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(
1
i

)

eit =

(
cos t+ i sin t
i cos t− sin t

)

.

From this solution we can construct the fundamental solution matrix

Φ(t) =

(
cos t sin t
− sin t cos t

)

.

So, the general solution to the homogeneous problem is

xh = Φ(t)C =

(
c1 cos t+ c2 sin t
−c1 sin t+ c2 cos t

)

.

Next we seek a particular solution to the nonhomogeneous problem. From
Equation (2.73) we see that we need Φ−1(s)f(s). Thus, we have

Φ−1(s)f(s) =

(
cos s − sin s
sin s cos s

)(
0

2 cos s

)

=

(
−2 sin s cos s

2 cos2 s

)

. (2.77)

We now compute

Φ(t)

∫ t

t0

Φ−1(s)f(s) ds =

(
cos t sin t
− sin t cos t

)∫ t

t0

(
−2 sin s cos s

2 cos2 s

)

ds

=

(
cos t sin t
− sin t cos t

)(
− sin2 t

t+ 1
2 sin(2t)

)

=

(
t sin t

sin t+ t cos t

)

. (2.78)

therefore, the general solution is

x =

(
c1 cos t+ c2 sin t
−c1 sin t+ c2 cos t

)

+

(
t sin t

sin t+ t cos t

)

.

The solution to the initial value problem is

x =

(
cos t sin t
− sin t cos t

)(
4
0

)

+

(
t sin t

sin t+ t cos t

)

,

or

x =

(
4 cos t+ t sin t
−3 sin t+ t cos t

)

.

2.9 Applications

In this section we will describe several applications leading to systems of
differential equations. In keeping with common practice in areas like physics,
we will denote differentiation with respect to time as
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ẋ =
dx

dt
.

We will look mostly at linear models and later modify some of these models
to include nonlinear terms.

2.9.1 Spring-Mass Systems

There are many problems in physics that result in systems of equations. This is
because the most basic law of physics is given by Newton’s Second Law, which
states that if a body experiences a net force, it will accelerate. In particular,
the net force is proportional to the acceleration with a proportionality constant
called the mass, m. This is summarized as

∑

F = ma.

Since a = ẍ, Newton’s Second Law is mathematically a system of second
order differential equations for three dimensional problems, or one second
order differential equation for one dimensional problems. If there are several
masses, then we would naturally end up with systems no matter how many
dimensions are involved.

A standard problem encountered in a first course in differential equations
is that of a single block on a spring as shown in Figure 2.18. The net force in
this case is the restoring force of the spring given by Hooke’s Law,

Fs = −kx,

where k > 0 is the spring constant. Here x is the elongation of the spring, or
the displacement of the block from equilibrium. When x is positive, the spring
force is negative and when x is negative the spring force is positive. We have
depicted a horizontal system sitting on a frictionless surface.

A similar model can be provided for vertically oriented springs. Place the
block on a vertically hanging spring. It comes to equilibrium, stretching the
spring by ℓ0. Newton’s Second Law gives

−mg + kℓ0 = 0.

Now, pulling the mass further by x0, and releasing it, the mass begins to
oscillate. Letting x be the displacement from the new equilibrium, Newton’s
Second Law now gives mẍ = −mg + k(ℓ0 − x) = −kx.

In both examples (a horizontally or vetically oscillating mass) Newton’s
Second Law of motion reults in the differential equation

mẍ+ kx = 0. (2.79)

This is the equation for simple harmonic motion which we have already en-
countered in Chapter 1.
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m

k

x

Fig. 2.18. Spring-Mass system.

This second order equation can be written as a system of two first order
equations.

x′ = y

y′ = − k
mx. (2.80)

The coefficient matrix for this system is

A =

(
0 1

−ω2 0

)

,

where ω2 = k
m . The eigenvalues of this system are λ = ±iω and the solutions

are simple sines and cosines,

x(t) = c1 cosωt+ c2 sinωt,

y(t) = ω(−c1 sinωt+ c2 cosωt). (2.81)

We further note that ω is called the angular frequency of oscillation and
is given in rad/s. The frequency of oscillation is

f =
ω

2π
.

It typically has units of s−1, cps, or Hz. The multiplicative inverse has units
of time and is called the period,

T =
1

f
.

Thus, the period of oscillation for a mass m on a spring with spring constant
k is given by

T = 2π

√
m

k
. (2.82)

Of course, we did not need to convert the last problem into a system. In
fact, we had seen this equation in Chapter 1. However, when one considers



2.9 Applications 63

m

k

x

m

k

1 2

21

1 x2

Fig. 2.19. Spring-Mass system for two masses and two springs.

more complicated spring-mass systems, systems of differential equations occur
naturally. Consider two blocks attached with two springs as shown in Figure
2.19. In this case we apply Newton’s second law for each block.

First, consider the forces acting on the first block. The first spring is
stretched by x1. This gives a force of F1 = −k1x1. The second spring may also
exert a force on the block depending if it is stretched, or not. If both blocks
are displaced by the same amount, then the spring is not displaced. So, the
amount by which the spring is displaced depends on the relative displacements
of the two masses. This results in a second force of F2 = k2(x2 − x1).

There is only one spring connected to mass two. Again the force depends
on the relative displacement of the masses. It is just oppositely directed to
the force which mass one feels from this spring.

Combining these forces and using Newton’s Second Law for both masses,
we have the system of second order differential equations

m1ẍ1 = −k1x1 + k2(x2 − x1)

m2ẍ2 = −k2(x2 − x1). (2.83)

One can rewrite this system of two second order equations as a system
of four first order equations. This is done by introducing two new variables
x3 = ẋ1 and x4 = ẋ2. Note that these physically are the velocities of the two
blocks.

The resulting system of first order equations is given as

ẋ1 = x3

ẋ2 = x4

ẋ3 = − k1

m1
x1 +

k2

m1
(x2 − x1)

ẋ4 = − k2

m2
(x2 − x1)

(2.84)
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We can write our new system in matrix form as







ẋ1

ẋ2

ẋ3

ẋ4







=







0 0 1 0
0 0 0 1

−k1+k2

m1

k2

m1
0 0

k2

m2
− k2

m2
0 0













x1

x2

x3

x4







(2.85)

2.9.2 Electrical Circuits

Another problem often encountered in a first year physics class is that of an
LRC series circuit. This circuit is pictured in Figure 2.20. The resistor is a
circuit element satisfying Ohm’s Law. The capacitor is a device that stores
electrical energy and an inductor, or coil, stores magnetic energy.

The physics for this problem stems from Kirchoff’s Rules for circuits. Since
there is only one loop, we will only need Kirchoff’s Loop Rule. Namely, the
sum of the drops in electric potential are set equal to the rises in electric
potential. The potential drops across each circuit element are given by

1. Resistor: VR = IR.
2. Capacitor: VC = q

C .

3. Inductor: VL = L dI
dt .

R C L

V(t)

Fig. 2.20. Series LRC Circuit.

Adding these potential drops and setting the sum equal to the voltage
supplied by the voltage source, V (t), we obtain

IR +
q

C
+ L

dI

dt
= V (t).

Furthermore, we recall that the current is defined as I = dq
dt . where q is the

charge in the circuit. Since both q and I are unknown, we can replace the
current by its expression in terms of the charge to obtain

Lq̈ +Rq̇ +
1

C
q = V (t). (2.86)
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This is a second order differential equation for q(t). One can set up a system
of equations and proceed to solve them. However, this is a constant coefficient
differential equation and can also be solved using the methods in Chapter 1.

In the next examples we will look at special cases that arise for the se-
ries LRC circuit equation. These include RC circuits, solvable by first order
methods and LC circuits, leading to oscillatory behavior.

Example 2.19. RC Circuits
We first consider the case of an RC circuit in which there is no inductor.

Also, we will consider what happens when one charges a capacitor with a DC
battery (V (t) = V0) and when one discharges a charged capacitor (V (t) = 0).

For charging a capacitor, we have the initial value problem

R
dq

dt
+
q

C
= V0, q(0) = 0. (2.87)

This equation is an example of a linear first order equation for q(t). However,
we can also rewrite this equation and solve it as a separable equation, since
V0 is a constant. We will do the former only as another example of finding the
integrating factor.

We first write the equation in standard form:

dq

dt
+

q

RC
=
V0

R
. (2.88)

The integrating factor is then

µ(t) = e
∫

dt
RC = et/RC .

Thus,
d

dt

(

qet/RC
)

=
V0

R
et/RC . (2.89)

Integrating, we have

qet/RC =
V0

R

∫

et/RC dt = CV0e
t/RC +K. (2.90)

Note that we introduced the integration constant, K. Now divide out the
exponential to get the general solution:

q = CV0 +Ke−t/RC . (2.91)

(If we had forgotten the K, we would not have gotten a correct solution for
the differential equation.)

Next, we use the initial condition to get our particular solution. Namely,
setting t = 0, we have that

0 = q(0) = CV0 +K.
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So, K = −CV0. Inserting this into our solution, we have

q(t) = CV0(1 − e−t/RC). (2.92)

Now we can study the behavior of this solution. For large times the second
term goes to zero. Thus, the capacitor charges up, asymptotically, to the final
value of q0 = CV0. This is what we expect, because the current is no longer
flowing over R and this just gives the relation between the potential difference
across the capacitor plates when a charge of q0 is established on the plates.

0.06

0.02

0.04

0
0

Time t

12010080604020

q

0.07

0.05

0.03

0.01

Charging       Capacitor

Fig. 2.21. The charge as a function of time for a charging capacitor with R = 2.00
kΩ, C = 6.00 mF, and V0 = 12 V.

Let’s put in some values for the parameters. We let R = 2.00 kΩ, C = 6.00
mF, and V0 = 12 V. A plot of the solution is given in Figure 2.21. We see
that the charge builds up to the value of CV0 = 72 mC. If we use a smaller
resistance, R = 200 Ω, we see in Figure 2.22 that the capacitor charges to the
same value, but much faster.

The rate at which a capacitor charges, or discharges, is governed by the
time constant, τ = RC. This is the constant factor in the exponential. The
larger it is, the slower the exponential term decays. If we set t = τ , we find
that

q(τ) = CV0(1 − e−1) = (1 − 0.3678794412 . . .)q0 ≈ 0.63q0.
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Thus, at time t = τ , the capacitor has almost charged to two thirds of its final
value. For the first set of parameters, τ = 12s. For the second set, τ = 1.2s.
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0.06
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Fig. 2.22. The charge as a function of time for a charging capacitor with R = 200
Ω, C = 6.00 mF, and V0 = 12 V.

Now, let’s assume the capacitor is charged with charge ±q0 on its plates. If
we disconnect the battery and reconnect the wires to complete the circuit, the
charge will then move off the plates, discharging the capacitor. The relevant
form of our initial value problem becomes

R
dq

dt
+
q

C
= 0, q(0) = q0. (2.93)

This equation is simpler to solve. Rearranging, we have

dq

dt
= − q

RC
. (2.94)

This is a simple exponential decay problem, which you can solve using sep-
aration of variables. However, by now you should know how to immediately
write down the solution to such problems of the form y′ = ky. The solution is

q(t) = q0e
−t/τ , τ = RC.
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We see that the charge decays exponentially. In principle, the capacitor
never fully discharges. That is why you are often instructed to place a shunt
across a discharged capacitor to fully discharge it.

In Figure 2.23 we show the discharging of our two previous RC circuits.
Once again, τ = RC determines the behavior. At t = τ we have

q(τ) = q0e
−1 = (0.3678794412 . . .)q0 ≈ 0.37q0.

So, at this time the capacitor only has about a third of its original value.

q
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R = 2000                

R = 200                 

Fig. 2.23. The charge as a function of time for a discharging capacitor with R = 2.00
kΩ or R = 200 Ω, and C = 6.00 mF, and q0 = 72 mC.
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Example 2.20. LC Circuits
Another simple result comes from studying LC circuits. We will now con-

nect a charged capacitor to an inductor. In this case, we consider the initial
value problem

Lq̈ +
1

C
q = 0, q(0) = q0, q̇(0) = I(0) = 0. (2.95)

Dividing out the inductance, we have

q̈ +
1

LC
q = 0. (2.96)

This equation is a second order, constant coefficient equation. It is of the
same form as the one we saw earlier for simple harmonic motion of a mass on
a spring. So, we expect oscillatory behavior. The characteristic equation is

r2 +
1

LC
= 0.

The solutions are

r1,2 = ± i√
LC

.

Thus, the solution of (2.96) is of the form

q(t) = c1 cos(ωt) + c2 sin(ωt), ω = (LC)−1/2. (2.97)

Inserting the initial conditions yields

q(t) = q0 cos(ωt). (2.98)

The oscillations that result are understandable. As the charge leaves the
plates, the changing current induces a changing magnetic field in the inductor.
The stored electrical energy in the capacitor changes to stored magnetic energy
in the inductor. However, the process continues until the plates are charged
with opposite polarity and then the process begins in reverse. The charged
capacitor then discharges and the capacitor eventually returns to its original
state and the whole system repeats this over and over.

The frequency of this simple harmonic motion is easily found. It is given
by

f =
ω

2π
=

1

2π

1√
LC

. (2.99)

This is called the tuning frequency because of its role in tuning circuits.
Of course, this is an ideal situation. There is always resistance in the

circuit, even if only a small amount from the wires. So, we really need to
account for resistance, or even add a resistor. This leads to a slightly more
complicated system in which damping will be present.
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More complicated circuits are possible by looking at parallel connections,
or other combinations, of resistors, capacitors and inductors. This will result
in several equations for each loop in the circuit, leading to larger systems of
differential equations. an example of another circuit setup is shown in Figure
2.24. This is not a problem that can be covered in the first year physics course.

R

C LV(t)

R1 2

Fig. 2.24. A circuit with two loops containing several different circuit elements.

There are two loops, indicated in Figure 2.25 as traversed clockwise. For
each loop we need to apply Kirchoff’s Loop Rule. There are three oriented
currents, labeled Ii, i = 1, 2, 3. Corresponding to each current is a changing
charge, qi such that

Ii =
dqi
dt
, i = 1, 2, 3.

For loop one we have

I1R1 +
q2
C

= V (t). (2.100)

For loop two

I3R2 + L
dI3
dt

=
q2
C
. (2.101)

Fig. 2.25. The previous parallel circuit with the directions indicated for traversing
the loops in Kirchoff’s Laws.

We have three unknown functions for the charge. Once we know the charge
functions, differentiation will yield the currents. However, we only have two
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equations. We need a third equation. This is found from Kirchoff’s Point
(Junction) Rule. Consider the points A and B in Figure 2.25. Any charge
(current) entering these junctions must be the same as the total charge (cur-
rent) leaving the junctions. For point A we have

I1 = I2 + I3, (2.102)

or
q̇1 = q̇2 + q̇3. (2.103)

Equations (2.100), (2.101), and (2.103) form a coupled system of differen-
tial equations for this problem. There are both first and second order deriva-
tives involved. We can write the whole system in terms of charges as

R1q̇1 +
q2
C

= V (t)

R2q̇3 + Lq̈3 =
q2
C

q̇1 = q̇2 + q̇3. (2.104)

The question is whether, or not, we can write this as a system of first order
differential equations. Since there is only one second order derivative, we can
introduce the new variable q4 = q̇3. The first equation can be solved for q̇1.
The third equation can be solved for q̇2 with appropriate substitutions for the
other terms. q̇3 is gotten from the definition of q4 and the second equation
can be solved for q̈3 and substitutions made to obtain the system

q̇1 =
V

R1
− q2
R1C

q̇2 =
V

R1
− q2
R1C

− q4

q̇3 = q4

q̇4 =
q2
LC

− R2

L
q4.

So, we have a nonhomogeneous first order system of differential equations.
In the last section we learned how to solve such systems.

2.9.3 Love Affairs

The next application is one that has been studied by several authors as a cute
system involving relationships. One considers what happens to the affections
that two people have for each other over time. Let R denote the affection
that Romeo has for Juliet and J be the affection that Juliet has for Romeo.
positive values indicate love and negative values indicate dislike.

One possible model is given by



72 2 Systems of Differential Equations

dR

dt
= bJ

dJ

dt
= cR (2.105)

with b > 0 and c < 0. In this case Romeo loves Juliet the more she likes him.
But Juliet backs away when she finds his love for her increasing.

A typical system relating the combined changes in affection can be modeled
as

dR

dt
= aR+ bJ

dJ

dt
= cR+ dJ. (2.106)

Several scenarios are possible for various choices of the constants. For
example, if a > 0 and b > 0, Romeo gets more and more excited by Juliet’s
love for him. If c > 0 and d < 0, Juliet is being cautious about her relationship
with Romeo. For specific values of the parameters and initial conditions, one
can explore this match of an overly zealous lover with a cautious lover.

2.9.4 Predator Prey Models

Another common model studied is that of competing species. For example, we
could consider a population of rabbits and foxes. Left to themselves, rabbits
would tend to multiply, thus

dR

dt
= aR,

with a > 0. In such a model the rabbit population would grow exponentially.
Similarly, a population of foxes would decay without the rabbits to feed on.
So, we have that

dF

dt
= −bF

for b > 0.
Now, if we put these populations together on a deserted island, they would

interact. The more foxes, the rabbit population would decrease. However, the
more rabbits, the foxes would have plenty to eat and the population would
thrive. Thus, we could model the competing populations as

dR

dt
= aR− cF,

dF

dt
= −bF + dR, (2.107)

where all of the constants are positive numbers. Studying this coupled system
would lead to as study of the dynamics of these populations. We will discuss
other (nonlinear) systems in the next chapter.
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2.9.5 Mixture Problems

There are many types of mixture problems. Such problems are standard in
a first course on differential equations as examples of first order differential
equations. Typically these examples consist of a tank of brine, water contain-
ing a specific amount of salt with pure water entering and the mixture leaving,
or the flow of a pollutant into, or out of, a lake.

In general one has a rate of flow of some concentration of mixture entering
a region and a mixture leaving the region. The goal is to determine how much
stuff is in the region at a given time. This is governed by the equation

Rate of change of substance = Rate In − Rate Out.

This can be generalized to the case of two interconnected tanks. We provide
some examples.

Example 2.21. Single Tank Problem
A 50 gallon tank of pure water has a brine mixture with concentration of

2 pounds per gallon entering at the rate of 5 gallons per minute. [See Figure
2.26.] At the same time the well-mixed contents drain out at the rate of 5
gallons per minute. Find the amount of salt in the tank at time t. In all such
problems one assumes that the solution is well mixed at each instant of time.

Fig. 2.26. A typical mixing problem.

Let x(t) be the amount of salt at time t. Then the rate at which the salt
in the tank increases is due to the amount of salt entering the tank less that
leaving the tank. To figure out these rates, one notes that dx/dt has units of
pounds per minute. The amount of salt entering per minute is given by the
product of the entering concentration times the rate at which the brine enters.
This gives the correct units:



74 2 Systems of Differential Equations

(

2
pounds

gal

)(

5
gal

min

)

= 10
pounds

min
.

Similarly, one can determine the rate out as
(
x pounds

50 gal

)(

5
gal

min

)

=
x

10

pounds

min
.

Thus, we have
dx

dt
= 10 − x

10
.

This equation is easily solved using the methods for first order equations.

Example 2.22. Double Tank Problem

X Y

Fig. 2.27. The two tank problem.

One has two tanks connected together, labelled tank X and tank Y, as
shown in Figure 2.27. Let tank X initially have 100 gallons of brine made
with 100 pounds of salt. Tank Y initially has 100 gallons of pure water. Now
pure water is pumped into tank X at a rate of 2.0 gallons per minute. Some of
the mixture of brine and pure water flows into tank Y at 3 gallons per minute.
To keep the tank levels the same, one gallon of the Y mixture flows back into
tank X at a rate of one gallon per minute and 2.0 gallons per minute drains
out. Find the amount of salt at any given time in the tanks. What happens
over a long period of time?

In this problem we set up two equations. Let x(t) be the amount of salt in
tank X and y(t) the amount of salt in tank Y . Again, we carefully look at the
rates into and out of each tank in order to set up the system of differential
equations. We obtain the system

dx

dt
=

y

100
− 3x

100
dy

dt
=

3x

100
− 3y

100
. (2.108)
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This is a linear, homogenous constant coefficient system of two first order
equations, which we know how to solve.

2.9.6 Chemical Kinetics

There are many problems that come from studying chemical reactions. The
simplest reaction is when a chemical A turns into chemical B. This happens
at a certain rate, k > 0. This can be represented by the chemical formula

A
k

// B.

In this case we have that the rates of change of the concentrations of A, [A],
and B, [B], are given by

d[A]

dt
= −k[A]

d[B]

dt
= k[A] (2.109)

Think about this as it is a key to understanding the next reactions.
A more complicated reaction is given by

A
k1

// B
k2

// C.

In this case we can add to the above equation the rates of change of concen-
trations [B] and [C]. The resulting system of equations is

d[A]

dt
= −k1[A],

d[B]

dt
= k1[A] − k2[B],

d[C]

dt
= k2[B]. (2.110)

One can further consider reactions in which a reverse reaction is possible.
Thus, a further generalization occurs for the reaction

A
k1

// B
k3

oo

k2

// C.

The resulting system of equations is

d[A]

dt
= −k1[A] + k3[B],

d[B]

dt
= k1[A] − k2[B] − k3[B],

d[C]

dt
= k2[B]. (2.111)

More complicated chemical reactions will be discussed at a later time.
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2.9.7 Epidemics

Another interesting area of application of differential equation is in predicting
the spread of disease. Typically, one has a population of susceptible people or
animals. Several infected individuals are introduced into the population and
one is interested in how the infection spreads and if the number of infected
people drastically increases or dies off. Such models are typically nonlinear
and we will look at what is called the SIR model in the next chapter. In this
section we will model a simple linear model.

Let break the population into three classes. First, S(t) are the healthy
people, who are susceptible to infection. Let I(t) be the number of infected
people. Of these infected people, some will die from the infection and others
recover. Let’s assume that initially there in one infected person and the rest,
say N, are obviously healthy. Can we predict how many deaths have occurred
by time t?

Let’s try and model this problem using the compartmental analysis we had
seen in the mixing problems. The total rate of change of any population would
be due to those entering the group less those leaving the group. For example,
the number of healthy people decreases due infection and can increase when
some of the infected group recovers. Let’s assume that the rate of infection is
proportional to the number of healthy people,aS. Also, we assume that the
number who recover is proportional to the number of infected, rI. Thus, the
rate of change of the healthy people is found as

dS

dt
= −aS + rI.

Let the number of deaths be D(t). Then, the death rate could be taken to be
proportional to the number of infected people. So,

dD

dt
= dI

Finally, the rate of change of infectives is due to healthy people getting infected
and the infectives who either recover or die. Using the corresponding terms in
the other equations, we can write

dI

dt
= aS − rI − dI.

This linear system can be written in matrix form.

d

dt





S
I
D



 =





−a r 0
a −d− r 0
0 d 0









S
I
D



 . (2.112)

The eigenvalue equation for this system is

λ
[
λ2 + (a+ r + d)λ+ ad

]
= 0.

The reader can find the solutions of this system and determine if this is a
realistic model.
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2.10 Appendix: Diagonalization and Linear Systems

As we have seen, the matrix formulation for linear systems can be power-
ful, especially for n differential equations involving n unknown functions. Our
ability to proceed towards solutions depended upon the solution of eigen-
value problems. However, in the case of repeated eigenvalues we saw some
additional complications. This all depends deeply on the background linear
algebra. Namely, we relied on being able to diagonalize the given coefficient
matrix. In this section we will discuss the limitations of diagonalization and
introduce the Jordan canonical form.

We begin with the notion of similarity. Matrix A is similar to matrix B if
and only if there exists a nonsingular matrix P such that

B = P−1AP. (2.113)

Recall that a nonsingular matrix has a nonzero determinant and is invertible.
We note that the similarity relation is an equivalence relation. Namely, it

satisfies the following

1. A is similar to itself.
2. If A is similar to B, then B is similar to A.
3. If A is similar to B and B is similar to C, the A is similar to C.

Also, if A is similar to B, then they have the same eigenvalues. This follows
from a simple computation of the eigenvalue equation. Namely,

0 = det(B − λI)

= det(P−1AP − λP−1IP )

= det(P )−1 det(A− λI) det(P )

= det(A− λI). (2.114)

Therefore, det(A− λI) = 0 and λ is an eigenvalue of both A and B.
An n×n matrix A is diagonalizable if and only if A is similar to a diagonal

matrix D; i.e., there exists a nonsingular matrix P such that

D = P−1AP. (2.115)

One of the most important theorems in linear algebra is the Spectral The-
orem. This theorem tells us when a matrix can be diagonalized. In fact, it
goes beyond matrices to the diagonalization of linear operators. We learn in
linear algebra that linear operators can be represented by matrices once we
pick a particular representation basis. Diagonalization is simplest for finite
dimensional vector spaces and requires some generalization for infinite dimen-
sional vectors spaces. Examples of operators to which the spectral theorem
applies are self-adjoint operators (more generally normal operators on Hilbert
spaces). We will explore some of these ideas later in the course. The spectral
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theorem provides a canonical decomposition, called the spectral decomposi-
tion, or eigendecomposition, of the underlying vector space on which it acts.

The next theorem tells us how to diagonalize a matrix:

Theorem 2.23. Let A be an n × n matrix. Then A is diagonalizable if and
only if A has n linearly independent eigenvectors. If so, then

D = P−1AP.

If {v1, . . . , vn} are the eigenvectors of A and {λ1, . . . , λn} are the correspond-
ing eigenvalues, then vj is the jth column of P and Djj = λj .

A simpler determination results by noting

Theorem 2.24. Let A be an n×n matrix with n real and distinct eigenvalues.
Then A is diagonalizable.

Therefore, we need only look at the eigenvalues and determine diagonalizabil-
ity. In fact, one also has from linear algebra the following result.

Theorem 2.25. Let A be an n× n real symmetric matrix. Then A is diago-
nalizable.

Recall that a symmetric matrix is one whose transpose is the same as the
matrix, or Aij = Aji.

Example 2.26. Consider the matrix

A =





1 2 2
2 3 0
2 0 3





This is a real symmetric matrix. The characteristic polynomial is found to be

det(A− λI) = −(λ− 5)(λ− 3)(λ+ 1) = 0.

As before, we can determine the corresponding eigenvectors (for λ = −1, 3, 5,
respectively) as





−2
1
1



 ,





0
−1
1



 ,





1
1
1



 .

We can use these to construct the diagonalizing matrix P . Namely, we have

P−1AP =





−2 0 1
1 −1 1
1 1 1





−1



1 2 2
2 3 0
2 0 3









−2 0 1
1 −1 1
1 1 1



 =





−1 0 0
0 3 0
0 0 5



 . (2.116)
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Now diagonalization is an important idea in solving linear systems of first
order equations, as we have seen for simple systems. If our system is originally
diagonal, that means our equations are completely uncoupled. Let our system
take the form

dy

dt
= Dy, (2.117)

where D is diagonal with entries λi, i = 1, . . . , n. The system of equations,
y′i = λiyi, has solutions

yi(t) = cce
λit.

Thus, it is easy to solve a diagonal system.
Let A be similar to this diagonal matrix. Then

dy

dt
= P−1APy. (2.118)

This can be rewritten as
dPy

dt
= APy.

Defining x = Py, we have
dx

dt
= Ax. (2.119)

This simple derivation shows that if A is diagonalizable, then a transfor-
mation of the original system in x to new coordinates, or a new basis, results
in a simpler system in y.

However, it is not always possible to diagonalize a given square matrix.
This is because some matrices do not have enough linearly independent vec-
tors, or we have repeated eigenvalues. However, we have the following theorem:

Theorem 2.27. Every n× n matrix A is similar to a matrix of the form

J = diag[J1, J2, . . . , Jn],

where

Ji =










λi 1 0 · · · 0
0 λi 1 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 λi 1
0 0 · · · 0 λi










(2.120)

We will not go into the details of how one finds this Jordan Canonical
Form or proving the theorem. In practice you can use a computer algebra
system to determine this and the similarity matrix. However, we would still
need to know how to use it to solve our system of differential equations.
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Example 2.28. Let’s consider a simple system with the 3 × 3 Jordan block

A =





2 1 0
0 2 1
0 0 2



 .

The corresponding system of coupled first order differential equations takes
the form

dx1

dt
= 2x1 + x2,

dx2

dt
= 2x2 + x3,

dx3

dt
= 2x3. (2.121)

The last equation is simple to solve, giving x3(t) = c3e
2t. Inserting into

the second equation, you have a

dx2

dt
= 2x2 + c3e

2t.

Using the integrating factor, e−2t, one can solve this equation to get x2(t) =
(c2 + c3t)e

2t. Similarly, one can solve the first equation to obtain x1(t) =
(c1 + c2t+ 1

2c3t
2)e2t.

This should remind you of a problem we had solved earlier leading to the
generalized eigenvalue problem in (2.43). This suggests that there is a more
general theory when there are multiple eigenvalues and relating to Jordan
canonical forms.

Let’s write the solution we just obtained in vector form. We have

x(t) =



c1





1
0
0



+ c2





t
1
0



+ c3





1
2 t

2

t
1







 e2t. (2.122)

It looks like this solution is a linear combination of three linearly indepen-
dent solutions,

x = v1e
2λt

x = (tv1 + v2)e
λt

x = (
1

2
t2v1 + tv2 + v3)e

λt, (2.123)

where λ = 2 and the vectors satisfy the equations

(A− λI)v1 = 0,

(A− λI)v2 = v1,

(A− λI)v3 = v2, (2.124)
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and

(A− λI)v1 = 0,

(A− λI)2v2 = 0,

(A− λI)3v3 = 0. (2.125)

It is easy to generalize this result to build linearly independent solutions
corresponding to multiple roots (eigenvalues) of the characteristic equation.

Problems

2.1. Consider the system

x′ = −4x− y

y′ = x− 2y.

a. Determine the second order differential equation satisfied by x(t).
b. Solve the differential equation for x(t).
c. Using this solution, find y(t).
d. Verify your solutions for x(t) and y(t).
e. Find a particular solution to the system given the initial conditions x(0) =

1 and y(0) = 0.

2.2. Consider the following systems. Determine the families of orbits for each
system and sketch several orbits in the phase plane and classify them by their
type (stable node, etc.)

a.

x′ = 3x

y′ = −2y.

b.

x′ = −y
y′ = −5x.

c.

x′ = 2y

y′ = −3x.

d.

x′ = x− y

y′ = y.
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e.

x′ = 2x+ 3y

y′ = −3x+ 2y.

2.3. Use the transformations relating polar and Cartesian coordinates to prove
that

dθ

dt
=

1

r2

[

x
dy

dt
− y

dx

dt

]

.

2.4. In Equation (2.34) the exponential of a matrix was defined.

a. Let

A =

(
2 0
0 0

)

.

Compute eA.

b. Give a definition of cosA and compute cos

(
1 0
0 2

)

in simplest form.

c. Prove ePAP−1

= PeAP−1.

2.5. Consider the general system

x′ = ax+ by

y′ = cx+ dy.

Can one determine the family of trajectories for the general case? Recall, this
means we have to solve the first order equation

dy

dx
=
cx+ dy

ax+ by
.

[Actually, this equation is homogeneous of degree 0.] It can be written in the
form dy

dx = F
(

y
x

)
. For such equations, one can make the substitution z = y

x ,
or y(x) = xz(x), and obtain a separable equation for z.

a. Using the general system, show that z = z(x) satisfies and equation of the
form

x
dz

dx
= F (z) − z.

Identify the function F (z).
b. Use the equation for z(x) in part a to find the family of trajectories of the

system

x′ = x− y

y′ = x+ y.

First determine the appropriate F (z) and then solve the resulting sepa-
rable equation as a relation between z and x. Then write the solution of
the original equation in terms of x and y.
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c. Use polar coordinates to describe the family of solutions obtained. You can
rewrite the solution in polar coordinates and/or solve the system rewritten
in polar coordinates.

2.6. Find the eigenvalue(s) and eigenvector(s) for the following:

a.

(
4 2
3 3

)

b.

(
3 −5
1 −1

)

c.

(
4 1
0 4

)

d.





1 −1 4
3 2 −1
2 1 −1





2.7. Consider the following systems. For each system determine the coefficient
matrix. When possible, solve the eigenvalue problem for each matrix and use
the eigenvalues and eigenfunctions to provide solutions to the given systems.
Finally, in the common cases which you investigated in Problem 2.2, make
comparisons with your previous answers, such as what type of eigenvalues
correspond to stable nodes.

a.

x′ = 3x− y

y′ = 2x− 2y.

b.

x′ = −y
y′ = −5x.

c.

x′ = x− y

y′ = y.

d.

x′ = 2x+ 3y

y′ = −3x+ 2y.

e.

x′ = −4x− y

y′ = x− 2y.
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f.

x′ = x− y

y′ = x+ y.

2.8. For each of the following matrices consider the system x′ = Ax and

a. Find the fundamental solution matrix.
b. Find the principal solution matrix.

a.

A =

(
1 1
4 1

)

.

b.

A =

(
2 5
0 2

)

.

c.

A =

(
4 −13
2 −6

)

.

d.

A =





1 −1 4
3 2 −1
2 1 −1



 .

2.9. For the following problems

1) Rewrite the problem in matrix form.
2) Find the fundamental matrix solution.
3) Determine the general solution of the nonhomogeneous system.
4) Find the principal matrix solution.
5) Determine the particular solution of the initial value problem.

a. y′′ + y = 2 sin 3x, y(0) = 2, y′(0) = 0.
b. y′′ − 3y′ + 2y = 20e−2x, y(0) = 0, y′(0) = 6.

2.10. Prove Equation (2.75),

x(t) = Ψ(t)x0 + Ψ(t)

∫ t

t0

Ψ−1(s)f(s) ds,

starting with Equation (2.73).

2.11. Add a third spring connected to mass two in the coupled system shown
in Figure 2.19 to a wall on the far right. Assume that the masses are the same
and the springs are the same.

a. Model this system with a set of first order differential equations.
b. If the masses are all 2.0 kg and the spring constants are all 10.0 N/m,

then find the general solution for the system.
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c. Move mass one to the left (of equilibrium) 10.0 cm and mass two to the
right 5.0 cm. Let them go. find the solution and plot it as a function of
time. Where is each mass at 5.0 seconds?

2.12. Consider the series circuit in Figure 2.20 with L = 1.00 H, R = 1.00×102

Ω, C = 1.00 × 10−4 F, and V0 = 1.00 × 103 V.

a. Set up the problem as a system of two first order differential equations for
the charge and the current.

b. Suppose that no charge is present and no current is flowing at time t = 0
when V0 is applied. Find the current and the charge on the capacitor as
functions of time.

c. Plot your solutions and describe how the system behaves over time.

2.13. You live in a cabin in the mountains and you would like to provide
yourself with water from a water tank that is 25 feet above the level of the
pipe going into the cabin. [See Figure 2.28.] The tank is filled from an aquifer
125 ft below the surface and being pumped at a maximum rate of 7 gallons
per minute. As this flow rate is not sufficient to meet your daily needs, you
would like to store water in the tank and have gravity supply the needed
pressure. So, you design a cylindrical tank that is 35 ft high and has a 10 ft
diameter. The water then flows through pipe at the bottom of the tank. You
are interested in the height h of the water at time t. This in turn will allow
you to figure the water pressure.

Fig. 2.28. A water tank problem in the mountains.

First, the differential equation governing the flow of water from a tank
through an orifice is given as

dh

dt
=
K − αa

√
2gh

A
.

Here K is the rate at which water is being pumped into the top of the tank. A
is the cross sectional area of this tank. α is called the contraction coefficient,
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which measures the flow through the orifice, which has cross section a. We
will assume that α = 0.63 and that the water enters in a 6 in diameter PVC
pipe.

a. Assuming that the water tank is initially full, find the minimum flow rate
in the system during the first two hours.

b. What is the minimum water pressure during the first two hours? Namely,
what is the gauge pressure at the house? Note that ∆P = ρgH, where ρ is
the water density and H is the total height of the fluid (tank plus vertical
pipe). Note that ρg = 0.434 psi (pounds per square inch).

c. How long will it take for the tank to drain to 10 ft above the base of the
tank?

Other information you may need is 1 gallon = 231 in2 and g = 32.2 ft/s2.

2.14. Initially a 200 gallon tank is filled with pure water. At time t = 0 a salt
concentration with 3 pounds of salt per gallon is added to the container at
the rate of 4 gallons per minute, and the well-stirred mixture is drained from
the container at the same rate.

a. Find the number of pounds of salt in the container as a function of time.
b. How many minutes does it take for the concentration to reach 2 pounds

per gallon?
c. What does the concentration in the container approach for large values of

time? Does this agree with your intuition?
d. Assuming that the tank holds much more than 200 gallons, and everything

is the same except that the mixture is drained at 3 gallons per minute,
what would the answers to parts a and b become?

2.15. You make two gallons of chili for a party. The recipe calls for two tea-
spoons of hot sauce per gallon, but you had accidentally put in two tablespoons
per gallon. You decide to feed your guests the chili anyway. Assume that the
guests take 1 cup/min of chili and you replace what was taken with beans and
tomatoes without any hot sauce. [1 gal = 16 cups and 1 Tb = 3 tsp.]

a. Write down the differential equation and initial condition for the amount
of hot sauce as a function of time in this mixture-type problem.

b. Solve this initial value problem.
c. How long will it take to get the chili back to the recipe’s suggested con-

centration?

2.16. Consider the chemical reaction leading to the system in (2.111). Let
the rate constants be k1 = 0.20 ms−1, k2 = 0.05 ms−1, and k3 = 0.10 ms−1.
What do the eigenvalues of the coefficient matrix say about the behavior of
the system? Find the solution of the system assuming [A](0) = A0 = 1.0
µmol, [B](0) = 0, and [C](0) = 0. Plot the solutions for t = 0.0 to 50.0 ms
and describe what is happening over this time.
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2.17. Consider the epidemic model leading to the system in (2.112). Choose
the constants as a = 2.0 days−1, d = 3.0 days−1, and r = 1.0 days−1. What
are the eigenvalues of the coefficient matrix? Find the solution of the system
assuming an initial population of 1, 000 and one infected individual. Plot the
solutions for t = 0.0 to 5.0 days and describe what is happening over this
time. Is this model realistic?






