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Special Functions

In this chapter we will look at some additional functions which arise often in
physical applications and are eigenfunctions for some Sturm-Liouville bound-
ary value problem. We begin with a collection of special functions, called the
classical orthogonal polynomials. These include such polynomial functions as
the Legendre polynomials, the Hermite polynomials, the Tchebychef and the
Gegenbauer polynomials. Also, Bessel functions occur quite often. We will
spend more time exploring the Legendre and Bessel functions. These func-
tions are typically found as solutions of differential equations using power
series methods in a first course in differential equations.

7.1 Classical Orthogonal Polynomials

We begin by noting that the sequence of functions {1, x, x2, . . .} is a basis of
linearly independent functions. In fact, by the Stone-Weierstrass Approxima-
tion Theorem this set is a basis of L2

σ(a, b), the space of square integrable
functions over the interval [a, b] relative to weight σ(x). We are familiar with
being able to expand functions over this basis, since the expansions are just
power series representations of the functions,

f(x) ∼
∞∑

n=0

cnx
n.

However, this basis is not an orthogonal set of basis functions. One can eas-
ily see this by integrating the product of two even, or two odd, basis functions
with σ(x) = 1 and (a, b)=(−1, 1). For example,

< 1, x2 >=

∫ 1

−1

x0x2 dx =
2

3
.

Since we have found that orthogonal bases have been useful in determining
the coefficients for expansions of given functions, we might ask if it is possible
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to obtain an orthogonal basis involving these powers of x. Of course, finite
combinations of these basis element are just polynomials!

OK, we will ask.“Given a set of linearly independent basis vectors, can
one find an orthogonal basis of the given space?” The answer is yes. We
recall from introductory linear algebra, which mostly covers finite dimensional
vector spaces, that there is a method for carrying this out called the Gram-
Schmidt Orthogonalization Process. We will recall this process for finite
dimensional vectors and then generalize to function spaces.

Fig. 7.1. The basis a1, a2, and a3, of R3 considered in the text.

Let’s assume that we have three vectors that span R3, given by a1, a2,
and a3 and shown in Figure 7.1. We seek an orthogonal basis e1, e2, and e3,
beginning one vector at a time.

First we take one of the original basis vectors, say a1, and define

e1 = a1.

Of course, we might want to normalize our new basis vectors, so we would
denote such a normalized vector with a “hat”:

ê1 =
e1

e1
,

where e1 =
√

e1 · e1.
Next, we want to determine an e2 that is orthogonal to e1.We take another

element of the original basis, a2. In Figure 7.2 we see the orientation of the
vectors. Note that the desired orthogonal vector is e2. Note that a2 can be
written as a sum of e2 and the projection of a2 on e1. Denoting this projection
by pr1a2, we then have

e2 = a2 − pr1a2. (7.1)

We recall the projection of one vector onto another from our vector calculus
class.

pr1a2 =
a2 · e1

e21
e1. (7.2)
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Fig. 7.2. A plot of the vectors e1, a2, and e2 needed to find the projection of a2,
on e1.

Note that this is easily proven by writing the projection as a vector of length
a2 cos θ in direction ê1, where θ is the angle between e1 and a2. Using the
definition of the dot product, a · b = ab cos θ, the projection formula follows.

Combining Equations (7.1)-(7.2), we find that

e2 = a2 −
a2 · e1

e21
e1. (7.3)

It is a simple matter to verify that e2 is orthogonal to e1:

e2 · e1 = a2 · e1 −
a2 · e1

e21
e1 · e1

= a2 · e1 − a2 · e1 = 0. (7.4)

Now, we seek a third vector e3 that is orthogonal to both e1 and e2. Picto-
rially, we can write the given vector a3 as a combination of vector projections
along e1 and e2 and the new vector. This is shown in Figure 7.3. Then we
have,

e3 = a3 −
a3 · e1

e21
e1 −

a3 · e2

e22
e2. (7.5)

Again, it is a simple matter to compute the scalar products with e1 and e2

to verify orthogonality.
We can easily generalize the procedure to the N -dimensional case.

Gram-Schmidt Orthogonalization in N-Dimensions

Let an, n = 1, ..., N be a set of linearly independent vectors in RN .
Then, an orthogonal basis can be found by setting e1 = a1 and for
n > 1,

en = an −
n−1∑

j=1

an · ej

e2j
ej . (7.6)
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Fig. 7.3. A plot of the vectors and their projections for determining e3.

Now, we can generalize this idea to (real) function spaces.

Gram-Schmidt Orthogonalization for Function Spaces

Let fn(x), n ∈ N0 = {0, 1, 2, . . .}, be a linearly independent se-
quence of continuous functions defined for x ∈ [a, b]. Then, an
orthogonal basis of functions, φn(x), n ∈ N0 can be found and is
given by

φ0(x) = f0(x)

and

φn(x) = fn(x) −
n−1∑

j=0

< fn, φj >

‖φj‖2
φj(x), n = 1, 2, . . . . (7.7)

Here we are using inner products relative to weight σ(x),

< f, g >=

∫ b

a

f(x)g(x)σ(x) dx. (7.8)

Note the similarity between the orthogonal basis in (7.7) and the expression
for the finite dimensional case in Equation (7.6).

Example 7.1. Apply the Gram-Schmidt Orthogonalization process to the set
fn(x) = xn, n ∈ N0, when x ∈ (−1, 1) and σ(x) = 1.

First, we have φ0(x) = f0(x) = 1. Note that

∫ 1

−1

φ2
0(x) dx =

1

2
.

We could use this result to fix the normalization of our new basis, but we will
hold off on doing that for now.

Now, we compute the second basis element:
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φ1(x) = f1(x) −
< f1, φ0 >

‖φ0‖2
φ0(x)

= x− < x, 1 >

‖1‖2
1 = x, (7.9)

since < x, 1 > is the integral of an odd function over a symmetric interval.
For φ2(x), we have

φ2(x) = f2(x) −
< f2, φ0 >

‖φ0‖2
φ0(x) −

< f2, φ1 >

‖φ1‖2
φ1(x)

= x2 − < x2, 1 >

‖1‖2
1 − < x2, x >

‖x‖2
x

= x2 −
∫ 1

−1
x2 dx

∫ 1

−1 dx

= x2 − 1

3
. (7.10)

So far, we have the orthogonal set {1, x, x2 − 1
3}. If one chooses to nor-

malize these by forcing φn(1) = 1, then one obtains the classical Legendre
polynomials, Pn(x) = φ1(x). Thus,

P2(x) =
1

2
(3x2 − 1).

Note that this normalization is different than the usual one. In fact, we see
that P2(x) does not have a unit norm,

‖P2‖2 =

∫ 1

−1

P 2
2 (x) dx =

2

5
.

The set of Legendre polynomials is just one set of classical orthogonal
polynomials that can be obtained in this way. Many had originally appeared
as solutions of important boundary value problems in physics. They all have
similar properties and we will just elaborate some of these for the Legendre
functions in the next section. Other orthogonal polynomials in this group are
shown in Table 7.1.

For reference, we also note the differential equations satisfied by these
functions.

7.2 Legendre Polynomials

In the last section we saw the Legendre polynomials in the context of or-
thogonal bases for a set of square integrable functions in L2(−1, 1). In your
first course in differential equations, you saw these polynomials as one of the
solutions of the differential equation
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Polynomial Symbol Interval σ(x)

Hermite Hn(x) (−∞,∞) e−x2

Laguerre Lα
n(x) [0,∞) e−x

Legendre Pn(x) (-1,1) 1

Gegenbauer Cλ
n(x) (-1,1) (1 − x2)λ−1/2

Tchebychef of the 1st kind Tn(x) (-1,1) (1 − x2)−1/2

Tchebychef of the 2nd kind Un(x) (-1,1) (1 − x2)−1/2

Jacobi P
(ν,µ)
n (x) (-1,1) (1 − x)ν(1 − x)µ

Table 7.1. Common classical orthogonal polynomials with the interval and weight
function used to define them.

Polynomial Differential Equation

Hermite y′′ − 2xy′ + 2ny = 0
Laguerre xy′′ + (α + 1 − x)y′ + ny = 0
Legendre (1 − x2)y′′ − 2xy′ + n(n + 1)y = 0

Gegenbauer (1 − x2)y′′ − (2n + 3)xy′ + λy = 0
Tchebychef of the 1st kind (1 − x2)y′′ − xy′ + n2y = 0

Jacobi (1 − x2)y′′ + (ν − µ + (µ + ν + 2)x)y′ + n(n + 1 + µ + ν)y = 0

Table 7.2. Differential equations satisfied by some of the common classical orthog-
onal polynomials.

(1 − x2)y′′ − 2xy′ + n(n+ 1)y = 0, n ∈ N0. (7.11)

Recall that these were obtained by using power series expansion methods. In
this section we will explore a few of the properties of these functions.

For completeness, we recall the solution of Equation (7.11) using the power
series method. We assume that the solution takes the form

y(x) =
∞∑

k=0

akx
k.

The goal is to determine the coefficients, ak. Inserting this series into Equation
(7.11), we have

(1 − x2)

∞∑

k=0

k(k − 1)akx
k−2 −

∞∑

k=0

2akkx
k +

∞∑

k=0

n(n+ 1)akx
k = 0,

or

∞∑

k=2

k(k − 1)akx
k−2 −

∞∑

k=2

k(k − 1)akx
k +

∞∑

k=0

[−2k + n(n+ 1)] akx
k = 0.

We can combine some of these terms:

∞∑

k=2

k(k − 1)akx
k−2 +

∞∑

k=0

[−k(k − 1) − 2k + n(n+ 1)]akx
k = 0.
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Further simplification yields

∞∑

k=2

k(k − 1)akx
k−2 +

∞∑

k=0

[n(n+ 1) − k(k + 1)] akx
k = 0.

We need to collect like powers of x. This can be done by reindexing each sum.
In the first sum, we let m = k − 2, or k = m + 2. In the second sum we
independently let k = m. Then all powers of x are of the form xm. This gives

∞∑

m=0

(m+ 2)(m+ 1)am+2x
m +

∞∑

m=0

[n(n+ 1) −m(m+ 1)]amx
m = 0.

Combining these sums, we have

∞∑

m=0

[(m+ 2)(m+ 1)am+2 + (n(n+ 1) −m(m+ 1))am]xm = 0.

This has to hold for all x. So, the coefficients of xm must vanish:

(m+ 2)(m+ 1)am+2 + (n(n+ 1) −m(m+ 1))am.

Solving for am+2, we obtain the recursion relation

am+2 =
n(n+ 1) −m(m+ 1)

(m+ 2)(m+ 1)
am, m ≥ 0.

Thus, am+2 is proportional to am. We can iterate and show that each coeffi-
cient is either proportional to a0 or a1. However, for n an integer, sooner, or
later, m = n and the series truncates. am = 0 for m > n. Thus, we obtain
polynomial solutions. These polynomial solutions are the Legendre polynomi-
als, which we designate as y(x) = Pn(x). Furthermore, for n an even integer,
Pn(x) is an even function and for n an odd integer, Pn(x) is an odd function.

Actually, this is a trimmed down version of the method. We would need to
find a second linearly independent solution. We will not discuss these solutions
and leave that for the interested reader to investigate.

7.2.1 The Rodrigues Formula

The first property that the Legendre polynomials have is the Rodrigues for-
mula:

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n, n ∈ N0. (7.12)

From the Rodrigues formula, one can show that Pn(x) is an nth degree poly-
nomial. Also, for n odd, the polynomial is an odd function and for n even, the
polynomial is an even function.

As an example, we determine P2(x) from Rodrigues formula:
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P2(x) =
1

222!

d2

dx2
(x2 − 1)2

=
1

8

d2

dx2
(x4 − 2x2 + 1)

=
1

8

d

dx
(4x3 − 4x)

=
1

8
(12x2 − 4)

=
1

2
(3x2 − 1). (7.13)

Note that we get the same result as we found in the last section using orthog-
onalization.

One can systematically generate the Legendre polynomials in tabular form
as shown in Table 7.2.1. In Figure 7.4 we show a few Legendre polynomials.

n (x2 − 1)n dn

dxn (x2 − 1)n 1
2nn!

Pn(x)

0 1 1 1 1
1 x2 − 1 2x 1

2
x

2 x4 − 2x2 + 1 12x2 − 4 1
8

1
2
(3x2 − 1)

3 x6 − 3x4 + 3x2 − 1 120x3 − 72x 1
48

1
2
(5x3 − 3x)

Table 7.3. Tabular computation of the Legendre polynomials using the Rodrigues
formula.

–1

–0.5

0.5

1

–1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1
x

Fig. 7.4. Plots of the Legendre polynomials P2(x), P3(x), P4(x), and P5(x).
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7.2.2 Three Term Recursion Formula

The classical orthogonal polynomials also satisfy three term recursion formu-
lae. In the case of the Legendre polynomials, we have

(2n+ 1)xPn(x) = (n+ 1)Pn+1(x) + nPn−1(x), n = 1, 2, . . . . (7.14)

This can also be rewritten by replacing n with n− 1 as

(2n− 1)xPn−1(x) = nPn(x) + (n− 1)Pn−2(x), n = 1, 2, . . . . (7.15)

We will prove this recursion formula in two ways. First we use the orthog-
onality properties of Legendre polynomials and the following lemma.

Lemma 7.2. The leading coefficient of xn in Pn(x) is 1
2nn!

(2n)!
n! .

Proof. We can prove this using Rodrigues formula. first, we focus on the
leading coefficient of (x2 − 1)n, which is x2n. The first derivative of x2n is
2nx2n−1. The second derivative is 2n(2n− 1)x2n−2. The jth derivative is

djx2n

dxj
= [2n(2n− 1) . . . (2n− j + 1)]x2n−j .

Thus, the nth derivative is given by

dnx2n

dxn
= [2n(2n− 1) . . . (n+ 1)]xn.

This proves that Pn(x) has degree n. The leading coefficient of Pn(x) can now
be written as

1

2nn!
[2n(2n− 1) . . . (n+ 1)] =

1

2nn!
[2n(2n− 1) . . . (n+ 1)]

n(n− 1) . . . 1

n(n− 1) . . . 1

=
1

2nn!

(2n)!

n!
. (7.16)

In order to prove the three term recursion formula we consider the expres-
sion (2n− 1)xPn−1(x) − nPn(x). While each term is a polynomial of degree
n, the leading order terms cancel. We need only look at the coefficient of the
leading order term first expression. It is

(2n− 1)
1

2n−1(n− 1)!

(2n− 2)!

(n− 1)!
=

1

2n−1(n− 1)!

(2n− 1)!

(n− 1)!
=

(2n− 1)!

2n−1 [(n− 1)!]2
.

The coefficient of the leading term for nPn(x) can be written as

n
1

2nn!

(2n)!

n!
= n

(
2n

2n2

)(
1

2n−1(n− 1)!

)
(2n− 1)!

(n− 1)!

(2n− 1)!

2n−1 [(n− 1)!]2
.
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It is easy to see that the leading order terms in (2n − 1)xPn−1(x) − nPn(x)
cancel.

The next terms will be of degree n− 2. This is because the Pn’s are either
even or odd functions, thus only containing even, or odd, powers of x. We
conclude that

(2n− 1)xPn−1(x) − nPn(x) = polynomial of degree n− 2.

Therefore, since the Legendre polynomials form a basis, we can write this
polynomial as a linear combination of of Legendre polynomials:

(2n− 1)xPn−1(x)−nPn(x) = c0P0(x)+ c1P1(x)+ . . .+ cn−2Pn−2(x). (7.17)

Multiplying Equation (7.17) by Pm(x) for m = 0, 1, . . . , n− 3, integrating
from −1 to 1, and using orthogonality, we obtain

0 = cm‖Pm‖2, m = 0, 1, . . . , n− 3.

[Note:
∫ 1

−1 x
kPn(x) dx = 0 for k ≤ n − 1. Thus,

∫ 1

−1 xPn−1(x)Pm(x) dx = 0
for m ≤ n− 3.]

Thus, all of these cm’s are zero, leaving Equation (7.17) as

(2n− 1)xPn−1(x) − nPn(x) = cn−2Pn−2(x).

The final coefficient can be found by using the normalization condition,
Pn(1) = 1. Thus, cn−2 = (2n− 1) − n = n− 1.

7.2.3 The Generating Function

A second proof of the three term recursion formula can be obtained from the
generating function of the Legendre polynomials. Many special functions have
such generating functions. In this case it is given by

g(x, t) =
1√

1 − 2xt+ t2
=

∞∑

n=0

Pn(x)tn, |x| < 1, |t| < 1. (7.18)

This generating function occurs often in applications. In particular, it
arises in potential theory, such as electromagnetic or gravitational potentials.
These potential functions are 1

r type functions. For example, the gravitational
potential between the Earth and the moon is proportional to the reciprocal
of the magnitude of the difference between their positions relative to some
coordinate system. An even better example, would be to place the origin at
the center of the Earth and consider the forces on the non-pointlike Earth due
to the moon. Consider a piece of the Earth at position r1 and the moon at
position r2 as shown in Figure 7.5. The tidal potential Φ is proportional to

Φ ∝ 1

|r2 − r1|
=

1
√

(r2 − r1) · (r2 − r1)
=

1
√

r21 − 2r1r2 cos θ + r22
,
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Fig. 7.5. The position vectors used to describe the tidal force on the Earth due to
the moon.

where θ is the angle between r1 and r2.
Typically, one of the position vectors is much larger than the other. Let’s

assume that r1 ≪ r2. Then, one can write

Φ ∝ 1
√

r21 − 2r1r2 cos θ + r22
=

1

r2

1
√

1 − 2 r1

r2
cos θ +

(
r1

r2

)2
.

Now, define x = cos θ and t = r1

r2
. We then have the tidal potential is pro-

portional to the generating function for the Legendre polynomials! So, we can
write the tidal potential as

Φ ∝ 1

r2

∞∑

n=0

Pn(cos θ)

(
r1
r2

)n

.

The first term in the expansion is the gravitational potential that gives the
usual force between the Earth and the moon. [Recall that the force is the
gradient of the potential, F = ∇

(
1
r

)
.] The next terms will give expressions

for the tidal effects.
Now that we have some idea as to where this generating function might

have originated, we can proceed to use it. First of all, the generating function
can be used to obtain special values of the Legendre polynomials.

Example 7.3. Evaluate Pn(0). Pn(0) is found by considering g(0, t). Setting
x = 0 in Equation (7.18), we have

g(0, t) =
1√

1 + t2
=

∞∑

n=0

Pn(0)tn. (7.19)

We can use the binomial expansion to find our final answer. [See the last
section of this chapter for a review.] Namely, we have

1√
1 + t2

= 1 − 1

2
t2 +

3

8
t4 + . . . .

Comparing these expansions, we have the Pn(0) = 0 for n odd and for even
integers one can show (see Problem 7.10) that
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P2n(0) = (−1)n (2n− 1)!!

(2n)!!
, (7.20)

where n!! is the double factorial,

n!! =







n(n− 2) . . . (3)1, n > 0, odd,
n(n− 2) . . . (4)2, n > 0, even,
1 n = 0,−1

.

Example 7.4. Evaluate Pn(−1). This is a simpler problem. In this case we have

g(−1, t) =
1√

1 + 2t+ t2
=

1

1 + t
= 1 − t+ t2 − t3 + . . . .

Therefore, Pn(−1) = (−1)n.

We can also use the generating function to find recursion relations. To
prove the three term recursion (7.14) that we introduced above, then we need
only differentiate the generating function with respect to t in Equation (7.18)
and rearrange the result. First note that

∂g

∂t
=

x− t

(1 − 2xt+ t2)3/2
=

x− t

1 − 2xt+ t2
g(x, t).

Combining this with

∂g

∂t
=

∞∑

n=0

nPn(x)tn−1,

we have

(x− t)g(x, t) = (1 − 2xt+ t2)
∞∑

n=0

nPn(x)tn−1.

Inserting the series expression for g(x, t) and distributing the sum on the right
side, we obtain

(x− t)

∞∑

n=0

Pn(x)tn =

∞∑

n=0

nPn(x)tn−1 −
∞∑

n=0

2nxPn(x)tn +

∞∑

n=0

nPn(x)tn+1.

Rearranging leads to three separate sums:

∞∑

n=0

nPn(x)tn−1 −
∞∑

n=0

(2n+ 1)xPn(x)tn +

∞∑

n=0

(n+ 1)Pn(x)tn+1 = 0. (7.21)

Each term contains powers of t that we would like to combine into a single
sum. This is done by reindexing. For the first sum, we could use the new index
k = n− 1. Then, the first sum can be written

∞∑

n=0

nPn(x)tn−1 =

∞∑

k=−1

(k + 1)Pk+1(x)t
k.
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Using different indices is just another way of writing out the terms. Note that

∞∑

n=0

nPn(x)tn−1 = 0 + P1(x) + 2P2(x)t+ 3P3(x)t
2 + . . .

and

∞∑

k=−1

(k + 1)Pk+1(x)t
k = 0 + P1(x) + 2P2(x)t+ 3P3(x)t

2 + . . .

actually give the same sum. The indices are sometimes referred to as dummy
indices because they do not show up in the expanded expression and can be
replaced with another letter.

If we want to do so, we could now replace all of the k’s with n’s. However,
we will leave the k’s in the first term and now reindex the next sums in
Equation (7.21). The second sum just needs the replacement n = k and the
last sum we reindex using k = n+ 1. Therefore, Equation (7.21) becomes

∞∑

k=−1

(k + 1)Pk+1(x)t
k −

∞∑

k=0

(2k + 1)xPk(x)tk +

∞∑

k=1

kPk−1(x)t
k = 0. (7.22)

We can now combine all of the terms, noting the k = −1 term is automatically
zero and the k = 0 terms give

P1(x) − xP0(x) = 0. (7.23)

Of course, we know this already. So, that leaves the k > 0 terms:

∞∑

k=1

[(k + 1)Pk+1(x) − (2k + 1)xPk(x) + kPk−1(x)] t
k = 0. (7.24)

Since this is true for all t, the coefficients of the tk’s are zero, or

(k + 1)Pk+1(x) − (2k + 1)xPk(x) + kPk−1(x) = 0, k = 1, 2, . . . .

There are other recursion relations. For example,

P ′
n+1(x) − P ′

n−1(x) = (2n+ 1)Pn(x). (7.25)

This can be proven using the generating function by differentiating g(x, t)
with respect to x and rearranging the resulting infinite series just as in this
last manipulation. This will be left as Problem 7.4.

Another use of the generating function is to obtain the normalization con-
stant. Namely, ‖Pn‖2. Squaring the generating function, we have

1

1 − 2xt+ t2
=

[ ∞∑

n=0

Pn(x)tn

]2

=

∞∑

n=0

∞∑

m=0

Pn(x)Pm(x)tn+m. (7.26)
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Integrating from -1 to 1 and using the orthogonality of the Legendre polyno-
mials, we have

∫ 1

−1

dx

1 − 2xt+ t2
=

∞∑

n=0

∞∑

m=0

tn+m

∫ 1

−1

Pn(x)Pm(x) dx

=

∞∑

n=0

t2n

∫ 1

−1

P 2
n(x) dx. (7.27)

However, one can show that

∫ 1

−1

dx

1 − 2xt+ t2
=

1

t
ln

(
1 + t

1 − t

)

.

Expanding this expression about t = 0, we obtain

1

t
ln

(
1 + t

1 − t

)

=

∞∑

n=0

2

2n+ 1
t2n.

Comparing this result with Equation (7.27), we find that

‖Pn‖2 =

∫ 1

−1

Pn(x)Pm(x) dx =
2

2n+ 1
. (7.28)

7.2.4 Eigenfunction Expansions

Finally, we can expand other functions in this orthogonal basis. This is just
a generalized Fourier series. A Fourier-Legendre series expansion for f(x) on
[−1, 1] takes the form

f(x) ∼
∞∑

n=0

cnPn(x). (7.29)

As before, we can determine the coefficients by multiplying both sides by
Pm(x) and integrating. Orthogonality gives the usual form for the generalized
Fourier coefficients. In this case, we have

cn =
< f, Pn >

‖Pn‖2
,

where

< f, Pn >=

∫ 1

−1

f(x)Pn(x) dx.

We have just found ‖Pn‖2 = 2
2n+1 . Therefore, the Fourier-Legendre coeffi-

cients are

cn =
2n+ 1

2

∫ 1

−1

f(x)Pn(x) dx. (7.30)
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Example 7.5. Expand f(x) = x3 in a Fourier-Legendre series.
We simply need to compute

cn =
2n+ 1

2

∫ 1

−1

x3Pn(x) dx. (7.31)

We first note that

∫ 1

−1

xmPn(x) dx = 0 for m < n.

This is simply proven using Rodrigues formula. Inserting Equation (7.12), we
have ∫ 1

−1

xmPn(x) dx =
1

2nn!

∫ 1

−1

xm dn

dxn
(x2 − 1)n dx.

Since m < n, we can integrate by parts m-times to show the result, using
Pn(1) = 1 and Pn(−1) = (−1)n. As a result, we will have for this example
that cn = 0 for n > 3.

We could just compute
∫ 1

−1
x3Pm(x) dx for m = 0, 1, 2, . . . outright. But,

noting that x3 is an odd function, we easily confirm that c0 = 0 and c2 = 0.
This leaves us with only two coefficients to compute. These are

c1 =
3

2

∫ 1

−1

x4 dx =
3

5

and

c3 =
7

2

∫ 1

−1

x3

[
1

2
(5x3 − 3x)

]

dx =
2

5
.

Thus,

x3 =
3

5
P1(x) +

2

5
P3(x).

Of course, this is simple to check using Table 7.2.1:

3

5
P1(x) +

2

5
P3(x) =

3

5
x+

2

5

[
1

2
(5x3 − 3x)

]

= x3.

Well, maybe we could have guessed this without doing any integration. Let’s
see,

x3 = c1x+
1

2
c2(5x

3 − 3x)

= (c1 −
3

2
c2)x +

5

2
c2x

3. (7.32)

Equating coefficients of like terms, we have that c2 = 2
5 and c1 = 3

2c2 = 3
5 .
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Example 7.6. Expand the Heaviside function in a Fourier-Legendre series.
The Heaviside function is defined as

H(x) =

{
1, x > 0,
0, x < 0.

(7.33)

In this case, we cannot find the expansion coefficients without some integra-
tion. We have to compute

cn =
2n+ 1

2

∫ 1

−1

f(x)Pn(x) dx

=
2n+ 1

2

∫ 1

0

Pn(x) dx, n = 0, 1, 2, . . . . (7.34)

For n = 0, we have

c0 =
1

2

∫ 1

0

dx =
1

2
.

For n > 1, we make use of the identity (7.25) to find

cn =
1

2

∫ 1

0

[P ′
n+1(x) − P ′

n−1(x)] dx =
1

2
[Pn−1(0) − Pn+1(0)].

Thus, the Fourier-Bessel series for the Heaviside function is

f(x) ∼ 1

2
+

1

2

∞∑

n=1

[Pn−1(0) − Pn+1(0)]Pn(x).

We need to evaluate Pn−1(0) − Pn+1(0). Since Pn(0) = 0 for n odd, the
cn’s vanish for n even. Letting n = 2k − 1, we have

f(x) ∼ 1

2
+

1

2

∞∑

k=1

[P2k−2(0) − P2k(0)]P2k−1(x).

We can use Equation (7.20),

P2k(0) = (−1)k (2k − 1)!!

(2k)!!
,

to compute the coefficients:

f(x) ∼ 1

2
+

1

2

∞∑

k=1

[P2k−2(0) − P2k(0)]P2k−1(x)

=
1

2
+

1

2

∞∑

k=1

[

(−1)k−1 (2k − 3)!!

(2k − 2)!!
− (−1)k (2k − 1)!!

(2k)!!

]

P2k−1(x)

=
1

2
− 1

2

∞∑

k=1

(−1)k (2k − 3)!!

(2k − 2)!!

[

1 +
2k − 1

2k

]

P2k−1(x)

=
1

2
− 1

2

∞∑

k=1

(−1)k (2k − 3)!!

(2k − 2)!!

4k − 1

2k
P2k−1(x). (7.35)
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The sum of the first 21 terms are shown in Figure 7.6. We note the slow con-
vergence to the Heaviside function. Also, we see that the Gibbs phenomenon
is present due to the jump discontinuity at x = 0.

Partial Sum of Fourier-Legendre Series

0.2

0.4

0.6

0.8

1

–0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8

x

Fig. 7.6. Sum of first 21 terms for Fourier-Legendre series expansion of Heaviside
function.

7.3 Gamma Function

Another function that often occurs in the study of special functions is the
Gamma function. We will need the Gamma function in the next section on
Bessel functions.

For x > 0 we define the Gamma function as

Γ (x) =

∫ ∞

0

tx−1e−t dt, x > 0. (7.36)

The Gamma function is a generalization of the factorial function. In fact,
we have

Γ (1) = 1

and
Γ (x+ 1) = xΓ (x).

The reader can prove this identity by simply performing an integration by
parts. (See Problem 7.7.) In particular, for integers n ∈ Z+, we then have

Γ (n+ 1) = nΓ (n) = n(n− 1)Γ (n− 2) = n(n− 1) · · · 2Γ (1) = n!.

We can also define the Gamma function for negative, non-integer values
of x. We first note that by iteration on n ∈ Z+, we have
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Γ (x+ n) = (x + n− 1) · · · (x+ 1)xΓ (x), x < 0, x+ n > 0.

Solving for Γ (x), we then find

Γ (x) =
Γ (x+ n)

(x + n− 1) · · · (x + 1)x
, −n < x < 0

Note that the Gamma function is undefined at zero and the negative integers.

Example 7.7. We now prove that

Γ

(
1

2

)

=
√
π.

This is done by direct computation of the integral:

Γ

(
1

2

)

=

∫ ∞

0

t−
1
2 e−t dt.

Letting t = z2, we have

Γ

(
1

2

)

= 2

∫ ∞

0

e−z2

dz.

Due to the symmetry of the integrand, we obtain the classic integral

Γ

(
1

2

)

=

∫ ∞

−∞
e−z2

dz,

which can be performed using a standard trick. Consider the integral

I =

∫ ∞

−∞
e−x2

dx.

Then,

I2 =

∫ ∞

−∞
e−x2

dx

∫ ∞

−∞
e−y2

dy.

Note that we changed the integration variable. This will allow us to write this
product of integrals as a double integral:

I2 =

∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2) dxdy.

This is an integral over the entire xy-plane. We can transform this Cartesian
integration to an integration over polar coordinates. The integral becomes

I2 =

∫ 2π

0

∫ ∞

0

e−r2

rdrdθ.

This is simple to integrate and we have I2 = π. So, the final result is found
by taking the square root of both sides:

Γ

(
1

2

)

= I =
√
π.
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We have seen that the factorial function can be written in terms of Gamma
functions. One can write the even and odd double factorials as

(2n)!! = 2nn!, (2n+ 1)!! =
(2n+ 1)!

2nn!
.

In particular, one can write

Γ (n+
1

2
) =

(2n− 1)!!

2n

√
π.

Another useful relation, which we only state, is

Γ (x)Γ (1 − x) =
π

sinπx
.

7.4 Bessel Functions

Another important differential equation that arises in many physics applica-
tions is

x2y′′ + xy′ + (x2 − p2)y = 0. (7.37)

This equation is readily put into self-adjoint form as

(xy′)′ + (x− p2

x
)y = 0. (7.38)

This equation was solved in the first course on differential equations using
power series methods, namely by using the Frobenius Method. One assumes
a series solution of the form

y(x) =

∞∑

n=0

anx
n+s,

and one seeks allowed values of the constant s and a recursion relation for the
coefficients, an. One finds that s = ±p and

an = − an−2

(n+ s)2 − p2
, n ≥ 2.

One solution of the differential equation is the Bessel function of the first
kind of order p, given as

y(x) = Jp(x) =

∞∑

n=0

(−1)n

Γ (n+ 1)Γ (n+ p+ 1)

(x

2

)2n+p

. (7.39)

In Figure 7.7 we display the first few Bessel functions of the first kind of in-
teger order. Note that these functions can be described as decaying oscillatory
functions.
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J1(x)

J3(x)
J2(x)

J0(x)
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Fig. 7.7. Plots of the Bessel functions J0(x), J1(x), J2(x), and J3(x).

A second linearly independent solution is obtained for p not an integer as
J−p(x). However, for p an integer, the Γ (n+p+1) factor leads to evaluations
of the Gamma function at zero, or negative integers, when p is negative. Thus,
the above series is not defined in these cases.

Another method for obtaining a second linearly independent solution is
through a linear combination of Jp(x) and J−p(x) as

Np(x) = Yp(x) =
cosπpJp(x) − J−p(x)

sinπp
. (7.40)

These functions are called the Neumann functions, or Bessel functions of the
second kind of order p.

In Figure 7.8 we display the first few Bessel functions of the second kind of
integer order. Note that these functions are also decaying oscillatory functions.
However, they are singular at x = 0.

In many applications these functions do not satisfy the boundary condi-
tion that one desires a bounded solution at x = 0. For example, one standard
problem is to describe the oscillations of a circular drumhead. For this prob-
lem one solves the wave equation using separation of variables in cylindrical
coordinates. The r equation leads to a Bessel equation. The Bessel function
solutions describe the radial part of the solution and one does not expect a
singular solution at the center of the drum. The amplitude of the oscillation
must remain finite. Thus, only Bessel functions of the first kind can be used.

Bessel functions satisfy a variety of properties, which we will only list at
this time for Bessel functions of the first kind.

Derivative Identities

d

dx
[xpJp(x)] = xpJp−1(x). (7.41)
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Fig. 7.8. Plots of the Neumann functions N0(x), N1(x), N2(x), and N3(x).

d

dx

[
x−pJp(x)

]
= −x−pJp+1(x). (7.42)

Recursion Formulae

Jp−1(x) + Jp+1(x) =
2p

x
Jp(x). (7.43)

Jp−1(x) − Jp+1(x) = 2J ′
p(x). (7.44)

Orthogonality

∫ a

0

xJp(jpn
x

a
)Jp(jpm

x

a
) dx =

a2

2
[Jp+1(jpn)]

2
δn,m (7.45)

where jpn is the nth root of Jp(x), Jp(jpn) = 0, n = 1, 2, . . . . A list of
some of these roots are provided in Table 7.4.

n p = 0 p = 1 p = 2 p = 3 p = 4 p = 5

1 2.405 3.832 5.135 6.379 7.586 8.780
2 5.520 7.016 8.147 9.760 11.064 12.339
3 8.654 10.173 11.620 13.017 14.373 15.700
4 11.792 13.323 14.796 16.224 17.616 18.982
5 14.931 16.470 17.960 19.410 20.827 22.220
6 18.071 19.616 21.117 22.583 24.018 25.431
7 21.212 22.760 24.270 25.749 27.200 28.628
8 24.353 25.903 27.421 28.909 30.371 31.813
9 27.494 29.047 30.571 32.050 33.512 34.983

Table 7.4. The zeros of Bessel Functions
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Generating Function

ex(t− 1
t
)/2 =

∞∑

n=−∞
Jn(x)tn, x > 0, t 6= 0. (7.46)

Integral Representation

Jn(x) =
1

π

∫ π

0

cos(x sin θ − nθ) dθ, x > 0, n ∈ Z. (7.47)

Fourier-Bessel Series
Since the Bessel functions are an orthogonal set of eigenfunctions of a
Sturm-Liouville problem, we can expand square integrable functions in
this basis. In fact, the eigenvalue problem is given in the form

x2y′′ + xy′ + (λx2 − p2)y = 0. (7.48)

The solutions are then of the form Jp(
√
λx), as can be shown by making

the substitution t =
√
λx in the differential equation.

Furthermore, one can solve the differential equation on a finite domain,
[0, a], with the boundary conditions: y(x) is bounded at x = 0 and y(a) =
0.One can show that Jp(jpn

x
a ) is a basis of eigenfunctions and the resulting

Fourier-Bessel series expansion of f(x) defined on x ∈ [0, a] is

f(x) =

∞∑

n=1

cnJp(jpn
x

a
), (7.49)

where the Fourier-Bessel coefficients are found using the orthogonality
relation as

cn =
2

a2 [Jp+1(jpn)]
2

∫ a

0

xf(x)Jp(jpn
x

a
) dx. (7.50)

Example 7.8. Expand f(x) = 1 for 0 ≤ x ≤ 1 in a Fourier-Bessel series of
the form

f(x) =

∞∑

n=1

cnJ0(j0nx)

.
We need only compute the Fourier-Bessel coefficients in Equation (7.50):

cn =
2

[J1(j0n)]2

∫ 1

0

xJ0(j0nx) dx. (7.51)

From Equation (7.41) we have
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∫ 1

0

xJ0(j0nx) dx =
1

j20n

∫ j0n

0

yJ0(y) dy

=
1

j20n

∫ j0n

0

d

dy
[yJ1(y)] dy

=
1

j20n

[yJ1(y)]
j0n

0

=
1

j0n
J1(j0n). (7.52)

As a result, we have found that the desired Fourier-Bessel expansion is

1 = 2

∞∑

n=1

J0(j0nx)

j0nJ1(j0n)
, 0 < x < 1. (7.53)

In Figure 7.9 we show the partial sum for the first fifty terms of this series.
We see that there is slow convergence due to the Gibbs’ phenomenon.
Note: For reference, the partial sums of the Fourier-Bessel series was com-
puted in Maple using the following code:

2*sum(BesselJ(0,BesselJZeros(0,n)*x)

/(BesselJZeros(0,n)*BesselJ(1,BesselJZeros(0,n))),n=1..50)
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Fig. 7.9. Plot of the first 50 terms of the Fourier-Bessel series in Equation (7.53)
for f(x) = 1 on 0 < x < 1.

7.5 Hypergeometric Functions

Hypergeometric functions are probably the most useful, but least understood,
class of functions. They typically do not make it into the undergraduate cur-
riculum and seldom in graduate curriculum. Most functions that you know
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can be expressed using hypergeometric functions. There are many approaches
to these functions and the literature can fill books. 1

In 1812 Gauss published a study of the hypergeometric series

y(x) = 1 +
αβ

γ
x+

α(1 + α)(1 + β)

2!γ(1 + γ)
x2

+
α(1 + α)(2 + α)β(1 + β)(2 + β)

3!γ(1 + γ)(2 + γ)
x3 + . . . . (7.54)

Here α, β, γ, and x are real numbers. If one sets α = 1 and β = γ, this series
reduces to the familiar geometric series

y(x) = 1 + x+ x2 + x3 + . . . .

The hypergeometric series is actually a solution of the differential equation

x(1 − x)y′′ + [γ − (α+ β + 1)x] y′ − αβy = 0. (7.55)

This equation was first introduced by Euler and latter studied extensively
by Gauss, Kummer and Riemann. It is sometimes called Gauss’ equation.
Note that there is a symmetry in that α and β may be interchanged without
changing the equation. The points x = 0 and x = 1 are regular singular
points. Series solutions may be sought using the Frobenius method. It can be
confirmed that the above hypergeometric series results.

A more compact form for the hypergeometric series may be obtained by
introducing new notation. One typically introduces the Pochhammer symbol,
(α)n, satisfying (i) (α)0 = 1 if α 6= 0. and (ii) (α)k = α(1 + α) . . . (k − 1 + α),
for k = 1, 2, . . ..

Consider (1)n. For n = 0, (1)0 = 1. For n > 0,

(1)n = 1(1 + 1)(2 + 1) . . . [(n− 1) + 1].

This reduces to (1)n = n!. In fact, one can show that

(k)n =
(n+ k − 1)!

(k − 1)!

for k and n positive integers. In fact, one can extend this result to noninteger
values for k by introducing the gamma function:

(α)n =
Γ (α+ n)

Γ (α)
.

We can now write the hypergeometric series in standard notation as

1 See for example Special Functions by G. E. Andrews, R. Askey, and R. Roy, 1999,
Cambridge University Press.
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2F1(α, β; γ;x) =
∞∑

n=0

(α)n(β)n

n!(γ)n
xn.

Using this one can show that the general solution of Gauss’ equation is

y(x) = A2F1(α, β; γ;x) +B2x
1−γ
2 F1(1 − γ + α, 1 − γ + β; 2 − γ;x).

By carefully letting β approach ∞, one obtains what is called the confluent
hypergeometric function. This in effect changes the nature of the differential
equation. Gauss’ equation has three regular singular points at x = 0, 1,∞.
One can transform Gauss’ equation by letting x = u/β. This changes the
regular singular points to u = 0, β,∞. Letting β → ∞, two of the singular
points merge.

The new confluent hypergeometric function is then given as

1F1(α; γ;u) = lim
β→∞ 2F1

(

α, β; γ;
u

β

)

.

This function satisfies the differential equation

xy′′ + (γ − x)y′ − αy = 0.

The purpose of this section is only to introduce the hypergeometric func-
tion. Many other special functions are related to the hypergeometric function
after making some variable transformations. For example, the Legendre poly-
nomials are given by

Pn(x) =2 F1(−n, n+ 1; 1;
1 − x

2
).

In fact, one can also show that

sin−1 x = x2F1

(
1

2
,
1

2
;
3

2
;x2

)

.

The Bessel function Jp(x) can be written in terms of confluent geometric
functions as

Jp(x) =
1

Γ (p+ 1)

(z

2

)p

e−iz
1F1

(
1

2
+ p, 1 + 2p; 2iz

)

.

These are just a few connections of the powerful hypergeometric functions to
some of the elementary functions that you know.

7.6 Appendix: The Binomial Expansion

In this section we had to recall the binomial expansion. This is simply the
expansion of the expression (a + b)p. We will investigate this expansion first
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for nonnegative integer powers p and then derive the expansion for other
values of p.

Lets list some of the common expansions for nonnegative integer powers.

(a+ b)0 = 1

(a+ b)1 = a+ b

(a+ b)2 = a2 + 2ab+ b2

(a+ b)3 = a3 + 3a2b+ 3ab2 + b3

(a+ b)4 = a4 + 4a3b+ 6a2b2 + 4ab3 + b4

· · · (7.56)

We now look at the patterns of the terms in the expansions. First, we
note that each term consists of a product of a power of a and a power of
b. The powers of a are decreasing from n to 0 in the expansion of (a + b)n.
Similarly, the powers of b increase from 0 to n. The sums of the exponents in
each term is n. So, we can write the (k+1)st term in the expansion as an−kbk.
For example, in the expansion of (a + b)51 the 6th term is a51−5b5 = a46b5.
However, we do not know the numerical coefficient in the expansion.

We now list the coefficients for the above expansions.

n = 0 : 1
n = 1 : 1 1
n = 2 : 1 2 1
n = 3 : 1 3 3 1
n = 4 : 1 4 6 4 1

(7.57)

This pattern is the famous Pascal’s triangle. There are many interesting fea-
tures of this triangle. But we will first ask how each row can be generated.

We see that each row begins and ends with a one. Next the second term
and next to last term has a coefficient of n. Next we note that consecutive
pairs in each row can be added to obtain entries in the next row. For example,
we have

n = 2 : 1 2 1
ց ւ ց ւ

n = 3 : 1 3 3 1
(7.58)

With this in mind, we can generate the next several rows of our triangle.

n = 3 : 1 3 3 1
n = 4 : 1 4 6 4 1
n = 5 : 1 5 10 10 5 1
n = 6 : 1 6 15 20 15 6 1

(7.59)

Of course, it would take a while to compute each row up to the desired
n. We need a simple expression for computing a specific coefficient. Consider
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the kth term in the expansion of (a+ b)n. Let r = k− 1. Then this term is of
the form Cn

r a
n−rbr. We have seen the the coefficients satisfy

Cn
r = Cn−1

r + Cn−1
r−1 .

Actually, the coefficients have been found to take a simple form.

Cn
r =

n!

(n− r)!r!
=

(
n
r

)

.

This is nothing other than the combinatoric symbol for determining how to
choose n things r at a time. In our case, this makes sense. We have to count
the number of ways that we can arrange the products of r b’s with n− r a’s.
There are n slots to place the b’s. For example, the r = 2 case for n = 4
involves the six products: aabb, abab, abba, baab, baba, and bbaa. Thus, it is
natural to use this notation. The original problem that concerned Pascal was
in gambling.

So, we have found that

(a+ b)n =

n∑

r=0

(
n
r

)

an−rbr. (7.60)

What if a≫ b? Can we use this to get an approximation to (a+ b)n? If we
neglect b then (a + b)n ≃ an. How good of an approximation is this? This is
where it would be nice to know the order of the next term in the expansion,
which we could state using big O notation. In order to do this we first divide
out a as

(a+ b)n = an(1 +
b

a
)n.

Now we have a small parameter, b
a . According to what we have seen above,

we can use the binomial expansion to write

(1 +
b

a
)n =

n∑

r=0

(
n
r

)(
b

a

)r

. (7.61)

Thus, we have a finite sum of terms involving powers of b
a . Since a≫ b, most

of these terms can be neglected. So, we can write

(1 +
b

a
)n = 1 + n

b

a
+O

((
b

a

)2
)

.

note that we have used the observation that the second coefficient in the nth
row of Pascal’s triangle is n.

Summarizing, this then gives
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(a+ b)n = an(1 +
b

a
)n

= an(1 + n
b

a
+O

((
b

a

)2

)

)

= an + nan b

a
+ anO

((
b

a

)2
)

. (7.62)

Therefore, we can approximate (a + b)n ≃ an + nban−1, with an error on
the order of ban−2. Note that the order of the error does not include the
constant factor from the expansion. We could also use the approximation
that (a + b)n ≃ an, but it is not as good because the error in this case is of
the order ban−1.

We have seen that

1

1 − x
= 1 + x+ x2 + . . . .

But, 1
1−x = (1 − x)−1. This is again a binomial to a power, but the power is

not a nonnegative integer. It turns out that the coefficients of such a binomial
expansion can be written similar to the form in Equation (7.60).

This example suggests that our sum may no longer be finite. So, for p a
real number, we write

(1 + x)p =
∞∑

r=0

(
p
r

)

xr . (7.63)

However, we quickly run into problems with this form. Consider the coef-
ficient for r = 1 in an expansion of (1 + x)−1. This is given by

(
−1
1

)

=
(−1)!

(−1 − 1)!1!
=

(−1)!

(−2)!1!
.

But what is (−1)!? By definition, it is

(−1)! = (−1)(−2)(−3) · · · .
This product does not seem to exist! But with a little care, we note that

(−1)!

(−2)!
=

(−1)(−2)!

(−2)!
= −1.

So, we need to be careful not to interpret the combinatorial coefficient literally.
There are better ways to write the general binomial expansion. We can write
the general coefficient as

(
p
r

)

=
p!

(p− r)!r!

=
p(p− 1) · · · (p− r + 1)(p− r)!

(p− r)!r!

=
p(p− 1) · · · (p− r + 1)

r!
. (7.64)
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With this in mind we now state the theorem:
General Binomial Expansion The general binomial expansion for (1+

x)p is a simple generalization of Equation (7.60). For p real, we have that

(1 + x)p =

∞∑

r=0

p(p− 1) · · · (p− r + 1)

r!
xr

=

∞∑

r=0

Γ (p+ 1)

r!Γ (p− r + 1)
xr . (7.65)

Often we need the first few terms for the case that x≪ 1 :

(1 + x)p = 1 + px+
p(p− 1)

2
x2 +O(x3). (7.66)

Problems

7.1. Consider the set of vectors (−1, 1, 1), (1,−1, 1), (1, 1,−1).

a. Use the Gram-Schmidt process to find an orthonormal basis for R3 using
this set in the given order.

b. What do you get if you do reverse the order of these vectors?

7.2. Use the Gram-Schmidt process to find the first four orthogonal polyno-
mials satisfying the following:

a. Interval: (−∞,∞) Weight Function: e−x2

.
b. Interval: (0,∞) Weight Function: e−x.

7.3. Find P4(x) using

a. The Rodrigues Formula in Equation (7.12).
b. The three term recursion formula in Equation (7.14).

7.4. Use the generating function for Legendre polynomials to derive the re-

cursion formula P ′
n+1(x)−P ′

n−1(x) = (2n+1)Pn(x). Namely, consider ∂g(x,t)
∂x

using Equation (7.18) to derive a three term derivative formula. Then use
three term recursion formula (7.14) to obtain the above result.

7.5. Use the recursion relation (7.14) to evaluate
∫ 1

−1
xPn(x)Pm(x) dx, n ≤ m.

7.6. Expand the following in a Fourier-Legendre series for x ∈ (−1, 1).

a. f(x) = x2.
b. f(x) = 5x4 + 2x3 − x+ 3.

c. f(x) =

{
−1, −1 < x < 0,
1, 0 < x < 1.
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d. f(x) =

{
x, −1 < x < 0,
0, 0 < x < 1.

7.7. Use integration by parts to show Γ (x+ 1) = xΓ (x).

7.8. Express the following as Gamma functions. Namely, noting the form
Γ (x+1) =

∫∞
0 txe−t dt and using an appropriate substitution, each expression

can be written in terms of a Gamma function.

a.
∫∞
0
x2/3e−x dx.

b.
∫∞
0
x5e−x2

dx

c.
∫ 1

0

[
ln
(

1
x

)]n
dx

7.9. The Hermite polynomials, Hn(x), satisfy the following:

i. < Hn, Hm >=
∫∞
−∞ e−x2

Hn(x)Hm(x) dx =
√
π2nn!δn,m.

ii. H ′
n(x) = 2nHn−1(x).

iii. Hn+1(x) = 2xHn(x) − 2nHn−1(x).

iv. Hn(x) = (−1)nex2 dn

dxn

(

e−x2
)

.

Using these, show that

a. H ′′
n − 2xH ′

n + 2nHn = 0. [Use properties ii. and iii.]

b.
∫∞
−∞ xe−x2

Hn(x)Hm(x) dx =
√
π2n−1n! [δm,n−1 + 2(n+ 1)δm,n+1] . [Use

properties i. and iii.]

c. Hn(0) =

{
0, n odd,

(−1)m (2m)!
m! , n = 2m.

[Let x = 0 in iii. and iterate. Note from

iv. that H0(x) = 1 and H1(x) = 1. ]

7.10. In Maple one can type simplify(LegendreP(2*n-2,0)-LegendreP(2*n,0));
to find a value for P2n−2(0) − P2n(0). It gives the result in terms of Gamma
functions. However, in Example 7.6 for Fourier-Legendre series, the value is
given in terms of double factorials! So, we have

P2n−2(0) − P2n(0) =

√
π(4n− 1)

2Γ (n+ 1)Γ
(

3
2 − n

) = (−1)n (2n− 3)!!

(2n− 2)!!

4n− 1

2n
.

You will verify that both results are the same by doing the following:

a. Prove that P2n(0) = (−1)n (2n−1)!!
(2n)!! using the generating function and a

binomial expansion.

b. Prove that Γ
(
n+ 1

2

)
= (2n−1)!!

2n

√
π using Γ (x) = (x − 1)Γ (x − 1) and

iteration.
c. Verify the result from Maple that P2n−2(0) − P2n(0) =

√
π(4n−1)

2Γ (n+1)Γ( 3
2−n)

.

d. Can either expression for P2n−2(0) − P2n(0) be simplified further?
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7.11. A solution Bessel’s equation, x2y′′+xy′+(x2−n2)y = 0, , can be found
using the guess y(x) =

∑∞
j=0 ajx

j+n. One obtains the recurrence relation

aj = −1
j(2n+j)aj−2. Show that for a0 = (n!2n)−1 we get the Bessel function of

the first kind of order n from the even values j = 2k:

Jn(x) =

∞∑

k=0

(−1)k

k!(n+ k)!

(x

2

)n+2k

.

7.12. Use the infinite series in the last problem to derive the derivative iden-
tities (7.41) and (7.42):

a. d
dx [xnJn(x)] = xnJn−1(x).

b. d
dx [x−nJn(x)] = −x−nJn+1(x).

7.13. Bessel functions Jp(λx) are solutions of x2y′′ + xy′ + (λ2x2 − p2)y = 0.
Assume that x ∈ (0, 1) and that Jp(λ) = 0 and Jp(0) is finite.

a. Put this differential equation into Sturm-Liouville form.
b. Prove that solutions corresponding to different eigenvalues are orthogo-

nal by first writing the corresponding Green’s identity using these Bessel
functions.

c. Prove that
∫ 1

0

xJp(λx)Jp(µx) dx =
1

2
J2

p+1(λ) =
1

2
J ′2

p (λ).

Note that λ is a zero of Jp(x).

7.14. We can rewrite our Bessel function in a form which will allow the order
to be non-integer by using the gamma function. You will need the results from
Problem 7.10b for Γ

(
k + 1

2

)
.

a. Extend the series definition of the Bessel function of the first kind of order
ν, Jν(x), for ν ≥ 0 by writing the series solution for y(x) in Problem 7.11
using the gamma function.

b. Extend the series to J−ν(x), for ν ≥ 0. Discuss the resulting series and
what happens when ν is a positive integer.

c. Use these results to obtain closed form expressions for J1/2(x) and
J−1/2(x). Use the recursion formula for Bessel functions to obtain a closed
form for J3/2(x).

7.15. In this problem you will derive the expansion

x2 =
c2

2
+ 4

∞∑

j=2

J0(αjx)

α2
jJ0(αjc)

, 0 < x < c,

where the α′
js are the positive roots of J1(αc) = 0, by following the below

steps.



236 7 Special Functions

a. List the first five values of α for J1(αc) = 0 using the Table 7.4 and Figure
7.7. [Note: Be careful determining α1.]

b. Show that ‖J0(α1x)‖2 = c2

2 . Recall,

‖J0(αjx)‖2 =

∫ c

0

xJ2
0 (αjx) dx.

c. Show that ‖J0(αjx)‖2 = c2

2 [J0(αjc)]
2 , j = 2, 3, . . . . (This is the most

involved step.) First note from Problem 7.13 that y(x) = J0(αjx) is a
solution of

x2y′′ + xy′ + α2
jx

2y = 0.

i. Show that the Sturm-Liouville form of this differential equation is
(xy′)′ = −α2

jxy.
ii. Multiply the equation in part i. by y(x) and integrate from x = 0 to
x = c to obtain

∫ c

0

(xy′)′y dx = −α2
j

∫ c

0

xy2 dx

= −α2
j

∫ c

0

xJ2
0 (αjx) dx. (7.67)

iii. Noting that y(x) = J0(αjx), integrate the left hand side by parts and
use the following to simplify the resulting equation.
1. J ′

0(x) = −J1(x) from Equation (7.42).
2. Equation (7.45).
3. J2(αjc) + J0(αjc) = 0 from Equation (7.43).

iv. Now you should have enough information to complete this part.

d. Use the results from parts b and c to derive the expansion coefficients for

x2 =

∞∑

j=1

cjJ0(αjx)

in order to obtain the desired expansion.

7.16. Use the derivative identities of Bessel functions,(7.41)-(7.42), and inte-
gration by parts to show that

∫

x3J0(x) dx = x3J1(x) − 2x2J2(x).




