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A more complicated example arises for a nonlinear system of differential
equations. Consider the following example.

Example 2.13.

x′ = −y + x(1 − x2 − y2)

y′ = x+ y(1 − x2 − y2). (2.33)

Transforming to polar coordinates, one can show that In order to convert this
system into polar form, we compute

r′ = r(1 − r2), θ′ = 1.

This uncoupled system can be solved and such nonlinear systems will be
studied in the next chapter.

2.3 Matrix Formulation

We have investigated several linear systems in the plane and in the next
chapter we will use some of these ideas to investigate nonlinear systems. We
need a deeper insight into the solutions of planar systems. So, in this section
we will recast the first order linear systems into matrix form. This will lead
to a better understanding of first order systems and allow for extensions to
higher dimensions and the solution of nonhomogeneous equations later in this
chapter.

We start with the usual homogeneous system in Equation (2.5). Let the
unknowns be represented by the vector

x(t) =

(
x(t)
y(t)

)

.

Then we have that

x′ =

(
x′

y′

)

=

(
ax+ by
cx+ dy

)

=

(
a b
c d

)(
x
y

)

≡ Ax.

Here we have introduced the coefficient matrix A. This is a first order vector
differential equation,

x′ = Ax.

Formerly, we can write the solution as

x = x0e
At.

1

1 The exponential of a matrix is defined using the Maclaurin series expansion
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We would like to investigate the solution of our system. Our investigations
will lead to new techniques for solving linear systems using matrix methods.

We begin by recalling the solution to the specific problem (2.12). We ob-
tained the solution to this system as

x(t) = c1e
t + c2e

−4t,

y(t) =
1

3
c1e

t − 1

2
c2e

−4t. (2.35)

This can be rewritten using matrix operations. Namely, we first write the
solution in vector form.

x =

(
x(t)
y(t)

)

=

(
c1e

t + c2e
−4t

1
3c1e

t − 1
2c2e

−4t

)

=

(
c1e

t

1
3c1e

t

)

+

(
c2e

−4t

− 1
2c2e

−4t

)

= c1

(
1
1
3

)

et + c2

(
1
− 1

2

)

e−4t. (2.36)

We see that our solution is in the form of a linear combination of vectors
of the form

x = veλt

with v a constant vector and λ a constant number. This is similar to how we
began to find solutions to second order constant coefficient equations. So, for
the general problem (2.3) we insert this guess. Thus,

x′ = Ax ⇒
λveλt = Aveλt. (2.37)

For this to be true for all t, we have that

Av = λv. (2.38)

This is an eigenvalue problem. A is a 2×2 matrix for our problem, but could
easily be generalized to a system of n first order differential equations. We will
confine our remarks for now to planar systems. However, we need to recall how
to solve eigenvalue problems and then see how solutions of eigenvalue problems
can be used to obtain solutions to our systems of differential equations..

ex =

∞∑

k=0

= 1 + x +
x2

2!
+

x3

3!
+ · · · .

So, we define

eA =

∞∑

k=0

= I + A +
A2

2!
+

A3

3!
+ · · · . (2.34)

In general, it is difficult computing eA unless A is diagonal.
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2.4 Eigenvalue Problems

We seek nontrivial solutions to the eigenvalue problem

Av = λv. (2.39)

We note that v = 0 is an obvious solution. Furthermore, it does not lead
to anything useful. So, it is called a trivial solution. Typically, we are given
the matrix A and have to determine the eigenvalues, λ, and the associated
eigenvectors, v, satisfying the above eigenvalue problem. Later in the course
we will explore other types of eigenvalue problems.

For now we begin to solve the eigenvalue problem for v =

(
v1
v2

)

. Inserting

this into Equation (2.39), we obtain the homogeneous algebraic system

(a− λ)v1 + bv2 = 0,

cv1 + (d− λ)v2 = 0. (2.40)

The solution of such a system would be unique if the determinant of the system
is not zero. However, this would give the trivial solution v1 = 0, v2 = 0. To
get a nontrivial solution, we need to force the determinant to be zero. This
yields the eigenvalue equation

0 =

∣
∣
∣
∣

a− λ b
c d− λ

∣
∣
∣
∣
= (a− λ)(d − λ) − bc.

This is a quadratic equation for the eigenvalues that would lead to nontrivial
solutions. If we expand the right side of the equation, we find that

λ2 − (a+ d)λ+ ad− bc = 0.

This is the same equation as the characteristic equation (2.8) for the general
constant coefficient differential equation considered in the first chapter. Thus,
the eigenvalues correspond to the solutions of the characteristic polynomial
for the system.

Once we find the eigenvalues, then there are possibly an infinite number
solutions to the algebraic system. We will see this in the examples.

So, the process is to

a) Write the coefficient matrix;
b) Find the eigenvalues from the equation det(A− λI) = 0; and,
c) Find the eigenvectors by solving the linear system (A−λI)v = 0 for each

λ.

2.5 Solving Constant Coefficient Systems in 2D

Before proceeding to examples, we first indicate the types of solutions that
could result from the solution of a homogeneous, constant coefficient system
of first order differential equations.
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We begin with the linear system of differential equations in matrix form.

dx

dt
=

(
a b
c d

)

x = Ax. (2.41)

The type of behavior depends upon the eigenvalues of matrix A. The proce-
dure is to determine the eigenvalues and eigenvectors and use them to con-
struct the general solution.

If we have an initial condition, x(t0) = x0, we can determine the two
arbitrary constants in the general solution in order to obtain the particular
solution. Thus, if x1(t) and x2(t) are two linearly independent solutions2, then
the general solution is given as

x(t) = c1x1(t) + c2x2(t).

Then, setting t = 0, we get two linear equations for c1 and c2:

c1x1(0) + c2x2(0) = x0.

The major work is in finding the linearly independent solutions. This de-
pends upon the different types of eigenvalues that one obtains from solving
the eigenvalue equation, det(A− λI) = 0. The nature of these roots indicate
the form of the general solution. On the next page we summarize the classi-
fication of solutions in terms of the eigenvalues of the coefficient matrix. We
first make some general remarks about the plausibility of these solutions and
then provide examples in the following section to clarify the matrix methods
for our two dimensional systems.

The construction of the general solution in Case I is straight forward.
However, the other two cases need a little explanation.

2 Recall that linear independence means c1x1(t)+c2x2(t) = 0 if and only if c1, c2 =
0. The reader should derive the condition on the xi for linear independence.
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Classification of the Solutions for Two
Linear First Order Differential Equations

1. Case I: Two real, distinct roots.
Solve the eigenvalue problem Av = λv for each eigenvalue obtaining
two eigenvectors v1,v2. Then write the general solution as a linear
combination x(t) = c1e

λ1tv1 + c2e
λ2tv2

2. Case II: One Repeated Root
Solve the eigenvalue problem Av = λv for one eigenvalue λ, obtain-
ing the first eigenvector v1. One then needs a second linearly indepen-
dent solution. This is obtained by solving the nonhomogeneous problem
Av2 − λv2 = v1 for v2.
The general solution is then given by x(t) = c1e

λtv1 + c2e
λt(v2 + tv1).

3. Case III: Two complex conjugate roots.
Solve the eigenvalue problem Ax = λx for one eigenvalue, λ = α+ iβ,
obtaining one eigenvector v. Note that this eigenvector may have com-
plex entries. Thus, one can write the vector y(t) = eλtv = eαt(cosβt+
i sinβt)v. Now, construct two linearly independent solutions to the
problem using the real and imaginary parts of y(t) : y1(t) = Re(y(t))
and y2(t) = Im(y(t)). Then the general solution can be written as
x(t) = c1y1(t) + c2y2(t).

Let’s consider Case III. Note that since the original system of equations
does not have any i’s, then we would expect real solutions. So, we look at the
real and imaginary parts of the complex solution. We have that the complex
solution satisfies the equation

d

dt
[Re(y(t)) + iIm(y(t))] = A[Re(y(t)) + iIm(y(t))].

Differentiating the sum and splitting the real and imaginary parts of the
equation, gives

d

dt
Re(y(t)) + i

d

dt
Im(y(t)) = A[Re(y(t))] + iA[Im(y(t))].

Setting the real and imaginary parts equal, we have

d

dt
Re(y(t)) = A[Re(y(t))],

and
d

dt
Im(y(t)) = A[Im(y(t))].

Therefore, the real and imaginary parts each are linearly independent solutions
of the system and the general solution can be written as a linear combination
of these expressions.
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We now turn to Case II. Writing the system of first order equations as
a second order equation for x(t) with the sole solution of the characteristic
equation, λ = 1

2 (a+ d), we have that the general solution takes the form

x(t) = (c1 + c2t)e
λt.

This suggests that the second linearly independent solution involves a term
of the form vteλt. It turns out that the guess that works is

x = teλtv1 + eλtv2.

Inserting this guess into the system x′ = Ax yields

(teλtv1 + eλtv2)
′ = A

[
teλtv1 + eλtv2

]
.

eλtv1 + λteλtv1 + λeλtv2 = λteλtv1 + eλtAv2.

eλt (v1 + λv2) = eλtAv2. (2.42)

Noting this is true for all t, we find that

v1 + λv2 = Av2. (2.43)

Therefore,
(A− λI)v2 = v1.

We know everything except for v2. So, we just solve for it and obtain the
second linearly independent solution.

2.6 Examples of the Matrix Method

Here we will give some examples for typical systems for the three cases men-
tioned in the last section.

Example 2.14. A =

(
4 2
3 3

)

.

Eigenvalues: We first determine the eigenvalues.

0 =

∣
∣
∣
∣

4 − λ 2
3 3 − λ

∣
∣
∣
∣

(2.44)

Therefore,

0 = (4 − λ)(3 − λ) − 6

0 = λ2 − 7λ+ 6

0 = (λ− 1)(λ− 6) (2.45)

The eigenvalues are then λ = 1, 6. This is an example of Case I.
Eigenvectors: Next we determine the eigenvectors associated with each

of these eigenvalues. We have to solve the system Av = λv in each case.
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Case λ = 1.
(

4 2
3 3

)(
v1
v2

)

=

(
v1
v2

)

(2.46)

(
3 2
3 2

)(
v1
v2

)

=

(
0
0

)

(2.47)

This gives 3v1 + 2v2 = 0. One possible solution yields an eigenvector of

(
v1
v2

)

=

(
2
−3

)

.

Case λ = 6.

(
4 2
3 3

)(
v1
v2

)

= 6

(
v1
v2

)

(2.48)

(
−2 2
3 −3

)(
v1
v2

)

=

(
0
0

)

(2.49)

For this case we need to solve −2v1 + 2v2 = 0. This yields

(
v1
v2

)

=

(
1
1

)

.

General Solution: We can now construct the general solution.

x(t) = c1e
λ1tv1 + c2e

λ2tv2

= c1e
t

(
2
−3

)

+ c2e
6t

(
1
1

)

=

(
2c1e

t + c2e
6t

−3c1e
t + c2e

6t

)

. (2.50)

Example 2.15. A =

(
3 −5
1 −1

)

.

Eigenvalues: Again, one solves the eigenvalue equation.

0 =

∣
∣
∣
∣

3 − λ −5
1 −1 − λ

∣
∣
∣
∣

(2.51)

Therefore,

0 = (3 − λ)(−1 − λ) + 5

0 = λ2 − 2λ+ 2

λ =
−(−2) ±

√

4 − 4(1)(2)

2
= 1 ± i. (2.52)
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The eigenvalues are then λ = 1 + i, 1 − i. This is an example of Case III.
Eigenvectors: In order to find the general solution, we need only find the

eigenvector associated with 1 + i.
(

3 −5
1 −1

)(
v1
v2

)

= (1 + i)

(
v1
v2

)

(
2 − i −5

1 −2 − i

)(
v1
v2

)

=

(
0
0

)

. (2.53)

We need to solve (2 − i)v1 − 5v2 = 0. Thus,

(
v1
v2

)

=

(
2 + i

1

)

. (2.54)

Complex Solution: In order to get the two real linearly independent
solutions, we need to compute the real and imaginary parts of veλt.

eλt

(
2 + i

1

)

= e(1+i)t

(
2 + i

1

)

= et(cos t+ i sin t)

(
2 + i

1

)

= et

(
(2 + i)(cos t+ i sin t)

cos t+ i sin t

)

= et

(
(2 cos t− sin t) + i(cos t+ 2 sin t)

cos t+ i sin t

)

= et

(
2 cos t− sin t

cos t

)

+ iet

(
cos t+ 2 sin t

sin t

)

.

General Solution: Now we can construct the general solution.

x(t) = c1e
t

(
2 cos t− sin t
cos t

)

+ c2e
t

(
cos t+ 2 sin t

sin t

)

= et

(
c1(2 cos t− sin t) + c2(cos t+ 2 sin t)

c1 cos t+ c2 sin t

)

. (2.55)

Note: This can be rewritten as

x(t) = et cos t

(
2c1 + c2
c1

)

+ et sin t

(
2c2 − c1
c2

)

.

Example 2.16. A =

(
7 −1
9 1

)

.

Eigenvalues:

0 =

∣
∣
∣
∣

7 − λ −1
9 1 − λ

∣
∣
∣
∣

(2.56)
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Therefore,

0 = (7 − λ)(1 − λ) + 9

0 = λ2 − 8λ+ 16

0 = (λ− 4)2. (2.57)

There is only one real eigenvalue, λ = 4. This is an example of Case II.
Eigenvectors: In this case we first solve for v1 and then get the second

linearly independent vector.

(
7 −1
9 1

)(
v1
v2

)

= 4

(
v1
v2

)

(
3 −1
9 −3

)(
v1
v2

)

=

(
0
0

)

. (2.58)

Therefore, we have

3v1 − v2 = 0, ⇒
(
v1
v2

)

=

(
1
3

)

.

Second Linearly Independent Solution:
Now we need to solve Av2 − λv2 = v1.

(
7 −1
9 1

)(
u1

u2

)

− 4

(
u1

u2

)

=

(
1
3

)

(
3 −1
9 −3

)(
u1

u2

)

=

(
1
3

)

. (2.59)

Expanding the matrix product, we obtain the system of equations

3u1 − u2 = 1

9u1 − 3u2 = 3. (2.60)

The solution of this system is

(
u1

u2

)

=

(
1
2

)

.

General Solution: We construct the general solution as

y(t) = c1e
λtv1 + c2e

λt(v2 + tv1).

= c1e
4t

(
1
3

)

+ c2e
4t

[(
1
2

)

+ t

(
1
3

)]

= e4t

(
c1 + c2(1 + t)

3c1 + c2(2 + 3t)

)

. (2.61)
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2.6.1 Planar Systems - Summary

The reader should have noted by now that there is a connection between the
behavior of the solutions obtained in Section 2.2 and the eigenvalues found
from the coefficient matrices in the previous examples. Here we summarize
some of these cases.

Type Figure Eigenvalues Stability

Node Real λ, same signs λ > 0, stable

Saddle Real λ opposite signs Mostly Unstable

Center λ pure imaginary —

Focus/Spiral Complex λ, Re(λ) 6= 0 Re(λ > 0), stable
Degenerate Node Repeated roots, λ > 0, stable
Line of Equilibria One zero eigenvalue λ > 0, stable

Table 2.1. List of typical behaviors in planar systems.

The connection, as we have seen, is that the characteristic equation for
the associated second order differential equation is the same as the eigenvalue
equation of the coefficient matrix for the linear system. However, one should
be a little careful in cases in which the coefficient matrix in not diagonalizable.
In Table 2.2 are three examples of systems with repeated roots. The reader
should look at these systems and look at the commonalities and differences
in these systems and their solutions. In these cases one has unstable nodes,
though they are degenerate in that there is only one accessible eigenvector.

2.7 Theory of Homogeneous Constant Coefficient

Systems

There is a general theory for solving homogeneous, constant coefficient sys-
tems of first order differential equations. We begin by once again recalling the
specific problem (2.12). We obtained the solution to this system as

x(t) = c1e
t + c2e

−4t,

y(t) =
1

3
c1e

t − 1

2
c2e

−4t. (2.62)
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System 1 System 2 System 3

x
K3 K2 K1 0 1 2 3

y

K3

K2

K1

1

2

3
a = 2, b = 0, c = 0, d = 2

x
K3 K2 K1 0 1 2 3

y

K3

K2

K1

1

2

3
a = 0, b = 1, c = -4, d = 4

x
K3 K2 K1 0 1 2 3

y

K3

K2

K1

1

2

3
a = 2, b = 1, c = 0, d = 2

x′ =

(
2 0
0 2

)

x x′ =

(
0 1
−4 4

)

x x′ =

(
2 1
0 2

)

x

Table 2.2. Three examples of systems with a repeated root of λ = 2.

This time we rewrite the solution as

x =

(
c1e

t + c2e
−4t

1
3c1e

t − 1
2c2e

−4t

)

=

(
et e−4t

1
3e

t − 1
2e

−4t

)(
c1
c2

)

≡ Φ(t)C. (2.63)

Thus, we can write the general solution as a 2 × 2 matrix Φ times an arbi-
trary constant vector. The matrix Φ consists of two columns that are linearly
independent solutions of the original system. This matrix is an example of
what we will define as the Fundamental Matrix of solutions of the system. So,
determining the Fundamental Matrix will allow us to find the general solution
of the system upon multiplication by a constant matrix. In fact, we will see
that it will also lead to a simple representation of the solution of the initial
value problem for our system. We will outline the general theory.

Consider the homogeneous, constant coefficient system of first order dif-
ferential equations

dx1

dt
= a11x1 + a12x2 + . . .+ a1nxn,

dx2

dt
= a21x1 + a22x2 + . . .+ a2nxn,

...
dxn

dt
= an1x1 + an2x2 + . . .+ annxn. (2.64)

As we have seen, this can be written in the matrix form x′ = Ax, where
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x =








x1

x2

...
xn








and

A =








a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann







.

Now, consider m vector solutions of this system: φ1(t), φ2(t), . . . φm(t).
These solutions are said to be linearly independent on some domain if

c1φ1(t) + c2φ2(t) + . . .+ cmφm(t) = 0

for all t in the domain implies that c1 = c2 = . . . = cm = 0.
Let φ1(t), φ2(t), . . . φn(t) be a set of n linearly independent set of solutions

of our system, called a fundamental set of solutions. We construct a matrix
from these solutions using these solutions as the column of that matrix. We
define this matrix to be the fundamental matrix solution. This matrix takes
the form

Φ =
(
φ1 . . . φn

)
=








φ11 φ12 · · · φ1n

φ21 φ22 · · · φ2n

...
...

. . .
...

φn1 φn2 · · · φnn







.

What do we mean by a “matrix” solution? We have assumed that each φk

is a solution of our system. Therefore, we have that φ′k = Aφk, for k = 1, . . . , n.
We say that Φ is a matrix solution because we can show that Φ also satisfies
the matrix formulation of the system of differential equations. We can show
this using the properties of matrices.

d

dt
Φ =

(
φ′1 . . . φ

′
n

)

=
(
Aφ1 . . . Aφn

)

= A
(
φ1 . . . φn

)

= AΦ. (2.65)

Given a set of vector solutions of the system, when are they linearly inde-
pendent? We consider a matrix solution Ω(t) of the system in which we have
n vector solutions. Then, we define the Wronskian of Ω(t) to be

W = detΩ(t).

If W (t) 6= 0, then Ω(t) is a fundamental matrix solution.
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Before continuing, we list the fundamental matrix solutions for the set of
examples in the last section. (Refer to the solutions from those examples.) Fur-
thermore, note that the fundamental matrix solutions are not unique as one
can multiply any column by a nonzero constant and still have a fundamental
matrix solution.

Example 2.14 A =

(
4 2
3 3

)

.

Φ(t) =

(
2et e6t

−3et e6t

)

.

We should note in this case that the Wronskian is found as

W = detΦ(t)

=

∣
∣
∣
∣

2et e6t

−3et e6t

∣
∣
∣
∣

= 5e7t 6= 0. (2.66)

Example 2.15 A =

(
3 −5
1 −1

)

.

Φ(t) =

(
et(2 cos t− sin t) et(cos t+ 2 sin t)

et cos t et sin t

)

.

Example 2.16 A =

(
7 −1
9 1

)

.

Φ(t) =

(
e4t e4t(1 + t)
3e4t e4t(2 + 3t)

)

.

So far we have only determined the general solution. This is done by the
following steps:

Procedure for Determining the General Solution

1. Solve the eigenvalue problem (A− λI)v = 0.
2. Construct vector solutions from veλt. The method depends if

one has real or complex conjugate eigenvalues.
3. Form the fundamental solution matrix Φ(t) from the vector

solution.
4. The general solution is given by x(t) = Φ(t)C for C an arbi-

trary constant vector.

We are now ready to solve the initial value problem:

x′ = Ax, x(t0) = x0.

Starting with the general solution, we have that
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x0 = x(t0) = Φ(t0)C.

As usual, we need to solve for the ck’s. Using matrix methods, this is now
easy. Since the Wronskian is not zero, then we can invert Φ at any value of t.
So, we have

C = Φ−1(t0)x0.

Putting C back into the general solution, we obtain the solution to the initial
value problem:

x(t) = Φ(t)Φ−1(t0)x0.

You can easily verify that this is a solution of the system and satisfies the
initial condition at t = t0.

The matrix combination Φ(t)Φ−1(t0) is useful. So, we will define the re-
sulting product to be the principal matrix solution, denoting it by

Ψ(t) = Φ(t)Φ−1(t0).

Thus, the solution of the initial value problem is x(t) = Ψ(t)x0. Furthermore,
we note that Ψ(t) is a solution to the matrix initial value problem

x′ = Ax, x(t0) = I,

where I is the n× n identity matrix.

Matrix Solution of the Homogeneous Problem

In summary, the matrix solution of

dx

dt
= Ax, x(t0) = x0

is given by
x(t) = Ψ(t)x0 = Φ(t)Φ−1(t0)x0,

where Φ(t) is the fundamental matrix solution and Ψ(t) is the prin-
cipal matrix solution.

Example 2.17. Let’s consider the matrix initial value problem

x′ = 5x+ 3y

y′ = −6x− 4y, (2.67)

satisfying x(0) = 1, y(0) = 2. Find the solution of this problem.
We first note that the coefficient matrix is

A =

(
5 3
−6 −4

)

.

The eigenvalue equation is easily found from
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0 = −(5 − λ)(4 + λ) + 18

= λ2 − λ− 2

= (λ− 2)(λ+ 1). (2.68)

So, the eigenvalues are λ = −1, 2. The corresponding eigenvectors are found
to be

v1 =

(
1
−2

)

, v2 =

(
1
−1

)

.

Now we construct the fundamental matrix solution. The columns are ob-
tained using the eigenvectors and the exponentials, eλt :

φ1(t) =

(
1
−2

)

e−t, φ1(t) =

(
1
−1

)

e2t.

So, the fundamental matrix solution is

Φ(t) =

(
e−t e2t

−2e−t −e2t

)

.

The general solution to our problem is then

x(t) =

(
e−t e2t

−2e−t −e2t

)

C

for C is an arbitrary constant vector.
In order to find the particular solution of the initial value problem, we

need the principal matrix solution. We first evaluate Φ(0), then we invert it:

Φ(0) =

(
1 1
−2 −1

)

⇒ Φ−1(0) =

(
−1 −1
2 1

)

.

The particular solution is then

x(t) =

(
e−t e2t

−2e−t −e2t

)(
−1 −1
2 1

)(
1
2

)

=

(
e−t e2t

−2e−t −e2t

)(
−3
4

)

=

(
−3e−t + 4e2t

6e−t − 4e2t

)

(2.69)

Thus, x(t) = −3e−t + 4e2t and y(t) = 6e−t − 4e2t.

2.8 Nonhomogeneous Systems

Before leaving the theory of systems of linear, constant coefficient systems,
we will discuss nonhomogeneous systems. We would like to solve systems of
the form
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x′ = A(t)x + f(t). (2.70)

We will assume that we have found the fundamental matrix solution of the
homogeneous equation. Furthermore, we will assume that A(t) and f(t) are
continuous on some common domain.

As with second order equations, we can look for solutions that are a sum
of the general solution to the homogeneous problem plus a particular solution
of the nonhomogeneous problem. Namely, we can write the general solution
as

x(t) = Φ(t)C + xp(t),

where C is an arbitrary constant vector, Φ(t) is the fundamental matrix so-
lution of x′ = A(t)x, and

x′
p = A(t)xp + f(t).

Such a representation is easily verified.
We need to find the particular solution, xp(t). We can do this by applying

The Method of Variation of Parameters for Systems. We consider a solution in
the form of the solution of the homogeneous problem, but replace the constant
vector by unknown parameter functions. Namely, we assume that

xp(t) = Φ(t)c(t).

Differentiating, we have that

x′
p = Φ′c + Φc′ = AΦc + Φc′,

or
x′

p −Axp = Φc′.

But the left side is f . So, we have that,

Φc′ = f ,

or, since Φ is invertible (why?),

c′ = Φ−1f .

In principle, this can be integrated to give c. Therefore, the particular solution
can be written as

xp(t) = Φ(t)

∫ t

Φ−1(s)f(s) ds. (2.71)

This is the variation of parameters formula.
The general solution of Equation (2.70) has been found as

x(t) = Φ(t)C + Φ(t)

∫ t

Φ−1(s)f(s) ds. (2.72)
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We can use the general solution to find the particular solution of an initial
value problem consisting of Equation (2.70) and the initial condition x(t0) =
x0. This condition is satisfied for a solution of the form

x(t) = Φ(t)C + Φ(t)

∫ t

t0

Φ−1(s)f(s) ds (2.73)

provided
x0 = x(t0) = Φ(t0)C.

This can be solved for C as in the last section. Inserting the solution back
into the general solution (2.73), we have

x(t) = Φ(t)Φ−1(t0)x0 + Φ(t)

∫ t

t0

Φ−1(s)f(s) ds (2.74)

This solution can be written a little neater in terms of the principal matrix
solution, Ψ(t) = Φ(t)Φ−1(t0) :

x(t) = Ψ(t)x0 + Ψ(t)

∫ t

t0

Ψ−1(s)f(s) ds (2.75)

Finally, one further simplification occurs when A is a constant matrix,
which are the only types of problems we have solved in this chapter. In this
case, we have that Ψ−1(t) = Ψ(−t). So, computing Ψ−1(t) is relatively easy.

Example 2.18. x′′ + x = 2 cos t, x(0) = 4, x′(0) = 0. This example can be
solved using the Method of Undetermined Coefficients. However, we will use
the matrix method described in this section.

First, we write the problem in matrix form. The system can be written as

x′ = y
y′ = −x+ 2 cos t.

(2.76)

Thus, we have a nonhomogeneous system of the form

x′ = Ax + f =

(
0 1
−1 0

)(
x
y

)

+

(
0

2 cos t

)

.

Next we need the fundamental matrix of solutions of the homogeneous
problem. We have that

A =

(
0 1
−1 0

)

.

The eigenvalues of this matrix are λ = ±i. An eigenvector associated with

λ = i is easily found as

(
1
i

)

. This leads to a complex solution
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(
1
i

)

eit =

(
cos t+ i sin t
i cos t− sin t

)

.

From this solution we can construct the fundamental solution matrix

Φ(t) =

(
cos t sin t
− sin t cos t

)

.

So, the general solution to the homogeneous problem is

xh = Φ(t)C =

(
c1 cos t+ c2 sin t
−c1 sin t+ c2 cos t

)

.

Next we seek a particular solution to the nonhomogeneous problem. From
Equation (2.73) we see that we need Φ−1(s)f(s). Thus, we have

Φ−1(s)f(s) =

(
cos s − sin s
sin s cos s

)(
0

2 cos s

)

=

(
−2 sin s cos s

2 cos2 s

)

. (2.77)

We now compute

Φ(t)

∫ t

t0

Φ−1(s)f(s) ds =

(
cos t sin t
− sin t cos t

)∫ t

t0

(
−2 sin s cos s

2 cos2 s

)

ds

=

(
cos t sin t
− sin t cos t

)(
− sin2 t

t+ 1
2 sin(2t)

)

=

(
t sin t

sin t+ t cos t

)

. (2.78)

therefore, the general solution is

x =

(
c1 cos t+ c2 sin t
−c1 sin t+ c2 cos t

)

+

(
t sin t

sin t+ t cos t

)

.

The solution to the initial value problem is

x =

(
cos t sin t
− sin t cos t

)(
4
0

)

+

(
t sin t

sin t+ t cos t

)

,

or

x =

(
4 cos t+ t sin t
−3 sin t+ t cos t

)

.

2.9 Applications

In this section we will describe several applications leading to systems of
differential equations. In keeping with common practice in areas like physics,
we will denote differentiation with respect to time as




