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Fourier Series

5.1 Introduction

In this chapter we will look at trigonometric series. Previously, we saw that
such series expansion occurred naturally in the solution of the heat equation
and other boundary value problems. In the last chapter we saw that such
functions could be viewed as a basis in an infinite dimensional vector space of
functions. Given a function in that space, when will it have a representation
as a trigonometric series? For what values of x will it converge? Finding such
series is at the heart of Fourier, or spectral, analysis.

There are many applications using spectral analysis. At the root of these
studies is the belief that many continuous waveforms are comprised of a num-
ber of harmonics. Such ideas stretch back to the Pythagorean study of the
vibrations of strings, which lead to their view of a world of harmony. This
idea was carried further by Johannes Kepler in his harmony of the spheres
approach to planetary orbits. In the 1700’s others worked on the superposi-
tion theory for vibrating waves on a stretched spring, starting with the wave
equation and leading to the superposition of right and left traveling waves.
This work was carried out by people such as John Wallis, Brook Taylor and
Jean le Rond d’Alembert.

In 1742 d’Alembert solved the wave equation

c2
∂2y

∂x2
− ∂2y

∂t2
= 0,

where y is the string height and c is the wave speed. However, his solution led
himself and others, like Leonhard Euler and Daniel Bernoulli, to investigate
what ”functions” could be the solutions of this equation. In fact, this lead
to a more rigorous approach to the study of analysis by first coming to grips
with the concept of a function. For example, in 1749 Euler sought the solution
for a plucked string in which case the initial condition y(x, 0) = h(x) has a
discontinuous derivative!
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In 1753 Daniel Bernoulli viewed the solutions as a superposition of simple
vibrations, or harmonics. Such superpositions amounted to looking at solu-
tions of the form

y(x, t) =
∑

k

ak sin
kπx

L
cos

kπct

L
,

where the string extends over the interval [0, L] with fixed ends at x = 0 and
x = L. However, the initial conditions for such superpositions are

y(x, 0) =
∑

k

ak sin
kπx

L
.

It was determined that many functions could not be represented by a finite
number of harmonics, even for the simply plucked string given by an initial
condition of the form

y(x, 0) =

{
cx, 0 ≤ x ≤ L/2

c(L− x), L/2 ≤ x ≤ L
.

Thus, the solution consists generally of an infinite series of trigonometric func-
tions.

Such series expansions were also of importance in Joseph Fourier’s solution
of the heat equation. The use of such Fourier expansions became an important
tool in the solution of linear partial differential equations, such as the wave
equation and the heat equation. As seen in the last chapter, using the Method
of Separation of Variables, allows higher dimensional problems to be reduced
to several one dimensional boundary value problems. However, these studies
lead to very important questions, which in turn opened the doors to whole
fields of analysis. Some of the problems raised were

1. What functions can be represented as the sum of trigonometric functions?
2. How can a function with discontinuous derivatives be represented by a

sum of smooth functions, such as the above sums?
3. Do such infinite sums of trigonometric functions a actually converge to

the functions they represents?

Sums over sinusoidal functions naturally occur in music and in studying
sound waves. A pure note can be represented as

y(t) = A sin(2πft),

where A is the amplitude, f is the frequency in hertz (Hz), and t is time in
seconds. The amplitude is related to the volume, or intensity, of the sound.
The larger the amplitude, the louder the sound. In Figure 5.1 we show plots
of two such tones with f = 2 Hz in the top plot and f = 5 Hz in the bottom
one.

Next, we consider what happens when we add several pure tones. After all,
most of the sounds that we hear are in fact a combination of pure tones with
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Fig. 5.1. Plots of y(t) = sin(2πft) on [0, 5] for f = 2 Hz and f = 5 Hz.

different amplitudes and frequencies. In Figure 5.2 we see what happens when
we add several sinusoids. Note that as one adds more and more tones with
different characteristics, the resulting signal gets more complicated. However,
we still have a function of time. In this chapter we will ask, “Given a function
f(t), can we find a set of sinusoidal functions whose sum converges to f(t)?”

Looking at the superpositions in Figure 5.2, we see that the sums yield
functions that appear to be periodic. This is not to be unexpected. We recall
that a periodic function is one in which the function values repeat over the
domain of the function. The length of the smallest part of the domain which
repeats is called the period. We can define this more precisely.

Definition 5.1. A function is said to be periodic with period T if f(t+ T ) =
f(t) for all t and the smallest such positive number T is called the period.

For example, we consider the functions used in Figure 5.2. We began with
y(t) = 2 sin(4πt). Recall from your first studies of trigonometric functions that
one can determine the period by dividing the coefficient of t into 2π to get
the period. In this case we have

T =
2π

4π
=

1

2
.

Looking at the top plot in Figure 5.1 we can verify this result. (You can count
the full number of cycles in the graph and divide this into the total time to
get a more accurate value of the period.)

In general, if y(t) = A sin(2πft), the period is found as

T =
2π

2πf
=

1

f
.
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Fig. 5.2. Superposition of several sinusoids. Top: Sum of signals with f = 2 Hz and
f = 5 Hz. Bottom: Sum of signals with f = 2 Hz, f = 5 Hz, and and f = 8 Hz.

Of course, this result makes sense, as the unit of frequency, the hertz, is also
defined as s−1, or cycles per second.

Returning to the superpositions in Figure 5.2, we have that y(t) =
sin(10πt) has a period of 0.2 Hz and y(t) = sin(16πt) has a period of 0.125 Hz.
The two superpositions retain the largest period of the signals added, which
is 0.5 Hz.

Our goal will be to start with a function and then determine the amplitudes
of the simple sinusoids needed to sum to that function. First of all, we will
see that this might involve an infinite number of such terms. Thus, we will be
studying an infinite series of sinusoidal functions.

Secondly, we will find that using just sine functions will not be enough
either. This is because we can add sinusoidal functions that do not necessarily
peak at the same time. We will consider two signals that originate at different
times. This is similar to when your music teacher would make sections of the
class sing a song like “Row, Row, Row your Boat” starting at slightly different
times.

We can easily add shifted sine functions. In Figure 5.3 we show the func-
tions y(t) = 2 sin(4πt) and y(t) = 2 sin(4πt+ 7π/8) and their sum. Note that
this shifted sine function can be written as y(t) = 2 sin(4π(t + 7/32)). Thus,
this corresponds to a time shift of −7/8.

So, we should account for shifted sine functions in our general sum. Of
course, we would then need to determine the unknown time shift as well as
the amplitudes of the sinusoidal functions that make up our signal, f(t).While
this is one approach that some researchers use to analyze signals, there is a
more common approach. This results from another reworking of the shifted
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function. Consider the general shifted function

y(t) = A sin(2πft+ φ).

Note that 2πft+φ is called the phase of our sine function and φ is called the
phase shift. We can use our trigonometric identity for the sine of the sum of
two angles to obtain

y(t) = A sin(2πft+ φ) = A sin(φ) cos(2πft) +A cos(φ) sin(2πft).

Defining a = A sin(φ) and b = A cos(φ), we can rewrite this as

y(t) = a cos(2πft) + b sin(2πft).

Thus, we see that our signal is a sum of sine and cosine functions with the
same frequency and different amplitudes. If we can find a and b, then we can
easily determine A and φ:

A =
√

a2 + b2 tanφ =
b

a
.
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Fig. 5.3. Plot of the functions y(t) = 2 sin(4πt) and y(t) = 2 sin(4πt + 7π/8) and
their sum.

We are now in a position to state our goal in this chapter.

Goal

Given a signal f(t), we would like to determine its frequency content by
finding out what combinations of sines and cosines of varying frequencies
and amplitudes will sum to the given function. This is called Fourier Anal-
ysis.



154 5 Fourier Series

5.2 Fourier Trigonometric Series

As we have seen in the last section, we are interested in finding representations
of functions in terms of sines and cosines. Given a function f(x) we seek a
representation in the form

f(x) ∼ a0

2
+

∞∑

n=1

[an cosnx+ bn sinnx] . (5.1)

Notice that we have opted to drop reference to the frequency form of the
phase. This will lead to a simpler discussion for now and one can always make
the transformation nx = 2πfnt when applying these ideas to applications.

The series representation in Equation (5.1) is called a Fourier trigonomet-
ric series. We will simply refer to this as a Fourier series for now. The set of
constants a0, an, bn, n = 1, 2, . . . are called the Fourier coefficients. The con-
stant term is chosen in this form to make later computations simpler, though
some other authors choose to write the constant term as a0. Our goal is to
find the Fourier series representation given f(x). Having found the Fourier
series representation, we will be interested in determining when the Fourier
series converges and to what function it converges.

From our discussion in the last section, we see that the infinite series is
periodic. The largest period of the terms comes from the n = 1 terms. The
periods of cosx and sinx are T = 2π. Thus, the Fourier series has period
2π. This means that the series should be able to represent functions that are
periodic of period 2π.

While this appears restrictive, we could also consider functions that are
defined over one period. In Figure 5.4 we show a function defined on [0, 2π].
In the same figure, we show its periodic extension. These are just copies of
the original function shifted by the period and glued together. The extension
can now be represented by a Fourier series and restricting the Fourier series
to [0, 2π] will give a representation of the original function. Therefore, we
will first consider Fourier series representations of functions defined on this
interval. Note that we could just as easily considered functions defined on
[−π, π] or any interval of length 2π.

Fourier Coefficients

Theorem 5.2. The Fourier series representation of f(x) defined on [0, 2π]
when it exists, is given by (5.1) with Fourier coefficients

an =
1

π

∫ 2π

0

f(x) cosnxdx, n = 0, 1, 2, . . . ,

bn =
1

π

∫ 2π

0

f(x) sinnxdx, n = 1, 2, . . . . (5.2)
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Fig. 5.4. Plot of the functions f(t) defined on [0, 2π] and its periodic extension.

These expressions for the Fourier coefficients are obtained by considering
special integrations of the Fourier series. We will look at the derivations of
the an’s. First we obtain a0.

We begin by integrating the Fourier series term by term in Equation (5.1).

∫ 2π

0

f(x) dx =

∫ 2π

0

a0

2
dx+

∫ 2π

0

∞∑

n=1

[an cosnx+ bn sinnx] dx. (5.3)

We assume that we can integrate the infinite sum term by term. Then we
need to compute

∫ 2π

0

a0

2
dx =

a0

2
(2π) = πa0,

∫ 2π

0

cosnxdx =

[
sinnx

n

]2π

0

= 0,

∫ 2π

0

sinnxdx =

[− cosnx

n

]2π

0

= 0.

(5.4)

From these results we see that only one term in the integrated sum does not
vanish leaving

∫ 2π

0

f(x) dx = πa0.

This confirms the value for a0.
Next, we need to find an. We will multiply the Fourier series (5.1) by

cosmx for some positive integer m. This is like multiplying by cos 2x, cos 5x,
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etc. We are multiplying by all possible cosmx functions for different integers
m all at the same time. We will see that this will allow us to solve for the
an’s.

We find the integrated sum of the series times cosmx is given by

∫ 2π

0

f(x) cosmxdx =

∫ 2π

0

a0

2
cosmxdx

+

∫ 2π

0

∞∑

n=1

[an cosnx+ bn sinnx] cosmxdx. (5.5)

Integrating term by term, the right side becomes

a0

2

∫ 2π

0

cosmxdx +

∞∑

n=1

[

an

∫ 2π

0

cosnx cosmxdx+ bn

∫ 2π

0

sinnx cosmxdx

]

.

(5.6)

We have already established that
∫ 2π

0 cosmxdx = 0, which implies that the
first term vanishes.

Next we need to compute integrals of products of sines and cosines. This
requires that we make use of some trigonometric identities. While you have
seen such integrals before in your calculus class, we will review how to carry
out such integrals. For future reference, we list several useful identities, some
of which we will prove along the way.

Useful Trigonometric Identities

sin(x± y) = sinx cos y ± sin y cosx (5.7)

cos(x± y) = cosx cos y ∓ sinx sin y (5.8)

sin2 x =
1

2
(1 − cos 2x) (5.9)

cos2 x =
1

2
(1 + cos 2x) (5.10)

sinx sin y =
1

2
(cos(x− y) − cos(x+ y)) (5.11)

cosx cos y =
1

2
(cos(x+ y) + cos(x− y)) (5.12)

sinx cos y =
1

2
(sin(x+ y) + sin(x − y)) (5.13)

We first want to evaluate
∫ 2π

0 cosnx cosmxdx. We do this by using the
product identity. We had done this in the last chapter, but will repeat the
derivation for the reader’s benefit. Recall the addition formulae for cosines:

cos(A+B) = cosA cosB − sinA sinB,
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cos(A−B) = cosA cosB + sinA sinB.

Adding these equations gives

2 cosA cosB = cos(A+B) + cos(A−B).

We can use this identity with A = mx andB = nx to complete the integration.
We have

∫ 2π

0

cosnx cosmxdx =
1

2

∫ 2π

0

[cos(m+ n)x+ cos(m− n)x] dx

=
1

2

[
sin(m+ n)x

m+ n
+

sin(m− n)x

m− n

]2π

0

= 0. (5.14)

There is one caveat when doing such integrals. What if one of the denom-
inators m ± n vanishes? For our problem m + n 6= 0, since both m and n
are positive integers. However, it is possible for m = n. This means that the
vanishing of the integral can only happen when m 6= n. So, what can we do
about the m = n case? One way is to start from scratch with our integration.
(Another way is to compute the limit as n approaches m in our result and use
L’Hopital’s Rule. Try it!)

So, for n = m we have to compute
∫ 2π

0 cos2mxdx. This can also be handled
using a trigonometric identity. Recall that

cos2 θ =
1

2
(1 + cos 2θ.)

Inserting this into the integral, we find
∫ 2π

0

cos2mxdx =
1

2

∫ 2π

0

(1 + cos2 2mx) dx

=
1

2

[

x+
1

2m
sin 2mx

]2π

0

=
1

2
(2π) = π. (5.15)

To summarize, we have shown that
∫ 2π

0

cosnx cosmxdx =

{
0, m 6= n
π, m = n.

(5.16)

This holds true for m,n = 0, 1, . . . . [Why did we include m,n = 0?] When we
have such a set of functions, they are said to be an orthogonal set over the
integration interval.

Definition 5.3. A set of (real) functions {φn(x)} is said to be orthogonal on

[a, b] if
∫ b

a φn(x)φm(x) dx = 0 when n 6= m. Furthermore, if we also have that
∫ b

a
φ2

n(x) dx = 1, these functions are called orthonormal.
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The set of functions {cosnx}∞n=0 are orthogonal on [0, 2π]. Actually, they
are orthogonal on any interval of length 2π. We can make them orthonormal
by dividing each function by

√
π as indicated by Equation (5.15).

The notion of orthogonality is actually a generalization of the orthogonality

of vectors in finite dimensional vector spaces. The integral
∫ b

a
f(x)f(x) dx is

the generalization of the dot product, and is called the scalar product of f(x)
and g(x), which are thought of as vectors in an infinite dimensional vector
space spanned by a set of orthogonal functions. But that is another topic for
later.

Returning to the evaluation of the integrals in equation (5.6), we still have

to evaluate
∫ 2π

0
sinnx cosmxdx. This can also be evaluated using trigonomet-

ric identities. In this case, we need an identity involving products of sines and
cosines. Such products occur in the addition formulae for sine functions:

sin(A+B) = sinA cosB + sinB cosA,

sin(A−B) = sinA cosB − sinB cosA.

Adding these equations, we find that

sin(A+B) + sin(A−B) = 2 sinA cosB.

Setting A = nx and B = mx, we find that

∫ 2π

0

sinnx cosmxdx =
1

2

∫ 2π

0

[sin(n+m)x+ sin(n−m)x] dx

=
1

2

[− cos(n+m)x

n+m
+

− cos(n−m)x

n−m

]2π

0

= (−1 + 1) + (−1 + 1) = 0. (5.17)

For these integrals we also should be careful about setting n = m. In this
special case, we have the integrals

∫ 2π

0

sinmx cosmxdx =
1

2

∫ 2π

0

sin 2mxdx =
1

2

[− cos 2mx

2m

]2π

0

= 0.

Finally, we can finish our evaluation of (5.6). We have determined that all
but one integral vanishes. In that case, n = m. This leaves us with

∫ 2π

0

f(x) cosmxdx = amπ.

Solving for am gives

am =
1

π

∫ 2π

0

f(x) cosmxdx.
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Since this is true for all m = 1, 2, . . . , we have proven this part of the theorem.
The only part left is finding the bn’s This will be left as an exercise for the
reader.

We now consider examples of finding Fourier coefficients for given func-
tions. In all of these cases we define f(x) on [0, 2π].

Example 5.4. f(x) = 3 cos 2x, x ∈ [0, 2π].
We first compute the integrals for the Fourier coefficients.

a0 =
1

π

∫ 2π

0

3 cos 2xdx = 0.

an =
1

π

∫ 2π

0

3 cos 2x cosnxdx = 0, n 6= 2.

a2 =
1

π

∫ 2π

0

3 cos2 2xdx = 3,

bn =
1

π

∫ 2π

0

3 cos 2x sinnxdx = 0, ∀n.

(5.18)

Therefore, we have that the only nonvanishing coefficient is a2 = 3. So there
is one term and f(x) = 3 cos 2x. Well, we should have know this before doing
all of these integrals. So, if we have a function expressed simply in terms of
sums of simple sines and cosines, then it should be easy to write down the
Fourier coefficients without much work.

Example 5.5. f(x) = sin2 x, x ∈ [0, 2π].
We could determine the Fourier coefficients by integrating as in the last

example. However, it is easier to use trigonometric identities. We know that

sin2 x =
1

2
(1 − cos 2x) =

1

2
− 1

2
cos 2x.

There are no sine terms, so bn = 0, n = 1, 2, . . . . There is a constant term,
implying a0/2 = 1/2. So, a0 = 1. There is a cos 2x term, corresponding to
n = 2, so a2 = − 1

2 . That leaves an = 0 for n 6= 0, 2.

Example 5.6. f(x) =

{
1, 0 < x < π,
−1, π < x < 2π,

.

This example will take a little more work. We cannot bypass evaluating
any integrals at this time. This function is discontinuous, so we will have to
compute each integral by breaking up the integration into two integrals, one
over [0, π] and the other over [π, 2π].

a0 =
1

π

∫ 2π

0

f(x) dx
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=
1

π

∫ π

0

dx+
1

π

∫ 2π

π

(−1) dx

=
1

π
(π) +

1

π
(−2π + π) = 0. (5.19)

an =
1

π

∫ 2π

0

f(x) cosnxdx

=
1

π

[∫ π

0

cosnxdx−
∫ 2π

π

cosnxdx

]

=
1

π

[(
1

n
sinnx

)π

0

−
(

1

n
sinnx

)2π

π

]

= 0. (5.20)

bn =
1

π

∫ 2π

0

f(x) sinnxdx

=
1

π

[∫ π

0

sinnxdx−
∫ 2π

π

sinnxdx

]

=
1

π

[(

− 1

n
cosnx

)π

0

+

(
1

n
cosnx

)2π

π

]

=
1

π

[

− 1

n
cosnπ +

1

n
+

1

n
− 1

n
cosnπ

]

=
2

nπ
(1 − cosnπ). (5.21)

We have found the Fourier coefficients for this function. Before inserting
them into the Fourier series (5.1), we note that cosnπ = (−1)n. Therefore,

1 − cosnπ =

{
0, n even
2, n odd.

(5.22)

So, half of the bn’s are zero. While we could write the Fourier series represen-
tation as

f(x) ∼ 4

π

∞∑

n=1, odd

1

n
sinnx,

we could let n = 2k − 1 and write

f(x) =
4

π

∞∑

k=1

sin(2k − 1)x

2k − 1
,

But does this series converge? Does it converge to f(x)? We will discuss
this question later in the chapter.
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5.3 Fourier Series Over Other Intervals

In many applications we are interested in determining Fourier series represen-
tations of functions defined on intervals other than [0, 2π]. In this section we
will determine the form of the series expansion and the Fourier coefficients in
these cases.

The most general type of interval is given as [a, b].However, this often is too
general. More common intervals are of the form [−π, π], [0, L], or [−L/2, L/2].
The simplest generalization is to the interval [0, L]. Such intervals arise often
in applications. For example, one can study vibrations of a one dimensional
string of length L and set up the axes with the left end at x = 0 and the
right end at x = L. Another problem would be to study the temperature
distribution along a one dimensional rod of length L. Such problems lead to
the original studies of Fourier series. As we will see later, symmetric intervals,
[−a, a], are also useful.

Given an interval [0, L], we could apply a transformation to an interval of
length 2π by simply rescaling our interval. Then we could apply this transfor-
mation to our Fourier series representation to obtain an equivalent one useful
for functions defined on [0, L].

We define x ∈ [0, 2π] and t ∈ [0, L]. A linear transformation relating these
intervals is simply x = 2πt

L as shown in Figure 5.5. So, t = 0 maps to x = 0
and t = L maps to x = 2π. Furthermore, this transformation maps f(x) to
a new function g(t) = f(x(t)), which is defined on [0, L]. We will determine
the Fourier series representation of this function using the representation for
f(x).

Fig. 5.5. A sketch of the transformation between intervals x ∈ [0, 2π] and t ∈ [0, L].

Recall the form of the Fourier representation for f(x) in Equation (5.1):

f(x) ∼ a0

2
+

∞∑

n=1

[an cosnx+ bn sinnx] . (5.23)

Inserting the transformation relating x and t, we have

g(t) ∼ a0

2
+

∞∑

n=1

[

an cos
2nπt

L
+ bn sin

2nπt

L

]

. (5.24)

This gives the form of the series expansion for g(t) with t ∈ [0, L]. But, we
still need to determine the Fourier coefficients.
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Recall, that

an =
1

π

∫ 2π

0

f(x) cosnxdx.

We need to make a substitution in the integral of x = 2πt
L . We also will need

to transform the differential, dx = 2π
L dt. Thus, the resulting form for our

coefficient is

an =
2

L

∫ L

0

g(t) cos
2nπt

L
dt. (5.25)

Similarly, we find that

bn =
2

L

∫ L

0

g(t) sin
2nπt

L
dt. (5.26)

We note first that when L = 2π we get back the series representation that
we first studied. Also, the period of cos 2nπt

L is L/n, which means that the
representation for g(t) has a period of L.

At the end of this section we present the derivation of the Fourier series
representation for a general interval for the interested reader. In Table 5.1 we
summarize some commonly used Fourier series representations.

We will end our discussion for now with some special cases and an example
for a function defined on [−π, π].

Example 5.7. Let f(x) = |x| on [−π, π] We compute the coefficients, beginning
as usual with a0. We have

a0 =
1

π

∫ π

−π

|x| dx

=
2

π

∫ π

0

|x| dx = π (5.33)

At this point we need to remind the reader about the integration of even
and odd functions.

1. Even Functions: In this evaluation we made use of the fact that the
integrand is an even function. Recall that f(x) is an even function if
f(−x) = f(x) for all x. One can recognize even functions as they are
symmetric with respect to the y-axis as shown in Figure 5.6(A). If one
integrates an even function over a symmetric interval, then one has that

∫ a

−a

f(x) dx = 2

∫ a

0

f(x) dx. (5.34)

One can prove this by splitting off the integration over negative values of
x, using the substitution x = −y, and employing the evenness of f(x).
Thus,
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Table 5.1. Special Fourier Series Representations on Different Intervals

Fourier Series on [0, L]

f(x) ∼
a0

2
+

∞∑

n=1

[

an cos
2nπx

L
+ bn sin

2nπx

L

]

. (5.27)

an =
2

L

∫ L

0

f(x) cos
2nπx

L
dx. n = 0, 1, 2, . . . ,

bn =
2

L

∫ L

0

f(x) sin
2nπx

L
dx. n = 1, 2, . . . . (5.28)

Fourier Series on [−L
2
, L

2
]

f(x) ∼
a0

2
+

∞∑

n=1

[

an cos
2nπx

L
+ bn sin

2nπx

L

]

. (5.29)

an =
2

L

∫ L
2

−
L
2

f(x) cos
2nπx

L
dx. n = 0, 1, 2, . . . ,

bn =
2

L

∫ L
2

−
L
2

f(x) sin
2nπx

L
dx. n = 1, 2, . . . . (5.30)

Fourier Series on [−π, π]

f(x) ∼
a0

2
+

∞∑

n=1

[an cos nx + bn sin nx] . (5.31)

an =
1

π

∫ π

−π

f(x) cos nx dx. n = 0, 1, 2, . . . ,

bn =
1

π

∫ π

−π

f(x) sin nx dx. n = 1, 2, . . . . (5.32)

∫ a

−a

f(x) dx =

∫ 0

−a

f(x) dx+

∫ a

0

f(x) dx

= −
∫ 0

a

f(−y) dy +

∫ a

0

f(x) dx

=

∫ a

0

f(y) dy +

∫ a

0

f(x) dx

= 2

∫ a

0

f(x) dx. (5.35)
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This can be visually verified by looking at Figure 5.6(A).
2. Odd Functions: A similar computation could be done for odd functions.
f(x) is an odd function if f(−x) = −f(x) for all x. The graphs of such
functions are symmetric with respect to the origin as shown in Figure
5.6(B). If one integrates an odd function over a symmetric interval, then
one has that ∫ a

−a

f(x) dx = 0. (5.36)

Fig. 5.6. Examples of the areas under (A) even and (B) odd functions on symmetric
intervals, [−a, a].

We now continue with our computation of the Fourier coefficients for
f(x) = |x| on [−π, π]. We have

an =
1

π

∫ π

−π

|x| cosnxdx =
2

π

∫ π

0

x cosnxdx. (5.37)

Here we have made use of the fact that |x| cosnx is an even function. In order
to compute the resulting integral, we need to use integration by parts,

∫ b

a

u dv = uv
∣
∣
∣

b

a
−
∫ b

a

v du,

by letting u = x and dv = cosnxdx. Thus, du = dx and v =
∫
dv = 1

n sinnx.
Continuing with the computation, we have

an =
2

π

∫ π

0

x cosnxdx.

=
2

π

[
1

n
x sinnx

∣
∣
∣

π

0
− 1

n

∫ π

0

sinnxdx

]

= − 2

nπ

[

− 1

n
cosnx

]π

0

= − 2

πn2
(1 − (−1)n). (5.38)
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Here we have used the fact that cosnπ = (−1)n for any integer n. This lead
to a factor (1 − (−1)n). This factor can be simplified as

1 − (−1)n =

{
2, n odd
0, n even

. (5.39)

So, an = 0 for n even and an = − 4
πn2 for n odd.

Computing the bn’s is simpler. We note that we have to integrate |x| sinnx
from x = −π to π. The integrand is an odd function and this is a symmetric
interval. So, the result is that bn = 0 for all n.

Putting this all together, the Fourier series representation of f(x) = |x| on
[−π, π] is given as

f(x) ∼ π

2
− 4

π

∞∑

n=1, odd

cosnx

n2
. (5.40)

While this is correct, we can rewrite the sum over only odd n by reindexing.
We let n = 2k− 1 for k = 1, 2, 3, . . . . Then we only get the odd integers. The
series can then be written as

f(x) ∼ π

2
− 4

π

∞∑

k=1

cos(2k − 1)x

(2k − 1)2
. (5.41)

Throughout our discussion we have referred to such results as Fourier
representations. We have not looked at the convergence of these series. Here
is an example of an infinite series of functions. What does this series sum to?
We show in Figure 5.7 the first few partial sums. They appear to be converging
to f(x) = |x| fairly quickly.

Even though f(x) was defined on [−π, π] we can still evaluate the Fourier
series at values of x outside this interval. In Figure 5.8, we see that the rep-
resentation agrees with f(x) on the interval [−π, π]. Outside this interval we
have a periodic extension of f(x) with period 2π.

Another example is the Fourier series representation of f(x) = x on [−π, π]
as left for Problem 5.1. This is determined to be

f(x) ∼ 2

∞∑

n=1

(−1)n+1

n
sinnx. (5.42)

As seen in Figure 5.9 we again obtain the periodic extension of our function.
In this case we needed many more terms. Also, the vertical parts of the first
plot are nonexistent. In the second plot we only plot the points and not the
typical connected points that most software packages plot as the default style.

Example 5.8. It is interesting to note that one can use Fourier series to obtain
sums of some infinite series. For example, in the last example we found that

x ∼ 2

∞∑

n=1

(−1)n+1

n
sinnx.
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Fig. 5.7. Plot of the first partial sums of the Fourier series representation for f(x) =
|x|.
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Fig. 5.8. Plot of the first 10 terms of the Fourier series representation for f(x) = |x|
on the interval [−2π, 4π].

Now, what if we chose x = π
2 ? Then, we have

π

2
= 2

∞∑

n=1

(−1)n+1

n
sin

nπ

2
= 2

[

1 − 1

3
+

1

5
− 1

7
+ . . .

]

.

This gives a well known expression for π:
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Fig. 5.9. Plot of the first 10 terms and 200 terms of the Fourier series representation
for f(x) = x on the interval [−2π, 4π].

π = 4

[

1 − 1

3
+

1

5
− 1

7
+ . . .

]

.

5.3.1 Fourier Series on [a, b]

A Fourier series representation is also possible for a general interval, t ∈ [a, b].
As before, we just need to transform this interval to [0, 2π]. Let

x = 2π
t− a

b− a
.

Inserting this into the Fourier series (5.1) representation for f(x) we obtain

g(t) ∼ a0

2
+

∞∑

n=1

[

an cos
2nπ(t− a)

b− a
+ bn sin

2nπ(t− a)

b− a

]

. (5.43)

Well, this expansion is ugly. It is not like the last example, where the
transformation was straightforward. If one were to apply the theory to appli-
cations, it might seem to make sense to just shift the data so that a = 0 and
be done with any complicated expressions. However, mathematics students
enjoy the challenge of developing such generalized expressions. So, let’s see
what is involved.

First, we apply the addition identities for trigonometric functions and
rearrange the terms.
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g(t) ∼ a0

2
+

∞∑

n=1

[

an cos
2nπ(t− a)

b− a
+ bn sin

2nπ(t− a)

b− a

]

=
a0

2
+

∞∑

n=1

[

an

(

cos
2nπt

b− a
cos

2nπa

b− a
+ sin

2nπt

b − a
sin

2nπa

b− a

)

+ bn

(

sin
2nπt

b− a
cos

2nπa

b − a
− cos

2nπt

b− a
sin

2nπa

b− a

)]

=
a0

2
+

∞∑

n=1

[

cos
2nπt

b− a

(

an cos
2nπa

b− a
− bn sin

2nπa

b− a

)

+ sin
2nπt

b− a

(

an sin
2nπa

b − a
+ bn cos

2nπa

b− a

)]

. (5.44)

Defining A0 = a0 and

An ≡ an cos
2nπa

b − a
− bn sin

2nπa

b− a

Bn ≡ an sin
2nπa

b− a
+ bn cos

2nπa

b− a
, (5.45)

we arrive at the more desirable form for the Fourier series representation of a
function defined on the interval [a, b].

g(t) ∼ A0

2
+

∞∑

n=1

[

An cos
2nπt

b− a
+Bn sin

2nπt

b− a

]

. (5.46)

We next need to find expressions for the Fourier coefficients. We insert the
known expressions for an and bn and rearrange. First, we note that under the
transformation x = 2π t−a

b−a we have

an =
1

π

∫ 2π

0

f(x) cosnxdx

=
2

b− a

∫ b

a

g(t) cos
2nπ(t− a)

b − a
dt, (5.47)

and

bn =
1

π

∫ 2π

0

f(x) cosnxdx

=
2

b− a

∫ b

a

g(t) sin
2nπ(t− a)

b− a
dt. (5.48)

Then, inserting these integrals in An, combining integrals and making use of
the addition formula for the cosine of the sum of two angles, we obtain
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An ≡ an cos
2nπa

b− a
− bn sin

2nπa

b − a

=
2

b− a

∫ b

a

g(t)

[

cos
2nπ(t− a)

b− a
cos

2nπa

b − a
− sin

2nπ(t− a)

b− a
sin

2nπa

b− a

]

dt

=
2

b− a

∫ b

a

g(t) cos
2nπt

b− a
dt. (5.49)

A similar computation gives

Bn =
2

b− a

∫ b

a

g(t) sin
2nπt

b− a
dt. (5.50)

Summarizing, we have shown that:

Theorem 5.9. The Fourier series representation of f(x) defined
on [a, b] when it exists, is given by

f(x) ∼ a0

2
+

∞∑

n=1

[

an cos
2nπx

b− a
+ bn sin

2nπx

b− a

]

. (5.51)

with Fourier coefficients

an =
2

b− a

∫ b

a

f(x) cos
2nπx

b− a
dx. n = 0, 1, 2, . . . ,

bn =
2

b− a

∫ b

a

f(x) sin
2nπx

b− a
dx. n = 1, 2, . . . . (5.52)

5.4 Sine and Cosine Series

In the last two examples (f(x) = |x| and f(x) = x on [−π, π]) we have seen
Fourier series representations that contain only sine or cosine terms. As we
know, the sine functions are odd functions and thus sum to odd functions.
Similarly, cosine functions sum to even functions. Such occurrences happen
often in practice. Fourier representations involving just sines are called sine
series and those involving just cosines (and the constant term) are called cosine
series.

Another interesting result, based upon these examples, is that the original
functions, |x| and x agree on the interval [0, π]. Note from Figures 5.7-5.9 that
their Fourier series representations do as well. Thus, more than one series can
be used to represent functions defined on finite intervals. All they need to do
is to agree with the function over that particular interval. Sometimes one of
these series is more useful because it has additional properties needed in the
given application.

We have made the following observations from the previous examples:
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1. There are several trigonometric series representations for a function de-
fined on a finite interval.

2. Odd functions on a symmetric interval are represented by sine series and
even functions on a symmetric interval are represented by cosine series.

These two observations are related and are the subject of this section.
We begin by defining a function f(x) on interval [0, L]. We have seen that the
Fourier series representation of this function appears to converge to a periodic
extension of the function.

In Figure 5.10 we show a function defined on [0, 1]. To the right is its
periodic extension to the whole real axis. This representation has a period of
L = 1. The bottom left plot is obtained by first reflecting f about the y-axis
to make it an even function and then graphing the periodic extension of this
new function. Its period will be 2L = 2. Finally, in the last plot we flip the
function about each axis and graph the periodic extension of the new odd
function. It will also have a period of 2L = 2.
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Fig. 5.10. This is a sketch of a function and its various extensions. The original
function f(x) is defined on [0, 1] and graphed in the upper left corner. To its right is
the periodic extension, obtained by adding replicas. The two lower plots are obtained
by first making the original function even or odd and then creating the periodic
extensions of the new function.

In general, we obtain three different periodic representations. In order
to distinguish these we will refer to them simply as the periodic, even and
odd extensions. Now, starting with f(x) defined on [0, L], we would like to
determine the Fourier series representations leading to these extensions. [For
easy reference, the results are summarized in Table 5.2] We have already seen
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that the periodic extension of f(x) is obtained through the Fourier series
representation in Equation (5.53).

Table 5.2. Fourier Cosine and Sine Series Representations on [0, L]

Fourier Series on [0, L]

f(x) ∼
a0

2
+

∞∑

n=1

[

an cos
2nπx

L
+ bn sin

2nπx

L

]

. (5.53)

an =
2

L

∫ L

0

f(x) cos
2nπx

L
dx. n = 0, 1, 2, . . . ,

bn =
2

L

∫ L

0

f(x) sin
2nπx

L
dx. n = 1, 2, . . . . (5.54)

Fourier Cosine Series on [0, L]

f(x) ∼ a0/2 +

∞∑

n=1

an cos
nπx

L
. (5.55)

where

an =
2

L

∫ L

0

f(x) cos
nπx

L
dx. n = 0, 1, 2, . . . . (5.56)

Fourier Sine Series on [0, L]

f(x) ∼

∞∑

n=1

bn sin
nπx

L
. (5.57)

where

bn =
2

L

∫ L

0

f(x) sin
nπx

L
dx. n = 1, 2, . . . . (5.58)

Given f(x) defined on [0, L], the even periodic extension is obtained by
simply computing the Fourier series representation for the even function

fe(x) ≡
{
f(x), 0 < x < L,
f(−x) −L < x < 0.

(5.59)

Since fe(x) is an even function on a symmetric interval [−L,L], we expect
that the resulting Fourier series will not contain sine terms. Therefore, the
series expansion will be given by [Use the general case in (5.51) with a = −L
and b = L.]:
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fe(x) ∼
a0

2
+

∞∑

n=1

an cos
nπx

L
. (5.60)

with Fourier coefficients

an =
1

L

∫ L

−L

fe(x) cos
nπx

L
dx. n = 0, 1, 2, . . . . (5.61)

However, we can simplify this by noting that the integrand is even and the
interval of integration can be replaced by [0, L]. On this interval fe(x) = f(x).
So, we have the Cosine Series Representation of f(x) for x ∈ [0, L] is given as

f(x) ∼ a0

2
+

∞∑

n=1

an cos
nπx

L
. (5.62)

where

an =
2

L

∫ L

0

f(x) cos
nπx

L
dx. n = 0, 1, 2, . . . . (5.63)

Similarly, given f(x) defined on [0, L], the odd periodic extension is ob-
tained by simply computing the Fourier series representation for the odd
function

fo(x) ≡
{

f(x), 0 < x < L,
−f(−x) −L < x < 0.

(5.64)

The resulting series expansion leads to defining the Sine Series Representation
of f(x) for x ∈ [0, L] as

f(x) ∼
∞∑

n=1

bn sin
nπx

L
. (5.65)

where

bn =
2

L

∫ L

0

f(x) sin
nπx

L
dx. n = 1, 2, . . . . (5.66)

Example 5.10. In Figure 5.10 we actually provided plots of the various exten-
sions of the function f(x) = x2 for x ∈ [0, 1]. Let’s determine the representa-
tions of the periodic, even and odd extensions of this function.

For a change, we will use a CAS (Computer Algebra System) package to
do the integrals. In this case we can use Maple. A general code for doing this
for the periodic extension is shown in Table 5.3.

Example 5.11. Periodic Extension - Trigonometric Fourier Series
Using the above code, we have that a0 = 2

3 an = 1
n2π2 and bn = − 1

nπ .
Thus, the resulting series is given as

f(x) ∼ 1

3
+

∞∑

n=1

[
1

n2π2
cos 2nπx− 1

nπ
sin 2nπx

]

.
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Table 5.3. Maple code for computing Fourier coefficients and plotting partial sums
of the Fourier series.

> restart:

> L:=1:

> f:=x^2:

> assume(n,integer):

> a0:=2/L*int(f,x=0..L);

a0 := 2/3

> an:=2/L*int(f*cos(2*n*Pi*x/L),x=0..L);

1

an := -------

2 2

n~ Pi

> bn:=2/L*int(f*sin(2*n*Pi*x/L),x=0..L);

1

bn := - -----

n~ Pi

> F:=a0/2+sum((1/(k*Pi)^2)*cos(2*k*Pi*x/L)

-1/(k*Pi)*sin(2*k*Pi*x/L),k=1..50):

> plot(F,x=-1..3,title=‘Periodic Extension‘,

titlefont=[TIMES,ROMAN,14],font=[TIMES,ROMAN,14]);

In Figure 5.11 we see the sum of the first 50 terms of this series. Generally,
we see that the series seems to be converging to the periodic extension of f .
There appear to be some problems with the convergence around integer values
of x. We will later see that this is because of the discontinuities in the periodic
extension and the resulting overshoot is referred to as the Gibbs phenomenon
which is discussed in the appendix.

Example 5.12. Even Periodic Extension - Cosine Series

In this case we compute a0 = 2
3 and an = 4(−1)n

n2π2 . Therefore, we have

f(x) ∼ 1

3
+

4

π2

∞∑

n=1

(−1)n

n2
cosnπx.

In Figure 5.12 we see the sum of the first 50 terms of this series. In this
case the convergence seems to be much better than in the periodic extension
case. We also see that it is converging to the even extension.

Example 5.13. Odd Periodic Extension - Sine Series
Finally, we look at the sine series for this function. We find that bn =

− 2
n3π3 (n2π2(−1)n − 2(−1)n + 2). Therefore,
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Fig. 5.11. The periodic extension of f(x) = x2 on [0, 1].

f(x) ∼ − 2

π3

∞∑

n=1

1

n3
(n2π2(−1)n − 2(−1)n + 2) sinnπx.

Even Periodic Extension

0

0.2

0.4

0.6

0.8

1

–1 1 2 3
x

Fig. 5.12. The even periodic extension of f(x) = x2 on [0, 1].
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Once again we see discontinuities in the extension as seen in Figure 5.13.
However, we have verified that our sine series appears to be converging to the
odd extension as we first sketched in Figure 5.10.

Odd Periodic Extension
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Fig. 5.13. The odd periodic extension of f(x) = x2 on [0, 1].

5.5 Appendix: The Gibbs Phenomenon

We have seen that when there is a jump discontinuity in the periodic exten-
sion of our functions, whether the function originally had a discontinuity or
developed one due to a mismatch in the values of the endpoints. This can
be seen in Figures 5.9, 5.11 and 5.13. The Fourier series has a difficult time
converging at the point of discontinuity and these graphs of the Fourier series
show a distinct overshoot which does not go away. This is called the Gibbs
phenomenon and the amount of overshoot can be computed.

In one of our first examples, Example 5.6, we found the Fourier series
representation of the piecewise defined function

f(x) =

{
1, 0 < x < π,
−1, π < x < 2π,

to be
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f(x) ∼ 4

π

∞∑

k=1

sin(2k − 1)x

2k − 1
.

In Figure 5.14 we display the sum of the first ten terms. Note the wiggles,
overshoots and under shoots near x = 0,±π. These are seen more when we
plot the representation for x ∈ [−3π, 3π], as shown in Figure 5.15. We note
that the overshoots and undershoots occur at discontinuities in the periodic
extension of f(x). These occur whenever f(x) has a discontinuity or if the
values of f(x) at the endpoints of the domain do not agree.

One might expect that we only need to add more terms. In Figure 5.16 we
show the sum for twenty terms. Note the sum appears to converge better for
points far from the discontinuities. But, the overshoots and undershoots are
still present. In Figures 5.17 and 5.18 show magnified plots of the overshoot
at x = 0 for N = 100 and N = 500, respectively. We see that the overshoot
persists. The peak is at about the same height, but its location seems to be
getting closer to the origin. We will show how one can estimate the size of the
overshoot.

Gibbs Phenomenon N=10

–1

–0.5

0.5

1

–3 –2 –1 1 2 3
x

Fig. 5.14. The Fourier series representation of a step function on [−π, π] for N = 10.

We can study the Gibbs phenomenon by looking at the partial sums of
general Fourier trigonometric series for functions f(x) defined on the interval
[−L,L]. Writing out the partial sums, inserting the Fourier coefficients and
rearranging, we have
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Gibbs Phenomenon N=10
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Fig. 5.15. The Fourier series representation of a step function on [−π, π] for N = 10
plotted on [−3π, 3π] displaying the periodicity.

SN (x) = a0 +

N∑

n=1

[

an cos
nπx

L
+ bn sin

nπx

L

]

Gibbs Phenomenon N=20
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Fig. 5.16. The Fourier series representation of a step function on [−π, π] for N = 20.
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Gibbs Phenomenon N=100
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Fig. 5.17. The Fourier series representation of a step function on [−π, π] for N =
100.

=
1

2L

∫ L

−L

f(y) dy +

N∑

n=1

[(

1

L

∫ L

−L

f(y) cos
nπy

L
dy

)

cos
nπx

L

+

(

1

L

∫ L

−L

f(y) sin
nπy

L
dy

)

sin
nπx

L

]

=
1

L

L∫

−L

{

1

2
+

N∑

n=1

(

cos
nπy

L
cos

nπx

L
+ sin

nπy

L
sin

nπx

L

)
}

f(y) dy

=
1

L

L∫

−L

{

1

2
+

N∑

n=1

cos
nπ(y − x)

L

}

f(y) dy

≡ 1

L

L∫

−L

DN (y − x)f(y) dy. (5.67)

We have defined

DN (x) =
1

2
+

N∑

n=1

cos
nπx

L
,

which is called the N-th Dirichlet Kernel. We now prove
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Gibbs Phenomenon N=500
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Fig. 5.18. The Fourier series representation of a step function on [−π, π] for N =
500.

Proposition:

Dn(x) =

{
sin((n+ 1

2
) πx

L
)

2 sin πx
2L

, sin πx
2L 6= 0

n+ 1
2 , sin πx

2L = 0
.

Proof: Let θ = πx
L and multiply Dn(x)by 2 sin θ

2 to obtain:

2 sin
θ

2
Dn(x) = 2 sin

θ

2

[
1

2
+ cos θ + · · · + cosnθ

]

= sin
θ

2
+ 2 cos θ sin

θ

2
+ 2 cos 2θ sin

θ

2
+ · · · + 2 cosnθ sin

θ

2

= sin
θ

2
+

(

sin
3θ

2
− sin

θ

2

)

+

(

sin
5θ

2
− sin

3θ

2

)

+ · · ·

+

[

sin

(

n+
1

2

)

θ − sin

(

n− 1

2

)

θ

]

= sin

(

n+
1

2

)

θ. (5.68)

Thus,

2 sin
θ

2
Dn(x) = sin

(

n+
1

2

)

θ,

or if sin θ
2 6= 0,

Dn(x) =
sin
(
n+ 1

2

)
θ

2 sin θ
2

, θ =
πx

L
.

If sin θ
2 = 0,then one needs to apply L’Hospital’s Rule:

lim
θ→2mπ

sin
(
n+ 1

2

)
θ

2 sin θ
2

= lim
θ→2mπ

(n+ 1
2 ) cos

(
n+ 1

2

)
θ

cos θ
2

=
(n+ 1

2 ) cos (2mnπ +mπ)

cosmπ

= n+
1

2
. (5.69)

We further note that DN(x) is periodic with period 2L and is an
even function.
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So far, we have found that

SN (x) =
1

L

L∫

−L

DN (y − x)f(y) dy. (5.70)

Now, make the substitution ξ = y − x. Then,

SN(x) =
1

L

∫ L−x

−L−x

DN (ξ)f(ξ + x) dξ

=
1

L

∫ L

−L

DN(ξ)f(ξ + x) dξ. (5.71)

In the second integral we have made use of the fact that f(x) and DN(x) are
periodic with period 2L and shifted the interval back to [−L,L].

Now split the integration and use the fact that DN(x) is an even function.
Then,

SN (x) =
1

L

∫ 0

−L

DN (ξ)f(ξ + x) dξ +
1

L

∫ L

0

DN (ξ)f(ξ + x) dξ

=
1

L

∫ L

0

[f(x− ξ) + f(ξ + x)]DN(ξ) dξ. (5.72)

We can use this result to study the Gibbs phenomenon whenever it occurs.
In particular, we will only concentrate on our earlier example. Namely,

f(x) =

{
1, 0 < x < π,
−1, π < x < 2π,

For this case, we have

SN (x) =
1

π

∫ π

0

[f(x− ξ) + f(ξ + x)]DN (ξ) dξ (5.73)

for

DN (x) =
1

2
+

N∑

n=1

cosnx.

Also, one can show that

f(x− ξ) + f(ξ + x) =







2, 0 ≤ ξ < x,
0, x ≤ ξ < π − x,
−2, π − x ≤ ξ < π.

Thus, we have
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SN (x) =
2

π

∫ x

0

DN (ξ) dξ − 2

π

∫ π

π−x

DN (ξ) dξ

=
2

π

∫ x

0

DN (z) dz +
2
∫ x

0

DN(π − z) dz. (5.74)

Here we made the substitution z = π− ξ in the second integral. The Dirichlet
kernel in the proposition for L = π is given by

DN (x) =
sin(N + 1

2 )x

2 sin x
2

.

For N large, we have N + 1
2 ≈ N, and for small x, we have sin x

2 ≈ x
2 . So,

under these assumptions,

DN(x) ≈ sinNx

x
.

Therefore,

SN (x) → 2

π

∫ x

0

sinNξ

ξ
dξ.

If we want to determine the locations of the minima and maxima, where
the undershoot and overshoot occur, then we apply the first derivative test
for extrema to SN (x). Thus,

d

dx
SN(x) =

2

π

sinNx

x
= 0.

The extrema occur for Nx = mπ, m = ±1,±2, . . . . One can show that there
is a maximum at x = π/N and a minimum for x = 2π/N. The value for the
overshoot can be computed as

SN (π/N) =
2

π

∫ π/N

0

sinNξ

ξ
dξ

=
2

π

∫ π

0

sin t

t
dt

=
2

π
Si(π)

= 1.178979744 . . . . (5.75)

Note that this value is independent of N and is given in terms of the sine
integral,

Si(x) ≡
∫ x

0

sin t

t
dt.



182 5 Fourier Series

Problems

5.1. Find the Fourier Series of each function f(x) of period 2π. For each series,
plot the Nth partial sum,

SN =
a0

2
+

N∑

n=1

[an cosnx+ bn sinnx] ,

for N = 5, 10, 50 and describe the convergence (is it fast? what is it converging
to, etc.) [Some simple Maple code for computing partial sums is shown below.]

a. f(x) = x, |x| < π.

b. f(x) = x2

4 , |x| < π.
c. f(x) = π − |x|, |x| < π.

d. f(x) =

{
π
2 , 0 < x < π,

−π
2 , π < x < 2π.

e. f(x) =

{
0, −π < x < 0,
1, 0 < x < π.

A simple set of commands in Maple are shown below, where you fill in the
Fourier coefficients that you have computed by hand and f(x) so that you
can compare your results. Of course, other modifications may be needed.

> restart:

> f:=x:

> F:=a0/2+sum(an*cos(n*x)+bn*sin(n*x),n=1..N):

> N:=10: plot({f,F},x=-Pi..Pi,color=black);

5.2. Consider the function f(x) = 4 sin3 2x

a. Derive an identity relating sin3 θ in terms of sin θ and sin 3θ and express
f(x) in terms of simple sine functions.

b. Determine the Fourier coefficients of f(x) in a Fourier series expansion on
[0, 2π] without computing any integrals!

5.3. Find the Fourier series of f(x) = x on the given interval with the given
period T. Plot the Nth partial sums and describe what you see.

a. 0 < x < 2, T = 2.
b. −2 < x < 2, T = 4.

5.4. The result in problem 5.1b above gives a Fourier series representation of
x2

4 . By picking the right value for x and a little arrangement of the series,
show that [See Example 5.8.]

a.
π2

6
= 1 +

1

22
+

1

32
+

1

42
+ · · · .
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b.
π2

8
= 1 +

1

32
+

1

52
+

1

72
+ · · · .

5.5. Sketch (by hand) the graphs of each of the following functions over four
periods. Then sketch the extensions each of the functions as both an even and
odd periodic function. Determine the corresponding Fourier sine and cosine
series and verify the convergence to the desired function using Maple.

a. f(x) = x2, 0 < x < 1.
b. f(x) = x(2 − x), 0 < x < 2.

c. f(x) =

{
0, 0 < x < 1,
1, 1 < x < 2.

d. f(x) =

{
π, 0 < x < π,

2π − x, π < x < 2π.




