
Chapter 4

Boundary Value Problems

“Once you learn the concept of a differential equation, you see differential equations
all over, no matter what you do.” - Gian-Carlo Rota (1932-1999)

4.1 Introduction

Until this point we have solved initial value problems. For an
initial value problem one has to solve a differential equation subject to con-
ditions on the unknown function and its derivatives at one value of the
independent variable. For example, for x = x(t) we could have the initial
value problem

x′′ + x = 2, x(0) = 1, x′(0) = 0. (4.1)

In the next chapters we will study boundary value problems and various
tools for solving such problems. In this chapter we will motivate our interest
in boundary value problems by looking into solving the one-dimensional
heat equation, which is a partial differential equation. for the rest of the
section, we will use this solution to show that in the background of our so-
lution of boundary value problems is a structure based upon linear algebra
and analysis leading to the study of inner product spaces. Though techni-
cally, we should be lead to Hilbert spaces, which are complete inner product
spaces.

For an initial value problem one has to solve a differential equation sub-
ject to conditions on the unknown function or its derivatives at more than
one value of the independent variable. As an example, we have a slight
modification of the above problem: Find the solution x = x(t) for 0 ≤ t ≤ 1
that satisfies the problem

x′′ + x = 2, x(0) = 1, x(1) = 0. (4.2)

Typically, initial value problems involve time dependent functions and
boundary value problems are spatial. So, with an initial value problem one
knows how a system evolves in terms of the differential equation and the
state of the system at some fixed time. Then one seeks to determine the
state of the system at a later time.
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For boundary values problems, one knows how each point responds to
its neighbors, but there are conditions that have to be satisfied at the end-
points. An example would be a horizontal beam supported at the ends, like
a bridge. The shape of the beam under the influence of gravity, or other
forces, would lead to a differential equation and the boundary conditions
at the beam ends would affect the solution of the problem. There are also
a variety of other types of boundary conditions. In the case of a beam, one
end could be fixed and the other end could be free to move. We will explore
the effects of different boundary value conditions in our discussions and
exercises.

Let’s solve the above boundary value problem. As with initial value
problems, we need to find the general solution and then apply any con-
ditions that we may have. This is a nonhomogeneous differential equa-
tion, so we have that the solution is a sum of a solution of the homoge-
neous equation and a particular solution of the nonhomogeneous equation,
x(t) = xh(t) + xp(t). The solution of x′′ + x = 0 is easily found as

xh(t) = c1 cos t + c2 sin t.

The particular solution is easily found using the Method of Undetermined
Coefficients,

xp(t) = 2.

Thus, the general solution is

x(t) = 2 + c1 cos t + c2 sin t.

We now apply the boundary conditions and see if there are values of c1

and c2 that yield a solution to our problem. The first condition, x(0) = 0,
gives

0 = 2 + c1.

Thus, c1 = −2. Using this value for c1, the second condition, x(1) = 1, gives

0 = 2 − 2 cos 1 + c2 sin 1.

This yields

c2 =
2(cos 1 − 1)

sin 1
.

We have found that there is a solution to the boundary value problem
and it is given by

x(t) = 2
(

1 − cos t
(cos 1 − 1)

sin 1
sin t

)
.

Boundary value problems arise in many physical systems, just as many of
the initial values problems we have seen. We will see in the next section that
boundary value problems for ordinary differential equations often appear
in the solution of partial differential equations.
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4.2 Partial Differential Equations

In this section we will introduce some generic partial differential
equations and see how the discussion of such equations leads naturally to
the study of boundary value problems for ordinary differential equations.
However, we will not derive the particular equations, leaving that to courses
in differential equations, mathematical physics, etc.

For ordinary differential equations, the unknown functions are functions
of a single variable, e.g., y = y(x). Partial differential equations are equa-
tions involving an unknown function of several variables, such as u =

u(x, y), u = u(x, y), u = u(x, y, z, t), and its (partial) derivatives. Therefore,
the derivatives are partial derivatives. We will use the standard notations
ux = ∂u

∂x , uxx = ∂2u
∂x2 , etc.

There are a few standard equations that one encounters. These can be
studied in one to three dimensions and are all linear differential equations.
A list is provided in Table 4.1. Here we have introduced the Laplacian oper-
ator, ∇2u = uxx + uyy + uzz. Depending on the types of boundary conditions
imposed and on the geometry of the system (rectangular, cylindrical, spher-
ical, etc.), one encounters many interesting boundary value problems for
ordinary differential equations.

Name 2 Vars 3 D
Heat Equation ut = kuxx ut = k∇2u
Wave Equation utt = c2uxx utt = c2∇2u

Laplace’s Equation uxx + uyy = 0 ∇2u = 0
Poisson’s Equation uxx + uyy = F(x, y) ∇2u = F(x, y, z)

Schrödinger’s Equation iut = uxx + F(x, t)u iut = ∇2u + F(x, y, z, t)u

Table 4.1: List of generic partial differen-
tial equations.

Let’s look at the heat equation in one dimension. This could describe the
heat conduction in a thin insulated rod of length L. It could also describe
the diffusion of pollutant in a long narrow stream, or the flow of traffic
down a road. In problems involving diffusion processes, one instead calls
this equation the diffusion equation.

A typical initial-boundary value problem for the heat equation would be
that initially one has a temperature distribution u(x, 0) = f (x). Placing the
bar in an ice bath and assuming the heat flow is only through the ends of
the bar, one has the boundary conditions u(0, t) = 0 and u(L, t) = 0. Of
course, we are dealing with Celsius temperatures and we assume there is
plenty of ice to keep that temperature fixed at each end for all time. So, the
problem one would need to solve is given as
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1D Heat Equation

PDE ut = kuxx 0 < t, 0 ≤ x ≤ L
IC u(x, 0) = f (x) 0 < x < L
BC u(0, t) = 0 t > 0

u(L, t) = 0 t > 0

(4.3)

Here, k is the heat conduction constant and is determined using
properties of the bar.

Another problem that will come up in later discussions is that of the
vibrating string. A string of length L is stretched out horizontally with
both ends fixed. Think of a violin string or a guitar string. Then the string
is plucked, giving the string an initial profile. Let u(x, t) be the vertical
displacement of the string at position x and time t. The motion of the string
is governed by the one dimensional wave equation. The initial-boundary
value problem for this problem is given as

1D Wave Equation

PDE utt = c2uxx 0 < t, 0 ≤ x ≤ L
IC u(x, 0) = f (x) 0 < x < L
BC u(0, t) = 0 t > 0

u(L, t) = 0 t > 0

(4.4)

In this problem c is the wave speed in the string. It depends on
the mass per unit length of the string and the tension placed on
the string.

4.2.1 Solving the Heat Equation

We would like to see how the solution of such problems involv-
ing partial differential equations will lead naturally to studying boundary
value problems for ordinary differential equations. We will see this as we
attempt the solution of the heat equation problem 4.3. We will employ
a method typically used in studying linear partial differential equations,
called the method of separation of variables.

We assume that u can be written as a product of single variable functions
of each independent variable,

u(x, t) = X(x)T(t).

Substituting this guess into the heat equation, we find that

XT′ = kX′′T.

Dividing both sides by k and u = XT, we then get

1
k

T′

T
=

X′′

X
.
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We have separated the functions of time on one side and space on the other
side. The only way that a function of t equals a function of x is if the
functions are constant functions. Therefore, we set each function equal to a
constant, λ :

1
k

T′

T︸︷︷︸
function of t

=
X′′

X︸︷︷︸
function of x

= λ︸︷︷︸
constant

.

This leads to two equations:

T′ = kλT, (4.5)

X′′ = λX. (4.6)

These are ordinary differential equations. The general solutions to these
equations are readily found as

T(t) = Aekλt, (4.7)

X(x) = c1e
√

λx + c2e−
√

λx. (4.8)

We need to be a little careful at this point. The aim is to force our prod-
uct solutions to satisfy both the boundary conditions and initial conditions.
Also, we should note that λ is arbitrary and may be positive, zero, or nega-
tive. We first look at how the boundary conditions on u lead to conditions
on X.

The first condition is u(0, t) = 0. This implies that

X(0)T(t) = 0

for all t. The only way that this is true is if X(0) = 0. Similarly, u(L, t) = 0
implies that X(L) = 0. So, we have to solve the boundary value problem

X′′ − λX = 0, X(0) = 0 = X(L). (4.9)

We are seeking nonzero solutions, as X ≡ 0 is an obvious and uninteresting
solution. We call such solutions trivial solutions.

There are three cases to consider, depending on the sign of λ.

I. λ > 0

In this case we have the exponential solutions

X(x) = c1e
√

λx + c2e−
√

λx. (4.10)

For X(0) = 0, we have
0 = c1 + c2.

We will take c2 = −c1. Then, X(x) = c1(e
√

λx − e−
√

λx) = 2c1 sinh
√

λx.
Applying the second condition, X(L) = 0 yields

c1 sinh
√

λL = 0.

This will be true only if c1 = 0, since λ > 0. Thus, the only solution in
this case is X(x) = 0. This leads to a trivial solution, u(x, t) = 0.
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II. λ = 0

For this case it is easier to set λ to zero in the differential equation. So,
X′′ = 0. Integrating twice, one finds

X(x) = c1x + c2.

Setting x = 0, we have c2 = 0, leaving X(x) = c1x. Setting x = L, we find
c1L = 0. So, c1 = 0 and we are once again left with a trivial solution.

III. λ < 0

In this case is would be simpler to write λ = −µ2. Then the differential
equation is

X′′ + µ2X = 0.

The general solution is

X(x) = c1 cos µx + c2 sin µx.

At x = 0 we get 0 = c1. This leaves X(x) = c2 sin µx. At x = L, we find

0 = c2 sin µL.

So, either c2 = 0 or sin µL = 0. c2 = 0 leads to a trivial solution again.
But, there are cases when the sine is zero. Namely,

µL == nπ, n = 1, 2, . . . .

Note that n = 0 is not included since this leads to a trivial solution. Also,
negative values of n are redundant, since the sine function is an odd
function.

In summary, we can find solutions to the boundary value problem (4.9)
for particular values of λ. The solutions are

Xn(x) = sin
nπx

L
, n = 1, 2, 3, . . .

for
λn = −µ2

n = −
(nπ

L

)2
, n = 1, 2, 3, . . . .

Product solutions of the heat equation (4.3) satisfying the boundary condi-
tions are therefore

un(x, t) = bnekλnt sin
nπx

L
, n = 1, 2, 3, . . . , (4.11)

where bn is an arbitrary constant. However, these do not necessarily satisfy
the initial condition u(x, 0) = f (x). What we do get is

un(x, 0) = sin
nπx

L
, n = 1, 2, 3, . . . .

So, if our initial condition is in one of these forms, we can pick out the right
n and we are done.

For other initial conditions, we have to do more work. Note, since the
heat equation is linear, we can write a linear combination of our product
solutions and obtain the general solution satisfying the given boundary con-
ditions as
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u(x, t) =
∞

∑
n=1

bnekλnt sin
nπx

L
. (4.12)

The only thing to impose is the initial condition:

f (x) = u(x, 0) =
∞

∑
n=1

bn sin
nπx

L
.

So, if we are given f (x), can we find the constants bn? If we can, then we
will have the solution to the full initial-boundary value problem. This will
be the subject of the next chapter. However, first we will look at the general
form of our boundary value problem and relate what we have done to the
theory of infinite dimensional vector spaces.

4.3 Connections to Linear Algebra

We have already seen in earlier chapters that ideas from linear al-
gebra crop up in our studies of differential equations. Namely, we solved
eigenvalue problems associated with our systems of differential equations
in order to determine the local behavior of dynamical systems near fixed
points. In our study of boundary value problems we will find more con-
nections with the theory of vector spaces. However, we will find that our
problems lie in the realm of infinite dimensional vector spaces. In this sec-
tion we will begin to see these connections.

4.3.1 Eigenfunction Expansions for PDEs

In the last section we sought solutions of the heat equation. Let’s
formally write the heat equation in the form

1
k

ut = L[u], (4.13)

where

L =
∂2

∂x2 .

L is another example of a linear differential operator. [See Section 1.1.2.]
It is a differential operator because it involves derivative operators. We
sometimes define Dx = ∂

∂x , so that L = D2
x. It is linear, because for functions

f (x) and g(x) and constants α, β we have

L[α f + βg] = αL[ f ] + βL[g]

When solving the heat equation, using the method of separation of vari-
ables, we found an infinite number of product solutions un(x, t) = Tn(t)Xn(x).
We did this by solving the boundary value problem

L[X] = λX, X(0) = 0 = X(L). (4.14)
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Here we see that an operator acts on an unknown function and spits out
an unknown constant times that unknown. Where have we done this be-
fore? This is the same form as Av = λv. So, we see that Equation (4.14) is
really an eigenvalue problem for the operator L and given boundary condi-
tions. When we solved the heat equation in the last section, we found the
eigenvalues

λn = −
(nπ

L

)2

and the eigenfunctions
Xn(x) = sin

nπx
L

.

We used these to construct the general solution that is essentially a linear
combination over the eigenfunctions,

u(x, t) =
∞

∑
n=1

Tn(t)Xn(x).

Note that these eigenfunctions live in an infinite dimensional function space.

We would like to generalize this method to problems in which L comes
from an assortment of linear differential operators. So, we consider the more
general partial differential equation

ut = L[u], a ≤ x ≤ b, t > 0,

satisfying the boundary conditions

B[u](a, t) = 0, B[u](b, t) = 0, t > 0,

and initial condition

u(x, 0) = f (x), a ≤ x ≤ b.

The form of the allowed boundary conditions B[u] will be taken up later.
Also, we will later see specific examples and properties of linear differential
operators that will allow for this procedure to work.

We assume product solutions of the form un(x, t) = bn(t)ϕn(x), where
the ϕn’s are the eigenfunctions of the operator L,

Lϕn = λnϕn, n = 1, 2, . . . , (4.15)

satisfying the boundary conditions

B[ϕn](a) = 0, B[ϕn](b) = 0. (4.16)

Inserting the general solution

u(x, t) =
∞

∑
n=1

bn(t)ϕn(x)

into the partial differential equation, we have

ut = L[u],

∂

∂t

∞

∑
n=1

bn(t)ϕn(x) = L

[
∞

∑
n=1

bn(t)ϕn(x)

]
(4.17)
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On the left we differentiate term by term and on the right side we use the
linearity of L:

∞

∑
n=1

dbn(t)
dt

ϕn(x) =
∞

∑
n=1

bn(t)L[ϕn(x)] (4.18)

Now, we make use of the result of applying L to the eigenfunction ϕn:

∞

∑
n=1

dbn(t)
dt

ϕn(x) =
∞

∑
n=1

bn(t)λnϕn(x). (4.19)

Comparing both sides, or using the linear independence of the eigenfunc-
tions, we see that

dbn(t)
dt

= λnbn(t),

whose solution is
bn(t) = bn(0)eλnt.

So, the general solution becomes

u(x, t) =
∞

∑
n=1

bn(0)eλntϕn(x).

This solution satisfies, at least formally, the partial differential equation and
satisfies the boundary conditions.

Infinite series cannot always be differen-
tiated, so one must be careful. When we
ignore such details for the time being,
we say that we formally differentiate the
series and formally apply the differential
operator to the series. Such operations
need to be justified later.

Finally, we need to determine the bn(0)’s, which are so far arbitrary. We
use the initial condition u(x, 0) = f (x) to find that

f (x) =
∞

∑
n=1

bn(0)ϕn(x).

So, given f (x), we are left with the problem of extracting the coefficients
bn(0) in an expansion of f in the eigenfunctions ϕn. We will see that this
is related to Fourier series expansions, which we will take up in the next
chapter.

4.3.2 Eigenfunction Expansions for Nonhomogeneous ODEs

Partial differential equations are not the only applications of
the method of eigenfunction expansions, as seen in the last section. We can
apply these method to nonhomogeneous two point boundary value prob-
lems for ordinary differential equations assuming that we can solve the as-
sociated eigenvalue problem.

Let’s begin with the nonhomogeneous boundary value problem:

L[u] = f (x), a ≤ x ≤ b

B[u](a) = 0, B[u](b) = 0. (4.20)

We first solve the eigenvalue problem,

L[ϕ] = λϕ, a ≤ x ≤ b

B[ϕ](a) = 0, B[ϕ](b) = 0, (4.21)
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and obtain a family of eigenfunctions, {ϕn(x)}∞
n=1. Then we assume that

u(x) can be represented as a linear combination of these eigenfunctions:

u(x) =
∞

∑
n=1

bnϕn(x).

Inserting this into the differential equation, we have

f (x) = L[u]

= L

[
∞

∑
n=1

bnϕn(x)

]

=
∞

∑
n=1

bnL [ϕn(x)]

=
∞

∑
n=1

λnbnϕn(x)

≡
∞

∑
n=1

cnϕn(x). (4.22)

Therefore, we have to find the expansion coefficients cn = λnbn of the
given f (x) in a series expansion over the eigenfunctions. This is similar to
what we had found for the heat equation problem and its generalization in
the last section.

There are a lot of questions and details that have been glossed over in
our formal derivations. Can we always find such eigenfunctions for a given
operator? Do the infinite series expansions converge? Can we differentiate
our expansions terms by term? Can one find expansions that converge to
given functions like f (x) above? We will begin to explore these questions in
the case that the eigenfunctions are simple trigonometric functions like the
ϕn(x) = sin nπx

L in the solution of the heat equation.

4.3.3 Linear Vector Spaces

Much of the discussion and terminology that we will use comes
from the theory of vector spaces. Until now you may only have dealt with
finite dimensional vector spaces in your classes. Even then, you might only
be comfortable with two and three dimensions. We will review a little of
what we know about finite dimensional spaces so that we can deal with the
more general function spaces, which is where our eigenfunctions live.

The notion of a vector space is a generalization of our three dimensional
vector spaces. In three dimensions, we have things called vectors, which are
arrows of a specific length and pointing in a given direction. To each vector,
we can associate a point in a three dimensional Cartesian system. We just
attach the tail of the vector v to the origin and the head lands at (x, y, z). We
then use unit vectors i, j and k along the coordinate axes to write

v = xi + yj + zk.
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Having defined vectors, we then learned how to add vectors and multi-
ply vectors by numbers, or scalars. Under these operations, we expected to
get back new vectors. Then we learned that there were two types of multi-
plication of vectors. We could multiply then to get a scalar or a vector. This
lead to the dot and cross products, respectively. The dot product was useful
for determining the length of a vector, the angle between two vectors, or if
the vectors were orthogonal.

These notions were later generalized to spaces of more than three dimen-
sions in your linear algebra class. The properties outlined roughly above
need to be preserved. So, we have to start with a space of vectors and the
operations between them. We also need a set of scalars, which generally
come from some field. However, in our applications the field will either be
the set of real numbers or the set of complex numbers.

Definition 4.1. A vector space V over a field F is a set that is closed under
addition and scalar multiplication and satisfies the following conditions: For
any u, v, w ∈ V and a, b ∈ F

1. u + v = v + u.

2. (u + v) + w = u + (v + w).

3. There exists a 0 such that 0 + v= v.

4. There exists a −v such that v + (−v) = 0.

5. a(bv) = (ab)v.

6. (a + b)v = av + bv.

7. a(u + v) = au + bv.

8. 1(v) = v.

Now, for an n-dimensional vector space, we have the idea that any vector
in the space can be represented as the sum over n linearly independent
vectors. Recall that a linearly independent set of vectors {vj}n

j=1 satisfies

n

∑
j=1

cjvj = 0 ⇔ cj = 0.

This leads to the idea of a basis set. The standard basis in an n-dimensional
vector space is a generalization of the standard basis in three dimensions (i,
j and k). We define

ek = (0, . . . , 0, 1︸︷︷︸
kth space

, 0, . . . , 0), k = 1, . . . , n. (4.23)

Then, we can expand any v ∈ V as

v =
n

∑
k=1

vkek, (4.24)
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where the vk’s are called the components of the vector in this basis and one
can write v as an n-tuple (v1, v2, . . . , vn).

The only other thing we will need at this point is to generalize the dot
product, or scalar product. Recall that there are two forms for the dot prod-
uct in three dimensions. First, one has that

u · v = uv cos θ, (4.25)

where u and v denote the length of the vectors. The other form, is the
component form:

u · v = u1v1 + u2v2 + u3v3 =
3

∑
k=1

ukvk. (4.26)

Of course, this form is easier to generalize. So, we define the scalar product
between to n-dimensional vectors as

< u, v >=
n

∑
k=1

ukvk. (4.27)

Actually, there are a number of notations that are used in other texts. One
can write the scalar product as (u, v) or even use the Dirac notation < u|v >

for applications in quantum mechanics.
While it does not always make sense to talk about angles between general

vectors in higher dimensional vector spaces, there is one concept that is
useful. It is that of orthogonality, which in three dimensions another way of
say vectors are perpendicular to each other. So, we also say that vectors u
and v are orthogonal if and only if < u, v >= 0. If {ak}n

k=1, is a set of basis
vectors such that

< aj, ak >= 0, k ̸= j,

then it is called an orthogonal basis. If in addition each basis vector is a unit
vector, then one has an orthonormal basis.

Let {ak}n
k=1, be a set of basis vectors for vector space V. We know that

any vector v can be represented in terms of this basis, v = ∑n
k=1 vkak. If we

know the basis and vector, can we find the components? The answer is, yes.
We can use the scalar product of v with each basis element aj. So, we have
for j = 1, . . . , n

< aj, v > = < aj,
n

∑
k=1

vkak >

=
n

∑
k=1

vk < aj, ak > . (4.28)

Since we know the basis elements, we can easily compute the numbers

Ajk ≡< aj, ak >

and
bj ≡< aj, v > .
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Therefore, the system (4.28) for the vk’s is a linear algebraic system, which
takes the form Av = b. However, if the basis is orthogonal, then the matrix
A is diagonal and the system is easily solvable. We have that

< aj, v >= vj < aj, aj >, (4.29)

or
vj =

< aj, v >

< aj, aj >
. (4.30)

In fact, if the basis is orthonormal, A is the identity matrix and the solution
is simpler:

vj =< aj, v > . (4.31)

We spent some time looking at this simple case of extracting the com-
ponents of a vector in a finite dimensional space. The keys to doing this
simply were to have a scalar product and an orthogonal basis set. These
are the key ingredients that we will need in the infinite dimensional case.
Recall that when we solved the heat equation, we had a function (vector)
that we wanted to expand in a set of eigenfunctions (basis) and we needed
to find the expansion coefficients (components). As you can see, we need to
extend the concepts for finite dimensional spaces to their analogs in infinite
dimensional spaces. Linear algebra will provide some of the backdrop for
what is to follow: The study of many boundary value problems amounts to
the solution of eigenvalue problems over infinite dimensional vector spaces
(complete inner product spaces, the space of square integrable functions, or
Hilbert spaces).

We will consider the space of functions of a certain type. They could
be the space of continuous functions on [0,1], or the space of differentiably
continuous functions, or the set of functions integrable from a to b. Later,
we will specify the types of functions needed. We will further need to be
able to add functions and multiply them by scalars. So, we can easily obtain
a vector space of functions.

We will also need a scalar product defined on this space of functions.
There are several types of scalar products, or inner products, that we can
define. For a real vector space, we define

Definition 4.2. An inner product <,> on a real vector space V is a mapping
from V × V into R such that for u, v, w ∈ V and α ∈ R one has

1. < u + v, w >=< u, w > + < v, w > .

2. < αv, w >= α < v, w > .

3. < v, w >=< w, v > .

4. < v, v >≥ 0 and < v, v >= 0 iff v = 0.

A real vector space equipped with the above inner product leads to a real
inner product space. A more general definition with the third item replaced
with < v, w >= < w, v > is needed for complex inner product spaces.
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For the time being, we are dealing just with real valued functions. We
need an inner product appropriate for such spaces. One such definition is
the following. Let f (x) and g(x) be functions defined on [a, b]. Then, we
define the inner product, if the integral exists, as

< f , g >=
∫ b

a
f (x)g(x) dx. (4.32)

So far, we have functions spaces equipped with an inner product. Can
we find a basis for the space? For an n-dimensional space we need n basis
vectors. For an infinite dimensional space, how many will we need? How
do we know when we have enough? We will think about those things later.

Let’s assume that we have a basis of functions {ϕn(x)}∞
n=1. Given a func-

tion f (x), how can we go about finding the components of f in this basis?
In other words, let

f (x) =
∞

∑
n=1

cnϕn(x).

How do we find the cn’s? Does this remind you of the problem we had
earlier?

Formally, we take the inner product of f with each ϕj, to find

< ϕj, f > = < ϕj,
∞

∑
n=1

cnϕn >

=
∞

∑
n=1

cn < ϕj, ϕn > . (4.33)

If our basis is an orthogonal basis, then we have

< ϕj, ϕn >= Njδjn, (4.34)

where δij is the Kronecker delta defined as

δij =

{
0, i ̸= j
1, i = j.

(4.35)

Thus, we have

< ϕj, f > =
∞

∑
n=1

cn < ϕj, ϕn >

=
∞

∑
n=1

cnNjδjn

= c1Njδj1 + c2Njδj2 + . . . + cjNjδjj + . . .

= cjNj. (4.36)

So, the expansion coefficient is

cj =
< ϕj, f >

Nj
=

< ϕj, f >

< ϕj, ϕj >
.

We summarize this important result:
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Generalized Basis Expansion

Let f (x) be represented by an expansion over a basis of orthogo-
nal functions, {ϕn(x)}∞

n=1,

f (x) =
∞

∑
n=1

cnϕn(x).

Then, the expansion coefficients are formally determined as

cn =
< ϕn, f >

< ϕn, ϕn >
.

In our preparation for later sections, let’s determine if the set of functions
ϕn(x) = sin nx for n = 1, 2, . . . is orthogonal on the interval [−π, π]. We
need to show that < ϕn, ϕm >= 0 for n ̸= m. Thus, we have for n ̸= m

< ϕn, ϕm > =
∫ π

−π
sin nx sin mx dx

=
1
2

∫ π

−π
[cos(n − m)x − cos(n + m)x] dx

=
1
2

[
sin(n − m)x

n − m
− sin(n + m)x

n + m

]π

−π

= 0. (4.37)

Here we have made use of a trigonometric identity for the product of two
sines. We recall how this identity is derived. Recall the addition formulae
for cosines:

cos(A + B) = cos A cos B − sin A sin B,

cos(A − B) = cos A cos B + sin A sin B.

Adding, or subtracting, these equations gives

2 cos A cos B = cos(A + B) + cos(A − B),

2 sin A sin B = cos(A − B)− cos(A + B).

So, we have determined that the set ϕn(x) = sin nx for n = 1, 2, . . . is
an orthogonal set of functions on the interval [= π, π]. Just as with vectors
in three dimensions, we can normalize our basis functions to arrive at an
orthonormal basis, < ϕn, ϕm >= δnm, m, n = 1, 2, . . . . This is simply done by
dividing by the length of the vector. Recall that the length of a vector was
obtained as v =

√
v · v In the same way, we define the norm of our functions

by
∥ f ∥ =

√
< f , f >.

Note, there are many types of norms, but this will be sufficient for us.
For the above basis of sine functions, we want to first compute the norm

of each function. Then we would like to find a new basis from this one such
that each basis eigenfunction has unit length and is therefore an orthonor-
mal basis. We first compute
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∥ϕn∥2 =
∫ π

−π
sin2 nx dx

=
1
2

∫ π

−π
[1 − cos 2nx] dx

=
1
2

[
x − sin 2nx

2n

]π

−π

= π. (4.38)

We have found for our example that

< ϕn, ϕm >= πδnm (4.39)

and that ∥ϕn∥ =
√

π. Defining ψn(x) = 1√
π

ϕn(x), we have normalized the
ϕn’s and have obtained an orthonormal basis of functions on [−π, π].

Expansions of functions in trigonometric bases occur often and originally
resulted from the study of partial differential equations. They have been
named Fourier series and will be the topic of the next chapter.

Problems

1. Solve the following problems when possible. Note that there might not
always exist a unique solution.

a. x′′ + x = 2, x(0) = 0, x′(1) = 0.

b. y′′ + y = 1, y(0) = 0, y(π) = 0.

c. y′′ + y = sin 2x, y(0) = 0, y(π) = 0.

d. (x2y′)′ + y = 0, y(1) = 0, y′(e) = 0.

e. y′′ − 7y′ + 12y = 4e2x, y(0) = 3, y(1) = 5e2.

f. x2y′′ + xy′ − 4y = 0, |y(0)| < ∞, y′(1) = 6.

2. Let y = y(x) satisfy the simple differential equation y′′ + y = 0. Deter-
mine the solutions which satisfy the following the boundary conditions:

a. y(0) = y(π).

b. y(0) = y(π), y′(0) = y′(π).

c. y(0) = y(2π), y′(0) = y′(2π).

3. Consider the boundary value problem

d2y
dx2 + a2y = sin πx, 0 < x < 1,

for y(0) = 1, y(1) = −2, for all a. What are the solutions when a = ±π?

4. Consider the boundary value problem for the deflection of a horizontal
beam fixed at one end,

d4y
dx4 = C, y(0) = 0, y′(0) = 0, y′′(L) = 0, y′′′(L) = 0.

Solve this problem assuming that C is a constant.
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5. The theory of horizontally embedded beams leads a the differential equa-
tion for the displacement y(x) from horizontal. The fourth order equatrion
is given as

EI
d4y
dx4 = w(x),

where E is Young’s modulus, I is the moment of intertia of the beam cross-
section, and w(x) represents the load. If the load is just the weight of a
uniform beam, then w(x) is constant.

There are different boundary conditions that can be applied to the ends
as seen in Figure 4.1.

• At an embedded end, y and y′ vanish.

• At a simply supported end, y and y′′ vanish.

• At a free end, y′′ and y′′′ vanish.

.

(a)

(b)

(c)

Figure 4.1: Deflections of a horizontal
beam. (a) Both ends are embedded. (b)
Both ends are simply supported. (c) One
end is embedded and gthe other is a free
end.

Find the indicated solutions in the case that EI = 40, w(x) = 120, and the
length of the beam is 8.

a. The differential equation is easily integrated to obtain a general
solution. Find this solution.

b. Consider the case in Figure 4.1(a) in which both ends are embed-
ded. Plot the solution. Does this agree with the figure?

c. Consider the case in Figure 4.1(b) in which both ends are simply
supported.

d. Consider the case in Figure 4.1(c) in which one end is embedded
and the other is free. Plot the solution. Does this agree with the
figure?

6. Find product solutions, u(x, t) = b(t)ϕ(x), to the heat equation satisfying
the boundary conditions ux(0, t) = 0 and u(L, t) = 0. Use these solutions
to find a general solution of the heat equation satisfying these boundary
conditions.
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7. Consider the following boundary value problems. Determine the eigen-
values, λ, and eigenfunctions, y(x) for each problem.

a. y′′ + λy = 0, y(0) = 0, y′(1) = 0.

b. y′′ − λy = 0, y(−π) = 0, y′(π) = 0.

c. x2y′′ + xy′ + λy = 0, y(1) = 0, y(2) = 0.

d. (x2y′)′ + λy = 0, y(1) = 0, y′(e) = 0.11 In problem d you will not get exact
eigenvalues. Show that you obtain a
transcendental equation for the eigenval-
ues in the form tan z = 2z. Find the first
three eigenvalues numerically.

8. For the following sets of functions: i) show that each is orthogonal on
the given interval, and ii) determine the corresponding orthonormal set.

a. {sin 2nx}, n = 1, 2, 3, . . . , 0 ≤ x ≤ π.

b. {cos nπx}, n = 0, 1, 2, . . . , 0 ≤ x ≤ 2.

c. {sin nπx
L }, n = 1, 2, 3, . . . , x ∈ [−L, L].
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