, we investigate the simple linear pendulum.

The linear pendulum equation (3.9) is a constant coefficient second order
linear differential equation. The roots of the characteristic equations are r =
±
√

g
L i. Thus, the general solution takes the form

θ(t) = c1 cos

(√
g

L
t

)

+ c2 sin

(√
g

L
t

)

. (3.13)

We note that this is usually simplified by introducing the angular frequency

ω ≡
√
g

L
. (3.14)

One consequence of this solution, which is used often in introductory
physics, is an expression for the period of oscillation of a simple pendulum.
REcall that the period is the time it takes to complete one cycle of the oscil-
lation. The period is found to be

T =
2π

ω
= 2π

√

L

g
. (3.15)

This value for the period of a simple pendulum is based on the linear
pendulum equation, which was derived assuming a small angle approximation.
How good is this approximation? What is meant by a small angle? We recall
the Taylor series approximation of sin θ about θ = 0 :

sin θ = θ − θ3

3!
+
θ5

5!
+ . . . . (3.16)

One can obtain a bound on the error when truncating this series to one term
after taking a numerical analysis course. But we can just simply plot the
relative error, which is defined as
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Relative Error =

∣
∣
∣
∣

sin θ − θ

sin θ

∣
∣
∣
∣
× 100%.

A plot of the relative error is given in Figure 3.13. We note that a one percent
relative error corresponds to about 0.24 radians, which is less that fourteen
degrees. Further discussion on this is provided at the end of this section.

Relative Error

0

1

2

3

4

Relative Error (%)

–0.4 –0.2 0.2 0.4

Angle (Radians)

Fig. 3.13. The relative error in percent when approximating sin θ by θ.

We now turn to the nonlinear pendulum. We first rewrite Equation (3.8)
in the simpler form

θ̈ + ω2 sin θ = 0. (3.17)

We next employ a technique that is useful for equations of the form

θ̈ + F (θ) = 0

when it is easy to integrate the function F (θ). Namely, we note that

d

dt

[

1

2
θ̇2 +

∫ θ(t)

F (φ) dφ

]

=
[

θ̈ + F (θ)
]

θ̇.

For our problem, we multiply Equation (3.17) by θ̇,

θ̈θ̇ + ω2 sin θθ̇ = 0

and note that the left side of this equation is a perfect derivative. Thus,
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d

dt

[
1

2
θ̇2 − ω2 cos θ

]

= 0.

Therefore, the quantity in the brackets is a constant. So, we can write

1

2
θ̇2 − ω2 cos θ = c. (3.18)

Solving for θ̇, we obtain

dθ

dt
=
√

2(c+ ω2 cos θ).

This equation is a separable first order equation and we can rearrange and
integrate the terms to find that

t =

∫

dt =

∫
dθ

√

2(c+ ω2 cos θ)
. (3.19)

Of course, one needs to be able to do the integral. When one gets a solution in
this implicit form, one says that the problem has been solved by quadratures.
Namely, the solution is given in terms of some integral. In the appendix to this
chapter we show that this solution can be written in terms of elliptic integrals
and derive corrections to formula for the period of a pendulum.

3.6 The Stability of Fixed Points in Nonlinear Systems

We are now interested in studying the stability of the equilibrium solutions of
the nonlinear pendulum. Along the way we will develop some basic methods
for studying the stability of equilibria in nonlinear systems.

We begin with the linear differential equation for damped oscillations as
given earlier in Equation (3.9). In this case, we have a second order equation
of the form

x′′ + bx′ + ω2x.

Using the methods of Chapter 2, this second order equation can be written
as a system of two first order equations:

x′ = y

y′ = −by − ω2x. (3.20)

This system has only one equilibrium solution, x = 0, y = 0.
Turning to the damped nonlinear pendulum, we have the system

x′ = y

y′ = −by − ω2 sinx. (3.21)
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This system also has the equilibrium solution, x = 0, y = 0. However, there
are actually an infinite number of solutions. The equilibria are determined
from y = 0 and −by − ω2 sinx = 0. This implies that sinx = 0. There are
an infinite number of solutions: x = nπ, n = 0,±1,±2, . . . . So, we have an
infinite number of equilibria, (nπ, 0), n = 0,±1,±2, . . . .

Next, we need to determine their stability. To do this we need a more gen-
eral theory for nonlinear systems. We begin with the n−dimensional system

x′ = f(x), x ∈ Rn. (3.22)

Here f : Rn → Rn. We define fixed points, or equilibrium solutions, of this
system as points x∗ satisfying f(x∗) = 0.

The stability in the neighborhood of fixed points can now be determined.
We are interested in what happens to solutions of our system with initial
conditions starting near a fixed point. We can represent a point near a fixed
point in the form x = x∗ +ξ, where the length of ξ gives an indication of how
close we are to the fixed point. So, we consider that initially, |ξ| ≪ 1.

As the system evolves, ξ will change. The change of ξ in time is in turn
governed by a system of equations. We can approximate this evolution as
follows. First, we note that

x′ = ξ′.

Next, we have that
f(x) = f(x∗ + ξ).

We can expand the right side about the fixed point using a multidimensional
version of Taylor’s Theorem. Thus, we have that

f(x∗ + ξ) = f(x∗) +Df(x∗)ξ +O(|ξ|2).

Here Df is the Jacobian matrix, defined as

Df =










∂f1

∂x1

∂f1

∂x2
· · · ∂f1

∂xn

∂f2

∂x1

. . .
. . .

...
...

. . .
. . .

...
∂fn

∂x1
· · · · · · ∂fn

∂xn










Noting that f(x∗) = 0, we then have that system (3.22) becomes

ξ′ ≈ Df(x∗)ξ. (3.23)

It is this equation which describes the behavior of the system near the fixed
point. We say that system (3.22) has been linearized or that Equation (3.23)
is the linearization of system (3.22).
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Example 3.4. As an example of the application of this linearization, we look
at the system

x′ = −2x− 3xy

y′ = 3y − y2 (3.24)

We first determine the fixed points:

0 = −2x− 3xy = −x(2 + 3y)

0 = 3y − y2 = y(3 − y) (3.25)

From the second equation, we have that either y = 0 or y = 3. The first
equation then gives x = 0 in either case. So, there are two fixed points: (0, 0)
and (0, 3).

Next, we linearize about each fixed point separately. First, we write down
the Jacobian matrix.

Df(x, y) =

(
−2 − 3y −3x

0 3 − 2y

)

. (3.26)

1. Case I (0, 0).
In this case we find that

Df(0, 0) =

(
−2 0
0 3

)

. (3.27)

Therefore, the linearized equation becomes

ξ′ =

(
−2 0
0 3

)

ξ. (3.28)

This is equivalently written out as the system

ξ′1 = −2ξ1

ξ′2 = 3ξ2. (3.29)

This is the linearized system about the origin. Note the similarity with the
original system. We emphasize that the linearized equations are constant
coefficient equations and we can use earlier matrix methods to determine
the nature of the equilibrium point. The eigenvalues of the system are
obviously λ = −2, 3. Therefore, we have that the origin is a saddle point.

2. Case II (0, 3).
In this case we proceed as before. We write down the Jacobian matrix and
look at its eigenvalues to determine the type of fixed point. So, we have
that the Jacobian matrix is

Df(0, 3) =

(
−2 0
0 −3

)

. (3.30)

Here, we have the eigenvalues λ = −2,−3. So, this fixed point is a stable
node.
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This analysis has given us a saddle and a stable node. We know what the
behavior is like near each fixed point, but we have to resort to other means to
say anything about the behavior far from these points. The phase portrait for
this system is given in Figure 3.14. You should be able to find the saddle point
and the node. Notice how solutions behave in regions far from these points.

–1
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2

3

4

y

–2 –1 1 2

x

Fig. 3.14. Phase plane for the system x′ = −2x − 3xy, y′ = 3y − y2.

We can expect to be able to perform a linearization under general condi-
tions. These are given in the Hartman-Großman Theorem:

Theorem 3.5. A continuous map exists between the linear and nonlinear sys-
tems when Df(x∗) does not have any eigenvalues with zero real part.

Generally, there are several types of behavior that one can see in nonlinear
systems. One can see sinks or sources, hyperbolic (saddle) points, elliptic
points (centers) or foci. We have defined some of these for planar systems. In
general, if at least two eigenvalues have real parts with opposite signs, then
the fixed point is a hyperbolic point. If the real part of a nonzero eigenvalue is
zero, then we have a center, or elliptic point.

Example 3.6. Return to the Nonlinear Pendulum
We are now ready to establish the behavior of the fixed points of the

damped nonlinear pendulum in Equation (3.21). The system was
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x′ = y

y′ = −by − ω2 sinx. (3.31)

We found that there are an infinite number of fixed points at (nπ, 0), n =
0,±1,±2, . . . .

We note that the Jacobian matrix is

Df(x, y) =

(
0 1

−ω2 cosx −b

)

. (3.32)

Evaluating this at the fixed points, we find that

Df(nπ, 0) =

(
0 1

−ω2 cosnπ −b

)

=

(
0 1

ω2(−1)n+1 −b

)

. (3.33)

There are two cases to consider: n even and n odd. For the first case, we
find the eigenvalue equation

λ2 + bλ+ ω2 = 0.

This has the roots

λ =
−b±

√
b2 − 4ω2

2
.

For b2 < 4ω2, we have two complex conjugate roots with a negative real part.
Thus, we have stable foci for even n values. If there is no damping, then we
obtain centers.

In the second case, n odd, we have that

λ2 + bλ− ω2 = 0.

In this case we find

λ =
−b±

√
b2 + 4ω2

2
.

Since b2 + 4ω2 > b2, these roots will be real with opposite signs. Thus, we
have hyperbolic points, or saddles.

In Figure (3.15) we show the phase plane for the undamped nonlinear pen-
dulum. We see that we have a mixture of centers and saddles. There are orbits
for which there is periodic motion. At θ = π the behavior is unstable. This
is because it is difficult to keep the mass vertical. This would be appropriate
if we were to replace the string by a massless rod. There are also unbounded
orbits, going through all of the angles. These correspond to the mass spinning
around the pivot in one direction forever. We have indicated in the figure
solution curves with the initial conditions (x0, y0) = (0, 3), (0, 2), (0, 1), (5, 1).

When there is damping, we see that we can have a variety of other
behaviors as seen in Figure (3.16). In particular, energy loss leads to the
mass settling around one of the stable fixed points. This leads to an under-
standing as to why there are an infinite number of equilibria, even though
physically the mass traces out a bound set of Cartesian points. We have
indicated in the Figure (3.16) solution curves with the initial conditions
(x0, y0) = (0, 3), (0, 2), (0, 1), (5, 1).
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Fig. 3.15. Phase plane for the undamped nonlinear pendulum. Solution curves are
shown for initial conditions (x0, y0) = (0, 3), (0, 2), (0, 1), (5, 1).

3.7 Nonlinear Population Models

We have already encountered several models of population dynamics. Of
course, one could dream up several other examples. There are two standard
types of models: Predator-prey and competing species. In the predator-prey
model, one typically has one species, the predator, feeding on the other, the
prey. We will look at the standard Lotka-Volterra model in this section. The
competing species model looks similar, except there are a few sign changes,
since one species is not feeding on the other. Also, we can build in logistic
terms into our model. We will save this latter type of model for the home-
work.

The Lotka-Volterra model takes the form

ẋ = ax− bxy,

ẏ = −dy + cxy. (3.34)

In this case, we can think of x as the population of rabbits (prey) and y is
the population of foxes (predators). Choosing all constants to be positive, we
can describe the terms.

• ax: When left alone, the rabbit population will grow. Thus a is the natural
growth rate without predators.

• −dy: When there are no rabbits, the fox population should decay. Thus,
the coefficient needs to be negative.
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Fig. 3.16. Phase plane for the damped nonlinear pendulum. Solution curves are
shown for initial conditions (x0, y0) = (0, 3), (0, 2), (0, 1), (5, 1).

• −bxy: We add a nonlinear term corresponding to the depletion of the
rabbits when the foxes are around.

• cxy: The more rabbits there are, the more food for the foxes. So, we add
a nonlinear term giving rise to an increase in fox population.

The analysis of the Lotka-Volterra model begins with determining the fixed
points. So, we have from Equation (3.34)

x(a− by) = 0,

y(−d+ cx) = 0. (3.35)

Therefore, the origin and (d
c

a
b ) are the fixed points.

Next, we determine their stability, by linearization about the fixed points.
We can use the Jacobian matrix, or we could just expand the right hand side of

each equation in (3.34). The Jacobian matrix isDf(x, y) =

(
a− by −bx
cy −d+ cx

)

.

Evaluating at each fixed point, we have

Df(0, 0) =

(
a 0
0 −d

)

, (3.36)

Df

(
d

c
,
a

b

)

=

(
0 − bd

c
ac
b 0

)

. (3.37)
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The eigenvalues of (3.36) are λ = a,−d. So, the origin is a saddle point.
The eigenvalues of (3.37) satisfy λ2 + ad = 0. So, the other point is a center.
In Figure 3.17 we show a sample direction field for the Lotka-Volterra system.

Another way to linearize is to expand the equations about the fixed points.
Even though this is equivalent to computing the Jacobian matrix, it sometimes
might be faster.
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Fig. 3.17. Phase plane for the Lotka-Volterra system given by ẋ = x − 0.2xy, ẏ =
−y + 0.2xy. Solution curves are shown for initial conditions (x0, y0) = (8, 3), (1, 5).

3.8 Limit Cycles

So far we have just been concerned with equilibrium solutions and their behav-
ior. However, asymptotically stable fixed points are not the only attractors.
There are other types of solutions, known as limit cycles, towards which a
solution may tend. In this section we will look at some examples of these
periodic solutions.

Such solutions are common in nature. Rayleigh investigated the problem

x′′ + c

(
1

3
(x′)2 − 1

)

x′ + x = 0 (3.38)

in the study of the vibrations of a violin string. Van der Pol studied an electri-
cal circuit, modelling this behavior. Others have looked into biological systems,
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such as neural systems, chemical reactions, such as Michaelis-Menton kinetics
or systems leading to chemical oscillations. One of the most important models
in the historical study of dynamical systems is that of planetary motion and
investigating the stability of planetary orbits. As is well known, these orbits
are periodic.

Limit cycles are isolated periodic solutions towards which neighboring
states might tend when stable. A key example exhibiting a limit cycle is given
by the system

x′ = µx− y − x(x2 + y2)

y′ = x+ µy − y(x2 + y2). (3.39)

It is clear that the origin is a fixed point. The Jacobian matrix is given as

Df(0, 0) =

(
µ −1
1 µ

)

. (3.40)

The eigenvalues are found to be λ = µ ± i. For µ = 0 we have a center.
For µ < 0 we have a stable spiral and for µ > 0 we have an unstable spiral.
However, this spiral does not wander off to infinity. We see in Figure 3.18
that equilibrium point is a spiral. However, in Figure 3.19 it is clear that the
solution does not spiral out to infinity. It is bounded by a circle.
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Fig. 3.18. Phase plane for system (3.39) with µ = 0.4.



3.8 Limit Cycles 111

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

y

–0.6 –0.4 –0.2 0.2 0.4 0.6

x

Fig. 3.19. Phase plane for system (3.39) with µ = 0.4 showing that the inner spiral
is bounded by a limit cycle.

One can actually find the radius of this circle. This requires rewriting the
system in polar form. Recall from Chapter 2 that this is done using

rr′ = xx′ + yy′, (3.41)

r2θ′ = xy′ − yx′. (3.42)

Inserting the system (3.39) into these expressions, we have

rr′ = µr2 − r4, r2θ′ = r2,

or
r′ = µr − r3, θ′ = 1. (3.43)

Of course, for a circle r = const, therefore we need to look at the equilibrium
solutions of Equation (3.43). This amounts to solving µr − r3 = 0 for r. The
solutions of this equation are r = 0,±√

µ. We need only keep the one positive
radius solution, r =

√
µ. In Figures 3.18-3.19 µ = 0.4, so we expect a circle

with r =
√

0.4 ≈ 0.63. The θ equation just tells us that we follow the limit
cycle in a counterclockwise direction.

Limit cycles are not always circles. In Figures 3.20-3.21 we show the be-
havior of the Rayleigh system (3.38) for c = 0.4 and c = 2.0. In this case we
see that solutions tend towards a noncircular limit cycle.

A slight change of the Rayleigh system leads to the van der Pol equation:

x′′ + c(x2 − 1)x′ + x = 0 (3.44)
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Fig. 3.20. Phase plane for the Rayleigh system (3.38) with c = 0.4.

The limit cycle for c = 2.0 is shown in Figure 3.22.
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Fig. 3.21. Phase plane for the Rayleigh system (3.38) with c = 2.0.
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Fig. 3.22. Phase plane for the Rayleigh system (3.44) with c = 0.4.

Can one determine ahead of time if a given nonlinear system will have a
limit cycle? In order to answer this question, we will introduce some defini-
tions.

Fig. 3.23. A sketch depicting the idea of trajectory, or orbit, passing through x.

We first describe different trajectories and families of trajectories. A flow
on R2 is a function φ that satisfies the following

1. φ(x, t) is continuous in both arguments.
2. φ(x, 0) = x for all x ∈ R2.
3. φ(φ(x, t1), t2) = φ(x, t1 + t2).

The orbit, or trajectory, through x is defined as γ = {φ(x, t)|t ∈ I}. In Figure
3.23 we demonstrate these properties. For t = 0, φ(x, 0) = x. Increasing t,
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one follows the trajectory until one reaches the point φ(x, t1). Continuing t2
further, one is then at φ(φ(x, t1), t2). By the third property, this is the same
as going from x to φ(x, t1 + t2) for t = t1 + t2.

Having defined the orbits, we need to define the asymptotic behavior of
the orbit for both positive and negative large times. We define the positive
semiorbit through x as γ+ = {φ(x, t)|t > 0}. The negative semiorbit through
x is defined as γ− = {φ(x, t)|t < 0}. Thus, we have γ = γ+ ∪ γ−.

The positive limit set, or ω-limit set, of point x is defined as

Λ+ = {y| there exists a sequence of tn → ∞ such that φ(x, tn) → y}.

The y’s are referred to as ω-limit points. This is shown in Figure 3.24.

Fig. 3.24. A sketch depicting an ω-limit set. Note that the orbits tends towards
the set as t increases.

Fig. 3.25. A sketch depicting an α-limit set. Note that the orbits tends away from
the set as t increases.

Similarly, we define the negative limit set, or it alpha-limit sets, of point
x is defined as
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Λ− = {y| there exists a sequences of tn → −∞ such that φ(x, tn) → y}

and the corresponding y’s are α-limit points. This is shown in Figure 3.25.
There are several types of orbits that a system might possess. A cycle or

periodic orbit is any closed orbit which is not an equilibrium point. A periodic
orbit is stable if for every neighborhood of the orbit such that all nearby
orbits stay inside the neighborhood. Otherwise, it is unstable. The orbit is
asymptotically stable if all nearby orbits converge to the periodic orbit.

A limit cycle is a cycle which is the α or ω-limit set of some trajectory
other than the limit cycle. A limit cycle Γ is stable if Λ+ = Γ for all x in
some neighborhood of Γ. A limit cycle Γ is unstable if Λ− = Γ for all x in
some neighborhood of Γ. Finally, a limits cycle is semistable if it is attracting
on one side and repelling on the other side. In the previous examples, we saw
limit cycles that were stable. Figures 3.24 and 3.25 depict stable and unstable
limit cycles, respectively.

We now state a theorem which describes the type of orbits we might find
in our system.

Theorem 3.7. Poincaré-Bendixon Theorem Let γ+ be con-
tained in a bounded region in which there are finitely many critical
points. Then Λ+ is either

1. a single critical point;
2. a single closed orbit;
3. a set of critical points joined by heteroclinic orbits. [Compare

Figures 3.27 and ??.]

Fig. 3.26. A heteroclinic orbit connecting two critical points.

We are interested in determining when limit cycles may, or may not, exist.
A consequence of the Poincaré-Bendixon Theorem is given by the following
corollary.

Corollary Let D be a bounded closed set containing no critical points
and suppose that γ+ ⊂ D. Then there exists a limit cycle contained in D.

More specific criteria allow us to determine if there is a limit cycle in a
given region. These are given by Dulac’s Criteria and Bendixon’s Criteria.
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Fig. 3.27. A homoclinic orbit returning to the point it left.

Dulac’s Criteria Consider the autonomous planar system

x′ = f(x, y), y′ = g(x, y)

and a continuously differentiable function ψ defined on an annular
region D contained in some open set. If

∂

∂x
(ψf) +

∂

∂y
(ψg)

does not change sign in D, then there is at most one limit cycle
contained entirely in D.

Bendixon’s Criteria Consider the autonomous planar system

x′ = f(x, y), y′ = g(x, y)

defined on a simply connected domain D such that

∂

∂x
(ψf) +

∂

∂y
(ψg) 6= 0

in D. Then there are no limit cycles entirely in D.

These are easily proved using Green’s Theorem in the plane. We prove
Bendixon’s Criteria. Let f = (f, g). Assume that Γ is a closed orbit lying in
D. Let S be the interior of Γ. Then

∫

S

∇ · f dxdy =

∮

Γ

(f dy − g dx)

=

∫ T

0

(f ẏ − gẋ)dt

=

∫ T

0

(fg − gf)dt = 0. (3.45)
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So, if ∇ · f is not identically zero and does not change sign in S, then from
the continuity of ∇· f in S we have that the right side above is either positive
or negative. Thus, we have a contradiction and there is no closed orbit lying
in D

Example 3.8. Consider the earlier example in (3.39) with µ = 1.

x′ = x− y − x(x2 + y2)

y′ = x+ y − y(x2 + y2). (3.46)

We already know that a limit cycle exists at x2+y2 = 1. A simple computation
gives that

∇ · f = 2 − 4x2 − 4y2.

For an arbitrary annulus a < x2 + y2 < b, we have

2 − 4b < ∇ · f < 2 − 4a.

For a = 3/4 and b = 5/4, −3 < ∇ · f < −1. Thus, ∇ · f < 0 in the annulus
3/4 < x2 + y2 < 5/4. Therefore, by Dulac’s Criteria there is at most one limit
cycle in this annulus.

Example 3.9. Consider the system

x′ = y

y′ = −ax− by + cx2 + dy2. (3.47)

Let ψ(x, y) = e−2dx. Then,

∂

∂x
(ψy) +

∂

∂y
(ψ(−ax− by + cx2 + dy2)) = −be−2dx 6= 0.

We conclude by Bendixon’s Criteria that there are no limit cycles for this
system.

3.9 Nonautonomous Nonlinear Systems

In this section we discuss nonautonomous systems. Recall that an autonomous
system is one in which there is no explicit time dependence. A simple example
is the forced nonlinear pendulum given by the nonhomogeneous equation

ẍ+ ω2 sinx = f(t). (3.48)

We can set this up as a system of two first order equations:

ẋ = y

ẏ = −ω2 sinx+ f(t). (3.49)
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This system is not in a form for which we could use the earlier methods.
Namely, it is a nonautonomous system. However, we introduce a new variable
z(t) = t and turn it into an autonomous system in one more dimension. The
new system takes the form

ẋ = y

ẏ = −ω2 sinx+ f(z).

ż = 1. (3.50)

This system is a three dimensional autonomous, possibly nonlinear, system
and can be explored using our earlier methods.

A more interesting model is provided by the Duffing Equation. This equa-
tion models hard spring and soft spring oscillations. It also models a period-
ically forced beam as shown in Figure 3.28. It is of interest because it is a
simple system which exhibits chaotic dynamics and will motivate us towards
using new visualization methods for nonautonomous systems.

Fig. 3.28. One model of the Duffing equation describes a periodically forced beam
which interacts with two magnets.

The most general form of Duffing’s equation is given by

ẍ+ kẋ+ (βx3 ± ω2
0x) = Γ cos(ωt+ φ). (3.51)

This equation models hard spring (β > 0) and soft spring (β < 0) oscillations.
However, we will use a simpler version of the Duffing equation:

ẍ+ kẋ+ x3 − x = Γ cosωt. (3.52)

Let’s first look at the behavior of some of the orbits of the system as we
vary the parameters. In Figures 3.29-3.31 we show some typical solution plots
superimposed on the direction field.
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We start with the the undamped (k = 0) and unforced (Γ = 0) Duffing
equation,

ẍ+ x3 − x == 0.

We can write this second order equation as the autonomous system

ẋ = y

ẏ = x(1 − x2). (3.53)

We see there are three equilibrium points at (0,0), (±1,0). In Figure 3.29 we
plot several orbits for We see that the three equilibrium points consist of two
centers and a saddle.
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Fig. 3.29. Phase plane for the undamped, unforced Duffing equation (k = 0, Γ = 0).

We now turn on the damping. The system becomes

ẋ = y

ẏ = −ky + x(1 − x2). (3.54)

In Figure 3.30 we show what happens when k = 0.1 These plots are rem-
iniscent of the plots for the nonlinear pendulum; however, there are fewer
equilibria. The centers become stable spirals.

Next we turn on the forcing to obtain a damped, forced Duffing equation.
The system is now nonautonomous.
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Fig. 3.30. Phase plane for the unforced Duffing equation with k = 0.1 and Γ = 0.

ẋ = y

ẏ = x(1 − x2) + Γ cosωt. (3.55)

In Figure 3.31 we only show one orbit with k = 0.1, Γ = 0.5, and ω = 1.25.
The solution intersects itself and look a bit messy. We can imagine what we
would get if we added any more orbits. For completeness, we show in Figure
3.32 an example with four different orbits.

In cases for which one has periodic orbits such as the Duffing equation,
Poincaré introduced the notion of surfaces of section. One embeds the orbit in
a higher dimensional space so that there are no self intersections, like we saw
in Figures 3.31 and 3.32. In Figure 3.33 we show an example where a simple
orbit is shown as it periodically pierces a given surface.

In order to simplify the resulting pictures, one only plots the points at
which the orbit pierces the surface as sketched in Figure 3.34. In practice,
there is a natural frequency, such as ω in the forced Duffing equation. Then,
one plots points at times that are multiples of the period, T = 2π

ω . In Figure
3.35 we show what the plot for one orbit would look like for the damped,
unforced Duffing equation.

The more interesting case, is when there is forcing and damping. In this
case the surface of section plot is given in Figure 3.36. While this is not as busy
as the solution plot in Figure 3.31, it still provides some interesting behavior.
What one finds is what is called a strange attractor. Plotting many orbits, we
find that after a long time, all of the orbits are attracted to a small region
in the plane, much like a stable node attracts nearby orbits. However, this
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Fig. 3.31. Phase plane for the Duffing equation with k = 0.1, Γ = 0.5, and ω = 1.25.
In this case we show only one orbit which was generated from the initial condition
(x0 = 1.0, y0 = 0.5).

–2

–1

0

1

2

y

–2 –1 1 2

x

Fig. 3.32. Phase plane for the Duffing equation with k = 0.1, Γ = 0.5, and ω = 1.25.
In this case four initial conditions were used to generate four orbits.
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Fig. 3.33. Poincaré’s surface of section. One notes each time the orbit pierces the
surface.

Fig. 3.34. As an orbit pierces the surface of section, one plots the point of inter-
section in that plane to produce the surface of section plot.

set consists of more than one point. Also, the flow on the attractor is chaotic
in nature. Thus, points wander in an irregular way throughout the attractor.
This is one of the interesting topics in chaos theory and this whole theory of
dynamical systems has only been touched in this text leaving the reader to
wander of into further depth into this fascinating field.

3.9.1 Maple Code for Phase Plane Plots

For reference, the plots in Figures 3.29 and 3.30 were generated in Maple using
the following commands:
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Fig. 3.35. Poincaré’s surface of section plot for the damped, unforced Duffing equa-
tion.
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Fig. 3.36. Poincaré’s surface of section plot for the damped, forced Duffing equation.
This leads to what is known as a strange attractor.
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> with(DEtools):

> Gamma:=0.5:omega:=1.25:k:=0.1:

> DEplot([diff(x(t),t)=y(t), diff(y(t),t)=x(t)-k*y(t)-(x(t))^3

+ Gamma*cos(omega*t)], [x(t),y(t)],t=0..500,[[x(0)=1,y(0)=0.5],

[x(0)=-1,y(0)=0.5], [x(0)=1,y(0)=0.75], [x(0)=-1,y(0)=1.5]],

x=-2..2,y=-2..2, stepsize=0.1, linecolor=blue, thickness=1,

color=black);

The surface of section plots at the end of the last section were obtained
using code from S. Lynch’s book Dynamical Systems with Applications Using
Maple. The Maple code is given by

> Gamma:=0:omega:=1.25:k:=0.1:

> f:=

dsolve({diff(x(t),t)=y(t),diff(y(t),t)=x(t)-k*y(t)-(x(t))^3

+ Gamma*cos(omega*t),x(0)=1,y(0)=0.5},{x(t),y(t)},

type=numeric,method=classical,output=procedurelist):

> pt:=array(0..10000):x1:=array(0..10000):y1:=array(0..10000):

> imax:=4000:

> for i from 0 to imax do

> x1[i]:=eval(x(t),f(i*2*Pi/omega)):

> y1[i]:=eval(y(t),f(i*2*Pi/omega)):

> end do:

> pts:=[[x1[n],y1[n]]\$ n=10..imax]:

> # Plot the points on the Poincare section #

> pointplot(pts,style=point,symbol=circle,symbolsize=10,

color=black,axes=BOXED,scaling=CONSTRAINED,

font=[TIMES,ROMAN,15]);

3.10 Appendix: Period of the Nonlinear Pendulum

In Section 3.5.1 we saw that the solution of the nonlinear pendulum problem
can be found up to quadrature. In fact, the integral in Equation (3.19) can be
transformed into what is know as an elliptic integral of the first kind. We will
rewrite our result and then use it to obtain an approximation to the period
of oscillation of our nonlinear pendulum, leading to corrections to the linear
result found earlier.

We will first rewrite the constant found in (3.18). This requires a little
physics. The swinging of a mass on a string, assuming no energy loss at the
pivot point, is a conservative process. Namely, the total mechanical energy is
conserved. Thus, the total of the kinetic and gravitational potential energies
is a constant. Noting that v = Lθ̇, the kinetic energy of the mass on the string
is given as

T =
1

2
mv2 =

1

2
mL2θ̇2.
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The potential energy is the gravitational potential energy. If we set the po-
tential energy to zero at the bottom of the swing, then the potential energy
is U = mgh, where h is the height that the mass is from the bottom of
the swing. A little trigonometry gives that h = L(1 − cos θ). This gives the
potential energy as

U = mgL(1 − cos θ).

So, the total mechanical energy is

E =
1

2
mL2θ′2 +mgL(1 − cos θ). (3.56)

We note that a little rearranging shows that we can relate this to Equation
(3.18):

1

2
(θ′)2 − ω2 cos θ =

1

mL2
E − ω2 = c.

We can use Equation (3.56) to get a value for the total energy. At the top
of the swing the mass is not moving, if only for a moment. Thus, the kinetic
energy is zero and the total energy is pure potential energy. Letting θ0 denote
the angle at the highest position, we have that

E = mgL(1 − cos θ0) = mL2ω2(1 − cos θ0).

Here we have used the relation g = Lω2.
Therefore, we have found that

1

2
θ̇2 − ω2 cos θ = ω2(1 − cos θ0). (3.57)

Using the half angle formula,

sin2 θ

2
=

1

2
(1 − cos θ),

we can rewrite Equation (3.57) as

1

2
θ̇2 = 2ω2

[

sin2 θ0
2

− sin2 θ

2

]

. (3.58)

Solving for θ′, we have

dθ

dt
= 2ω

[

sin2 θ0
2

− sin2 θ

2

]1/2

. (3.59)

One can now apply separation of variables and obtain an integral similar
to the solution we had obtained previously. Noting that a motion from θ = 0
to θ = θ0 is a quarter of a cycle, then we have that

T =
2

ω

∫ θ0

0

dφ
√

sin2 θ0

2 − sin2 θ
2

. (3.60)



126 3 Nonlinear Systems

This result is not much different than our previous result, but we can now
easily transform the integral into an elliptic integral. We define

z =
sin θ

2

sin θ0

2

and

k = sin
θ0
2
.

Then Equation (3.60) becomes

T =
4

ω

∫ 1

0

dz
√

(1 − z2)(1 − k2z2)
. (3.61)

This is done by noting that dz = 1
2k cos θ

2 dθ = 1
2k (1 − k2z2)1/2 dθ and that

sin2 θ0

2 − sin2 θ
2 = k2(1 − z2). The integral in this result is an elliptic integral

of the first kind. In particular, the elliptic integral of the first kind is defined
as

F (φ, k) ≡=

∫ φ

0

dθ
√

1 − k2 sin2 θ
=

∫ sin φ

0

dz
√

(1 − z2)(1 − k2z2)
.

In some contexts, this is known as the incomplete elliptic integral of the first
kind and K(k) = F (π

2 , k) is called the complete integral of the first kind.
There are tables of values for elliptic integrals. Historically, that is how one

found values of elliptic integrals. However, we now have access to computer
algebra systems which can be used to compute values of such integrals. For
small angles, we have that k is small. So, we can develop a series expansion
for the period, T, for small k. This is done by first expanding

(1 − k2z2)−1/2 = 1 +
1

2
k2z2 +

3

8
k2z4 +O((kz)6).

Substituting this in the integrand and integrating term by term, one finds
that

T = 2π

√

L

g

[

1 +
1

4
k2 +

9

64
k4 + . . .

]

. (3.62)

This expression gives further corrections to the linear result, which only
provides the first term. In Figure 3.37 we show the relative errors incurred
when keeping the k2 and k4 terms versus not keeping them. The reader is
asked to explore this further in Problem 3.8.
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Fig. 3.37. The relative error in percent when approximating the exact period of a
nonlinear pendulum with one, two, or three terms in Equation (3.62).

Problems

3.1. Find the equilibrium solutions and determine their stability for the fol-
lowing systems. For each case draw representative solutions and phase lines.

a. y′ = y2 − 6y − 16.
b. y′ = cos y.
c. y′ = y(y − 2)(y + 3).
d. y′ = y2(y + 1)(y − 4).

3.2. For y′ = y − y2, find the general solution corresponding to y(0) = y0.
Provide specific solutions for the following initial conditions and sketch them:
a. y(0) = 0.25, b. y(0) = 1.5, and c. y(0) = −0.5.

3.3. For each problem determine equilibrium points, bifurcation points and
construct a bifurcation diagram. Discuss the different behaviors in each sys-
tem.

a. y′ = y − µy2

b. y′ = y(µ− y)(µ− 2y)
c. x′ = µ− x3

d. x′ = x− µx
1+x2

3.4. Consider the family of differential equations x′ = x3 + δx2 − µx.

a. Sketch a bifurcation diagram in the xµ-plane for δ = 0.
b. Sketch a bifurcation diagram in the xµ-plane for δ > 0.
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Hint: Pick a few values of δ and µ in order to get a feel for how this system
behaves.

3.5. Consider the system

x′ = −y + x
[
µ− x2 − y2

]
,

y′ = x+ y
[
µ− x2 − y2

]
.

Rewrite this system in polar form. Look at the behavior of the r equation and
construct a bifurcation diagram in µr space. What might this diagram look
like in the three dimensional µxy space? (Think about the symmetry in this
problem.) This leads to what is called a Hopf bifurcation.

3.6. Find the fixed points of the following systems. Linearize the system about
each fixed point and determine the nature and stability in the neighborhood
of each fixed point, when possible. Verify your findings by plotting phase
portraits using a computer.

a.

x′ = x(100 − x− 2y),

y′ = y(150 − x− 6y).

b.

x′ = x+ x3,

y′ = y + y3.

c.

x′ = x− x2 + xy,

y′ = 2y − xy − 6y2.

d.

x′ = −2xy,

y′ = −x+ y + xy − y3.

3.7. Plot phase portraits for the Lienard system

x′ = y − µ(x3 − x)

y′ = −x.

for a small and a not so small value of µ. Describe what happens as one varies
µ.
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3.8. Consider the period of a nonlinear pendulum. Let the length be L = 1.0
m and g = 9.8 m/s2. Sketch T vs the initial angle θ0 and compare the linear
and nonlinear values for the period. For what angles can you use the linear
approximation confidently?

3.9. Another population model is one in which species compete for resources,
such as a limited food supply. Such a model is given by

x′ = ax− bx2 − cxy,

y′ = dy − ey2 − fxy.

In this case, assume that all constants are positive.

a Describe the effects/purpose of each terms.
b Find the fixed points of the model.
c Linearize the system about each fixed point and determine the stability.
d From the above, describe the types of solution behavior you might expect,

in terms of the model.

3.10. Consider a model of a food chain of three species. Assume that each
population on its own can be modeled by logistic growth. Let the species be
labeled by x(t), y(t), and z(t). Assume that population x is at the bottom of
the chain. That population will be depleted by population y. Population y is
sustained by x’s, but eaten by z’s. A simple, but scaled, model for this system
can be given by the system

x′ = x(1 − x) − xy

y′ = y(1 − y) + xy − yz

z′ = z(1 − z) + yz.

a. Find the equilibrium points of the system.
b. Find the Jacobian matrix for the system and evaluate it at the equilibrium

points.
c. Find the eigenvalues and eigenvectors.
d. Describe the solution behavior near each equilibrium point.
f. Which of these equilibria are important in the study of the population

model and describe the interactions of the species in the neighborhood of
these point(s).

3.11. Show that the system x′ = x − y − x3, y′ = x + y − y3, has a unique
limit cycle by picking an appropriate ψ(x, y) in Dulac’s Criteria.





4

Boundary Value Problems

4.1 Introduction

Until this point we have solved initial value problems. For an initial value
problem one has to solve a differential equation subject to conditions on the
unknown function and its derivatives at one value of the independent variable.
For example, for x = x(t) we could have the initial value problem

x′′ + x = 2, x(0) = 1, x′(0) = 0. (4.1)

In the next chapters we will study boundary value problems and various
tools for solving such problems. In this chapter we will motivate our interest
in boundary value problems by looking into solving the one-dimensional heat
equation, which is a partial differential equation. for the rest of the section,
we will use this solution to show that in the background of our solution of
boundary value problems is a structure based upon linear algebra and analysis
leading to the study of inner product spaces. Though technically, we should
be lead to Hilbert spaces, which are complete inner product spaces.

For an initial value problem one has to solve a differential equation subject
to conditions on the unknown function or its derivatives at more than one
value of the independent variable. As an example, we have a slight modification
of the above problem: Find the solution x = x(t) for 0 ≤ t ≤ 1 that satisfies
the problem

x′′ + x = 2, x(0) = 1, x(1) = 0. (4.2)

Typically, initial value problems involve time dependent functions and
boundary value problems are spatial. So, with an initial value problem one
knows how a system evolves in terms of the differential equation and the state
of the system at some fixed time. Then one seeks to determine the state of
the system at a later time.

For boundary values problems, one knows how each point responds to its
neighbors, but there are conditions that have to be satisfied at the endpoints.
An example would be a horizontal beam supported at the ends, like a bridge.
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The shape of the beam under the influence of gravity, or other forces, would
lead to a differential equation and the boundary conditions at the beam ends
would affect the solution of the problem. There are also a variety of other
types of boundary conditions. In the case of a beam, one end could be fixed
and the other end could be free to move. We will explore the effects of different
boundary value conditions in our discussions and exercises.

Let’s solve the above boundary value problem. As with initial value prob-
lems, we need to find the general solution and then apply any conditions that
we may have. This is a nonhomogeneous differential equation, so we have that
the solution is a sum of a solution of the homogeneous equation and a par-
ticular solution of the nonhomogeneous equation, x(t) = xh(t) + xp(t). The
solution of x′′ + x = 0 is easily found as

xh(t) = c1 cos t+ c2 sin t.

The particular solution is easily found using the Method of Undetermined
Coefficients,

xp(t) = 2.

Thus, the general solution is

x(t) = 2 + c1 cos t+ c2 sin t.

We now apply the boundary conditions and see if there are values of c1
and c2 that yield a solution to our problem. The first condition, x(0) = 0,
gives

0 = 2 + c1.

Thus, c1 = −2. Using this value for c1, the second condition, x(1) = 1, gives

0 = 2 − 2 cos 1 + c2 sin 1.

This yields

c2 =
2(cos 1 − 1)

sin 1
.

We have found that there is a solution to the boundary value problem and
it is given by

x(t) = 2

(

1 − cos t
(cos 1 − 1)

sin 1
sin t

)

.

Boundary value problems arise in many physical systems, just as many of
the initial values problems we have seen. We will see in the next section that
boundary value problems for ordinary differential equations often appear in
the solution of partial differential equations.
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4.2 Partial Differential Equations

In this section we will introduce some generic partial differential equations
and see how the discussion of such equations leads naturally to the study
of boundary value problems for ordinary differential equations. However, we
will not derive the particular equations, leaving that to courses in differential
equations, mathematical physics, etc.

For ordinary differential equations, the unknown functions are functions
of a single variable, e.g., y = y(x). Partial differential equations are equations
involving an unknown function of several variables, such as u = u(x, y), u =
u(x, y), u = u(x, y, z, t), and its (partial) derivatives. Therefore, the derivatives

are partial derivatives. We will use the standard notations ux = ∂u
∂x , uxx = ∂2u

∂x2 ,
etc.

There are a few standard equations that one encounters. These can be
studied in one to three dimensions and are all linear differential equations. A
list is provided in Table 4.1. Here we have introduced the Laplacian operator,
∇2u = uxx + uyy + uzz. Depending on the types of boundary conditions im-
posed and on the geometry of the system (rectangular, cylindrical, spherical,
etc.), one encounters many interesting boundary value problems for ordinary
differential equations.

Name 2 Vars 3 D

Heat Equation ut = kuxx ut = k∇2u
Wave Equation utt = c2uxx utt = c2∇2u

Laplace’s Equation uxx + uyy = 0 ∇2u = 0
Poisson’s Equation uxx + uyy = F (x, y) ∇2u = F (x, y, z)

Schrödinger’s Equation iut = uxx + F (x, t)u iut = ∇2u + F (x, y, z, t)u

Table 4.1. List of generic partial differential equations.

Let’s look at the heat equation in one dimension. This could describe the
heat conduction in a thin insulated rod of length L. It could also describe the
diffusion of pollutant in a long narrow stream, or the flow of traffic down a
road. In problems involving diffusion processes, one instead calls this equation
the diffusion equation.

A typical initial-boundary value problem for the heat equation would be
that initially one has a temperature distribution u(x, 0) = f(x). Placing the
bar in an ice bath and assuming the heat flow is only through the ends of the
bar, one has the boundary conditions u(0, t) = 0 and u(L, t) = 0. Of course,
we are dealing with Celsius temperatures and we assume there is plenty of ice
to keep that temperature fixed at each end for all time. So, the problem one
would need to solve is given as
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1D Heat Equation

PDE ut = kuxx 0 < t, 0 ≤ x ≤ L
IC u(x, 0) = f(x) 0 < x < L
BC u(0, t) = 0 t > 0

u(L, t) = 0 t > 0

(4.3)

Here, k is the heat conduction constant and is determined using
properties of the bar.

Another problem that will come up in later discussions is that of the vi-
brating string. A string of length L is stretched out horizontally with both ends
fixed. Think of a violin string or a guitar string. Then the string is plucked,
giving the string an initial profile. Let u(x, t) be the vertical displacement of
the string at position x and time t. The motion of the string is governed by
the one dimensional wave equation. The initial-boundary value problem for
this problem is given as

1D Wave Equation

PDE utt = c2uxx 0 < t, 0 ≤ x ≤ L
IC u(x, 0) = f(x) 0 < x < L
BC u(0, t) = 0 t > 0

u(L, t) = 0 t > 0

(4.4)

In this problem c is the wave speed in the string. It depends on the
mass per unit length of the string and the tension placed on the
string.

4.2.1 Solving the Heat Equation

We would like to see how the solution of such problems involving partial
differential equations will lead naturally to studying boundary value problems
for ordinary differential equations. We will see this as we attempt the solution
of the heat equation problem 4.3. We will employ a method typically used in
studying linear partial differential equations, called the method of separation
of variables.

We assume that u can be written as a product of single variable functions
of each independent variable,

u(x, t) = X(x)T (t).

Substituting this guess into the heat equation, we find that

XT ′ = kX ′′T.

Dividing both sides by k and u = XT, we then get
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1

k

T ′

T
=
X ′′

X
.

We have separated the functions of time on one side and space on the other
side. The only way that a function of t equals a function of x is if the functions
are constant functions. Therefore, we set each function equal to a constant,
λ :

1

k

T ′

T
︸︷︷︸

function of t

=
X ′′

X
︸︷︷︸

function of x

= λ
︸︷︷︸

constant

.

This leads to two equations:

T ′ = kλT, (4.5)

X ′′ = λX. (4.6)

These are ordinary differential equations. The general solutions to these equa-
tions are readily found as

T (t) = Aekλt, (4.7)

X(x) = c1e
√

λx + c2e
√
−λx. (4.8)

We need to be a little careful at this point. The aim is to force our product
solutions to satisfy both the boundary conditions and initial conditions. Also,
we should note that λ is arbitrary and may be positive, zero, or negative. We
first look at how the boundary conditions on u lead to conditions on X.

The first condition is u(0, t) = 0. This implies that

X(0)T (t) = 0

for all t. The only way that this is true is if X(0) = 0. Similarly, u(L, t) = 0
implies that X(L) = 0. So, we have to solve the boundary value problem

X ′′ − λX = 0, X(0) = 0 = X(L). (4.9)

We are seeking nonzero solutions, as X ≡ 0 is an obvious and uninteresting
solution. We call such solutions trivial solutions.

There are three cases to consider, depending on the sign of λ.

I. λ > 0
In this case we have the exponential solutions

X(x) = c1e
√

λx + c2e
√
−λx. (4.10)

For X(0) = 0, we have
0 = c1 + c2.

We will take c2 = −c1. Then, X(x) = c1(e
√

λx − e
√
−λx) = 2c1 sinh

√
λx.

Applying the second condition, X(L) = 0 yields
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c1 sinh
√
λL = 0.

This will be true only if c1 = 0, since λ > 0. Thus, the only solution in
this case is X(x) = 0. This leads to a trivial solution, u(x, t) = 0.

II. λ = 0
For this case it is easier to set λ to zero in the differential equation. So,
X ′′ = 0. Integrating twice, one finds

X(x) = c1x+ c2.

Setting x = 0, we have c2 = 0, leaving X(x) = c1x. Setting x = L, we find
c1L = 0. So, c1 = 0 and we are once again left with a trivial solution.

III. λ < 0
In this case is would be simpler to write λ = −µ2. Then the differential
equation is

X ′′ + µ2X = 0.

The general solution is

X(x) = c1 cosµx+ c2 sinµx.

At x = 0 we get 0 = c1. This leaves X(x) = c2 sinµx. At x = L, we find

0 = c2 sinµL.

So, either c2 = 0 or sinµL = 0. c2 = 0 leads to a trivial solution again.
But, there are cases when the sine is zero. Namely,

µL == nπ, n = 1, 2, . . . .

Note that n = 0 is not included since this leads to a trivial solution.
Also, negative values of n are redundant, since the sine function is an odd
function.

In summary, we can find solutions to the boundary value problem (4.9)
for particular values of λ. The solutions are

Xn(x) = sin
nπx

L
, n = 1, 2, 3, . . .

for

λn = −µ2
n = −

(nπ

L

)2

, n = 1, 2, 3, . . . .

Product solutions of the heat equation (4.3) satisfying the boundary con-
ditions are therefore

un(x, t) = bne
kλnt sin

nπx

L
, n = 1, 2, 3, . . . , (4.11)
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where bn is an arbitrary constant. However, these do not necessarily satisfy
the initial condition u(x, 0) = f(x). What we do get is

un(x, 0) = sin
nπx

L
, n = 1, 2, 3, . . . .

So, if our initial condition is in one of these forms, we can pick out the right
n and we are done.

For other initial conditions, we have to do more work. Note, since the heat
equation is linear, we can write a linear combination of our product solutions
and obtain the general solution satisfying the given boundary conditions as

u(x, t) =

∞∑

n=1

bne
kλnt sin

nπx

L
. (4.12)

The only thing to impose is the initial condition:

f(x) = u(x, 0) =

∞∑

n=1

bn sin
nπx

L
.

So, if we are given f(x), can we find the constants bn? If we can, then we will
have the solution to the full initial-boundary value problem. This will be the
subject of the next chapter. However, first we will look at the general form of
our boundary value problem and relate what we have done to the theory of
infinite dimensional vector spaces.

4.3 Connections to Linear Algebra

We have already seen in earlier chapters that ideas from linear algebra crop up
in our studies of differential equations. Namely, we solved eigenvalue problems
associated with our systems of differential equations in order to determine
the local behavior of dynamical systems near fixed points. In our study of
boundary value problems we will find more connections with the theory of
vector spaces. However, we will find that our problems lie in the realm of
infinite dimensional vector spaces. In this section we will begin to see these
connections.

4.3.1 Eigenfunction Expansions for PDEs

In the last section we sought solutions of the heat equation. Let’s formally
write the heat equation in the form

1

k
ut = L[u], (4.13)

where
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L =
∂2

∂x2
.

L is another example of a linear differential operator. [See Section 1.1.2.] It is
a differential operator because it involves derivative operators. We sometimes
define Dx = ∂

∂x , so that L = D2
x. It is linear, because for functions f(x) and

g(x) and constants α, β we have

L[αf + βg] = αL[f ] + βL[g]

When solving the heat equation, using the method of separation of vari-
ables, we found an infinite number of product solutions un(x, t) = Tn(t)Xn(x).
We did this by solving the boundary value problem

L[X ] = λX, X(0) = 0 = X(L). (4.14)

Here we see that an operator acts on an unknown function and spits out an
unknown constant times that unknown. Where have we done this before? This
is the same form as Av = λv. So, we see that Equation (4.14) is really an
eigenvalue problem for the operator L and given boundary conditions. When
we solved the heat equation in the last section, we found the eigenvalues

λn = −
(nπ

L

)2

and the eigenfunctions

Xn(x) = sin
nπx

L
.

We used these to construct the general solution that is essentially a linear
combination over the eigenfunctions,

u(x, t) =

∞∑

n=1

Tn(t)Xn(x).

Note that these eigenfunctions live in an infinite dimensional function space.
We would like to generalize this method to problems in which L comes

from an assortment of linear differential operators. So, we consider the more
general partial differential equation

ut = L[u], a ≤ x ≤ b, t > 0,

satisfying the boundary conditions

B[u](a, t) = 0, B[u](b, t) = 0, t > 0,

and initial condition

u(x, 0) = f(x), a ≤ x ≤ b.
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The form of the allowed boundary conditions B[u] will be taken up later.
Also, we will later see specific examples and properties of linear differential
operators that will allow for this procedure to work.

We assume product solutions of the form un(x, t) = bn(t)φn(x), where the
φn’s are the eigenfunctions of the operator L,

Lφn = λnφn, n = 1, 2, . . . , (4.15)

satisfying the boundary conditions

B[φn](a) = 0, B[φn](b) = 0. (4.16)

Inserting the general solution

u(x, t) =

∞∑

n=1

bn(t)φn(x)

into the partial differential equation, we have

ut = L[u],

∂

∂t

∞∑

n=1

bn(t)φn(x) = L

[ ∞∑

n=1

bn(t)φn(x)

]

(4.17)

On the left we differentiate term by term1 and on the right side we use the
linearity of L:

∞∑

n=1

dbn(t)

dt
φn(x) =

∞∑

n=1

bn(t)L[φn(x)] (4.18)

Now, we make use of the result of applying L to the eigenfunction φn:

∞∑

n=1

dbn(t)

dt
φn(x) =

∞∑

n=1

bn(t)λnφn(x). (4.19)

Comparing both sides, or using the linear independence of the eigenfunctions,
we see that

dbn(t)

dt
= λnbn(t),

whose solution is
bn(t) = bn(0)eλnt.

So, the general solution becomes

1 Infinite series cannot always be differentiated, so one must be careful. When we
ignore such details for the time being, we say that we formally differentiate the
series and formally apply the differential operator to the series. Such operations
need to be justified later.
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u(x, t) =
∞∑

n=1

bn(0)eλntφn(x).

This solution satisfies, at least formally, the partial differential equation and
satisfies the boundary conditions.

Finally, we need to determine the bn(0)’s, which are so far arbitrary. We
use the initial condition u(x, 0) = f(x) to find that

f(x) =
∞∑

n=1

bn(0)φn(x).

So, given f(x), we are left with the problem of extracting the coefficients bn(0)
in an expansion of f in the eigenfunctions φn. We will see that this is related
to Fourier series expansions, which we will take up in the next chapter.

4.3.2 Eigenfunction Expansions for Nonhomogeneous ODEs

Partial differential equations are not the only applications of the method of
eigenfunction expansions, as seen in the last section. We can apply these
method to nonhomogeneous two point boundary value problems for ordinary
differential equations assuming that we can solve the associated eigenvalue
problem.

Let’s begin with the nonhomogeneous boundary value problem:

L[u] = f(x), a ≤ x ≤ b

B[u](a) = 0, B[u](b) = 0. (4.20)

We first solve the eigenvalue problem,

L[φ] = λφ, a ≤ x ≤ b

B[φ](a) = 0, B[φ](b) = 0, (4.21)

and obtain a family of eigenfunctions, {φn(x)}∞n=1. Then we assume that u(x)
can be represented as a linear combination of these eigenfunctions:

u(x) =
∞∑

n=1

bnφn(x).

Inserting this into the differential equation, we have

f(x) = L[u]

= L

[ ∞∑

n=1

bnφn(x)

]

=

∞∑

n=1

bnL [φn(x)]
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=
∞∑

n=1

λnbnφn(x)

≡
∞∑

n=1

cnφn(x). (4.22)

Therefore, we have to find the expansion coefficients cn = λnbn of the
given f(x) in a series expansion over the eigenfunctions. This is similar to
what we had found for the heat equation problem and its generalization in
the last section.

There are a lot of questions and details that have been glossed over in
our formal derivations. Can we always find such eigenfunctions for a given
operator? Do the infinite series expansions converge? Can we differentiate
our expansions terms by term? Can one find expansions that converge to
given functions like f(x) above? We will begin to explore these questions in
the case that the eigenfunctions are simple trigonometric functions like the
φn(x) = sin nπx

L in the solution of the heat equation.

4.3.3 Linear Vector Spaces

Much of the discussion and terminology that we will use comes from the theory
of vector spaces. Until now you may only have dealt with finite dimensional
vector spaces in your classes. Even then, you might only be comfortable with
two and three dimensions. We will review a little of what we know about finite
dimensional spaces so that we can deal with the more general function spaces,
which is where our eigenfunctions live.

The notion of a vector space is a generalization of our three dimensional
vector spaces. In three dimensions, we have things called vectors, which are
arrows of a specific length and pointing in a given direction. To each vector,
we can associate a point in a three dimensional Cartesian system. We just
attach the tail of the vector v to the origin and the head lands at (x, y, z).
We then use unit vectors i, j and k along the coordinate axes to write

v = xi + yj + zk.

Having defined vectors, we then learned how to add vectors and multiply
vectors by numbers, or scalars. Under these operations, we expected to get
back new vectors. Then we learned that there were two types of multiplication
of vectors. We could multiply then to get a scalar or a vector. This lead
to the dot and cross products, respectively. The dot product was useful for
determining the length of a vector, the angle between two vectors, or if the
vectors were orthogonal.

These notions were later generalized to spaces of more than three dimen-
sions in your linear algebra class. The properties outlined roughly above need
to be preserved. So, we have to start with a space of vectors and the opera-
tions between them. We also need a set of scalars, which generally come from
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some field. However, in our applications the field will either be the set of real
numbers or the set of complex numbers.

Definition 4.1. A vector space V over a field F is a set that is closed under
addition and scalar multiplication and satisfies the following conditions: For
any u, v, w ∈ V and a, b ∈ F

1. u+ v = v + u.
2. (u+ v) + w = u+ (v + w).
3. There exists a 0 such that 0 + v= v.
4. There exists a −v such that v + (−v) = 0.
5. a(bv) = (ab)v.
6. (a+ b)v = av + bv.
7. a(u+ v) = au+ bv.
8. 1(v) = v.

Now, for an n-dimensional vector space, we have the idea that any vector
in the space can be represented as the sum over n linearly independent vectors.
Recall that a linearly independent set of vectors {vj}n

j=1 satisfies

n∑

j=1

cjvj = 0 ⇔ cj = 0.

This leads to the idea of a basis set. The standard basis in an n-dimensional
vector space is a generalization of the standard basis in three dimensions (i, j
and k). We define

ek = (0, . . . , 0, 1
︸︷︷︸

kth space

, 0, . . . , 0), k = 1, . . . , n. (4.23)

Then, we can expand any v ∈ V as

v =

n∑

k=1

vkek, (4.24)

where the vk’s are called the components of the vector in this basis and one
can write v as an n-tuple (v1, v2, . . . , vn).

The only other thing we will need at this point is to generalize the dot
product, or scalar product. Recall that there are two forms for the dot product
in three dimensions. First, one has that

u · v = uv cos θ, (4.25)

where u and v denote the length of the vectors. The other form, is the com-
ponent form:

u · v = u1v1 + u2v2 + u3v3 =

3∑

k=1

ukvk. (4.26)
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Of course, this form is easier to generalize. So, we define the scalar product
between to n-dimensional vectors as

< u,v >=
n∑

k=1

ukvk. (4.27)

Actually, there are a number of notations that are used in other texts. One
can write the scalar product as (u,v) or even use the Dirac notation < u|v >
for applications in quantum mechanics.

While it does not always make sense to talk about angles between general
vectors in higher dimensional vector spaces, there is one concept that is useful.
It is that of orthogonality, which in three dimensions another way of say
vectors are perpendicular to each other. So, we also say that vectors u and v
are orthogonal if and only if < u,v >= 0. If {ak}n

k=1, is a set of basis vectors
such that

< aj ,ak >= 0, k 6= j,

then it is called an orthogonal basis. If in addition each basis vector is a unit
vector, then one has an orthonormal basis

Let {ak}n
k=1, be a set of basis vectors for vector space V . We know that

any vector v can be represented in terms of this basis, v =
∑n

k=1 vkak. If we
know the basis and vector, can we find the components? The answer is, yes.
We can use the scalar product of v with each basis element aj . So, we have
for j = 1, . . . , n

< aj ,v > = < aj ,

n∑

k=1

vkak >

=
n∑

k=1

vk < aj ,ak > . (4.28)

Since we know the basis elements, we can easily compute the numbers

Ajk ≡< aj ,ak >

and
bj ≡< aj ,v > .

Therefore, the system (4.28) for the vk’s is a linear algebraic system, which
takes the form Av = b. However, if the basis is orthogonal, then the matrix
A is diagonal and the system is easily solvable. We have that

< aj ,v >= vj < aj ,aj >, (4.29)

or

vj =
< aj ,v >

< aj ,aj >
. (4.30)
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In fact, if the basis is orthonormal, A is the identity matrix and the solution
is simpler:

vj =< aj ,v > . (4.31)

We spent some time looking at this simple case of extracting the compo-
nents of a vector in a finite dimensional space. The keys to doing this simply
were to have a scalar product and an orthogonal basis set. These are the key
ingredients that we will need in the infinite dimensional case. Recall that when
we solved the heat equation, we had a function (vector) that we wanted to
expand in a set of eigenfunctions (basis) and we needed to find the expansion
coefficients (components). As you can see, we need to extend the concepts for
finite dimensional spaces to their analogs in infinite dimensional spaces. Lin-
ear algebra will provide some of the backdrop for what is to follow: The study
of many boundary value problems amounts to the solution of eigenvalue prob-
lems over infinite dimensional vector spaces (complete inner product spaces,
the space of square integrable functions, or Hilbert spaces).

We will consider the space of functions of a certain type. They could
be the space of continuous functions on [0,1], or the space of differentiably
continuous functions, or the set of functions integrable from a to b. Later, we
will specify the types of functions needed. We will further need to be able to
add functions and multiply them by scalars. So, we can easily obtain a vector
space of functions.

We will also need a scalar product defined on this space of functions. There
are several types of scalar products, or inner products, that we can define. For
a real vector space, we define

Definition 4.2. An inner product <,> on a real vector space V is a mapping
from V × V into R such that for u, v, w ∈ V and α ∈ R one has

1. < u+ v, w >=< u,w > + < v,w > .
2. < αv,w >= α < v,w > .
3. < v,w >=< w, v > .
4. < v, v >≥ 0 and < v, v >= 0 iff v = 0.

A real vector space equipped with the above inner product leads to a real
inner product space. A more general definition with the third item replaced
with < v,w >= < w, v > is needed for complex inner product spaces.

For the time being, we are dealing just with real valued functions. We
need an inner product appropriate for such spaces. One such definition is the
following. Let f(x) and g(x) be functions defined on [a, b]. Then, we define
the inner product, if the integral exists, as

< f, g >=

∫ b

a

f(x)g(x) dx. (4.32)

So far, we have functions spaces equipped with an inner product. Can we
find a basis for the space? For an n-dimensional space we need n basis vectors.
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For an infinite dimensional space, how many will we need? How do we know
when we have enough? We will think about those things later.

Let’s assume that we have a basis of functions {φn(x)}∞n=1. Given a func-
tion f(x), how can we go about finding the components of f in this basis? In
other words, let

f(x) =
∞∑

n=1

cnφn(x).

How do we find the cn’s? Does this remind you of the problem we had earlier?
Formally, we take the inner product of f with each φj , to find

< φj , f > = < φj ,

∞∑

n=1

cnφn >

=

∞∑

n=1

cn < φj , φn > . (4.33)

If our basis is an orthogonal basis, then we have

< φj , φn >= Njδjn, (4.34)

where δij is the Kronecker delta defined as

δij =

{
0, i 6= j
1, i = j.

(4.35)

Thus, we have

< φj , f > =

∞∑

n=1

cn < φj , φn >

=

∞∑

n=1

cnNjδjn

= c1Njδj1 + c2Njδj2 + . . .+ cjNjδjj + . . .

= cjNj. (4.36)

So, the expansion coefficient is

cj =
< φj , f >

Nj
=

< φj , f >

< φj , φj >
.

We summarize this important result:
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Generalized Basis Expansion

Let f(x) be represented by an expansion over a basis of orthogonal
functions, {φn(x)}∞n=1,

f(x) =

∞∑

n=1

cnφn(x).

Then, the expansion coefficients are formally determined as

cn =
< φn, f >

< φn, φn >
.

In our preparation for later sections, let’s determine if the set of functions
φn(x) = sinnx for n = 1, 2, . . . is orthogonal on the interval [−π, π]. We need
to show that < φn, φm >= 0 for n 6= m. Thus, we have for n 6= m

< φn, φm > =

∫ π

−π

sinnx sinmxdx

=
1

2

∫ π

−π

[cos(n−m)x − cos(n+m)x] dx

=
1

2

[
sin(n−m)x

n−m
− sin(n+m)x

n+m

]π

−π

= 0. (4.37)

Here we have made use of a trigonometric identity for the product of two
sines. We recall how this identity is derived. Recall the addition formulae for
cosines:

cos(A+B) = cosA cosB − sinA sinB,

cos(A−B) = cosA cosB + sinA sinB.

Adding, or subtracting, these equations gives

2 cosA cosB = cos(A+B) + cos(A−B),

2 sinA sinB = cos(A−B) − cos(A+B).

So, we have determined that the set φn(x) = sinnx for n = 1, 2, . . . is
an orthogonal set of functions on the interval [= π, π]. Just as with vectors
in three dimensions, we can normalize our basis functions to arrive at an
orthonormal basis, < φn, φm >= δnm, m, n = 1, 2, . . . . This is simply done by
dividing by the length of the vector. Recall that the length of a vector was
obtained as v =

√
v · v In the same way, we define the norm of our functions

by
‖f‖ =

√

< f, f >.

Note, there are many types of norms, but this will be sufficient for us.
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For the above basis of sine functions, we want to first compute the norm
of each function. Then we would like to find a new basis from this one such
that each basis eigenfunction has unit length and is therefore an orthonormal
basis. We first compute

‖φn‖2 =

∫ π

−π

sin2 nxdx

=
1

2

∫ π

−π

[1 − cos 2nx] dx

=
1

2

[

x− sin 2nx

2n

]π

−π

= π. (4.38)

We have found for our example that

< φn, φm >= πδnm (4.39)

and that ‖φn‖ =
√
π. Defining ψn(x) = 1√

π
φn(x), we have normalized the

φn’s and have obtained an orthonormal basis of functions on [−π, π].
Expansions of functions in trigonometric bases occur often and originally

resulted from the study of partial differential equations. They have been
named Fourier series and will be the topic of the next chapter.

Problems

4.1. Solve the following problem:

x′′ + x = 2, x(0) = 0, x′(1) = 0.

4.2. Find product solutions, u(x, t) = b(t)φ(x), to the heat equation satisfying
the boundary conditions ux(0, t) = 0 and u(L, t) = 0. Use these solutions to
find a general solution of the heat equation satisfying these boundary condi-
tions.

4.3. Consider the following boundary value problems. Determine the eigen-
values, λ, and eigenfunctions, y(x) for each problem.2

a. y′′ + λy = 0, y(0) = 0, y′(1) = 0.
b. y′′ − λy = 0, y(−π) = 0, y′(π) = 0.
c. x2y′′ + xy′ + λy = 0, y(1) = 0, y(2) = 0.
d. (x2y′)′ + λy = 0, y(1) = 0, y′(e) = 0.

2 In problem d you will not get exact eigenvalues. Show that you obtain a transcen-
dental equation for the eigenvalues in the form tan z = 2z. Find the first three
eigenvalues numerically.
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4.4. For the following sets of functions: i) show that each is orthogonal on the
given interval, and ii) determine the corresponding orthonormal set.

a. {sin 2nx}, n = 1, 2, 3, . . . , 0 ≤ x ≤ π.
b. {cosnπx}, n = 0, 1, 2, . . . , 0 ≤ x ≤ 2.
c. {sin nπx

L }, n = 1, 2, 3, . . . , x ∈ [−L,L].

4.5. Consider the boundary value problem for the deflection of a horizontal
beam fixed at one end,

d4y

dx4
= C, y(0) = 0, y′(0) = 0, y′′(L) = 0, y′′′(L) = 0.

Solve this problem assuming that C is a constant.
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Fourier Series

5.1 Introduction

In this chapter we will look at trigonometric series. Previously, we saw that
such series expansion occurred naturally in the solution of the heat equation
and other boundary value problems. In the last chapter we saw that such
functions could be viewed as a basis in an infinite dimensional vector space of
functions. Given a function in that space, when will it have a representation
as a trigonometric series? For what values of x will it converge? Finding such
series is at the heart of Fourier, or spectral, analysis.

There are many applications using spectral analysis. At the root of these
studies is the belief that many continuous waveforms are comprised of a num-
ber of harmonics. Such ideas stretch back to the Pythagorean study of the
vibrations of strings, which lead to their view of a world of harmony. This
idea was carried further by Johannes Kepler in his harmony of the spheres
approach to planetary orbits. In the 1700’s others worked on the superposi-
tion theory for vibrating waves on a stretched spring, starting with the wave
equation and leading to the superposition of right and left traveling waves.
This work was carried out by people such as John Wallis, Brook Taylor and
Jean le Rond d’Alembert.

In 1742 d’Alembert solved the wave equation

c2
∂2y

∂x2
− ∂2y

∂t2
= 0,

where y is the string height and c is the wave speed. However, his solution led
himself and others, like Leonhard Euler and Daniel Bernoulli, to investigate
what ”functions” could be the solutions of this equation. In fact, this lead
to a more rigorous approach to the study of analysis by first coming to grips
with the concept of a function. For example, in 1749 Euler sought the solution
for a plucked string in which case the initial condition y(x, 0) = h(x) has a
discontinuous derivative!
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In 1753 Daniel Bernoulli viewed the solutions as a superposition of simple
vibrations, or harmonics. Such superpositions amounted to looking at solu-
tions of the form

y(x, t) =
∑

k

ak sin
kπx

L
cos

kπct

L
,

where the string extends over the interval [0, L] with fixed ends at x = 0 and
x = L. However, the initial conditions for such superpositions are

y(x, 0) =
∑

k

ak sin
kπx

L
.

It was determined that many functions could not be represented by a finite
number of harmonics, even for the simply plucked string given by an initial
condition of the form

y(x, 0) =

{
cx, 0 ≤ x ≤ L/2

c(L− x), L/2 ≤ x ≤ L
.

Thus, the solution consists generally of an infinite series of trigonometric func-
tions.

Such series expansions were also of importance in Joseph Fourier’s solution
of the heat equation. The use of such Fourier expansions became an important
tool in the solution of linear partial differential equations, such as the wave
equation and the heat equation. As seen in the last chapter, using the Method
of Separation of Variables, allows higher dimensional problems to be reduced
to several one dimensional boundary value problems. However, these studies
lead to very important questions, which in turn opened the doors to whole
fields of analysis. Some of the problems raised were

1. What functions can be represented as the sum of trigonometric functions?
2. How can a function with discontinuous derivatives be represented by a

sum of smooth functions, such as the above sums?
3. Do such infinite sums of trigonometric functions a actually converge to

the functions they represents?

Sums over sinusoidal functions naturally occur in music and in studying
sound waves. A pure note can be represented as

y(t) = A sin(2πft),

where A is the amplitude, f is the frequency in hertz (Hz), and t is time in
seconds. The amplitude is related to the volume, or intensity, of the sound.
The larger the amplitude, the louder the sound. In Figure 5.1 we show plots
of two such tones with f = 2 Hz in the top plot and f = 5 Hz in the bottom
one.

Next, we consider what happens when we add several pure tones. After all,
most of the sounds that we hear are in fact a combination of pure tones with
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Fig. 5.1. Plots of y(t) = sin(2πft) on [0, 5] for f = 2 Hz and f = 5 Hz.

different amplitudes and frequencies. In Figure 5.2 we see what happens when
we add several sinusoids. Note that as one adds more and more tones with
different characteristics, the resulting signal gets more complicated. However,
we still have a function of time. In this chapter we will ask, “Given a function
f(t), can we find a set of sinusoidal functions whose sum converges to f(t)?”

Looking at the superpositions in Figure 5.2, we see that the sums yield
functions that appear to be periodic. This is not to be unexpected. We recall
that a periodic function is one in which the function values repeat over the
domain of the function. The length of the smallest part of the domain which
repeats is called the period. We can define this more precisely.

Definition 5.1. A function is said to be periodic with period T if f(t+ T ) =
f(t) for all t and the smallest such positive number T is called the period.

For example, we consider the functions used in Figure 5.2. We began with
y(t) = 2 sin(4πt). Recall from your first studies of trigonometric functions that
one can determine the period by dividing the coefficient of t into 2π to get
the period. In this case we have

T =
2π

4π
=

1

2
.

Looking at the top plot in Figure 5.1 we can verify this result. (You can count
the full number of cycles in the graph and divide this into the total time to
get a more accurate value of the period.)

In general, if y(t) = A sin(2πft), the period is found as

T =
2π

2πf
=

1

f
.
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Fig. 5.2. Superposition of several sinusoids. Top: Sum of signals with f = 2 Hz and
f = 5 Hz. Bottom: Sum of signals with f = 2 Hz, f = 5 Hz, and and f = 8 Hz.

Of course, this result makes sense, as the unit of frequency, the hertz, is also
defined as s−1, or cycles per second.

Returning to the superpositions in Figure 5.2, we have that y(t) =
sin(10πt) has a period of 0.2 Hz and y(t) = sin(16πt) has a period of 0.125 Hz.
The two superpositions retain the largest period of the signals added, which
is 0.5 Hz.

Our goal will be to start with a function and then determine the amplitudes
of the simple sinusoids needed to sum to that function. First of all, we will
see that this might involve an infinite number of such terms. Thus, we will be
studying an infinite series of sinusoidal functions.

Secondly, we will find that using just sine functions will not be enough
either. This is because we can add sinusoidal functions that do not necessarily
peak at the same time. We will consider two signals that originate at different
times. This is similar to when your music teacher would make sections of the
class sing a song like “Row, Row, Row your Boat” starting at slightly different
times.

We can easily add shifted sine functions. In Figure 5.3 we show the func-
tions y(t) = 2 sin(4πt) and y(t) = 2 sin(4πt+ 7π/8) and their sum. Note that
this shifted sine function can be written as y(t) = 2 sin(4π(t + 7/32)). Thus,
this corresponds to a time shift of −7/8.

So, we should account for shifted sine functions in our general sum. Of
course, we would then need to determine the unknown time shift as well as
the amplitudes of the sinusoidal functions that make up our signal, f(t).While
this is one approach that some researchers use to analyze signals, there is a
more common approach. This results from another reworking of the shifted
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function. Consider the general shifted function

y(t) = A sin(2πft+ φ).

Note that 2πft+φ is called the phase of our sine function and φ is called the
phase shift. We can use our trigonometric identity for the sine of the sum of
two angles to obtain

y(t) = A sin(2πft+ φ) = A sin(φ) cos(2πft) +A cos(φ) sin(2πft).

Defining a = A sin(φ) and b = A cos(φ), we can rewrite this as

y(t) = a cos(2πft) + b sin(2πft).

Thus, we see that our signal is a sum of sine and cosine functions with the
same frequency and different amplitudes. If we can find a and b, then we can
easily determine A and φ:

A =
√

a2 + b2 tanφ =
b

a
.
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Fig. 5.3. Plot of the functions y(t) = 2 sin(4πt) and y(t) = 2 sin(4πt + 7π/8) and
their sum.

We are now in a position to state our goal in this chapter.

Goal

Given a signal f(t), we would like to determine its frequency content by
finding out what combinations of sines and cosines of varying frequencies
and amplitudes will sum to the given function. This is called Fourier Anal-
ysis.
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5.2 Fourier Trigonometric Series

As we have seen in the last section, we are interested in finding representations
of functions in terms of sines and cosines. Given a function f(x) we seek a
representation in the form

f(x) ∼ a0

2
+

∞∑

n=1

[an cosnx+ bn sinnx] . (5.1)

Notice that we have opted to drop reference to the frequency form of the
phase. This will lead to a simpler discussion for now and one can always make
the transformation nx = 2πfnt when applying these ideas to applications.

The series representation in Equation (5.1) is called a Fourier trigonomet-
ric series. We will simply refer to this as a Fourier series for now. The set of
constants a0, an, bn, n = 1, 2, . . . are called the Fourier coefficients. The con-
stant term is chosen in this form to make later computations simpler, though
some other authors choose to write the constant term as a0. Our goal is to
find the Fourier series representation given f(x). Having found the Fourier
series representation, we will be interested in determining when the Fourier
series converges and to what function it converges.

From our discussion in the last section, we see that the infinite series is
periodic. The largest period of the terms comes from the n = 1 terms. The
periods of cosx and sinx are T = 2π. Thus, the Fourier series has period
2π. This means that the series should be able to represent functions that are
periodic of period 2π.

While this appears restrictive, we could also consider functions that are
defined over one period. In Figure 5.4 we show a function defined on [0, 2π].
In the same figure, we show its periodic extension. These are just copies of
the original function shifted by the period and glued together. The extension
can now be represented by a Fourier series and restricting the Fourier series
to [0, 2π] will give a representation of the original function. Therefore, we
will first consider Fourier series representations of functions defined on this
interval. Note that we could just as easily considered functions defined on
[−π, π] or any interval of length 2π.

Fourier Coefficients

Theorem 5.2. The Fourier series representation of f(x) defined on [0, 2π]
when it exists, is given by (5.1) with Fourier coefficients

an =
1

π

∫ 2π

0

f(x) cosnxdx, n = 0, 1, 2, . . . ,

bn =
1

π

∫ 2π

0

f(x) sinnxdx, n = 1, 2, . . . . (5.2)
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Fig. 5.4. Plot of the functions f(t) defined on [0, 2π] and its periodic extension.

These expressions for the Fourier coefficients are obtained by considering
special integrations of the Fourier series. We will look at the derivations of
the an’s. First we obtain a0.

We begin by integrating the Fourier series term by term in Equation (5.1).

∫ 2π

0

f(x) dx =

∫ 2π

0

a0

2
dx+

∫ 2π

0

∞∑

n=1

[an cosnx+ bn sinnx] dx. (5.3)

We assume that we can integrate the infinite sum term by term. Then we
need to compute

∫ 2π

0

a0

2
dx =

a0

2
(2π) = πa0,

∫ 2π

0

cosnxdx =

[
sinnx

n

]2π

0

= 0,

∫ 2π

0

sinnxdx =

[− cosnx

n

]2π

0

= 0.

(5.4)

From these results we see that only one term in the integrated sum does not
vanish leaving

∫ 2π

0

f(x) dx = πa0.

This confirms the value for a0.
Next, we need to find an. We will multiply the Fourier series (5.1) by

cosmx for some positive integer m. This is like multiplying by cos 2x, cos 5x,
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etc. We are multiplying by all possible cosmx functions for different integers
m all at the same time. We will see that this will allow us to solve for the
an’s.

We find the integrated sum of the series times cosmx is given by

∫ 2π

0

f(x) cosmxdx =

∫ 2π

0

a0

2
cosmxdx

+

∫ 2π

0

∞∑

n=1

[an cosnx+ bn sinnx] cosmxdx. (5.5)

Integrating term by term, the right side becomes

a0

2

∫ 2π

0

cosmxdx +

∞∑

n=1

[

an

∫ 2π

0

cosnx cosmxdx+ bn

∫ 2π

0

sinnx cosmxdx

]

.

(5.6)

We have already established that
∫ 2π

0 cosmxdx = 0, which implies that the
first term vanishes.

Next we need to compute integrals of products of sines and cosines. This
requires that we make use of some trigonometric identities. While you have
seen such integrals before in your calculus class, we will review how to carry
out such integrals. For future reference, we list several useful identities, some
of which we will prove along the way.

Useful Trigonometric Identities

sin(x± y) = sinx cos y ± sin y cosx (5.7)

cos(x± y) = cosx cos y ∓ sinx sin y (5.8)

sin2 x =
1

2
(1 − cos 2x) (5.9)

cos2 x =
1

2
(1 + cos 2x) (5.10)

sinx sin y =
1

2
(cos(x− y) − cos(x+ y)) (5.11)

cosx cos y =
1

2
(cos(x+ y) + cos(x− y)) (5.12)

sinx cos y =
1

2
(sin(x+ y) + sin(x − y)) (5.13)

We first want to evaluate
∫ 2π

0 cosnx cosmxdx. We do this by using the
product identity. We had done this in the last chapter, but will repeat the
derivation for the reader’s benefit. Recall the addition formulae for cosines:

cos(A+B) = cosA cosB − sinA sinB,
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cos(A−B) = cosA cosB + sinA sinB.

Adding these equations gives

2 cosA cosB = cos(A+B) + cos(A−B).

We can use this identity with A = mx andB = nx to complete the integration.
We have

∫ 2π

0

cosnx cosmxdx =
1

2

∫ 2π

0

[cos(m+ n)x+ cos(m− n)x] dx

=
1

2

[
sin(m+ n)x

m+ n
+

sin(m− n)x

m− n

]2π

0

= 0. (5.14)

There is one caveat when doing such integrals. What if one of the denom-
inators m ± n vanishes? For our problem m + n 6= 0, since both m and n
are positive integers. However, it is possible for m = n. This means that the
vanishing of the integral can only happen when m 6= n. So, what can we do
about the m = n case? One way is to start from scratch with our integration.
(Another way is to compute the limit as n approaches m in our result and use
L’Hopital’s Rule. Try it!)

So, for n = m we have to compute
∫ 2π

0 cos2mxdx. This can also be handled
using a trigonometric identity. Recall that

cos2 θ =
1

2
(1 + cos 2θ.)

Inserting this into the integral, we find
∫ 2π

0

cos2mxdx =
1

2

∫ 2π

0

(1 + cos2 2mx) dx

=
1

2

[

x+
1

2m
sin 2mx

]2π

0

=
1

2
(2π) = π. (5.15)

To summarize, we have shown that
∫ 2π

0

cosnx cosmxdx =

{
0, m 6= n
π, m = n.

(5.16)

This holds true for m,n = 0, 1, . . . . [Why did we include m,n = 0?] When we
have such a set of functions, they are said to be an orthogonal set over the
integration interval.

Definition 5.3. A set of (real) functions {φn(x)} is said to be orthogonal on

[a, b] if
∫ b

a φn(x)φm(x) dx = 0 when n 6= m. Furthermore, if we also have that
∫ b

a
φ2

n(x) dx = 1, these functions are called orthonormal.
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The set of functions {cosnx}∞n=0 are orthogonal on [0, 2π]. Actually, they
are orthogonal on any interval of length 2π. We can make them orthonormal
by dividing each function by

√
π as indicated by Equation (5.15).

The notion of orthogonality is actually a generalization of the orthogonality

of vectors in finite dimensional vector spaces. The integral
∫ b

a
f(x)f(x) dx is

the generalization of the dot product, and is called the scalar product of f(x)
and g(x), which are thought of as vectors in an infinite dimensional vector
space spanned by a set of orthogonal functions. But that is another topic for
later.

Returning to the evaluation of the integrals in equation (5.6), we still have

to evaluate
∫ 2π

0
sinnx cosmxdx. This can also be evaluated using trigonomet-

ric identities. In this case, we need an identity involving products of sines and
cosines. Such products occur in the addition formulae for sine functions:

sin(A+B) = sinA cosB + sinB cosA,

sin(A−B) = sinA cosB − sinB cosA.

Adding these equations, we find that

sin(A+B) + sin(A−B) = 2 sinA cosB.

Setting A = nx and B = mx, we find that

∫ 2π

0

sinnx cosmxdx =
1

2

∫ 2π

0

[sin(n+m)x+ sin(n−m)x] dx

=
1

2

[− cos(n+m)x

n+m
+

− cos(n−m)x

n−m

]2π

0

= (−1 + 1) + (−1 + 1) = 0. (5.17)

For these integrals we also should be careful about setting n = m. In this
special case, we have the integrals

∫ 2π

0

sinmx cosmxdx =
1

2

∫ 2π

0

sin 2mxdx =
1

2

[− cos 2mx

2m

]2π

0

= 0.

Finally, we can finish our evaluation of (5.6). We have determined that all
but one integral vanishes. In that case, n = m. This leaves us with

∫ 2π

0

f(x) cosmxdx = amπ.

Solving for am gives

am =
1

π

∫ 2π

0

f(x) cosmxdx.
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Since this is true for all m = 1, 2, . . . , we have proven this part of the theorem.
The only part left is finding the bn’s This will be left as an exercise for the
reader.

We now consider examples of finding Fourier coefficients for given func-
tions. In all of these cases we define f(x) on [0, 2π].

Example 5.4. f(x) = 3 cos 2x, x ∈ [0, 2π].
We first compute the integrals for the Fourier coefficients.

a0 =
1

π

∫ 2π

0

3 cos 2xdx = 0.

an =
1

π

∫ 2π

0

3 cos 2x cosnxdx = 0, n 6= 2.

a2 =
1

π

∫ 2π

0

3 cos2 2xdx = 3,

bn =
1

π

∫ 2π

0

3 cos 2x sinnxdx = 0, ∀n.

(5.18)

Therefore, we have that the only nonvanishing coefficient is a2 = 3. So there
is one term and f(x) = 3 cos 2x. Well, we should have know this before doing
all of these integrals. So, if we have a function expressed simply in terms of
sums of simple sines and cosines, then it should be easy to write down the
Fourier coefficients without much work.

Example 5.5. f(x) = sin2 x, x ∈ [0, 2π].
We could determine the Fourier coefficients by integrating as in the last

example. However, it is easier to use trigonometric identities. We know that

sin2 x =
1

2
(1 − cos 2x) =

1

2
− 1

2
cos 2x.

There are no sine terms, so bn = 0, n = 1, 2, . . . . There is a constant term,
implying a0/2 = 1/2. So, a0 = 1. There is a cos 2x term, corresponding to
n = 2, so a2 = − 1

2 . That leaves an = 0 for n 6= 0, 2.

Example 5.6. f(x) =

{
1, 0 < x < π,
−1, π < x < 2π,

.

This example will take a little more work. We cannot bypass evaluating
any integrals at this time. This function is discontinuous, so we will have to
compute each integral by breaking up the integration into two integrals, one
over [0, π] and the other over [π, 2π].

a0 =
1

π

∫ 2π

0

f(x) dx
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=
1

π

∫ π

0

dx+
1

π

∫ 2π

π

(−1) dx

=
1

π
(π) +

1

π
(−2π + π) = 0. (5.19)

an =
1

π

∫ 2π

0

f(x) cosnxdx

=
1

π

[∫ π

0

cosnxdx−
∫ 2π

π

cosnxdx

]

=
1

π

[(
1

n
sinnx

)π

0

−
(

1

n
sinnx

)2π

π

]

= 0. (5.20)

bn =
1

π

∫ 2π

0

f(x) sinnxdx

=
1

π

[∫ π

0

sinnxdx−
∫ 2π

π

sinnxdx

]

=
1

π

[(

− 1

n
cosnx

)π

0

+

(
1

n
cosnx

)2π

π

]

=
1

π

[

− 1

n
cosnπ +

1

n
+

1

n
− 1

n
cosnπ

]

=
2

nπ
(1 − cosnπ). (5.21)

We have found the Fourier coefficients for this function. Before inserting
them into the Fourier series (5.1), we note that cosnπ = (−1)n. Therefore,

1 − cosnπ =

{
0, n even
2, n odd.

(5.22)

So, half of the bn’s are zero. While we could write the Fourier series represen-
tation as

f(x) ∼ 4

π

∞∑

n=1, odd

1

n
sinnx,

we could let n = 2k − 1 and write

f(x) =
4

π

∞∑

k=1

sin(2k − 1)x

2k − 1
,

But does this series converge? Does it converge to f(x)? We will discuss
this question later in the chapter.
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5.3 Fourier Series Over Other Intervals

In many applications we are interested in determining Fourier series represen-
tations of functions defined on intervals other than [0, 2π]. In this section we
will determine the form of the series expansion and the Fourier coefficients in
these cases.

The most general type of interval is given as [a, b].However, this often is too
general. More common intervals are of the form [−π, π], [0, L], or [−L/2, L/2].
The simplest generalization is to the interval [0, L]. Such intervals arise often
in applications. For example, one can study vibrations of a one dimensional
string of length L and set up the axes with the left end at x = 0 and the
right end at x = L. Another problem would be to study the temperature
distribution along a one dimensional rod of length L. Such problems lead to
the original studies of Fourier series. As we will see later, symmetric intervals,
[−a, a], are also useful.

Given an interval [0, L], we could apply a transformation to an interval of
length 2π by simply rescaling our interval. Then we could apply this transfor-
mation to our Fourier series representation to obtain an equivalent one useful
for functions defined on [0, L].

We define x ∈ [0, 2π] and t ∈ [0, L]. A linear transformation relating these
intervals is simply x = 2πt

L as shown in Figure 5.5. So, t = 0 maps to x = 0
and t = L maps to x = 2π. Furthermore, this transformation maps f(x) to
a new function g(t) = f(x(t)), which is defined on [0, L]. We will determine
the Fourier series representation of this function using the representation for
f(x).

Fig. 5.5. A sketch of the transformation between intervals x ∈ [0, 2π] and t ∈ [0, L].

Recall the form of the Fourier representation for f(x) in Equation (5.1):

f(x) ∼ a0

2
+

∞∑

n=1

[an cosnx+ bn sinnx] . (5.23)

Inserting the transformation relating x and t, we have

g(t) ∼ a0

2
+

∞∑

n=1

[

an cos
2nπt

L
+ bn sin

2nπt

L

]

. (5.24)

This gives the form of the series expansion for g(t) with t ∈ [0, L]. But, we
still need to determine the Fourier coefficients.
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Recall, that

an =
1

π

∫ 2π

0

f(x) cosnxdx.

We need to make a substitution in the integral of x = 2πt
L . We also will need

to transform the differential, dx = 2π
L dt. Thus, the resulting form for our

coefficient is

an =
2

L

∫ L

0

g(t) cos
2nπt

L
dt. (5.25)

Similarly, we find that

bn =
2

L

∫ L

0

g(t) sin
2nπt

L
dt. (5.26)

We note first that when L = 2π we get back the series representation that
we first studied. Also, the period of cos 2nπt

L is L/n, which means that the
representation for g(t) has a period of L.

At the end of this section we present the derivation of the Fourier series
representation for a general interval for the interested reader. In Table 5.1 we
summarize some commonly used Fourier series representations.

We will end our discussion for now with some special cases and an example
for a function defined on [−π, π].

Example 5.7. Let f(x) = |x| on [−π, π] We compute the coefficients, beginning
as usual with a0. We have

a0 =
1

π

∫ π

−π

|x| dx

=
2

π

∫ π

0

|x| dx = π (5.33)

At this point we need to remind the reader about the integration of even
and odd functions.

1. Even Functions: In this evaluation we made use of the fact that the
integrand is an even function. Recall that f(x) is an even function if
f(−x) = f(x) for all x. One can recognize even functions as they are
symmetric with respect to the y-axis as shown in Figure 5.6(A). If one
integrates an even function over a symmetric interval, then one has that

∫ a

−a

f(x) dx = 2

∫ a

0

f(x) dx. (5.34)

One can prove this by splitting off the integration over negative values of
x, using the substitution x = −y, and employing the evenness of f(x).
Thus,
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Table 5.1. Special Fourier Series Representations on Different Intervals

Fourier Series on [0, L]

f(x) ∼
a0

2
+

∞∑

n=1

[

an cos
2nπx

L
+ bn sin

2nπx

L

]

. (5.27)

an =
2

L

∫ L

0

f(x) cos
2nπx

L
dx. n = 0, 1, 2, . . . ,

bn =
2

L

∫ L

0

f(x) sin
2nπx

L
dx. n = 1, 2, . . . . (5.28)

Fourier Series on [−L
2
, L

2
]

f(x) ∼
a0

2
+

∞∑

n=1

[

an cos
2nπx

L
+ bn sin

2nπx

L

]

. (5.29)

an =
2

L

∫ L
2

−
L
2

f(x) cos
2nπx

L
dx. n = 0, 1, 2, . . . ,

bn =
2

L

∫ L
2

−
L
2

f(x) sin
2nπx

L
dx. n = 1, 2, . . . . (5.30)

Fourier Series on [−π, π]

f(x) ∼
a0

2
+

∞∑

n=1

[an cos nx + bn sin nx] . (5.31)

an =
1

π

∫ π

−π

f(x) cos nx dx. n = 0, 1, 2, . . . ,

bn =
1

π

∫ π

−π

f(x) sin nx dx. n = 1, 2, . . . . (5.32)

∫ a

−a

f(x) dx =

∫ 0

−a

f(x) dx+

∫ a

0

f(x) dx

= −
∫ 0

a

f(−y) dy +

∫ a

0

f(x) dx

=

∫ a

0

f(y) dy +

∫ a

0

f(x) dx

= 2

∫ a

0

f(x) dx. (5.35)
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This can be visually verified by looking at Figure 5.6(A).
2. Odd Functions: A similar computation could be done for odd functions.
f(x) is an odd function if f(−x) = −f(x) for all x. The graphs of such
functions are symmetric with respect to the origin as shown in Figure
5.6(B). If one integrates an odd function over a symmetric interval, then
one has that ∫ a

−a

f(x) dx = 0. (5.36)

Fig. 5.6. Examples of the areas under (A) even and (B) odd functions on symmetric
intervals, [−a, a].

We now continue with our computation of the Fourier coefficients for
f(x) = |x| on [−π, π]. We have

an =
1

π

∫ π

−π

|x| cosnxdx =
2

π

∫ π

0

x cosnxdx. (5.37)

Here we have made use of the fact that |x| cosnx is an even function. In order
to compute the resulting integral, we need to use integration by parts,

∫ b

a

u dv = uv
∣
∣
∣

b

a
−
∫ b

a

v du,

by letting u = x and dv = cosnxdx. Thus, du = dx and v =
∫
dv = 1

n sinnx.
Continuing with the computation, we have

an =
2

π

∫ π

0

x cosnxdx.

=
2

π

[
1

n
x sinnx

∣
∣
∣

π

0
− 1

n

∫ π

0

sinnxdx

]

= − 2

nπ

[

− 1

n
cosnx

]π

0

= − 2

πn2
(1 − (−1)n). (5.38)
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Here we have used the fact that cosnπ = (−1)n for any integer n. This lead
to a factor (1 − (−1)n). This factor can be simplified as

1 − (−1)n =

{
2, n odd
0, n even

. (5.39)

So, an = 0 for n even and an = − 4
πn2 for n odd.

Computing the bn’s is simpler. We note that we have to integrate |x| sinnx
from x = −π to π. The integrand is an odd function and this is a symmetric
interval. So, the result is that bn = 0 for all n.

Putting this all together, the Fourier series representation of f(x) = |x| on
[−π, π] is given as

f(x) ∼ π

2
− 4

π

∞∑

n=1, odd

cosnx

n2
. (5.40)

While this is correct, we can rewrite the sum over only odd n by reindexing.
We let n = 2k− 1 for k = 1, 2, 3, . . . . Then we only get the odd integers. The
series can then be written as

f(x) ∼ π

2
− 4

π

∞∑

k=1

cos(2k − 1)x

(2k − 1)2
. (5.41)

Throughout our discussion we have referred to such results as Fourier
representations. We have not looked at the convergence of these series. Here
is an example of an infinite series of functions. What does this series sum to?
We show in Figure 5.7 the first few partial sums. They appear to be converging
to f(x) = |x| fairly quickly.

Even though f(x) was defined on [−π, π] we can still evaluate the Fourier
series at values of x outside this interval. In Figure 5.8, we see that the rep-
resentation agrees with f(x) on the interval [−π, π]. Outside this interval we
have a periodic extension of f(x) with period 2π.

Another example is the Fourier series representation of f(x) = x on [−π, π]
as left for Problem 5.1. This is determined to be

f(x) ∼ 2

∞∑

n=1

(−1)n+1

n
sinnx. (5.42)

As seen in Figure 5.9 we again obtain the periodic extension of our function.
In this case we needed many more terms. Also, the vertical parts of the first
plot are nonexistent. In the second plot we only plot the points and not the
typical connected points that most software packages plot as the default style.

Example 5.8. It is interesting to note that one can use Fourier series to obtain
sums of some infinite series. For example, in the last example we found that

x ∼ 2

∞∑

n=1

(−1)n+1

n
sinnx.
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Fig. 5.7. Plot of the first partial sums of the Fourier series representation for f(x) =
|x|.
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Fig. 5.8. Plot of the first 10 terms of the Fourier series representation for f(x) = |x|
on the interval [−2π, 4π].

Now, what if we chose x = π
2 ? Then, we have

π

2
= 2

∞∑

n=1

(−1)n+1

n
sin

nπ

2
= 2

[

1 − 1

3
+

1

5
− 1

7
+ . . .

]

.

This gives a well known expression for π:
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Fig. 5.9. Plot of the first 10 terms and 200 terms of the Fourier series representation
for f(x) = x on the interval [−2π, 4π].

π = 4

[

1 − 1

3
+

1

5
− 1

7
+ . . .

]

.

5.3.1 Fourier Series on [a, b]

A Fourier series representation is also possible for a general interval, t ∈ [a, b].
As before, we just need to transform this interval to [0, 2π]. Let

x = 2π
t− a

b− a
.

Inserting this into the Fourier series (5.1) representation for f(x) we obtain

g(t) ∼ a0

2
+

∞∑

n=1

[

an cos
2nπ(t− a)

b− a
+ bn sin

2nπ(t− a)

b− a

]

. (5.43)

Well, this expansion is ugly. It is not like the last example, where the
transformation was straightforward. If one were to apply the theory to appli-
cations, it might seem to make sense to just shift the data so that a = 0 and
be done with any complicated expressions. However, mathematics students
enjoy the challenge of developing such generalized expressions. So, let’s see
what is involved.

First, we apply the addition identities for trigonometric functions and
rearrange the terms.
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g(t) ∼ a0

2
+

∞∑

n=1

[

an cos
2nπ(t− a)

b− a
+ bn sin

2nπ(t− a)

b− a

]

=
a0

2
+

∞∑

n=1

[

an

(

cos
2nπt

b− a
cos

2nπa

b− a
+ sin

2nπt

b − a
sin

2nπa

b− a

)

+ bn

(

sin
2nπt

b− a
cos

2nπa

b − a
− cos

2nπt

b− a
sin

2nπa

b− a

)]

=
a0

2
+

∞∑

n=1

[

cos
2nπt

b− a

(

an cos
2nπa

b− a
− bn sin

2nπa

b− a

)

+ sin
2nπt

b− a

(

an sin
2nπa

b − a
+ bn cos

2nπa

b− a

)]

. (5.44)

Defining A0 = a0 and

An ≡ an cos
2nπa

b − a
− bn sin

2nπa

b− a

Bn ≡ an sin
2nπa

b− a
+ bn cos

2nπa

b− a
, (5.45)

we arrive at the more desirable form for the Fourier series representation of a
function defined on the interval [a, b].

g(t) ∼ A0

2
+

∞∑

n=1

[

An cos
2nπt

b− a
+Bn sin

2nπt

b− a

]

. (5.46)

We next need to find expressions for the Fourier coefficients. We insert the
known expressions for an and bn and rearrange. First, we note that under the
transformation x = 2π t−a

b−a we have

an =
1

π

∫ 2π

0

f(x) cosnxdx

=
2

b− a

∫ b

a

g(t) cos
2nπ(t− a)

b − a
dt, (5.47)

and

bn =
1

π

∫ 2π

0

f(x) cosnxdx

=
2

b− a

∫ b

a

g(t) sin
2nπ(t− a)

b− a
dt. (5.48)

Then, inserting these integrals in An, combining integrals and making use of
the addition formula for the cosine of the sum of two angles, we obtain
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An ≡ an cos
2nπa

b− a
− bn sin

2nπa

b − a

=
2

b− a

∫ b

a

g(t)

[

cos
2nπ(t− a)

b− a
cos

2nπa

b − a
− sin

2nπ(t− a)

b− a
sin

2nπa

b− a

]

dt

=
2

b− a

∫ b

a

g(t) cos
2nπt

b− a
dt. (5.49)

A similar computation gives

Bn =
2

b− a

∫ b

a

g(t) sin
2nπt

b− a
dt. (5.50)

Summarizing, we have shown that:

Theorem 5.9. The Fourier series representation of f(x) defined
on [a, b] when it exists, is given by

f(x) ∼ a0

2
+

∞∑

n=1

[

an cos
2nπx

b− a
+ bn sin

2nπx

b− a

]

. (5.51)

with Fourier coefficients

an =
2

b− a

∫ b

a

f(x) cos
2nπx

b− a
dx. n = 0, 1, 2, . . . ,

bn =
2

b− a

∫ b

a

f(x) sin
2nπx

b− a
dx. n = 1, 2, . . . . (5.52)

5.4 Sine and Cosine Series

In the last two examples (f(x) = |x| and f(x) = x on [−π, π]) we have seen
Fourier series representations that contain only sine or cosine terms. As we
know, the sine functions are odd functions and thus sum to odd functions.
Similarly, cosine functions sum to even functions. Such occurrences happen
often in practice. Fourier representations involving just sines are called sine
series and those involving just cosines (and the constant term) are called cosine
series.

Another interesting result, based upon these examples, is that the original
functions, |x| and x agree on the interval [0, π]. Note from Figures 5.7-5.9 that
their Fourier series representations do as well. Thus, more than one series can
be used to represent functions defined on finite intervals. All they need to do
is to agree with the function over that particular interval. Sometimes one of
these series is more useful because it has additional properties needed in the
given application.

We have made the following observations from the previous examples:
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1. There are several trigonometric series representations for a function de-
fined on a finite interval.

2. Odd functions on a symmetric interval are represented by sine series and
even functions on a symmetric interval are represented by cosine series.

These two observations are related and are the subject of this section.
We begin by defining a function f(x) on interval [0, L]. We have seen that the
Fourier series representation of this function appears to converge to a periodic
extension of the function.

In Figure 5.10 we show a function defined on [0, 1]. To the right is its
periodic extension to the whole real axis. This representation has a period of
L = 1. The bottom left plot is obtained by first reflecting f about the y-axis
to make it an even function and then graphing the periodic extension of this
new function. Its period will be 2L = 2. Finally, in the last plot we flip the
function about each axis and graph the periodic extension of the new odd
function. It will also have a period of 2L = 2.
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Fig. 5.10. This is a sketch of a function and its various extensions. The original
function f(x) is defined on [0, 1] and graphed in the upper left corner. To its right is
the periodic extension, obtained by adding replicas. The two lower plots are obtained
by first making the original function even or odd and then creating the periodic
extensions of the new function.

In general, we obtain three different periodic representations. In order
to distinguish these we will refer to them simply as the periodic, even and
odd extensions. Now, starting with f(x) defined on [0, L], we would like to
determine the Fourier series representations leading to these extensions. [For
easy reference, the results are summarized in Table 5.2] We have already seen
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that the periodic extension of f(x) is obtained through the Fourier series
representation in Equation (5.53).

Table 5.2. Fourier Cosine and Sine Series Representations on [0, L]

Fourier Series on [0, L]

f(x) ∼
a0

2
+

∞∑

n=1

[

an cos
2nπx

L
+ bn sin

2nπx

L

]

. (5.53)

an =
2

L

∫ L

0

f(x) cos
2nπx

L
dx. n = 0, 1, 2, . . . ,

bn =
2

L

∫ L

0

f(x) sin
2nπx

L
dx. n = 1, 2, . . . . (5.54)

Fourier Cosine Series on [0, L]

f(x) ∼ a0/2 +

∞∑

n=1

an cos
nπx

L
. (5.55)

where

an =
2

L

∫ L

0

f(x) cos
nπx

L
dx. n = 0, 1, 2, . . . . (5.56)

Fourier Sine Series on [0, L]

f(x) ∼

∞∑

n=1

bn sin
nπx

L
. (5.57)

where

bn =
2

L

∫ L

0

f(x) sin
nπx

L
dx. n = 1, 2, . . . . (5.58)

Given f(x) defined on [0, L], the even periodic extension is obtained by
simply computing the Fourier series representation for the even function

fe(x) ≡
{
f(x), 0 < x < L,
f(−x) −L < x < 0.

(5.59)

Since fe(x) is an even function on a symmetric interval [−L,L], we expect
that the resulting Fourier series will not contain sine terms. Therefore, the
series expansion will be given by [Use the general case in (5.51) with a = −L
and b = L.]:
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fe(x) ∼
a0

2
+

∞∑

n=1

an cos
nπx

L
. (5.60)

with Fourier coefficients

an =
1

L

∫ L

−L

fe(x) cos
nπx

L
dx. n = 0, 1, 2, . . . . (5.61)

However, we can simplify this by noting that the integrand is even and the
interval of integration can be replaced by [0, L]. On this interval fe(x) = f(x).
So, we have the Cosine Series Representation of f(x) for x ∈ [0, L] is given as

f(x) ∼ a0

2
+

∞∑

n=1

an cos
nπx

L
. (5.62)

where

an =
2

L

∫ L

0

f(x) cos
nπx

L
dx. n = 0, 1, 2, . . . . (5.63)

Similarly, given f(x) defined on [0, L], the odd periodic extension is ob-
tained by simply computing the Fourier series representation for the odd
function

fo(x) ≡
{

f(x), 0 < x < L,
−f(−x) −L < x < 0.

(5.64)

The resulting series expansion leads to defining the Sine Series Representation
of f(x) for x ∈ [0, L] as

f(x) ∼
∞∑

n=1

bn sin
nπx

L
. (5.65)

where

bn =
2

L

∫ L

0

f(x) sin
nπx

L
dx. n = 1, 2, . . . . (5.66)

Example 5.10. In Figure 5.10 we actually provided plots of the various exten-
sions of the function f(x) = x2 for x ∈ [0, 1]. Let’s determine the representa-
tions of the periodic, even and odd extensions of this function.

For a change, we will use a CAS (Computer Algebra System) package to
do the integrals. In this case we can use Maple. A general code for doing this
for the periodic extension is shown in Table 5.3.

Example 5.11. Periodic Extension - Trigonometric Fourier Series
Using the above code, we have that a0 = 2

3 an = 1
n2π2 and bn = − 1

nπ .
Thus, the resulting series is given as

f(x) ∼ 1

3
+

∞∑

n=1

[
1

n2π2
cos 2nπx− 1

nπ
sin 2nπx

]

.
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Table 5.3. Maple code for computing Fourier coefficients and plotting partial sums
of the Fourier series.

> restart:

> L:=1:

> f:=x^2:

> assume(n,integer):

> a0:=2/L*int(f,x=0..L);

a0 := 2/3

> an:=2/L*int(f*cos(2*n*Pi*x/L),x=0..L);

1

an := -------

2 2

n~ Pi

> bn:=2/L*int(f*sin(2*n*Pi*x/L),x=0..L);

1

bn := - -----

n~ Pi

> F:=a0/2+sum((1/(k*Pi)^2)*cos(2*k*Pi*x/L)

-1/(k*Pi)*sin(2*k*Pi*x/L),k=1..50):

> plot(F,x=-1..3,title=‘Periodic Extension‘,

titlefont=[TIMES,ROMAN,14],font=[TIMES,ROMAN,14]);

In Figure 5.11 we see the sum of the first 50 terms of this series. Generally,
we see that the series seems to be converging to the periodic extension of f .
There appear to be some problems with the convergence around integer values
of x. We will later see that this is because of the discontinuities in the periodic
extension and the resulting overshoot is referred to as the Gibbs phenomenon
which is discussed in the appendix.

Example 5.12. Even Periodic Extension - Cosine Series

In this case we compute a0 = 2
3 and an = 4(−1)n

n2π2 . Therefore, we have

f(x) ∼ 1

3
+

4

π2

∞∑

n=1

(−1)n

n2
cosnπx.

In Figure 5.12 we see the sum of the first 50 terms of this series. In this
case the convergence seems to be much better than in the periodic extension
case. We also see that it is converging to the even extension.

Example 5.13. Odd Periodic Extension - Sine Series
Finally, we look at the sine series for this function. We find that bn =

− 2
n3π3 (n2π2(−1)n − 2(−1)n + 2). Therefore,
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Periodic Extension
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Fig. 5.11. The periodic extension of f(x) = x2 on [0, 1].

f(x) ∼ − 2

π3

∞∑

n=1

1

n3
(n2π2(−1)n − 2(−1)n + 2) sinnπx.

Even Periodic Extension

0

0.2

0.4

0.6

0.8

1

–1 1 2 3
x

Fig. 5.12. The even periodic extension of f(x) = x2 on [0, 1].
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Once again we see discontinuities in the extension as seen in Figure 5.13.
However, we have verified that our sine series appears to be converging to the
odd extension as we first sketched in Figure 5.10.

Odd Periodic Extension

–1

–0.5

0

0.5

1

–1 1 2 3
x

Fig. 5.13. The odd periodic extension of f(x) = x2 on [0, 1].

5.5 Appendix: The Gibbs Phenomenon

We have seen that when there is a jump discontinuity in the periodic exten-
sion of our functions, whether the function originally had a discontinuity or
developed one due to a mismatch in the values of the endpoints. This can
be seen in Figures 5.9, 5.11 and 5.13. The Fourier series has a difficult time
converging at the point of discontinuity and these graphs of the Fourier series
show a distinct overshoot which does not go away. This is called the Gibbs
phenomenon and the amount of overshoot can be computed.

In one of our first examples, Example 5.6, we found the Fourier series
representation of the piecewise defined function

f(x) =

{
1, 0 < x < π,
−1, π < x < 2π,

to be
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f(x) ∼ 4

π

∞∑

k=1

sin(2k − 1)x

2k − 1
.

In Figure 5.14 we display the sum of the first ten terms. Note the wiggles,
overshoots and under shoots near x = 0,±π. These are seen more when we
plot the representation for x ∈ [−3π, 3π], as shown in Figure 5.15. We note
that the overshoots and undershoots occur at discontinuities in the periodic
extension of f(x). These occur whenever f(x) has a discontinuity or if the
values of f(x) at the endpoints of the domain do not agree.

One might expect that we only need to add more terms. In Figure 5.16 we
show the sum for twenty terms. Note the sum appears to converge better for
points far from the discontinuities. But, the overshoots and undershoots are
still present. In Figures 5.17 and 5.18 show magnified plots of the overshoot
at x = 0 for N = 100 and N = 500, respectively. We see that the overshoot
persists. The peak is at about the same height, but its location seems to be
getting closer to the origin. We will show how one can estimate the size of the
overshoot.

Gibbs Phenomenon N=10

–1

–0.5

0.5

1

–3 –2 –1 1 2 3
x

Fig. 5.14. The Fourier series representation of a step function on [−π, π] for N = 10.

We can study the Gibbs phenomenon by looking at the partial sums of
general Fourier trigonometric series for functions f(x) defined on the interval
[−L,L]. Writing out the partial sums, inserting the Fourier coefficients and
rearranging, we have
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Gibbs Phenomenon N=10
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0

0.5

1

–8 –6 –4 –2 2 4 6 8
x

Fig. 5.15. The Fourier series representation of a step function on [−π, π] for N = 10
plotted on [−3π, 3π] displaying the periodicity.

SN (x) = a0 +

N∑

n=1

[

an cos
nπx

L
+ bn sin

nπx

L

]

Gibbs Phenomenon N=20
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1

–3 –2 –1 1 2 3

x

Fig. 5.16. The Fourier series representation of a step function on [−π, π] for N = 20.
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Gibbs Phenomenon N=100
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Fig. 5.17. The Fourier series representation of a step function on [−π, π] for N =
100.

=
1

2L

∫ L

−L

f(y) dy +

N∑

n=1

[(

1

L

∫ L

−L

f(y) cos
nπy

L
dy

)

cos
nπx

L

+

(

1

L

∫ L

−L

f(y) sin
nπy

L
dy

)

sin
nπx

L

]

=
1

L

L∫

−L

{

1

2
+

N∑

n=1

(

cos
nπy

L
cos

nπx

L
+ sin

nπy

L
sin

nπx

L

)
}

f(y) dy

=
1

L

L∫

−L

{

1

2
+

N∑

n=1

cos
nπ(y − x)

L

}

f(y) dy

≡ 1

L

L∫

−L

DN (y − x)f(y) dy. (5.67)

We have defined

DN (x) =
1

2
+

N∑

n=1

cos
nπx

L
,

which is called the N-th Dirichlet Kernel. We now prove
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Gibbs Phenomenon N=500
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Fig. 5.18. The Fourier series representation of a step function on [−π, π] for N =
500.

Proposition:

Dn(x) =

{
sin((n+ 1

2 ) πx
L

)

2 sin πx
2L

, sin πx
2L 6= 0

n+ 1
2 , sin πx

2L = 0
.

Proof: Let θ = πx
L and multiply Dn(x)by 2 sin θ

2 to obtain:

2 sin
θ

2
Dn(x) = 2 sin

θ

2

[
1

2
+ cos θ + · · · + cosnθ

]

= sin
θ

2
+ 2 cos θ sin

θ

2
+ 2 cos 2θ sin

θ

2
+ · · · + 2 cosnθ sin

θ

2

= sin
θ

2
+

(

sin
3θ

2
− sin

θ

2

)

+

(

sin
5θ

2
− sin

3θ

2

)

+ · · ·

+

[

sin

(

n+
1

2

)

θ − sin

(

n− 1

2

)

θ

]

= sin

(

n+
1

2

)

θ. (5.68)

Thus,

2 sin
θ

2
Dn(x) = sin

(

n+
1

2

)

θ,

or if sin θ
2 6= 0,

Dn(x) =
sin
(
n+ 1

2

)
θ

2 sin θ
2

, θ =
πx

L
.

If sin θ
2 = 0,then one needs to apply L’Hospital’s Rule:

lim
θ→2mπ

sin
(
n+ 1

2

)
θ

2 sin θ
2

= lim
θ→2mπ

(n+ 1
2 ) cos

(
n+ 1

2

)
θ

cos θ
2

=
(n+ 1

2 ) cos (2mnπ +mπ)

cosmπ

= n+
1

2
. (5.69)

We further note that DN(x) is periodic with period 2L and is an
even function.
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So far, we have found that

SN (x) =
1

L

L∫

−L

DN (y − x)f(y) dy. (5.70)

Now, make the substitution ξ = y − x. Then,

SN(x) =
1

L

∫ L−x

−L−x

DN (ξ)f(ξ + x) dξ

=
1

L

∫ L

−L

DN(ξ)f(ξ + x) dξ. (5.71)

In the second integral we have made use of the fact that f(x) and DN(x) are
periodic with period 2L and shifted the interval back to [−L,L].

Now split the integration and use the fact that DN(x) is an even function.
Then,

SN (x) =
1

L

∫ 0

−L

DN (ξ)f(ξ + x) dξ +
1

L

∫ L

0

DN (ξ)f(ξ + x) dξ

=
1

L

∫ L

0

[f(x− ξ) + f(ξ + x)]DN(ξ) dξ. (5.72)

We can use this result to study the Gibbs phenomenon whenever it occurs.
In particular, we will only concentrate on our earlier example. Namely,

f(x) =

{
1, 0 < x < π,
−1, π < x < 2π,

For this case, we have

SN (x) =
1

π

∫ π

0

[f(x− ξ) + f(ξ + x)]DN (ξ) dξ (5.73)

for

DN (x) =
1

2
+

N∑

n=1

cosnx.

Also, one can show that

f(x− ξ) + f(ξ + x) =







2, 0 ≤ ξ < x,
0, x ≤ ξ < π − x,
−2, π − x ≤ ξ < π.

Thus, we have
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SN (x) =
2

π

∫ x

0

DN (ξ) dξ − 2

π

∫ π

π−x

DN (ξ) dξ

=
2

π

∫ x

0

DN (z) dz +
2
∫ x

0

DN(π − z) dz. (5.74)

Here we made the substitution z = π− ξ in the second integral. The Dirichlet
kernel in the proposition for L = π is given by

DN (x) =
sin(N + 1

2 )x

2 sin x
2

.

For N large, we have N + 1
2 ≈ N, and for small x, we have sin x

2 ≈ x
2 . So,

under these assumptions,

DN(x) ≈ sinNx

x
.

Therefore,

SN (x) → 2

π

∫ x

0

sinNξ

ξ
dξ.

If we want to determine the locations of the minima and maxima, where
the undershoot and overshoot occur, then we apply the first derivative test
for extrema to SN (x). Thus,

d

dx
SN(x) =

2

π

sinNx

x
= 0.

The extrema occur for Nx = mπ, m = ±1,±2, . . . . One can show that there
is a maximum at x = π/N and a minimum for x = 2π/N. The value for the
overshoot can be computed as

SN (π/N) =
2

π

∫ π/N

0

sinNξ

ξ
dξ

=
2

π

∫ π

0

sin t

t
dt

=
2

π
Si(π)

= 1.178979744 . . . . (5.75)

Note that this value is independent of N and is given in terms of the sine
integral,

Si(x) ≡
∫ x

0

sin t

t
dt.
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Problems

5.1. Find the Fourier Series of each function f(x) of period 2π. For each series,
plot the Nth partial sum,

SN =
a0

2
+

N∑

n=1

[an cosnx+ bn sinnx] ,

for N = 5, 10, 50 and describe the convergence (is it fast? what is it converging
to, etc.) [Some simple Maple code for computing partial sums is shown below.]

a. f(x) = x, |x| < π.

b. f(x) = x2

4 , |x| < π.
c. f(x) = π − |x|, |x| < π.

d. f(x) =

{
π
2 , 0 < x < π,

−π
2 , π < x < 2π.

e. f(x) =

{
0, −π < x < 0,
1, 0 < x < π.

A simple set of commands in Maple are shown below, where you fill in the
Fourier coefficients that you have computed by hand and f(x) so that you
can compare your results. Of course, other modifications may be needed.

> restart:

> f:=x:

> F:=a0/2+sum(an*cos(n*x)+bn*sin(n*x),n=1..N):

> N:=10: plot({f,F},x=-Pi..Pi,color=black);

5.2. Consider the function f(x) = 4 sin3 2x

a. Derive an identity relating sin3 θ in terms of sin θ and sin 3θ and express
f(x) in terms of simple sine functions.

b. Determine the Fourier coefficients of f(x) in a Fourier series expansion on
[0, 2π] without computing any integrals!

5.3. Find the Fourier series of f(x) = x on the given interval with the given
period T. Plot the Nth partial sums and describe what you see.

a. 0 < x < 2, T = 2.
b. −2 < x < 2, T = 4.

5.4. The result in problem 5.1b above gives a Fourier series representation of
x2

4 . By picking the right value for x and a little arrangement of the series,
show that [See Example 5.8.]

a.
π2

6
= 1 +

1

22
+

1

32
+

1

42
+ · · · .
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b.
π2

8
= 1 +

1

32
+

1

52
+

1

72
+ · · · .

5.5. Sketch (by hand) the graphs of each of the following functions over four
periods. Then sketch the extensions each of the functions as both an even and
odd periodic function. Determine the corresponding Fourier sine and cosine
series and verify the convergence to the desired function using Maple.

a. f(x) = x2, 0 < x < 1.
b. f(x) = x(2 − x), 0 < x < 2.

c. f(x) =

{
0, 0 < x < 1,
1, 1 < x < 2.

d. f(x) =

{
π, 0 < x < π,

2π − x, π < x < 2π.
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Sturm-Liouville Eigenvalue Problems

6.1 Introduction

In the last chapters we have explored the solution of boundary value problems
that led to trigonometric eigenfunctions. Such functions can be used to repre-
sent functions in Fourier series expansions. We would like to generalize some
of those techniques in order to solve other boundary value problems. A class of
problems to which our previous examples belong and which have eigenfunc-
tions with similar properties are the Sturm-Liouville Eigenvalue Problems.
These problems involve self-adjoint (differential) operators which play an im-
portant role in the spectral theory of linear operators and the existence of the
eigenfunctions we described in Section 4.3.2. These ideas will be introduced
in this chapter.

In physics many problems arise in the form of boundary value problems
involving second order ordinary differential equations. For example, we might
want to solve the equation

a2(x)y
′′ + a1(x)y

′ + a0(x)y = f(x) (6.1)

subject to boundary conditions. We can write such an equation in operator
form by defining the differential operator

L = a2(x)
d2

dx2
+ a1(x)

d

dx
+ a0(x).

Then, Equation (6.1) takes the form

Ly = f.

As we saw in the general boundary value problem (4.20) in Section 4.3.2,
we can solve some equations using eigenvalue expansions. Namely, we seek
solutions to the eigenvalue problem

Lφ = λφ
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with homogeneous boundary conditions and then seek a solution as an expan-
sion of the eigenfunctions. Formally, we let

y =
∞∑

n=1

cnφn.

However, we are not guaranteed a nice set of eigenfunctions. We need an
appropriate set to form a basis in the function space. Also, it would be nice
to have orthogonality so that we can easily solve for the expansion coefficients
as was done in Section 4.3.2. [Otherwise, we would have to solve a infinite
coupled system of algebraic equations instead of an uncoupled and diagonal
system.]

It turns out that any linear second order operator can be turned into an
operator that possesses just the right properties (self-adjointedness to carry
out this procedure. The resulting operator is referred to as a Sturm-Liouville
operator. We will highlight some of the properties of such operators and prove
a few key theorems, though this will not be an extensive review of Sturm-
Liouville theory. The interested reader can review the literature and more
advanced texts for a more in depth analysis.

We define the Sturm-Liouville operator as

L =
d

dx
p(x)

d

dx
+ q(x). (6.2)

The Sturm-Liouville eigenvalue problem is given by the differential equation

Lu = −λσ(x)u,

or
d

dx

(

p(x)
du

dx

)

+ q(x)u + λσ(x)u = 0, (6.3)

for x ∈ (a, b). The functions p(x), p′(x), q(x) and σ(x) are assumed to be
continuous on (a, b) and p(x) > 0, σ(x) > 0 on [a, b]. If the interval is finite
and these assumptions on the coefficients are true on [a, b], then the problem
is said to be regular. Otherwise, it is called singular.

We also need to impose the set of homogeneous boundary conditions

α1u(a) + β1u
′(a) = 0,

α2u(b) + β2u
′(b) = 0. (6.4)

The α’s and β’s are constants. For different values, one has special types of
boundary conditions. For βi = 0, we have what are called Dirichlet boundary
conditions. Namely, u(a) = 0 and u(b) = 0. For αi = 0, we have Neumann
boundary conditions. In this case, u′(a) = 0 and u′(b) = 0. In terms of the
heat equation example, Dirichlet conditions correspond to maintaining a fixed
temperature at the ends of the rod. The Neumann boundary conditions would
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correspond to no heat flow across the ends, or insulating conditions, as there
would be no temperature gradient at those points. The more general boundary
conditions allow for partially insulated boundaries.

Another type of boundary condition that is often encountered is the pe-
riodic boundary condition. Consider the heated rod that has been bent to
form a circle. Then the two end points are physically the same. So, we would
expect that the temperature and the temperature gradient should agree at
those points. For this case we write u(a) = u(b) and u′(a) = u′(b). Boundary
value problems using these conditions have to be handled differently than the
above homogeneous conditions. These conditions leads to different types of
eigenfunctions and eigenvalues.

As previously mentioned, equations of the form (6.1) occur often. We now
show that Equation (6.1) can be turned into a differential equation of Sturm-
Liouville form:

d

dx

(

p(x)
dy

dx

)

+ q(x)y = F (x). (6.5)

Another way to phrase this is provided in the theorem:

Theorem 6.1. Any second order linear operator can be put into the form of
the Sturm-Liouville operator (6.2).

The proof of this is straight forward, as we shall soon show. Consider the
equation (6.1). If a1(x) = a′2(x), then we can write the equation in the form

f(x) = a2(x)y
′′ + a1(x)y

′ + a0(x)y

= (a2(x)y
′)′ + a0(x)y. (6.6)

This is in the correct form. We just identify p(x) = a2(x) and q(x) = a0(x).
However, consider the differential equation

x2y′′ + xy′ + 2y = 0.

In this case a2(x) = x2 and a′2(x) = 2x 6= a1(x). The linear differential
operator in this equation is not of Sturm-Liouville type. But, we can change
it to a Sturm Liouville operator.

In the Sturm Liouville operator the derivative terms are gathered together
into one perfect derivative. This is similar to what we saw in the first chap-
ter when we solved linear first order equations. In that case we sought an
integrating factor. We can do the same thing here. We seek a multiplicative
function µ(x) that we can multiply through (6.1) so that it can be written in
Sturm-Liouville form. We first divide out the a2(x), giving

y′′ +
a1(x)

a2(x)
y′ +

a0(x)

a2(x)
y =

f(x)

a2(x)
.

Now, we multiply the differential equation by µ :
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µ(x)y′′ + µ(x)
a1(x)

a2(x)
y′ + µ(x)

a0(x)

a2(x)
y = µ(x)

f(x)

a2(x)
.

The first two terms can now be combined into an exact derivative (µy′)′ if
µ(x) satisfies

dµ

dx
= µ(x)

a1(x)

a2(x)
.

This is formally solved to give

µ(x) = e

∫
a1(x)

a2(x)
dx
.

Thus, the original equation can be multiplied by factor

µ(x)

a2(x)
=

1

a2(x)
e

∫
a1(x)

a2(x)
dx

to turn it into Sturm-Liouville form.
In summary,

Equation (6.1),

a2(x)y
′′ + a1(x)y

′ + a0(x)y = f(x), (6.7)

can be put into the Sturm-Liouville form

d

dx

(

p(x)
dy

dx

)

+ q(x)y = F (x), (6.8)

where

p(x) = e

∫
a1(x)

a2(x)
dx
,

q(x) = p(x)
a0(x)

a2(x)
,

F (x) = p(x)
f(x)

a2(x)
. (6.9)

Example 6.2. For the example above,

x2y′′ + xy′ + 2y = 0.

We need only multiply this equation by

1

x2
e
∫

dx
x =

1

x
,

to put the equation in Sturm-Liouville form:

0 = xy′′ + y′ +
2

x
y

= (xy′)′ +
2

x
y. (6.10)
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6.2 Properties of Sturm-Liouville Eigenvalue Problems

There are several properties that can be proven for the (regular) Sturm-
Liouville eigenvalue problem. However, we will not prove them all here. We
will merely list some of the important facts and focus on a few of the proper-
ties.

1. The eigenvalues are real, countable, ordered and there is a smallest eigen-
value. Thus, we can write them as λ1 < λ2 < . . . . However, there is no
largest eigenvalue and n→ ∞, λn → ∞.

2. For each eigenvalue λn there exists an eigenfunction φn with n− 1 zeros
on (a, b).

3. Eigenfunctions corresponding to different eigenvalues are orthogonal with
respect to the weight function, σ(x). Defining the inner product of f(x)
and g(x) as

< f, g >=

∫ b

a

f(x)g(x)σ(x) dx, (6.11)

then the orthogonality of the eigenfunctios can be written in the form

< φn, φm >=< φn, φn > δnm, n,m = 1, 2, . . . . (6.12)

4. The set of eigenfunctions is complete; i.e., any piecewise smooth func-
tion can be represented by a generalized Fourier series expansion of the
eigenfunctions,

f(x) ∼
∞∑

n=1

cnφn(x),

where

cn =
< f, φn >

< φn, φn >
.

Actually, one needs f(x) ∈ L2
σ[a, b], the set of square integrable functions

over [a, b] with weight function σ(x). By square integrable, we mean that
< f, f ><∞. One can show that such a space is isomorphic to a Hilbert
space, a complete inner product space.

5. Multiply the eigenvalue problem

Lφn = −λnσ(x)φn

by φn and integrate. Solve this result for λn, to find the Rayleigh Quotient

λn =

−pφn
dφn

dx |ba −
∫ b

a

[

p
(

dφn

dx

)2

− qφ2
n

]

dx

< φn, φn >

The Rayleigh quotient is useful for getting estimates of eigenvalues and
proving some of the other properties.
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Example 6.3. We seek the eigenfunctions of the operator found in Example
6.2. Namely, we want to solve the eigenvalue problem

Ly = (xy′)′ +
2

x
y = −λσy (6.13)

subject to a set of boundary conditions. Let’s use the boundary conditions

y′(1) = 0, y′(2) = 0.

[Note that we do not know σ(x) yet, but will choose an appropriate function
to obtain solutions.]

Expanding the derivative, we have

xy′′ + y′ +
2

x
y = −λσy.

Multiply through by x to obtain

x2y′′ + xy′ + (2 + λxσ) y = 0.

Notice that if we choose σ(x) = x−1, then this equation can be made a
Cauchy-Euler type equation. Thus, we have

x2y′′ + xy′ + (λ+ 2) y = 0.

The characteristic equation is

r2 + λ+ 2 = 0.

For oscillatory solutions, we need λ+ 2 > 0. Thus, the general solution is

y(x) = c1 cos(
√
λ+ 2 ln |x|) + c2 sin(

√
λ+ 2 ln |x|). (6.14)

Next we apply the boundary conditions. y′(1) = 0 forces c2 = 0. This
leaves

y(x) = c1 cos(
√
λ+ 2 lnx).

The second condition, y′(2) = 0, yields

sin(
√
λ+ 2 ln 2) = 0.

This will give nontrivial solutions when

√
λ+ 2 ln 2 = nπ, n = 0, 1, 2, 3 . . . .

In summary, the eigenfunctions for this eigenvalue problem are

yn(x) = cos
( nπ

ln 2
lnx
)

, 1 ≤ x ≤ 2
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and the eigenvalues are λn = 2 +
(

nπ
ln 2

)2
for n = 0, 1, 2, . . . .

Note: We include the n = 0 case because y(x) = constant is a solution
of the λ = −2 case. More specifically, in this case the characteristic equation
reduces to r2 = 0. Thus, the general solution of this Cauchy-Euler equation is

y(x) = c1 + c2 ln |x|.

Setting y′(1) = 0, forces c2 = 0. y′(2) automatically vanishes, leaving the
solution in this case as y(x) = c1.

We note that some of the properties listed in the beginning of the section
hold for this example. The eigenvalues are seen to be real, countable and
ordered. There is a least one, λ = 2. Next, one can find the zeros of each
eigenfunction on [1,2]. Then the argument of the cosine, nπ

ln 2 lnx, takes values
0 to nπ for x ∈ [1, 2]. The cosine function has n− 1 roots on this interval.

Orthogonality can be checked as well. We set up the integral and use the
substitution y = π lnx/ ln 2. This gives

< yn, ym > =

∫ 2

1

cos
( nπ

ln 2
lnx
)

cos
(mπ

ln 2
lnx
) dx

x

=
ln 2

π

∫ π

0

cosny cosmy dy

=
ln 2

2
δn,m. (6.15)

6.2.1 Adjoint Operators

In the study of the spectral theory of matrices, one learns about the adjoint of
the matrix, A†, and the role that self-adjoint, or Hermitian, matrices play in
diagonalization. also, one needs the concept of adjoint to discuss the existence
of solutions to the matrix problem y = Ax. In the same spirit, one is interested
in the existence of solutions of the operator equation Lu = f and solutions of
the corresponding eigenvalue problem. The study of linear operator on Hilbert
spaces is a generalization of what the reader had seen in a linear algebra course.

Just as one can find a basis of eigenvectors and diagonalize Hermitian, or
self-adjoint, matrices (or, real symmetric in the case of real matrices), we will
see that the Sturm-Liouville operator is self-adjoint. In this section we will
define the domain of an operator and introduce the notion of adjoint operators.
In the last section we discuss the role the adjpoint plays in the existence of
solutions to the operator equation Lu = f.

We first introduce some definitions.

Definition 6.4. The domain of a differential operator L is the set of all u ∈
L2

σ[a, b] satisfying a given set of homogeneous boundary conditions.

Definition 6.5. The adjoint, L†, of operator L satisfies
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< u,Lv >=< L†u, v >

for all v in the domain of L and u in the domain of L†.

Example 6.6. As an example, we find the adjoint of second order linear differ-

ential operator L = a2(x)
d2

dx2 + a1(x)
d
dx + a0(x).

In order to find the adjoint, we place the operator under an integral. So,
we consider the inner product

< u,Lv >=

∫ b

a

u(a2v
′′ + a1v

′ + a0v) dx.

We have to move the operator L from v and determine what operator is acting
on u in order to formally preserve the inner product. For a simple operator like
L = d

dx , this is easily done using integration by parts. For the given operator,
we will need to apply several integrations by parts to the individual terms.
We will consider the individual terms.

First we consider the a1v
′ term. Integration by parts yields

∫ b

a

u(x)a1(x)v
′(x) dx = a1(x)u(x)v(x)

∣
∣
∣

b

a
−
∫ b

a

(u(x)a1(x))
′v(x) dx. (6.16)

Now, we consider the a2v
′′ term. In this case it will take two integrations

by parts:

∫ b

a

u(x)a2(x)v
′′(x) dx = a2(x)u(x)v

′(x)
∣
∣
∣

b

a
−
∫ b

a

(u(x)a2(x))
′v(x)′ dx

= [a2(x)u(x)v
′(x) − (a2(x)u(x))

′v(x)]
∣
∣
∣

b

a

+

∫ b

a

(u(x)a2(x))
′′v(x) dx. (6.17)

Combining these results, we obtain

< u,Lv > =

∫ b

a

u(a2v
′′ + a1v

′ + a0v) dx

= [a1(x)u(x)v(x) + a2(x)u(x)v
′(x) − (a2(x)u(x))

′v(x)]
∣
∣
∣

b

a

+

∫ b

a

[(a2u)
′′ − (a1u)

′ + a0u] v dx. (6.18)

Inserting the boundary conditions for v, one has to determine boundary
conditions for u such that

[a1(x)u(x)v(x) + a2(x)u(x)v
′(x) − (a2(x)u(x))

′v(x)]
∣
∣
∣

b

a
= 0.
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This leaves

< u,Lv >=

∫ b

a

[(a2u)
′′ − (a1u)

′ + a0u] v dx ≡< L†u, v > .

Therefore,

L† =
d2

dx2
a2(x) −

d

dx
a1(x) + a0(x). (6.19)

When L† = L, the operator is called formally self-adjoint. When the do-
main of L is the same as the domain of L†, the term self-adjoint is used.
As the domain is important in establishing self-adjointness, we need to do a
complete example in which the domain of the adjoint is found.

Example 6.7. Determine L† and its domain for operator Lu = du
dx where u

satisfies the boundary conditions u(0) = 2u(1) on [0, 1].
We need to find the adjoint operator satisfying < v,Lu >=< L†v, u > .

Therefore, we rewrite the integral

< v,Lu >=

∫ 1

0

v
du

dx
dx = uv|10 −

∫ 1

0

u
dv

dx
dx =< L†v, u > .

From this we have the adjoint problem consisting of an adjoint operator and
the associated boundary condition:

1. L† = − d
dx .

2. uv
∣
∣
∣

1

0
= 0 ⇒ 0 = u(1)[v(1) − 2v(0)] ⇒ v(1) = 2v(0).

6.2.2 Lagrange’s and Green’s Identities

Before turning to the proofs that the eigenvalues of a Sturm-Liouville problem
are real and the associated eigenfunctions orthogonal, we will first need to
introduce two important identities. For the Sturm-Liouville operator,

L =
d

dx

(

p
d

dx

)

+ q,

we have the two identities:

Lagrange’s Identity uLv − vLu = [p(uv′ − vu′)]′.

Green’s Identity
∫ b

a (uLv − vLu) dx = [p(uv′ − vu′)]|ba.

Proof. The proof of Lagrange’s identity follows by a simple manipulations of
the operator:
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uLv − vLu = u

[
d

dx

(

p
dv

dx

)

+ qv

]

− v

[
d

dx

(

p
du

dx

)

+ qu

]

= u
d

dx

(

p
dv

dx

)

− v
d

dx

(

p
du

dx

)

= u
d

dx

(

p
dv

dx

)

+ p
du

dx

dv

dx
− v

d

dx

(

p
du

dx

)

− p
du

dx

dv

dx

=
d

dx

[

pu
dv

dx
− pv

du

dx

]

. (6.20)

Green’s identity is simply proven by integrating Lagrange’s identity.

6.2.3 Orthogonality and Reality

We are now ready to prove that the eigenvalues of a Sturm-Liouville problem
are real and the corresponding eigenfunctions are orthogonal. These are easily
established using Green’s identity, which in turn is a statement about the
Sturm-Liouville operator being self-adjoint.

Theorem 6.8. The eigenvalues of the Sturm-Liouville problem are real.

Proof. Let φn(x) be a solution of the eigenvalue problem associated with λn:

Lφn = −λnσφn.

The complex conjugate of this equation is

Lφn = −λnσφn.

Now, multiply the first equation by φn and the second equation by φn and
then subtract the results. We obtain

φnLφn − φnLφn = (λn − λn)σφnφn.

Integrate both sides of this equation:
∫ b

a

(
φnLφn − φnLφn

)
dx = (λn − λn)

∫ b

a

σφnφn dx.

Apply Green’s identity to the left hand side to find

[p(φnφ
′
n − φnφ

′
n)]|ba = (λn − λn)

∫ b

a

σφnφn dx.

Using the homogeneous boundary conditions for a self-adjoint operator, the
left side vanishes to give

0 = (λn − λn)

∫ b

a

σ‖φn‖2 dx.

The integral is nonnegative, so we must have λn = λn. Therefore, the eigen-
values are real.
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Theorem 6.9. The eigenfunctions corresponding to different eigenvalues of
the Sturm-Liouville problem are orthogonal.

Proof. This is proven similar to the last theorem. Let φn(x) be a solution of
the eigenvalue problem associated with λn,

Lφn = −λnσφn,

and let φm(x) be a solution of the eigenvalue problem associated with λm 6=
λn,

Lφm = −λmσφm,

Now, multiply the first equation by φm and the second equation by φn. Sub-
tracting the results, we obtain

φmLφn − φnLφm = (λm − λn)σφnφm

Similar to the previous prooof, we integrate both sides of the equation and
use Green’s identity and the boundary conditions for a self-adjoint operator.
This leaves

0 = (λm − λn)

∫ b

a

σφnφm dx.

Since the eigenvalues are distinct, we can divide by λm − λn, leaving the
desired result,

∫ b

a

σφnφm dx = 0.

Therefore, the eigenfunctions are orthogonal with respect to the weight func-
tion σ(x).

6.2.4 The Rayleigh Quotient

The Rayleigh quotient is useful for getting estimates of eigenvalues and prov-
ing some of the other properties associated with Sturm-Liouville eigenvalue
problems. We begin by multiplying the eigenvalue problem

Lφn = −λnσ(x)φn

by φn and integrating. This gives

∫ b

a

[

φn
d

dx

(

p
dφn

dx

)

+ qφ2
n

]

dx = −λ
∫ b

a

φ2
n dx.

One can solve the last equation for λ to find

λ =
−
∫ b

a

[

φn
d
dx

(

pdφn

dx

)

+ qφ2
n

]

dx
∫ b

a
φ2

nσ dx
.
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It appears that we have solved for the eigenvalue and have not needed the
machinery we had developed in Chapter 4 for studying boundary value prob-
lems. However, we really cannot evaluate this expression because we do not
know the eigenfunctions, φn(x) yet. Nevertheless, we will see what we can
determine.

One can rewrite this result by performing an integration by parts on the

first term in the numerator. Namely, pick u = φn and dv = d
dx

(

pdφn

dx

)

dx for

the standard integration by parts formula. Then, we have

∫ b

a

φn
d

dx

(

p
dφn

dx

)

dx = pφn
dφn

dx

∣
∣
∣

b

a
−
∫ b

a

[

p

(
dφn

dx

)2

− qφ2
n

]

dx.

Inserting the new formula into the expression for λ, leads to the Rayleigh
Quotient

λn =

−pφn
dφn

dx

∣
∣
∣

b

a
+
∫ b

a

[

p
(

dφn

dx

)2

− qφ2
n

]

dx

∫ b

a
φ2

nσ dx
. (6.21)

In many applications the sign of the eigenvalue is important. As we had
seen in the solution of the heat equation, T ′ + kλT = 0. Since we expect
the heat energy to diffuse, the solutions should decay in time. Thus, we would
expect λ > 0. In studying the wave equation, one expects vibrations and these
are only possible with the correct sign of the eigenvalue (positive again). Thus,
in order to have nonnegative eigenvalues, we see from (6.21) that

a. q(x) ≤ 0, and
b. −pφn

dφn

dx |ba ≥ 0.

Furthermore, if λ is a zero eigenvalue, then q(x) ≡ 0 and α1 = α2 = 0
in the homogeneous boundary conditions. This can be seen by setting the
numerator equal to zero. Then, q(x) = 0 and φ′n(x) = 0. The second of these
conditions inserted into the boundary conditions forces the restriction on the
type of boundary conditions.

One of the (unproven here) properties of Sturm-Liouville eigenvalue prob-
lems with homogeneous boundary conditions is that the eigenvalues are or-
dered, λ1 < λ2 < . . . . Thus, there is a smallest eigenvalue. It turns out that
for any continuous function, y(x),

λ1 = min
y(x)

−py dy
dx |ba +

∫ b

a

[

p
(

dy
dx

)2

− qy2

]

dx

∫ b

a y
2σ dx

(6.22)

and this minimum is obtained when y(x) = φ1(x). This result can be used to
get estimates of the minimum eigenvalue by using trial functions which are
continuous and satisfy the boundary conditions, but do not necessarily satisfy
the differential equation.
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Example 6.10. We have already solved the eigenvalue problem φ′′ + λφ = 0,
φ(0) = 0, φ(1) = 0. In this case, the lowest eigenvalue is λ1 = π2. We can
pick a nice function satisfying the boundary conditions, say y(x) = x − x2.
Inserting this into Equation (6.22), we find

λ1 ≤
∫ 1

0
(1 − 2x)2 dx

∫ 1

0 (x− x2)2 dx
= 10.

Indeed, 10 ≥ π2.

6.3 The Eigenfunction Expansion Method

In section 4.3.2 we saw generally how one can use the eigenfunctions of a
differential operator to solve a nonhomogeneous boundary value problem. In
this chapter we have seen that Sturm-Liouville eigenvalue problems have the
requisite set of orthogonal eigenfunctions. In this section we will apply the
eigenfunction expansion method to solve a particular nonhomogenous bound-
ary value problem.

Recall that one starts with a nonhomogeneous differential equation

Ly = f,

where y(x) is to satisfy given homogeneous boundary conditions. The method
makes use of the eigenfunctions satisfying the eigenvalue problem

Lφn = −λnσφn

subject to the given boundary conditions. Then, one assumes that y(x) can
be written as an expansion in the eigenfunctions,

y(x) =

∞∑

n=1

cnφn(x),

and inserts the expansion into the nonhomogeneous equation. This gives

f(x) = L
( ∞∑

n=1

cnφn(x)

)

= −
∞∑

n=1

cnλnσ(x)φn(x).

The expansion coefficients are then found by making use of the orthogo-
nality of the eigenfunctions. Namely, we multiply the last equation by φm(x)
and integrate. We obtain

∫ b

a

f(x)φm(x) dx = −
∞∑

n=1

cnλn

∫ b

a

φn(x)φm(x)σ(x) dx.
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Orthogonality yields

∫ b

a

f(x)φm(x) dx = −cmλm

∫ b

a

φ2
m(x)σ(x) dx.

Solving for cm, we have

cm = −
∫ b

a f(x)φm(x) dx

λm

∫ b

a
φ2

m(x)σ(x) dx
.

Example 6.11. As an example, we consider the solution of the boundary value
problem

(xy′)′ +
y

x
=

1

x
, x ∈ [1, e], (6.23)

y(1) = 0 = y(e). (6.24)

This equation is already in self-adjoint form. So, we know that the associ-
ated Sturm-Liouville eigenvalue problem has an orthogonal set of eigenfunc-
tions. We first determine this set. Namely, we need to solve

(xφ′)′ +
φ

x
= −λσφ, φ(1) = 0 = φ(e). (6.25)

Rearranging the terms and multiplying by x, we have that

x2φ′′ + xφ′ + (1 + λσx)φ = 0.

This is almost an equation of Cauchy-Euler type. Picking the weight function
σ(x) = 1

x , we have

x2φ′′ + xφ′ + (1 + λ)φ = 0.

This is easily solved. The characteristic equation is

r2 + (1 + λ) = 0.

One obtains nontrivial solutions of the eigenvalue problem satisfying the
boundary conditions when λ > −1. The solutions are

φn(x) = A sin(nπ lnx), n = 1, 2, . . . .

where λn = n2π2 − 1.
It is often useful to normalize the eigenfunctions. This means that one

chooses A so that the norm of each eigenfunction is one. Thus, we have

1 =

∫ e

1

φn(x)2σ(x) dx

= A2

∫ e

1

sin(nπ lnx)
1

x
dx

= A2

∫ 1

0

sin(nπy) dy =
1

2
A2. (6.26)
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Thus, A =
√

2.
We now turn towards solving the nonhomogeneous problem, Ly = 1

x . We
first expand the unknown solution in terms of the eigenfunctions,

y(x) =

∞∑

n=1

cn
√

2 sin(nπ ln x).

Inserting this solution into the differential equation, we have

1

x
= Ly = −

∞∑

n=1

cnλn

√
2 sin(nπ lnx)

1

x
.

Next, we make use of orthogonality. Multiplying both sides by φm(x) =√
2 sin(mπ lnx) and integrating, gives

λmcm =

∫ e

1

√
2 sin(mπ lnx)

1

x
dx =

√
2

mπ
[(−1)m − 1].

Solving for cm, we have

cm =

√
2

mπ

[(−1)m − 1]

m2π2 − 1
.

Finally, we insert our coefficients into the expansion for y(x). The solution
is then

y(x) =

∞∑

n=1

2

nπ

[(−1)n − 1]

n2π2 − 1
sin(nπ ln(x)).

6.4 The Fredholm Alternative Theorem

Given that Ly = f , when can one expect to find a solution? Is it unique? These
questions are answered by the Fredholm Alternative Theorem. This theorem
occurs in many forms from a statement about solutions to systems of algebraic
equations to solutions of boundary value problems and integral equations. The
theorem comes in two parts, thus the term “alternative”. Either the equation
has exactly one solution for all f , or the equation has many solutions for some
f ’s and none for the rest.

The reader is familiar with the statements of the Fredholm Alternative
for the solution of systems of algebraic equations. One seeks solutions of the
system Ax = b for A an n×mmatrix. Defining the matrix adjoint, A∗ through
< Ax, y >=< x,A∗y > for all x, y,∈ Cn, then either

Theorem 6.12. First Alternative
The equation Ax = b has a solution if and only if < b, v >= 0 for all v

such that A∗v = 0.
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or

Theorem 6.13. Second Alternative
A solution of Ax = b, if it exists, is unique if and only if x = 0 is the only

solution of Ax = 0.

The second alternative is more familiar when given in the form: The solu-
tion of a nonhomogeneous system of n equations and n unknowns is unique
if the only solution to the homogeneous problem is the zero solution. Or,
equivalently, A is invertible, or has nonzero determinant.

Proof. We prove the second theorem first. Assume that Ax = 0 for x 6= 0
and Ax0 = b. Then A(x0 + αx) = b for all α. Therefore, the solution is not
unique. Conversely, if there are two different solutions, x1 and x2, satisfying
Ax1 = b and Ax2 = b, then one has a nonzero solution x = x1 − x2 such that
Ax = A(x1 − x2) = 0.

The proof of the first part of the first theorem is simple. Let A∗v = 0 and
Ax0 = b. Then we have

< b, v >=< Ax0, v >=< x0, A
∗v >= 0.

For the second part we assume that < b, v >= 0 for all v such that A∗v = 0.
Write b as the sum of a part that is in the range of A and a part that in the
space orthogonal to the range of A, b = bR + bO. Then, 0 =< bO, Ax >=<
A∗b, x > for all x. Thus, A∗bO. Since < b, v >= 0 for all v in the nullspace of
A∗, then < b, bO >= 0. Therefore, < b, v >= 0 implies that 0 =< b,O >=<
bR + bO, bO >=< bO, bO > . This means that bO = 0, giving b = bR is in the
range of A. So, Ax = b has a solution.

Example 6.14. Determine the allowed forms of b for a solution of Ax = b to
exist, where

A =

(
1 2
3 6

)

First note that A∗ = A
T
. This is seen by looking at

< Ax,y > = < x, A∗y >
n∑

i=1

n∑

j=1

aijxj ȳi =

n∑

j=1

xj

n∑

j=1

aij ȳi

=

n∑

j=1

xj

n∑

j=1

(āT )ji yi (6.27)

For this example,

A∗ =

(
1 3
2 6

)
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We next solve A∗v = 0. This means, v1 + 3v2 = 0. So, the nullspace of A∗ is
spanned by v = (3,−1)T . For a solution of Ax = b to exist, b would have to
be orthogonal to v. Therefore, a solution exists when

b = α

(
1
3

)

.

So, what does this say about solutions of boundary value problems? There
is a more general theory for linear operators. The matrix formulations follows,
since matrices are simply representations of linear transformations. A more
general statement would be

Theorem 6.15. If L is a bounded linear operator on a Hilbert space, then
Ly = f has a solution if and only if < f, v >= 0 for every v such that
L†v = 0.

The statement for boundary value problems is similar. However, we need
to be careful to treat the boundary conditions in our statement. As we have
seen, after several integrations by parts we have that

< Lu, v >= S(u, v)+ < u,L†v >,

where S(u, v) involves the boundary conditions on u and v. Note that for
nonhomogeneous boundary conditions, this term may no longer vanish.

Theorem 6.16. The solution of the boundary value problem Lu = f with
boundary conditions Bu = g exists if and only if

< f, v > −S(u, v) = 0

for all v satisfying L†v = 0 and B†v = 0.

Example 6.17. Consider the problem

u′′ + u = f(x), u(0) − u(2π) = α, u′(0) − u′(2π) = β.

Only certain values of α and β will lead to solutions. We first note that L = L†

=
d2

dx2
+ 1.

Solutions of

L†v = 0, v(0) − v(2π) = 0, v′(0) − v′(2π) = 0

are easily found to be linear combinations of v = sinx and v = cosx.
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Next one computes

S(u, v) = [u′v − uv′]
2π
0

= u′(2π)v(2π) − u(2π)v′(2π) − u′(0)v(0) + u(0)v′(0). (6.28)

For v(x) = sinx, this yields

S(u, sinx) = −u(2π) + u(0) = α.

Similarly,
S(u, cosx) = β.

Using < f, v > −S(u, v) = 0, this leads to the conditions

∫ 2π

0

f(x) sinxdx = α,

∫ 2π

0

f(x) cosxdx = β.

Problems

6.1. Find the adjoint operator and its domain for Lu = u′′ +4u′−3u, u′(0)+
4u(0) = 0, u′(1) + 4u(1) = 0.

6.2. Show that a Sturm-Liouville operator with periodic boundary conditions
on [a, b] is self-adjoint if and only if p(a) = p(b). [Recall, periodic boundary
conditions are given as u(a) = u(b) and u′(a) = u′(b).]

6.3. The Hermite differential equation is given by y′′−2xy′+λy = 0. Rewrite
this equation in self-adjoint form. From the Sturm-Liouville form obtained,
verify that the differential operator is self adjoint on (−∞,∞). Give the inte-
gral form for the orthogonality of the eigenfunctions.

6.4. Find the eigenvalues and eigenfunctions of the given Sturm-Liouville
problems.

a. y′′ + λy = 0, y′(0) = 0 = y′(π).
b. (xy′)′ + λ

xy = 0, y(1) = y(e2) = 0.

6.5. The eigenvalue problem x2y′′ − λxy′ + λy = 0 with y(1) = y(2) = 0 is
not a Sturm-Liouville eigenvalue problem. Show that none of the eigenvalues
are real by solving this eigenvalue problem.

6.6. In Example 6.10 we found a bound on the lowest eigenvalue for the given
eigenvalue problem.

a. Verify the computation in the example.
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b. Apply the method using

y(x) =

{
x, 0 < x < 1

2
1 − x, 1

2 < x < 1.

Is this an upper bound on λ1

c. Use the Rayleigh quotient to obtain a good upper bound for the lowest
eigenvalue of the eigenvalue problem: φ′′ + (λ − x2)φ = 0, φ(0) = 0,
φ′(1) = 0.

6.7. Use the method of eigenfunction expansions to solve the problem:

y′′ + 4y = x2, y(0) = y(1) = 0.

6.8. Determine the solvability conditions for the nonhomogeneous boundary
value problem: u′′ + 4u = f(x), u(0) = α, u′(1) = β.





7

Special Functions

In this chapter we will look at some additional functions which arise often in
physical applications and are eigenfunctions for some Sturm-Liouville bound-
ary value problem. We begin with a collection of special functions, called the
classical orthogonal polynomials. These include such polynomial functions as
the Legendre polynomials, the Hermite polynomials, the Tchebychef and the
Gegenbauer polynomials. Also, Bessel functions occur quite often. We will
spend more time exploring the Legendre and Bessel functions. These func-
tions are typically found as solutions of differential equations using power
series methods in a first course in differential equations.

7.1 Classical Orthogonal Polynomials

We begin by noting that the sequence of functions {1, x, x2, . . .} is a basis of
linearly independent functions. In fact, by the Stone-Weierstrass Approxima-
tion Theorem this set is a basis of L2

σ(a, b), the space of square integrable
functions over the interval [a, b] relative to weight σ(x). We are familiar with
being able to expand functions over this basis, since the expansions are just
power series representations of the functions,

f(x) ∼
∞∑

n=0

cnx
n.

However, this basis is not an orthogonal set of basis functions. One can eas-
ily see this by integrating the product of two even, or two odd, basis functions
with σ(x) = 1 and (a, b)=(−1, 1). For example,

< 1, x2 >=

∫ 1

−1

x0x2 dx =
2

3
.

Since we have found that orthogonal bases have been useful in determining
the coefficients for expansions of given functions, we might ask if it is possible
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to obtain an orthogonal basis involving these powers of x. Of course, finite
combinations of these basis element are just polynomials!

OK, we will ask.“Given a set of linearly independent basis vectors, can
one find an orthogonal basis of the given space?” The answer is yes. We
recall from introductory linear algebra, which mostly covers finite dimensional
vector spaces, that there is a method for carrying this out called the Gram-
Schmidt Orthogonalization Process. We will recall this process for finite
dimensional vectors and then generalize to function spaces.

Fig. 7.1. The basis a1, a2, and a3, of R3 considered in the text.

Let’s assume that we have three vectors that span R3, given by a1, a2,
and a3 and shown in Figure 7.1. We seek an orthogonal basis e1, e2, and e3,
beginning one vector at a time.

First we take one of the original basis vectors, say a1, and define

e1 = a1.

Of course, we might want to normalize our new basis vectors, so we would
denote such a normalized vector with a “hat”:

ê1 =
e1

e1
,

where e1 =
√

e1 · e1.
Next, we want to determine an e2 that is orthogonal to e1.We take another

element of the original basis, a2. In Figure 7.2 we see the orientation of the
vectors. Note that the desired orthogonal vector is e2. Note that a2 can be
written as a sum of e2 and the projection of a2 on e1. Denoting this projection
by pr1a2, we then have

e2 = a2 − pr1a2. (7.1)

We recall the projection of one vector onto another from our vector calculus
class.

pr1a2 =
a2 · e1

e21
e1. (7.2)
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Fig. 7.2. A plot of the vectors e1, a2, and e2 needed to find the projection of a2,
on e1.

Note that this is easily proven by writing the projection as a vector of length
a2 cos θ in direction ê1, where θ is the angle between e1 and a2. Using the
definition of the dot product, a · b = ab cos θ, the projection formula follows.

Combining Equations (7.1)-(7.2), we find that

e2 = a2 −
a2 · e1

e21
e1. (7.3)

It is a simple matter to verify that e2 is orthogonal to e1:

e2 · e1 = a2 · e1 −
a2 · e1

e21
e1 · e1

= a2 · e1 − a2 · e1 = 0. (7.4)

Now, we seek a third vector e3 that is orthogonal to both e1 and e2. Picto-
rially, we can write the given vector a3 as a combination of vector projections
along e1 and e2 and the new vector. This is shown in Figure 7.3. Then we
have,

e3 = a3 −
a3 · e1

e21
e1 −

a3 · e2

e22
e2. (7.5)

Again, it is a simple matter to compute the scalar products with e1 and e2

to verify orthogonality.
We can easily generalize the procedure to the N -dimensional case.

Gram-Schmidt Orthogonalization in N-Dimensions

Let an, n = 1, ..., N be a set of linearly independent vectors in RN .
Then, an orthogonal basis can be found by setting e1 = a1 and for
n > 1,

en = an −
n−1∑

j=1

an · ej

e2j
ej . (7.6)
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Fig. 7.3. A plot of the vectors and their projections for determining e3.

Now, we can generalize this idea to (real) function spaces.

Gram-Schmidt Orthogonalization for Function Spaces

Let fn(x), n ∈ N0 = {0, 1, 2, . . .}, be a linearly independent se-
quence of continuous functions defined for x ∈ [a, b]. Then, an
orthogonal basis of functions, φn(x), n ∈ N0 can be found and is
given by

φ0(x) = f0(x)

and

φn(x) = fn(x) −
n−1∑

j=0

< fn, φj >

‖φj‖2
φj(x), n = 1, 2, . . . . (7.7)

Here we are using inner products relative to weight σ(x),

< f, g >=

∫ b

a

f(x)g(x)σ(x) dx. (7.8)

Note the similarity between the orthogonal basis in (7.7) and the expression
for the finite dimensional case in Equation (7.6).

Example 7.1. Apply the Gram-Schmidt Orthogonalization process to the set
fn(x) = xn, n ∈ N0, when x ∈ (−1, 1) and σ(x) = 1.

First, we have φ0(x) = f0(x) = 1. Note that

∫ 1

−1

φ2
0(x) dx =

1

2
.

We could use this result to fix the normalization of our new basis, but we will
hold off on doing that for now.

Now, we compute the second basis element:
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φ1(x) = f1(x) −
< f1, φ0 >

‖φ0‖2
φ0(x)

= x− < x, 1 >

‖1‖2
1 = x, (7.9)

since < x, 1 > is the integral of an odd function over a symmetric interval.
For φ2(x), we have

φ2(x) = f2(x) −
< f2, φ0 >

‖φ0‖2
φ0(x) −

< f2, φ1 >

‖φ1‖2
φ1(x)

= x2 − < x2, 1 >

‖1‖2
1 − < x2, x >

‖x‖2
x

= x2 −
∫ 1

−1
x2 dx

∫ 1

−1 dx

= x2 − 1

3
. (7.10)

So far, we have the orthogonal set {1, x, x2 − 1
3}. If one chooses to nor-

malize these by forcing φn(1) = 1, then one obtains the classical Legendre
polynomials, Pn(x) = φ1(x). Thus,

P2(x) =
1

2
(3x2 − 1).

Note that this normalization is different than the usual one. In fact, we see
that P2(x) does not have a unit norm,

‖P2‖2 =

∫ 1

−1

P 2
2 (x) dx =

2

5
.

The set of Legendre polynomials is just one set of classical orthogonal
polynomials that can be obtained in this way. Many had originally appeared
as solutions of important boundary value problems in physics. They all have
similar properties and we will just elaborate some of these for the Legendre
functions in the next section. Other orthogonal polynomials in this group are
shown in Table 7.1.

For reference, we also note the differential equations satisfied by these
functions.

7.2 Legendre Polynomials

In the last section we saw the Legendre polynomials in the context of or-
thogonal bases for a set of square integrable functions in L2(−1, 1). In your
first course in differential equations, you saw these polynomials as one of the
solutions of the differential equation
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Polynomial Symbol Interval σ(x)

Hermite Hn(x) (−∞,∞) e−x2

Laguerre Lα
n(x) [0,∞) e−x

Legendre Pn(x) (-1,1) 1

Gegenbauer Cλ
n(x) (-1,1) (1 − x2)λ−1/2

Tchebychef of the 1st kind Tn(x) (-1,1) (1 − x2)−1/2

Tchebychef of the 2nd kind Un(x) (-1,1) (1 − x2)−1/2

Jacobi P
(ν,µ)
n (x) (-1,1) (1 − x)ν(1 − x)µ

Table 7.1. Common classical orthogonal polynomials with the interval and weight
function used to define them.

Polynomial Differential Equation

Hermite y′′ − 2xy′ + 2ny = 0
Laguerre xy′′ + (α + 1 − x)y′ + ny = 0
Legendre (1 − x2)y′′ − 2xy′ + n(n + 1)y = 0

Gegenbauer (1 − x2)y′′ − (2n + 3)xy′ + λy = 0
Tchebychef of the 1st kind (1 − x2)y′′ − xy′ + n2y = 0

Jacobi (1 − x2)y′′ + (ν − µ + (µ + ν + 2)x)y′ + n(n + 1 + µ + ν)y = 0

Table 7.2. Differential equations satisfied by some of the common classical orthog-
onal polynomials.

(1 − x2)y′′ − 2xy′ + n(n+ 1)y = 0, n ∈ N0. (7.11)

Recall that these were obtained by using power series expansion methods. In
this section we will explore a few of the properties of these functions.

For completeness, we recall the solution of Equation (7.11) using the power
series method. We assume that the solution takes the form

y(x) =
∞∑

k=0

akx
k.

The goal is to determine the coefficients, ak. Inserting this series into Equation
(7.11), we have

(1 − x2)

∞∑

k=0

k(k − 1)akx
k−2 −

∞∑

k=0

2akkx
k +

∞∑

k=0

n(n+ 1)akx
k = 0,

or

∞∑

k=2

k(k − 1)akx
k−2 −

∞∑

k=2

k(k − 1)akx
k +

∞∑

k=0

[−2k + n(n+ 1)] akx
k = 0.

We can combine some of these terms:

∞∑

k=2

k(k − 1)akx
k−2 +

∞∑

k=0

[−k(k − 1) − 2k + n(n+ 1)]akx
k = 0.
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Further simplification yields

∞∑

k=2

k(k − 1)akx
k−2 +

∞∑

k=0

[n(n+ 1) − k(k + 1)] akx
k = 0.

We need to collect like powers of x. This can be done by reindexing each sum.
In the first sum, we let m = k − 2, or k = m + 2. In the second sum we
independently let k = m. Then all powers of x are of the form xm. This gives

∞∑

m=0

(m+ 2)(m+ 1)am+2x
m +

∞∑

m=0

[n(n+ 1) −m(m+ 1)]amx
m = 0.

Combining these sums, we have

∞∑

m=0

[(m+ 2)(m+ 1)am+2 + (n(n+ 1) −m(m+ 1))am]xm = 0.

This has to hold for all x. So, the coefficients of xm must vanish:

(m+ 2)(m+ 1)am+2 + (n(n+ 1) −m(m+ 1))am.

Solving for am+2, we obtain the recursion relation

am+2 =
n(n+ 1) −m(m+ 1)

(m+ 2)(m+ 1)
am, m ≥ 0.

Thus, am+2 is proportional to am. We can iterate and show that each coeffi-
cient is either proportional to a0 or a1. However, for n an integer, sooner, or
later, m = n and the series truncates. am = 0 for m > n. Thus, we obtain
polynomial solutions. These polynomial solutions are the Legendre polynomi-
als, which we designate as y(x) = Pn(x). Furthermore, for n an even integer,
Pn(x) is an even function and for n an odd integer, Pn(x) is an odd function.

Actually, this is a trimmed down version of the method. We would need to
find a second linearly independent solution. We will not discuss these solutions
and leave that for the interested reader to investigate.

7.2.1 The Rodrigues Formula

The first property that the Legendre polynomials have is the Rodrigues for-
mula:

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n, n ∈ N0. (7.12)

From the Rodrigues formula, one can show that Pn(x) is an nth degree poly-
nomial. Also, for n odd, the polynomial is an odd function and for n even, the
polynomial is an even function.

As an example, we determine P2(x) from Rodrigues formula:
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P2(x) =
1

222!

d2

dx2
(x2 − 1)2

=
1

8

d2

dx2
(x4 − 2x2 + 1)

=
1

8

d

dx
(4x3 − 4x)

=
1

8
(12x2 − 4)

=
1

2
(3x2 − 1). (7.13)

Note that we get the same result as we found in the last section using orthog-
onalization.

One can systematically generate the Legendre polynomials in tabular form
as shown in Table 7.2.1. In Figure 7.4 we show a few Legendre polynomials.

n (x2 − 1)n dn

dxn (x2 − 1)n 1
2nn!

Pn(x)

0 1 1 1 1
1 x2 − 1 2x 1

2
x

2 x4 − 2x2 + 1 12x2 − 4 1
8

1
2
(3x2 − 1)

3 x6 − 3x4 + 3x2 − 1 120x3 − 72x 1
48

1
2
(5x3 − 3x)

Table 7.3. Tabular computation of the Legendre polynomials using the Rodrigues
formula.

–1

–0.5

0.5

1

–1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1
x

Fig. 7.4. Plots of the Legendre polynomials P2(x), P3(x), P4(x), and P5(x).
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7.2.2 Three Term Recursion Formula

The classical orthogonal polynomials also satisfy three term recursion formu-
lae. In the case of the Legendre polynomials, we have

(2n+ 1)xPn(x) = (n+ 1)Pn+1(x) + nPn−1(x), n = 1, 2, . . . . (7.14)

This can also be rewritten by replacing n with n− 1 as

(2n− 1)xPn−1(x) = nPn(x) + (n− 1)Pn−2(x), n = 1, 2, . . . . (7.15)

We will prove this recursion formula in two ways. First we use the orthog-
onality properties of Legendre polynomials and the following lemma.

Lemma 7.2. The leading coefficient of xn in Pn(x) is 1
2nn!

(2n)!
n! .

Proof. We can prove this using Rodrigues formula. first, we focus on the
leading coefficient of (x2 − 1)n, which is x2n. The first derivative of x2n is
2nx2n−1. The second derivative is 2n(2n− 1)x2n−2. The jth derivative is

djx2n

dxj
= [2n(2n− 1) . . . (2n− j + 1)]x2n−j .

Thus, the nth derivative is given by

dnx2n

dxn
= [2n(2n− 1) . . . (n+ 1)]xn.

This proves that Pn(x) has degree n. The leading coefficient of Pn(x) can now
be written as

1

2nn!
[2n(2n− 1) . . . (n+ 1)] =

1

2nn!
[2n(2n− 1) . . . (n+ 1)]

n(n− 1) . . . 1

n(n− 1) . . . 1

=
1

2nn!

(2n)!

n!
. (7.16)

In order to prove the three term recursion formula we consider the expres-
sion (2n− 1)xPn−1(x) − nPn(x). While each term is a polynomial of degree
n, the leading order terms cancel. We need only look at the coefficient of the
leading order term first expression. It is

(2n− 1)
1

2n−1(n− 1)!

(2n− 2)!

(n− 1)!
=

1

2n−1(n− 1)!

(2n− 1)!

(n− 1)!
=

(2n− 1)!

2n−1 [(n− 1)!]2
.

The coefficient of the leading term for nPn(x) can be written as

n
1

2nn!

(2n)!

n!
= n

(
2n

2n2

)(
1

2n−1(n− 1)!

)
(2n− 1)!

(n− 1)!

(2n− 1)!

2n−1 [(n− 1)!]2
.
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It is easy to see that the leading order terms in (2n − 1)xPn−1(x) − nPn(x)
cancel.

The next terms will be of degree n− 2. This is because the Pn’s are either
even or odd functions, thus only containing even, or odd, powers of x. We
conclude that

(2n− 1)xPn−1(x) − nPn(x) = polynomial of degree n− 2.

Therefore, since the Legendre polynomials form a basis, we can write this
polynomial as a linear combination of of Legendre polynomials:

(2n− 1)xPn−1(x)−nPn(x) = c0P0(x)+ c1P1(x)+ . . .+ cn−2Pn−2(x). (7.17)

Multiplying Equation (7.17) by Pm(x) for m = 0, 1, . . . , n− 3, integrating
from −1 to 1, and using orthogonality, we obtain

0 = cm‖Pm‖2, m = 0, 1, . . . , n− 3.

[Note:
∫ 1

−1 x
kPn(x) dx = 0 for k ≤ n − 1. Thus,

∫ 1

−1 xPn−1(x)Pm(x) dx = 0
for m ≤ n− 3.]

Thus, all of these cm’s are zero, leaving Equation (7.17) as

(2n− 1)xPn−1(x) − nPn(x) = cn−2Pn−2(x).

The final coefficient can be found by using the normalization condition,
Pn(1) = 1. Thus, cn−2 = (2n− 1) − n = n− 1.

7.2.3 The Generating Function

A second proof of the three term recursion formula can be obtained from the
generating function of the Legendre polynomials. Many special functions have
such generating functions. In this case it is given by

g(x, t) =
1√

1 − 2xt+ t2
=

∞∑

n=0

Pn(x)tn, |x| < 1, |t| < 1. (7.18)

This generating function occurs often in applications. In particular, it
arises in potential theory, such as electromagnetic or gravitational potentials.
These potential functions are 1

r type functions. For example, the gravitational
potential between the Earth and the moon is proportional to the reciprocal
of the magnitude of the difference between their positions relative to some
coordinate system. An even better example, would be to place the origin at
the center of the Earth and consider the forces on the non-pointlike Earth due
to the moon. Consider a piece of the Earth at position r1 and the moon at
position r2 as shown in Figure 7.5. The tidal potential Φ is proportional to

Φ ∝ 1

|r2 − r1|
=

1
√

(r2 − r1) · (r2 − r1)
=

1
√

r21 − 2r1r2 cos θ + r22
,



7.2 Legendre Polynomials 215

Fig. 7.5. The position vectors used to describe the tidal force on the Earth due to
the moon.

where θ is the angle between r1 and r2.
Typically, one of the position vectors is much larger than the other. Let’s

assume that r1 ≪ r2. Then, one can write

Φ ∝ 1
√

r21 − 2r1r2 cos θ + r22
=

1

r2

1
√

1 − 2 r1

r2
cos θ +

(
r1

r2

)2
.

Now, define x = cos θ and t = r1

r2
. We then have the tidal potential is pro-

portional to the generating function for the Legendre polynomials! So, we can
write the tidal potential as

Φ ∝ 1

r2

∞∑

n=0

Pn(cos θ)

(
r1
r2

)n

.

The first term in the expansion is the gravitational potential that gives the
usual force between the Earth and the moon. [Recall that the force is the
gradient of the potential, F = ∇

(
1
r

)
.] The next terms will give expressions

for the tidal effects.
Now that we have some idea as to where this generating function might

have originated, we can proceed to use it. First of all, the generating function
can be used to obtain special values of the Legendre polynomials.

Example 7.3. Evaluate Pn(0). Pn(0) is found by considering g(0, t). Setting
x = 0 in Equation (7.18), we have

g(0, t) =
1√

1 + t2
=

∞∑

n=0

Pn(0)tn. (7.19)

We can use the binomial expansion to find our final answer. [See the last
section of this chapter for a review.] Namely, we have

1√
1 + t2

= 1 − 1

2
t2 +

3

8
t4 + . . . .

Comparing these expansions, we have the Pn(0) = 0 for n odd and for even
integers one can show (see Problem 7.10) that
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P2n(0) = (−1)n (2n− 1)!!

(2n)!!
, (7.20)

where n!! is the double factorial,

n!! =







n(n− 2) . . . (3)1, n > 0, odd,
n(n− 2) . . . (4)2, n > 0, even,
1 n = 0,−1

.

Example 7.4. Evaluate Pn(−1). This is a simpler problem. In this case we have

g(−1, t) =
1√

1 + 2t+ t2
=

1

1 + t
= 1 − t+ t2 − t3 + . . . .

Therefore, Pn(−1) = (−1)n.

We can also use the generating function to find recursion relations. To
prove the three term recursion (7.14) that we introduced above, then we need
only differentiate the generating function with respect to t in Equation (7.18)
and rearrange the result. First note that

∂g

∂t
=

x− t

(1 − 2xt+ t2)3/2
=

x− t

1 − 2xt+ t2
g(x, t).

Combining this with

∂g

∂t
=

∞∑

n=0

nPn(x)tn−1,

we have

(x− t)g(x, t) = (1 − 2xt+ t2)
∞∑

n=0

nPn(x)tn−1.

Inserting the series expression for g(x, t) and distributing the sum on the right
side, we obtain

(x− t)

∞∑

n=0

Pn(x)tn =

∞∑

n=0

nPn(x)tn−1 −
∞∑

n=0

2nxPn(x)tn +

∞∑

n=0

nPn(x)tn+1.

Rearranging leads to three separate sums:

∞∑

n=0

nPn(x)tn−1 −
∞∑

n=0

(2n+ 1)xPn(x)tn +

∞∑

n=0

(n+ 1)Pn(x)tn+1 = 0. (7.21)

Each term contains powers of t that we would like to combine into a single
sum. This is done by reindexing. For the first sum, we could use the new index
k = n− 1. Then, the first sum can be written

∞∑

n=0

nPn(x)tn−1 =

∞∑

k=−1

(k + 1)Pk+1(x)t
k.
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Using different indices is just another way of writing out the terms. Note that

∞∑

n=0

nPn(x)tn−1 = 0 + P1(x) + 2P2(x)t+ 3P3(x)t
2 + . . .

and

∞∑

k=−1

(k + 1)Pk+1(x)t
k = 0 + P1(x) + 2P2(x)t+ 3P3(x)t

2 + . . .

actually give the same sum. The indices are sometimes referred to as dummy
indices because they do not show up in the expanded expression and can be
replaced with another letter.

If we want to do so, we could now replace all of the k’s with n’s. However,
we will leave the k’s in the first term and now reindex the next sums in
Equation (7.21). The second sum just needs the replacement n = k and the
last sum we reindex using k = n+ 1. Therefore, Equation (7.21) becomes

∞∑

k=−1

(k + 1)Pk+1(x)t
k −

∞∑

k=0

(2k + 1)xPk(x)tk +

∞∑

k=1

kPk−1(x)t
k = 0. (7.22)

We can now combine all of the terms, noting the k = −1 term is automatically
zero and the k = 0 terms give

P1(x) − xP0(x) = 0. (7.23)

Of course, we know this already. So, that leaves the k > 0 terms:

∞∑

k=1

[(k + 1)Pk+1(x) − (2k + 1)xPk(x) + kPk−1(x)] t
k = 0. (7.24)

Since this is true for all t, the coefficients of the tk’s are zero, or

(k + 1)Pk+1(x) − (2k + 1)xPk(x) + kPk−1(x) = 0, k = 1, 2, . . . .

There are other recursion relations. For example,

P ′
n+1(x) − P ′

n−1(x) = (2n+ 1)Pn(x). (7.25)

This can be proven using the generating function by differentiating g(x, t)
with respect to x and rearranging the resulting infinite series just as in this
last manipulation. This will be left as Problem 7.4.

Another use of the generating function is to obtain the normalization con-
stant. Namely, ‖Pn‖2. Squaring the generating function, we have

1

1 − 2xt+ t2
=

[ ∞∑

n=0

Pn(x)tn

]2

=

∞∑

n=0

∞∑

m=0

Pn(x)Pm(x)tn+m. (7.26)
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Integrating from -1 to 1 and using the orthogonality of the Legendre polyno-
mials, we have

∫ 1

−1

dx

1 − 2xt+ t2
=

∞∑

n=0

∞∑

m=0

tn+m

∫ 1

−1

Pn(x)Pm(x) dx

=

∞∑

n=0

t2n

∫ 1

−1

P 2
n(x) dx. (7.27)

However, one can show that

∫ 1

−1

dx

1 − 2xt+ t2
=

1

t
ln

(
1 + t

1 − t

)

.

Expanding this expression about t = 0, we obtain

1

t
ln

(
1 + t

1 − t

)

=

∞∑

n=0

2

2n+ 1
t2n.

Comparing this result with Equation (7.27), we find that

‖Pn‖2 =

∫ 1

−1

Pn(x)Pm(x) dx =
2

2n+ 1
. (7.28)

7.2.4 Eigenfunction Expansions

Finally, we can expand other functions in this orthogonal basis. This is just
a generalized Fourier series. A Fourier-Legendre series expansion for f(x) on
[−1, 1] takes the form

f(x) ∼
∞∑

n=0

cnPn(x). (7.29)

As before, we can determine the coefficients by multiplying both sides by
Pm(x) and integrating. Orthogonality gives the usual form for the generalized
Fourier coefficients. In this case, we have

cn =
< f, Pn >

‖Pn‖2
,

where

< f, Pn >=

∫ 1

−1

f(x)Pn(x) dx.

We have just found ‖Pn‖2 = 2
2n+1 . Therefore, the Fourier-Legendre coeffi-

cients are

cn =
2n+ 1

2

∫ 1

−1

f(x)Pn(x) dx. (7.30)
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Example 7.5. Expand f(x) = x3 in a Fourier-Legendre series.
We simply need to compute

cn =
2n+ 1

2

∫ 1

−1

x3Pn(x) dx. (7.31)

We first note that

∫ 1

−1

xmPn(x) dx = 0 for m < n.

This is simply proven using Rodrigues formula. Inserting Equation (7.12), we
have ∫ 1

−1

xmPn(x) dx =
1

2nn!

∫ 1

−1

xm dn

dxn
(x2 − 1)n dx.

Since m < n, we can integrate by parts m-times to show the result, using
Pn(1) = 1 and Pn(−1) = (−1)n. As a result, we will have for this example
that cn = 0 for n > 3.

We could just compute
∫ 1

−1
x3Pm(x) dx for m = 0, 1, 2, . . . outright. But,

noting that x3 is an odd function, we easily confirm that c0 = 0 and c2 = 0.
This leaves us with only two coefficients to compute. These are

c1 =
3

2

∫ 1

−1

x4 dx =
3

5

and

c3 =
7

2

∫ 1

−1

x3

[
1

2
(5x3 − 3x)

]

dx =
2

5
.

Thus,

x3 =
3

5
P1(x) +

2

5
P3(x).

Of course, this is simple to check using Table 7.2.1:

3

5
P1(x) +

2

5
P3(x) =

3

5
x+

2

5

[
1

2
(5x3 − 3x)

]

= x3.

Well, maybe we could have guessed this without doing any integration. Let’s
see,

x3 = c1x+
1

2
c2(5x

3 − 3x)

= (c1 −
3

2
c2)x +

5

2
c2x

3. (7.32)

Equating coefficients of like terms, we have that c2 = 2
5 and c1 = 3

2c2 = 3
5 .
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Example 7.6. Expand the Heaviside function in a Fourier-Legendre series.
The Heaviside function is defined as

H(x) =

{
1, x > 0,
0, x < 0.

(7.33)

In this case, we cannot find the expansion coefficients without some integra-
tion. We have to compute

cn =
2n+ 1

2

∫ 1

−1

f(x)Pn(x) dx

=
2n+ 1

2

∫ 1

0

Pn(x) dx, n = 0, 1, 2, . . . . (7.34)

For n = 0, we have

c0 =
1

2

∫ 1

0

dx =
1

2
.

For n > 1, we make use of the identity (7.25) to find

cn =
1

2

∫ 1

0

[P ′
n+1(x) − P ′

n−1(x)] dx =
1

2
[Pn−1(0) − Pn+1(0)].

Thus, the Fourier-Bessel series for the Heaviside function is

f(x) ∼ 1

2
+

1

2

∞∑

n=1

[Pn−1(0) − Pn+1(0)]Pn(x).

We need to evaluate Pn−1(0) − Pn+1(0). Since Pn(0) = 0 for n odd, the
cn’s vanish for n even. Letting n = 2k − 1, we have

f(x) ∼ 1

2
+

1

2

∞∑

k=1

[P2k−2(0) − P2k(0)]P2k−1(x).

We can use Equation (7.20),

P2k(0) = (−1)k (2k − 1)!!

(2k)!!
,

to compute the coefficients:

f(x) ∼ 1

2
+

1

2

∞∑

k=1

[P2k−2(0) − P2k(0)]P2k−1(x)

=
1

2
+

1

2

∞∑

k=1

[

(−1)k−1 (2k − 3)!!

(2k − 2)!!
− (−1)k (2k − 1)!!

(2k)!!

]

P2k−1(x)

=
1

2
− 1

2

∞∑

k=1

(−1)k (2k − 3)!!

(2k − 2)!!

[

1 +
2k − 1

2k

]

P2k−1(x)

=
1

2
− 1

2

∞∑

k=1

(−1)k (2k − 3)!!

(2k − 2)!!

4k − 1

2k
P2k−1(x). (7.35)
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The sum of the first 21 terms are shown in Figure 7.6. We note the slow con-
vergence to the Heaviside function. Also, we see that the Gibbs phenomenon
is present due to the jump discontinuity at x = 0.

Partial Sum of Fourier-Legendre Series

0.2

0.4

0.6

0.8

1

–0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8

x

Fig. 7.6. Sum of first 21 terms for Fourier-Legendre series expansion of Heaviside
function.

7.3 Gamma Function

Another function that often occurs in the study of special functions is the
Gamma function. We will need the Gamma function in the next section on
Bessel functions.

For x > 0 we define the Gamma function as

Γ (x) =

∫ ∞

0

tx−1e−t dt, x > 0. (7.36)

The Gamma function is a generalization of the factorial function. In fact,
we have

Γ (1) = 1

and
Γ (x+ 1) = xΓ (x).

The reader can prove this identity by simply performing an integration by
parts. (See Problem 7.7.) In particular, for integers n ∈ Z+, we then have

Γ (n+ 1) = nΓ (n) = n(n− 1)Γ (n− 2) = n(n− 1) · · · 2Γ (1) = n!.

We can also define the Gamma function for negative, non-integer values
of x. We first note that by iteration on n ∈ Z+, we have
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Γ (x+ n) = (x + n− 1) · · · (x+ 1)xΓ (x), x < 0, x+ n > 0.

Solving for Γ (x), we then find

Γ (x) =
Γ (x+ n)

(x + n− 1) · · · (x + 1)x
, −n < x < 0

Note that the Gamma function is undefined at zero and the negative integers.

Example 7.7. We now prove that

Γ

(
1

2

)

=
√
π.

This is done by direct computation of the integral:

Γ

(
1

2

)

=

∫ ∞

0

t−
1
2 e−t dt.

Letting t = z2, we have

Γ

(
1

2

)

= 2

∫ ∞

0

e−z2

dz.

Due to the symmetry of the integrand, we obtain the classic integral

Γ

(
1

2

)

=

∫ ∞

−∞
e−z2

dz,

which can be performed using a standard trick. Consider the integral

I =

∫ ∞

−∞
e−x2

dx.

Then,

I2 =

∫ ∞

−∞
e−x2

dx

∫ ∞

−∞
e−y2

dy.

Note that we changed the integration variable. This will allow us to write this
product of integrals as a double integral:

I2 =

∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2) dxdy.

This is an integral over the entire xy-plane. We can transform this Cartesian
integration to an integration over polar coordinates. The integral becomes

I2 =

∫ 2π

0

∫ ∞

0

e−r2

rdrdθ.

This is simple to integrate and we have I2 = π. So, the final result is found
by taking the square root of both sides:

Γ

(
1

2

)

= I =
√
π.
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We have seen that the factorial function can be written in terms of Gamma
functions. One can write the even and odd double factorials as

(2n)!! = 2nn!, (2n+ 1)!! =
(2n+ 1)!

2nn!
.

In particular, one can write

Γ (n+
1

2
) =

(2n− 1)!!

2n

√
π.

Another useful relation, which we only state, is

Γ (x)Γ (1 − x) =
π

sinπx
.

7.4 Bessel Functions

Another important differential equation that arises in many physics applica-
tions is

x2y′′ + xy′ + (x2 − p2)y = 0. (7.37)

This equation is readily put into self-adjoint form as

(xy′)′ + (x− p2

x
)y = 0. (7.38)

This equation was solved in the first course on differential equations using
power series methods, namely by using the Frobenius Method. One assumes
a series solution of the form

y(x) =

∞∑

n=0

anx
n+s,

and one seeks allowed values of the constant s and a recursion relation for the
coefficients, an. One finds that s = ±p and

an = − an−2

(n+ s)2 − p2
, n ≥ 2.

One solution of the differential equation is the Bessel function of the first
kind of order p, given as

y(x) = Jp(x) =

∞∑

n=0

(−1)n

Γ (n+ 1)Γ (n+ p+ 1)

(x

2

)2n+p

. (7.39)

In Figure 7.7 we display the first few Bessel functions of the first kind of in-
teger order. Note that these functions can be described as decaying oscillatory
functions.



224 7 Special Functions

J1(x)

J3(x)
J2(x)

J0(x)
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Fig. 7.7. Plots of the Bessel functions J0(x), J1(x), J2(x), and J3(x).

A second linearly independent solution is obtained for p not an integer as
J−p(x). However, for p an integer, the Γ (n+p+1) factor leads to evaluations
of the Gamma function at zero, or negative integers, when p is negative. Thus,
the above series is not defined in these cases.

Another method for obtaining a second linearly independent solution is
through a linear combination of Jp(x) and J−p(x) as

Np(x) = Yp(x) =
cosπpJp(x) − J−p(x)

sinπp
. (7.40)

These functions are called the Neumann functions, or Bessel functions of the
second kind of order p.

In Figure 7.8 we display the first few Bessel functions of the second kind of
integer order. Note that these functions are also decaying oscillatory functions.
However, they are singular at x = 0.

In many applications these functions do not satisfy the boundary condi-
tion that one desires a bounded solution at x = 0. For example, one standard
problem is to describe the oscillations of a circular drumhead. For this prob-
lem one solves the wave equation using separation of variables in cylindrical
coordinates. The r equation leads to a Bessel equation. The Bessel function
solutions describe the radial part of the solution and one does not expect a
singular solution at the center of the drum. The amplitude of the oscillation
must remain finite. Thus, only Bessel functions of the first kind can be used.

Bessel functions satisfy a variety of properties, which we will only list at
this time for Bessel functions of the first kind.

Derivative Identities

d

dx
[xpJp(x)] = xpJp−1(x). (7.41)
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Fig. 7.8. Plots of the Neumann functions N0(x), N1(x), N2(x), and N3(x).

d

dx

[
x−pJp(x)

]
= −x−pJp+1(x). (7.42)

Recursion Formulae

Jp−1(x) + Jp+1(x) =
2p

x
Jp(x). (7.43)

Jp−1(x) − Jp+1(x) = 2J ′
p(x). (7.44)

Orthogonality

∫ a

0

xJp(jpn
x

a
)Jp(jpm

x

a
) dx =

a2

2
[Jp+1(jpn)]

2
δn,m (7.45)

where jpn is the nth root of Jp(x), Jp(jpn) = 0, n = 1, 2, . . . . A list of
some of these roots are provided in Table 7.4.

n p = 0 p = 1 p = 2 p = 3 p = 4 p = 5

1 2.405 3.832 5.135 6.379 7.586 8.780
2 5.520 7.016 8.147 9.760 11.064 12.339
3 8.654 10.173 11.620 13.017 14.373 15.700
4 11.792 13.323 14.796 16.224 17.616 18.982
5 14.931 16.470 17.960 19.410 20.827 22.220
6 18.071 19.616 21.117 22.583 24.018 25.431
7 21.212 22.760 24.270 25.749 27.200 28.628
8 24.353 25.903 27.421 28.909 30.371 31.813
9 27.494 29.047 30.571 32.050 33.512 34.983

Table 7.4. The zeros of Bessel Functions
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Generating Function

ex(t− 1
t
)/2 =

∞∑

n=−∞
Jn(x)tn, x > 0, t 6= 0. (7.46)

Integral Representation

Jn(x) =
1

π

∫ π

0

cos(x sin θ − nθ) dθ, x > 0, n ∈ Z. (7.47)

Fourier-Bessel Series
Since the Bessel functions are an orthogonal set of eigenfunctions of a
Sturm-Liouville problem, we can expand square integrable functions in
this basis. In fact, the eigenvalue problem is given in the form

x2y′′ + xy′ + (λx2 − p2)y = 0. (7.48)

The solutions are then of the form Jp(
√
λx), as can be shown by making

the substitution t =
√
λx in the differential equation.

Furthermore, one can solve the differential equation on a finite domain,
[0, a], with the boundary conditions: y(x) is bounded at x = 0 and y(a) =
0.One can show that Jp(jpn

x
a ) is a basis of eigenfunctions and the resulting

Fourier-Bessel series expansion of f(x) defined on x ∈ [0, a] is

f(x) =

∞∑

n=1

cnJp(jpn
x

a
), (7.49)

where the Fourier-Bessel coefficients are found using the orthogonality
relation as

cn =
2

a2 [Jp+1(jpn)]
2

∫ a

0

xf(x)Jp(jpn
x

a
) dx. (7.50)

Example 7.8. Expand f(x) = 1 for 0 ≤ x ≤ 1 in a Fourier-Bessel series of
the form

f(x) =

∞∑

n=1

cnJ0(j0nx)

.
We need only compute the Fourier-Bessel coefficients in Equation (7.50):

cn =
2

[J1(j0n)]2

∫ 1

0

xJ0(j0nx) dx. (7.51)

From Equation (7.41) we have
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∫ 1

0

xJ0(j0nx) dx =
1

j20n

∫ j0n

0

yJ0(y) dy

=
1

j20n

∫ j0n

0

d

dy
[yJ1(y)] dy

=
1

j20n

[yJ1(y)]
j0n

0

=
1

j0n
J1(j0n). (7.52)

As a result, we have found that the desired Fourier-Bessel expansion is

1 = 2

∞∑

n=1

J0(j0nx)

j0nJ1(j0n)
, 0 < x < 1. (7.53)

In Figure 7.9 we show the partial sum for the first fifty terms of this series.
We see that there is slow convergence due to the Gibbs’ phenomenon.
Note: For reference, the partial sums of the Fourier-Bessel series was com-
puted in Maple using the following code:

2*sum(BesselJ(0,BesselJZeros(0,n)*x)

/(BesselJZeros(0,n)*BesselJ(1,BesselJZeros(0,n))),n=1..50)
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Fig. 7.9. Plot of the first 50 terms of the Fourier-Bessel series in Equation (7.53)
for f(x) = 1 on 0 < x < 1.

7.5 Hypergeometric Functions

Hypergeometric functions are probably the most useful, but least understood,
class of functions. They typically do not make it into the undergraduate cur-
riculum and seldom in graduate curriculum. Most functions that you know
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can be expressed using hypergeometric functions. There are many approaches
to these functions and the literature can fill books. 1

In 1812 Gauss published a study of the hypergeometric series

y(x) = 1 +
αβ

γ
x+

α(1 + α)(1 + β)

2!γ(1 + γ)
x2

+
α(1 + α)(2 + α)β(1 + β)(2 + β)

3!γ(1 + γ)(2 + γ)
x3 + . . . . (7.54)

Here α, β, γ, and x are real numbers. If one sets α = 1 and β = γ, this series
reduces to the familiar geometric series

y(x) = 1 + x+ x2 + x3 + . . . .

The hypergeometric series is actually a solution of the differential equation

x(1 − x)y′′ + [γ − (α+ β + 1)x] y′ − αβy = 0. (7.55)

This equation was first introduced by Euler and latter studied extensively
by Gauss, Kummer and Riemann. It is sometimes called Gauss’ equation.
Note that there is a symmetry in that α and β may be interchanged without
changing the equation. The points x = 0 and x = 1 are regular singular
points. Series solutions may be sought using the Frobenius method. It can be
confirmed that the above hypergeometric series results.

A more compact form for the hypergeometric series may be obtained by
introducing new notation. One typically introduces the Pochhammer symbol,
(α)n, satisfying (i) (α)0 = 1 if α 6= 0. and (ii) (α)k = α(1 + α) . . . (k − 1 + α),
for k = 1, 2, . . ..

Consider (1)n. For n = 0, (1)0 = 1. For n > 0,

(1)n = 1(1 + 1)(2 + 1) . . . [(n− 1) + 1].

This reduces to (1)n = n!. In fact, one can show that

(k)n =
(n+ k − 1)!

(k − 1)!

for k and n positive integers. In fact, one can extend this result to noninteger
values for k by introducing the gamma function:

(α)n =
Γ (α+ n)

Γ (α)
.

We can now write the hypergeometric series in standard notation as

1 See for example Special Functions by G. E. Andrews, R. Askey, and R. Roy, 1999,
Cambridge University Press.
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2F1(α, β; γ;x) =
∞∑

n=0

(α)n(β)n

n!(γ)n
xn.

Using this one can show that the general solution of Gauss’ equation is

y(x) = A2F1(α, β; γ;x) +B2x
1−γ
2 F1(1 − γ + α, 1 − γ + β; 2 − γ;x).

By carefully letting β approach ∞, one obtains what is called the confluent
hypergeometric function. This in effect changes the nature of the differential
equation. Gauss’ equation has three regular singular points at x = 0, 1,∞.
One can transform Gauss’ equation by letting x = u/β. This changes the
regular singular points to u = 0, β,∞. Letting β → ∞, two of the singular
points merge.

The new confluent hypergeometric function is then given as

1F1(α; γ;u) = lim
β→∞ 2F1

(

α, β; γ;
u

β

)

.

This function satisfies the differential equation

xy′′ + (γ − x)y′ − αy = 0.

The purpose of this section is only to introduce the hypergeometric func-
tion. Many other special functions are related to the hypergeometric function
after making some variable transformations. For example, the Legendre poly-
nomials are given by

Pn(x) =2 F1(−n, n+ 1; 1;
1 − x

2
).

In fact, one can also show that

sin−1 x = x2F1

(
1

2
,
1

2
;
3

2
;x2

)

.

The Bessel function Jp(x) can be written in terms of confluent geometric
functions as

Jp(x) =
1

Γ (p+ 1)

(z

2

)p

e−iz
1F1

(
1

2
+ p, 1 + 2p; 2iz

)

.

These are just a few connections of the powerful hypergeometric functions to
some of the elementary functions that you know.

7.6 Appendix: The Binomial Expansion

In this section we had to recall the binomial expansion. This is simply the
expansion of the expression (a + b)p. We will investigate this expansion first
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for nonnegative integer powers p and then derive the expansion for other
values of p.

Lets list some of the common expansions for nonnegative integer powers.

(a+ b)0 = 1

(a+ b)1 = a+ b

(a+ b)2 = a2 + 2ab+ b2

(a+ b)3 = a3 + 3a2b+ 3ab2 + b3

(a+ b)4 = a4 + 4a3b+ 6a2b2 + 4ab3 + b4

· · · (7.56)

We now look at the patterns of the terms in the expansions. First, we
note that each term consists of a product of a power of a and a power of
b. The powers of a are decreasing from n to 0 in the expansion of (a + b)n.
Similarly, the powers of b increase from 0 to n. The sums of the exponents in
each term is n. So, we can write the (k+1)st term in the expansion as an−kbk.
For example, in the expansion of (a + b)51 the 6th term is a51−5b5 = a46b5.
However, we do not know the numerical coefficient in the expansion.

We now list the coefficients for the above expansions.

n = 0 : 1
n = 1 : 1 1
n = 2 : 1 2 1
n = 3 : 1 3 3 1
n = 4 : 1 4 6 4 1

(7.57)

This pattern is the famous Pascal’s triangle. There are many interesting fea-
tures of this triangle. But we will first ask how each row can be generated.

We see that each row begins and ends with a one. Next the second term
and next to last term has a coefficient of n. Next we note that consecutive
pairs in each row can be added to obtain entries in the next row. For example,
we have

n = 2 : 1 2 1
ց ւ ց ւ

n = 3 : 1 3 3 1
(7.58)

With this in mind, we can generate the next several rows of our triangle.

n = 3 : 1 3 3 1
n = 4 : 1 4 6 4 1
n = 5 : 1 5 10 10 5 1
n = 6 : 1 6 15 20 15 6 1

(7.59)

Of course, it would take a while to compute each row up to the desired
n. We need a simple expression for computing a specific coefficient. Consider
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the kth term in the expansion of (a+ b)n. Let r = k− 1. Then this term is of
the form Cn

r a
n−rbr. We have seen the the coefficients satisfy

Cn
r = Cn−1

r + Cn−1
r−1 .

Actually, the coefficients have been found to take a simple form.

Cn
r =

n!

(n− r)!r!
=

(
n
r

)

.

This is nothing other than the combinatoric symbol for determining how to
choose n things r at a time. In our case, this makes sense. We have to count
the number of ways that we can arrange the products of r b’s with n− r a’s.
There are n slots to place the b’s. For example, the r = 2 case for n = 4
involves the six products: aabb, abab, abba, baab, baba, and bbaa. Thus, it is
natural to use this notation. The original problem that concerned Pascal was
in gambling.

So, we have found that

(a+ b)n =

n∑

r=0

(
n
r

)

an−rbr. (7.60)

What if a≫ b? Can we use this to get an approximation to (a+ b)n? If we
neglect b then (a + b)n ≃ an. How good of an approximation is this? This is
where it would be nice to know the order of the next term in the expansion,
which we could state using big O notation. In order to do this we first divide
out a as

(a+ b)n = an(1 +
b

a
)n.

Now we have a small parameter, b
a . According to what we have seen above,

we can use the binomial expansion to write

(1 +
b

a
)n =

n∑

r=0

(
n
r

)(
b

a

)r

. (7.61)

Thus, we have a finite sum of terms involving powers of b
a . Since a≫ b, most

of these terms can be neglected. So, we can write

(1 +
b

a
)n = 1 + n

b

a
+O

((
b

a

)2
)

.

note that we have used the observation that the second coefficient in the nth
row of Pascal’s triangle is n.

Summarizing, this then gives
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(a+ b)n = an(1 +
b

a
)n

= an(1 + n
b

a
+O

((
b

a

)2

)

)

= an + nan b

a
+ anO

((
b

a

)2
)

. (7.62)

Therefore, we can approximate (a + b)n ≃ an + nban−1, with an error on
the order of ban−2. Note that the order of the error does not include the
constant factor from the expansion. We could also use the approximation
that (a + b)n ≃ an, but it is not as good because the error in this case is of
the order ban−1.

We have seen that

1

1 − x
= 1 + x+ x2 + . . . .

But, 1
1−x = (1 − x)−1. This is again a binomial to a power, but the power is

not a nonnegative integer. It turns out that the coefficients of such a binomial
expansion can be written similar to the form in Equation (7.60).

This example suggests that our sum may no longer be finite. So, for p a
real number, we write

(1 + x)p =
∞∑

r=0

(
p
r

)

xr . (7.63)

However, we quickly run into problems with this form. Consider the coef-
ficient for r = 1 in an expansion of (1 + x)−1. This is given by

(
−1
1

)

=
(−1)!

(−1 − 1)!1!
=

(−1)!

(−2)!1!
.

But what is (−1)!? By definition, it is

(−1)! = (−1)(−2)(−3) · · · .
This product does not seem to exist! But with a little care, we note that

(−1)!

(−2)!
=

(−1)(−2)!

(−2)!
= −1.

So, we need to be careful not to interpret the combinatorial coefficient literally.
There are better ways to write the general binomial expansion. We can write
the general coefficient as

(
p
r

)

=
p!

(p− r)!r!

=
p(p− 1) · · · (p− r + 1)(p− r)!

(p− r)!r!

=
p(p− 1) · · · (p− r + 1)

r!
. (7.64)
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With this in mind we now state the theorem:
General Binomial Expansion The general binomial expansion for (1+

x)p is a simple generalization of Equation (7.60). For p real, we have that

(1 + x)p =

∞∑

r=0

p(p− 1) · · · (p− r + 1)

r!
xr

=

∞∑

r=0

Γ (p+ 1)

r!Γ (p− r + 1)
xr . (7.65)

Often we need the first few terms for the case that x≪ 1 :

(1 + x)p = 1 + px+
p(p− 1)

2
x2 +O(x3). (7.66)

Problems

7.1. Consider the set of vectors (−1, 1, 1), (1,−1, 1), (1, 1,−1).

a. Use the Gram-Schmidt process to find an orthonormal basis for R3 using
this set in the given order.

b. What do you get if you do reverse the order of these vectors?

7.2. Use the Gram-Schmidt process to find the first four orthogonal polyno-
mials satisfying the following:

a. Interval: (−∞,∞) Weight Function: e−x2

.
b. Interval: (0,∞) Weight Function: e−x.

7.3. Find P4(x) using

a. The Rodrigues Formula in Equation (7.12).
b. The three term recursion formula in Equation (7.14).

7.4. Use the generating function for Legendre polynomials to derive the re-

cursion formula P ′
n+1(x)−P ′

n−1(x) = (2n+1)Pn(x). Namely, consider ∂g(x,t)
∂x

using Equation (7.18) to derive a three term derivative formula. Then use
three term recursion formula (7.14) to obtain the above result.

7.5. Use the recursion relation (7.14) to evaluate
∫ 1

−1
xPn(x)Pm(x) dx, n ≤ m.

7.6. Expand the following in a Fourier-Legendre series for x ∈ (−1, 1).

a. f(x) = x2.
b. f(x) = 5x4 + 2x3 − x+ 3.

c. f(x) =

{
−1, −1 < x < 0,
1, 0 < x < 1.
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d. f(x) =

{
x, −1 < x < 0,
0, 0 < x < 1.

7.7. Use integration by parts to show Γ (x+ 1) = xΓ (x).

7.8. Express the following as Gamma functions. Namely, noting the form
Γ (x+1) =

∫∞
0 txe−t dt and using an appropriate substitution, each expression

can be written in terms of a Gamma function.

a.
∫∞
0
x2/3e−x dx.

b.
∫∞
0
x5e−x2

dx

c.
∫ 1

0

[
ln
(

1
x

)]n
dx

7.9. The Hermite polynomials, Hn(x), satisfy the following:

i. < Hn, Hm >=
∫∞
−∞ e−x2

Hn(x)Hm(x) dx =
√
π2nn!δn,m.

ii. H ′
n(x) = 2nHn−1(x).

iii. Hn+1(x) = 2xHn(x) − 2nHn−1(x).

iv. Hn(x) = (−1)nex2 dn

dxn

(

e−x2
)

.

Using these, show that

a. H ′′
n − 2xH ′

n + 2nHn = 0. [Use properties ii. and iii.]

b.
∫∞
−∞ xe−x2

Hn(x)Hm(x) dx =
√
π2n−1n! [δm,n−1 + 2(n+ 1)δm,n+1] . [Use

properties i. and iii.]

c. Hn(0) =

{
0, n odd,

(−1)m (2m)!
m! , n = 2m.

[Let x = 0 in iii. and iterate. Note from

iv. that H0(x) = 1 and H1(x) = 1. ]

7.10. In Maple one can type simplify(LegendreP(2*n-2,0)-LegendreP(2*n,0));
to find a value for P2n−2(0) − P2n(0). It gives the result in terms of Gamma
functions. However, in Example 7.6 for Fourier-Legendre series, the value is
given in terms of double factorials! So, we have

P2n−2(0) − P2n(0) =

√
π(4n− 1)

2Γ (n+ 1)Γ
(

3
2 − n

) = (−1)n (2n− 3)!!

(2n− 2)!!

4n− 1

2n
.

You will verify that both results are the same by doing the following:

a. Prove that P2n(0) = (−1)n (2n−1)!!
(2n)!! using the generating function and a

binomial expansion.

b. Prove that Γ
(
n+ 1

2

)
= (2n−1)!!

2n

√
π using Γ (x) = (x − 1)Γ (x − 1) and

iteration.
c. Verify the result from Maple that P2n−2(0) − P2n(0) =

√
π(4n−1)

2Γ (n+1)Γ( 3
2−n)

.

d. Can either expression for P2n−2(0) − P2n(0) be simplified further?
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7.11. A solution Bessel’s equation, x2y′′+xy′+(x2−n2)y = 0, , can be found
using the guess y(x) =

∑∞
j=0 ajx

j+n. One obtains the recurrence relation

aj = −1
j(2n+j)aj−2. Show that for a0 = (n!2n)−1 we get the Bessel function of

the first kind of order n from the even values j = 2k:

Jn(x) =

∞∑

k=0

(−1)k

k!(n+ k)!

(x

2

)n+2k

.

7.12. Use the infinite series in the last problem to derive the derivative iden-
tities (7.41) and (7.42):

a. d
dx [xnJn(x)] = xnJn−1(x).

b. d
dx [x−nJn(x)] = −x−nJn+1(x).

7.13. Bessel functions Jp(λx) are solutions of x2y′′ + xy′ + (λ2x2 − p2)y = 0.
Assume that x ∈ (0, 1) and that Jp(λ) = 0 and Jp(0) is finite.

a. Put this differential equation into Sturm-Liouville form.
b. Prove that solutions corresponding to different eigenvalues are orthogo-

nal by first writing the corresponding Green’s identity using these Bessel
functions.

c. Prove that
∫ 1

0

xJp(λx)Jp(µx) dx =
1

2
J2

p+1(λ) =
1

2
J ′2

p (λ).

Note that λ is a zero of Jp(x).

7.14. We can rewrite our Bessel function in a form which will allow the order
to be non-integer by using the gamma function. You will need the results from
Problem 7.10b for Γ

(
k + 1

2

)
.

a. Extend the series definition of the Bessel function of the first kind of order
ν, Jν(x), for ν ≥ 0 by writing the series solution for y(x) in Problem 7.11
using the gamma function.

b. Extend the series to J−ν(x), for ν ≥ 0. Discuss the resulting series and
what happens when ν is a positive integer.

c. Use these results to obtain closed form expressions for J1/2(x) and
J−1/2(x). Use the recursion formula for Bessel functions to obtain a closed
form for J3/2(x).

7.15. In this problem you will derive the expansion

x2 =
c2

2
+ 4

∞∑

j=2

J0(αjx)

α2
jJ0(αjc)

, 0 < x < c,

where the α′
js are the positive roots of J1(αc) = 0, by following the below

steps.
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a. List the first five values of α for J1(αc) = 0 using the Table 7.4 and Figure
7.7. [Note: Be careful determining α1.]

b. Show that ‖J0(α1x)‖2 = c2

2 . Recall,

‖J0(αjx)‖2 =

∫ c

0

xJ2
0 (αjx) dx.

c. Show that ‖J0(αjx)‖2 = c2

2 [J0(αjc)]
2 , j = 2, 3, . . . . (This is the most

involved step.) First note from Problem 7.13 that y(x) = J0(αjx) is a
solution of

x2y′′ + xy′ + α2
jx

2y = 0.

i. Show that the Sturm-Liouville form of this differential equation is
(xy′)′ = −α2

jxy.
ii. Multiply the equation in part i. by y(x) and integrate from x = 0 to
x = c to obtain

∫ c

0

(xy′)′y dx = −α2
j

∫ c

0

xy2 dx

= −α2
j

∫ c

0

xJ2
0 (αjx) dx. (7.67)

iii. Noting that y(x) = J0(αjx), integrate the left hand side by parts and
use the following to simplify the resulting equation.
1. J ′

0(x) = −J1(x) from Equation (7.42).
2. Equation (7.45).
3. J2(αjc) + J0(αjc) = 0 from Equation (7.43).

iv. Now you should have enough information to complete this part.

d. Use the results from parts b and c to derive the expansion coefficients for

x2 =

∞∑

j=1

cjJ0(αjx)

in order to obtain the desired expansion.

7.16. Use the derivative identities of Bessel functions,(7.41)-(7.42), and inte-
gration by parts to show that

∫

x3J0(x) dx = x3J1(x) − 2x2J2(x).
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Green’s Functions

In this chapter we will investigate the solution of nonhomogeneous differential
equations using Green’s functions. Our goal is to solve the nonhomogeneous
differential equation

L[u] = f,

where L is a differential operator. The solution is formally given by

u = L−1[f ].

The inverse of a differential operator is an integral operator, which we seek to
write in the form

u =

∫

G(x, ξ)f(ξ) dξ.

The function G(x, ξ) is referred to as the kernel of the integral operator and
is called the Green’s function.

The history of the Green’s function dates back to 1828, when George Green
published work in which he sought solutions of Poisson’s equation ∇2u = f
for the electric potential u defined inside a bounded volume with specified
boundary conditions on the surface of the volume. He introduced a function
now identified as what Riemann later coined the “Green’s function”.

We will restrict our discussion to Green’s functions for ordinary differential
equations. Extensions to partial differential equations are typically one of the
subjects of a PDE course. We will begin our investigations by examining
solutions of nonhomogeneous second order linear differential equations using
the Method of Variation of Parameters, which is typically seen in a first course
on differential equations. We will identify the Green’s function for both initial
value and boundary value problems. We will then focus on boundary value
Green’s functions and their properties. Determination of Green’s functions is
also possible using Sturm-Liouville theory. This leads to series representation
of Green’s functions, which we will study in the last section of this chapter.
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8.1 The Method of Variation of Parameters

We are interested in solving nonhomogeneous second order linear differential
equations of the form

a2(x)y
′′(x) + a1(x)y

′(x) + a0(x)y(x) = f(x). (8.1)

The general solution of this nonhomogeneous second order linear differential
equation is found as a sum of the general solution of the homogeneous equa-
tion,

a2(x)y
′′(x) + a1(x)y

′(x) + a0(x)y(x) = 0, (8.2)

and a particular solution of the nonhomogeneous equation. Recall from Chap-
ter 1 that there are several approaches to finding particular solutions of non-
homogeneous equations. Any guess would be sufficient. An intelligent guess,
based upon the Method of Undetermined Coefficients, was reviewed previ-
ously in Chapter 1. However, a more methodical method, which is first seen
in a first course in differential equations, is the Method of Variation of Pa-
rameters. Also, we explored the matrix version of this method in Section 2.8.
We will review this method in this section and extend it to the solution of
boundary value problems.

While it is sufficient to derive the method for the general differential equa-
tion above, we will instead consider solving equations that are in Sturm-
Liouville, or self-adjoint, form. Therefore, we will apply the Method of Vari-
ation of Parameters to the equation

d

dx

(

p(x)
dy(x)

dx

)

+ q(x)y(x) = f(x). (8.3)

Note that f(x) in this equation is not the same function as in the general
equation posed at the beginning of this section.

We begin by assuming that we have determined two linearly independent
solutions of the homogeneous equation. The general solution is then given by

y(x) = c1y1(x) + c2y2(x). (8.4)

In order to determine a particular solution of the nonhomogeneous equa-
tion, we vary the parameters c1 and c2 in the solution of the homogeneous
problem by making them functions of the independent variable. Thus, we seek
a particular solution of the nonhomogeneous equation in the form

yp(x) = c1(x)y1(x) + c2(x)y2(x). (8.5)

In order for this to be a solution, we need to show that it satisfies the differ-
ential equation. We first compute the derivatives of yp(x). The first derivative
is

y′p(x) = c1(x)y
′
1(x) + c2(x)y

′
2(x) + c′1(x)y1(x) + c′2(x)y2(x).
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Without loss of generality, we will set the sum of the last two terms to zero.
(One can show that the same results would be obtained if we did not. See
Problem 8.2.) Then, we have

c′1(x)y1(x) + c′2(x)y2(x) = 0. (8.6)

Now, we take the second derivative of the remaining terms to obtain

y′′p (x) = c1(x)y
′′
1 (x) + c2(x)y

′′
2 (x) + c′1(x)y

′
1(x) + c′2(x)y

′
2(x).

Expanding the derivative term in Equation (8.3),

p(x)y′′p (x) + p′(x)y′p(x) + q(x)yp(x) = f(x),

and inserting the expressions for yp, y
′
p(x), and y′′p (x), we have

f(x) = p(x) [c1(x)y
′′
1 (x) + c2(x)y

′′
2 (x) + c′1(x)y

′
1(x) + c′2(x)y

′
2(x)]

+p′(x) [c1(x)y
′
1(x) + c2(x)y

′
2(x)] + q(x) [c1(x)y1(x) + c2(x)y2(x)] .

Rearranging terms, we find

f(x) = c1(x) [p(x)y′′1 (x) + p′(x)y′1(x) + q(x)y1(x)]

+c2(x) [p(x)y′′2 (x) + p′(x)y′2(x) + q(x)y2(x)]

+p(x) [c′1(x)y
′
1(x) + c′2(x)y

′
2(x)] . (8.7)

Since y1(x) and y2(x) are both solutions of the homogeneous equation. The
first two bracketed expressions vanish. Dividing by p(x), we have that

c′1(x)y
′
1(x) + c′2(x)y

′
2(x) =

f(x)

p(x)
. (8.8)

Our goal is to determine c1(x) and c2(x). In this analysis, we have found
that the derivatives of these functions satisfy a linear system of equations (in
the ci’s):

Linear System for Variation of Parameters

c′1(x)y1(x) + c′2(x)y2(x) = 0.

c′1(x)y
′
1(x) + c′2(x)y

′
2(x) =

f(x)

p(x)
. (8.9)

This system is easily solved to give

c′1(x) = − f(x)y2(x)

p(x) [y1(x)y′2(x) − y′1(x)y2(x)]

c′2(x) =
f(x)y1(x)

p(x) [y1(x)y′2(x) − y′1(x)y2(x)]
. (8.10)
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We note that the denominator in these expressions involves the Wronskian
of the solutions to the homogeneous problem. Recall that

W (y1, y2)(x) =

∣
∣
∣
∣

y1(x) y2(x)
y′1(x) y

′
2(x)

∣
∣
∣
∣
.

Furthermore, we can show that the denominator, p(x)W (x), is constant.
Differentiating this expression and using the homogeneous form of the differ-
ential equation proves this assertion.

d

dx
(p(x)W (x)) =

d

dx
[p(x) (y1(x)y

′
2(x) − y′1(x)y2(x))]

= y1(x)
d

dx
(p(x)y′2(x))) + p(x)y′2(x)y

′
1(x)

−y2(x)
d

dx
(p(x)y′1(x))) − p(x)y′1(x)y

′
2(x)

= −y1(x)q(x)y2(x) + y2(x)q(x)y1(x) = 0. (8.11)

Therefore,
p(x)W (x) = constant.

So, after an integration, we find the parameters as

c1(x) = −
∫ x

x0

f(ξ)y2(ξ)

p(ξ)W (ξ)
dξ

c2(x) =

∫ x

x1

f(ξ)y1(ξ)

p(ξ)W (ξ)
dξ, (8.12)

where x0 and x1 are arbitrary constants to be determined later.
Therefore, the particular solution of (8.3) can be written as

yp(x) = y2(x)

∫ x

x1

f(ξ)y1(ξ)

p(ξ)W (ξ)
dξ − y1(x)

∫ x

x0

f(ξ)y2(ξ)

p(ξ)W (ξ)
dξ. (8.13)

As a further note, we usually do not rewrite our initial value problems in
self-adjoint form. Recall that for an equation of the form

a2(x)y
′′(x) + a1(x)y

′(x) + a0(x)y(x) = g(x). (8.14)

we obtained the self-adjoint form by multiplying the equation by

1

a2(x)
e

∫
a1(x)

a2(x)
dx

=
1

a2(x)
p(x).

This gives the standard form

(p(x)y′(x))′ + q(x)y(x) = f(x),

where
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f(x) =
1

a2(x)
p(x)g(x).

With this in mind, Equation (8.13) becomes

yp(x) = y2(x)

∫ x

x1

g(ξ)y1(ξ)

a2(ξ)W (ξ)
dξ − y1(x)

∫ x

x0

g(ξ)y2(ξ)

a(ξ)W (ξ)
dξ. (8.15)

Example 8.1. Consider the nonhomogeneous differential equation

y′′ − y′ − 6y = 20e−2x.

We seek a particular solution to this equation. First, we note two linearly
independent solutions of this equation are

y1(x) = e3x, y2(x) = e−2x.

So, the particular solution takes the form

yp(x) = c1(x)e
3x + c2(x)e

−2x.

We just need to determine the ci’s. Since this problem is not in self-adjoint
form, we will use

f(x)

p(x)
=

g(x)

a2(x)
= 20e−2x

as seen above. Then the linear system we have to solve is

c′1(x)e
3x + c′2(x)e

−2x = 0.

3c′1(x)e
3x − 2c′2(x)e

−2x = 20e−2x. (8.16)

Multiplying the first equation by 2 and adding the equations yields

5c′1(x)e
3x = 20e−2x,

or
c′1(x) = 4e−5x.

Inserting this back into the first equation in the system, we have

4e−2x + c′2(x)e
−2x = 0,

leading to
c′2(x) = −4.

These equations are easily integrated to give

c1(x) = −4

5
e−5x, c2(x) = −4x.

Therefore, the particular solution has been found as
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yp(x) = c1(x)e
3x + c2(x)e

−2x

= −4

5
e−5xe3x − 4xe−2x

= −4

5
e−2x − 4xe−2x. (8.17)

Noting that the first term can be absorbed into the solution of the homoge-
neous problem. So, the particular solution can simply be written as

yp(x) = −4xe−2x.

This is the answer you would have found had you used the Modified Method
of Undetermined Coefficients.

Example 8.2. Revisiting the last example, y′′ − y′ − 6y = 20e−2x.
The formal solution in Equation (8.13) was not used in the last example.

Instead, we proceeded from the Linear System for Variation of Parameters
earlier in this section. This is the more natural approach towards finding
the particular solution of the nonhomogeneous equation. Since we will be
using Equation (8.13) to obtain solutions to initial value and boundary value
problems, it might be useful to use it to solve this problem.

From the last example we have

y1(x) = e3x, y2(x) = e−2x.

We need to compute the Wronskian:

W (x) = W (y1, y2)(x) =

∣
∣
∣
∣

e3x e−2x

3e3x −2e−2x

∣
∣
∣
∣
= −5ex.

Also, we need p(x), which is given by

p(x) = exp

(

−
∫

dx

)

= e−x.

So, we see that p(x)W (x) = −5. It is indeed constant, just as we had proven
earlier.

Finally, we need f(x). Here is where one needs to be careful as the original
problem was not in self-adjoint form. We have from the original equation that
g(x) = 20e−2x and a2(x) = 1. So,

f(x) =
p(x)

a2(x)
g(x) = 20e−3x.

Now we are ready to construct the solution.
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yp(x) = y2(x)

∫ x

x1

f(ξ)y1(ξ)

p(ξ)W (ξ)
dξ − y1(x)

∫ x

x0

f(ξ)y2(ξ)

p(ξ)W (ξ)
dξ

= e−2x

∫ x

x1

20e−3ξe3ξ

−5
dξ − e3x

∫ x

x0

20e−3ξe−2ξ

−5
dξ

= −4e−2x

∫ x

x1

dξ + 4e3x

∫ x

x0

e−5x dξ

= −4ξe−2x
∣
∣
∣

x

x1

− 4

5
e3xe−5ξ

∣
∣
∣

x

x0

= −4xe−2x − 4

5
e−2x + 4x1e

−2x +
4

5
e−5x0e3x. (8.18)

Note that the first two terms we had found in the last example. The
remaining two terms are simply linear combinations of y1 and y2. Thus, we
really have the solution to the homogeneous problem contained within the
solution when we use the arbitrary constant limits in the integrals. In the
next section we will make use of these constants when solving initial value
and boundary value problems.

In the next section we will determine the unknown constants subject to
either initial conditions or boundary conditions. This will allow us to combine
the two integrals and then determine the appropriate Green’s functions.

8.2 Initial and Boundary Value Green’s Functions

We begin with the particular solution (8.13) of our nonhomogeneous differ-
ential equation (8.3). This can be combined with the general solution of the
homogeneous problem to give the general solution of the nonhomogeneous
differential equation:

y(x) = c1y1(x) + c2y2(x) + y2(x)

∫ x

x1

f(ξ)y1(ξ)

p(ξ)W (ξ)
dξ − y1(x)

∫ x

x0

f(ξ)y2(ξ)

p(ξ)W (ξ)
dξ.

(8.19)
As seen in the last section, an appropriate choice of x0 and x1 could be found
so that we need not explicitly write out the solution to the homogeneous
problem, c1y1(x) + c2y2(x). However, setting up the solution in this form will
allow us to use x0 and x1 to determine particular solutions which satisfies
certain homogeneous conditions.

We will now consider initial value and boundary value problems. Each
type of problem will lead to a solution of the form

y(x) = c1y1(x) + c2y2(x) +

∫ b

a

G(x, ξ)f(ξ) dξ, (8.20)

where the function G(x, ξ) will be identified as the Green’s function and the
integration limits will be found on the integral. Having identified the Green’s
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function, we will look at other methods in the last section for determining the
Green’s function.

8.2.1 Initial Value Green’s Function

We begin by considering the solution of the initial value problem

d

dx

(

p(x)
dy(x)

dx

)

+ q(x)y(x) = f(x).

y(0) = y0, y′(0) = v0. (8.21)

Of course, we could have studied the original form of our differential equation
without writing it in self-adjoint form. However, this form is useful when
studying boundary value problems. We will return to this point later.

We first note that we can solve this initial value problem by solving two
separate initial value problems. We assume that the solution of the homoge-
neous problem satisfies the original initial conditions:

d

dx

(

p(x)
dyh(x)

dx

)

+ q(x)yh(x) = 0.

yh(0) = y0, y′h(0) = v0. (8.22)

We then assume that the particular solution satisfies the problem

d

dx

(

p(x)
dyp(x)

dx

)

+ q(x)yp(x) = f(x).

yp(0) = 0, y′p(0) = 0. (8.23)

Since the differential equation is linear, then we know that y(x) = yh(x)+
yp(x) is a solution of the nonhomogeneous equation. However, this solution
satisfies the initial conditions:

y(0) = yh(0) + yp(0) = y0 + 0 = y0,

y′(0) = y′h(0) + y′p(0) = v0 + 0 = v0.

Therefore, we need only focus on solving for the particular solution that sat-
isfies homogeneous initial conditions.

Recall Equation (8.13) from the last section,

yp(x) = y2(x)

∫ x

x1

f(ξ)y1(ξ)

p(ξ)W (ξ)
dξ − y1(x)

∫ x

x0

f(ξ)y2(ξ)

p(ξ)W (ξ)
dξ. (8.24)

We now seek values for x0 and x1 which satisfies the homogeneous initial
conditions, yp(0) = 0 and y′p(0) = 0.

First, we consider yp(0) = 0. We have
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yp(0) = y2(0)

∫ 0

x1

f(ξ)y1(ξ)

p(ξ)W (ξ)
dξ − y1(0)

∫ 0

x0

f(ξ)y2(ξ)

p(ξ)W (ξ)
dξ. (8.25)

Here, y1(x) and y2(x) are taken to be any solutions of the homogeneous dif-
ferential equation. Let’s assume that y1(0) = 0 and y2 6= (0) = 0. Then we
have

yp(0) = y2(0)

∫ 0

x1

f(ξ)y1(ξ)

p(ξ)W (ξ)
dξ. (8.26)

We can force yp(0) = 0 if we set x1 = 0.
Now, we consider y′p(0) = 0. First we differentiate the solution and find

that

y′p(x) = y′2(x)

∫ x

0

f(ξ)y1(ξ)

p(ξ)W (ξ)
dξ − y′1(x)

∫ x

x0

f(ξ)y2(ξ)

p(ξ)W (ξ)
dξ, (8.27)

since the contributions from differentiating the integrals will cancel. Evaluat-
ing this result at x = 0, we have

y′p(0) = −y′1(0)

∫ 0

x0

f(ξ)y2(ξ)

p(ξ)W (ξ)
dξ. (8.28)

Assuming that y′1(0) 6= 0, we can set x0 = 0.
Thus, we have found that

yp(x) = y2(x)

∫ x

0

f(ξ)y1(ξ)

p(ξ)W (ξ)
dξ − y1(x)

∫ x

0

f(ξ)y2(ξ)

p(ξ)W (ξ)
dξ.

=

∫ x

0

[
y1(ξ)y2(x) − y1(x)y2(ξ)

p(ξ)Wξ)

]

f(ξ) dξ. (8.29)

This result is in the correct form and we can identify the temporal, or
initial value, Green’s function. So, the particular solution is given as

yp(x) =

∫ x

0

G(x, ξ)f(ξ) dξ, (8.30)

where the initial value Green’s function is defined as

G(x, ξ) =
y1(ξ)y2(x) − y1(x)y2(ξ)

p(ξ)Wξ)
.

We summarize
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Solution of Initial Value Problem (8.21)

The solution of the initial value problem (8.21) takes the form

y(x) = yh(x) +

∫ x

0

G(x, ξ)f(ξ) dξ, (8.31)

where

G(x, ξ) =
y1(ξ)y2(x) − y1(x)y2(ξ)

p(ξ)Wξ)

and the solution of the homogeneous problem satisfies the initial conditions,

yh(0) = y0, y′h(0) = v0.

Example 8.3. Solve the forced oscillator problem

x′′ + x = 2 cos t, x(0) = 4, x′(0) = 0.

This problem was solved in Chapter 2 using the theory of nonhomogeneous
systems. We first solve the homogeneous problem with nonhomogeneous initial
conditions:

x′′h + xh = 0, xh(0) = 4, x′h(0) = 0.

The solution is easily seen to be xh(t) = 4 cos t.
Next, we construct the Green’s function. We need two linearly independent

solutions, y1(x), y2(x), to the homogeneous differential equation satisfying
y1(0) = 0 and y′2(0) = 0. So, we pick y1(t) = sin t and y2(t) = cos t. The
Wronskian is found as

W (t) = y1(t)y
′
2(t) − y′1(t)y2(t) = − sin2 t− cos2 t = −1.

Since p(t) = 1 in this problem, we have

G(t, τ) =
y1(τ)y2(t) − y1(t)y2(τ)

p(τ)Wτ)

= sin t cos τ − sin τ cos t

= sin(t− τ). (8.32)

Note that the Green’s function depends on t− τ . While this is useful in some
contexts, we will use the expanded form.

We can now determine the particular solution of the nonhomogeneous
differential equation. We have

xp(t) =

∫ t

0

G(t, τ)f(τ) dτ

=

∫ t

0

(sin t cos τ − sin τ cos t) (2 cos τ) dτ
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= 2 sin t

∫ t

0

cos2 τdτ − 2 cos t

∫ t

0

sin τ cos τdτ

= 2 sin t

[
τ

2
+

1

2
sin 2τ

]t

0

− 2 cos t

[
1

2
sin2 τ

]t

0

= t sin t. (8.33)

Therefore, the particular solution is x(t) = 4 cos t+ t sin t. This is the same
solution we had found earlier in Chapter 2.

As noted in the last section, we usually are not given the differential equa-
tion in self-adjoint form. Generally, it takes the form

a2(x)y
′′(x) + a1(x)y

′(x) + a0(x)y(x) = g(x). (8.34)

The driving term becomes

f(x) =
1

a2(x)
p(x)g(x).

Inserting this into the Green’s function form of the particular solution, we
obtain the following:

Solution Using the Green’s Function

The solution of the initial value problem,

a2(x)y
′′(x) + a1(x)y

′(x) + a0(x)y(x) = g(x)

takes the form

y(x) = c1y1(x) + c2y2(x) +

∫ t

0

G(x, ξ)g(ξ) dξ, (8.35)

where the Green’s function is the piecewise defined function

G(x, ξ) =
y1(ξ)y2(x) − y1(x)y2(ξ)

a2(ξ)W (ξ)
(8.36)

and y1(x) and y2(x) are solutions of the homogeneous equation satisfying

y1(0) = 0, y2(0) 6= 0, y′1(0) 6= 0, y′2(0) = 0.

8.2.2 Boundary Value Green’s Function

We now turn to boundary value problems. We will focus on the problem

d

dx

(

p(x)
dy(x)

dx

)

+ q(x)y(x) = f(x), a < x < b,

y(a) = 0, y(b) = 0. (8.37)
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However, the general theory works for other forms of homogeneous boundary
conditions.

Once again, we seek x0 and x1 in the form

y(x) = y2(x)

∫ x

x1

f(ξ)y1(ξ)

p(ξ)W (ξ)
dξ − y1(x)

∫ x

x0

f(ξ)y2(ξ)

p(ξ)W (ξ)
dξ

so that the solution to the boundary value problem can be written as a single
integral involving a Green’s function. Here we absorb yh(x) into the integrals
with an appropriate choice of lower limits on the integrals.

We first pick solutions of the homogeneous differential equation such that
y1(a) = 0, y2(b) = 0 and y1(b) 6= 0, y2(a) 6= 0. So, we have

y(a) = y2(a)

∫ a

x1

f(ξ)y1(ξ)

p(ξ)W (ξ)
dξ − y1(a)

∫ a

x0

f(ξ)y2(ξ)

p(ξ)W (ξ)
dξ

= y2(a)

∫ a

x1

f(ξ)y1(ξ)

p(ξ)W (ξ)
dξ. (8.38)

This expression is zero if x1 = a.
At x = b we find that

y(b) = y2(b)

∫ b

x1

f(ξ)y1(ξ)

p(ξ)W (ξ)
dξ − y1(b)

∫ b

x0

f(ξ)y2(ξ)

p(ξ)W (ξ)
dξ

= −y1(b)
∫ b

x0

f(ξ)y2(ξ)

p(ξ)W (ξ)
dξ. (8.39)

This vanishes for x0 = b.
So, we have found that

y(x) = y2(x)

∫ x

a

f(ξ)y1(ξ)

p(ξ)W (ξ)
dξ − y1(x)

∫ x

b

f(ξ)y2(ξ)

p(ξ)W (ξ)
dξ. (8.40)

We are seeking a Green’s function so that the solution can be written as
one integral. We can move the functions of x under the integral. Also, since
a < x < b, we can flip the limits in the second integral. This gives

y(x) =

∫ x

a

f(ξ)y1(ξ)y2(x)

p(ξ)W (ξ)
dξ +

∫ b

x

f(ξ)y1(x)y2(ξ)

p(ξ)W (ξ)
dξ. (8.41)

This result can be written in a compact form:
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Boundary Value Green’s Function

The solution of the boundary value problem takes the form

y(x) =

∫ b

a

G(x, ξ)f(ξ) dξ, (8.42)

where the Green’s function is the piecewise defined function

G(x, ξ) =

{
y1(ξ)y2(x)

pW , a ≤ ξ ≤ x
y1(x)y2(ξ)

pW x ≤ ξ ≤ b
. (8.43)

The Green’s function satisfies several properties, which we will explore
further in the next section. For example, the Green’s function satisfies the
boundary conditions at x = a and x = b. Thus,

G(a, ξ) =
y1(a)y2(ξ)

pW
= 0,

G(b, ξ) =
y1(ξ)y2(b)

pW
= 0.

Also, the Green’s function is symmetric in its arguments. Interchanging the
arguments gives

G(ξ, x) =

{
y1(x)y2(ξ)

pW , a ≤ x ≤ ξ
y1(ξ)y2(x)

pW ξ ≤ x ≤ b
. (8.44)

But a careful look at the original form shows that

G(x, ξ) = G(ξ, x).

We will make use of these properties in the next section to quickly deter-
mine the Green’s functions for other boundary value problems.

Example 8.4. Solve the boundary value problem y′′ = x2, y(0) = 0 = y(1)
using the boundary value Green’s function.

We first solve the homogeneous equation, y′′ = 0. After two integrations,
we have y(x) = Ax+B, for A and B constants to be determined.

We need one solution satisfying y1(0) = 0 Thus, 0 = y1(0) = B. So, we
can pick y1(x) = x, since A is arbitrary.

The other solution has to satisfy y2(1) = 0. So, 0 = y2(1) = A + B. This
can be solved for B = −A. Again, A is arbitrary and we will choose A = −1.
Thus, y2(x) = 1 − x.

For this problem p(x) = 1. Thus, for y1(x) = x and y2(x) = 1 − x,

p(x)W (x) = y1(x)y
′
2(x) − y′1(x)y2(x) = x(−1) − 1(1 − x) = −1.

Note that p(x)W (x) is a constant, as it should be.
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Now we construct the Green’s function. We have

G(x, ξ) =

{
−ξ(1 − x), 0 ≤ ξ ≤ x
−x(1 − ξ), x ≤ ξ ≤ 1

. (8.45)

Notice the symmetry between the two branches of the Green’s function. Also,
the Green’s function satisfies homogeneous boundary conditions: G(0, ξ) = 0,
from the lower branch, and G(1, ξ) = 0, from the upper branch.

Finally, we insert the Green’s function into the integral form of the solu-
tion:

y(x) =

∫ 1

0

G(x, ξ)f(ξ) dξ

=

∫ 1

0

G(x, ξ)ξ2 dξ

= −
∫ x

0

ξ(1 − x)ξ2 dξ −
∫ 1

x

x(1 − ξ)ξ2 dξ

= −(1 − x)

∫ x

0

ξ3 dξ − x

∫ 1

x

(ξ2 − ξ3) dξ

= −(1 − x)

[
ξ4

4

]x

0

− x

[
ξ3

3
− ξ4

4

]1

x

= −1

4
(1 − x)x4 − 1

12
x(4 − 3) +

1

12
x(4x3 − 3x4)

=
1

12
(x4 − x). (8.46)

8.3 Properties of Green’s Functions

We have noted some properties of Green’s functions in the last section. In
this section we will elaborate on some of these properties as a tool for quickly
constructing Green’s functions for boundary value problems. Here is a list of
the properties based upon our previous solution.
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Properties of the Green’s Function

1. Differential Equation:
∂
∂x

(

p(x)∂G(x,ξ)
∂x

)

+ q(x)G(x, ξ) = 0, x 6= ξ

For x < ξ we are on the second branch and G(x, ξ) is proportional
to y1(x). Thus, since y1(x) is a solution of the homogeneous equation,
then so is G(x, ξ). For x > ξ we are on the first branch and G(x, ξ)
is proportional to y2(x). So, once again G(x, ξ) is a solution of the
homogeneous problem.

2. Boundary Conditions:
For x = a we are on the second branch and G(x, ξ) is proportional to
y1(x). Thus, whatever condition y1(x) satisfies, G(x, ξ) will satisfy. A
similar statement can be made for x = b.

3. Symmetry or Reciprocity: G(x, ξ) = G(ξ, x)
We had shown this in the last section.

4. Continuity of G at x = ξ: G(ξ+, ξ) = G(ξ−, ξ)
Here we have defined

G(ξ+, x) = lim
x↓ξ

G(x, ξ), x > ξ,

G(ξ−, x) = lim
x↑ξ

G(x, ξ), x < ξ.

Setting x = ξ in both branches, we have

y1(ξ)y2(ξ)

pW
=
y1(ξ)y2(ξ)

pW
.

5. Jump Discontinuity of ∂G
∂x at x = ξ:

∂G(ξ+, ξ)

∂x
− ∂G(ξ−, ξ)

∂x
=

1

p(ξ)

This case is not as obvious. We first compute the derivatives by noting
which branch is involved and then evaluate the derivatives and subtract
them. Thus, we have

∂G(ξ+, ξ)

∂x
− ∂G(ξ−, ξ)

∂x
= − 1

pW
y1(ξ)y

′
2(ξ) +

1

pW
y′1(ξ)y2(ξ)

= − y′1(ξ)y2(ξ) − y1(ξ)y
′
2(ξ)

p(ξ)(y1(ξ)y′2(ξ) − y′1(ξ)y2(ξ))

=
1

p(ξ)
. (8.47)

We now show how a knowledge of these properties allows one to quickly
construct a Green’s function.
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Example 8.5. Construct the Green’s function for the problem

y′′ + ω2y = f(x), 0 < x < 1,

y(0) = 0 = y(1),

with ω 6= 0.

I. Find solutions to the homogeneous equation.
A general solution to the homogeneous equation is given as

yh(x) = c1 sinωx+ c2 cosωx.

Thus, for x 6= ξ,

G(x, ξ) = c1(ξ) sinωx+ c2(ξ) cosωx.

II. Boundary Conditions.
First, we have G(0, ξ) = 0 for 0 ≤ x ≤ ξ. So,

G(0, ξ) = c2(ξ) cosωx = 0.

So,
G(x, ξ) = c1(ξ) sinωx, 0 ≤ x ≤ ξ.

Second, we have G(1, ξ) = 0 for ξ ≤ x ≤ 1. So,

G(1, ξ) = c1(ξ) sinω + c2(ξ) cosω. = 0

A solution can be chosen with

c2(ξ) = −c1(ξ) tanω.

This gives
G(x, ξ) = c1(ξ) sinωx− c1(ξ) tanω cosωx.

This can be simplified by factoring out the c1(ξ) and placing the remaining
terms over a common denominator. The result is

G(x, ξ) =
c1(ξ)

cosω
[sinωx cosω − sinω cosωx]

= − c1(ξ)
cosω

sinω(1 − x). (8.48)

Since the coefficient is arbitrary at this point, as can write the result as

G(x, ξ) = d1(ξ) sinω(1 − x), ξ ≤ x ≤ 1.

We note that we could have started with y2(x) = sinω(1−x) as one of our
linearly independent solutions of the homogeneous problem in anticipation
that y2(x) satisfies the second boundary condition.
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III. Symmetry or Reciprocity
We now impose that G(x, ξ) = G(ξ, x). To this point we have that

G(x, ξ) =

{
c1(ξ) sinωx, 0 ≤ x ≤ ξ

d1(ξ) sinω(1 − x), ξ ≤ x ≤ 1
.

We can make the branches symmetric by picking the right forms for c1(ξ)
and d1(ξ). We choose c1(ξ) = C sinω(1 − ξ) and d1(ξ) = C sinωξ. Then,

G(x, ξ) =

{
C sinω(1 − ξ) sinωx, 0 ≤ x ≤ ξ
C sinω(1 − x) sinωξ, ξ ≤ x ≤ 1

.

Now the Green’s function is symmetric and we still have to determine the
constant C. We note that we could have gotten to this point using the
Method of Variation of Parameters result where C = 1

pW .

IV. Continuity of G(x, ξ)
We note that we already have continuity by virtue of the symmetry im-
posed in the last step.

V. Jump Discontinuity in ∂
∂xG(x, ξ).

We still need to determine C. We can do this using the jump discontinuity
of the derivative:

∂G(ξ+, ξ)

∂x
− ∂G(ξ−, ξ)

∂x
=

1

p(ξ)
.

For our problem p(x) = 1. So, inserting our Green’s function, we have

1 =
∂G(ξ+, ξ)

∂x
− ∂G(ξ−, ξ)

∂x

=
∂

∂x
[C sinω(1 − x) sinωξ]x=ξ −

∂

∂x
[C sinω(1 − ξ) sinωx]x=ξ

= −ωC cosω(1 − ξ) sinωξ − ωC sinω(1 − ξ) cosωξ

= −ωC sinω(ξ + 1 − ξ)

= −ωC sinω. (8.49)

Therefore,

C = − 1

ω sinω
.

Finally, we have our Green’s function:

G(x, ξ) =

{

− sin ω(1−ξ) sin ωx
ω sin ω , 0 ≤ x ≤ ξ

− sin ω(1−x) sin ωξ
ω sin ω , ξ ≤ x ≤ 1

. (8.50)

It is instructive to compare this result to the Variation of Parameters
result. We have the functions y1(x) = sinωx and y2(x) = sinω(1 − x) as the
solutions of the homogeneous equation satisfying y1(0) = 0 and y2(1) = 0. We
need to compute pW :
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p(x)W (x) = y1(x)y
′
2(x) − y′1(x)y2(x)

= −ω sinωx cosω(1 − x) − ω cosωx sinω(1 − x)

= −ω sinω (8.51)

Inserting this result into the Variation of Parameters result for the Green’s
function leads to the same Green’s function as above.

8.3.1 The Dirac Delta Function

We will develop a more general theory of Green’s functions for ordinary differ-
ential equations which encompasses some of the listed properties. The Green’s
function satisfies a homogeneous differential equation for x 6= ξ,

∂

∂x

(

p(x)
∂G(x, ξ)

∂x

)

+ q(x)G(x, ξ) = 0, x 6= ξ. (8.52)

When x = ξ, we saw that the derivative has a jump in its value. This is
similar to the step, or Heaviside, function,

H(x) =

{
1, x > 0
0, x < 0

.

In the case of the step function, the derivative is zero everywhere except at
the jump. At the jump, there is an infinite slope, though technically, we have
learned that there is no derivative at this point. We will try to remedy this
by introducing the Dirac delta function,

δ(x) =
d

dx
H(x).

We will then show that the Green’s function satisfies the differential equation

∂

∂x

(

p(x)
∂G(x, ξ)

∂x

)

+ q(x)G(x, ξ) = δ(x− ξ). (8.53)

The Dirac delta function, δ(x), is one example of what is known as a
generalized function, or a distribution. Dirac had introduced this function in
the 1930’s in his study of quantum mechanics as a useful tool. It was later
studied in a general theory of distributions and found to be more than a
simple tool used by physicists. The Dirac delta function, as any distribution,
only makes sense under an integral.

Before defining the Dirac delta function and introducing some of its prop-
erties, we will look at some representations that lead to the definition. We will
consider the limits of two sequences of functions.

First we define the sequence of functions

fn(x) =

{
0, |x| > 1

n
n
2 , |x| < 1

n

.
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This is a sequence of functions as shown in Figure 8.1. As n→ ∞, we find the
limit is zero for x 6= 0 and is infinite for x = 0. However, the area under each
member of the sequences is one since each box has height n

2 and width 2
n .

Thus, the limiting function is zero at most points but has area one. (At this
point the reader who is new to this should be doing some head scratching!)

0

1

2

3

4

–1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1

x

Fig. 8.1. A plot of the functions fn(x) for n = 2, 4, 8.

The limit is not really a function. It is a generalized function. It is called
the Dirac delta function, which is defined by

1. δ(x) = 0 for x 6= 0.
2.
∫∞
−∞ δ(x) dx = 1.

Another example is the sequence defined by

Dn(x) =
2 sinnx

x
. (8.54)

We can graph this function. We first rewrite this function as

Dn(x) = 2n
sinnx

nx
.

Now it is easy to see that as x → 0, Dn(x) → 2n. For large x, The function
tends to zero. A plot of this function is in Figure 8.2. For large n the peak
grows and the values of Dn(x) for x 6= 0 tend to zero as show in Figure 8.3.

We note that in the limit n → ∞, Dn(x) = 0 for x 6= 0 and it is infinite
at x = 0. However, using complex analysis one can show that the area is

∫ ∞

−∞
Dn(x) dx = 2π.

Thus, the area is constant for each n.
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Fig. 8.2. A plot of the function Dn(x) for n = 4.
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Fig. 8.3. A plot of the function Dn(x) for n = 40.

There are two main properties that define a Dirac delta function. First
one has that the area under the delta function is one,

∫ ∞

−∞
δ(x) dx = 1.

Integration over more general intervals gives

∫ b

a

δ(x) dx = 1, 0 ∈ [a, b]

and
∫ b

a

δ(x) dx = 0, 0 /∈ [a, b].

Another common property is what is sometimes called the sifting property.
Namely, integrating the product of a function and the delta function “sifts”
out a specific value of the function. It is given by
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∫ ∞

−∞
δ(x− a)f(x) dx = f(a).

This can be seen by noting that the delta function is zero everywhere except at
x = a. Therefore, the integrand is zero everywhere and the only contribution
from f(x) will be from x = a. So, we can replace f(x) with f(a) under the
integral. Since f(a) is a constant, we have that

∫ ∞

−∞
δ(x − a)f(x) dx =

∫ ∞

−∞
δ(x− a)f(a) dx = f(a)

∫ ∞

−∞
δ(x− a) dx = f(a).

Another property results from using a scaled argument, ax. In this case
we show that

δ(ax) = |a|−1δ(x). (8.55)

As usual, this only has meaning under an integral sign. So, we place δ(ax)
inside an integral and make a substitution y = ax:

∫ ∞

−∞
δ(ax) dx = lim

L→∞

∫ L

−L

δ(ax) dx

= lim
L→∞

1

a

∫ aL

−aL

δ(y) dy. (8.56)

If a > 0 then ∫ ∞

−∞
δ(ax) dx =

1

a

∫ ∞

−∞
δ(y) dy.

However, if a < 0 then

∫ ∞

−∞
δ(ax) dx =

1

a

∫ −∞

∞
δ(y) dy = −1

a

∫ ∞

−∞
δ(y) dy.

The overall difference in a multiplicative minus sign can be absorbed into one
expression by changing the factor 1/a to 1/|a|. Thus,

∫ ∞

−∞
δ(ax) dx =

1

|a|

∫ ∞

−∞
δ(y) dy. (8.57)

Example 8.6. Evaluate
∫∞
−∞(5x + 1)δ(4(x− 2)) dx. This is a straight forward

integration:

∫ ∞

−∞
(5x+ 1)δ(4(x− 2)) dx =

1

4

∫ ∞

−∞
(5x+ 1)δ(x− 2) dx =

11

4
.

A more general scaling of the argument takes the form δ(f(x)). The inte-
gral of δ(f(x)) can be evaluated depending upon the number of zeros of f(x).
If there is only one zero, f(x1) = 0, then one has that
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∫ ∞

−∞
δ(f(x)) dx =

∫ ∞

−∞

1

|f ′(x1)|
δ(x− x1) dx.

This can be proven using the substitution y = f(x) and is left as an exercise
for the reader. This result is often written as

δ(f(x)) =
1

|f ′(x1)|
δ(x− x1).

Example 8.7. Evaluate
∫∞
−∞ δ(3x− 2)x2 dx.

This is not a simple δ(x−a). So, we need to find the zeros of f(x) = 3x−2.
There is only one, x = 2

3 . Also, |f ′(x)| = 3. Therefore, we have

∫ ∞

−∞
δ(3x− 2)x2 dx =

∫ ∞

−∞

1

3
δ(x− 2

3
)x2 dx =

1

3

(
2

3

)2

=
4

27
.

Note that this integral can be evaluated the long way by using the substi-
tution y = 3x− 2. Then, dy = 3dx and x = (y + 2)/3. This gives

∫ ∞

−∞
δ(3x− 2)x2 dx =

1

3

∫ ∞

−∞
δ(y)

(
y + 2

3

)2

dy =
1

3

(
4

9

)

=
4

27
.

More generally, one can show that when f(xj) = 0 and f ′(xj) 6= 0 for xj ,
j = 1, 2, . . . , n, (i.e.; when one has n simple zeros), then

δ(f(x)) =

n∑

j=1

1

|f ′(xj)|
δ(x− xj).

Example 8.8. Evaluate
∫ 2π

0 cosx δ(x2 − π2) dx.
In this case the argument of the delta function has two simple roots.

Namely, f(x) = x2 − π2 = 0 when x = ±π. Furthermore, f ′(x) = 2x. There-
fore, |f ′(±π)| = 2π. This gives

δ(x2 − π2) =
1

2π
[δ(x− π) + δ(x + π)].

Inserting this expression into the integral and noting that x = −π is not in
the integration interval, we have

∫ 2π

0

cosx δ(x2 − π2) dx =
1

2π

∫ 2π

0

cosx [δ(x − π) + δ(x+ π)] dx

=
1

2π
cosπ = − 1

2π
. (8.58)

Finally, we previously noted there is a relationship between the Heavi-
side, or step, function and the Dirac delta function. We defined the Heaviside
function as

H(x) =

{
0, x < 0
1, x > 0

Then, it is easy to see that H ′(x) = δ(x).
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8.3.2 Green’s Function Differential Equation

As noted, the Green’s function satisfies the differential equation

∂

∂x

(

p(x)
∂G(x, ξ)

∂x

)

+ q(x)G(x, ξ) = δ(x− ξ) (8.59)

and satisfies homogeneous conditions. We have used the Green’s function to
solve the nonhomogeneous equation

d

dx

(

p(x)
dy(x)

dx

)

+ q(x)y(x) = f(x). (8.60)

These equations can be written in the more compact forms

L[y] = f(x)

L[G] = δ(x− ξ). (8.61)

Multiplying the first equation by G(x, ξ), the second equation by y(x), and
then subtracting, we have

GL[y] − yL[G] = f(x)G(x, ξ) − δ(x− ξ)y(x).

Now, integrate both sides from x = a to x = b. The left side becomes

∫ b

a

[f(x)G(x, ξ) − δ(x− ξ)y(x)] dx =

∫ b

a

f(x)G(x, ξ) dx − y(ξ)

and, using Green’s Identity, the right side is

∫ b

a

(GL[y] − yL[G]) dx =

[

p(x)

(

G(x, ξ)y′(x) − y(x)
∂G

∂x
(x, ξ)

)]x=b

x=a

.

Combining these results and rearranging, we obtain

y(ξ) =

∫ b

a

f(x)G(x, ξ) dx −
[

p(x)

(

y(x)
∂G

∂x
(x, ξ) −G(x, ξ)y′(x)

)]x=b

x=a

.

(8.62)
Next, one uses the boundary conditions in the problem in order to deter-

mine which conditions the Green’s function needs to satisfy. For example, if
we have the boundary condition y(a) = 0 and y(b) = 0, then the boundary
terms yield

y(ξ) =

∫ b

a

f(x)G(x, ξ) dx −
[

p(b)

(

y(b)
∂G

∂x
(b, ξ) −G(b, ξ)y′(b)

)]

+

[

p(a)

(

y(a)
∂G

∂x
(a, ξ) −G(a, ξ)y′(a)

)]

=

∫ b

a

f(x)G(x, ξ) dx + p(b)G(b, ξ)y′(b) − p(a)G(a, ξ)y′(a). (8.63)
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The right hand side will only vanish if G(x, ξ) also satisfies these homogeneous
boundary conditions. This then leaves us with the solution

y(ξ) =

∫ b

a

f(x)G(x, ξ) dx.

We should rewrite this as a function of x. So, we replace ξ with x and x
with ξ. This gives

y(x) =

∫ b

a

f(ξ)G(ξ, x) dξ.

However, this is not yet in the desirable form. The arguments of the Green’s
function are reversed. But, G(x, ξ) is symmetric in its arguments. So, we can
simply switch the arguments getting the desired result.

We can now see that the theory works for other boundary conditions. If
we had y′(a) = 0, then the y(a)∂G

∂x (a, ξ) term in the boundary terms could be

made to vanish if we set ∂G
∂x (a, ξ) = 0. So, this confirms that other boundary

value problems can be posed besides the one elaborated upon in the chapter
so far.

We can even adapt this theory to nonhomogeneous boundary conditions.
We first rewrite Equation (8.62) as

y(x) =

∫ b

a

G(x, ξ)f(ξ) dξ −
[

p(ξ)

(

y(ξ)
∂G

∂ξ
(x, ξ) −G(x, ξ)y′(ξ)

)]ξ=b

ξ=a

.

(8.64)
Let’s consider the boundary conditions y(a) = α and y′(b) = beta. We also
assume that G(x, ξ) satisfies homogeneous boundary conditions,

G(a, ξ) = 0,
∂G

∂ξ
(b, ξ) = 0.

in both x and ξ since the Green’s function is symmetric in its variables.
Then, we need only focus on the boundary terms to examine the effect on the
solution. We have
[

p(ξ)

(

y(ξ)
∂G

∂ξ
(x, ξ) −G(x, ξ)y′(ξ)

)]ξ=b

ξ=a

=

[

p(b)

(

y(b)
∂G

∂ξ
(x, b) −G(x, b)y′(b)

)]

−
[

p(a)

(

y(a)
∂G

∂ξ
(x, a) −G(x, a)y′(a)

)]

= −βp(b)G(x, b) − αp(a)
∂G

∂ξ
(x, a). (8.65)

Therefore, we have the solution

y(x) =

∫ b

a

G(x, ξ)f(ξ) dξ + βp(b)G(x, b) + αp(a)
∂G

∂ξ
(x, a). (8.66)

This solution satisfies the nonhomogeneous boundary conditions. Let’s see
how it works.
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Example 8.9. Modify Example 8.4 to solve the boundary value problem y′′ =
x2, y(0) = 1, y(1) = 2 using the boundary value Green’s function that we
found:

G(x, ξ) =

{
−ξ(1 − x), 0 ≤ ξ ≤ x
−x(1 − ξ), x ≤ ξ ≤ 1

. (8.67)

We insert the Green’s function into the solution and use the given conditions
to obtain

y(x) =

∫ 1

0

G(x, ξ)ξ2 dξ −
[

y(ξ)
∂G

∂ξ
(x, ξ) −G(x, ξ)y′(ξ)

]ξ=1

ξ=0

=

∫ x

0

(x− 1)ξ3 dξ +

∫ 1

x

x(ξ − 1)ξ2 dξ + y(0)
∂G

∂ξ
(x, 0) − y(1)

∂G

∂ξ
(x, 1)

=
(x − 1)x4

4
+
x(1 − x4)

4
− x(1 − x3)

3
+ (x− 1) − 2x

=
x4

12
+

35

12
x− 1. (8.68)

Of course, this problem can be solved more directly by direct integration.
The general solution is

y(x) =
x4

12
+ c1x+ c2.

Inserting this solution into each boundary condition yields the same result.

We have seen how the introduction of the Dirac delta function in the
differential equation satisfied by the Green’s function, Equation (8.59), can
lead to the solution of boundary value problems. The Dirac delta function also
aids in our interpretation of the Green’s function. We note that the Green’s
function is a solution of an equation in which the nonhomogeneous function
is δ(x− ξ). Note that if we multiply the delta function by f(ξ) and integrate
we obtain ∫ ∞

−∞
δ(x− ξ)f(ξ) dξ = f(x).

We can view the delta function as a unit impulse at x = ξ which can be
used to build f(x) as a sum of impulses of different strengths, f(ξ). Thus, the
Green’s function is the response to the impulse as governed by the differential
equation and given boundary conditions.

In particular, the delta function forced equation can be used to derive the
jump condition. We begin with the equation in the form

∂

∂x

(

p(x)
∂G(x, ξ)

∂x

)

+ q(x)G(x, ξ) = δ(x− ξ). (8.69)

Now, integrate both sides from ξ − ǫ to ξ + ǫ and take the limit as ǫ → 0.
Then,
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lim
ǫ→0

∫ ξ+ǫ

ξ−ǫ

[
∂

∂x

(

p(x)
∂G(x, ξ)

∂x

)

+ q(x)G(x, ξ)

]

dx = lim
ǫ→0

∫ ξ+ǫ

ξ−ǫ

δ(x− ξ) dx

= 1. (8.70)

Since the q(x) term is continuous, the limit of that term vanishes. Using the
Fundamental Theorem of Calculus, we then have

lim
ǫ→0

[

p(x)
∂G(x, ξ)

∂x

]ξ+ǫ

ξ−ǫ

= 1. (8.71)

This is the jump condition that we have been using!

8.4 Series Representations of Green’s Functions

There are times that it might not be so simple to find the Green’s function in
the simple closed form that we have seen so far. However, there is a method for
determining the Green’s functions of Sturm-Liouville boundary value prob-
lems in the form of an eigenfunction expansion. We will finish our discussion
of Green’s functions for ordinary differential equations by showing how one
obtains such series representations. (Note that we are really just repeating
the steps towards developing eigenfunction expansion which we had seen in
Chapter 6.)

We will make use of the complete set of eigenfunctions of the differential
operator, L, satisfying the homogeneous boundary conditions:

L[φn] = −λnσφn, n = 1, 2, . . .

We want to find the particular solution y satisfying L[y] = f and homo-
geneous boundary conditions. We assume that

y(x) =

∞∑

n=1

anφn(x).

Inserting this into the differential equation, we obtain

L[y] =

∞∑

n=1

anL[φn] = −
∞∑

n=1

λnanσφn = f.

This has resulted in the generalized Fourier expansion

f(x) =

∞∑

n=1

cnσφn(x)

with coefficients
cn = −λnan.
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We have seen how to compute these coefficients earlier in the text. We multiply
both sides by φk(x) and integrate. Using the orthogonality of the eigenfunc-
tions,

∫ b

a

φn(x)φk(x)σ(x) dx = Nkδnk,

one obtains the expansion coefficients (if λk 6= 0)

ak = − (f, φk)

Nkλk
,

where (f, φk) ≡
∫ b

a
f(x)φk(x) dx.

As before, we can rearrange the solution to obtain the Green’s function.
Namely, we have

y(x) =

∞∑

n=1

(f, φn)

−Nnλn
φn(x) =

∫ b

a

∞∑

n=1

φn(x)φn(ξ)

−Nnλn
︸ ︷︷ ︸

G(x,ξ)

f(ξ) dξ

Therefore, we have found the Green’s function as an expansion in the
eigenfunctions:

G(x, ξ) =

∞∑

n=1

φn(x)φn(ξ)

−λnNn
. (8.72)

Example 8.10. Eigenfunction Expansion Example
We will conclude this discussion with an example. Consider the boundary

value problem

y′′ + 4y = x2, x ∈ (0, 1), y(0) = y(1) = 0.

The Green’s function for this problem can be constructed fairly quickly for
this problem once the eigenvalue problem is solved. We will solve this problem
three different ways in order to summarize the methods we have used in the
text.

The eigenvalue problem is

φ′′(x) + 4φ(x) = −λφ(x),

where φ(0) = 0 and φ(1) = 0. The general solution is obtained by rewriting
the equation as

φ′′(x) + k2φ(x) = 0,

where
k2 = 4 + λ.

Solutions satisfying the boundary condition at x = 0 are of the form

φ(x) = A sin kx.
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Forcing φ(1) = 0 gives

0 = A sin k ⇒ k = nπ, k = 1, 2, 3 . . . .

So, the eigenvalues are

λn = n2π2 − 4, n = 1, 2, . . .

and the eigenfunctions are

φn = sinnπx, n = 1, 2, . . . .

We need the normalization constant, Nn. We have that

Nn = ‖φn‖2 =

∫ 1

0

sin2 nπx =
1

2
.

We can now construct the Green’s function for this problem using Equation
(8.72).

G(x, ξ) = 2

∞∑

n=1

sinnπx sinnπξ

(4 − n2π2)
. (8.73)

We can use this Green’s function to determine the solution of the boundary
value problem. Thus, we have

y(x) =

∫ 1

0

G(x, ξ)f(ξ) dξ

=

∫ 1

0

(

2

∞∑

n=1

sinnπx sinnπξ

(4 − n2π2)

)

ξ2 dξ

= 2

∞∑

n=1

sinnπx

(4 − n2π2)

∫ 1

0

ξ2 sinnπξ dξ

= 2
∞∑

n=1

sinnπx

(4 − n2π2)

[
(2 − n2π2)(−1)n − 2

n3π3

]

(8.74)

We can compare this solution to the one one would obtain if we did not
employ Green’s functions directly. The eigenfunction expansion method for
solving boundary value problems, which we saw earlier proceeds as follows.
We assume that our solution is in the form

y(x) =

∞∑

n=1

cnφn(x).

Inserting this into the differential equation L[y] = x2 gives
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x2 = L
[ ∞∑

n=1

cn sinnπx

]

=

∞∑

n=1

cn

[
d2

dx2
sinnπx+ 4 sinnπx

]

=

∞∑

n=1

cn[4 − n2π2] sinnπx (8.75)

We need the Fourier sine series expansion of x2 on [0, 1] in order to deter-
mine the cn’s. Thus, we need

bn =
2

1

∫ 1

0

x2 sinnπx

= 2

[
(2 − n2π2)(−1)n − 2

n3π3

]

, n = 1, 2, . . . . (8.76)

Thus,

x2 = 2

∞∑

n=1

[
(2 − n2π2)(−1)n − 2

n3π3

]

sinnπx.

Inserting this in Equation (8.75), we find

2

∞∑

n=1

[
(2 − n2π2)(−1)n − 2

n3π3

]

sinnπx =

∞∑

n=1

cn[4 − n2π2] sinnπx.

Due to the linear independence of the eigenfunctions, we can solve for the
unknown coefficients to obtain

cn = 2
(2 − n2π2)(−1)n − 2

(4 − n2π2)n3π3
.

Therefore, the solution using the eigenfunction expansion method is

y(x) =

∞∑

n=1

cnφn(x)

= 2

∞∑

n=1

sinnπx

(4 − n2π2)

[
(2 − n2π2)(−1)n − 2

n3π3

]

. (8.77)

We note that this is the same solution as we had obtained using the Green’s
function obtained in series form.

One remaining question is the following: Is there a closed form for the
Green’s function and the solution to this problem? The answer is yes! We
note that the differential operator is a special case of the example done is
section 8.2.2. Namely, we pick ω = 2. The Green’s function was already found
in that section. For this special case, we have
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G(x, ξ) =

{

− sin 2(1−ξ) sin 2x
2 sin 2 , 0 ≤ x ≤ ξ

− sin 2(1−x) sin 2ξ
2 sin 2 , ξ ≤ x ≤ 1

. (8.78)

What about the solution to the boundary value problem? This solution is
given by

y(x) =

∫ 1

0

G(x, ξ)f(ξ) dξ

= −
∫ x

0

sin 2(1 − x) sin 2ξ

2 sin 2
ξ2 dξ +

∫ 1

x

sin 2(ξ − 1) sin 2x

2 sin 2
ξ2 dξ

= − 1

4 sin 2

[
−x2 sin 2 − sin 2 cos2 x+ sin 2 + cos 2 sinx cosx+ sinx cosx

]
.

= − 1

4 sin 2

[
−x2 sin 2 + (1 − cos2 x) sin 2 + sinx cosx(1 + cos 2)

]
.

= − 1

4 sin 2

[
−x2 sin 2 + 2 sin2 x sin 1 cos 1 + 2 sinx cos x cos2 1)

]
.

= − 1

8 sin 1 cos 1

[
−x2 sin 2 + 2 sinx cos 1(sinx sin 1 + cosx cos 1)

]
.

=
x2

4
− sinx cos(1 − x)

4 sin 1
. (8.79)

In Figure 8.4 we show a plot of this solution along with the first five terms
of the series solution. The series solution converges quickly.

0.0

−0.02

1.00.0

−0.04

−0.06

x

0.5

Fig. 8.4. Plots of the exact solution to Example 8.10 with the first five terms of the
series solution.

As one last check, we solve the boundary value problem directly, as we
had done in Chapter 4. Again, the problem is

y′′ + 4y = x2, x ∈ (0, 1), y(0) = y(1) = 0.

The problem has the general solution
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y(x) = c1 cos 2x+ c2 sin 2x+ yp(x),

where yp is a particular solution of the nonhomogeneous differential equation.
Using the Method of Undetermined Coefficients, we assume a solution of the
form

yp(x) = Ax2 +Bx+ C.

Inserting this in the nonhomogeneous equation, we have

2A+ 4(Ax2 + Bx+ C) = x2,

Thus, B = 0, 4A = 1 and 2A+ 4C = 0. The solution of this system is

A =
1

4
, B = 0, C = −1

8
.

So, the general solution of the nonhomogeneous differential equation is

y(x) = c1 cos 2x+ c2 sin 2x+
x2

4
− 1

8
.

We now determine the arbitrary constants using the boundary conditions.
We have

0 = y(0)

= c1 −
1

8
0 = y(1)

= c1 cos 2 + c2 sin 2 +
1

8
(8.80)

Thus, c1 = 1
8 and

c2 = −
1
8 + 1

8 cos 2

sin 2
.

Inserting these constants in the solution we find the same solution as before.

y(x) =
1

8
cos 2x−

[ 1
8 + 1

8 cos 2

sin 2

]

sin 2x+
x2

4
− 1

8

=
cos 2x sin 2 − sin 2x cos 2 − sin 2x

8 sin 2
+
x2

4
− 1

8

=
(1 − 2 sin2 x) sin 1 cos 1 − sinx cosx(2 cos2 1 − 1) − sinx cosx− sin 1 cos 1

8 sin 1 cos 1
+
x2

4

= − sin2 x sin 1 + sinx cos x cos 1

4 sin 1
+
x2

4

=
x2

4
− sinx cos(1 − x)

4 sin 1
. (8.81)
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Problems

8.1. Use the Method of Variation of Parameters to determine the general
solution for the following problems.

a. y′′ + y = tanx.
b. y′′ − 4y′ + 4y = 6xe2x.

8.2. Instead of assuming that c′1y1 + c′2y2 = 0 in the derivation of the solution
using Variation of Parameters, assume that c′1y1+c′2y2 = h(x) for an arbitrary
function h(x) and show that one gets the same particular solution.

8.3. Find the solution of each initial value problem using the appropriate
initial value Green’s function.

a. y′′ − 3y′ + 2y = 20e−2x, y(0) = 0, y′(0) = 6.
b. y′′ + y = 2 sin 3x, y(0) = 5, y′(0) = 0.
c. y′′ + y = 1 + 2 cosx, y(0) = 2, y′(0) = 0.
d. x2y′′ − 2xy′ + 2y = 3x2 − x, y(1) = π, y′(1) = 0.

8.4. Consider the problem y′′ = sinx, y′(0) = 0, y(π) = 0.

a. Solve by direct integration.
b. Determine the Green’s function.
c. Solve the boundary value problem using the Green’s function.
d. Change the boundary conditions to y′(0) = 5, y(π) = −3.

i. Solve by direct integration.
ii. Solve using the Green’s function.

8.5. Consider the problem:

∂2G

∂x2
= δ(x − x0),

∂G

∂x
(0, x0) = 0, G(π, x0) = 0.

a. Solve by direct integration.
b. Compare this result to the Green’s function in part b of the last problem.
c. Verify that G is symmetric in its arguments.

8.6. In this problem you will show that the sequence of functions

fn(x) =
n

π

(
1

1 + n2x2

)

approaches δ(x) as n→ ∞. Use the following to support your argument:

a. Show that limn→∞ fn(x) = 0 for x 6= 0.
b. Show that the area under each function is one.

8.7. Verify that the sequence of functions {fn(x)}∞n=1, defined by fn(x) =
n
2 e

−n|x|, approaches a delta function.
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8.8. Evaluate the following integrals:

a.
∫ π

0 sinxδ
(
x− π

2

)
dx.

b.
∫∞
−∞ δ

(
x−5

3 e2x
) (

3x2 − 7x+ 2
)
dx.

c.
∫ π

0
x2δ

(
x+ π

2

)
dx.

d.
∫∞
0
e−2xδ(x2 − 5x+ 6) dx. [See Problem 8.10.]

e.
∫∞
−∞(x2 − 2x+ 3)δ(x2 − 9) dx. [See Problem 8.10.]

8.9. Find a Fourier series representation of the Dirac delta function, δ(x), on
[−L,L].

8.10. For the case that a function has multiple simple roots, f(xi) = 0,
f ′(xi) 6= 0, i = 1, 2, . . . , it can be shown that

δ(f(x)) =

n∑

i=1

δ(x − xi)

|f ′(xi)|
.

Use this result to evaluate
∫∞
−∞ δ(x2 − 5x+ 6)(3x2 − 7x+ 2) dx.

8.11. Consider the boundary value problem: y′′ − y = x, x ∈ (0, 1), with
boundary conditions y(0) = y(1) = 0.

a. Find a closed form solution without using Green’s functions.
b. Determine the closed form Green’s function using the properties of Green’s

functions. Use this Green’s function to obtain a solution of the boundary
value problem.

c. Determine a series representation of the Green’s function. Use this Green’s
function to obtain a solution of the boundary value problem.

d. Confirm that all of the solutions obtained give the same results.




