
Chapter 1

Introduction

In order to solve a differential equation, you look at it till a solution occurs to you.
- George Pólya (1887-1985)

These are notes for a second course in differential equations origi-
nally taught in the Spring semester of 2005 at the University of North Car-
olina Wilmington to upper level and first year graduate students and later
updated in Fall 2007, Fall 2008, and Fall 2024. It is assumed that you have
had an introductory course in differential equations. However, we will be-
gin this chapter with a review of some of the material from your first course
in differential equations and then give an overview of the material we are
about to cover.

Typically an introductory course in differential equations introduces stu-
dents to analytical solutions of first order differential equations which are
separable, first order linear differential equations, and sometimes to some
other special types of equations. Students then explore the theory of second
order differential equations generally restricted to the study of exact solu-
tions of constant coefficient linear differential equations or even equations
of the Cauchy-Euler type. These are later followed by the study of special
techniques, such as power series methods or Laplace transform methods. If
time permits, ones explores a few special functions, such as Legendre poly-
nomials and Bessel functions, while using power series methods for solving
differential equations.

More recently, variations on this inventory of topics have been intro-
duced through the early introduction of systems of differential equations,
qualitative studies of these systems and a more intense use of technology
for understanding the behavior of solutions of differential equations. This
is typically done at the expense of not covering power series methods, spe-
cial functions, or Laplace transforms. In either case, the types of problems
solved are initial value problems in which the differential equation to be
solved is accompanied by a set of initial conditions.

In this course we will assume some exposure to the overlap of these two
approaches. We will first give a quick review of the solution of separable
and linear first order equations. Then we will review second order linear
differential equations and Cauchy-Euler equations. This will then be fol-
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lowed by an overview of some of the topics covered. As with any course in
differential equations, we will emphasize analytical, graphical and (some-
times) approximate solutions of differential equations. Throughout we will
present applications from physics, chemistry and biology.

1.1 Review of the First Course

In this section we review a few of the solution techniques encountered
in a first course in differential equations. We will not review the basic theory
except in possible references as reminders as to what we are doing.

We first recall that an n-th order ordinary differential equation is an equation
for an unknown function y(x) that expresses a relationship between the
unknown function and its first n derivatives. One could write this generally
as

F(y(n)(x), y(n−1)(x), . . . , y′(x), y(x), x) = 0. (1.1)

Here y(n)(x) represents the nth derivative of y(x).
An initial value problem consists of the differential equation plus the val-

ues of the first n − 1 derivatives at a particular value of the independent
variable, say x0:

y(n−1)(x0) = yn−1, y(n−2)(x0) = yn−2, . . . , y(x0) = y0. (1.2)

A linear nth order differential equation takes the form

an(x)y(n)(x) + an−1(x)y(n−1)(x) + . . . + a1(x)y′(x) + a0(x)y(x)) = f (x).
(1.3)

If f (x) ≡ 0, then the equation is said to be homogeneous, otherwise it is
nonhomogeneous.

1.1.1 First Order Differential Equations

Typically, the first differential equations encountered are first
order equations. A first order differential equation takes the form

F(y′, y, x) = 0. (1.4)

There are two general forms for which one can formally obtain a solution.
The first is the separable case and the second is a first order equation. We
indicate that we can formally obtain solutions, as one can display the needed
integration that leads to a solution. However, the resulting integrals are
not always reducible to elementary functions nor does one obtain explicit
solutions when the integrals are doable.Separable equations.

A first order equation is separable if it can be written the form

dy
dx

= f (x)g(y). (1.5)
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Special cases result when either f (x) = 1 or g(y) = 1. In the first case the
equation is said to be autonomous.

The general solution to equation (1.5) is obtained in terms of two integrals:

∫ dy
g(y)

=
∫

f (x) dx + C, (1.6)

where C is an integration constant. This yields a 1-parameter family of solu-
tions to the differential equation corresponding to different values of C. If
one can solve (1.6) for y(x), then one obtains an explicit solution. Other-
wise, one has a family of implicit solutions. If an initial condition is given
as well, then one might be able to find a member of the family that satisfies
this condition, which is often called a particular solution.

Example 1.1. y′ = 2xy, y(0) = 2.
Applying (1.6), one has∫ dy

y
=
∫

2x dx + C.

Integrating yields
ln |y| = x2 + C.

Exponentiating, one obtains the general solution,

y(x) = ±ex2+C = Aex2
.

Here we have defined A = ±eC. Since C is an arbitrary constant, A is
an arbitrary constant. Several solutions in this 1-parameter family are
shown in Figure 1.1.

Next, one seeks a particular solution satisfying the initial condition.
For y(0) = 2, one finds that A = 2. So, the particular solution satisfy-
ing the initial conditions is y(x) = 2ex2

.

Example 1.2. yy′ = −x.
Following the same procedure as in the last example, one obtains:∫

y dy = −
∫

x dx + C ⇒ y2 = −x2 + A, where A = 2C.

Thus, we obtain an implicit solution. Writing the solution as x2 + y2 =

A, we see that this is a family of circles for A > 0 and the origin for
A = 0. Plots of some solutions in this family are shown in Figure 1.2.

Linear first order equations.
The second type of first order equation encountered is the linear first order

differential equation in the form

y′(x) + p(x)y(x) = q(x). (1.7)

In this case one seeks an integrating factor, µ(x), which is a function that one Integrating factor.

can multiply through the equation making the left side a perfect derivative.
Thus, obtaining,

d
dx

[µ(x)y(x)] = µ(x)q(x). (1.8)
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Figure 1.1: Plots of solutions from the 1-
parameter family of solutions of Exam-
ple 1.1 for several initial conditions.
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The integrating factor that works is µ(x) = exp(
∫ x p(ξ) dξ). One can

show this by expanding the derivative in Equation (1.8),

µ(x)y′(x) + µ′(x)y(x) = µ(x)q(x), (1.9)

and comparing this equation to the one obtained from multiplying (1.7) by
µ(x) :

µ(x)y′(x) + µ(x)p(x)y(x) = µ(x)q(x). (1.10)

Note that these last two equations would be the same if

dµ(x)
dx

= µ(x)p(x).

This is a separable first order equation whose solution is the above given
form for the integrating factor,

µ(x) = exp
(∫ x

p(ξ) dξ

)
. (1.11)

Equation (1.8) is easily integrated to obtain

y(x) =
1

µ(x)

[∫ x
µ(ξ)q(ξ) dξ + C

]
. (1.12)

Example 1.3. xy′ + y = x, x > 0, y(1) = 0.
One first notes that this is a linear first order differential equation.

Solving for y′, one can see that the original equation is not separa-
ble. However, it is not in the standard form. So, we first rewrite the
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Figure 1.2: Plots of solutions of Example
1.2 for several initial conditions.

equation as
dy
dx

+
1
x

y = 1. (1.13)

Noting that p(x) = 1
x , we determine the integrating factor

µ(x) = exp
[∫ x dξ

ξ

]
= eln x = x.

Multiplying equation (1.13) by µ(x) = x, we actually get back the
original equation! In this case we have found that xy′ + y must have
been the derivative of something to start. In fact, (xy)′ = xy′ + x.
Therefore, equation (1.8) becomes

(xy)′ = x.

Integrating one obtains

xy =
1
2

x2 + C,

or
y(x) =

1
2

x +
C
x

.

Inserting the initial condition into this solution, we have 0 = 1
2 + C.

Therefore, C = − 1
2 . Thus, the solution of the initial value problem is

y(x) = 1
2 (x − 1

x ).

Example 1.4. (sin x)y′ + (cos x)y = x2 sin x.
Actually, this problem is easy if you realize that

d
dx

((sin x)y) = (sin x)y′ + (cos x)y.
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But, we will go through the process of finding the integrating factor
for practice.

First, rewrite the original differential equation in standard form:

y′ + (cot x)y = x2.

Then, compute the integrating factor as

µ(x) = exp
(∫ x

cot ξ dξ

)
= e− ln(sin x) =

1
sin x

.

Using the integrating factor, the original equation becomes

d
dx

((sin x)y) = x2.

Integrating, we have

y sin x =
1
3

x3 + C.

So, the solution is

y =

(
1
3

x3 + C
)

csc x.

There are other first order equations that one can solve for closed form
solutions. However, many equations are not solvable, or one is simply in-
terested in the behavior of solutions. In such cases one turns to direction
fields. We will return to a discussion of the qualitative behavior of differen-
tial equations later in the course.

1.1.2 Second Order Linear Differential Equations

Second order differential equations are typically harder than
first order. In most cases students are only exposed to second order linear
differential equations. A general form for a second order linear differential
equation is given by

a(x)y′′(x) + b(x)y′(x) + c(x)y(x) = f (x). (1.14)

One can rewrite this equation using operator terminology.1 Namely, one1 We note that Leibniz introduced dy
dx and

Newton used the dot notation, ẏ. About
a century later Lagrange introduced y′

and Arbogast introduced the operator
notation D.

first defines the differential operator L = a(x)D2 + b(x)D + c(x), where
D = d

dx . Then equation (1.14) becomes

Ly = f . (1.15)

The solutions of linear differential equations are found by making use of
the linearity of L. Namely, we consider the vector space 2 consisting of real-

2 We assume that the reader has been in-
troduced to concepts in linear algebra.
Later in the text we will recall the def-
inition of a vector space and see that lin-
ear algebra is in the background of the
study of many concepts in the solution
of differential equations.

valued functions over some domain. Let f and g be vectors in this function
space. L is a linear operator if for two vectors f and g and scalar a, we have
that
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a. L( f + g) = L f + Lg

b. L(a f ) = aL f .

One typically solves (1.14) by finding the general solution of the homo-
geneous problem,

Lyh = 0

and a particular solution of the nonhomogeneous problem,

Lyp = f .

Then the general solution of (1.14) is simply given as y = yh + yp. This is
true because of the linearity of L. Namely,

Ly = L(yh + yp)

= Lyh + Lyp

= 0 + f = f . (1.16)

There are methods for finding a particular solution of a differential equa-
tion. These range from pure guessing to the Method of Undetermined Co-
efficients, or by making use of the Method of Variation of Parameters. We
will review some of these methods later.

Determining solutions to the homogeneous problem, Lyh = 0, is not al-
ways easy. However, others have studied a variety of second order linear
equations and have saved us the trouble for some of the differential equa-
tions that often appear in applications.

Again, linearity is useful in producing the general solution of a homoge-
neous linear differential equation. If y1 and y2 are solutions of the homoge-
neous equation, then the linear combination y = c1y1 + c2y2 is also a solution
of the homogeneous equation. In fact, if y1 and y2 are linearly independent,3 3 Recall, a set of functions {yi(x)}n

i=1 is a
linearly independent set if and only if

c1y(1(x) + . . . + cnyn(x) = 0

implies ci = 0, for i = 1, . . . , n.

then y = c1y1 + c2y2 is the general solution of the homogeneous problem.
As you may recall, linear independence is established if the Wronskian of
the solutions in not zero. In this case, we have

W(y1, y2) = y1(x)y′2(x)− y′1(x)y2(x) ̸= 0. (1.17)

1.1.3 Constant Coefficient Equations

The simplest and most seen second order differential equa-
tions are those with constant coefficients. The general form for a homoge-
neous constant coefficient second order linear differential equation is given
as

ay′′(x) + by′(x) + cy(x) = 0, (1.18)

where a, b, and c are constants.
Solutions to (1.18) are obtained by making a guess of y(x) = erx. Inserting

this guess into (1.18) leads to the characteristic equation Characteristic equation.

ar2 + br + c = 0. (1.19)
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The roots of this equation in turn lead to three types of solution depending
upon the nature of the roots as shown below.

Example 1.5. y′′ − y′ − 6y = 0 y(0) = 2, y′(0) = 0.
The characteristic equation for this problem is r2 − r − 6 = 0. The

roots of this equation are found as r = −2, 3. Therefore, the general
solution can be quickly written down:

y(x) = c1e−2x + c2e3x.

Note that there are two arbitrary constants in the general solution.
Therefore, one needs two pieces of information to find a particular
solution. Of course, we have the needed information in the form of
the initial conditions.

One also needs to evaluate the first derivative

y′(x) = −2c1e−2x + 3c2e3x

in order to attempt to satisfy the initial conditions. Evaluating y and
y′ at x = 0 yields

2 = c1 + c2

0 = −2c1 + 3c2 (1.20)

These two equations in two unknowns can readily be solved to give
c1 = 6/5 and c2 = 4/5. Therefore, the solution of the initial value
problem is obtained as y(x) = 6

5 e−2x + 4
5 e3x.

Classification of Roots of the Characteristic Equation
for Second Order Constant Coefficient ODEs

1. Real, distinct roots r1, r2. In this case the solutions corresponding to
each root are linearly independent. Therefore, the general solution is
simply y(x) = c1er1x + c2er2x.

2. Real, equal roots r1 = r2 = r. In this case the solutions corresponding
to each root are linearly dependent. To find a second linearly inde-
pendent solution, one uses the Method of Reduction of Order. This gives
the second solution as xerx. Therefore, the general solution is found as
y(x) = (c1 + c2x)erx. [This is covered in the appendix to this chapter.]

3. Complex conjugate roots r1, r2 = α ± iβ. In this case the solutions
corresponding to each root are linearly independent. Making use of
Euler’s identity, eiθ = cos(θ) + i sin(θ), these complex exponentials
can be rewritten in terms of trigonometric functions. Namely, one
has that eαx cos(βx) and eαx sin(βx) are two linearly independent solu-
tions. Therefore, the general solution becomes y(x) = eαx(c1 cos(βx) +
c2 sin(βx)). [This is covered in the appendix to this chapter.]
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Example 1.6. y′′ + 6y′ + 9y = 0.
In this example we have r2 + 6r + 9 = 0. There is only one root,

r = −3. Again, the solution is easily obtained as y(x) = (c1 + c2x)e−3x.

Example 1.7. y′′ + 4y = 0.
The characteristic equation in this case is r2 + 4 = 0. The roots are

pure imaginary roots, r = ±2i and the general solution consists purely
of sinusoidal functions: y(x) = c1 cos(2x) + c2 sin(2x).

Example 1.8. y′′ + 2y′ + 4y = 0.
The characteristic equation in this case is r2 + 2r + 4 = 0. The roots

are complex, r = −1 ±
√

3i and the general solution can be written as

y(x) =
[
c1 cos(

√
3x) + c2 sin(

√
3x)
]

e−x.

One of the most important applications of the equations in the last two
examples is in the study of oscillations. Typical systems are a mass on
a spring, or a simple pendulum. For a mass m on a spring with spring
constant k > 0, one has from Hooke’s law that the position as a function of
time, x(t), satisfies the equation

mx′′ + kx = 0.

This constant coefficient equation has pure imaginary roots (α = 0) and the
solutions are pure sines and cosines. Such motion is called simple harmonic
motion.

Adding a damping term and periodic forcing complicates the dynamics,
but is nonetheless solvable. The next example shows a forced harmonic
oscillator.

Example 1.9. y′′ + 4y = sin x.
This is an example of a nonhomogeneous problem. The homoge-

neous problem was actually solved in Example 1.7. According to the
theory, we need only seek a particular solution to the nonhomoge-
neous problem and add it to the solution of the last example to get the
general solution.

The particular solution can be obtained by purely guessing, making
an educated guess, or using the Method of Variation of Parameters.
We will not review all of these techniques at this time. Due to the
simple form of the driving term, we will make an intelligent guess of
yp(x) = A sin x and determine what A needs to be. Recall, this is the
Method of Undetermined Coefficients which we review in the next section.
Inserting our guess in the equation gives (−A + 4A) sin x = sin x. So,
we see that A = 1/3 works. The general solution of the nonhomoge-
neous problem is therefore y(x) = c1 cos(2x) + c2 sin(2x) + 1

3 sin x.

1.1.4 Method of Undetermined Coefficients

To date, we only know how to solve constant coefficient, homoge-
neous equations. How does one solve a nonhomogeneous equation like
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that in Equation (1.14),

a(x)y′′(x) + b(x)y′(x) + c(x)y(x) = f (x). (1.21)

Recall, that one solves this equation by finding the general solution of the
homogeneous problem,

Lyh = 0

and a particular solution of the nonhomogeneous problem,

Lyp = f .

Then the general solution of (1.14) is simply given as y = yh + yp. So, how
do we find the particular solution?General solution of the nonhomoge-

neous problem, y = yh + yp. You could guess a solution, but that is not usually possible without a
little bit of experience. So we need some other methods. There are two
main methods. In the first case, the Method of Undetermined Coefficients,
one makes an intelligent guess based on the form of f (x). In the second
method, one can systematically develop the particular solution. We will
come back to this method the Method of Variation of Parameters, later in
the book.

Let’s solve a simple differential equation highlighting how we can handle
nonhomogeneous equations.

Example 1.10. Consider the equation

y′′ + 2y′ − 3y = 4. (1.22)

The first step is to determine the solution of the homogeneous equa-
tion. Thus, we solve

y′′h + 2y′h − 3yh = 0. (1.23)

The characteristic equation is r2 + 2r − 3 = 0. The roots are r = 1,−3.
So, we can immediately write the solution

yh(x) = c1ex + c2e−3x.

The second step is to find a particular solution of (1.22). What
possible function can we insert into this equation such that only a 4

remains? If we try something proportional to x, then we are left with a
linear function after inserting x and its derivatives. Perhaps a constant
function you might think. y = 4 does not work. But, we could try an
arbitrary constant, y = A.

Let’s see. Inserting y = A into (1.22), we obtain

−3A = 4.

Ah ha! We see that we can choose A = − 4
3 and this works. So, we

have a particular solution, yp(x) = − 4
3 . This step is done.
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Combining our two solutions, we have the general solution to the
original nonhomogeneous equation (1.22). Namely,

y(x) = yh(x) + yp(x) = c1ex + c2e−3x − 4
3

.

Insert this solution into the equation and verify that it is indeed a
solution. If we had been given initial conditions, we could now use
them to determine our arbitrary constants.

What if we had a different source term? Consider the equation

y′′ + 2y′ − 3y = 4x. (1.24)

The only thing that would change is our particular solution. So, we
need a guess.

We know a constant function does not work by the last example.
So, let’s try yp = Ax. Inserting this function into Equation (??), we
obtain

2A − 3Ax = 4x.

Picking A = −4/3 would get rid of the x terms, but will not cancel
everything. We still have a constant left. So, we need something more
general.

Let’s try a linear function, yp(x) = Ax + B. Then we get after sub-
stitution into (1.24)

2A − 3(Ax + B) = 4x.

Equating the coefficients of the different powers of x on both sides, we
find a system of equations for the undetermined coefficients:

2A − 3B = 0

−3A = 4. (1.25)

These are easily solved to obtain

A = −4
3

B =
2
3

A = −8
9

. (1.26)

So, our particular solution is

yp(x) = −4
3

x − 8
9

.

This gives the general solution to the nonhomogeneous problem as

y(x) = yh(x) + yp(x) = c1ex + c2e−3x − 4
3

x − 8
9

.

There are general forms that you can guess based upon the form of the
driving term, f (x). Some examples are given in Table 1.1. More general ap-
plications are covered in a standard text on differential equations. However,



12 differential equations

the procedure is simple. Given f (x) in a particular form, you make an ap-
propriate guess up to some unknown parameters, or coefficients. Inserting
the guess leads to a system of equations for the unknown coefficients. Solve
the system and you have your solution. This solution is then added to the
general solution of the homogeneous differential equation.

Table 1.1: Educated guesses given non-
homogeneous f (x).

f (x) Guess
anxn + an−1xn−1 + · · ·+ a1x + a0 Anxn + An−1xn−1 + · · ·+ A1x + A0

aebx Aebx

a cos ωx + b sin ωx A cos ωx + B sin ωx

Example 1.11. As a final example, let’s consider the equation

y′′ + 2y′ − 3y = 2e−3x. (1.27)

According to the above, we would guess a solution of the form yp =

Ae−3x. Inserting our guess, we find

0 = 2e−3x.

Oops! The coefficient, A, disappeared! We cannot solve for it. What
went wrong?

The answer lies in the general solution of the homogeneous prob-
lem. Note that ex and e−3x are solutions to the homogeneous problem.
So, a multiple of e−3x will not get us anywhere. It turns out that there
is one further modification of the method. If our driving term contains
terms that are solutions of the homogeneous problem, then we need to
make a guess consisting of the smallest possible power of x times the
function which is no longer a solution of the homogeneous problem.
Namely, we guess yp(x) = Axe−3x. We compute the derivative of our
guess, y′p = A(1 − 3x)e−3x and y′′p = A(9x − 6)e−3x. Inserting these
into the equation, we obtain

[(9x − 6) + 2(1 − 3x)− 3x]Ae−3x = 2e−3x,

or

−4A = 2.

So, A = −1/2 and yp(x) = − 1
2 xe−3x.

Modified Method of Undetermined Coefficients

In general, if any term in the guess yp(x) is a solution of the homogeneous
equation, then multiply the guess by xk, where k is the smallest positive
integer such that no term in xkyp(x) is a solution of the homogeneous
problem.
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1.1.5 Cauchy-Euler Equations

Another class of solvable linear differential equations that is
of interest are the Cauchy-Euler type of equations. These are given byCauchy-Euler Equation.

ax2y′′(x) + bxy′(x) + cy(x) = 0. (1.28)

Note that in such equations the power of x in each of the coefficients matches
the order of the derivative in that term. These equations are solved in a
manner similar to the constant coefficient equations.

One begins by making the guess y(x) = xr. Inserting this function and
its derivatives,

y′(x) = rxr−1, y′′(x) = r(r − 1)xr−2,

into Equation (1.28), we have

[ar(r − 1) + br + c] xr = 0.

Since this has to be true for all x in the problem domain, we obtain the
characteristic equation Characteristic equation for the Cauchy-

Euler Equation.

ar(r − 1) + br + c = 0. (1.29)

Just like the constant coefficient differential equation, we have a quadratic
equation and the nature of the roots again leads to three classes of solutions.
These are shown below. Some of the details are provided in the next section.

Classification of Roots of the Characteristic Equation
for Cauchy-Euler Differential Equations

1. Real, distinct roots r1, r2. In this case the solutions correspond-
ing to each root are linearly independent. Therefore, the gen-
eral solution is simply y(x) = c1xr1 + c2xr2 .

2. Real, equal roots r1 = r2 = r. In this case the solutions corre-
sponding to each root are linearly dependent. To find a second
linearly independent solution, one uses the Method of Reduc-
tion of Order. This gives the second solution as xr ln |x|. There-
fore, the general solution is found as y(x) = (c1 + c2 ln |x|)xr.

3. Complex conjugate roots r1, r2 = α ± iβ. In this case the
solutions corresponding to each root are linearly indepen-
dent. These complex exponentials can be rewritten in
terms of trigonometric functions. Namely, one has that
xα cos(β ln |x|) and xα sin(β ln |x|) are two linearly indepen-
dent solutions. Therefore, the general solution becomes y(x) =
xα(c1 cos(β ln |x|) + c2 sin(β ln |x|)).
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Example 1.12. x2y′′ + 5xy′ + 12y = 0
As with the constant coefficient equations, we begin by writing

down the characteristic equation. Doing a simple computation,

0 = r(r − 1) + 5r + 12

= r2 + 4r + 12

= (r + 2)2 + 8,

−8 = (r + 2)2, (1.30)

one determines the roots are r = −2 ± 2
√

2i. Therefore, the general

solution is y(x) =
[
c1 cos(2

√
2 ln |x|) + c2 sin(2

√
2 ln |x|)

]
x−2

Example 1.13. t2y′′ + 3ty′ + y = 0, y(1) = 0, y′(1) = 1.
For this example the characteristic equation takes the form

r(r − 1) + 3r + 1 = 0,

or
r2 + 2r + 1 = 0.

There is only one real root, r = −1. Therefore, the general solution is

y(t) = (c1 + c2 ln |t|)t−1.

However, this problem is an initial value problem. At t = 1 we
know the values of y and y′. Using the general solution, we first have
that

0 = y(1) = c1.

Thus, we have so far that y(t) = c2 ln |t|t−1. Now, using the second
condition and

y′(t) = c2(1 − ln |t|)t−2,

we have
1 = y(1) = c2.

Therefore, the solution of the initial value problem is y(t) = ln |t|t−1.
Nonhomogeneous Cauchy-Euler Equa-
tions We can also solve some nonhomogeneous Cauchy-Euler equations using

the Method of Undetermined Coefficients. We will demonstrate this with a
couple of examples.

Example 1.14. Find the solution of x2y′′ − xy′ − 3y = 2x2.
First we find the solution of the homogeneous equation. The char-

acteristic equation is r2 − 2r − 3 = 0. So, the roots are r = −1, 3 and
the solution is yh(x) = c1x−1 + c2x3.

We next need a particular solution. Let’s guess yp(x) = Ax2. In-
serting the guess into the nonhomogeneous differential equation, we
have

2x2 = x2y′′ − xy′ − 3y = 2x2

= 2Ax2 − 2Ax2 − 3Ax2

= −3Ax2. (1.31)
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So, A = −2/3. Therefore, the general solution of the problem is

y(x) = c1x−1 + c2x3 − 2
3

x2.

Example 1.15. Find the solution of x2y′′ − xy′ − 3y = 2x3.
In this case the nonhomogeneous term is a solution of the homoge-

neous problem, which we solved in the last example. So, we will need
a modification of the method. We have a problem of the form

ax2y′′ + bxy′ + cy = dxr,

where r is a solution of ar(r − 1) + br + c = 0. Let’s guess a solution
of the form y = Axr ln x. Then one finds that the differential equation
reduces to Axr(2ar− a+ b) = dxr. [You should verify this for yourself.]

With this in mind, we can now solve the problem at hand. Let
yp = Ax3 ln x. Inserting into the equation, we obtain 4Ax3 = 2x3, or
A = 1/2. The general solution of the problem can now be written as

y(x) = c1x−1 + c2x3 +
1
2

x3 ln x.

1.2 Overview of the Course

For the most part, your first course in differential equations

was about solving initial value problems. When second order equations did
not fall into the above cases, then you might have learned how to obtain
approximate solutions using power series methods, or even finding new
functions from these methods. In this course we will explore two broad
topics: systems of differential equations and boundary value problems.

We will see that there are interesting initial value problems when study-
ing systems of differential equations. In fact, many of the second order
equations that you have seen in the past can be written as a system of two
first order equations. For example, the equation for simple harmonic mo-
tion,

x′′ + ω2x = 0,

can be written as the system

x′ = y
y′ = −ω2x

.

Just note that x′′ = y′ = −ω2x. Of course, one can generalize this to systems
with more complicated right hand sides. The behavior of such systems
can be fairly interesting and these systems result from a variety of physical
models.

In the second part of the course we will explore boundary value prob-
lems. Often these problems evolve from the study of partial differential
equations. Such examples stem from vibrating strings, temperature distri-
butions, bending beams, etc. Boundary conditions are conditions that are
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imposed at more than one point, while for initial value problems the condi-
tions are specified at one point. For example, we could take the oscillation
equation above and ask when solutions of the equation would satisfy the
conditions x(0) = 0 and x(1) = 0. The general solution, as we have deter-
mined earlier, is

x(t) = c1 cos ωt + c2 sin ωt.

Requiring x(0) = 0, we find that c1 = 0, leaving x(t) = c2 sin ωt. Also
imposing that 0 = x(1) = c2 sin ω, we are forced to make ω = nπ, for
n = 1, 2, . . . . (Making c2 = 0 would not give a nonzero solution of the prob-
lem.) Thus, there are an infinite number of solutions possible, if we have the
freedom to choose our ω. In the second half of the course we will investigate
techniques for solving boundary value problems and look at several appli-
cations, including seeing the connections with partial differential equations
and Fourier series.

1.3 Appendix: Reduction of Order and Complex Roots

In this section we provide some of the details leading to the general
forms for the constant coefficient and Cauchy-Euler differential equations.
In the first subsection we review how the Method of Reduction of Order
is used to obtain the second linearly independent solutions for the case of
one repeated root. In the second subsection we review how the complex
solutions can be used to produce two linearly independent real solutions.

Method of Reduction of Order

First we consider constant coefficient equations. In the case
when there is a repeated real root, one has only one independent solution,
y1(x) = erx. The question is how does one obtain the second solution? Since
the solutions are independent, we must have that the ratio y2(x)/y1(x) is
not a constant. So, we guess the form y2(x) = v(x)y1(x) = v(x)erx. For
constant coefficient second order equations, we can write the equation as

(D − r)2y = 0,

where D = d
dx .

We now insert y2(x) into this equation. First we compute

(D − r)verx = v′erx.

Then,
(D − r)2verx = (D − r)v′erx = v′′erx.

So, if y2(x) is to be a solution to the differential equation, (D − r)2y2 = 0,
then v′′(x)erx = 0 for all x. So, v′′(x) = 0, which implies that

v(x) = ax + b.
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So,
y2(x) = (ax + b)erx.

Without loss of generality, we can take b = 0 and a = 1 to obtain the second
linearly independent solution, y2(x) = xerx.

Deriving the solution for Case 2 for the Cauchy-Euler equations is messier,
but works in the same way. First note that for the real root, r = r1, the char-
acteristic equation has to factor as (r − r1)

2 = 0. Expanding, we have

r2 − 2r1r + r2
1 = 0.

The general characteristic equation is

ar(r − 1) + br + c = 0.

Rewriting this, we have

r2 + (
b
a
− 1)r +

c
a
= 0.

Comparing equations, we find

b
a
= 1 − 2r1,

c
a
= r2

1.

So, the general Cauchy-Euler equation in this case takes the form

x2y′′ + (1 − 2r1)xy′ + r2
1y = 0.

Now we seek the second linearly independent solution in the form y2(x) =
v(x)xr1 . We first list this function and its derivatives,

y2(x) = vxr1 ,

y′2(x) = (xv′ + r1v)xr1−1,

y′′2 (x) = (x2v′′ + 2r1xv′ + r1(r1 − 1)v)xr1−2.

(1.32)

Inserting these forms into the differential equation, we have

0 = x2y′′ + (1 − 2r1)xy′ + r2
1y

= (xv′′ + v′)xr1+1. (1.33)

Thus, we need to solve the equation

xv′′ + v′ = 0,

or
v′′

v′
= − 1

x
.

Integrating, we have
ln |v′| = − ln |x|+ C.

Exponentiating, we have one last differential equation to solve,

v′ =
A
x

.
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Thus,
v(x) = A ln |x|+ k.

So, we have found that the second linearly independent equation can be
written as

y2(x) = xr1 ln |x|.

Complex Roots

When one has complex roots in the solution of constant coefficient
equations, one needs to look at the solutions

y1,2(x) = e(α±iβ)x.

We make use of Euler’s formula

eiβx = cos βx + i sin βx. (1.34)

Then the linear combination of y1(x) and y2(x) becomes

Ae(α+iβ)x + Be(α−iβ)x = eαx
[

Aeiβx + Be−iβx
]

= eαx [(A + B) cos βx + i(A − B) sin βx]

≡ eαx(c1 cos βx + c2 sin βx). (1.35)

Thus, we see that we have a linear combination of two real, linearly inde-
pendent solutions, eαx cos βx and eαx sin βx.

When dealing with the Cauchy-Euler equations, we have solutions of the
form y(x) = xα+iβ. The key to obtaining real solutions is to first recall that

xy = eln xy
= ey ln x.

Thus, a power can be written as an exponential and the solution can be
written as

y(x) = xα+iβ = xαeiβ ln x, x > 0.

We can now find two real, linearly independent solutions, xα cos(β ln |x|)
and xα sin(β ln |x|) following the same steps as above for the constant coef-
ficient case.

1.4 Applications

Differential equations arose due to the need to solve problems.
In a first course you might have seen some typical applications of first and
second order differential equations. For example first order equuations arise
in the study of population dynamics and logistic growth, Newton’s law of
cooling, free fall with drag, or mixture problems. Some historically interest-
ing problems such as finding orthogonal families of curves, pursuit curves,
and tractional motion were taken up by some of the top mathematicians of
the eighteenth century.
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Second order differential equations appear in applications of simple har-
monic motion (SHM or SHO in some texts)such as a mass on a spring, pen-
dula (the plural of pendulum), and simple circuits. Some of these problems
can be further generalized into problems involving systems of differential
equations. So, we will describe some of these applications as well as some
interesting first order problems which can also be found in A First Course in
Differential Equations for Scientists and Engineers by the author.

1.4.1 Mass-Spring Systems

x

k

m

Figure 1.3: Spring-Mass system.

We begin with the case of a single block on a spring as shown in Figure
1.3. The net force in this case is the restoring force of the spring given by
Hooke’s Law,

Fs = −kx,

where k > 0 is the spring constant. Here x is the elongation, or displace-
ment of the spring from equilibrium. When the displacement is positive, the
spring force is negative and when the displacement is negative the spring
force is positive. We have depicted a horizontal system sitting on a fric-
tionless surface. A similar model can be provided for vertically oriented
springs. However, you need to account for gravity to determine the loca-
tion of equilibrium. Otherwise, the oscillatory motion about equilibrium is
modeled the same.

From Newton’s Second Law, F = mẍ, we obtain the equation for the
motion of the mass on the spring:

mẍ + kx = 0. (1.36)

Dividing by the mass, this equation can be written in the form

ẍ + ω2x = 0, (1.37)

where

ω =

√
k
m

.

This is the generic differential equation for simple harmonic motion. Two
solutions of this equation are given by

x(t) = A cos ωt,

x(t) = A sin ωt, (1.38)

where ω is the angular frequency, measured in rad/s, and A is called the
amplitude of the oscillation. .

The angular frequency is related to the frequency by

ω = 2π f ,

where f is measured in cycles per second, or Hertz. Furthermore, this is
related to the period of oscillation, the time it takes the mass to go through
one cycle:

T = 1/ f .

https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)


20 differential equations

1.4.2 The Simple Pendulum
L

m

θ

Figure 1.4: A simple pendulum consists
of a point mass m attached to a string of
length L. It is released from an angle θ0.

The simple pendulum consists of a point mass m hanging on a string of
length L from some support. [See Figure 1.4.] One pulls the mass back
to some starting angle, θ0, and releases it. The goal is to find the angular
position as a function of time.

There are a couple of possible derivations. We could either use New-
ton’s Second Law of Motion, F = ma, or its rotational analogue in terms of
torque, τ = Iα. We will use the former only to limit the amount of physics
background needed.

There are two forces acting on the point mass. The first is gravity. This
points downward and has a magnitude of mg, where g is the standard sym-
bol for the acceleration due to gravity. The other force is the tension in the
string. In Figure 1.5 these forces and their sum are shown. The magnitude
of the sum is easily found as F = mg sin θ using the addition of these two
vectors.

T

mg

θ

mg sin θ

Figure 1.5: There are two forces act-
ing on the mass, the weight mg and the
tension T. The net force is found to be
F = mg sin θ.

Now, Newton’s Second Law of Motion tells us that the net force is the
mass times the acceleration. So, we can write

mẍ = −mg sin θ.

Next, we need to relate x and θ. x is the distance traveled, which is the
length of the arc traced out by the point mass. The arclength is related to
the angle, provided the angle is measure in radians. Namely, x = rθ for
r = L. Thus, we can write

mLθ̈ = −mg sin θ.

Canceling the masses, this then gives us the nonlinear pendulum equationLinear and nonlinear pendulum equa-
tion.

Lθ̈ + g sin θ = 0. (1.39)
The equation for a compound pendu-
lum takes a similar form. We start
with the rotational form of Newton’s
second law τ = Iα. Noting that the
torque due to gravity acts at the center
of mass position ℓ, the torque is given
by τ = −mgℓ sin θ. Since α = θ̈, we
have Iθ̈ = −mgℓ sin θ. Then, for small
angles θ̈ + ω2θ = 0, where ω = mgℓ

I . For
a simple pendulum, we let ℓ = L and
I = mL2, and obtain ω =

√
g/L.

We note that this equation is of the same form as the mass-spring system.
We define ω =

√
g/L and obtain the equation for simple harmonic motion,

θ̈ + ω2θ = 0.

There are several variations of Equation (1.39) which will be used in this
text. The first one is the linear pendulum. This is obtained by making a
small angle approximation. For small angles we know that sin θ ≈ θ. Under
this approximation (1.39) becomes

Lθ̈ + gθ = 0. (1.40)

1.4.3 LRC Circuits

Another typical problem often encountered in a first year physics
class is that of an LRC series circuit. This circuit is pictured in Figure 1.6.
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The resistor is a circuit element satisfying Ohm’s Law. The capacitor is a
device that stores electrical energy and an inductor, or coil, store magnetic
energy.

The physics for this problem stems from Kirchoff’s Rules for circuits.
Namely, the sum of the drops in electric potential are set equal to the rises
in electric potential. The potential drops across each circuit element are
given by

1. Resistor: V = IR.

2. Capacitor: V = q
C .

3. Inductor: V = L dI
dt .

−
+V(t)

L R
C

Figure 1.6: Series LRC Circuit.

Furthermore, we need to define the current as I =
dq
dt

. where q is the
charge in the circuit. Adding these potential drops, we set them equal to
the voltage supplied by the voltage source, V(t). Thus, we obtain

IR +
q
C
+ L

dI
dt

= V(t).

Since both q and I are unknown, we can replace the current by its expression
in terms of the charge to obtain

Lq̈ + Rq̇ +
1
C

q = V(t).

This is a second order equation for q(t).
More complicated circuits are possible by looking at parallel connections,

or other combinations, of resistors, capacitors and inductors. This will result
in several equations for each loop in the circuit, leading to larger systems
of differential equations. An example of another circuit setup is shown in
Figure 1.7. This is not a problem that can be covered in the first year physics
course. One can set up a system of second order equations and proceed to
solve them. We will see how to solve such problems in the next chapter.

−
+V(t)

R1 R2

LC

Figure 1.7: Parallel LRC Circuit.

1.4.4 Orthogonal Trajectories of Curves*

There are many problems from geometry which have lead to the
study of differential equations. One such problem is the construction of
orthogonal trajectories. Give a a family of curves, y1(x; a), we seek another
family of curves y2(x; c) such that the second family of curves are perpen-
dicular the to given family. This means that the tangents of two intersecting
curves at the point of intersection are perpendicular to each other. The
slopes of the tangent lines are given by the derivatives y′1(x) and y′2(x). We
recall from elementary geometry that the slopes of two perpendicular lines
are related by

y′2(x) = − 1
y′1(x)

.
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Example 1.16. Find a family of orthogonal trajectories to the family of
parabolae y1(x; a) = ax2.

We note that the new collection of curves has to satisfy the equation

y′2(x) = − 1
y′1(x)

= − 1
2ax

.

Before solving for y2(x), we need to eliminate the parameter a. From
the give function, we have that a = y

x2 . Inserting this into the equation
for y′2, we have

y′(x) = − 1
2ax

= − x
2y

.

Thus, to find y2(x), we have to solve the differential equation

2yy′ + x = 0.

Noting that (y2)′ = 2yy′ and ( 1
2 x2)′ = x,, this (exact) equation can be

written as
d

dx

(
y2 +

1
2

x2
)
= 0.

Integrating, we find the family of solutions,

y2 +
1
2

x2 = k.

In Figure 1.8 we plot both families of orthogonal curves.

Figure 1.8: Plot of orthogonal families of
curves, y = ax2 and y2 + 1

2 x2 = k.

x

y

−5 5

−5

5
y2 + 1

2 x2 = k

y = ax2

1.4.5 Pursuit Curves*

Another application that is interesting is to find the path that a
body traces out as it moves towards a fixed point or another moving body.
Such curses are know as pursuit curves. These could model aircraft or
submarines following targets, or predators following prey. We demonstrate
this with an example.
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Example 1.17. A hawk at point (x, y) sees a sparrow traveling at speed
v along a straight line. The hawk flies towards the sparrow at constant
speed w but always in a direction along line of sight between their
positions. If the hawk starts out at the point (a, 0) at t = 0, when the
sparrow is at (0, 0), then what is the path the hawk needs to follow?
Will the hawk catch the sparrow? The situation is shown in Figure 1.9.
We pick the path of the sparrow to be along the y−axis. Therefore, the
sparrow is at position (0, vt).

x

y

(0, vt)

(a, 0)

(x, y)

Figure 1.9: A hawk at point (x, y) sees
a sparrow at point (0, vt) and always
follows the straight line between these
points.

First we need the equation of the line of sight between the points
(x, y) and (0, vt). Considering that the slope of the line is the same as
the slope of the tangent to the path, y = y(x), we have

y′ =
y − vt

x
.

The hawk is moving at a constant speed, w. Since the speed is re-
lated to the time through the distance the hawk travels. we need to
find the arclength of the path between (a, 0) and (x, y). This is given
by

L =
∫

ds =
∫ a

x

√
1 + [y′(x)]2 dx.

The distance is related to the speed, w, and the time, t, by L = wt.
Eliminating the time using y′ = y−vt

x , we have∫ a

x

√
1 + [y′(x)]2 dx =

w
v
(y − xy′).

Furthermore, we can differentiate this result with respect to x to get
rid of the integral, √

1 + [y′(x)]2 =
w
v

xy′′.

Even though this is a second order differential equation for y(x), it
is a first order separable equation in the speed function z(x) = y′(x).
Namely,

w
v

xz′ =
√

1 + z2.
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Separating variables, we find

w
v

∫ dz√
1 + z2

=
∫ dx

x
.

The integrals can be computed using standard methods from calculus.
We can easily integrate the right hand side,∫ dx

x
= ln |x|+ c1.

The left hand side takes a little extra work, or looking the value up
in Tables or using a CAS package. Recall a trigonometric substitution
is in order. [See the Appendix.] We let z = tan θ. Then dz = sec2 θ dθ.
The methods proceeds as follows:

∫ dz√
1 + z2

=
∫ sec2 θ√

1 + tan2 θ
dθ

=
∫

sec θ dθ

= ln(tan θ + sec θ) + c2

= ln(z +
√

1 + z2) + c2. (1.41)

Putting these together, we have for x > 0,

ln(z +
√

1 + z2) =
v
w

ln x + C.

Using the initial condition z = y′ = 0 and x = a at t = 0,

0 =
v
w

ln a + C,

or C = − v
w ln a.

Using this value for c, we find

ln(z +
√

1 + z2) =
v
w

ln x − v
w

ln a

ln(z +
√

1 + z2) =
v
w

ln
x
a

ln(z +
√

1 + z2) = ln
( x

a

) v
w

z +
√

1 + z2 =
( x

a

) v
w . (1.42)

We can solve for z = y′, to find

y′ =
1
2

[( x
a

) v
w −

( x
a

)− v
w
]

Integrating,

y(x) =
a
2

[( x
a
)1+ v

w

1 + v
w

−
( x

a
)1− v

w

1 − v
w

]
+ k.
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The integration constant, k, can be found knowing y(a) = 0. This gives

0 =
a
2

[
1

1 + v
w
− 1

1 − v
w

]
+ k

k =
a
2

[
1

1 − v
w
− 1

1 + v
w

]
=

avw
w2 − v2 . (1.43)

The full solution for the path is given by

y(x) =
a
2

[( x
a
)1+ v

w

1 + v
w

−
( x

a
)1− v

w

1 − v
w

]
+

avw
w2 − v2 .

Can the hawk catch the sparrow? This would happen if there is
a time when y(0) = vt. Inserting x = 0 into the solution, we have
y(0) = avw

w2−v2 = vt. This is possible if w > v.

A related problem is one that was posed in 1676 by the French physician
Claude Perrault (1613-1688), who was the brother of Charles Perrault, who
published stories like Cinderella and Little Red Riding Hood. Claude Perrault
was at a meeting in Paris and placed his watch in the middle of the table
and pulled the end of the watch chain along the edge of the table. He
demonstrated that when the end of the watch chain followed a straight line
perpendicular to the starting point, the watch would be dragged along a
curve. He asked. “What is the shape of the curve traced by the watch?”
This curve was first studied by Christiaan Huygens (1629-1695) in 1692,
who gave it the name tractrix.

Such a problem is an inverse tangent problem. One of the first such prob-
lems was originally posed in a letter from Florimond de Beaune (1601 - 1652)
to Marin Mersenne (1588 - 1648) in 1638. Instead of seeking the tangent to a
known curve, he asked for the curve which had a specific property. This led
to being one of the first differential equations which in modern day notation
is given by

dy
dx

=
x − y

a
, (1.44)

for some constant a. It is interesting to note that this was discussed in Leib-
niz’s first publication in calculus in 1684, Nova methodus pro maximis et min-
imis itemque tangentibus, quae nec fractas nec irrationales quantitates moratur, et
singulare pro illis calculi genus. After the work carried out by Bernoulli, Leib-
niz, Newton, and Euler on solution methods for differential equations, we
now can easily solve this problem to obtain the curve y = x+ a

(
e−x/a − 1

)
.

The Perrault’s tractrix problem is another inverse tangent problem. In
Figure 1.10 is given the setup for the tractrix problem. Perrault’s problem
can be stated that one seeks the shape of a curve whose tangent (segment)
has a constant length, a. From the diagram, we have the differential equation

dy
dx

= − y√
a2 − y2

. (1.45)
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Figure 1.10: The tractrix problem: the
end of the watch chain follows a straight
line along the x-axis perpendicular to the
starting point and the watch would be
dragged along a curve coinded by Huy-
gens as a tractrix.

x

y

(0, a)

P

y
a

√
a2 − y2

This problem can be solved using several methods. Since it is separable,
we have merely to evaluate an integral,

x + c = −
∫ √

a2 − y2

y
dy.

Due to the square root, nowadays one might think to use a trigonometric
substitution. However, we could also use a hyperbolic trigonometric func-
tion substitution. Considering the argument of the square root is a2 − y2,
we could let y = a sech u. Then,

a2 − y2 = a2(1 − sech2 u) = a2 tanh2 u

and dy = −a sech u tanh u du So, the integral becomes,

−
∫ √

a2 − y2

y
dy =

∫ a tanh u
a sech u

a sech u tanh u du

= a
∫

tanh2 u du

= a
∫
(1 − sech2 u) du

= a(tanh u − u) = x + C (1.46)

Therefore, we have a parametric solution

x(u) = a(u − tanh u) + C, y(u) = a sech u.
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Requiring (x(0), y(0)) = (0, a), then C = 0.
Finally, one can show that the evolute (the curve formed by the centers

of curvature) of a tractrix is a catenary, which is the shape a hanging chain
takes under its own weight. Also, the tractrix played a role in non-Euclidean
geometry since rotating a tractrix around its asymptote generates a surface
called a pseudosphere.

1.5 Other First Order Equations*

There are several nonlinear first order equations whose solution can be ob-
tained using special techniques. We conclude this chapter by looking at a
few of these equations named after famous mathematicians of the 17-18th
century inspired by various applications.

1.5.1 Bernoulli Equation*

We begin with the Bernoulli equation, named after Jacob Bernoulli (1655-
1705). The Bernoulli equation is of the form

dy
dx

+ p(x)y = q(x)yn, n ̸= 0, 1.

Note that when n = 0, 1 the equation is linear and can be solved using an

The Bernoulli’s were a family of Swiss
mathematicians spanning three gener-
ations. It all started with Jacob
Bernoulli (1654-1705) and his brother
Johann Bernoulli (1667-1748). Jacob
had a son, Nicolaus Bernoulli (1687-
1759) and Johann (1667-1748) had three
sons, Nicolaus Bernoulli II (1695-1726),
Daniel Bernoulli (1700-1872), and Johann
Bernoulli II (1710-1790). The last gener-
ation consisted of Johann II’s sons, Jo-
hann Bernoulli III (1747-1807) and Jacob
Bernoulli II (1759-1789). Johann, Jacob
and Daniel Bernoulli were the most fa-
mous of the Bernoulli’s. Jacob studied
with Leibniz, Johann studied under his
older brother and later taught Leonhard
Euler (1707-1783) and Daniel Bernoulli,
who is known for his work in hydrody-
namics. See Figure 1.11.

integrating factor. The key to solving this equation is using the transforma-
tion z(x) = 1

yn−1(x) to make the equation for z(x) linear. We demonstrate the
procedure using an example.

Example 1.18. Solve the Bernoulli equation xy′ + y = y2 ln x for x > 0.
In this example p(x) = 1, q(x) = ln x, and n = 2. Therefore, we let

z = 1
y . Then,

z′ = − 1
y2 y′ = z2y′.

Inserting z = y−1 and z′ = z2y′ into the differential equation, we
have

xy′ + y = y2 ln x

−x
z′

z2 +
1
z

=
ln x
z2

−xz′ + z = ln x

z′ − 1
x

z = − ln x
x

. (1.47)

Thus, the resulting equation is a linear first order differential equa-
tion. It can be solved using the integrating factor,

µ(x) = exp
(
−
∫ dx

x

)
=

1
x

.

Multiplying the differential equation by the integrating factor, we
have ( z

x

)′
=

ln x
x2 .
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Integrating, we obtain

z
x

= −
∫ ln x

x2 + C

=
ln x

x
+
∫ dx

x2 + C

=
ln x

x
+

1
x
+ C. (1.48)

Multiplying by x, we have z = ln x + 1 + Cx. Since z = y−1, the
general solution to the problem is

y =
1

ln x + 1 + Cx
.

Figure 1.11: The Bernoulli’s were a fam-
ily of Swiss mathematicians spanning at
least three generations starting with the
brothers Jacob Bernoulli (1654-1705) and
Johann Bernoulli (1667-1748).

Nikolas
(1623-1708)

Nicolaus
(1662-1716)

Nicolaus I
(1687-1759)

Jacob
(1654-1705)

Johann
(1667-1748)

Nicolaus II
(1695-1726)

Johann II
(1710-1790)

Johann III
(1744-1807)

Daniel II
(1751-1834)

Nicolaus III
(1754–1841)

Jakob II
(1759-1789)

Daniel
(1700-1782)

Hieronymus
(1669-1760)

1.5.2 Lagrange and Clairaut Equations*

Alexis Claude Clairaut (1713-1765) solved the differential equation

y = xy′ + g(y′).

This is a special case of the family of Lagrange equations,

y = x f (y′) + g(y′),

named after Joseph Louis Lagrange (1736-1813). These equations also have
solutions called singular solutions. Singular solution are solutions for which
there is a failure of uniqueness to the initial value problem at every point on
the curve. A singular solution is often one that is tangent to every solution
in a family of solutions.
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First, we consider solving the more general Lagrange equation. Let p = y′

in the Lagrange equation, giving

y = x f (p) + g(p). (1.49)

Next, we differentiate with respect to x to find

y′ = p = f (p) + x f ′(p)p′ + g′(p)p′.

Here we used the Chain Rule. For example,

dg(p)
dx

=
dg
dp

dp
dx

.

Solving for p′, we have

dp
dx

=
p − f (p)

x f ′(p) + g′(p)
. (1.50)

Lagrange equations, y = x f (y′) + g(y′).

We have introduced p = p(x), viewed as a function of x. Let’s assume
that we can invert this function to find x = x(p). Then, from introductory
calculus, we know that the derivatives of a function and its inverse are re-
lated,

dx
dp

=
1
dp
dx

.

Applying this to Equation (1.50), we have

dx
dp

=
x f ′(p) + g′(p)

p − f (p)

x′ − f ′(p)
p − f (p)

x =
g′(p)

p − f (p)
, (1.51)

assuming that p − f (p) ̸= 0.
As can be seen, we have transformed the Lagrange equation into a first

order linear differential equation (1.51) for x(p). Using methods from earlier
in the chapter, we can in principle obtain a family of solutions

x = F(p, C),

where C is an arbitrary integration constant. Using Equation (1.49), one
might be able to eliminate p in Equation (1.51) to obtain a family of solutions
of the Lagrange equation in the form

φ(x, y, C) = 0.

If it is not possible to eliminate p from Equations (1.49) and (1.51), then
one could report the family of solutions as a parametric family of solutions
with p the parameter. So, the parametric solutions would take the form

x = F(p, C),

y = F(p, C) f (p) + g(p). (1.52)
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We had also assumed the p − f (p) ̸= 0. However, there might also be
solutions of Lagrange’s equation for which p − f (p) = 0. Such solutions are
called singular solutions.

Example 1.19. Solve the Lagrange equation y = 2xy′ − y′2.Singular solutions are possible for La-
grange equations. We will start with Equation (1.51). Noting that f (p) = 2p, g(p) =

−p2, we have

x′ − f ′(p)
p − f (p)

x =
g′(p)

p − f (p)

x′ − 2
p − 2p

x =
−2p

p − 2p

x′ +
2
p

x = 2. (1.53)

This first order linear differential equation can be solved using an
integrating factor. Namely,

µ(p) = exp
(∫ 2

p
dp
)
= e2 ln p = p2.

Multiplying the differential equation by the integrating factor, we have

d
dp

(
xp2
)
= 2p2.

x

y

−4 4

−5

5

Figure 1.12: Family of solutions of the
Lagrange equation y = 2xy′ − y′2.

Integrating,

xp2 =
2
3

p3 + C.

This gives the general solution

x(p) =
2
3

p +
C
p2 .

Replacing y′ = p in the original differential equation, we have
y = 2xp − p2. The family of solutions is then given by the parametric
equations

x =
2
3

p +
C
p2 ,

y = 2
(

2
3

p +
C
p2

)
p − p2

=
1
3

p2 +
2C
p

. (1.54)

The plots of these solutions is shown in Figure 1.12.

We also need to check for a singular solution. We solve the equation
p − f (p) = 0, or p = 0. This gives the solution y(x) = (2xp − p2)p=0 = 0.

The Clairaut differential equation is given byClairaut equations, y = xy′ + g(y′).

y = xy′ + g(y′).

Letting p = y′, we have
y = xp + g(p).
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This is the Lagrange equation with f (p) = p. Differentiating with respect to
x,

p = p + xp′ + g′(p)p′.

Rearranging, we find
x = −g′(p)

So, we have the parametric solution

x = −g′(p),

y = −pg′(p) + g(p). (1.55)

For the case that y′ = C, it can be seen that y = Cx + g(C) is a general
solution solution.

x

y

−5 5

−5

5

y = x2

4

y = Cx − C2

Figure 1.13: Plot of solutions to the
Clairaut equation y = xy′ − y′2. The
straight line solutions are a family of
curves whose limit is the parametric slu-
tion.

Example 1.20. Find the solutions of y = xy′ − y′2.
As noted, there is a family of straight line solutions y = Cx − C2,

since g(p) = −p2. There might also by a parametric solution not con-
tained n this family. It would be given by the set of equations

x = −g′(p) = 2p,

y = −pg′(p) + g(p) = 2p2 − p2 = p2. (1.56)

Eliminating p, we have the parabolic curve y = x2/4.
In Figure 1.13 we plot these solutions. The family of straight line

solutions are shown in blue. The limiting curve traced out, much like
string figures one might create, is the parametric curve.

1.5.3 Riccati Equation*

Jacopo Francesco Riccati (1676-1754) studied curves with some
specified curvature. He proposed an equation of the form

y′ + a(x)y2 + b(x)y + c(x) = 0

around 1720. He communicated this to the Bernoulli’s. It was Daniel
Bernoulli who had actually solved this equation. As noted by Ranjan Roy
(2011), Riccati had published his equation in 1722 with a note that D. Bernoulli
giving the solution in terms of an anagram. Furthermore, when a ≡ 0, the
Riccati equation reduces to a Bernoulli equation.

In Section 3.2.1, we will show that the Ricatti equation can be transformed
into a second order linear differential equation. However, there are special
cases in which we can get our hands on the solutions. For example, if a, b,
and c are constants, then the differential equation can be integrated directly.
We have

dy
dx

= −(ay2 + by + c).

This equation is separable and we obtain

x − C = −
∫ dy

ay2 + by + c
.
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When a differential equation is left in this form, it is said to be solved by
quadrature when the resulting integral in principle can be computed in
terms of elementary functions.44 By elementary functions we mean

well known functions like polynomials,
trigonometric, hyperbolic, and some not
so well know to undergraduates, such as
Jacobi or Weierstrass elliptic functions.

If a particular solution is known, then one can obtain a solution to the
Riccati equation. Let the known solution be y1(x) and assume that the
general solution takes the form y(x) = y1(x) + z(x) for some unknown
function z(x). Substituting this form into the differential equation, we can
show that v(x) = 1/z(x) satisfies a first order linear differential equation.

Inserting y = y1 + z into the general Riccati equation, we have

0 =
dy
dx

+ a(x)y2 + b(x)y + c

=
dz
dx

+ az2 + 2azy1 + bz +

+
dy1

dx
+ ay2

1 + by1 + c

=
dz
dx

+ a(x)[2y1z + z2] + b(x)z

−a(x)z2 =
dz
dx

+ [2a(x)y1 + b(x)]z. (1.57)

The last equation is a Bernoulli equation with n = 2. So, we can make it
a linear equation with the substitution z = 1

v , z′ = − z′
v2 . Then, we obtain a

differential equation for v(x). It is given by

v′ − (2a(x)y1(x) + b(x))v = a(x).

Example 1.21. Find the general solution of the Riccati equation, y′ −
y2 + 2exy − e2x − ex = 0, using the particular solution y1(x) = ex.

We let the sought solution take the form y(x) = z(x) + ex. Then, the
equation for z(x) is found as

dz
dx

= z2.

This equation is simple enough to integrate directly to obtain z = 1
C−x .

Then, the solution to the problem becomes

y(x) =
1

C − x
+ ex.

Problems

1. Find all of the solutions of the first order differential equations. When
an initial condition is given, find the particular solution satisfying that con-
dition.

a.
dy
dx

=
ex

2y
.

b.
dy
dt

= y2(1 + t2), y(0) = 1.

c.
dy
dx

=

√
1 − y2

x
.
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d. xy′ = y(1 − 2y), y(1) = 2.

e. y′ − (sin x)y = sin x.

f. xy′ − 2y = x2, y(1) = 1.

g.
ds
dt

+ 2s = st2, , s(0) = 1.

h. x′ − 2x = te2t.

i.
dy
dx

+ y = sin x, y(0) = 0.

j.
dy
dx

− 3
x

y = x3, y(1) = 4.

2. Consider the differential equation

dy
dx

=
x
y
− x

1 + y
.

a. Find the 1-parameter family of solutions (general solution) of this
equation.

b. Find the solution of this equation satisfying the initial condition
y(0) = 1. Is this a member of the 1-parameter family?

3. Identify the type of differential equation. Find the general solution and
plot several particular solutions. Also, find the singular solution if one ex-
ists.

a. y = xy′ + 1
y′ .

b. y = 2xy′ + ln y′.

c. y′ + 2xy = 2xy2.

d. y′ + 2xy = y2ex2
.

4. The initial value problem

dy
dx

=
y2 + xy

x2 , y(1) = 1

does not fall into the class of problems considered in our review. However,
if one substitutes y(x) = xz(x) into the differential equation, one obtains
an equation for z(x) which can be solved. Use this substitution to solve the
initial value problem for y(x).

5. Find all of the solutions of the second order differential equations. When
an initial condition is given, find the particular solution satisfying that con-
dition.

a. y′′ − 9y′ + 20y = 0.

b. y′′ − 3y′ + 4y = 0, y(0) = 0, y′(0) = 1.

c. 8y′′ + 4y′ + y = 0, y(0) = 1, y′(0) = 0.

d. x′′ − x′ − 6x = 0 for x = x(t).
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6. Prove that y1(x) = sinh x and y2(x) = 3 sinh x − 2 cosh x are linearly
independent solutions of y′′ − y = 0. Write y3(x) = cosh x as a linear com-
bination of y1 and y2.

7. Find all of the solutions of the second order differential equations for
x > 0.. When an initial condition is given, find the particular solution
satisfying that condition.

a. x2y′′ + 3xy′ + 2y = 0.

b. x2y′′ − 3xy′ + 3y = 0.

c. x2y′′ + 5xy′ + 4y = 0.

d. x2y′′ − 2xy′ + 3y = 0.

e. x2y′′ + 3xy′ − 3y = x2.

8. Consider the nonhomogeneous differential equation x′′− 3x′+ 2x = 6e3t.

a. Find the general solution of the homogenous equation.

b. Find a particular solution using the Method of Undetermined Co-
efficients by guessing xp(t) = Ae3t.

c. Use your answers in the previous parts to write down the general
solution for this problem.

9. Find the general solution of the given equation by the method given.

a. y′′ − 3y′ + 2y = 10. Method of Undetermined Coefficients.

b. y′′ + y′ = 3x2. Method of Variation of Parameters.

10. Use the Method of Variation of Parameters to determine the general
solution for the following problems.

a. y′′ + y = tan x.

b. y′′ − 4y′ + 4y = 6xe2x.

11. Instead of assuming that c′1y1 + c′2y2 = 0 in the derivation of the solu-
tion using Variation of Parameters, assume that c′1y1 + c′2y2 = h(x) for an
arbitrary function h(x) and show that one gets the same particular solution.

12. Find the general solution of each differential equation. When an initial
condition is given, find the particular solution satisfying that condition.

a. y′′ − 3y′ + 2y = 20e−2x, y(0) = 0, y′(0) = 6.

b. y′′ + y = 2 sin 3x.

c. y′′ + y = 1 + 2 cos x.

d. x2y′′ − 2xy′ + 2y = 3x2 − x, x > 0.

13. Verify that the given function is a solution and use Reduction of Order
to find a second linearly independent solution.

a. x2y′′ − 2xy′ − 4y = 0, y1(x) = x4.
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b. xy′′ − y′ + 4x3y = 0, y1(x) = sin(x2).

14. A certain model of the motion of a tossed whiffle ball is given by

mx′′ + cx′ + mg = 0, x(0) = 0, x′(0) = v0.

Here m is the mass of the ball, g=9.8 m/s2 is the acceleration due to gravity
and c is a measure of the damping. Since there is no x term, we can write
this as a first order equation for the velocity v(t) = x′(t) :

mv′ + cv + mg = 0.

a. Find the general solution for the velocity v(t) of the linear first
order differential equation above.

b. Use the solution of part a to find the general solution for the posi-
tion x(t).

c. Find an expression to determine how long it takes for the ball to
reach it’s maximum height?

d. Assume that c/m = 10 s−1. For v0 = 5, 10, 15, 20 m/s, plot the
solution, x(t), versus the time.

e. From your plots and the expression in part c, determine the rise
time. Do these answers agree?

f. What can you say about the time it takes for the ball to fall as
compared to the rise time?
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