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Chapter 1

Introduction

In order to solve a differential equation, you look at it till a solution occurs to you.
- George Pólya (1887-1985)

These are notes for a second course in differential equations origi-
nally taught in the Spring semester of 2005 at the University of North Car-
olina Wilmington to upper level and first year graduate students and later
updated in Fall 2007, Fall 2008, and Fall 2024. It is assumed that you have
had an introductory course in differential equations. However, we will be-
gin this chapter with a review of some of the material from your first course
in differential equations and then give an overview of the material we are
about to cover.

Typically an introductory course in differential equations introduces stu-
dents to analytical solutions of first order differential equations which are
separable, first order linear differential equations, and sometimes to some
other special types of equations. Students then explore the theory of second
order differential equations generally restricted to the study of exact solu-
tions of constant coefficient linear differential equations or even equations
of the Cauchy-Euler type. These are later followed by the study of special
techniques, such as power series methods or Laplace transform methods. If
time permits, ones explores a few special functions, such as Legendre poly-
nomials and Bessel functions, while using power series methods for solving
differential equations.

More recently, variations on this inventory of topics have been intro-
duced through the early introduction of systems of differential equations,
qualitative studies of these systems and a more intense use of technology
for understanding the behavior of solutions of differential equations. This
is typically done at the expense of not covering power series methods, spe-
cial functions, or Laplace transforms. In either case, the types of problems
solved are initial value problems in which the differential equation to be
solved is accompanied by a set of initial conditions.

In this course we will assume some exposure to the overlap of these two
approaches. We will first give a quick review of the solution of separable
and linear first order equations. Then we will review second order linear
differential equations and Cauchy-Euler equations. This will then be fol-
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lowed by an overview of some of the topics covered. As with any course in
differential equations, we will emphasize analytical, graphical and (some-
times) approximate solutions of differential equations. Throughout we will
present applications from physics, chemistry and biology.

1.1 Review of the First Course

In this section we review a few of the solution techniques encountered
in a first course in differential equations. We will not review the basic theory
except in possible references as reminders as to what we are doing.

We first recall that an n-th order ordinary differential equation is an equation
for an unknown function y(x) that expresses a relationship between the
unknown function and its first n derivatives. One could write this generally
as

F(y(n)(x), y(n−1)(x), . . . , y′(x), y(x), x) = 0. (1.1)

Here y(n)(x) represents the nth derivative of y(x).
An initial value problem consists of the differential equation plus the val-

ues of the first n − 1 derivatives at a particular value of the independent
variable, say x0:

y(n−1)(x0) = yn−1, y(n−2)(x0) = yn−2, . . . , y(x0) = y0. (1.2)

A linear nth order differential equation takes the form

an(x)y(n)(x) + an−1(x)y(n−1)(x) + . . . + a1(x)y′(x) + a0(x)y(x)) = f (x).
(1.3)

If f (x) ≡ 0, then the equation is said to be homogeneous, otherwise it is
nonhomogeneous.

1.1.1 First Order Differential Equations

Typically, the first differential equations encountered are first
order equations. A first order differential equation takes the form

F(y′, y, x) = 0. (1.4)

There are two general forms for which one can formally obtain a solution.
The first is the separable case and the second is a first order equation. We
indicate that we can formally obtain solutions, as one can display the needed
integration that leads to a solution. However, the resulting integrals are
not always reducible to elementary functions nor does one obtain explicit
solutions when the integrals are doable.Separable equations.

A first order equation is separable if it can be written the form

dy
dx

= f (x)g(y). (1.5)
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Special cases result when either f (x) = 1 or g(y) = 1. In the first case the
equation is said to be autonomous.

The general solution to equation (1.5) is obtained in terms of two integrals:

∫ dy
g(y)

=
∫

f (x) dx + C, (1.6)

where C is an integration constant. This yields a 1-parameter family of solu-
tions to the differential equation corresponding to different values of C. If
one can solve (1.6) for y(x), then one obtains an explicit solution. Other-
wise, one has a family of implicit solutions. If an initial condition is given
as well, then one might be able to find a member of the family that satisfies
this condition, which is often called a particular solution.

Example 1.1. y′ = 2xy, y(0) = 2.
Applying (1.6), one has∫ dy

y
=
∫

2x dx + C.

Integrating yields
ln |y| = x2 + C.

Exponentiating, one obtains the general solution,

y(x) = ±ex2+C = Aex2
.

Here we have defined A = ±eC. Since C is an arbitrary constant, A is
an arbitrary constant. Several solutions in this 1-parameter family are
shown in Figure 1.1.

Next, one seeks a particular solution satisfying the initial condition.
For y(0) = 2, one finds that A = 2. So, the particular solution satisfy-
ing the initial conditions is y(x) = 2ex2

.

Example 1.2. yy′ = −x.
Following the same procedure as in the last example, one obtains:∫

y dy = −
∫

x dx + C ⇒ y2 = −x2 + A, where A = 2C.

Thus, we obtain an implicit solution. Writing the solution as x2 + y2 =

A, we see that this is a family of circles for A > 0 and the origin for
A = 0. Plots of some solutions in this family are shown in Figure 1.2.

Linear first order equations.
The second type of first order equation encountered is the linear first order

differential equation in the form

y′(x) + p(x)y(x) = q(x). (1.7)

In this case one seeks an integrating factor, µ(x), which is a function that one Integrating factor.

can multiply through the equation making the left side a perfect derivative.
Thus, obtaining,

d
dx

[µ(x)y(x)] = µ(x)q(x). (1.8)
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Figure 1.1: Plots of solutions from the 1-
parameter family of solutions of Exam-
ple 1.1 for several initial conditions.
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The integrating factor that works is µ(x) = exp(
∫ x p(ξ) dξ). One can

show this by expanding the derivative in Equation (1.8),

µ(x)y′(x) + µ′(x)y(x) = µ(x)q(x), (1.9)

and comparing this equation to the one obtained from multiplying (1.7) by
µ(x) :

µ(x)y′(x) + µ(x)p(x)y(x) = µ(x)q(x). (1.10)

Note that these last two equations would be the same if

dµ(x)
dx

= µ(x)p(x).

This is a separable first order equation whose solution is the above given
form for the integrating factor,

µ(x) = exp
(∫ x

p(ξ) dξ

)
. (1.11)

Equation (1.8) is easily integrated to obtain

y(x) =
1

µ(x)

[∫ x
µ(ξ)q(ξ) dξ + C

]
. (1.12)

Example 1.3. xy′ + y = x, x > 0, y(1) = 0.
One first notes that this is a linear first order differential equation.

Solving for y′, one can see that the original equation is not separa-
ble. However, it is not in the standard form. So, we first rewrite the
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Figure 1.2: Plots of solutions of Example
1.2 for several initial conditions.

equation as
dy
dx

+
1
x

y = 1. (1.13)

Noting that p(x) = 1
x , we determine the integrating factor

µ(x) = exp
[∫ x dξ

ξ

]
= eln x = x.

Multiplying equation (1.13) by µ(x) = x, we actually get back the
original equation! In this case we have found that xy′ + y must have
been the derivative of something to start. In fact, (xy)′ = xy′ + x.
Therefore, equation (1.8) becomes

(xy)′ = x.

Integrating one obtains

xy =
1
2

x2 + C,

or
y(x) =

1
2

x +
C
x

.

Inserting the initial condition into this solution, we have 0 = 1
2 + C.

Therefore, C = − 1
2 . Thus, the solution of the initial value problem is

y(x) = 1
2 (x − 1

x ).

Example 1.4. (sin x)y′ + (cos x)y = x2 sin x.
Actually, this problem is easy if you realize that

d
dx

((sin x)y) = (sin x)y′ + (cos x)y.
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But, we will go through the process of finding the integrating factor
for practice.

First, rewrite the original differential equation in standard form:

y′ + (cot x)y = x2.

Then, compute the integrating factor as

µ(x) = exp
(∫ x

cot ξ dξ

)
= e− ln(sin x) =

1
sin x

.

Using the integrating factor, the original equation becomes

d
dx

((sin x)y) = x2.

Integrating, we have

y sin x =
1
3

x3 + C.

So, the solution is

y =

(
1
3

x3 + C
)

csc x.

There are other first order equations that one can solve for closed form
solutions. However, many equations are not solvable, or one is simply in-
terested in the behavior of solutions. In such cases one turns to direction
fields. We will return to a discussion of the qualitative behavior of differen-
tial equations later in the course.

1.1.2 Second Order Linear Differential Equations

Second order differential equations are typically harder than
first order. In most cases students are only exposed to second order linear
differential equations. A general form for a second order linear differential
equation is given by

a(x)y′′(x) + b(x)y′(x) + c(x)y(x) = f (x). (1.14)

One can rewrite this equation using operator terminology.1 Namely, one1 We note that Leibniz introduced dy
dx and

Newton used the dot notation, ẏ. About
a century later Lagrange introduced y′

and Arbogast introduced the operator
notation D.

first defines the differential operator L = a(x)D2 + b(x)D + c(x), where
D = d

dx . Then equation (1.14) becomes

Ly = f . (1.15)

The solutions of linear differential equations are found by making use of
the linearity of L. Namely, we consider the vector space 2 consisting of real-

2 We assume that the reader has been in-
troduced to concepts in linear algebra.
Later in the text we will recall the def-
inition of a vector space and see that lin-
ear algebra is in the background of the
study of many concepts in the solution
of differential equations.

valued functions over some domain. Let f and g be vectors in this function
space. L is a linear operator if for two vectors f and g and scalar a, we have
that
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a. L( f + g) = L f + Lg

b. L(a f ) = aL f .

One typically solves (1.14) by finding the general solution of the homo-
geneous problem,

Lyh = 0

and a particular solution of the nonhomogeneous problem,

Lyp = f .

Then the general solution of (1.14) is simply given as y = yh + yp. This is
true because of the linearity of L. Namely,

Ly = L(yh + yp)

= Lyh + Lyp

= 0 + f = f . (1.16)

There are methods for finding a particular solution of a differential equa-
tion. These range from pure guessing to the Method of Undetermined Co-
efficients, or by making use of the Method of Variation of Parameters. We
will review some of these methods later.

Determining solutions to the homogeneous problem, Lyh = 0, is not al-
ways easy. However, others have studied a variety of second order linear
equations and have saved us the trouble for some of the differential equa-
tions that often appear in applications.

Again, linearity is useful in producing the general solution of a homoge-
neous linear differential equation. If y1 and y2 are solutions of the homoge-
neous equation, then the linear combination y = c1y1 + c2y2 is also a solution
of the homogeneous equation. In fact, if y1 and y2 are linearly independent,3 3 Recall, a set of functions {yi(x)}n

i=1 is a
linearly independent set if and only if

c1y(1(x) + . . . + cnyn(x) = 0

implies ci = 0, for i = 1, . . . , n.

then y = c1y1 + c2y2 is the general solution of the homogeneous problem.
As you may recall, linear independence is established if the Wronskian of
the solutions in not zero. In this case, we have

W(y1, y2) = y1(x)y′2(x)− y′1(x)y2(x) ̸= 0. (1.17)

1.1.3 Constant Coefficient Equations

The simplest and most seen second order differential equa-
tions are those with constant coefficients. The general form for a homoge-
neous constant coefficient second order linear differential equation is given
as

ay′′(x) + by′(x) + cy(x) = 0, (1.18)

where a, b, and c are constants.
Solutions to (1.18) are obtained by making a guess of y(x) = erx. Inserting

this guess into (1.18) leads to the characteristic equation Characteristic equation.

ar2 + br + c = 0. (1.19)
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The roots of this equation in turn lead to three types of solution depending
upon the nature of the roots as shown below.

Example 1.5. y′′ − y′ − 6y = 0 y(0) = 2, y′(0) = 0.
The characteristic equation for this problem is r2 − r − 6 = 0. The

roots of this equation are found as r = −2, 3. Therefore, the general
solution can be quickly written down:

y(x) = c1e−2x + c2e3x.

Note that there are two arbitrary constants in the general solution.
Therefore, one needs two pieces of information to find a particular
solution. Of course, we have the needed information in the form of
the initial conditions.

One also needs to evaluate the first derivative

y′(x) = −2c1e−2x + 3c2e3x

in order to attempt to satisfy the initial conditions. Evaluating y and
y′ at x = 0 yields

2 = c1 + c2

0 = −2c1 + 3c2 (1.20)

These two equations in two unknowns can readily be solved to give
c1 = 6/5 and c2 = 4/5. Therefore, the solution of the initial value
problem is obtained as y(x) = 6

5 e−2x + 4
5 e3x.
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Classification of Roots of the Characteristic Equation
for Second Order Constant Coefficient ODEs

1. Real, distinct roots r1, r2. In this case the solutions correspond-
ing to each root are linearly independent. Therefore, the gen-
eral solution is simply y(x) = c1er1x + c2er2x.

2. Real, equal roots r1 = r2 = r. In this case the solutions corre-
sponding to each root are linearly dependent. To find a second
linearly independent solution, one uses the Method of Reduction
of Order. This gives the second solution as xerx. Therefore, the
general solution is found as y(x) = (c1 + c2x)erx. [This is cov-
ered in the appendix to this chapter.]

3. Complex conjugate roots r1, r2 = α ± iβ. In this case the so-
lutions corresponding to each root are linearly independent.
Making use of Euler’s identity, eiθ = cos(θ) + i sin(θ), these
complex exponentials can be rewritten in terms of trigonomet-
ric functions. Namely, one has that eαx cos(βx) and eαx sin(βx)
are two linearly independent solutions. Therefore, the general
solution becomes y(x) = eαx(c1 cos(βx) + c2 sin(βx)). [This is
covered in the appendix to this chapter.]

Example 1.6. y′′ + 6y′ + 9y = 0.
In this example we have r2 + 6r + 9 = 0. There is only one root,

r = −3. Again, the solution is easily obtained as y(x) = (c1 + c2x)e−3x.

Example 1.7. y′′ + 4y = 0.
The characteristic equation in this case is r2 + 4 = 0. The roots are

pure imaginary roots, r = ±2i and the general solution consists purely
of sinusoidal functions: y(x) = c1 cos(2x) + c2 sin(2x).

Example 1.8. y′′ + 2y′ + 4y = 0.
The characteristic equation in this case is r2 + 2r + 4 = 0. The roots

are complex, r = −1 ±
√

3i and the general solution can be written as

y(x) =
[
c1 cos(

√
3x) + c2 sin(

√
3x)
]

e−x.

One of the most important applications of the equations in the last two
examples is in the study of oscillations. Typical systems are a mass on
a spring, or a simple pendulum. For a mass m on a spring with spring
constant k > 0, one has from Hooke’s law that the position as a function of
time, x(t), satisfies the equation

mx′′ + kx = 0.

This constant coefficient equation has pure imaginary roots (α = 0) and the
solutions are pure sines and cosines. Such motion is called simple harmonic
motion.
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Adding a damping term and periodic forcing complicates the dynamics,
but is nonetheless solvable. The next example shows a forced harmonic
oscillator.

Example 1.9. y′′ + 4y = sin x.
This is an example of a nonhomogeneous problem. The homoge-

neous problem was actually solved in Example 1.7. According to the
theory, we need only seek a particular solution to the nonhomoge-
neous problem and add it to the solution of the last example to get the
general solution.

The particular solution can be obtained by purely guessing, making
an educated guess, or using the Method of Variation of Parameters.
We will not review all of these techniques at this time. Due to the
simple form of the driving term, we will make an intelligent guess of
yp(x) = A sin x and determine what A needs to be. Recall, this is the
Method of Undetermined Coefficients which we review in the next section.
Inserting our guess in the equation gives (−A + 4A) sin x = sin x. So,
we see that A = 1/3 works. The general solution of the nonhomoge-
neous problem is therefore y(x) = c1 cos(2x) + c2 sin(2x) + 1

3 sin x.

1.1.4 Method of Undetermined Coefficients

To date, we only know how to solve constant coefficient, homoge-
neous equations. How does one solve a nonhomogeneous equation like
that in Equation (1.14),

a(x)y′′(x) + b(x)y′(x) + c(x)y(x) = f (x). (1.21)

Recall, that one solves this equation by finding the general solution of the
homogeneous problem,

Lyh = 0

and a particular solution of the nonhomogeneous problem,

Lyp = f .

Then the general solution of (1.14) is simply given as y = yh + yp. So, how
do we find the particular solution?General solution of the nonhomoge-

neous problem, y = yh + yp. You could guess a solution, but that is not usually possible without a
little bit of experience. So we need some other methods. There are two
main methods. In the first case, the Method of Undetermined Coefficients,
one makes an intelligent guess based on the form of f (x). In the second
method, one can systematically develop the particular solution. We will
come back to this method the Method of Variation of Parameters, later in
the book.

Let’s solve a simple differential equation highlighting how we can handle
nonhomogeneous equations.
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Example 1.10. Consider the equation

y′′ + 2y′ − 3y = 4. (1.22)

The first step is to determine the solution of the homogeneous equa-
tion. Thus, we solve

y′′h + 2y′h − 3yh = 0. (1.23)

The characteristic equation is r2 + 2r − 3 = 0. The roots are r = 1,−3.
So, we can immediately write the solution

yh(x) = c1ex + c2e−3x.

The second step is to find a particular solution of (1.22). What
possible function can we insert into this equation such that only a 4

remains? If we try something proportional to x, then we are left with a
linear function after inserting x and its derivatives. Perhaps a constant
function you might think. y = 4 does not work. But, we could try an
arbitrary constant, y = A.

Let’s see. Inserting y = A into (1.22), we obtain

−3A = 4.

Ah ha! We see that we can choose A = − 4
3 and this works. So, we

have a particular solution, yp(x) = − 4
3 . This step is done.

Combining our two solutions, we have the general solution to the
original nonhomogeneous equation (1.22). Namely,

y(x) = yh(x) + yp(x) = c1ex + c2e−3x − 4
3

.

Insert this solution into the equation and verify that it is indeed a
solution. If we had been given initial conditions, we could now use
them to determine our arbitrary constants.

What if we had a different source term? Consider the equation

y′′ + 2y′ − 3y = 4x. (1.24)

The only thing that would change is our particular solution. So, we
need a guess.

We know a constant function does not work by the last example.
So, let’s try yp = Ax. Inserting this function into Equation (??), we
obtain

2A − 3Ax = 4x.

Picking A = −4/3 would get rid of the x terms, but will not cancel
everything. We still have a constant left. So, we need something more
general.

Let’s try a linear function, yp(x) = Ax + B. Then we get after sub-
stitution into (1.24)

2A − 3(Ax + B) = 4x.
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Equating the coefficients of the different powers of x on both sides, we
find a system of equations for the undetermined coefficients:

2A − 3B = 0

−3A = 4. (1.25)

These are easily solved to obtain

A = −4
3

B =
2
3

A = −8
9

. (1.26)

So, our particular solution is

yp(x) = −4
3

x − 8
9

.

This gives the general solution to the nonhomogeneous problem as

y(x) = yh(x) + yp(x) = c1ex + c2e−3x − 4
3

x − 8
9

.

There are general forms that you can guess based upon the form of the
driving term, f (x). Some examples are given in Table 1.1. More general ap-
plications are covered in a standard text on differential equations. However,
the procedure is simple. Given f (x) in a particular form, you make an ap-
propriate guess up to some unknown parameters, or coefficients. Inserting
the guess leads to a system of equations for the unknown coefficients. Solve
the system and you have your solution. This solution is then added to the
general solution of the homogeneous differential equation.

Table 1.1: Educated guesses given non-
homogeneous f (x).

f (x) Guess
anxn + an−1xn−1 + · · ·+ a1x + a0 Anxn + An−1xn−1 + · · ·+ A1x + A0

aebx Aebx

a cos ωx + b sin ωx A cos ωx + B sin ωx

Example 1.11. As a final example, let’s consider the equation

y′′ + 2y′ − 3y = 2e−3x. (1.27)

According to the above, we would guess a solution of the form yp =

Ae−3x. Inserting our guess, we find

0 = 2e−3x.

Oops! The coefficient, A, disappeared! We cannot solve for it. What
went wrong?

The answer lies in the general solution of the homogeneous prob-
lem. Note that ex and e−3x are solutions to the homogeneous problem.
So, a multiple of e−3x will not get us anywhere. It turns out that there
is one further modification of the method. If our driving term contains
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terms that are solutions of the homogeneous problem, then we need to
make a guess consisting of the smallest possible power of x times the
function which is no longer a solution of the homogeneous problem.
Namely, we guess yp(x) = Axe−3x. We compute the derivative of our
guess, y′p = A(1 − 3x)e−3x and y′′p = A(9x − 6)e−3x. Inserting these
into the equation, we obtain

[(9x − 6) + 2(1 − 3x)− 3x]Ae−3x = 2e−3x,

or

−4A = 2.

So, A = −1/2 and yp(x) = − 1
2 xe−3x.

Modified Method of Undetermined Coefficients

In general, if any term in the guess yp(x) is a solution of the homogeneous
equation, then multiply the guess by xk, where k is the smallest positive
integer such that no term in xkyp(x) is a solution of the homogeneous
problem.

1.1.5 Cauchy-Euler Equations

Another class of solvable linear differential equations that is
of interest are the Cauchy-Euler type of equations. These are given by Cauchy-Euler Equation.

ax2y′′(x) + bxy′(x) + cy(x) = 0. (1.28)

Note that in such equations the power of x in each of the coefficients matches
the order of the derivative in that term. These equations are solved in a
manner similar to the constant coefficient equations.

One begins by making the guess y(x) = xr. Inserting this function and
its derivatives,

y′(x) = rxr−1, y′′(x) = r(r − 1)xr−2,

into Equation (1.28), we have

[ar(r − 1) + br + c] xr = 0.

Since this has to be true for all x in the problem domain, we obtain the
characteristic equation Characteristic equation for the Cauchy-

Euler Equation.

ar(r − 1) + br + c = 0. (1.29)

Just like the constant coefficient differential equation, we have a quadratic
equation and the nature of the roots again leads to three classes of solutions.
These are shown below. Some of the details are provided in the next section.
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Classification of Roots of the Characteristic Equation
for Cauchy-Euler Differential Equations

1. Real, distinct roots r1, r2. In this case the solutions correspond-
ing to each root are linearly independent. Therefore, the gen-
eral solution is simply y(x) = c1xr1 + c2xr2 .

2. Real, equal roots r1 = r2 = r. In this case the solutions corre-
sponding to each root are linearly dependent. To find a second
linearly independent solution, one uses the Method of Reduc-
tion of Order. This gives the second solution as xr ln |x|. There-
fore, the general solution is found as y(x) = (c1 + c2 ln |x|)xr.

3. Complex conjugate roots r1, r2 = α ± iβ. In this case the
solutions corresponding to each root are linearly indepen-
dent. These complex exponentials can be rewritten in
terms of trigonometric functions. Namely, one has that
xα cos(β ln |x|) and xα sin(β ln |x|) are two linearly indepen-
dent solutions. Therefore, the general solution becomes y(x) =
xα(c1 cos(β ln |x|) + c2 sin(β ln |x|)).

Example 1.12. x2y′′ + 5xy′ + 12y = 0
As with the constant coefficient equations, we begin by writing

down the characteristic equation. Doing a simple computation,

0 = r(r − 1) + 5r + 12

= r2 + 4r + 12

= (r + 2)2 + 8,

−8 = (r + 2)2, (1.30)

one determines the roots are r = −2 ± 2
√

2i. Therefore, the general
solution is y(x) =

[
c1 cos(2

√
2 ln |x|) + c2 sin(2

√
2 ln |x|)

]
x−2

Example 1.13. t2y′′ + 3ty′ + y = 0, y(1) = 0, y′(1) = 1.
For this example the characteristic equation takes the form

r(r − 1) + 3r + 1 = 0,

or
r2 + 2r + 1 = 0.

There is only one real root, r = −1. Therefore, the general solution is

y(t) = (c1 + c2 ln |t|)t−1.

However, this problem is an initial value problem. At t = 1 we
know the values of y and y′. Using the general solution, we first have
that

0 = y(1) = c1.
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Thus, we have so far that y(t) = c2 ln |t|t−1. Now, using the second
condition and

y′(t) = c2(1 − ln |t|)t−2,

we have
1 = y(1) = c2.

Therefore, the solution of the initial value problem is y(t) = ln |t|t−1.
Nonhomogeneous Cauchy-Euler Equa-
tionsWe can also solve some nonhomogeneous Cauchy-Euler equations using

the Method of Undetermined Coefficients. We will demonstrate this with a
couple of examples.

Example 1.14. Find the solution of x2y′′ − xy′ − 3y = 2x2.
First we find the solution of the homogeneous equation. The char-

acteristic equation is r2 − 2r − 3 = 0. So, the roots are r = −1, 3 and
the solution is yh(x) = c1x−1 + c2x3.

We next need a particular solution. Let’s guess yp(x) = Ax2. In-
serting the guess into the nonhomogeneous differential equation, we
have

2x2 = x2y′′ − xy′ − 3y = 2x2

= 2Ax2 − 2Ax2 − 3Ax2

= −3Ax2. (1.31)

So, A = −2/3. Therefore, the general solution of the problem is

y(x) = c1x−1 + c2x3 − 2
3

x2.

Example 1.15. Find the solution of x2y′′ − xy′ − 3y = 2x3.
In this case the nonhomogeneous term is a solution of the homoge-

neous problem, which we solved in the last example. So, we will need
a modification of the method. We have a problem of the form

ax2y′′ + bxy′ + cy = dxr,

where r is a solution of ar(r − 1) + br + c = 0. Let’s guess a solution
of the form y = Axr ln x. Then one finds that the differential equation
reduces to Axr(2ar− a+ b) = dxr. [You should verify this for yourself.]

With this in mind, we can now solve the problem at hand. Let
yp = Ax3 ln x. Inserting into the equation, we obtain 4Ax3 = 2x3, or
A = 1/2. The general solution of the problem can now be written as

y(x) = c1x−1 + c2x3 +
1
2

x3 ln x.

1.2 Overview of the Course

For the most part, your first course in differential equations

was about solving initial value problems. When second order equations did
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not fall into the above cases, then you might have learned how to obtain
approximate solutions using power series methods, or even finding new
functions from these methods. In this course we will explore two broad
topics: systems of differential equations and boundary value problems.

We will see that there are interesting initial value problems when study-
ing systems of differential equations. In fact, many of the second order
equations that you have seen in the past can be written as a system of two
first order equations. For example, the equation for simple harmonic mo-
tion,

x′′ + ω2x = 0,

can be written as the system

x′ = y
y′ = −ω2x

.

Just note that x′′ = y′ = −ω2x. Of course, one can generalize this to systems
with more complicated right hand sides. The behavior of such systems
can be fairly interesting and these systems result from a variety of physical
models.

In the second part of the course we will explore boundary value prob-
lems. Often these problems evolve from the study of partial differential
equations. Such examples stem from vibrating strings, temperature distri-
butions, bending beams, etc. Boundary conditions are conditions that are
imposed at more than one point, while for initial value problems the condi-
tions are specified at one point. For example, we could take the oscillation
equation above and ask when solutions of the equation would satisfy the
conditions x(0) = 0 and x(1) = 0. The general solution, as we have deter-
mined earlier, is

x(t) = c1 cos ωt + c2 sin ωt.

Requiring x(0) = 0, we find that c1 = 0, leaving x(t) = c2 sin ωt. Also
imposing that 0 = x(1) = c2 sin ω, we are forced to make ω = nπ, for
n = 1, 2, . . . . (Making c2 = 0 would not give a nonzero solution of the prob-
lem.) Thus, there are an infinite number of solutions possible, if we have the
freedom to choose our ω. In the second half of the course we will investigate
techniques for solving boundary value problems and look at several appli-
cations, including seeing the connections with partial differential equations
and Fourier series.

1.3 Appendix: Reduction of Order and Complex Roots

In this section we provide some of the details leading to the general
forms for the constant coefficient and Cauchy-Euler differential equations.
In the first subsection we review how the Method of Reduction of Order
is used to obtain the second linearly independent solutions for the case of
one repeated root. In the second subsection we review how the complex
solutions can be used to produce two linearly independent real solutions.
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Method of Reduction of Order

First we consider constant coefficient equations. In the case
when there is a repeated real root, one has only one independent solution,
y1(x) = erx. The question is how does one obtain the second solution? Since
the solutions are independent, we must have that the ratio y2(x)/y1(x) is
not a constant. So, we guess the form y2(x) = v(x)y1(x) = v(x)erx. For
constant coefficient second order equations, we can write the equation as

(D − r)2y = 0,

where D = d
dx .

We now insert y2(x) into this equation. First we compute

(D − r)verx = v′erx.

Then,
(D − r)2verx = (D − r)v′erx = v′′erx.

So, if y2(x) is to be a solution to the differential equation, (D − r)2y2 = 0,
then v′′(x)erx = 0 for all x. So, v′′(x) = 0, which implies that

v(x) = ax + b.

So,
y2(x) = (ax + b)erx.

Without loss of generality, we can take b = 0 and a = 1 to obtain the second
linearly independent solution, y2(x) = xerx.

Deriving the solution for Case 2 for the Cauchy-Euler equations is messier,
but works in the same way. First note that for the real root, r = r1, the char-
acteristic equation has to factor as (r − r1)

2 = 0. Expanding, we have

r2 − 2r1r + r2
1 = 0.

The general characteristic equation is

ar(r − 1) + br + c = 0.

Rewriting this, we have

r2 + (
b
a
− 1)r +

c
a
= 0.

Comparing equations, we find

b
a
= 1 − 2r1,

c
a
= r2

1.

So, the general Cauchy-Euler equation in this case takes the form

x2y′′ + (1 − 2r1)xy′ + r2
1y = 0.
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Now we seek the second linearly independent solution in the form y2(x) =
v(x)xr1 . We first list this function and its derivatives,

y2(x) = vxr1 ,

y′2(x) = (xv′ + r1v)xr1−1,

y′′2 (x) = (x2v′′ + 2r1xv′ + r1(r1 − 1)v)xr1−2.

(1.32)

Inserting these forms into the differential equation, we have

0 = x2y′′ + (1 − 2r1)xy′ + r2
1y

= (xv′′ + v′)xr1+1. (1.33)

Thus, we need to solve the equation

xv′′ + v′ = 0,

or
v′′

v′
= − 1

x
.

Integrating, we have
ln |v′| = − ln |x|+ C.

Exponentiating, we have one last differential equation to solve,

v′ =
A
x

.

Thus,
v(x) = A ln |x|+ k.

So, we have found that the second linearly independent equation can be
written as

y2(x) = xr1 ln |x|.

Complex Roots

When one has complex roots in the solution of constant coefficient
equations, one needs to look at the solutions

y1,2(x) = e(α±iβ)x.

We make use of Euler’s formula

eiβx = cos βx + i sin βx. (1.34)

Then the linear combination of y1(x) and y2(x) becomes

Ae(α+iβ)x + Be(α−iβ)x = eαx
[

Aeiβx + Be−iβx
]

= eαx [(A + B) cos βx + i(A − B) sin βx]

≡ eαx(c1 cos βx + c2 sin βx). (1.35)
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Thus, we see that we have a linear combination of two real, linearly inde-
pendent solutions, eαx cos βx and eαx sin βx.

When dealing with the Cauchy-Euler equations, we have solutions of the
form y(x) = xα+iβ. The key to obtaining real solutions is to first recall that

xy = eln xy
= ey ln x.

Thus, a power can be written as an exponential and the solution can be
written as

y(x) = xα+iβ = xαeiβ ln x, x > 0.

We can now find two real, linearly independent solutions, xα cos(β ln |x|)
and xα sin(β ln |x|) following the same steps as above for the constant coef-
ficient case.

Problems

1. Find all of the solutions of the first order differential equations. When
an initial condition is given, find the particular solution satisfying that con-
dition.

a.
dy
dx

=
ex

2y
.

b.
dy
dt

= y2(1 + t2), y(0) = 1.

c.
dy
dx

=

√
1 − y2

x
.

d. xy′ = y(1 − 2y), y(1) = 2.

e. y′ − (sin x)y = sin x.

f. xy′ − 2y = x2, y(1) = 1.

g.
ds
dt

+ 2s = st2, , s(0) = 1.

h. x′ − 2x = te2t.

i.
dy
dx

+ y = sin x, y(0) = 0.

j.
dy
dx

− 3
x

y = x3, y(1) = 4.

2. Consider the differential equation

dy
dx

=
x
y
− x

1 + y
.

a. Find the 1-parameter family of solutions (general solution) of this
equation.

b. Find the solution of this equation satisfying the initial condition
y(0) = 1. Is this a member of the 1-parameter family?

3. Identify the type of differential equation. Find the general solution and
plot several particular solutions. Also, find the singular solution if one ex-
ists.
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a. y = xy′ + 1
y′ .

b. y = 2xy′ + ln y′.

c. y′ + 2xy = 2xy2.

d. y′ + 2xy = y2ex2
.

4. The initial value problem

dy
dx

=
y2 + xy

x2 , y(1) = 1

does not fall into the class of problems considered in our review. However,
if one substitutes y(x) = xz(x) into the differential equation, one obtains
an equation for z(x) which can be solved. Use this substitution to solve the
initial value problem for y(x).

5. Find all of the solutions of the second order differential equations. When
an initial condition is given, find the particular solution satisfying that con-
dition.

a. y′′ − 9y′ + 20y = 0.

b. y′′ − 3y′ + 4y = 0, y(0) = 0, y′(0) = 1.

c. 8y′′ + 4y′ + y = 0, y(0) = 1, y′(0) = 0.

d. x′′ − x′ − 6x = 0 for x = x(t).

6. Prove that y1(x) = sinh x and y2(x) = 3 sinh x − 2 cosh x are linearly
independent solutions of y′′ − y = 0. Write y3(x) = cosh x as a linear com-
bination of y1 and y2.

7. Find all of the solutions of the second order differential equations for
x > 0.. When an initial condition is given, find the particular solution
satisfying that condition.

a. x2y′′ + 3xy′ + 2y = 0.

b. x2y′′ − 3xy′ + 3y = 0.

c. x2y′′ + 5xy′ + 4y = 0.

d. x2y′′ − 2xy′ + 3y = 0.

e. x2y′′ + 3xy′ − 3y = x2.

8. Consider the nonhomogeneous differential equation x′′− 3x′+ 2x = 6e3t.

a. Find the general solution of the homogenous equation.

b. Find a particular solution using the Method of Undetermined Co-
efficients by guessing xp(t) = Ae3t.

c. Use your answers in the previous parts to write down the general
solution for this problem.

9. Find the general solution of the given equation by the method given.

a. y′′ − 3y′ + 2y = 10. Method of Undetermined Coefficients.
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b. y′′ + y′ = 3x2. Method of Variation of Parameters.

10. Use the Method of Variation of Parameters to determine the general
solution for the following problems.

a. y′′ + y = tan x.

b. y′′ − 4y′ + 4y = 6xe2x.

11. Instead of assuming that c′1y1 + c′2y2 = 0 in the derivation of the solu-
tion using Variation of Parameters, assume that c′1y1 + c′2y2 = h(x) for an
arbitrary function h(x) and show that one gets the same particular solution.

12. Find the general solution of each differential equation. When an initial
condition is given, find the particular solution satisfying that condition.

a. y′′ − 3y′ + 2y = 20e−2x, y(0) = 0, y′(0) = 6.

b. y′′ + y = 2 sin 3x.

c. y′′ + y = 1 + 2 cos x.

d. x2y′′ − 2xy′ + 2y = 3x2 − x, x > 0.

13. Verify that the given function is a solution and use Reduction of Order
to find a second linearly independent solution.

a. x2y′′ − 2xy′ − 4y = 0, y1(x) = x4.

b. xy′′ − y′ + 4x3y = 0, y1(x) = sin(x2).

14. A certain model of the motion of a tossed whiffle ball is given by

mx′′ + cx′ + mg = 0, x(0) = 0, x′(0) = v0.

Here m is the mass of the ball, g=9.8 m/s2 is the acceleration due to gravity
and c is a measure of the damping. Since there is no x term, we can write
this as a first order equation for the velocity v(t) = x′(t) :

mv′ + cv + mg = 0.

a. Find the general solution for the velocity v(t) of the linear first
order differential equation above.

b. Use the solution of part a to find the general solution for the posi-
tion x(t).

c. Find an expression to determine how long it takes for the ball to
reach it’s maximum height?

d. Assume that c/m = 10 s−1. For v0 = 5, 10, 15, 20 m/s, plot the
solution, x(t), versus the time.

e. From your plots and the expression in part c, determine the rise
time. Do these answers agree?

f. What can you say about the time it takes for the ball to fall as
compared to the rise time?





Chapter 2

Linear Systems of Differential
Equations

“Do not worry too much about your difficulties in mathematics, I can assure you
that mine are still greater.” - Albert Einstein (1879-1955)

2.1 Coupled Systems

In this chapter we will begin our study of systems of differential equa-
tions. After defining first order systems, we will look at constant coefficient
systems and the behavior of solutions for these systems. Also, most of the
discussion will focus on planar, or two dimensional, systems. For such sys-
tems we will be able to look at a variety of graphical representations of the
family of solutions and discuss the qualitative features of systems we can
solve in preparation for the study of systems whose solutions cannot be
found in an algebraic form. However, we first turn to some simple physical
problems.

There are many problems in physics that can result in systems of equa-
tions. This is because the most basic law of physics is given by Newton’s
Second Law, which states that if a body experiences a net force, it will ac-
celerate. Thus,

∑ F = ma.

Since a = ẍ we have a system of second order differential equations in
general for three dimensional problems, or one second order differential
equation for one dimensional problems for a single mass.

x

k

m

Figure 2.1: Spring-Mass system.

We have already seen reminded in the last chapter of the simple problem
of a mass on a spring. This is shown in Figure 2.1. The mass slides on a
frictionless surface and reacts to the restoring force of the spring attached to
a wall. The restoring force of the spring given by Hooke’s Law,

Fs = −kx,

where k > 0 is the spring constant and x is the elongation of the spring.
When the spring elongation is positive, the spring force is negative and
when the spring elongation is negative the spring force is positive. The
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equation for simple harmonic motion for the mass-spring system is found
from Newton’s Second Law as

mẍ + kx = 0.

This second order equation, constant coefficient equation is easily solved
using the methods in the previous chapter. However, it can also be written
as a system of two first order equations in terms of the unknown position
and velocity. We first set y = ẋ. Noting that ẍ = ẏ, we rewrite the second
order equation in terms of x and ẏ. Thus, we have

ẋ = y

ẏ = − k
m

x. (2.1)

One can look at more complicated spring-mass systems. Consider two
blocks attached with two springs as in Figure 2.2. In this case we apply
Newton’s second law for each block. We will designate the elongations of
each spring from equilibrium as x1 and x2. These are shown in Figure 2.2.

For mass m1, the forces acting on it are due to each spring. The first
spring with spring constant k1 provides a force on m1 of −k1x1. The second
spring is stretched, or compressed, based upon the relative locations of the
two masses. So, the second spring will exert a force on m1 of k2(x2 − x1).

Figure 2.2: System of two masses and
two springs.

x

k

m

x

m

k1

1

1 2

2

2

Similarly, the only force acting directly on mass m2 is provided by the
restoring force from spring 2. So, that force is given by −k2(x2 − x1). The
reader should think about the signs in each case.

Putting this all together, we apply Newton’s Second Law to both masses.
We obtain the two equations

m1 ẍ1 = −k1x1 + k2(x2 − x1)

m2 ẍ2 = −k2(x2 − x1). (2.2)

Thus, we see that we have a coupled system of two second order differential
equations. Each equation depends on the unknowns x1 and x2.

One can rewrite this system of two second order equations as a system
of four first order equations by letting x3 = ẋ1 and x4 = ẋ2. This leads to
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the system

ẋ1 = x3

ẋ2 = x4

ẋ3 = − k1

m1
x1 +

k2

m1
(x2 − x1)

ẋ4 = − k2

m2
(x2 − x1). (2.3)

As we will see in the next chapter, this system can be written more com-
pactly in matrix form:

d
dt


x1

x2

x3

x4

 =


0 0 1 0
0 0 0 1

− k1+k2
m1

k2
m1

0 0
k2
m2

− k2
m2

0 0




x1

x2

x3

x4

 (2.4)

We can solve this system of first order equations using matrix methods.
However, we will first need to recall a few things from linear algebra. This
will be done in the next chapter. For now, we will return to simpler systems
and explore the behavior of typical solutions in planar systems.

2.2 Planar Systems

2.2.1 Introduction

We now consider examples of solving a coupled system of first order
differential equations in the plane. We will focus on the theory of linear sys-
tems with constant coefficients. Understanding these simple systems will
help in the study of nonlinear systems, which contain much more interest-
ing behaviors, such as the onset of chaos. In the next chapter we will return
to these systems and describe a matrix approach to obtaining the solutions.

A general form for first order systems in the plane is given by a system
of two equations for unknowns x(t) and y(t) :

x′(t) = P(x, y, t)

y′(t) = Q(x, y, t). (2.5)

An autonomous system is one in which there is no explicit time dependence:
Autonomous systems.

x′(t) = P(x, y)

y′(t) = Q(x, y). (2.6)

Otherwise the system is called nonautonomous.
A linear system takes the form

x′ = a(t)x + b(t)y + e(t)

y′ = c(t)x + d(t)y + f (t). (2.7)
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A homogeneous linear system results when e(t) = 0 and f (t) = 0.
A linear, constant coefficient system of first order differential equations is

given by

x′ = ax + by + e

y′ = cx + dy + f . (2.8)

We will focus on linear, homogeneous systems of constant coefficient first
order differential equations:A linear, homogeneous system of con-

stant coefficient first order differential
equations in the plane.

x′ = ax + by

y′ = cx + dy. (2.9)

As we will see later, such systems can result by a simple translation of the
unknown functions. These equations are said to be coupled if either b ̸= 0
or c ̸= 0.

We begin by noting that the system (2.9) can be rewritten as a second or-
der constant coefficient linear differential equation, which we already know
how to solve. We differentiate the first equation in system (2.9) and system-
atically replace occurrences of y and y′, since we also know from the first
equation that y = 1

b (x′ − ax). Thus, we have

x′′ = ax′ + by′

= ax′ + b(cx + dy)

= ax′ + bcx + d(x′ − ax). (2.10)

Rewriting the last line, we have

x′′ − (a + d)x′ + (ad − bc)x = 0. (2.11)

This is a linear, homogeneous, constant coefficient ordinary differential
equation. We know that we can solve this by first looking at the roots of the
characteristic equation

r2 − (a + d)r + ad − bc = 0 (2.12)

and writing down the appropriate general solution for x(t). Then we can
find y(t) using Equation (2.9):

y =
1
b
(x′ − ax).

We now demonstrate this for a specific example.

Example 2.1. Consider the system of differential equations

x′ = −x + 6y

y′ = x − 2y. (2.13)
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Carrying out the above outlined steps, we have that x′′ + 3x′ − 4x = 0.
This can be shown as follows:

x′′ = −x′ + 6y′

= −x′ + 6(x − 2y)

= −x′ + 6x − 12
(

x′ + x
6

)
= −3x′ + 4x (2.14)

The resulting differential equation has a characteristic equation of
r2 + 3r − 4 = 0. The roots of this equation are r = 1,−4. Therefore,
x(t) = c1et + c2e−4t. But, we still need y(t). From the first equation of
the system we have

y(t) =
1
6
(x′ + x) =

1
6
(2c1et − 3c2e−4t).

Thus, the solution to the system is

x(t) = c1et + c2e−4t,

y(t) = 1
3 c1et − 1

2 c2e−4t. (2.15)

Sometimes one needs initial conditions. For these systems we would
specify conditions like x(0) = x0 and y(0) = y0. These would allow the
determination of the arbitrary constants as before. Solving systems with initial conditions.

Example 2.2. Solve

x′ = −x + 6y

y′ = x − 2y. (2.16)

given x(0) = 2, y(0) = 0.
We already have the general solution of this system in (2.15). In-

serting the initial conditions, we have

2 = c1 + c2,

0 = 1
3 c1 − 1

2 c2. (2.17)

Solving for c1 and c2 gives c1 = 6/5 and c2 = 4/5. Therefore, the
solution of the initial value problem is

x(t) = 2
5
(
3et + 2e−4t) ,

y(t) = 2
5
(
et − e−4t) . (2.18)

2.2.2 Equilibrium Solutions and Nearby Behaviors

In studying systems of differential equations, it is often useful to
study the behavior of solutions without obtaining an algebraic form for
the solution. This is done by exploring equilibrium solutions and solutions
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nearby equilibrium solutions. Such techniques will be seen to be useful later
in studying nonlinear systems.

We begin this section by studying equilibrium solutions of system (2.8).
For equilibrium solutions the system does not change in time. Therefore,
equilibrium solutions satisfy the equations x′ = 0 and y′ = 0. Of course,
this can only happen for constant solutions. Let x0 and y0 be the (constant)
equilibrium solutions. Then, x0 and y0 must satisfy the systemEquilibrium solutions.

0 = ax0 + by0 + e,

0 = cx0 + dy0 + f . (2.19)

This is a linear system of nonhomogeneous algebraic equations. One only
has a unique solution when the determinant of the system is not zero, i.e.,
ad − bc ̸= 0. Using Cramer’s (determinant) Rule for solving such systems,
we have

x0 = −

∣∣∣∣∣ e b
f d

∣∣∣∣∣∣∣∣∣∣ a b
c d

∣∣∣∣∣
, y0 = −

∣∣∣∣∣ a e
c f

∣∣∣∣∣∣∣∣∣∣ a b
c d

∣∣∣∣∣
. (2.20)

If the system is homogeneous, e = f = 0, then we have that the origin is
the equilibrium solution; i.e., (x0, y0) = (0, 0). Often we will have this case
since one can always make a change of coordinates from (x, y) to (u, v) by
u = x − x0 and v = y − y0. Then, u0 = v0 = 0.

Next we are interested in the behavior of solutions near the equilibrium
solutions. Later this behavior will be useful in analyzing more complicated
nonlinear systems. We will look at some simple systems that are readily
solved.

Example 2.3. Stable Node (sink)
Consider the system

x′ = −2x

y′ = −y. (2.21)

This is a simple uncoupled system. Each equation is simply solved to
give

x(t) = c1e−2t and y(t) = c2e−t.

In this case we see that all solutions tend towards the equilibrium
point, (0, 0). This will be called a stable node, or a sink.

Before looking at other types of solutions, we will explore the stable node
in the above example. There are several methods of looking at the behavior
of solutions. We can look at solution plots of the dependent versus the
independent variables, or we can look in the xy-plane at the parametric
curves (x(t), y(t)).

Solution Plots: One can plot each solution as a function of t given a set
of initial conditions. Examples are shown in Figure 2.3 for several initial
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conditions. Note that the solutions decay for large t. Special cases result for
various initial conditions. Note that for t = 0, x(0) = c1 and y(0) = c2. (Of
course, one can provide initial conditions at any t = t0. It is generally easier
to pick t = 0 in our general explanations.) If we pick an initial condition
with c1=0, then x(t) = 0 for all t. One obtains similar results when setting
y(0) = 0.

Figure 2.3: Plots of solutions of Example
2.3 for several initial conditions.

Phase Portrait: There are other types of plots which can provide addi-
tional information about the solutions even if we cannot find the exact so-
lutions as we can for these simple examples. In particular, one can consider
the solutions x(t) and y(t) as the coordinates along a parameterized path,
or curve, in the plane: r = (x(t), y(t)) Such curves are called trajectories or
orbits. The xy-plane is called the phase plane and a collection of such orbits
gives a phase portrait for the family of solutions of the given system.

One method for determining the equations of the orbits in the phase
plane is to eliminate the parameter t between the known solutions to get
a relationship between x and y. Since the solutions are known for the last
example, we can do this, since the solutions are known. In particular, we
have

x = c1e−2t = c1

(
y
c2

)2
≡ Ay2.

Another way to obtain information about the orbits comes from noting
that the slopes of the orbits in the xy-plane are given by dy/dx. For au-
tonomous systems, we can write this slope just in terms of x and y. This
leads to a first order differential equation, which possibly could be solved
analytically or numerically.

First we will obtain the orbits for Example 2.3 by solving the correspond-
ing slope equation. Recall that for trajectories defined parametrically by
x = x(t) and y = y(t), we have from the Chain Rule for y = y(x(t)) that

dy
dt

=
dy
dx

dx
dt

.

Therefore, The Slope of a parametric curve.

dy
dx

=
dy
dt
dx
dt

. (2.22)

Figure 2.4: Orbits for Example 2.3.

For the system in (2.21) we use Equation (2.22) to obtain the equation for
the slope at a point on the orbit:

dy
dx

=
y

2x
.

The general solution of this first order differential equation is found using
separation of variables as x = Ay2 for A an arbitrary constant. Plots of these
solutions in the phase plane are given in Figure 2.4. [Note that this is the
same form for the orbits that we had obtained above by eliminating t from
the solution of the system.]

Once one has solutions to differential equations, we often are interested in
the long time behavior of the solutions. Given a particular initial condition
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(x0, y0), how does the solution behave as time increases? For orbits near
an equilibrium solution, do the solutions tend towards, or away from, the
equilibrium point? The answer is obvious when one has the exact solutions
x(t) and y(t). However, this is not always the case.

Let’s consider the above example for initial conditions in the first quad-
rant of the phase plane. For a point in the first quadrant we have that

dx/dt = −2x < 0,

meaning that as t → ∞, x(t) get more negative. Similarly,

dy/dt = −y < 0,

indicating that y(t) is also getting smaller for this problem. Thus, these
orbits tend towards the origin as t → ∞. This qualitative information was
obtained without relying on the known solutions to the problem.

x

y

(1, 2)(−1, 2)

(−1,−2) (1,−2)

(1, 1)(−1, 1)

(−1,−1) (1,−1)

Figure 2.5: Sketch of tangent vectors us-
ing Example 2.3.

Direction Fields: Another way to determine the behavior of the solutions
of the system of differential equations is to draw the direction field. A
direction field is a vector field in which one plots arrows in the direction of
tangents to the orbits at selected points in the plane. This is done because
the slopes of the tangent lines are given by dy/dx. For the general system
(2.9), the slope is

dy
dx

=
cx + dy
ax + by

.

This is a first order differential equation which can be solved as we show in
the following examples.

Example 2.4. Draw the direction field for Example 2.3.

Figure 2.6: Direction field for Example
2.3.

We can use software to draw direction fields. However, one can
sketch these fields by hand. We have that the slope of the tangent at
this point is given by

dy
dx

=
−y
−2x

=
y

2x
.

For each point in the plane one draws a piece of tangent line with this
slope. In Figure 2.5 we show a few of these. For (x, y) = (1, 1) the
slope is dy/dx = 1/2. So, we draw an arrow with slope 1/2 at this
point. From system (2.21), we have that x′ and y′ are both negative at
this point. Therefore, the vector points down and to the left.

We can do this for several points, as shown in Figure 2.5. Sometimes
one can quickly sketch vectors with the same slope. For this example,
when y = 0, the slope is zero and when x = 0 the slope is infinite. So,
several vectors can be provided. Such vectors are tangent to curves
known as isoclines in which dy

dx =constant.

Figure 2.7: Phase portrait for Example
2.3. This is a stable node, or sink

It is often difficult to provide an accurate sketch of a direction field. Com-
puter software can be used to provide a better rendition. For Example 2.3
the direction field is shown in Figure 2.6. Looking at this direction field, one
can begin to “see” the orbits by following the tangent vectors.
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Of course, one can superimpose the orbits on the direction field. This is
shown in Figure 2.7. Are these the patterns you saw in Figure 2.6?

In this example we see all orbits “flow” towards the origin, or equilibrium
point. Again, this is an example of what is called a stable node or a sink.
(Imagine what happens to the water in a sink when the drain is unplugged.)

This is another uncoupled system. The solutions are again simply gotten
by integration. We have that x(t) = c1e−t and y(t) = c2et. Here we have that
x decays as t gets large and y increases as t gets large. In particular, if one
picks initial conditions with c2 = 0, then orbits follow the x-axis towards
the origin. For initial points with c1 = 0, orbits originating on the y-axis
will flow away from the origin. Of course, in these cases the origin is an
equilibrium point and once at equilibrium, one remains there.

In fact, there is only one line on which to pick initial conditions such
that the orbit leads towards the equilibrium point. No matter how small c2

is, sooner, or later, the exponential growth term will dominate the solution.
One can see this behavior in Figure 2.8.

Figure 2.8: Plots of solutions of Example
2.5 for several initial conditions.

Example 2.5. Saddle Consider the system

x′ = −x

y′ = y. (2.23)

Similar to the first example, we can look at plots of solutions orbits
in the phase plane. These are given by Figures 2.8-2.9. The orbits can
be obtained from the system as

dy
dx

=
dy/dt
dx/dt

= − y
x

.

The solution is y = A
x . For different values of A ̸= 0 we obtain a

family of hyperbolae. These are the same curves one might obtain for
the level curves of a surface known as a saddle surface, z = xy. Thus,
this type of equilibrium point is classified as a saddle point. From
the phase portrait we can verify that there are many orbits that lead
away from the origin (equilibrium point), but there is one line of initial
conditions that leads to the origin and that is the x-axis. In this case,
the line of initial conditions is given by the x-axis.

Figure 2.9: Phase portrait for Example
2.5. This is a saddle.

Example 2.6. Unstable Node (source)

x′ = 2x

y′ = y. (2.24)

This example is similar to Example 2.3. The solutions are obtained
by replacing t with −t. The solutions, orbits, and direction fields can
be seen in Figures 2.10-2.11. This is once again a node, but all orbits
lead away from the equilibrium point. It is called an unstable node or a
source. Figure 2.10: Plots of solutions of Exam-

ple 2.6 for several initial conditions.
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Example 2.7. Center

x′ = y

y′ = −x. (2.25)

Figure 2.11: Phase portrait for Example
2.6, an unstable node or source.

Figure 2.12: Plots of solutions of Exam-
ple 2.7 for several initial conditions.

This system is a simple, coupled system. Neither equation can be
solved without some information about the other unknown function.
However, we can differentiate the first equation and use the second
equation to obtain

x′′ + x = 0.

We recognize this equation as one that appears in the study of simple
harmonic motion. The solutions are pure sinusoidal oscillations:

x(t) = c1 cos t + c2 sin t, y(t) = −c1 sin t + c2 cos t.

In the phase plane the trajectories can be determined either by look-
ing at the direction field, or solving the first order equation

dy
dx

= − x
y

.

Performing a separation of variables and integrating, we find that

x2 + y2 = C.

Thus, we have a family of circles for C > 0. (Can you prove this using
the general solution?) Looking at the results graphically in Figures
2.12-2.13 confirms this result. This type of point is called a center.

Figure 2.13: Phase portrait for Example
2.7, a center.

Example 2.8. Focus (spiral)

x′ = αx + y

y′ = −x. (2.26)

In this example, we will see an additional set of behaviors of equi-
librium points in planar systems. We have added one term, αx, to
the system in Example 2.7. We will consider the effects for two spe-
cific values of the parameter: α = 0.1,−0.2. The resulting behaviors
are shown in the Figures 2.15-2.18. We see orbits that look like spi-
rals. These orbits are stable and unstable spirals (or foci, the plural of
focus.)

We can understand these behaviors by once again relating the sys-
tem of first order differential equations to a second order differential
equation. Using the usual method for obtaining a second order equa-
tion form a system, we find that x(t) satisfies the differential equation

x′′ − αx′ + x = 0.
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We recall from our first course that this is a form of damped simple
harmonic motion. The characteristic equation is r2 − αr + 1 = 0. The
solution of this quadratic equation is

r =
α ±

√
α2 − 4
2

.

Figure 2.14: Plots of solutions of Ex-
ample 2.8 for several initial conditions,
α = −0.2.

Figure 2.15: Plots of solutions of Ex-
ample 2.8 for several initial conditions,
α = 0.1.

There are five special cases to consider as shown in the below clas-
sification.

Classification of Solutions of x′′ − αx′ + x = 0

1. α = −2. There is one real solution. This case is called critical damping
since the solution r = −1 leads to exponential decay. The solution is
x(t) = (c1 + c2t)e−t.

2. α < −2. There are two real, negative solutions, r = −µ,−ν, µ, ν > 0.
The solution is x(t) = c1e−µt + c2e−νt. In this case we have what is
called overdamped motion. There are no oscillations

3. −2 < α < 0. There are two complex conjugate solutions r = α/2 ± iβ
with real part less than zero and β =

√
4−α2

2 . The solution is x(t) =

(c1 cos βt + c2 sin βt)eαt/2. Since α < 0, this consists of a decaying expo-
nential times oscillations. This is often called an underdamped oscillation.

4. α = 0. This leads to simple harmonic motion.

5. 0 < α < 2. This is similar to the underdamped case, except α > 0. The
solutions are growing oscillations.

6. α = 2. There is one real solution. The solution is x(t) = (c1 + c2t)et. It
leads to unbounded growth in time.

7. For α > 2. There are two real, positive solutions r = µ, ν > 0. The
solution is x(t) = c1eµt + c2eνt, which grows in time.

Figure 2.16: Phase portrait for 2.9. This
is a degenerate node.

For α < 0 the solutions are losing energy, so the solutions can oscil-
late with a diminishing amplitude. (See Figure 2.14.) For α > 0, there
is a growth in the amplitude, which is not typical. (See Figure 2.15.)
Of course, there can be overdamped motion if the magnitude of α is
too large.

Example 2.9. Degenerate Node For this example, we will write out
the solutions. It is a coupled system for which only the second equa-
tion is coupled.

x′ = −x

y′ = −2x − y. (2.27)

There are two possible approaches:
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a. We could solve the first equation to find x(t) = c1e−t. Inserting
this solution into the second equation, we have

y′ + y = −2c1e−t.

This is a relatively simple linear first order equation for y = y(t). The
integrating factor is µ = et. The solution is found as y(t) = (c2 −
2c1t)e−t.

Figure 2.17: Phase portrait for Example
2.8 with α = −0.2. This is a stable focus,
or spiral.

b. Another method would be to proceed to rewrite this as a second
order equation. Computing x′′ does not get us very far. So, we look at

y′′ = −2x′ − y′

= 2x − y′

= −2y′ − y. (2.28)

Therefore, y satisfies

y′′ + 2y′ + y = 0.

The characteristic equation has one real root, r = −1. So, we write

y(t) = (k1 + k2t)e−t.

This is a stable degenerate node. Combining this with the solution
x(t) = c1e−t, we can show that y(t) = (c2 − 2c1t)e−t as before.

Figure 2.18: Phase portrait for Example
2.9. This is a degenerate node.

In Figure 2.16 we see several orbits in this system. It differs from
the stable node show in Figure 2.4 in that there is only one direction
along which the orbits approach the origin instead of two. If one picks
c1 = 0, then x(t) = 0 and y(t) = c2e−t. This leads to orbits running
along the y-axis as seen in the figure.

x
K3 K2 K1 0 1 2 3

y

K3

K2

K1

1

2

3

Figure 2.19: Plots of direction field of Ex-
ample 2.10.

Example 2.10. A Line of Equilibria, Zero Root

x′ = 2x − y

y′ = −2x + y. (2.29)

In this last example, we have a coupled set of equations. We rewrite
it as a second order differential equation:

x′′ = 2x′ − y′

= 2x′ − (−2x + y)

= 2x′ + 2x + (x′ − 2x) = 3x′. (2.30)

So, the second order equation is

x′′ − 3x′ = 0

and the characteristic equation is 0 = r(r − 3). This gives the general
solution as

x(t) = c1 + c2e3t
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and thus

y = 2x − x′ = 2(c1 + c2e3t)− (3c2e3t) = 2c1 − c2e3t.

In Figure 2.19 we show the direction field. The constant slope field
seen in this example is confirmed by a simple computation:

dy
dx

=
−2x + y
2x − y

= −1.

Furthermore, looking at initial conditions with y = 2x, we have at
t = 0,

2c1 − c2 = 2(c1 + c2) ⇒ c2 = 0.

Therefore, points on this line remain on this line forever, (x, y) =

(c1, 2c1). This line of fixed points is called a line of equilibria.

2.2.3 Polar Representation of Spirals

In the examples with a center or a spiral, one might be able to
write the solutions in polar coordinates. Recall that a point in the plane can
be described by either Cartesian (x, y) or polar (r, θ) coordinates. Given the
polar form, one can find the Cartesian components using

x = r cos θ and y = r sin θ.

Given the Cartesian coordinates, one can find the polar coordinates using

r2 = x2 + y2 and tan θ =
y
x

. (2.31)

Since x and y are functions of t, then naturally we can think of r and θ as
functions of t. Converting a system of equations in the plane for x′ and y′

to polar form requires knowing r′ and θ′. So, we first find expressions for r′

and θ′ in terms of x′ and y′.
Differentiating the first equation in (2.31) gives

rr′ = xx′ + yy′.

Inserting the expressions for x′ and y′ from system 2.9, we have

rr′ = x(ax + by) + y(cx + dy).

In some cases this may be written entirely in terms of r’s. Similarly, we have
that

θ′ =
xy′ − yx′

r2 ,

which the reader can prove for homework.
In summary, when converting first order equations from rectangular to

polar form, one needs the relations below.
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Derivatives of Polar Variables

r′ =
xx′ + yy′

r
,

θ′ =
xy′ − yx′

r2 . (2.32)

Example 2.11. Rewrite the following system in polar form and solve
the resulting system.

x′ = ax + by

y′ = −bx + ay. (2.33)

We first compute r′ and θ′:

rr′ = xx′ + yy′ = x(ax + by) + y(−bx + ay) = ar2.

r2θ′ = xy′ − yx′ = x(−bx + ay)− y(ax + by) = −br2.

This leads to simpler system

r′ = ar

θ′ = −b. (2.34)

This system is uncoupled. The second equation in this system in-
dicates that we traverse the orbit at a constant rate in the clockwise
direction. Solving these equations, we have that r(t) = r0eat, θ(t) =
θ0 − bt. Eliminating t between these solutions, we finally find the polar
equation of the orbits:

r = r0e−a(θ−θ0)t/b.

If you graph this for a ̸= 0, you will get stable or unstable spirals.

Example 2.12. Consider the specific system

x′ = −y + x

y′ = x + y. (2.35)

In order to convert this system into polar form, we compute

rr′ = xx′ + yy′ = x(−y + x) + y(x + y) = r2.

r2θ′ = −xy′ − yx′ = x(x + y)− y(−y + x) = r2.

This leads to simpler system

r′ = r

θ′ = 1. (2.36)

Solving these equations yields

r(t) = r0et, θ(t) = t + θ0.

Eliminating t from this solution gives the orbits in the phase plane,
r(θ) = r0eθ−θ0 .
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A more complicated example arises for a nonlinear system of differential
equations. Consider the following example.

Example 2.13.

x′ = −y + x(1 − x2 − y2)

y′ = x + y(1 − x2 − y2). (2.37)

Transforming to polar coordinates, one can show that in order to convert
this system into polar form, we compute

r′ = r(1 − r2), θ′ = 1.

This uncoupled system can be solved and this is left to the reader.

2.3 Applications

In this section we will describe some simple applications leading
to systems of differential equations which can be solved using the methods
in this chapter. These systems are left for homework problems and the as
the start of further explorations for student projects.

2.3.1 Mass-Spring Systems

The first examples that we had seen involved masses on springs. Re-
call that for a simple mass on a spring we studied simple harmonic motion,
which is governed by the equation

mẍ + kx = 0.

This second order equation can be written as two first order equations

ẋ = y

ẏ = − k
m

x, (2.38)

or

ẋ = y

ẏ = −ω2x, (2.39)

where ω2 = k
m . The coefficient matrix for this system is

A =

(
0 1

−ω2 0

)
.

We also looked at the system of two masses and two springs as shown in
Figure 2.20. The equations governing the motion of the masses is

m1 ẍ1 = −k1x1 + k2(x2 − x1)

m2 ẍ2 = −k2(x2 − x1). (2.40)



38 differential equations

Figure 2.20: System of two masses and
two springs.
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We can rewrite this system as four first order equations

ẋ1 = x3

ẋ2 = x4

ẋ3 = − k1

m1
x1 +

k2

m1
(x2 − x1)

ẋ4 = − k2

m2
(x2 − x1). (2.41)

The coefficient matrix for this system is

A =


0 0 1 0
0 0 0 1

− k1+k2
m1

k2
m1

0 0
k2
m2

− k2
m2

0 0

 .

We can study this system for specific values of the constants using the meth-
ods covered in the last sections.Writing the spring-block system as a sec-

ond order vector system. Actually, one can also put the system (2.40) in the matrix form(
m1 0
0 m2

)(
ẍ1

ẍ2

)
=

(
−(k1 + k2) k2

k2 −k2

)(
x1

x2

)
. (2.42)

This system can then be written compactly as

Mẍ = −Kx, (2.43)

where

M =

(
m1 0
0 m2

)
, K =

(
k1 + k2 −k2

−k2 k2

)
.

This system can be solved by guessing a form for the solution. We could
guess

x = aeiωt

or

x =

(
a1 cos(ωt − δ1)

a2 cos(ωt − δ2)

)
,

where δi are phase shifts determined from initial conditions.
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Inserting x = aeiωt into the system gives

(K − ω2M)a = 0.

This is a homogeneous system. It is a generalized eigenvalue problem for
eigenvalues ω2 and eigenvectors a. We solve this in a similar way to the
standard matrix eigenvalue problems. The eigenvalue equation is found as

det (K − ω2M) = 0.

Once the eigenvalues are found, then one determines the eigenvectors and
constructs the solution.

Example 2.14. Let m1 = m2 = m and k1 = k2 = k. Then, we have to
solve the system

ω2

(
m 0
0 m

)(
a1

a2

)
=

(
2k −k
−k k

)(
a1

a2

)
.

The eigenvalue equation is given by

0 =

∣∣∣∣∣ 2k − mω2 −k
−k k − mω2

∣∣∣∣∣
= (2k − mω2)(k − mω2)− k2

= m2ω4 − 3kmω2 + k2. (2.44)

Solving this quadratic equation for ω2, we have

ω2 =
3 ± 1

2
k
m

.

For positive values of ω, one can show that

ω =
1
2

(
±1 +

√
5
)√ k

m
.

The eigenvectors can be found for each eigenvalue by solving the
homogeneous system(

2k − mω2 −k
−k k − mω2

)(
a1

a2

)
= 0.

The eigenvectors are given by

a1 =

(
−

√
5+1
2

1

)
, a2 =

( √
5−1
2
1

)
.

We are now ready to construct the real solutions to the problem.
Similar to solving two first order systems with complex roots, we take
the real and imaginary parts and take a linear combination of the so-
lutions. In this problem there are four terms, giving the solution in
the form

x(t) = c1a1cosω1t + c2a1sinω1t + c3a2cosω2t + c4a2sinω2t,

where the ω’s are the eigenvalues and the a’s are the corresponding
eigenvectors. The constants are determined from the initial conditions,
x(0) = x0 and ẋ(0) = v0.
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2.3.2 Circuits*

In the last chapter we investigated simple series LRC circuits.
More complicated circuits are possible by looking at parallel connections,
or other combinations, of resistors, capacitors and inductors. This results
in several equations for each loop in the circuit, leading to larger systems
of differential equations. An example of another circuit setup is shown in
Figure 2.21. This is not a problem that can be covered in the first year
physics course.

There are two loops, indicated in Figure 2.22 as traversed clockwise. For
each loop we need to apply Kirchoff’s Loop Rule. There are three oriented
currents, labeled Ii, i = 1, 2, 3. Corresponding to each current is a changing
charge, qi such that

Ii =
dqi
dt

, i = 1, 2, 3.

We have for loop one

I1R1 +
q2

C
= V(t) (2.45)

and for loop two

I3R2 + L
dI3

dt
=

q2

C
. (2.46)

−
+V(t)

R1 R2

LC

Figure 2.21: A circuit with two loops
containing several different circuit ele-
ments.

There are three unknown functions for the charge. Once we know the
charge functions, differentiation will yield the three currents. However, we
only have two equations. We need a third equation. This equation is found
from Kirchoff’s Point (Junction) Rule.

−
+V(t)

R1 R2

L

A

C

B

I1 I3

I2

1 2

Figure 2.22: The previous parallel circuit
with the directions indicated for travers-
ing the loops in Kirchoff’s Laws.

Consider the points A and B in Figure 2.22. Any charge (current) entering
these junctions must be the same as the total charge (current) leaving the
junctions. For point A we have

I1 = I2 + I3, (2.47)

or

q̇1 = q̇2 + q̇3. (2.48)

Equations (2.45), (2.46), and (2.48) form a coupled system of differential
equations for this problem. There are both first and second order derivatives
involved. We can write the whole system in terms of charges as

R1q̇1 +
q2

C
= V(t)

R2q̇3 + Lq̈3 =
q2

C
q̇1 = q̇2 + q̇3. (2.49)

The question is whether, or not, we can write this as a system of first order
differential equations. Since there is only one second order derivative, we
can introduce the new variable q4 = q̇3. The first equation can be solved for
q̇1. The third equation can be solved for q̇2 with appropriate substitutions
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for the other terms. q̇3 is gotten from the definition of q4 and the second
equation can be solved for q̈3 and substitutions made to obtain the system

q̇1 =
V
R1

− q2

R1C

q̇2 =
V
R1

− q2

R1C
− q4

q̇3 = q4

q̇4 =
q2

LC
− R2

L
q4.

So, we have a nonhomogeneous first order system of differential equa-
tions.

2.3.3 Mixture Problems

There are many types of mixture problems. Such problems are standard in
a first course on differential equations as examples of first order differential
equations. Typically these examples consist of a tank of brine, water con-
taining a specific amount of salt with pure water entering and the mixture
leaving, or the flow of a pollutant into, or out of, a lake. We first saw such
problems in Chapter 1.

In general one has a rate of flow of some concentration of mixture enter-
ing a region and a mixture leaving the region. The goal is to determine how
much stuff is in the region at a given time. This is governed by the equation

Rate of change of substance = Rate In − Rate Out.

This can be generalized to the case of two interconnected tanks. We will pro-
vide an example, but first we review the single tank problem from Chapter
1.

Example 2.15. Single Tank Problem
A 50 gallon tank of pure water has a brine mixture with concentra-

tion of 2 pounds per gallon entering at the rate of 5 gallons per minute.
[See Figure 2.23.] At the same time the well-mixed contents drain out
at the rate of 5 gallons per minute. Find the amount of salt in the tank
at time t. In all such problems one assumes that the solution is well
mixed at each instant of time.

Figure 2.23: A typical mixing problem.

Let x(t) be the amount of salt at time t. Then the rate at which the
salt in the tank increases is due to the amount of salt entering the tank
less that leaving the tank. To figure out these rates, one notes that
dx/dt has units of pounds per minute. The amount of salt entering
per minute is given by the product of the entering concentration times
the rate at which the brine enters. This gives the correct units:(

2
pounds

gal

)(
5

gal
min

)
= 10

pounds
min

.

Similarly, one can determine the rate out as(
x pounds

50 gal

)(
5

gal
min

)
=

x
10

pounds
min

.
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Thus, we have
dx
dt

= 10 − x
10

.

This equation is easily solved using the methods for first order
equations.

Example 2.16. Double Tank Problem
One has two tanks connected together, labeled tank X and tank Y,

as shown in Figure 2.24.

Figure 2.24: The two tank problem.

X Y

Let tank X initially have 100 gallons of brine made with 100 pounds
of salt. Tank Y initially has 100 gallons of pure water. Pure water
is pumped into tank X at a rate of 2.0 gallons per minute. Some of
the mixture of brine and pure water flows into tank Y at 3 gallons
per minute. To keep the tank levels the same, one gallon of the Y
mixture flows back into tank X at a rate of one gallon per minute and
2.0 gallons per minute drains out. Find the amount of salt at any given
time in the tanks. What happens over a long period of time?

In this problem we set up two equations. Let x(t) be the amount
of salt in tank X and y(t) the amount of salt in tank Y. Again, we
carefully look at the rates into and out of each tank in order to set up
the system of differential equations. We obtain the system

dx
dt

=
y

100
− 3x

100
dy
dt

=
3x
100

− 3y
100

. (2.50)

This is a linear, homogenous constant coefficient system of two first
order equations, which we know how to solve. The matrix form of the
system is given by

ẋ =

(
− 3

100
1

100
3

100 − 3
100

)
x, x(0) =

(
100

0

)
.

The eigenvalues for the problem are given by λ = −3 ±
√

3 and the
eigenvectors are (

1
±
√

3

)
.
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Since the eigenvalues are real and distinct, the general solution is
easily written down:

x(t) = c1

(
1√
3

)
e(−3+

√
3)t + c2

(
1

−
√

3

)
e(−3−

√
3)t.

Finally, we need to satisfy the initial conditions. So,

x(0) = c1

(
1√
3

)
+ c2

(
1

−
√

3

)
=

(
100
0

)
,

or
c1 + c2 = 100, (c1 − c2)

√
3 = 0.

So, c2 = c1 = 50. The final solution is

x(t) = 50

((
1√
3

)
e(−3+

√
3)t +

(
1

−
√

3

)
e(−3−

√
3)t

)
,

or

x(t) = 50
(

e(−3+
√

3)t + e(−3−
√

3)t
)

y(t) = 50
√

3
(

e(−3+
√

3)t − e(−3−
√

3)t
)

. (2.51)

2.3.4 Chemical Kinetics*

There are many problems in the chemistry of chemical reactions
which lead to systems of differential equations. The simplest reaction is
when a chemical A turns into chemical B. This happens at a certain rate,
k > 0. This reaction can be represented by the chemical formula

A
k
// B.

In this case we have that the rates of change of the concentrations of A, [A],
and B, [B], are given by The chemical reactions used in these ex-

amples are first order reactions. Second
order reactions have rates proportional
to the square of the concentration.

d[A]

dt
= −k[A]

d[B]
dt

= k[A] (2.52)

Think about this as it is a key to understanding the next reactions.
A more complicated reaction is given by

A
k1

// B
k2

// C.

Here there are three concentrations and two rates of change. The system of
equations governing the reaction is

d[A]

dt
= −k1[A],

d[B]
dt

= k1[A]− k2[B],

d[C]
dt

= k2[B]. (2.53)



44 differential equations

The more complication rate of change is when [B] increases from [A] chang-
ing to [B] and decrease when [B] changes to [C]. Thus, there are two terms
in the rate of change equation for concentration [B].

One can further consider reactions in which a reverse reaction is possible.
Thus, a further generalization occurs for the reaction

A
k1

// B
k3oo

k2

// C.

The reverse reaction rates contribute to the reaction equations for [A] and
[B]. The resulting system of equations is

d[A]

dt
= −k1[A] + k3[B],

d[B]
dt

= k1[A]− k2[B]− k3[B],

d[C]
dt

= k2[B]. (2.54)

Nonlinear chemical reactions will be discussed in the next chapter.

2.3.5 Predator Prey Models*

Another common population model is that describing the coexistence
of species. For example, we could consider a population of rabbits and
foxes. Left to themselves, rabbits would tend to multiply, thus

dR
dt

= aR,

with a > 0. In such a model the rabbit population would grow exponentially.
Similarly, a population of foxes would decay without the rabbits to feed on.
So, we have that

dF
dt

= −bF

for b > 0.
Now, if we put these populations together on a deserted island, they

would interact. The more foxes, the rabbit population would decrease.
However, the more rabbits, the foxes would have plenty to eat and the pop-
ulation would thrive. Thus, we could model the competing populations
as

dR
dt

= aR − cF,

dF
dt

= −bF + dR, (2.55)

where all of the constants are positive numbers. Studying this coupled
system would lead to a study of the dynamics of these populations. The
nonlinear version of this system, the Lotka-Volterra model, will be discussed
in the next chapter.
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2.3.6 Love Affairs*

The next application is one that was introduced in 1988 by Stro-
gatz as a cute system involving relationships.1 One considers what happens 1 Steven H. Strogatz introduced this

problem as an interesting example of
systems of differential equations in
Mathematics Magazine, Vol. 61, No. 1

(Feb. 1988) p 35. He also describes it
in his book Nonlinear Dynamics and Chaos
(1994).

to the affections that two people have for each other over time. Let R de-
note the affection that Romeo has for Juliet and J be the affection that Juliet
has for Romeo. Positive values indicate love and negative values indicate
dislike.

One possible model is given by

dR
dt

= bJ

dJ
dt

= cR (2.56)

with b > 0 and c < 0. In this case Romeo loves Juliet the more she likes him.
But Juliet backs away when she finds his love for her increasing.

A typical system relating the combined changes in affection can be mod-
eled as

dR
dt

= aR + bJ

dJ
dt

= cR + dJ. (2.57)

Several scenarios are possible for various choices of the constants. For ex-
ample, if a > 0 and b > 0, Romeo gets more and more excited by Juliet’s love
for him. If c > 0 and d < 0, Juliet is being cautious about her relationship
with Romeo. For specific values of the parameters and initial conditions,
one can explore this match of an overly zealous lover with a cautious lover.

2.3.7 Epidemics*

Another interesting area of application of differential equation is
in predicting the spread of disease. Typically, one has a population of sus-
ceptible people or animals. Several infected individuals are introduced into
the population and one is interested in how the infection spreads and if the
number of infected people drastically increases or dies off. Such models are
typically nonlinear and we will look at what is called the SIR model in the
next chapter. In this section we will model a simple linear model.

Let us break the population into three classes. First, we let S(t) represent
the healthy people, who are susceptible to infection. Let I(t) be the number
of infected people. Of these infected people, some will die from the infection
and others could recover. We will consider the case that initially there is one
infected person and the rest, say N, are healthy. Can we predict how many
deaths have occurred by time t?

We model this problem using the compartmental analysis we had seen
for mixing problems. The total rate of change of any population would be
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due to those entering the group less those leaving the group. For example,
the number of healthy people decreases due infection and can increase when
some of the infected group recovers. Let’s assume that a) the rate of infection
is proportional to the number of healthy people, aS, and b) the number who
recover is proportional to the number of infected people, rI. Thus, the rate
of change of healthy people is found as

dS
dt

= −aS + rI.

Let the number of deaths be D(t). Then, the death rate could be taken to
be proportional to the number of infected people. So,

dD
dt

= dI

Finally, the rate of change of infected people is due to healthy people
getting infected and the infected people who either recover or die. Using
the corresponding terms in the other equations, we can write the rate of
change of infected people as

dI
dt

= aS − rI − dI.

This linear system of differential equations can be written in matrix form.

d
dt

 S
I
D

 =

 −a r 0
a −d − r 0
0 d 0


 S

I
D

 . (2.58)

The reader can find the solutions of this system and determine if this is a
realistic model.

2.4 First Order Matrix Differential Equations

2.4.1 Matrix Formulation

We have investigated several linear systems in the plane and in
the next chapter we will use some of these ideas to investigate nonlinear
systems. We need a deeper insight into the solutions of planar systems. So,
in this section we will recast the first order linear systems into matrix form.
This will lead to a better understanding of first order systems and allow
for extensions to higher dimensions and the solution of nonhomogeneous
equations later in this chapter.

We start with the usual homogeneous system in Equation (2.9). Let the
unknowns be represented by the vector

x(t) =

(
x(t)
y(t)

)
.

Then we have that

x′ =

(
x′

y′

)
=

(
ax + by
cx + dy

)
=

(
a b
c d

)(
x
y

)
≡ Ax.
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Here we have introduced the coefficient matrix A. This is a first order vector
differential equation,

x′ = Ax.

Formerly, we can write the solution as

x = x0eAt.

You can verify that this is a solution by simply differentiating,

dx
dt

= x0
d
dt

(
eAt
)
= Ax0eAt = Ax.

2.4.2 Exponentiating a Matrix

However, there remains the question, “What does it mean to ex-
ponentiate a matrix?” The exponential of a matrix is defined using the
Maclaurin series expansion

ex =
∞

∑
k=0

= 1 + x +
x2

2!
+

x3

3!
+ · · · .

We define The exponential of a matrix is defined us-
ing the Maclaurin series expansion

ex =
∞

∑
k=0

xn

n!
= 1 + x +

x2

2!
+

x3

3!
+ · · · .

So, we define

eA = I + A +
A2

2!
+

A3

3!
+ · · · . (2.59)

In general, it is difficult computing eA

unless A is diagonal.

eA =
∞

∑
k=0

1
n!

An = I + A +
A2

2!
+

A3

3!
+ · · · . (2.60)

In general it is difficult to sum this series, but it is doable for some simple
examples.

Example 2.17. Evaluate etA for A =

(
1 0
0 2

)
.

etA = I + tA +
t2

2!
A2 +

t3

3!
A3 + · · · .

=

(
1 0
0 1

)
+ t

(
1 0
0 2

)
+

t2

2!

(
1 0
0 2

)2

+
t3

3!

(
1 0
0 2

)3

+ · · ·

=

(
1 0
0 1

)
+ t

(
1 0
0 2

)
+

t2

2!

(
1 0
0 4

)
+

t3

3!

(
1 0
0 8

)
+ · · ·

=

(
1 + t + t2

2! +
t3

3! · · · 0
0 1 + 2t + 2t2

2! + 8t3

3! · · ·

)

=

(
et 0
0 e2t

)
(2.61)

Example 2.18. Evaluate etA for A =

(
0 1
1 0

)
.

We first note that

A2 =

(
0 1
1 0

)(
0 1
1 0

)
=

(
1 0
0 1

)
= I.
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Therefore,

An =

{
A, n odd,
I, n even.

Then, we have

etA = I + tA +
t2

2!
A2 +

t3

3!
A3 + · · · .

= I + tA +
t2

2!
I +

t3

3!
A + · · · .

=

(
1 + t2

2! +
t4

4! · · · t + t3

3! +
t5

5! · · ·
t + t3

3! +
t5

5! · · · 1 + t2

2! +
t4

4! · · ·

)

=

(
cosh sinh t
sinh t cosh t

)
. (2.62)

Since summing these infinite series might be difficult, we will now inves-
tigate the solutions of planar systems to see if we can find other approaches
for solving linear systems using matrix methods. We begin by recalling the
solution to the problem in Example (2.16). We obtained the solution to this
system as

x(t) = c1et + c2e−4t,

y(t) =
1
3

c1et − 1
2

c2e−4t. (2.63)

This can be rewritten using matrix operations. Namely, we first write the
solution in vector form.

x =

(
x(t)
y(t)

)

=

(
c1et + c2e−4t

1
3 c1et − 1

2 c2e−4t

)

=

(
c1et

1
3 c1et

)
+

(
c2e−4t

− 1
2 c2e−4t

)

= c1

(
1
1
3

)
et + c2

(
1
− 1

2

)
e−4t. (2.64)

We see that our solution is in the form of a linear combination of vectors
of the form

x = veλt

with v a constant vector and λ a constant number. This is similar to how we
began to find solutions to second order constant coefficient equations. So,
for the general problem (2.4.1) we insert this guess. Thus,

x′ = Ax ⇒
λveλt = Aveλt. (2.65)

For this to be true for all t, we have that

Av = λv. (2.66)
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This is an eigenvalue problem. A is a 2 × 2 matrix for our problem, but
could easily be generalized to a system of n first order differential equa-
tions. We will confine our remarks for now to planar systems. However, we
need to recall how to solve eigenvalue problems and then see how solutions
of eigenvalue problems can be used to obtain solutions to our systems of
differential equations..

2.4.3 Eigenvalue Problems

We seek nontrivial solutions to the eigenvalue problem

Av = λv. (2.67)

We note that v = 0 is an obvious solution. Furthermore, it does not lead
to anything useful. So, it is called a trivial solution. Typically, we are given
the matrix A and have to determine the eigenvalues, λ, and the associated
eigenvectors, v, satisfying the above eigenvalue problem. Later in the course
we will explore other types of eigenvalue problems.

For now we begin to solve the eigenvalue problem for v =

(
v1

v2

)
.

Inserting this into Equation (2.67), we obtain the homogeneous algebraic
system

(a − λ)v1 + bv2 = 0,

cv1 + (d − λ)v2 = 0. (2.68)

The solution of such a system would be unique if the determinant of the
system is not zero. However, this would give the trivial solution v1 = 0,
v2 = 0. To get a nontrivial solution, we need to force the determinant to be
zero. This yields the eigenvalue equation

0 =

∣∣∣∣∣ a − λ b
c d − λ

∣∣∣∣∣ = (a − λ)(d − λ)− bc.

This is a quadratic equation for the eigenvalues that would lead to nontrivial
solutions. If we expand the right side of the equation, we find that

λ2 − (a + d)λ + ad − bc = 0.

This is the same equation as the characteristic equation (2.12) for the gen-
eral constant coefficient differential equation considered in the first chapter.
Thus, the eigenvalues correspond to the solutions of the characteristic poly-
nomial for the system.

Once we find the eigenvalues, then there are possibly an infinite number
solutions to the algebraic system. We will see this in the examples.

So, the process is to

a) Write the coefficient matrix;

b) Find the eigenvalues from the equation det(A − λI) = 0; and,

c) Find the eigenvectors by solving the linear system (A − λI)v = 0 for
each λ.
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2.5 Solving Constant Coefficient Systems in 2D

Before proceeding to examples, we first indicate the types of solutions that
could result from the solution of a homogeneous, constant coefficient system
of first order differential equations.

We begin with the linear system of differential equations in matrix form.

dx
dt

=

(
a b
c d

)
x = Ax. (2.69)

The type of behavior depends upon the eigenvalues of matrix A. The pro-
cedure is to determine the eigenvalues and eigenvectors and use them to
construct the general solution.

If we have an initial condition, x(t0) = x0, we can determine the two
arbitrary constants in the general solution in order to obtain the particular
solution. Thus, if x1(t) and x2(t) are two linearly independent solutions2,2 Recall that linear independence means

c1x1(t) + c2x2(t) = 0 if and only if
c1, c2 = 0. The reader should derive the
condition on the xi for linear indepen-
dence.

then the general solution is given as

x(t) = c1x1(t) + c2x2(t).

Then, setting t = 0, we get two linear equations for c1 and c2:

c1x1(0) + c2x2(0) = x0.

The major work is in finding the linearly independent solutions. This de-
pends upon the different types of eigenvalues that one obtains from solving
the eigenvalue equation, det(A − λI) = 0. The nature of these roots indicate
the form of the general solution. In Table 2.1 we summarize the classifica-
tion of solutions in terms of the eigenvalues of the coefficient matrix. We
first make some general remarks about the plausibility of these solutions
and then provide examples in the following section to clarify the matrix
methods for our two dimensional systems.

The construction of the general solution in Case I is straight forward.
However, the other two cases need a little explanation.

Let’s consider Case III. Note that since the original system of equations
does not have any i’s, then we would expect real solutions. So, we look
at the real and imaginary parts of the complex solution. We have that the
complex solution satisfies the equation

d
dt

[Re(y(t)) + iIm(y(t))] = A[Re(y(t)) + iIm(y(t))].

Differentiating the sum and splitting the real and imaginary parts of the
equation, gives

d
dt

Re(y(t)) + i
d
dt

Im(y(t)) = A[Re(y(t))] + iA[Im(y(t))].

Setting the real and imaginary parts equal, we have

d
dt

Re(y(t)) = A[Re(y(t))],
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and
d
dt

Im(y(t)) = A[Im(y(t))].

Therefore, the real and imaginary parts each are linearly independent so-
lutions of the system and the general solution can be written as a linear
combination of these expressions.

Classification of the Solutions for Two
Linear First Order Differential Equations

1. Case I: Two real, distinct roots.

Solve the eigenvalue problem Av = λv for each eigenvalue obtain-
ing two eigenvectors v1, v2. Then write the general solution as a linear
combination x(t) = c1eλ1tv1 + c2eλ2tv2

2. Case II: One Repeated Root

Solve the eigenvalue problem Av = λv for one eigenvalue λ, obtaining
the first eigenvector v1. One then needs a second linearly independent
solution. This is obtained by solving the nonhomogeneous problem
Av2 − λv2 = v1 for v2.

The general solution is then given by x(t) = c1eλtv1 + c2eλt(v2 + tv1).

3. Case III: Two complex conjugate roots.

Solve the eigenvalue problem Ax = λx for one eigenvalue, λ = α + iβ,
obtaining one eigenvector v. Note that this eigenvector may have com-
plex entries. Thus, one can write the vector y(t) = eλtv = eαt(cos βt +
i sin βt)v. Now, construct two linearly independent solutions to the
problem using the real and imaginary parts of y(t) : y1(t) = Re(y(t))
and y2(t) = Im(y(t)). Then the general solution can be written as
x(t) = c1y1(t) + c2y2(t).

Table 2.1: Solutions Types for Planar Sys-
tems with Constant Coefficients

We now turn to Case II. Writing the system of first order equations as a
second order equation for x(t) with the sole solution of the characteristic
equation, λ = 1

2 (a + d), we have that the general solution takes the form

x(t) = (c1 + c2t)eλt.

This suggests that the second linearly independent solution involves a term
of the form vteλt. It turns out that the guess that works is

x = teλtv1 + eλtv2.

Inserting this guess into the system x′ = Ax yields

(teλtv1 + eλtv2)
′ = A

[
teλtv1 + eλtv2

]
.

eλtv1 + λteλtv1 + λeλtv2 = λteλtv1 + eλt Av2.

eλt (v1 + λv2) = eλt Av2. (2.70)
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Noting this is true for all t, we find that

v1 + λv2 = Av2. (2.71)

Therefore,
(A − λI)v2 = v1.

We know everything except for v2. So, we just solve for it and obtain the
second linearly independent solution.

2.6 Examples of the Matrix Method

Here we will give some examples for typical systems for the three cases
mentioned in the last section.

Example 2.19. A =

(
4 2
3 3

)
.

Eigenvalues: We first determine the eigenvalues.

0 =

∣∣∣∣∣ 4 − λ 2
3 3 − λ

∣∣∣∣∣ (2.72)

Therefore,

0 = (4 − λ)(3 − λ)− 6

0 = λ2 − 7λ + 6

0 = (λ − 1)(λ − 6) (2.73)

The eigenvalues are then λ = 1, 6. This is an example of Case I.
Eigenvectors: Next we determine the eigenvectors associated with

each of these eigenvalues. We have to solve the system Av = λv in
each case.

Case λ = 1. (
4 2
3 3

)(
v1

v2

)
=

(
v1

v2

)
(2.74)(

3 2
3 2

)(
v1

v2

)
=

(
0
0

)
(2.75)

This gives 3v1 + 2v2 = 0. One possible solution yields an eigenvector of(
v1

v2

)
=

(
2
−3

)
.

Case λ = 6.

(
4 2
3 3

)(
v1

v2

)
= 6

(
v1

v2

)
(2.76)(

−2 2
3 −3

)(
v1

v2

)
=

(
0
0

)
(2.77)
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For this case we need to solve −2v1 + 2v2 = 0. This yields(
v1

v2

)
=

(
1
1

)
.

General Solution: We can now construct the general solution.

x(t) = c1eλ1tv1 + c2eλ2tv2

= c1et

(
2
−3

)
+ c2e6t

(
1
1

)

=

(
2c1et + c2e6t

−3c1et + c2e6t

)
. (2.78)

Example 2.20. A =

(
3 −5
1 −1

)
.

Eigenvalues: Again, one solves the eigenvalue equation.

0 =

∣∣∣∣∣ 3 − λ −5
1 −1 − λ

∣∣∣∣∣ (2.79)

Therefore,

0 = (3 − λ)(−1 − λ) + 5

0 = λ2 − 2λ + 2

λ =
−(−2)±

√
4 − 4(1)(2)

2
= 1 ± i. (2.80)

The eigenvalues are then λ = 1+ i, 1− i. This is an example of Case
III.

Eigenvectors: In order to find the general solution, we need only
find the eigenvector associated with 1 + i.(

3 −5
1 −1

)(
v1

v2

)
= (1 + i)

(
v1

v2

)
(

2 − i −5
1 −2 − i

)(
v1

v2

)
=

(
0
0

)
. (2.81)

We need to solve (2 − i)v1 − 5v2 = 0. Thus,(
v1

v2

)
=

(
2 + i

1

)
. (2.82)

Complex Solution: In order to get the two real linearly indepen-
dent solutions, we need to compute the real and imaginary parts of
veλt.

eλt

(
2 + i

1

)
= e(1+i)t

(
2 + i

1

)
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= et(cos t + i sin t)

(
2 + i

1

)

= et

(
(2 + i)(cos t + i sin t)

cos t + i sin t

)

= et

(
(2 cos t − sin t) + i(cos t + 2 sin t)

cos t + i sin t

)

= et

(
2 cos t − sin t

cos t

)
+ iet

(
cos t + 2 sin t

sin t

)
.

General Solution: Now we can construct the general solution.

x(t) = c1et

(
2 cos t − sin t
cos t

)
+ c2et

(
cos t + 2 sin t

sin t

)

= et

(
c1(2 cos t − sin t) + c2(cos t + 2 sin t)

c1 cos t + c2 sin t

)
. (2.83)

Note: This can be rewritten as

x(t) = et cos t

(
2c1 + c2

c1

)
+ et sin t

(
2c2 − c1

c2

)
.

Example 2.21. A =

(
7 −1
9 1

)
.

Eigenvalues:

0 =

∣∣∣∣∣ 7 − λ −1
9 1 − λ

∣∣∣∣∣ (2.84)

Therefore,

0 = (7 − λ)(1 − λ) + 9

0 = λ2 − 8λ + 16

0 = (λ − 4)2. (2.85)

There is only one real eigenvalue, λ = 4. This is an example of Case
II.

Eigenvectors: In this case we first solve for v1 and then get the
second linearly independent vector.(

7 −1
9 1

)(
v1

v2

)
= 4

(
v1

v2

)
(

3 −1
9 −3

)(
v1

v2

)
=

(
0
0

)
. (2.86)

Therefore, we have

3v1 − v2 = 0, ⇒
(

v1

v2

)
=

(
1
3

)
.
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Second Linearly Independent Solution:
Now we need to solve Av2 − λv2 = v1.

(
7 −1
9 1

)(
u1

u2

)
− 4

(
u1

u2

)
=

(
1
3

)
(

3 −1
9 −3

)(
u1

u2

)
=

(
1
3

)
. (2.87)

Expanding the matrix product, we obtain the system of equations

3u1 − u2 = 1

9u1 − 3u2 = 3. (2.88)

The solution of this system is

(
u1

u2

)
=

(
1
2

)
.

General Solution: We construct the general solution as

y(t) = c1eλtv1 + c2eλt(v2 + tv1).

= c1e4t

(
1
3

)
+ c2e4t

[(
1
2

)
+ t

(
1
3

)]

= e4t

(
c1 + c2(1 + t)

3c1 + c2(2 + 3t)

)
. (2.89)

2.7 Planar Systems - Summary

The reader should have noted by now that there is a connection between
the behavior of the solutions obtained in Section 2.2.2 and the eigenvalues
found from the coefficient matrices in the previous examples. In Table 2.2
we summarize some of these cases.

Type Eigenvalues Stability
Node Real λ, same signs λ < 0, stable

λ > 0, unstable
Saddle Real λ opposite signs Mostly Unstable
Center λ pure imaginary —

Focus/Spiral Complex λ, Re(λ) ̸= 0 Re(λ) < 0, stable
Re(λ) > 0, unstable

Degenerate Node Repeated roots, λ > 0, stable
Lines of Equilibria One zero eigenvalue λ < 0, stable

Table 2.2: List of typical behaviors in pla-
nar systems.

The connection, as we have seen, is that the characteristic equation for
the associated second order differential equation is the same as the eigen-
value equation of the coefficient matrix for the linear system. However, one
should be a little careful in cases in which the coefficient matrix in not diag-
onalizable. In Table 2.3 are three examples of systems with repeated roots.
The reader should look at these systems and look at the commonalities and
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differences in these systems and their solutions. In these cases one has un-
stable nodes, though they are degenerate in that there is only one accessible
eigenvector.

Table 2.3: Three examples of systems
with a repeated root of λ = 2.

System 1 System 2 System 3

x
K3 K2 K1 0 1 2 3

y

K3

K2

K1

1

2

3
a = 2, b = 0, c = 0, d = 2

x
K3 K2 K1 0 1 2 3

y

K3

K2

K1

1

2

3
a = 0, b = 1, c = -4, d = 4

x
K3 K2 K1 0 1 2 3

y

K3

K2

K1

1

2

3
a = 2, b = 1, c = 0, d = 2

x′ =

(
2 0
0 2

)
x x′ =

(
0 1
−4 4

)
x x′ =

(
2 1
0 2

)
x

Another way to look at the classification of these solution is to use the
determinant and trace of the coefficient matrix. Recall that the determinant

and trace of A =

(
a b
c d

)
are given by detA = ad − bc and trA = a + d.

We note that the general eigenvalue equation,

λ2 − (a + d)λ + ad − bc = 0,

can be written as
λ2 − (trA)λ + detA = 0. (2.90)

Therefore, the eigenvalues are found from the quadratic formula as

λ1,2 =
trA ±

√
(trA)2 − 4detA

2
. (2.91)

The solution behavior then depends on the sign of discriminant,

(trA)2 − 4detA.

If we consider a plot of where the discriminant vanishes, then we could plot

(trA)2 = 4detA

in the detAtrA)-plane. This is a parabolic cure as shown by the dashed line
in Figure 2.25. The region inside the parabola have a negative discriminant,
leading to complex roots. In these cases we have oscillatory solutions. If
trA = 0, then one has centers. If trA < 0, the solutions are stable spirals;
otherwise, they are unstable spirals. If the discriminant is positive, then the
roots are real, leading to nodes or saddles in the regions indicated.

2.8 Theory of Homogeneous Constant Coefficient Systems

There is a general theory for solving homogeneous, constant coefficient sys-
tems of first order differential equations. We begin by once again recalling
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detA

trA
tr2 A=4detA

Saddles Centers

Unstable Spirals

Stable Spirals

Unstable Nodes

Stable Nodes

Figure 2.25: Solution Classification for
Planar Systems.

the specific problem (2.16). We obtained the solution to this system as

x(t) = c1et + c2e−4t,

y(t) =
1
3

c1et − 1
2

c2e−4t. (2.92)

This time we rewrite the solution as

x =

(
c1et + c2e−4t

1
3 c1et − 1

2 c2e−4t

)

=

(
et e−4t

1
3 et − 1

2 e−4t

)(
c1

c2

)
≡ Φ(t)C. (2.93)

Thus, we can write the general solution as a 2 × 2 matrix Φ times an arbi-
trary constant vector. The matrix Φ consists of two columns that are linearly
independent solutions of the original system. This matrix is an example of
what we will define as the Fundamental Matrix of solutions of the system.
So, determining the Fundamental Matrix will allow us to find the general
solution of the system upon multiplication by a constant matrix. In fact, we
will see that it will also lead to a simple representation of the solution of the
initial value problem for our system. We will outline the general theory.

Consider the homogeneous, constant coefficient system of first order dif-
ferential equations

dx1

dt
= a11x1 + a12x2 + . . . + a1nxn,

dx2

dt
= a21x1 + a22x2 + . . . + a2nxn,
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...
dxn

dt
= an1x1 + an2x2 + . . . + annxn. (2.94)

As we have seen, this can be written in the matrix form x′ = Ax, where

x =


x1

x2
...

xn


and

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

 .

Now, consider m vector solutions of this system: ϕ1(t), ϕ2(t), . . . ϕm(t).
These solutions are said to be linearly independent on some domain if

c1ϕ1(t) + c2ϕ2(t) + . . . + cmϕm(t) = 0

for all t in the domain implies that c1 = c2 = . . . = cm = 0.
Let ϕ1(t), ϕ2(t), . . . ϕn(t) be a set of n linearly independent set of solutions

of our system, called a fundamental set of solutions. We construct a matrix
from these solutions using these solutions as the column of that matrix. We
define this matrix to be the fundamental matrix solution. This matrix takes the
form

Φ =
(

ϕ1 . . . ϕn

)
=


ϕ11 ϕ12 · · · ϕ1n

ϕ21 ϕ22 · · · ϕ2n
...

...
. . .

...
ϕn1 ϕn2 · · · ϕnn

 .

What do we mean by a “matrix” solution? We have assumed that each
ϕk is a solution of our system. Therefore, we have that ϕ′

k = Aϕk, for k =

1, . . . , n. We say that Φ is a matrix solution because we can show that Φ also
satisfies the matrix formulation of the system of differential equations. We
can show this using the properties of matrices.

d
dt

Φ =
(

ϕ′
1 . . . ϕ′

n

)
=

(
Aϕ1 . . . Aϕn

)
= A

(
ϕ1 . . . ϕn

)
= AΦ. (2.95)

Given a set of vector solutions of the system, when are they linearly
independent? We consider a matrix solution Ω(t) of the system in which
we have n vector solutions. Then, we define the Wronskian of Ω(t) to be

W = det Ω(t).
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If W(t) ̸= 0, then Ω(t) is a fundamental matrix solution.
Before continuing, we list the fundamental matrix solutions for the set of

examples in the last section. (Refer to the solutions from those examples.)
Furthermore, note that the fundamental matrix solutions are not unique
as one can multiply any column by a nonzero constant and still have a
fundamental matrix solution.

Example 2.19 A =

(
4 2
3 3

)
.

Φ(t) =

(
2et e6t

−3et e6t

)
.

We should note in this case that the Wronskian is found as

W = det Φ(t)

=

∣∣∣∣∣ 2et e6t

−3et e6t

∣∣∣∣∣
= 5e7t ̸= 0. (2.96)

Example 2.20 A =

(
3 −5
1 −1

)
.

Φ(t) =

(
et(2 cos t − sin t) et(cos t + 2 sin t)

et cos t et sin t

)
.

Example 2.21 A =

(
7 −1
9 1

)
.

Φ(t) =

(
e4t e4t(1 + t)

3e4t e4t(2 + 3t)

)
.

So far we have only determined the general solution. This is done by the
following steps:

Procedure for Determining the General Solution

1. Solve the eigenvalue problem (A − λI)v = 0.

2. Construct vector solutions from veλt. The method depends if one has
real or complex conjugate eigenvalues.

3. Form the fundamental solution matrix Φ(t) from the vector solution.

4. The general solution is given by x(t) = Φ(t)C for C an arbitrary con-
stant vector.

We are now ready to solve the initial value problem:

x′ = Ax, x(t0) = x0.
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Starting with the general solution, we have that

x0 = x(t0) = Φ(t0)C.

As usual, we need to solve for the ck’s. Using matrix methods, this is now
easy. Since the Wronskian is not zero, then we can invert Φ at any value of
t. So, we have

C = Φ−1(t0)x0.

Putting C back into the general solution, we obtain the solution to the initial
value problem:

x(t) = Φ(t)Φ−1(t0)x0.

You can easily verify that this is a solution of the system and satisfies the
initial condition at t = t0.

The matrix combination Φ(t)Φ−1(t0) is useful. So, we will define the
resulting product to be the principal matrix solution, denoting it by

Ψ(t) = Φ(t)Φ−1(t0).

Thus, the solution of the initial value problem is x(t) = Ψ(t)x0. Furthermore,
we note that Ψ(t) is a solution to the matrix initial value problem

x′ = Ax, x(t0) = I,

where I is the n × n identity matrix.

Matrix Solution of the Homogeneous Problem

In summary, the matrix solution of

dx
dt

= Ax, x(t0) = x0

is given by
x(t) = Ψ(t)x0 = Φ(t)Φ−1(t0)x0,

where Φ(t) is the fundamental matrix solution and Ψ(t) is the principal
matrix solution.

Example 2.22. Let’s consider the matrix initial value problem

x′ = 5x + 3y

y′ = −6x − 4y, (2.97)

satisfying x(0) = 1, y(0) = 2. Find the solution of this problem.
We first note that the coefficient matrix is

A =

(
5 3
−6 −4

)
.

The eigenvalue equation is easily found from

0 = −(5 − λ)(4 + λ) + 18

= λ2 − λ − 2

= (λ − 2)(λ + 1). (2.98)
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So, the eigenvalues are λ = −1, 2. The corresponding eigenvectors are
found to be

v1 =

(
1
−2

)
, v2 =

(
1
−1

)
.

Now we construct the fundamental matrix solution. The columns
are obtained using the eigenvectors and the exponentials, eλt :

ϕ1(t) =

(
1
−2

)
e−t, ϕ1(t) =

(
1
−1

)
e2t.

So, the fundamental matrix solution is

Φ(t) =

(
e−t e2t

−2e−t −e2t

)
.

The general solution to our problem is then

x(t) =

(
e−t e2t

−2e−t −e2t

)
C

for C is an arbitrary constant vector.
In order to find the particular solution of the initial value problem,

we need the principal matrix solution. We first evaluate Φ(0), then we
invert it:

Φ(0) =

(
1 1
−2 −1

)
⇒ Φ−1(0) =

(
−1 −1
2 1

)
.

The particular solution is then

x(t) =

(
e−t e2t

−2e−t −e2t

)(
−1 −1
2 1

)(
1
2

)

=

(
e−t e2t

−2e−t −e2t

)(
−3
4

)

=

(
−3e−t + 4e2t

6e−t − 4e2t

)
(2.99)

Thus, x(t) = −3e−t + 4e2t and y(t) = 6e−t − 4e2t.

2.9 Nonhomogeneous Systems

Before leaving the theory of systems of linear, constant coefficient systems,
we will discuss nonhomogeneous systems. We would like to solve systems
of the form

x′ = A(t)x + f(t). (2.100)

We will assume that we have found the fundamental matrix solution of the
homogeneous equation. Furthermore, we will assume that A(t) and f(t) are
continuous on some common domain.
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As with second order equations, we can look for solutions that are a sum
of the general solution to the homogeneous problem plus a particular so-
lution of the nonhomogeneous problem. Namely, we can write the general
solution as

x(t) = Φ(t)C + xp(t),

where C is an arbitrary constant vector, Φ(t) is the fundamental matrix
solution of x′ = A(t)x, and

x′p = A(t)xp + f(t).

Such a representation is easily verified.
We need to find the particular solution, xp(t). We can do this by applying

The Method of Variation of Parameters for Systems. We consider a solution
in the form of the solution of the homogeneous problem, but replace the
constant vector by unknown parameter functions. Namely, we assume that

xp(t) = Φ(t)c(t).

Differentiating, we have that

x′p = Φ′c + Φc′ = AΦc + Φc′,

or
x′p − Axp = Φc′.

But the left side is f. So, we have that,

Φc′ = f,

or, since Φ is invertible (why?),

c′ = Φ−1f.

In principle, this can be integrated to give c. Therefore, the particular solu-
tion can be written as

xp(t) = Φ(t)
∫ t

Φ−1(s)f(s) ds. (2.101)

This is the variation of parameters formula.
The general solution of Equation (2.100) has been found as

x(t) = Φ(t)C + Φ(t)
∫ t

Φ−1(s)f(s) ds. (2.102)

We can use the general solution to find the particular solution of an ini-
tial value problem consisting of Equation (2.100) and the initial condition
x(t0) = x0. This condition is satisfied for a solution of the form

x(t) = Φ(t)C + Φ(t)
∫ t

t0

Φ−1(s)f(s) ds (2.103)

provided
x0 = x(t0) = Φ(t0)C.
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This can be solved for C as in the last section. Inserting the solution back
into the general solution (2.103), we have

x(t) = Φ(t)Φ−1(t0)x0 + Φ(t)
∫ t

t0

Φ−1(s)f(s) ds (2.104)

This solution can be written a little neater in terms of the principal matrix
solution, Ψ(t) = Φ(t)Φ−1(t0) :

x(t) = Ψ(t)x0 + Ψ(t)
∫ t

t0

Ψ−1(s)f(s) ds (2.105)

Finally, one further simplification occurs when A is a constant matrix,
which are the only types of problems we have solved in this chapter. In this
case, we have that Ψ−1(t) = Ψ(−t). So, computing Ψ−1(t) is relatively easy.

Example 2.23. x′′ + x = 2 cos t, x(0) = 4, x′(0) = 0. This example can
be solved using the Method of Undetermined Coefficients. However,
we will use the matrix method described in this section.

First, we write the problem in matrix form. The system can be
written as

x′ = y
y′ = −x + 2 cos t.

(2.106)

Thus, we have a nonhomogeneous system of the form

x′ = Ax + f =

(
0 1
−1 0

)(
x
y

)
+

(
0

2 cos t

)
.

Next we need the fundamental matrix of solutions of the homoge-
neous problem. We have that

A =

(
0 1
−1 0

)
.

The eigenvalues of this matrix are λ = ±i. An eigenvector associated

with λ = i is easily found as

(
1
i

)
. This leads to a complex solution

(
1
i

)
eit =

(
cos t + i sin t
i cos t − sin t

)
.

From this solution we can construct the fundamental solution matrix

Φ(t) =

(
cos t sin t
− sin t cos t

)
.

So, the general solution to the homogeneous problem is

xh = Φ(t)C =

(
c1 cos t + c2 sin t
−c1 sin t + c2 cos t

)
.
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Next we seek a particular solution to the nonhomogeneous prob-
lem. From Equation (2.103) we see that we need Φ−1(s)f(s). Thus, we
have

Φ−1(s)f(s) =

(
cos s − sin s
sin s cos s

)(
0

2 cos s

)

=

(
−2 sin s cos s

2 cos2 s

)
. (2.107)

We now compute

Φ(t)
∫ t

t0

Φ−1(s)f(s) ds =

(
cos t sin t
− sin t cos t

) ∫ t

t0

(
−2 sin s cos s

2 cos2 s

)
ds

=

(
cos t sin t
− sin t cos t

)(
− sin2 t

t + 1
2 sin(2t)

)

=

(
t sin t

sin t + t cos t

)
. (2.108)

therefore, the general solution is

x =

(
c1 cos t + c2 sin t
−c1 sin t + c2 cos t

)
+

(
t sin t

sin t + t cos t

)
.

The solution to the initial value problem is

x =

(
cos t sin t
− sin t cos t

)(
4
0

)
+

(
t sin t

sin t + t cos t

)
,

or

x =

(
4 cos t + t sin t
−3 sin t + t cos t

)
.
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Problems

1. Consider the system

x′ = −4x − y

y′ = x − 2y.

a. Determine the second order differential equation satisfied by x(t).

b. Solve the differential equation for x(t).

c. Using this solution, find y(t).

d. Verify your solutions for x(t) and y(t).

e. Find a particular solution to the system given the initial conditions
x(0) = 1 and y(0) = 0.

2. Consider the following systems. Determine the families of orbits for
each system and sketch several orbits in the phase plane and classify them
by their type (stable node, etc.)

a.

x′ = 3x

y′ = −2y.

b.

x′ = −y

y′ = −5x.

c.

x′ = 2y

y′ = −3x.

d.

x′ = x − y

y′ = y.

e.

x′ = 2x + 3y

y′ = −3x + 2y.

3. Use the transformations relating polar and Cartesian coordinates to
prove that

dθ

dt
=

1
r2

[
x

dy
dt

− y
dx
dt

]
.
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4. Consider the system of equations in Example 2.13.

a. Derive the polar form of the system.

b. Solve the radial equation, r′ = r(1 − r2), for the initial values
r(0) = 0, 0.5, 1.0, 2.0.

c. Based upon these solutions, plot and describe the behavior of all
solutions to the original system in Cartesian coordinates.

5. Consider the following systems. For each system determine the coeffi-
cient matrix. When possible, solve the eigenvalue problem for each matrix
and use the eigenvalues and eigenfunctions to provide solutions to the given
systems. Finally, in the common cases which you investigated in Problem
2, make comparisons with your previous answers, such as what type of
eigenvalues correspond to stable nodes.

a.

x′ = 3x − y

y′ = 2x − 2y.

b.

x′ = −y

y′ = −5x.

c.

x′ = x − y

y′ = y.

d.

x′ = 2x + 3y

y′ = −3x + 2y.

e.

x′ = −4x − y

y′ = x − 2y.

f.

x′ = x − y

y′ = x + y.
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6. For the given matrix, evaluate etA, using the definition

etA =
∞

∑
n=0

tn

n!
An = I + tA +

t2

2
A2 +

t3

3!
A3 + . . . ,

and simplifying.

a. A =

(
1 0
0 2

)
.

b. A =

(
1 0
−2 2

)
.

c. A =

(
0 −1
0 1

)
.

d. A =

(
0 1
1 0

)
.

e. A =

(
0 −i
i 0

)
.

f. A =

 0 1 0
0 0 1
0 0 0

 .

7. Find the fundamental matrix solution for the system x′ = Ax where
matrix A is given. If an initial condition is provided, find the solution of the
initial value problem using the principal matrix.

a. A =

(
1 0
−2 2

)
.

b. A =

(
12 −15
4 −4

)
, x(0) =

(
1
0

)

c. A =

(
2 −1
5 −2

)
.

d. A =

(
4 −13
2 −6

)
, x(0) =

(
2
0

)

e. A =

(
4 2
3 3

)
.

f. A =

(
3 5
−1 1

)
.

g. A =

(
8 −5

16 8

)
, x(0) =

(
1
−1

)
.

h. A =

(
1 −2
2 −3

)
.
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i. A =

 5 4 2
4 5 2
2 2 2

 .

8. Solve the following initial value problems using Equation (2.105), the
solution of a nonhomogeneous system using the principal matrix solution.

a. x′ =

(
2 −1
3 −2

)
x +

(
et

t

)
, x(0) =

(
1
2

)

b. x′ =

(
5 3
−6 −4

)
x +

(
1
et

)
, x(0) =

(
1
0

)

c. x′ =

(
2 −1
5 −2

)
x +

(
cos t
sin t

)
, x(0) =

(
0
1

)
9. Add a third spring connected to mass two in the coupled system shown

in Figure 2.2 to a wall on the far right. Assume that the masses are the same
and the springs are the same.

a. Model this system with a set of first order differential equations.

b. If the masses are all 2.0 kg and the spring constants are all 10.0
N/m, then find the general solution for the system.

c. Move mass one to the left (of equilibrium) 10.0 cm and mass two
to the right 5.0 cm. Let them go. find the solution and plot it as a
function of time. Where is each mass at 5.0 seconds?

d. Model this initial value problem with a set of two second order
differential equations. Set up the system in the form Mẍ = −Kx
and solve using the values in part b.

10. In Example 2.14 we investigated a couple mass-spring system as a pair
of second order differential equations.

a. In that problem we used
√

3±
√

5
2 =

√
5±1
2 . Prove this result.

b. Rewrite the system as a system of four first order equations.

c. Find the eigenvalues and eigenfunctions for the system of equa-
tions in part b to arrive at the solution found in Example 2.14.

d. Let k = 5.00 N/m and m = 0.250 kg. Assume that the masses
are initially at rest and plot the positions as a function of time if
initially i) x1(0) = x2(0) = 10.0 cm and i) x1(0) = −x2(0) = 10.0
cm. Describe the resulting motion.

11. Consider the series circuit in Figure ?? with L = 1.00 H, R = 1.00 × 102

Ω, C = 1.00 × 10−4 F, and V0 = 1.00 × 103 V.

a. Set up the problem as a system of two first order differential equa-
tions for the charge and the current.

b. Suppose that no charge is present and no current is flowing at time
t = 0 when V0 is applied. Find the current and the charge on the
capacitor as functions of time.
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c. Plot your solutions and describe how the system behaves over
time.

12. Consider the series circuit in Figure 2.21 with L = 1.00 H, R1 = R2 =

1.00 × 102 Ω, C = 1.00 × 10−4 F, and V0 = 1.00 × 103 V.

a. Set up the problem as a system of first order differential equations
for the charges and the currents in each loop.

b. Suppose that no charge is present and no current is flowing at time
t = 0 when V0 is applied. Find the current and the charge on the
capacitor as functions of time.

c. Plot your solutions and describe how the system behaves over
time.

13. Initially a 100 gallon tank is filled with pure water. At time t = 0 water
with a half a pound of salt per two gallons is added to the container at the
rate of 3 gallons per minute, and the well-stirred mixture is drained from
the container at the same rate.

a. Find the number of pounds of salt in the container as a function
of time.

b. How many minutes does it take for the concentration to reach 2

pounds per gallon?

c. What does the concentration in the container approach for large
values of time? Does this agree with your intuition?

14. You make two quarts of salsa for a party. The recipe calls for five
teaspoons of lime juice per quart, but you had accidentally put in five table-
spoons per quart. You decide to feed your guests the salsa anyway. Assume
that the guests take a quarter cup of salsa per minute and that you replace
what was taken with chopped tomatoes and onions without any lime juice.
[1 quart = 4 cups and 1 Tb = 3 tsp.]

a. Write down the differential equation and initial condition for the
amount of lime juice as a function of time in this mixture-type
problem.

b. Solve this initial value problem.

c. How long will it take to get the salsa back to the recipe’s suggested
concentration?

15. Consider the chemical reaction leading to the system in (2.54). Let the
rate constants be k1 = 0.20 ms−1, k2 = 0.05 ms−1, and k3 = 0.10 ms−1.
What do the eigenvalues of the coefficient matrix say about the behavior of
the system? Find the solution of the system assuming [A](0) = A0 = 1.0
µmol, [B](0) = 0, and [C](0) = 0. Plot the solutions for t = 0.0 to 50.0 ms
and describe what is happening over this time.

16. Find and classify any equilibrium points in the Romeo and Juliet prob-
lem for the following cases. Solve the systems and describe their affections
as a function of time.
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a. a = 0, b = 2, c = −1, d = 0, R(0) = 1, J(0) = 1.

b. a = 0, b = 2, c = 1, d = 0, R(0) = 1, J(0) = 1.

c. a = −1, b = 2, c = −1, d = 0, R(0) = 1, J(0) = 1.

Figure 2.26: Figure for Problem 17.

A
500L

B
1000L

10L/min

10L/min

5L/min

15L/min

17. Two tanks contain a mixture of water and alcohol with tank A contain-
ing 500 L and tank B 1000L. Initially, the concentration of alcohol in Tank
A is 0% and that of tank B is 80%. Solution leaves tank A into B at a rate
of 15 liter/min and the solution in tank B returns to A at a rate of 5 L/min
while well mixed solution also leaves the system at 10 liter/min through
an outlet. A mixture of water and alcohol enters tank A at the rate of 10

liter/min with the concentration of 10% through an inlet. What will be the
concentration of the alcohol of the solution in each tank after 10 mins?

18. Consider the tank system in Problem 17. Add a third tank (C) to tank B
with a volume of 300 L. Connect C with 8 L/min from tank B and 2 L/min
flow back. Let 10 L/min flow out of the system. If the initial concentration
is 10% in each tank and a mixture of water and alcohol enters tank A at the
rate of 10 liter/min with the concentration of 20% through an inlet, what
will be the concentration of the alcohol in each of the tanks after an hour?

19. Consider the epidemic model leading to the system in (2.58). Choose
the constants as a = 2.0 days−1, d = 3.0 days−1, and r = 1.0 days−1. What
are the eigenvalues of the coefficient matrix? Find the solution of the system
assuming an initial population of 1, 000 and one infected individual. Plot
the solutions for t = 0.0 to 5.0 days and describe what is happening over
this time. Is this model realistic?



Chapter 3

Nonlinear Systems

“The scientist does not study nature because it is useful; he studies it because he
delights in it, and he delights in it because it is beautiful.” - Jules Henri Poincaré
(1854-1912)

3.1 Introduction

Some of the most interesting phenomena in the world are modeled
by nonlinear systems. These systems can be modeled by differential equa-
tions when time is considered as a continuous variable or difference equa-
tions when time is treated in discrete steps. Applications involving differ-
ential equations can be found in many physical systems such as planetary
systems, weather prediction, electrical circuits, and kinetics. Even in some
simple dynamical systems a combination of damping and a driving force
can lead to chaotic behavior. Namely, small changes in initial conditions
could lead to very different outcomes. In this chapter we will explore a few
different nonlinear systems and introduce some of the tools needed to in-
vestigate them. These tools are based on some of the material in Chapters 2

and 3 for linear systems of differential equations.
Nonlinear differential equations are either integrable, but difficult to solve,

or they are not integrable and can only be solved numerically. We will see
that we can sometimes approximate the solutions of nonlinear systems with
linear systems in small regions of phase space and determine the qualitative
behavior of the system without knowledge of the exact solution.

Nonlinear problems occur naturally. We will see problems from many
of the same fields we explored in Section 2.3. We will concentrate mainly
on continuous dynamical systems. We will begin with a simple population
model and look at the behavior of equilibrium solutions of first order au-
tonomous differential equations. We will then look at nonlinear systems in
the plane, such as the nonlinear pendulum and other nonlinear oscillations.
We will conclude by discussing a few other interesting physical examples
stressing some of the key ideas of nonlinear dynamics.
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3.2 The Logistic Equation

In this section we will explore a simple nonlinear population model.
Typically, we want to model the growth of a given population, y(t), and the
differential equation governing the growth behavior of this population is
developed in a manner similar to that used previously for mixing problems.
Namely, we note that the rate of change of the population is given by an
equation of the form

dy
dt

= Rate In − Rate Out.

The Rate In could be due to the number of births per unit time and the Rate
Out by the number of deaths per unit time. While there are other potential
contributions to these rates we will consider the birth and death rates in the
simplest examples.

A simple population model can be obtained if one assumes that these
rates are linear in the population. Thus, we assume that the

Rate In = by and the Rate Out = my.

Here we have denoted the birth rate as b and the mortality rate as m. This
gives the rate of change of population as

dy
dt

= by − my. (3.1)

Generally, these rates could depend on the time. In the case that they
are both constant rates, we can define k = b − m and obtain the familiar
exponential model of population growth:Malthusian population growth.

dy
dt

= ky.

This is easily solved and one obtains exponential growth (k > 0) or de-
cay (k < 0). This Malthusian growth model has been named after Thomas
Robert Malthus (1766-1834), a clergyman who used this model to warn of
the impending doom of the human race if its reproductive practices contin-
ued.

When populations get large enough, there is competition for resources,
such as space and food, which can lead to a higher mortality rate. Thus,
the mortality rate may be a function of the population size, m = m(y).
The simplest model would be a linear dependence, m = m̃ + cy. Then, the
previous exponential model takes the form

dy
dt

= ky − cy2, (3.2)

where k = b − m̃. This is known as the logistic model of population growth.

The logistic model was first published in
1838 by Pierre François Verhulst (1804-
1849) in the form

dN
dt

= rN
(

1 − N
K

)
,

where N is the population at time t, r is
the growth rate, and K is what is called
the carrying capacity. Note that in our
model r = k = Kc.

Typically, c is small and the added nonlinear term does not really kick in
until the population gets large enough.
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Example 3.1. Show that Equation (3.2) can be written in the form

z′ = kz(1 − z)

which has only one parameter.
We carry this out be rescaling the population, y(t) = αz(t), where

α is to be determined. Inserting this transformation, we have

y′ = ky − cy2

αz′ = αkz − cα2z2,

or
z′ = kz

(
1 − α

c
k

z
)

.

Thus, we obtain the result, z′ = kz(1 − z), if we pick α = k
c .

Before we obtain the exact solution, it is instructive to study the quali-
tative behavior of the solutions without actually writing down any explicit
solutions. Such methods are useful for more difficult nonlinear equations
as we will see later in this chapter.

We will demonstrate this analysis with a simple logistic equation exam-
ple. We will first look for constant solutions, called equilibrium solutions,
satisfying y′(t) = 0. Then, we will look at the behavior of solutions near
the equilibrium solutions, or fixed points, and determine the stability of the
equilibrium solutions. In the next section we will extend these ideas to other
first order differential equations.

Example 3.2. Find and classify the equilibrium solutions of the logistic
equation,

dy
dt

= y − y2. (3.3)

First, we determine the equilibrium, or constant, solutions given by
y′ = 0. For this case, we have y − y2 = 0. So, the equilibrium solutions
are y = 0 and y = 1.

These solutions divide the ty-plane into three regions, y < 0, 0 <

y < 1, and y > 1. Solutions that originate in one of these regions at
t = t0 will remain in that region for all t > t0 since solutions of this
differential equation cannot intersect.

Note: If two solutions of the differential
equation intersect then they have com-
mon values y1 at time t1. Using this
information, we could set up an initial
value problem for which the initial con-
dition is y(t1) = y1. Since the two differ-
ent solutions intersect at this point in the
phase plane, we would have an initial
value problem with two different solu-
tions. This would violate the uniqueness
theorem for initial value problems.

Next, we determine the behavior of solutions in the three regions.
Noting that y′(t) gives the slope of any solution in the plane, then
we find that the solutions are monotonic in each region. Namely, in
regions where y′(t) > 0, we have monotonically increasing functions
and in regions where y′(t) < 0, we have monotonically decreasing
functions. We determine the sign of y′(t) from the right-hand side of
the differential equation. t

y

y = 1

y = 0

Figure 3.1: Representative solution be-
havior for y′ = y − y2.

For example, in this problem y − y2 > 0 only for the middle region
and y − y2 < 0 for the other two regions. Thus, the slope is positive
in the middle region, giving a rising solution as shown in Figure 3.1.
Note that this solution does not cross the equilibrium solutions. Simi-
lar statements can be made about the solutions in the other regions. Stable and unstable equilibria.
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We further note that the solutions on either side of the equilibrium
solution y = 1 tend to approach this equilibrium solution for large
values of t. In fact, no matter how far these solutions are from y =

1, as long as y(t) > 0, the solutions will eventually approach this
equilibrium solution as t → ∞. We then say that the equilibrium
solution, y = 1, is a stable equilibrium.

Similarly, we note that the solutions on either side of the equilib-
rium solution y = 0 tend away from y = 0 for large values of t. No
matter how close a solution is to y = 0 at some given time, eventually
these solutions will diverge as t → ∞. We say that such equilibrium
solutions are unstable equilibria.

Figure 3.2: Representative solution be-
havior and the phase line for y′ = y− y2.

t

y

y = 1

y = 0

Phase lines.
If we are only interested in the behavior of the equilibrium solu-

tions, we could just display a phase line. In Figure 3.2 we place a
vertical line to the right of the ty-plane plot. On this line we first
place dots at the corresponding equilibrium solutions and label the
solutions. These points divide the phase line into three intervals.

In each interval we then place arrows pointing upward or down-
ward indicating solutions with positive or negative slopes, respec-
tively. For example, for the interval y > 1 there is a downward point-
ing arrow indicating that the slope is negative in that region.

y = 1

y = 0

Figure 3.3: Phase line for y′ = y − y2.

Looking at the resulting phase line we can determine if a given
equilibrium is stable (arrows pointing towards the point) or unstable
(arrows pointing away from the point). In Figure 3.3 we draw the final
phase line by itself. We see that y = 1 is a stable equilibrium point and
y = 0 is an unstable equilibrium point.

3.2.1 The Riccati Equation*

We have seen that one does not need an explicit solution of the logis-
tic equation (3.2) in order to study the behavior of its solutions. However,
the logistic equation is an example of a nonlinear first order equation that
is solvable. It is also an example of a general Riccati equation, a first order
differential equation quadratic in the unknown function.

The general form of the Riccati equation is

The Riccati equation is named after the
Italian mathematician Jacopo Francesco
Riccati (1676-1754). When a(t) = 0, the
equation becomes a Bernoulli equation.

dy
dt

= a(t) + b(t)y + c(t)y2. (3.4)
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As long as c(t) ̸= 0, this equation can be reduced to a second order linear
differential equation through the transformation

y(t) = − 1
c(t)

x′(t)
x(t)

.

We will demonstrate the use of this transformation in obtaining the solution
of the logistic equation.

Example 3.3. Solve the logistic equation

dy
dt

= ky − cy2 (3.5)

using the transformation

y =
1
c

x′

x
.

differentiating this transformation with respect to t, we obtain

dy
dt

=
1
c

[
x′′

x
−
(

x′

x

)2
]

=
1
c

[
x′′

x
− (cy)2

]
=

1
c

x′′

x
− cy2. (3.6)

Inserting this result into the logistic equation (3.5), we have

1
c

x′′

x
− cy2 = k

1
c

(
x′

x

)
− cy2.

Simplifying, we see that the logistic equation has been reduced to a
second order linear, differential equation,

x′′ = kx′.

This equation is readily solved. One integration gives

x′(t) = Bekt.

A second integration gives

x(t) = A + Bekt,

where A and B are two arbitrary constants.
Inserting this result into the Riccati transformation, we obtain

y(t) =
1
c

x′

x
=

kBekt

c(A + Bekt)
.

It appears that we have two arbitrary constants. However, we started
out with a first order differential equation and so we expect only one
arbitrary constant. We can resolve this dilemma by dividing1 the nu- 1 This general solution holds for B ̸= 0. If

B = 0, then we have x(t) = A and, thus,
y(t) is the constant equilibrium solution.

merator and denominator by Bekt and defining C = A
B . Then, we have

the solution
y(t) =

k/c
1 + Ce−kt , (3.7)

showing that there really is only one arbitrary constant in the solution.
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Plots of the solution (3.7) of the logistic equation for different initial con-
ditions gives the solutions seen in the last section. In particular, setting all
of the constants to unity, we have the sigmoid function,

y(t) =
1

1 + e−t .

This is the signature S-shaped curve of the logistic model as shown in Fig-
ure 3.4. We should note that this is not the only way to obtain the solution
to the logistic equation, though this approach has provided us with an in-
troduction to Riccati equations. A more direct approach would be to use
separation of variables on the logistic equation, which is Problem 1.

x

y

−5 −3 −1 1 3 5

0.5

1

Figure 3.4: Plot of the sigmoid function.

3.3 Autonomous First Order Equations

In this section we will study the stability of nonlinear first order
autonomous equations. We will then extend this study in the next section
to looking at families of first order equations which are connected through
a parameter.

Recall that a first order autonomous equation is given in the form

dy
dt

= f (y). (3.8)

We will assume that f and ∂ f
∂y are continuous functions of y, so that we know

that solutions of initial value problems exist and are unique.
A solution y(t) of Equation (3.8) is called an equilibrium solution, or a fixed

point solution, if it is a constant solution satisfying y′(t) = 0. Such solutions
are the roots of the right-hand side of the differential equation, f (y) = 0.

Example 3.4. Find the equilibrium solutions of y′ = 1 − y2.
The equilibrium solutions are the roots of f (y) = 1 − y2 = 0. The

equilibria are found to be y = ±1.

Once we have determined the equilibrium solutions, we would like to
classify them. Are they stable or unstable? As we had seen previously, we
are interested in the behavior of solutions near the equilibria. This classifica-
tion can be determined using a linearization of the given equation. This will
provide an analytic criteria to establish the stability of equilibrium solutions
without geometrically drawing the phase lines as we had done previously.Linearization of first order equations.

Let y∗ be an equilibrium solution of Equation (3.8). Then, any solution
can be written in the form

y(t) = y∗ + ξ(t),

where ξ(t) measures how far the solution is from the equilibrium at any
given time.

Inserting this form into Equation (3.8), we have

dξ

dt
= f (y∗ + ξ).
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We now consider small ξ(t) in order to study solutions near the equilibrium
solution. For such solutions, we can expand f (y) about the equilibrium
solution,

f (y∗ + ξ) = f (y∗) + f ′(y∗)ξ +
1
2!

f ′′(y∗)ξ2 + · · · .

Since y∗ is an equilibrium solution, f (y∗) = 0, the first term in the Taylor
series vanishes. If the first derivative does not vanish, then for solutions
close to equilibrium, we can neglect higher order terms in the expansion.
Then, ξ(t) approximately satisfies the differential equation

dξ

dt
= f ′(y∗)ξ. (3.9)

This is called a linearization of the original nonlinear equation about the
equilibrium point. This equation has exponential solutions for f ′(y∗) ̸= 0,

ξ(t) = ξ0e f ′(y∗)t.

Now we see how the stability criteria arise. If f ′(y∗) > 0, ξ(t) grows
in time. Therefore, nearby solutions stray from the equilibrium solution for
large times. On the other hand, if f ′(y∗) < 0, ξ(t) decays in time and nearby
solutions approach the equilibrium solution for large t. Thus, we have the
results: The stability criteria for equilibrium so-

lutions of a first order differential equa-
tion.f ′(y∗) < 0, y∗ is stable.

f ′(y∗) > 0, y∗ is unstable.
(3.10)

Example 3.5. Determine the stability of the equilibrium solutions of
y′ = 1 − y2.

In the last example we found the equilibrium solutions, y∗ = ±1.
The stability criteria require computing

f ′(y∗) = −2y∗.

For this problem we have f ′(±1) = ∓2. Therefore, y∗ = 1 is a stable
equilibrium and y∗ = −1 is an unstable equilibrium.

Example 3.6. Find and classify the equilibria for the logistic equation
y′ = y − y2.

We had already investigated this problem using phase lines. There
are two equilibria, y = 0 and y = 1.

We next apply the stability criteria. Noting that f ′(y) = 1 − 2y, the
first equilibrium solution gives f ′(0) = 1. So, y = 0 is an unstable
equilibrium. Since f ′(1) = −1 < 0, we see that y = 1 is a stable
equilibrium. These results are the same as we hade determined earlier
using phase lines.

3.4 Bifurcations for First Order Equations

We now consider families of first order autonomous differential equa-
tions of the form

dy
dt

= f (y; µ).
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Here µ is a parameter that we can change and then observe the resulting
behaviors of the solutions of the differential equation. When a small change
in the parameter leads to changes in the behavior of the solution, then the
system is said to undergo a bifurcation. The value of the parameter, µ, atBifurcations and bifurcation points.

which the bifurcation occurs is called a bifurcation point.
We will consider several generic examples, leading to special classes of

bifurcations of first order autonomous differential equations. We will study
the stability of equilibrium solutions using both phase lines and the stability
criteria developed in the last section

µ

y

y =
√

µ

y = −√
µ

y = 0

Figure 3.5: Phase lines for y′ = y2 − µ.
On the right µ > 0 and on the left µ < 0.

Example 3.7. y′ = y2 − µ.
First note that equilibrium solutions occur for y2 = µ. In this prob-

lem, there are three cases to consider.

1. µ > 0.

In this case there are two real solutions of y2 = µ, y = ±√
µ. Note that

y2 − µ < 0 for |y| < √
µ. So, we have the right phase line in Figure 3.5.

2. µ = 0.

There is only one equilibrium point at y = 0. The equation becomes
y′ = y2. It is obvious that the right side of this equation is never
negative. So, the phase line, which is shown as the middle line in
Figure 3.5, has upward pointing arrows.

3. µ < 0.

In this case there are no equilibrium solutions. Since y2 − µ > 0, the
slopes for all solutions are positive as indicated by the last phase line
in Figure 3.5.

We can also confirm the behaviors of the equilibrium points by not-
ing that f ′(y) = 2y. Then, f ′(±√

µ) = ±2
√

µ for µ ≥ 0. Therefore, the
equilibria y = +

√
µ are unstable equilibria for µ > 0. Similarly, the

equilibria y = −√
µ are stable equilibria for µ > 0.

Figure 3.6: (a) The typical phase lines
for y′ = y2 − µ. (b) Bifurcation diagram
for y′ = y2 − µ. This is an example of a
saddle-node bifurcation.

µ

y

(a) (b)
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We can combine these results for the phase lines into one diagram
known as a bifurcation diagram. We will plot the equilibrium solu-
tions and their phase lines y = ±√

µ in the µy-plane. We begin by
lining up the phase lines for various µ’s. These are shown on the left
side of Figure 3.6. Note the pattern of equilibrium points lies on the
parabolic curve y2 = µ. The upper branch of this curve is a collection
of unstable equilibria and the bottom is a stable branch. So, we can
dispose of the phase lines and just keep the equilibria. However, we
will draw the unstable branch as a dashed line and the stable branch
as a solid line.

The bifurcation diagram is displayed on the right side of Figure
3.6. This type of bifurcation is called a saddle-node bifurcation. The
point µ = 0 at which the behavior changes is the bifurcation point. As
µ changes from negative to positive values, the system goes from having no
equilibria to having one stable and one unstable equilibrium point.

Example 3.8. y′ = y2 − µy.
Writing this equation in factored form, y′ = y(y − µ), we see that

there are two equilibrium points, y = 0 and y = µ. The behavior of the
solutions depends upon the sign of y′ = y(y − µ). This leads to four
cases with the indicated signs of the derivative. The regions indicating
the signs of y′ are shown in Figure 3.7. µ

y
y = µ

1

y′ > 0

2

y′ < 0

3

y′ < 0

4

y′ > 0

Figure 3.7: The regions indicating the
different signs of the derivative for y′ =
y2 − µy.

1. y > 0, y − µ > 0 ⇒ y′ > 0.

2. y < 0, y − µ > 0 ⇒ y′ < 0.

3. y > 0, y − µ < 0 ⇒ y′ < 0.

4. y < 0, y − µ < 0 ⇒ y′ > 0.

The corresponding phase lines and superimposed bifurcation dia-
gram are shown in figure 3.8. The bifurcation diagram is on the right
side of Figure 3.8 and this type of bifurcation is called a transcritical
bifurcation.

Again, the stability can be determined from the derivative f ′(y) =
2y − µ evaluated at y = 0, µ. From f ′(0) = −µ, we see that y = 0 is
stable for µ > 0 and unstable for µ < 0. Similarly, f ′(µ) = µ implies
that y = µ is unstable for µ > 0 and stable for µ < 0. These results are
consistent with the phase line plots.

Example 3.9. y′ = y3 − µy.
For this last example, we find from y3 − µy = y(y2 − µ) = 0 that

there are two cases.

1. µ < 0. In this case there is only one equilibrium point at y = 0. For
positive values of y we have that y′ > 0 and for negative values of y
we have that y′ < 0. Therefore, this is an unstable equilibrium point.

2. µ > 0. Here we have three equilibria, y = 0,±√
µ. A careful investiga-

tion shows that y = 0 is a stable equilibrium point and that the other
two equilibria are unstable.
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Figure 3.8: (a) Collection of phase lines
for y′ = y2 − µy. (b) Bifurcation diagram
for y′ = y2 − µy. This is an example of a
transcritical bifurcation.

µ

y

y = 0

(a) (b)

Figure 3.9: (a) The phase lines for y′ =
y3 − µy. The left one corresponds to µ <
0 and the right phase line is for µ > 0.
(b)Bifurcation diagram for y′ = y3 − µy.
This is an example of a pitchfork bifur-
cation.

µ

y

y = 0

y =
√

µ

y = −√
µ

(a) (b)

In Figure 3.9 we show the phase lines for these two cases. The
corresponding bifurcation diagram is then sketched on the right side
of Figure 3.9. For obvious reasons this has been labeled a pitchfork
bifurcation.When two of the prongs of the pitchfork

are unstable branches, the bifurcation is
called a subcritical pitchfork bifurcation.
When two prongs are stable branches,
the bifurcation is a supercritical pitch-
fork bifurcation.

Since f ′(y) = 3y2 − µ, the stability analysis gives that f ′(0) = −µ.
So, y = 0 is stable for µ > 0 and unstable for µ < 0. For µ > 0, we have
that f ′(±√

µ) = 2µ. Therefore, y = ±√
µ, µ > 0, is unstable. Thus, we

have a subcritical pitchfork bifurcation.

3.5 The Stability of Fixed Points in Nonlinear Systems

We next investigate the stability of the equilibrium solutions

of the nonlinear pendulum which we first encountered in Section ??. Along
the way we will develop some basic methods for studying the stability of
equilibria in nonlinear systems in general.
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Recall that the derivation of the pendulum equation was based upon a
simple point mass m hanging on a string of length L from some support as
shown in Figure 3.10. One pulls the mass back to some starting angle, θ0,
and releases it. The goal is to find the angular position as a function of time,
θ(t).

L

m

θ

Figure 3.10: A simple pendulum consists
of a point mass m attached to a string of
length L. It is released from an angle θ0.

In Chapter 2 we derived the nonlinear pendulum equation,

Lθ̈ + g sin θ = 0. (3.11)

There are several variations of Equation (3.11) which we have used in this
text. The first one is the linear pendulum, which was obtained using a small
angle approximation,

Lθ̈ + gθ = 0. (3.12)

We also made the system more realistic by adding damping and forcing. A
variety of these oscillation problems are summarized in the table below.

Equations for Pendulum Motion

1. Nonlinear Pendulum: Lθ̈ + g sin θ = 0.

2. Damped Nonlinear Pendulum: Lθ̈ + bθ̇ + g sin θ = 0.

3. Linear Pendulum: Lθ̈ + gθ = 0.

4. Damped Linear Pendulum: Lθ̈ + bθ̇ + gθ = 0.

5. Forced Damped Nonlinear Pendulum: Lθ̈ + bθ̇ + g sin θ = F cos ωt.

6. Forced Damped Linear Pendulum: Lθ̈ + bθ̇ + gθ = F cos ωt.

There are two simple systems that we will consider, the damped linear
pendulum, in the form

x′′ + bx′ + ω2x = 0

and the the damped nonlinear pendulum, in the form

x′′ + bx′ + ω2 sin x = 0.

These are second order differential equations and can be cast as a system of
two first order differential equations using the methods of Chapter 6.

The linear equation can be written as

x′ = y,

y′ = −by − ω2x. (3.13)

This system has only one equilibrium solution, x = 0, y = 0.
The damped nonlinear pendulum takes the form

x′ = y,

y′ = −by − ω2 sin x. (3.14)
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This system also has the equilibrium solution x = 0, y = 0. However, there
are actually an infinite number of solutions. The equilibria are determined
from

y = 0 and − by − ω2 sin x = 0. (3.15)

These equations imply that y = 0 and sin x = 0. There are an infinite number
of solutions to the latter equation: x = nπ, n = 0,±1,±2, . . . . So, this system
has an infinite number of equilibria, (nπ, 0), n = 0,±1,±2, . . . .

The next step is to determine the stability of the equilibrium solutions
these systems. This can be accomplished just as we had done for first order
equations. To do this we need a more general theory for nonlinear systems.
So, we will develop the needed machinery.

We begin with the n−dimensional system

x′ = f(x), x ∈ Rn. (3.16)

Here f : Rn → Rn is a mapping from Rn to Rn. We define the equilibrium
solutions, or fixed points, of this system as the points x∗ satisfying f(x∗) = 0.Linear stability analysis of systems.

The stability in the neighborhood of equilibria will now be determined.
We are interested in what happens to solutions of the system with initial
conditions starting near a fixed point. We will represent a general point in
the plane, which is near the fixed point, in the form x = x∗ + ξ. We note that
the length of ξ gives an indication of how close we are to the fixed point.
So, we consider that initially, |ξ| ≪ 1.

x

y

x∗

x = x∗ + ξ

ξ

Figure 3.11: A general point in the plane,
which is near the fixed point, in the form
x = x∗ + ξ,

As the system evolves, ξ will change. The change of ξ in time is in turn
governed by a system of equations. We can approximate this evolution as
follows. First, we note that

x′ = ξ′.

Next, we have that
f(x) = f(x∗ + ξ).

We can expand the right side about the fixed point using a multidimensional
version of Taylor’s Theorem. Thus, we have that

f(x∗ + ξ) = f(x∗) + Df(x∗)ξ + O(|ξ|2).

Here Df(x) is the Jacobian matrix, defined asThe Jacobian matrix.

Df(x∗) ≡



∂ f1
∂x1

∂ f1
∂x2

· · · ∂ f1
∂xn

∂ f2
∂x1

. . . . . .
...

...
. . . . . .

...
∂ fn
∂x1

· · · · · · ∂ fn
∂xn

 .

Noting that f(x∗) = 0, we then have that system (3.16) becomes

ξ ′ ≈ Df(x∗)ξ. (3.17)

It is this equation which describes the behavior of the system near the fixed
point. As with first order equations, we say that system (3.16) has been
linearized or that Equation (3.17) is the linearization of system (3.16).Linearization of the system x′ = f(x).
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The stability of the equilibrium point of the nonlinear system is now re-
duced to analyzing the behavior of the linearized system given by Equation
(3.17). We can use the methods from the last two chapters to investigate the
eigenvalues of the Jacobian matrix evaluated at each equilibrium point. We
will demonstrate this procedure with several examples.

Example 3.10. Determine the equilibrium points and their stability for
the system

x′ = −2x − 3xy,

y′ = 3y − y2. (3.18)

We first determine the fixed points. Setting the right-hand side
equal to zero and factoring, we have

−x(2 + 3y) = 0,

y(3 − y) = 0. (3.19)

From the second equation, we see that either y = 0 or y = 3. The
first equation then gives x = 0 in either case. So, there are two fixed
points: (0, 0) and (0, 3).

Next, we linearize the system of differential equations about each
fixed point. First, we note that the Jacobian matrix is given by

Df(x, y) =

(
−2 − 3y −3x

0 3 − 2y

)
. (3.20)

1. Case I Equilibrium point (0, 0).

In this case we find that

Df(0, 0) =

(
−2 0
0 3

)
. (3.21)

Therefore, the linearized equation becomes

ξ ′ =

(
−2 0
0 3

)
ξ. (3.22)

This is equivalently written out as the system

ξ ′1 = −2ξ1,

ξ ′2 = 3ξ2. (3.23)

This is the linearized system about the origin. Note the similarity with
the original system.

We should emphasize that the linearized equations are constant co-
efficient equations and we can use matrix methods to determine the
nature of the equilibrium point. The eigenvalues of this system are
obviously λ = −2, 3. Therefore, we have that the origin is a saddle
point.
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2. Case II Equilibrium point (0, 3).

Again we evaluate the Jacobian matrix at the equilibrium point and
look at its eigenvalues to determine the type of fixed point. The Jaco-
bian matrix for this case becomes

Df(0, 3) =

(
−11 0

0 −3

)
. (3.24)

The eigenvalues are λ = −11,−3. So, this fixed point is a stable node.

Figure 3.12: Phase plane for the system
x′ = −2x − 3xy, y′ = 3y − y2.

–
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This analysis has given us a saddle and a stable node. We know
what the behavior is like near each fixed point, but we have to resort to
other means to say anything about the behavior far from these points.
The phase portrait for this system is given in Figure 3.12. You should
be able to locate the saddle point and the node in the figure. Notice
how solutions behave in regions far from these points.

We can expect to be able to perform a linearization under general condi-
tions. These are given in the Hartman-Großman Theorem:

Theorem 3.1. A continuous map exists between the linear and nonlinear systems
when Df(x∗) does not have any eigenvalues with zero real part.

Generally, there are several types of behavior that one can see in non-
linear systems. One can see sinks or sources, hyperbolic (saddle) points,
elliptic points (centers) or foci. We have defined some of these for planar
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systems. In general, if at least two eigenvalues have real parts with opposite
signs, then the fixed point is a hyperbolic point. If the real part of a nonzero
eigenvalue is zero, then we have a center, or elliptic point.

For linear systems in the plane, this classification was done in Chapter 6.
The Jacobian matrix evaluated at the equilibrium points is simply the 2 × 2
coefficient matrix we had called A.

J =

(
a b
c d

)
. (3.25)

Here we are using J = Df(x∗).
The eigenvalue equation is given by

λ2 − (a + d)λ + (ad − bc) = 0.

However, a + d is the trace, tr(J) and det(J) = ad − bc. Therefore, we can
write the eigenvalue equation as

λ2 − tr(J)λ + det(J) = 0.

The solution of this equation is found using the quadratic formula,

λ =
1
2

[
−tr(J)±

√
tr2(J)− 4det(J)

]
.

We had seen in previous chapter that equilibrium points in planar sys-
tems can be classified as nodes, saddles, centers, or spirals (foci). The type
of behavior can be determined from solutions of the eigenvalue equation.
Since the nature of the eigenvalues depends on the trace and determinant
of the Jacobian matrix at the equilibrium point, we can relate the types of
equilibria to points in the det-tr plane. This is shown in Figure 3.13, which
is similar to Figure 2.25.

In Figure 3.13 the parabola tr2(J) = 4det(J) divides the det-tr plane.
Points on this curve give a vanishing discriminant in the computation of the
eigenvalues. In these cases one finds repeated roots, or eigenvalues. Along
this curve one can find stable and unstable degenerate nodes. Also along
this line are stable and unstable proper nodes, called star nodes. These arise
from systems of the form x′ = ax, y′ = ay.

In the case that det(J) < 0, we have that the discriminant

∆ ≡ tr2(J)− 4det(J)

is positive. Not only that, ∆ > tr2(J). Thus, we obtain two real and distinct
eigenvalues with opposite signs. These lead to saddle points.

In the case that det(J) > 0, we can have either ∆ > 0 or ∆ < 0. The
discriminant is negative for points inside the parabolic curve. It is in this
region that one finds centers and spirals, corresponding to complex eigen-
values. When tr(J) > 0, there are unstable spirals. There are stable spirals
when tr(J) < 0. For the case that tr(J) = 0, the eigenvalues are pure imagi-
nary, giving centers.

There are several other types of behavior depicted in the figure, but we
will now turn to studying a few of examples.
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Figure 3.13: Diagram indicating the be-
havior of equilibrium points in the det−
tr plane. The parabolic curve

tr2(J) = 4det(J)

indicates where the discriminant van-
ishes.

det(J)

tr(J)

tr2(J) = 4det(J)
unstable nodes

stable nodes

saddles

centers

unstable spirals

stable spirals

unstable lines

stable lines

degenerate nodes

degenerate nodes

Example 3.11. Find and classify all of the equilibrium solutions of the
nonlinear system

x′ = 2x − y + 2xy + 3(x2 − y2),

y′ = x − 3y + xy − 3(x2 − y2). (3.26)

In Figure 3.14 we show the direction field for this system. Try to
locate and classify the equilibrium points visually. After the stability
analysis, you should return to this figure and determine if you identi-
fied the equilibrium points correctly.

We will first determine the equilibrium points. Setting the right-
hand side of each differential equation to zero, we have

2x − y + 2xy + 3(x2 − y2) = 0,

x − 3y + xy − 3(x2 − y2) = 0. (3.27)

This system of algebraic equations can be solved exactly. Adding the
equations, we have

3x − 4y + 3xy = 0.
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Figure 3.14: Phase plane for the system

x′ = 2x − y + 2xy + 3(x2 − y2),

y′ = x − 3y + xy − 3(x2 − y2).

Solving for x,

x =
4y

3(1 + y)
,

and substituting the result for x into the first algebraic equation, we
find an equation for y :

y(1 − y)(9y2 + 22y + 5)
3(1 + y)2 = 0.

The solutions to this equation are

y = 0, 1,−11
9

± 2
9

√
19.

The corresponding values for x are

x = 0,
2
3

, 1 ∓
√

19
3

.

Now that we have located the equilibria, we can classify them. The
Jacobian matrix is given by

Df(x, y) =

(
6x + 2y + 2 2x − 6y − 1
−6x + y + 1 x + 6y − 3

)
. (3.28)

Now, we evaluate the Jacobian at each equilibrium point and find the
eigenvalues.

1. Case I. Equilibrium point (0, 0).

In this case we find that

Df(0, 0) =

(
−2 −1
1 −3

)
. (3.29)

The eigenvalues of this matrix are λ = − 1
2 ±

√
21
2 . Therefore, the origin

is a saddle point.
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2. Case II. Equilibrium point ( 2
3 , 1).

Again we evaluate the Jacobian matrix at the equilibrium point and
look at its eigenvalues to determine the type of fixed point. The Jaco-
bian matrix for this case becomes

Df
(

2
3

, 1
)
=

(
8 − 17

3
−2 11

3

)
. (3.30)

The eigenvalues are λ = 35
6 ±

√
577
6 ≈ 9.84, 1.83. This fixed point is an

unstable node.

3. Case III. Equilibrium point (1 ∓
√

19
3 ,− 11

9 ± 2
9

√
19).

The Jacobian matrix for this case becomes

Df

(
1 ∓

√
19
3

,−11
9

± 2
9

√
19

)
=

(
50
9 ∓ 14

9

√
19 25

3 ∓ 2
√

19
− 56

9 ± 20
9

√
19 − 28

3 ±
√

19

)
.

(3.31)
There are two equilibrium points under this case. The first is given by

(1 −
√

19
3

,−11
9

+
2
9

√
19) ≈ (0.453,−0.254).

The eigenvalues for this point are

λ = −17
9

− 5
18

√
19 ± 1

18

√
3868

√
19 − 16153.

These are approximately −4.58 and −1.62 So, this equilibrium point
is a stable node.

The other equilibrium is (1 +
√

19
3 ,− 11

9 − 2
9

√
19) ≈ (2.45,−2.19). The

corresponding eigenvalues are complex with negative real parts,

λ = −17
9

+
5

18

√
19 ± i

18

√
16153 + 3868

√
19,

or λ ≈ −0.678 ± 10.1i. This point is a stable spiral.

Plots of the phase plane are given in Figures 3.12 and 3.14. The
reader can look at the direction field and verify these results for the
behavior of equilibrium solutions. A zoomed in view is shown in
Figure 3.15 with several orbits indicated.

Example 3.12. Damped Nonlinear Pendulum Equilibria
We are now ready to establish the behavior of the fixed points of

the damped nonlinear pendulum system in Equation (3.14). Recall
that the system for the damped nonlinear pendulum was given by

x′ = y,

y′ = −by − ω2 sin x. (3.32)

For a damped system, we will need b > 0. We had found that there are
an infinite number of equilibrium points at (nπ, 0), n = 0,±1,±2, . . . .



nonlinear systems 89

Figure 3.15: A closer look at the phase
plane for the system

x′ = 2x − y + 2xy + 3(x2 − y2),

y′ = x − 3y + xy − 3(x2 − y2)

with a few trajectories shown.

The Jacobian matrix for this systems is

Df(x, y) =

(
0 1

−ω2 cos x −b

)
. (3.33)

Evaluating this matrix at the fixed points, we find that

Df(nπ, 0) =

(
0 1

−ω2 cos nπ −b

)
=

(
0 1

(−1)n+1ω2 −b

)
. (3.34)

The eigenvalue equation is given by

λ2 + bλ + (−1)nω2 = 0.

There are two cases to consider: n even and n odd. For the first
case, we find the eigenvalues

λ =
−b ±

√
b2 − 4ω2

2
.

For b2 < 4ω2, we have two complex conjugate roots with a negative
real part. Thus, we have stable foci for even n values. If there is no
damping, then we obtain centers (λ = ±iω).

In the second case, n odd, we find

λ =
−b ±

√
b2 + 4ω2

2
.

Since b2 + 4ω2 > b2, these roots will be real with opposite signs. Thus,
we have hyperbolic points, or saddles. If there is no damping, the
eigenvalues reduce to λ = ±ω.

In Figure (3.16) we show the phase plane for the undamped nonlin-
ear pendulum with ω = 1.25. We see that we have a mixture of centers
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Figure 3.16: Phase plane for the un-
damped nonlinear pendulum. Solution
curves are shown for initial conditions
(x0, y0) = (0, 3), (0, 2), (0, 1), (5, 1).

and saddles. There are orbits for which there is periodic motion. In
the case that θ = π we have an inverted pendulum. This is an un-
stable position and this is reflected in the presence of saddle points,
especially if the pendulum is constructed using a massless rod.

There are also unbounded orbits, going through all possible angles.
These correspond to the mass spinning around the pivot in one direc-
tion forever due to initially having large enough energies.

We have indicated in the figure solution curves with the initial
conditions (x0, y0) = (0, 3), (0, 2), (0, 1), (5, 1). These show the various
types of motions that we have described.

Figure 3.17: Phase plane for the
damped nonlinear pendulum. Solution
curves are shown for initial conditions
(x0, y0) = (0, 3), (0, 2), (0, 1), (5, 1).

When there is damping, we see that we can have a variety of other be-
haviors as seen in Figure (3.17). In this example we have set b = 0.08 and
ω = 1.25. We see that energy loss results in the mass settling around one of
the stable fixed points. This leads to an understanding as to why there are
an infinite number of equilibria, even though physically the mass traces out
a bound set of Cartesian points. We have indicated in the Figure (3.17) so-
lution curves with the initial conditions (x0, y0) = (0, 3), (0, 2), (0, 1), (5, 1).

In Figure 3.18 we show a region of the phase plane which corresponds to
oscillations about x = 0. For small angles the pendulum oscillates following
somewhat elliptical orbits. As the angles get larger, due to greater initial
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Figure 3.18: Several orbits in the phase
plane for the undamped nonlinear pen-
dulum with ω = 5.0. The orbits sur-
round a center at (0, 0). At the edges
there are saddle points, (±π, 0).

energies, these orbits begin to change from ellipses to other periodic orbits.
There is a limiting orbit, beyond which one has unbounded motion. The
limiting orbit connects the saddle points on either side of the center. The
curve is called a separatrix and being that these trajectories connect two
saddles, they are often referred to as heteroclinic orbits. Heteroclinc orbits and separatrices.

In Figures 3.19-3.19 we show more orbits, including both bound and un-
bound motion beyond the interval x ∈ [−π, π]. For both plots we have
chosen ω = 5 and the same set of initial conditions, x(0) = πk/10, k =

−20, . . . , 20. for y(0) = 0,±10. The time interval is taken for t ∈ [−3, 3]. The
only difference is that in the damped case we have b = 0.5. In these plots
one can see what happens to the heteroclinic orbits and nearby unbounded
orbits under damping.

Figure 3.19: Several orbits in the phase
plane for the undamped nonlinear pen-
dulum with ω = 5.0.

Before leaving this problem, we should note that the orbits in the phase
plane for the undamped nonlinear pendulum can be obtained graphically.
Recall from Equation (3.70), the total mechanical energy for the nonlinear
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Figure 3.20: Several orbits in the phase
plane for the damped nonlinear pendu-
lum with ω = 5.0 and b = 0.5.

pendulum is

E =
1
2

mL2θ̇2 + mgL(1 − cos θ).

From this equation we obtained Equation (3.71),

1
2

θ̇2 − ω2 cos θ = −ω2 cos θ0.

Letting y = θ̇, x = θ, and defining z = −ω2 cos θ0, this equation can be
written as

1
2

y2 − ω2 cos x = z. (3.35)

For each energy (z), this gives a constant energy curve. Plotting the family
of energy curves we obtain the phase portrait shown in Figure 3.21.

Figure 3.21: A family of energy curves in
the phase plane for 1

2 θ̇2 − ω2 cos θ = z.
Here we took ω = 1.0 and z ∈ [−5, 15].

3.6 Nonlinear Population Models

We have already encountered several models of population dy-
namics in this and previous chapters. Of course, one could dream up sev-
eral other examples. While such models might seem far from applications
in physics, it turns out that these models lead to systems od differential
equations which also appear in physical systems such as the coupling of
waves in lasers, in plasma physics, and in chemical reactions.
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Two well-known nonlinear population models are the predator-prey and
competing species models. In the predator-prey model, one typically has
one species, the predator, feeding on the other, the prey. We will look at
the standard Lotka-Volterra model in this section. The competing species The Lotka-Volterra model is named after

Alfred James Lotka (1880-1949) and Vito
Volterra (1860-1940).

model looks similar, except there are a few sign changes, since one species
is not feeding on the other. Also, we can build in logistic terms into our
model. We will save this latter type of model for the homework.

The Lotka-Volterra model takes the form The Lotka-Volterra model of population
dynamics.

ẋ = ax − bxy,

ẏ = −dy + cxy, (3.36)

where a, b, c, and d are positive constants. In this model, we can think of x as
the population of rabbits (prey) and y is the population of foxes (predators).
Choosing all constants to be positive, we can describe the terms.

• ax: When left alone, the rabbit population will grow. Thus a is the
natural growth rate without predators.

• −dy: When there are no rabbits, the fox population should decay.
Thus, the coefficient needs to be negative.

• −bxy: We add a nonlinear term corresponding to the depletion of the
rabbits when the foxes are around.

• cxy: The more rabbits there are, the more food for the foxes. So, we
add a nonlinear term giving rise to an increase in fox population.

Example 3.13. Determine the equilibrium points and their stability for
the Lotka-Volterra system.

The analysis of the Lotka-Volterra model begins with determining
the fixed points. So, we have from Equation (3.36)

x(a − by) = 0,

y(−d + cx) = 0. (3.37)

Therefore, the origin, (0, 0), and ( d
c , a

b ) are the fixed points.
Next, we determine their stability, by linearization about the fixed

points. We can use the Jacobian matrix, or we could just expand the
right-hand side of each equation in (3.36) about the equilibrium points
as shown in he next example. The Jacobian matrix for this system is

D f (x, y) =

(
a − by −bx

cy −d + cx

)
.

Evaluating at each fixed point, we have

D f (0, 0) =

(
a 0
0 −d

)
, (3.38)

D f
(

d
c

,
a
b

)
=

(
0 − bd

c
ac
b 0

)
. (3.39)
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The eigenvalues of (3.38) are λ = a,−d. So, the origin is a saddle
point.

The eigenvalues of (3.39) satisfy λ2 + ad = 0. So, the other point
is a center. In Figure 3.22 we show a sample direction field for the
Lotka-Volterra system.

Figure 3.22: Phase plane for the Lotka-
Volterra system given by ẋ = x − 0.2xy,
ẏ = −y + 0.2xy. Solution curves are
shown for initial conditions (x0, y0) =
(8, 3), (1, 5).

Another way to carry out the linearization of the system of differential
equations is to expand the equations about the fixed points. For fixed points
(x∗, y∗), we let

(x, y) = (x∗ + u, y∗ + v).

Inserting this translation of the origin into the equations of the system, and
dropping nonlinear terms in u and v, results in the linearized system. This
method is equivalent to analyzing the Jacobian matrix for each fixed point.

Direct linearization of a system is car-
ried out by introducing x = x∗ + ξ, or
(x, y) = (x∗ + u, y∗ + v) into the system
and dropping nonlinear terms in u and
v. Example 3.14. Expand the Lotka-Volterra system about the equilib-

rium points.
For the origin (0, 0) the linearization about the origin amounts to

simply dropping the nonlinear terms. In this case we have

u̇ = au,

v̇ = −dv. (3.40)

The coefficient matrix for this system is the same as D f (0, 0).
For the second fixed point, we let

(x, y) =
(

d
c
+ u,

a
b
+ v
)

.

Inserting this transformation into the system gives

u̇ = a
(

d
c
+ u

)
− b

(
d
c
+ u

)( a
b
+ v
)

,

v̇ = −d
( a

b
+ v
)
+ c

(
d
c
+ u

)( a
b
+ v
)

. (3.41)
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Expanding, we obtain

u̇ =
ad
c
+ au − b

(
ad
bc

+
d
c

v +
a
b

u + uv
)

,

v̇ = − ad
b

− dv + c
(

ad
bc

+
d
c

v +
a
b

u + uv
)

. (3.42)

In both equations the constant terms cancel and linearization is sim-
ply getting rid of the uv terms. This leaves the linearized system

u̇ = au − b
(

d
c

v +
a
b

u
)

,

v̇ = −dv + c
(
+

d
c

v +
a
b

u
)

, (3.43)

or

u̇ = − bd
c

v,

v̇ =
ac
b

u. (3.44)

The coefficient matrix for this linearized system is the same as

D f
(

d
c , a

b

)
. In fact, for nearby orbits, they are almost circular orbits.

From this linearized system, we have ü + adu = 0.
We can take u = A cos(

√
adt + ϕ), where A and ϕ can be deter-

mined from the initial conditions. Then,

v = − c
bd

u̇

=
c

bd
A
√

ad sin(
√

adt + ϕ)

=
c
b

√
a
d

A sin(
√

adt + ϕ). (3.45)

Therefore, the solutions near the center are given by

(x, y) =
(

d
c
+ A cos(

√
adt + ϕ),

a
b
+

c
b

√
a
d

A sin(
√

adt + ϕ)

)
.

For a = d = 1, b = c = 0.2, and initial values of (x0, y0) = (5.5, 5), these
solutions become

x(t) = 5.0 + 0.5 cos t, y(t) = 5.0 + 0.5 sin t.

Plots of these solutions are shown in Figure (3.23).
It is also possible to find a first integral of the Lotka-Volterra system

whose level curves give the phase portrait of the system. As we had done
in Chapter 2, we can write

dy
dx

=
ẏ
ẋ

=
−dy + cxy
ax − bxy

=
y(−d + cx)
x(a − by)

. (3.46)
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Figure 3.23: The linearized solutions of
Lotka-Volterra system ẋ = x − 0.2xy,
ẏ = −y + 0.2xy for the initial conditions
(x0, y0) = (5.5, 5).

This is an equation of the form seen in Problem 2.??. This equation is now
a separable differential equation. The solution this differential equation is
given in implicit form as

a ln y + d ln x − cx − by = C,

where C is an arbitrary constant. This expression is known as the first
integral of the Lotka-Volterra system. These level curves are shown in FigureThe first integral of the Lotka-Volterra

system.
3.24.

Figure 3.24: Phase plane for the Lotka-
Volterra system given by ẋ = x − 0.2xy,
ẏ = −y + 0.2xy based upon the first in-
tegral of the system.

3.7 Limit Cycles

So far we have just been concerned with equilibrium solutions and
their behavior. However, asymptotically stable fixed points are not the only
attractors. There are other types of solutions, known as limit cycles, towards
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which a solution may tend. In this section we will look at some examples of
these periodic solutions.

Such solutions are common in nature. Rayleigh investigated the problem

x′′ + c
(

1
3
(x′)2 − 1

)
x′ + x = 0 (3.47)

in the study of the vibrations of a violin string. Balthasar van der Pol
(1889-1959) studied an electrical circuit, modeling this behavior. Others have
looked into biological systems, such as neural systems, chemical reactions,
such as Michaelis-Menten kinetics, and other chemical systems leading to
chemical oscillations. One of the most important models in the historical
study of dynamical systems is that of planetary motion and investigating
the stability of planetary orbits. As is well known, these orbits are periodic.

Limit cycles are isolated periodic solutions towards which neighboring
states might tend when stable. A key example exhibiting a limit cycle is
given in the next example.

Example 3.15. Find the limit cycle in the system

x′ = µx − y − x(x2 + y2)

y′ = x + µy − y(x2 + y2). (3.48)

It is clear that the origin is a fixed point. The Jacobian matrix is
given as

D f (0, 0) =

(
µ −1
1 µ

)
. (3.49)

The eigenvalues are found to be λ = µ ± i. For µ = 0 we have a center.
For µ < 0 we have a stable spiral and for µ > 0 we have an unstable
spiral. However, this spiral does not wander off to infinity. We see in
Figure 3.25 that the equilibrium point is a spiral. However, in Figure
3.26 it is clear that the solution does not spiral out to infinity. It is
bounded by a circle.

One can actually find the radius of this circle. This requires rewrit-
ing the system in polar form. Recall from Chapter 2 that we can
change derivatives of Cartesian coordinates to derivatives of polar co-
ordinates by using the relations

rr′ = xx′ + yy′, (3.50)

r2θ′ = xy′ − yx′. (3.51)

Inserting the system (3.48) into these expressions, we have

rr′ = µr2 − r4, r2θ′ = r2.

This leads to the system

r′ = µr − r3,

θ′ = 1. (3.52)
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Figure 3.25: Phase plane for system
(3.48) with µ = 0.4.
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Of course, for a circle the radius is constant, r = const. Therefore,
in order to find the limit cycle, we need to look at the equilibrium
solutions of Equation (3.52). This amounts to finding the constant
solutions of µr − r3 = 0. The equilibrium solutions are r = 0,±√

µ.
The limit cycle corresponds to the positive radius solution, r =

√
µ.

In Figures 3.25-3.26 we take µ = 0.4. In this case we expect a circle
with r =

√
0.4 ≈ 0.63. From the θ equation, we have that θ′ > 0. This

means that we follow the limit cycle in a counterclockwise direction as
time increases.

Limit cycles are not always circles. In Figures 3.27-3.28 we show the
behavior of the Rayleigh system (3.47) for c = 0.4 and c = 2.0. In this case
we see that solutions tend towards a noncircular limit cycle in a clockwise
direction.

A slight change of the Rayleigh system leads to the van der Pol equation:

x′′ + c(x2 − 1)x′ + x = 0 (3.53)

The limit cycle for c = 2.0 is shown in Figure 3.29.The van der Pol system.

Can one determine ahead of time if a given nonlinear system will have
a limit cycle? In order to answer this question, we will introduce some
definitions.
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Figure 3.26: Phase plane for system
(3.48) with µ = 0.4 showing that the in-
ner spiral is bounded by a limit cycle.
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Figure 3.27: Phase plane for the Rayleigh
system (3.47) with c = 0.4.
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Figure 3.28: Phase plane for the van der
Pol system (3.53) with c = 2.0.
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Figure 3.29: Phase plane for the van der
Pol system (3.53) with c = 0.4.
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ϕ(x, 0)

ϕ(x, t1)

ϕ(ϕ(x, t1), t2)

t1

t2

Figure 3.30: A sketch depicting the idea
of trajectory, or orbit, passing through x.Flows.

We first describe different trajectories and families of trajectories. A flow
on R2 is a function ϕ that satisfies the following

1. ϕ(x, t) is continuous in both arguments.

2. ϕ(x, 0) = x for all x ∈ R2.

3. ϕ(ϕ(x, t1), t2) = ϕ(x, t1 + t2).

The orbit, or trajectory, through x is defined as γ = {ϕ(x, t)|t ∈ I}. In Figure Orbits and trajectories.

3.30 we demonstrate these properties. For t = 0, ϕ(x, 0) = x. Increasing t,
one follows the trajectory until one reaches the point ϕ(x, t1). Continuing t2

further, one is then at ϕ(ϕ(x, t1), t2). By the third property, this is the same
as going from x to ϕ(x, t1 + t2) for t = t1 + t2.

Having defined the orbits, we need to define the asymptotic behavior of
the orbit for both positive and negative large times. We define the positive
semiorbit through x as γ+ = {ϕ(x, t)|t > 0}. The negative semiorbit through x
is defined as γ− = {ϕ(x, t)|t < 0}. Thus, we have γ = γ+ ∪ γ−. Limit sets and limit points.

The positive limit set, or ω-limit set, of point x is defined as

Λ+ = {y| there exists a sequence of tn → ∞ such that ϕ(x, tn) → y}.

The y’s are referred to as ω-limit points. This is shown in Figure 3.31.
Λ+

Figure 3.31: A sketch depicting an ω-
limit set. Note that the orbits tend to-
wards the set as t increases.

Similarly, we define the negative limit set, or the alpha-limit set, of point x
is defined as

Λ− = {y| there exists a sequences of tn → −∞ such that ϕ(x, tn) → y}

and the corresponding y’s are α-limit points. This is shown in Figure 3.32. Cycles and periodic orbits.

There are several types of orbits that a system might possess. A cycle
or periodic orbit is any closed orbit which is not an equilibrium point. A
periodic orbit is stable if for every neighborhood of the orbit such that all
nearby orbits stay inside the neighborhood. Otherwise, it is unstable. The
orbit is asymptotically stable if all nearby orbits converge to the periodic
orbit.

A limit cycle is a cycle which is the α or ω-limit set of some trajectory
other than the limit cycle. A limit cycle Γ is stable if Λ+ = Γ for all x in
some neighborhood of Γ. A limit cycle Γ is unstable if Λ− = Γ for all x in
some neighborhood of Γ. Finally, a limit cycle is semistable if it is attracting
on one side and repelling on the other side. In the previous examples, we
saw limit cycles that were stable. Figures 3.31 and 3.32 depict stable and
unstable limit cycles, respectively.

Λ−

Figure 3.32: A sketch depicting an α-
limit set. Note that the orbits tend away
from the set as t increases.We now state a theorem which describes the type of orbits we might find

in our system.
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Theorem 3.2. Poincaré-Bendixon Theorem Let γ+ be contained in a
bounded region in which there are finitely many critical points. Then Λ+ is
either

1. a single critical point;

2. a single closed orbit;

3. a set of critical points joined by heteroclinic orbits.
[Compare Figures 3.33 and 3.34.]

Figure 3.33: A heteroclinic orbit connect-
ing two critical points.

Figure 3.34: A homoclinic orbit return-
ing to the point it left.

We are interested in determining when limit cycles may, or may not, exist.
A consequence of the Poincaré-Bendixon Theorem is given by the following
corollary.

Corollary Let D be a bounded closed set containing no critical points and
suppose that γ+ ⊂ D. Then there exists a limit cycle contained in D.

More specific criteria allow us to determine if there is a limit cycle in a
given region. These are given by Dulac’s Criteria and Bendixon’s Criteria.

Dulac’s Criteria Consider the autonomous planar system

x′ = f (x, y), y′ = g(x, y)

and a continuously differentiable function ψ defined on an annular region
D contained in some open set. If

∂

∂x
(ψ f ) +

∂

∂y
(ψg)

does not change sign in D, then there is at most one limit cycle contained
entirely in D.

Bendixon’s Criteria Consider the autonomous planar system

x′ = f (x, y), y′ = g(x, y)

defined on a simply connected domain D such that

∂

∂x
(ψ f ) +

∂

∂y
(ψg) ̸= 0

in D. Then, there are no limit cycles entirely in D.

Proof. These are easily proved using Green’s Theorem in the Plane. (See
your calculus text.) We prove Bendixon’s Criteria. Let f = ( f , g). Assume
that Γ is a closed orbit lying in D. Let S be the interior of Γ. Then∫

S
∇ · f dxdy =

∮
Γ
( f dy − g dx)

=
∫ T

0
( f ẏ − gẋ)dt

=
∫ T

0
( f g − g f )dt = 0. (3.54)
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So, if ∇ · f is not identically zero and does not change sign in S, then from
the continuity of ∇ · f in S we have that the right side above is either positive
or negative. Thus, we have a contradiction and there is no closed orbit lying
in D

Example 3.16. Consider the earlier example in (3.48) with µ = 1.

x′ = x − y − x(x2 + y2)

y′ = x + y − y(x2 + y2). (3.55)

We already know that a limit cycle exists at x2 + y2 = 1. A simple
computation gives that

∇ · f = 2 − 4x2 − 4y2.

For an arbitrary annulus a < x2 + y2 < b, we have

2 − 4b < ∇ · f < 2 − 4a.

For a = 3/4 and b = 5/4, −3 < ∇ · f < −1. Thus, ∇ · f < 0 in the
annulus 3/4 < x2 + y2 < 5/4. Therefore, by Dulac’s Criteria there is
at most one limit cycle in this annulus.

Example 3.17. Consider the system

x′ = y

y′ = −ax − by + cx2 + dy2. (3.56)

Let ψ(x, y) = e−2dx. Then,

∂

∂x
(ψy) +

∂

∂y
(ψ(−ax − by + cx2 + dy2)) = −be−2dx ̸= 0.

We conclude by Bendixon’s Criteria that there are no limit cycles for
this system.

3.8 Nonautonomous Nonlinear Systems

In this section we discuss nonautonomous systems. Recall that an
autonomous system is one in which there is no explicit time dependence. A
simple example is the forced nonlinear pendulum given by the nonhomo-
geneous equation

ẍ + ω2 sin x = f (t). (3.57)

We can set this up as a system of two first order equations:

ẋ = y

ẏ = −ω2 sin x + f (t). (3.58)
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This system is not in a form for which we could use the earlier methods.
Namely, it is a nonautonomous system. However, we introduce a new vari-
able z(t) = t and turn it into an autonomous system in one more dimension.
The new system takes the form

ẋ = y

ẏ = −ω2 sin x + f (z).

ż = 1. (3.59)

The system is now a three dimensional autonomous, possibly nonlinear,
system and can be explored using methods from Chapters 2 and 3.

xMagnet Magnet

Beam

Support

Γ cos(ωt + ϕ)

Figure 3.35: One model of the Duffing
equation describes a periodically forced
beam which interacts with two magnets.

A more interesting model is provided by the Duffing Equation. This
equation, named after Georg Wilhelm Christian Caspar Duffing (1861-1944),
models hard spring and soft spring oscillations. It also models a periodically
forced beam as shown in Figure 3.35. It is of interest because it is a simple
system which exhibits chaotic dynamics and will motivate us towards using
new visualization methods for nonautonomous systems.

The most general form of Duffing’s equation is given by the damped,
forced system

ẍ + kẋ + (βx3 ± ω2
0x) = Γ cos(ωt + ϕ). (3.60)

This equation models hard spring, (β > 0), and soft spring, (β < 0), oscil-
lations. However, we will use the simpler version of the Duffing equation:

ẍ + kẋ + x3 − x = Γ cos ωt. (3.61)

An equation of this form can be obtained by setting ϕ = 0 and rescaling x
and t in the original equation. We will explore the behavior of the system
as we vary the remaining parameters. In Figures 3.36-3.39 we show some
typical solution plots superimposed on the direction field.The undamped, unforced Duffing equa-

tion. We start with the undamped (k = 0) and unforced (Γ = 0) Duffing equa-
tion,

ẍ + x3 − x = 0.

We can write this second order equation as the autonomous system

ẋ = y

ẏ = x(1 − x2). (3.62)

We see that there are three equilibrium points at (0, 0) and (±1, 0). In Figure
3.36 we plot several orbits for k = 0, and Γ = 0. We see that the three
equilibrium points consist of two centers and a saddle.The unforced Duffing equation.

We now turn on the damping. The system becomes

ẋ = y

ẏ = −ky + x(1 − x2). (3.63)

In Figures 3.37 and 3.38 we show what happens when k = 0.1. These plots
are reminiscent of the plots for the nonlinear pendulum; however, there are
fewer equilibria. Note that the centers become stable spirals for k > 0.
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Figure 3.36: Phase plane for the un-
damped, unforced Duffing equation
(k = 0, Γ = 0).

Figure 3.37: Phase plane for the unforced
Duffing equation with k = 0.1 and Γ = 0.

Next we turn on the forcing to obtain a damped, forced Duffing equation.
The system is now nonautonomous.

ẋ = y

ẏ = x(1 − x2) + Γ cos ωt. (3.64)

In Figure 3.39 we only show one orbit with k = 0.1, Γ = 0.5, and ω = 1.25. The damped, forced Duffing equation.

The solution intersects itself and look a bit messy. We can imagine what
we would get if we added any more orbits. For completeness, we show in
Figure 3.40 an example with four different orbits.

In cases for which one has periodic orbits such as the Duffing equation,
Poincaré introduced the notion of surfaces of section. One embeds the orbit
in a higher dimensional space so that there are no self intersections, like we
saw in Figures 3.39 and 3.40. In Figure 3.42 we show an example where a
simple orbit is shown as it periodically pierces a given surface.

In order to simplify the resulting pictures, one only plots the points at
which the orbit pierces the surface as sketched in Figure 3.41. In practice,
there is a natural frequency, such as ω in the forced Duffing equation. Then,
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Figure 3.38: Display of two orbits for the
unforced Duffing equation with k = 0.1
and Γ = 0.

Figure 3.39: Phase plane for the Duff-
ing equation with k = 0.1, Γ = 0.5, and
ω = 1.25. In this case we show only one
orbit which was generated from the ini-
tial condition (x0 = 1.0, y0 = 0.5).

one plots points at times that are multiples of the period, T = 2π
ω . In Figure

3.43 we show what the plot for one orbit would look like for the damped,
unforced Duffing equation.

The more interesting case, is when there is forcing and damping. In this
case the surface of section plot is given in Figure 3.44. While this is not as
busy as the solution plot in Figure 3.39, it still provides some interesting
behavior. What one finds is what is called a strange attractor. Plotting many
orbits, we find that after a long time, all of the orbits are attracted to a small
region in the plane, much like a stable node attracts nearby orbits. However,
this set consists of more than one point. Also, the flow on the attractor is
chaotic in nature. Thus, points wander in an irregular way throughout the
attractor. This is one of the interesting topics in chaos theory and this whole
theory of dynamical systems has only been touched in this text leaving the
reader to wander of into further depth into this fascinating field.
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Figure 3.40: Phase plane for the Duffing
equation with k = 0.1, Γ = 0.5, and ω =
1.25. In this case four initial conditions
were used to generate four orbits.

Figure 3.41: As an orbit pierces the sur-
face of section, one plots the point of in-
tersection in that plane to produce the
surface of section plot.

The surface of section plots at the end of the last section were obtained
using code from S. Lynch’s book Dynamical Systems with Applications Using
Maple. For reference, the plots in Figures 3.36 and 3.37 were generated in
Maple using the following commands:

> with(DEtools):

> Gamma:=0.5:omega:=1.25:k:=0.1:

> DEplot([diff(x(t),t)=y(t), diff(y(t),t)=x(t)-k*y(t)-(x(t))^3

+ Gamma*cos(omega*t)], [x(t),y(t)],t=0..500,[[x(0)=1,y(0)=0.5],

[x(0)=-1,y(0)=0.5], [x(0)=1,y(0)=0.75], [x(0)=-1,y(0)=1.5]],

x=-2..2,y=-2..2, stepsize=0.1, linecolor=blue, thickness=1,

color=black);

H = 2.750000000;  

–1.5–1–0.500.511.5
p1

–1

0

1q1

–1.5

–1

–0.5

0

0.5

1

1.5

q2

Figure 3.42: Poincaré’s surface of sec-
tion. One notes each time the orbit
pierces the surface.
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Figure 3.43: Poincaré’s surface of section
plot for the damped, unforced Duffing
equation.
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Figure 3.44: Poincaré’s surface of sec-
tion plot for the damped, forced Duffing
equation. This leads to what is known as
a strange attractor.
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3.9 The Period of the Nonlinear Pendulum*

Recall that the period of the simple pendulum is given by

T =
2π

ω
= 2π

√
L
g

(3.65)

for

ω ≡
√

g
L

. (3.66)

This was based upon the solving the linear pendulum equation (3.12). This
equation was derived assuming a small angle approximation. How good is
this approximation? What is meant by a small angle?

We recall that the Taylor series approximation of sin θ about θ = 0 :

sin θ = θ − θ3

3!
+

θ5

5!
+ . . . . (3.67)

One can obtain a bound on the error when truncating this series to one
term after taking a numerical analysis course. But we can just simply plot
the relative error, which is defined as

Relative Error =

∣∣∣∣ sin θ − θ

sin θ

∣∣∣∣ .

A plot of the relative error is given in Figure 3.45. Thus for θ ≈ 0.4 radians
(or, 23

o) we have that the relative error is about 2.6%. Relative error in sin θ approximation.

We would like to do better than this. So, we now turn to the nonlinear
pendulum equation (3.11) in the simpler form

θ̈ + ω2 sin θ = 0. (3.68)
Solution of nonlinear pendulum equa-
tion.We next employ a technique that is useful for equations of the form

θ̈ + F(θ) = 0

when it is easy to integrate the function F(θ). Namely, we note that

d
dt

[
1
2

θ̇2 +
∫ θ(t)

F(ϕ) dϕ

]
= (θ̈ + F(θ))θ̇.

For the nonlinear pendulum problem, we multiply Equation (3.68) by θ̇,

θ̈θ̇ + ω2 sin θθ̇ = 0

and note that the left side of this equation is a perfect derivative. Thus,

d
dt

[
1
2

θ̇2 − ω2 cos θ

]
= 0.

Therefore, the quantity in the brackets is a constant. So, we can write

1
2

θ̇2 − ω2 cos θ = c. (3.69)
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Figure 3.45: The relative error in percent
when approximating sin θ by θ.
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Solving for θ̇, we obtain

dθ

dt
=
√

2(c + ω2 cos θ).

This equation is a separable first order equation and we can rearrange
and integrate the terms to find that

t =
∫

dt =
∫ dθ√

2(c + ω2 cos θ)
.

Of course, we need to be able to do the integral. When one finds a so-
lution in this implicit form, one says that the problem has been solved by
quadratures. Namely, the solution is given in terms of some integral.

In fact, the above integral can be transformed into what is known as an
elliptic integral of the first kind. We will rewrite this result and then use
it to obtain an approximation to the period of oscillation of the nonlinear
pendulum, leading to corrections to the linear result found earlier.

We will first rewrite the constant found in (3.69). This requires a little
physics. The swinging of a mass on a string, assuming no energy loss at the
pivot point, is a conservative process. Namely, the total mechanical energy is
conserved. Thus, the total of the kinetic and gravitational potential energies
is a constant. The kinetic energy of the mass on the string is given as

T =
1
2

mv2 =
1
2

mL2θ̇2.

The potential energy is the gravitational potential energy. If we set the
potential energy to zero at the bottom of the swing, then the potential energy
is U = mgh, where h is the height that the mass is from the bottom of the
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swing. A little trigonometry gives that h = L(1 − cos θ). So,

U = mgL(1 − cos θ).
Total mechanical energy for the nonlin-
ear pendulum.So, the total mechanical energy is

E =
1
2

mL2θ̇2 + mgL(1 − cos θ). (3.70)

We note that a little rearranging shows that we can relate this result to
Equation (3.69). Dividing by m and L2 and using the definition of ω2 = g/L,
we have

1
2

θ̇2 − ω2 cos θ =
1

mL2 E − ω2.

Therefore, we have determined the integration constant in terms of the total
mechanical energy,

c =
1

mL2 E − ω2.

We can use Equation (3.70) to get a value for the total energy. At the top
of the swing the mass is not moving, if only for a moment. Thus, the kinetic
energy is zero and the total mechanical energy is pure potential energy.
Letting θ0 denote the angle at the highest angular position, we have that

E = mgL(1 − cos θ0) = mL2ω2(1 − cos θ0).

Therefore, we have found that

1
2

θ̇2 − ω2 cos θ = −ω2 cos θ0. (3.71)

We can solve for θ̇ and integrate the differential equation to obtain

t =
∫

dt =
∫ dθ

ω
√

2(cos θ − cos θ0)
.

Using the half angle formula,

sin2 θ

2
=

1
2
(1 − cos θ),

we can rewrite the argument in the radical as

cos θ − cos θ0 = 2
[

sin2 θ0

2
− sin2 θ

2

]
.

Noting that a motion from θ = 0 to θ = θ0 is a quarter of a cycle, we have
that

T =
2
ω

∫ θ0

0

dθ√
sin2 θ0

2 − sin2 θ
2

. (3.72)

This result can now be transformed into an elliptic integral.2 We define

2 Elliptic integrals were first studied by
Leonhard Euler and Giulio Carlo de’
Toschi di Fagnano (1682-1766) , who
studied the lengths of curves such as the
ellipse and the lemniscate,

(x2 + y2)2 = x2 − y2.z =
sin θ

2

sin θ0
2



112 differential equations

and

k = sin
θ0

2
.

Then, Equation (3.72) becomes

T =
4
ω

∫ 1

0

dz√
(1 − z2)(1 − k2z2)

. (3.73)

This is done by noting that dz = 1
2k cos θ

2 dθ = 1
2k (1 − k2z2)1/2 dθ and that

sin2 θ0
2 − sin2 θ

2 = k2(1− z2). The integral in this result is called the complete
elliptic integral of the first kind.

We note that the incomplete elliptic integral of the first kind is defined as

F(ϕ, k) ≡
∫ ϕ

0

dθ√
1 − k2 sin2 θ

=
∫ sin ϕ

0

dz√
(1 − z2)(1 − k2z2)

.

Then, the complete elliptic integral of the first kind is given by K(k) =The complete and incomplete elliptic in-
tegrals of the first kind. F(π

2 , k), or

K(k) =
∫ π/2

0

dθ√
1 − k2 sin2 θ

=
∫ 1

0

dz√
(1 − z2)(1 − k2z2)

.

Therefore, the period of the nonlinear pendulum is given by

T =
4
ω

K
(

sin
θ0

2

)
. (3.74)

There are table of values for elliptic integrals. However, one can use a
computer algebra system to compute values of such integrals. We will look
for small angle approximations.

For small angles (θ0 ≪ π
2 ), we have that k is small. So, we can develop a

series expansion for the period, T, for small k. This is simply done by using
the binomial expansion,

(1 − k2z2)−1/2 = 1 +
1
2

k2z2 +
3
8

k2z4 + O((kz)6)

Inserting this expansion into the integrand for the complete elliptic integral
and integrating term by term, we find that

T = 2π

√
L
g

[
1 +

1
4

k2 +
9

64
k4 + . . .

]
. (3.75)

The first term of the expansion gives the well known period of the simple
pendulum for small angles. The next terms in the expression give further
corrections to the linear result which are useful for larger amplitudes of os-
cillation. In Figure 3.46 we show the relative errors incurred when keeping
the k2 (quadratic) and k4 (quartic) terms as compared to the exact value of
the period.
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Figure 3.46: The relative error in percent
when approximating the exact period of
a nonlinear pendulum with one (solid),
two (dashed), or three (dotted) terms in
Equation (3.75).

3.10 Exact Solutions Using Elliptic Functions*

The solution in Equation (3.73) of the nonlinear pendulum equa-
tion led to the introduction of elliptic integrals. The incomplete elliptic
integral of the first kind is defined as

F(ϕ, k) ≡
∫ ϕ

0

dθ√
1 − k2 sin2 θ

=
∫ sin ϕ

0

dz√
(1 − z2)(1 − k2z2)

. (3.76)

The complete integral of the first kind is given by K(k) = F(π
2 , k), or

K(k) =
∫ π/2

0

dθ√
1 − k2 sin2 θ

=
∫ 1

0

dz√
(1 − z2)(1 − k2z2)

.

Elliptic integrals of the second kind are defined as

E(ϕ, k) =
∫ ϕ

0

√
1 − k2 sin2 θ dθ =

∫ sin ϕ

0

√
1 − k2t2
√

1 − t2
dt (3.77)

E(k) =
∫ π/2

0

√
1 − k2 sin2 θ dθ =

∫ 1

0

√
1 − k2t2
√

1 − t2
dt (3.78)

Recall, a first integration of the nonlinear pendulum equation from Equa-
tion (3.70), (

dθ

dt

)2
− ω2 cos θ = −ω2 cos θ0.

or (
dθ

dt

)2
= 2ω2

[
sin2 θ

2
− sin2 θ0

2

]
.
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Letting

kz = sin
θ

2
and k = sin

θ0

2
,

the differential equation becomes

dz
dτ

= ±ω
√

1 − z2
√

1 − k2z2.

Applying separation of variables, we find

±ω(t − t0) =
1
ω

∫ z

1

dz√
1 − z2

√
1 − k2z2

(3.79)

=
∫ 1

0

dz√
1 − z2

√
1 − k2z2

−
∫ z

0

dz√
1 − z2

√
1 − k2z2

(3.80)

= K(k)− F(sin−1(k−1 sin θ), k). (3.81)

The solution, θ(t), is then found by solving for z and using kz = sin θ
2 to

solve for θ. This requires that we know how to invert the elliptic integral,
F(z, k).

Elliptic functions result from the inversion of elliptic integrals. Consider

u(sin ϕ, k) = F(ϕ, k) =
∫ ϕ

0

dθ√
1 − k2 sin2 θ

. (3.82)

=
∫ sin ϕ

0

dt√
(1 − t2)(1 − k2t2)

. (3.83)

Note:F(ϕ, 0) = ϕ and F(ϕ, 1) = ln(sec ϕ + tan ϕ). In these cases F is obvi-
ously monotone increasing and thus there must be an inverse.

The inverse of Equation (3.76) is defined as ϕ = F−1(u, k) = am(u, k),
where u = sin ϕ. The function am(u, k) is called the Jacobi amplitude func-
tion and k is the elliptic modulus. [In some references and software like
MATLAB packages, m = k2 is used as the parameter.] Three of the Jacobi
elliptic functions, shown in Figure 3.47, can be defined in terms of the am-
plitude function by

sn(u, k) = sin am(u, k) = sin ϕ,

cn(u, k) = cos am(u, k) = cos ϕ,

and the delta amplitudeJacobi elliptic functions.

dn(u, k) =
√

1 − k2 sin2 ϕ.

They are related through the identities

cn2(u, k) + sn2(u, k) = 1, (3.84)

dn2(u, k) + k2 sn2(u, k) = 1. (3.85)

Also, we see that these functions are periodic. The period is given in
terms of the complete elliptic integral of the first kind, K(k). Consider

The elliptic functions can be extended to
the complex plane. In this case the func-
tions are doubly periodic. However, we
will not need to consider this in the cur-
rent text.
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Figure 3.47: Plots of the Jacobi elliptic
functions sn(u, k), cn(u, k), and dn(u, k)
for m = k2 = 0.5. Here K(k) = 1.8541.

F(ϕ + 2π, k) =
∫ ϕ+2π

0

dθ√
1 − k2 sin2 θ

.

=
∫ ϕ

0

dθ√
1 − k2 sin2 θ

+
∫ ϕ+2π

ϕ

dθ√
1 − k2 sin2 θ

= F(ϕ, k) +
∫ 2π

0

dθ√
1 − k2 sin2 θ

= F(ϕ, k) + 4K(k). (3.86)

Since F(ϕ + 2π, k) = u + 4K, we have

sn(u + 4K) = sin(am(u + 4K)) = sin(am(u) + 2π) = sin am(u) = sn u.

In general, we have

sn(u + 2K, k) = − sn(u, k) (3.87)

cn(u + 2K, k) = − cn(u, k) (3.88)

dn(u + 2K, k) = dn(u, k). (3.89)

The plots of sn(u), cn(u), and dn(u), are shown in Figures 3.48-3.50.
Namely,

sn(u + K, k) =
cn u
dn u

, sn(u + 2K, k) = − sn u,

cn(u + K, k) = −
√

1 − k2 sn u
dn u

, dn(u + 2K, k) = − cn u,

dn(u + K, k) =

√
1 − k2

dn u
, dn(u + 2K, k) = dn u.

Therefore, dn and cn have a period of 4K and dn has a period of 2K.
Special values found in Figure 3.47 are seen as

sn(K, k) = 1,
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Figure 3.48: Plots of sn(u, k) for m =
0, 0.25, 0.50, 0.75, 1.00.
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Figure 3.49: Plots of cn(u, k) for m =
0, 0.25, 0.50, 0.75, 1.00.
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cn(K, k) = 0,

dn(K, k) =
√

1 − k2 = k′,

where k′ is called the complementary modulus.
Important to this section are the derivatives of these elliptic functions,

∂

∂u
sn(u, k) = cn(u, k)dn(u, k),

∂

∂u
cn(u, k) = − sn(u, k)dn(u, k),

Figure 3.50: Plots of dn(u, k) for m =
0, 0.25, 0.50, 0.75, 1.00.
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∂

∂u
dn(u, k) = −k2 sn(u, k) cn(u, k),

and the amplitude function

∂

∂u
am(u, k) = dn(u, k).

Sometimes the Jacobi elliptic functions are displayed without reference
to the elliptic modulus, such as sn(u) = sn(u, k). When k is understood, we
can do the same.

Example 3.18. Show that sn(u) satisfies the differential equation

y′′ + (1 + k2)y = 2k2y3.

From the above derivatives, we have that

d2

du2 sn(u) =
d

du
(cn(u)dn(u))

= − sn(u)dn2(u)− k2 sn(u) cn2(u). (3.90)

Letting y(u) = sn(u) and using the identities (3.84)-(3.85), we have
that

y′′ = −y(1 − k2y2)− k2y(1 − y2) = −(1 + k2)y + 2k2y3.

This is the desired result.

Example 3.19. Show that θ(t) = 2 sin−1(k sn t) is a solution of the
equation θ̈ + sin θ = 0.

Differentiating θ(t) = 2 sin−1(k sn t), we have

d2

dt2

(
2 sin−1(k sn t)

)
=

d
dt

(
2

k cn t dn t√
1 − k2 sn2 t

)
=

d
dt

(2k cn t)

= −2k sn t dn t. (3.91)

However, we can evaluate sin θ for a range of θ. Thus, we have

sin θ = sin(2 sin−1(k sn t))

= 2 sin(sin−1(k sn t)) cos(sin−1(k sn t))

= 2k sn t
√

1 − k2 sn2 t

= 2k sn t dn t. (3.92)

Comparing these results, we have shown that θ̈ + sin θ = 0.

The solution to the last example can be used to obtain the exact solution
to the nonlinear pendulum problem, θ̈ + ω2 sin θ = 0, θ(0) = θ0, θ̇(0) = 0.
The general solution is given by θ(t) = 2 sin−1(k sn(ωt + ϕ)) where ϕ has
to be determined from the initial conditions. We note that

d sn(u + K)
du

= cn(u + K)dn(u + K)

=
(
−
√

1 − k2 sn u
dn u

)(√
1 − k2

dn u

)
= −(1 − k2)

sn u
dn2 u

. (3.93)
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Evaluating at u = 0, we have sn′(K) = 0.
Therefore, if we pick ϕ = K, then θ̇(0) = 0 and the solution is

θ(t) = 2 sin−1(k sn(ωt + K)).

Furthermore, the other initial value is found to be

θ(0) = 2 sin−1(k sn K) = 2 sin−1 k.

Thus, k = sin θ0
2 , as we had seen in the earlier derivation of the elliptic

integral solution. The solution is given as

θ(t) = 2 sin−1(sin
θ0

2
sn(ωt + K)).

In Figures 3.51-3.52 we show comparisons of the exact solutions of the
linear and nonlinear pendulum problems for L = 1.0 m and initial angles
θ0 = 10o and θ0 = 50o.

Figure 3.51: Comparison of exact solu-
tions of the linear and nonlinear pen-
dulum problems for L = 1.0 m and
θ0 = 10o .
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Problems

1. Solve the general logistic problem,

dy
dt

= ky − cy2, y(0) = y0 (3.94)

using separation of variables.

2. Find the equilibrium solutions and determine their stability for the fol-
lowing systems. For each case draw representative solutions and phase
lines.

a. y′ = y2 − 6y − 16.

b. y′ = cos y.
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Figure 3.52: Comparison of the exact so-
lutions of the linear and nonlinear pen-
dulum problems for L = 1.0 m and
θ0 = 50o .

c. y′ = y(y − 2)(y + 3).

d. y′ = y2(y + 1)(y − 4).

3. For y′ = y − y2, find the general solution corresponding to y(0) = y0.
Provide specific solutions for the following initial conditions and sketch
them: a. y(0) = 0.25, b. y(0) = 1.5, and c. y(0) = −0.5.

4. For each problem determine equilibrium points, bifurcation points and
construct a bifurcation diagram. Discuss the different behaviors in each
system.

a. y′ = y − µy2

b. y′ = y(µ − y)(µ − 2y)

c. x′ = µ − x3

d. x′ = x − µx
1+x2

5. Consider the family of differential equations x′ = x3 + δx2 − µx.

a. Sketch a bifurcation diagram in the xµ-plane for δ = 0.

b. Sketch a bifurcation diagram in the xµ-plane for δ > 0.

Hint: Pick a few values of δ and µ in order to get a feel for how this system
behaves.

6. System 3.52 can be solved exactly. Integrate the r-equation using sepa-
ration of variables. For initial conditions a) r(0) = 0.25, θ(0) = 0, and b)
r(0) = 1.5, θ(0) = 0, and µ = 1.0, find and plot the solutions in the xy-plane
showing the approach to a limit cycle.

7. Consider the system

x′ = −y + x
[
µ − x2 − y2

]
,

y′ = x + y
[
µ − x2 − y2

]
.
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Rewrite this system in polar form. Look at the behavior of the r equation
and construct a bifurcation diagram in µr space. What might this diagram
look like in the three dimensional µxy space? (Think about the symmetry
in this problem.) This leads to what is called a Hopf bifurcation.

8. Find the fixed points of the following systems. Linearize the system
about each fixed point and determine the nature and stability in the neigh-
borhood of each fixed point, when possible. Verify your findings by plotting
phase portraits using a computer.

a.

x′ = x(100 − x − 2y),

y′ = y(150 − x − 6y).

b.

x′ = x + x3,

y′ = y + y3.

c.

x′ = x − x2 + xy,

y′ = 2y − xy − 6y2.

d.

x′ = −2xy,

y′ = −x + y + xy − y3.

9. Plot phase portraits for the Lienard system

x′ = y − µ(x3 − x)

y′ = −x.

for a small and a not so small value of µ. Describe what happens as one
varies µ.

10. Consider the period of a nonlinear pendulum. Let the length be L = 1.0
m and g = 9.8 m/s2. Sketch T vs the initial angle θ0 and compare the linear
and nonlinear values for the period. For what angles can you use the linear
approximation confidently?

11. Another population model is one in which species compete for re-
sources, such as a limited food supply. Such a model is given by

x′ = ax − bx2 − cxy,

y′ = dy − ey2 − f xy.

In this case, assume that all constants are positive.
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a Describe the effects/purpose of each terms.

b Find the fixed points of the model.

c Linearize the system about each fixed point and determine the sta-
bility.

d From the above, describe the types of solution behavior you might
expect, in terms of the model.

12. Consider a model of a food chain of three species. Assume that each
population on its own can be modeled by logistic growth. Let the species
be labeled by x(t), y(t), and z(t). Assume that population x is at the bottom
of the chain. That population will be depleted by population y. Population
y is sustained by x’s, but eaten by z’s. A simple, but scaled, model for this
system can be given by the system

x′ = x(1 − x)− xy

y′ = y(1 − y) + xy − yz

z′ = z(1 − z) + yz.

a. Find the equilibrium points of the system.

b. Find the Jacobian matrix for the system and evaluate it at the equi-
librium points.

c. Find the eigenvalues and eigenvectors.

d. Describe the solution behavior near each equilibrium point.

e. Which of these equilibria are important in the study of the pop-
ulation model and describe the interactions of the species in the
neighborhood of these point(s).

13. Derive the first integral of the Lotka-Volterra system, a ln y + d ln x −
cx − by = C.

14. Show that the system x′ = x − y − x3, y′ = x + y − y3, has a unique
limit cycle by picking an appropriate ψ(x, y) in Dulac’s Criteria.

15. The Lorenz model is a simple model for atmospheric convection devel-
oped by Edward Lorenz in 1963. The system is given by the three equations

dx
dt

= σ(y − x)

dy
dt

= x(ρ − z)− y

dz
dt

= xy − βz.

a. Find the equilibrium points of the system.

b. Find the Jacobian matrix for the system and evaluate it at the equi-
librium points.

c. Determine any bifurcation points and describe what happens near
the bifurcation point(s). Consider σ = 10, β = 8/3, and vary ρ.
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d. This system is know to exhibit chaotic behavior. Lorenz found a
so-called strange attractor for parameter values σ = 10, β = 8/3,
and ρ = 28. Using a computer, locate this strange attractor.

16. The Michaelis-Menten kinetics reaction is given by

E + S
k1

// ES
k3oo

k2

// E + P.

The resulting system of equations for the chemical concentrations is

d[S]
dt

= −k1[E][S] + k3[ES],

d[E]
dt

= −k1[E][S] + (k2 + k3)[ES],

d[ES]
dt

= k1[E][S]− (k2 + k3)[ES],

d[P]
dt

= k2[ES]. (3.95)

In chemical kinetics one seeks to determine the rate of product formation
(v = d[P]/dt = k3[ES]). Assuming that [ES] is a constant, find v as a
function of [S] and the total enzyme concentration [ET ] = [E] + [ES]. As a
nonlinear dynamical system, what are the equilibrium points?

17. In Equation (2.58) we saw a linear version of an epidemic model. The
commonly used nonlinear SIR model is given by

dS
dt

= −βSI

dI
dt

= βSI − γI

dR
dt

= γI, (3.96)

where S is the number of susceptible individuals, I is the number of infected
individuals, and R are the number who have been removed from the the
other groups, either by recovering or dying.

a. Let N = S + I + R be the total population. Prove that N = con-
stant. Thus, one need only solve the first two equations and find
R = N − S − I afterwards.

b. Find and classify the equilibria. Describe the equilibria in terms of
the population behavior.

c. Let β = 0.05 and γ = 0.2. Assume that in a population of 100 there
is one infected person. Numerically solve the system of equations
for S(t) and I(t) and describe the solution being careful to deter-
mine the units of population and the constants.

d. The equations can be modified by adding constant birth and death
rates. Assuming these are te same, one would have a new system.

dS
dt

= −βSI + µ(N − S)



nonlinear systems 123

dI
dt

= βSI − γI − µI

dR
dt

= γI − µR. (3.97)

How does this affect any equilibrium solutions?

e. Again, let β = 0.05 and γ = 0.2. Let µ = 0.1 For a population
of 100 with one infected person numerically solve the system of
equations for S(t) and I(t) and describe the solution being careful
to determine the units of population and the constants.

18. An undamped, unforced Duffing equation, ẍ + ω2x + ϵx3 = 0, can be
solved exactly in terms of elliptic functions. Using the results of Exercise
3.18, determine the solution of this equation and determine if there are any
restrictions on the parameters.

19. Determine the circumference of an ellipse in terms of an elliptic integral.

20. Evaluate the following in terms of elliptic integrals and compute the
values to four decimal places.

a.
∫ π/4

0
dθ√

1− 1
2 sin2 θ

.

b.
∫ π/2

0
dθ√

1− 1
4 sin2 θ

.

c.
∫ 2

0
dx√

(9−x2)(4−x2)
.

d.
∫ π/2

0
dθ√
cos θ

.

e.
∫ ∞

1
dx√
x4−1

.
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