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Green’s Function Example

We consider solving a problem of the form

y′′ + 2y′ + 2y = f(x), y(0) = 0, y
(π
2

)
= 0. (1)

This problem takes the form Ly = f, where L = D2 + 2D + 2 is not a self-adjoint operator. The adjoint
operator is given by L† = D2 − 2D + 2. We can also put this problem in Sturm-Liouville form,

Ly(x) = d

dx

(
e2x

dy(x)

dx

)
+ 2e2xy(x) = e2xf(x). (2)

We seek the Green’s functions associated with each operator satisfying homogeneous boundary conditions
and the equations

LG(x, ξ) = δ(x− ξ)

L†GA(x, ξ) = δ(x− ξ)

LG(x, ξ) = δ(x− ξ). (3)

We then use G(x, ξ) and G(x, ξ) to construct solutions to the boundary value problem.

We first seek the Green’s function, G(x, ξ), satisfying

∂2G(x, ξ)

∂x2
+ 2

∂G(x, ξ)

∂x
+ 2G(x, ξ) = δ(x− ξ), (4)

and the boundary conditions G(0, ξ) = 0, G
(
π
2 , ξ

)
= 0. We will see that this Green’s function is not

symmetric.

We will then find the adjoint Green’s function, GA(x, ξ), satisfying

∂2GA(x, ξ)

∂x2
− 2

∂GA(x, ξ)

∂x
+ 2GA(x, ξ) = δ(x− ξ), (5)

and the boundary conditions GA(0, ξ) = 0, GA
(
π
2 , ξ

)
= 0. We will show that G(ξ, x) = GA(x, ξ) and use

both functions to find the solution to the boundary value problem. We will then show that this solution is
the same as using the Sturm-Liouville operator.

Example 1. Find the Green’s function satisfying Equation (4).

Defining g(x) = G(x, ξ), then for x ̸= ξ,

g′′ + 2g′ + 2g = 0, g(0) = 0, g
(π
2

)
= 0.

The characteristic equation is r2 + 2r + 2 = 0. So, r = −1± i. This gives the general solution as

g(x) = e−x(a cosx+ b sinx).



For 0 ≤ x ≤ ξ, we find the solution g1(x) satisfying the boundary condition g1(0) = 0.

g1(0) = e0(a cos 0 + b sin 0) = a = 0.

So, g1(x) = be−x sinx.

Similarly, we find the solution g2(x), ξ ≤ x ≤ π
2 , satisfying the boundary condition g2

(
π
2

)
= 0. In this

case we find g2(x) = ae−x cosx.

Now we construct the Green’s function. So far, we have the piecewise defined function

G(x, ξ) =

{
be−x sinx, 0 ≤ x ≤ ξ,
ae−x cosx, ξ ≤ x ≤ π

2 .
(6)

The first condition is that G(x, ξ) be continuous at x = ξ. This gives

be−ξ sin ξ = ae−ξ cos ξ.

This can be satisfied by defining
a = c sin ξ, b = c cos ξ.

So, we have

G(x, ξ) =

{
ce−x sinx cos ξ, 0 ≤ x ≤ ξ,
ce−x sin ξ cosx, ξ ≤ x ≤ π

2 .
(7)

The next condition is that ∂G(x,ξ)
∂x is discontinuous at x = ξ. We show this by integrating Equation (4)

over the interval x ∈ [ξ − ϵ, ξ + ϵ]. Using the definition of the Dirac delta function and continuity of G(x, ξ),
we let ϵ approach zero to obtain∫ ξ+ϵ

ξ−ϵ

[
∂2G(x, ξ)

∂x2
+ 2

∂G(x, ξ)

∂x
+ 2G(x, ξ)

]
dx =

∫ ξ+ϵ

ξ−ϵ

δ(x− ξ) dx

lim
ϵ→0

[
∂G(x, ξ)

∂x
+ 2G(x, ξ)

]ξ+ϵ

ξ−ϵ

=

∫ ∞

−∞
δ(x− ξ) dx

[
∂G(x, ξ)

∂x

]ξ+
ξ−

= 1 (8)

This gives a jump condition for the discontinuity of the derivative at x = ξ where ξ+ is the value above
x = ξ and ξ− is the value below x = ξ.

We can apply this to G(x, ξ). Namely, we have

1 =

[
∂G(x, ξ)

∂x

]ξ+
ξ−

= ce−ξ
[
− sin ξ cos ξ − sin2 ξ − (− sin ξ cos ξ + cos2 ξ)

]
= −ce−ξ.

So, c = −eξ and the Green’s function is

G(x, ξ) =

{
−eξ−x sinx cos ξ, 0 ≤ x ≤ ξ,
−eξ−x sin ξ cosx, ξ ≤ x ≤ π

2 .
(9)

We see that G(x, ξ) is not symmetric, G(x, ξ) ̸= G(ξ, x). Thus, it seems that G(x, ξ) does not satisfy a
reciprocity condition.
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Example 2. Find the adjoint Green’s function satisfying Equation (5).

The derivation parallels that for G(x, ξ). However, in this case we start with the general solution gA(x) =
GA(x, ξ), for

gA
′′ − 2gA

′
+ 2gA = 0, x ̸= ξ, gA(0) = 0, gA

(π
2

)
= 0

as
gA(x) = ex(a cosx+ b sinx).

Following the same steps as before, we find the adjoint Green’s function,

GA(x, ξ) =

{
−ex−ξ sinx cos ξ, 0 ≤ x ≤ ξ,
−ex−ξ sin ξ cosx, ξ ≤ x ≤ π

2 .
(10)

While GA(x, ξ) ̸= GA(ξ, x), we do have that G(x, ξ) = GA(ξ, x) gives the form of a reciprocity condition.

Example 3. Derive a general relation between G(x, ξ) and GA(x, ξ).

From the last example we have found G(x, ξ) = GA(ξ, x) for a specific problem. In general these Green’s
functions satisfy the equations for x ∈ [a, b]:

LG(x, ξ) = δ(x− ξ)

LAGA(x, ξ′) = δ(x− ξ′). (11)

Multiply the first equation by GA(x, ξ′) and the second equation by G(x, ξ). Subtract and integrate∫ b

a

[
GA(x, ξ′)LG(x, ξ)−G(x, ξ)LAGA(x, ξ′)

]
dx =

∫ b

a

[
GA(x, ξ′)δ(x− ξ)−G(x, ξ)δ(x− ξ′)

]
dx.

Assuming appropriate boundary conditions, we have∫ b

a

GA(x, ξ′)LG(x, ξ) dx =

∫ b

a

G(x, ξ)LAGA(x, ξ′) dx.

So, after applying the Dirac delta function integrations, we have

GA(ξ, ξ′) = G(ξ′, ξ).

Now we can return to the original problem but adding nonhomogeneous boundary conditions.

Example 4. Use the adjoint Green’s function to solve

y′′ + 2y′ + 2y = f(x), y(0) = A, y
(π
2

)
= B. (12)

Defining L = D2 + 2D + 2, we have

Ly(x) = f(x)

LAGA(x, ξ) = δ(x− ξ). (13)

As with the previous example, we multiply the first equation by GA(x, ξ) and the second equation by y(x).
Subtracting and integrating we have∫ π/2

0

[
GA(x, ξ) (y′′(x) + 2y′(x) + 2y(x))− y

(
∂2GA(x, ξ)

∂x2
− 2

∂GA(x, ξ)

∂x
+ 2GA(x, ξ)

)]
dx

=

∫ π/2

0

[
GA(x, ξ)f(x)− y(x)δ(x− ξ)

]
dx (14)
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Cleaning this up, we find that∫ π/2

0

∂

∂x

[
GA(x, ξ)y′(x)− ∂GA(x, ξ)

∂x
y(x) + 2y(x)GA(x, ξ)

]
dx =

∫ π/2

0

GA(x, ξ)f(x) dx− y(ξ),

or, after applying boundary conditions,

y(ξ) =

∫ π/2

0

GA(x, ξ)f(x) dx−
[
GA(x, ξ)y′(x)− ∂GA(x, ξ)

∂x
y(x) + 2y(x)GA(x, ξ)

]π/2
0

=

∫ π/2

0

GA(x, ξ)f(x) dx+
∂GA(π2 , ξ)

∂x
B − ∂GA(0, ξ)

∂x
A. (15)

Since GA(x, ξ) = G(ξ, x), we can exchange variables to obtain the solution in terms of the Green’s function,
G(x, ξ):

y(x) =

∫ π/2

0

GA(ξ, x)f(ξ) dξ +
∂GA(π2 , x)

∂ξ
B − ∂GA(0, x)

∂ξ
A

=

∫ π/2

0

G(x, ξ)f(ξ) dξ +
∂G(x, π

2 )

∂ξ
B − ∂G(x, 0)

∂ξ
A. (16)

We now apply this general solution to a specific problem.

Example 5. Use Equation (16) with the Green’s function in Equation (9) to solve

y′′ + 2y′ + 2y = 5 sinx, y(0) = 2e, y
(π
2

)
= 0. (17)

y(x) =

∫ π/2

0

G(x, ξ)f(ξ) dξ +
∂G(x, π

2 )

∂ξ
B − ∂G(x, 0)

∂ξ
A

=

∫ x

0

G(x, ξ)f(ξ) dξ +

∫ π/2

x

G(x, ξ)f(ξ) dξ − 2e
∂G(x, 0)

∂ξ

=

∫ x

0

[
−eξ−x sin ξ cosx

]
5 sin(ξ) dξ +

∫ π/2

x

[
−eξ−x sinx cos ξ

]
5 sin(ξ) dξ

−2e
∂

∂ξ

[
−eξ−x sin ξ cosx

]
ξ=0

= −5e−x cosx

∫ x

0

eξ sin2 ξ dξ − 5e−x sinx

∫ π/2

x

eξ sin ξ cos ξ dξ + 2e1−x cosx

= −5e−x

[(
−2

5
+

1

5
ex sin2 x− 2

5
ex sinx cosx+

2

5
ex
)
cosx

+

(
− 1

10
ex sin 2x+ (

1

5
ex cos 2x+

1

5
e

π
2

)
sinx

]
+ 2e1−x cosx

= 2e−x cosx− 2 cosx+ sinx− e
π
2 −x sinx+ 2e1−x cosx

= 2
[
e−x (1 + e)− 1

]
cosx+

(
1− e

π
2 −x

)
sinx. (18)
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We can check this solution by using the Method of Undetermined Coefficients to obtain the solution.
We know the solution to the homogeneous equation is

yh(x) = e−x(c1 sinx+ c2 cosx).

We seek a particular solution,
yp(x) = c3 sinx+ c4 cosx.

Inserting into the differential equation, we have

[c3 − 2c4] sinx+ [c4 + 2c3] cosx = 5 sinx.

This is true when c3 = 1 and c4 = −2. So, the general solution to the nonhomogeneous equation is

y(x) = e−x(c1 sinx+ c2 cosx) + sinx− 2 cosx.

For the solution of the boundary value problem, we need to satisfy the boundary conditions.

y(0) = c2 − 2 = 2e,

y
(π
2

)
= e−

π
2 c1 + 1 = 0. (19)

So, c2 = 2(1 + e) and c1 = −e
π
2 and the solution is

y(x) = e−x(−e
π
2 sinx+ 2(1 + e) cosx) + sinx− 2 cosx

= 2
[
e−x (1 + e)− 1

]
cosx+

(
1− e

π
2 −x

)
sinx. (20)

So, the solutions agree.

We have seen how we can solve for and use the Green’s function and adjoint Green’s function in an
example inolving a non-Hermitian operator. However, we also know that we can cast the problem in Sturm-
Liouville form. So, how do these methods differ if we used the Sturm-Liouville operator and its Green’s
function?

Example 6. Consider the boundary value problem

y′′ + 2y′ + 2y = f(x), y(0) = A, y
(π
2

)
= B. (21)

Put this in Sturm-Liouville form, find its Green’s function, and write the solution in terms of the Green’s
function.

The Sturm-Liouville form of the differential equation is

d

dx

(
e2x

dy(x)

dx

)
+ 2e2xy(x) = e2xf(x). (22)

The associated Green’s function would then satisfy

∂

∂x

(
e2x

∂G(x, ξ)
∂x

)
+ 2e2xG(x, ξ) = δ(x− ξ). (23)
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Following Example 1, we find the Green’s function satisfying the homogeneous boundary conditions,
G(0, ξ) = 0, G

(
π
2 , ξ

)
= 0, takes the form

G(x, ξ) =
{

ce−x sinx cos ξ, 0 ≤ x ≤ ξ,
ce−x sin ξ cosx, ξ ≤ x ≤ π

2 .
(24)

So far, this function is continuous at x = ξ.

We need to derive the jump condition for the discontinuity of the derivative of the Green’s function. As
before, we integrate the Green’s function equation over the interval x ∈ [ξ − ϵ, ξ + ϵ] to obtain∫ ξ+ϵ

ξ−ϵ

[
∂

∂x

(
e2x

∂G(x, ξ)
∂x

)
+ 2e2xG(x, ξ)

]
dx =

∫ ξ+ϵ

ξ−ϵ

δ(x− ξ) dx

lim
ϵ→0

[
e2x

∂G(x, ξ)
∂x

]ξ+ϵ

ξ−ϵ

=

∫ ∞

−∞
δ(x− ξ) dx

[
e2x

∂G(x, ξ)
∂x

]ξ+
ξ−

= 1 (25)

We can apply this to G(x, ξ). Namely, we have

1 =

[
e2x

∂G(x, ξ)
∂x

]ξ+
ξ−

= ce2ξe−ξ
[
− sin ξ cos ξ − sin2 ξ − (− sin ξ cos ξ + cos2 ξ)

]
= −ceξ.

So, c = −e−ξ and the Green’s function is

G(x, ξ) =
{

−e−x−ξ sinx cos ξ, 0 ≤ x ≤ ξ,
−e−x−ξ sin ξ cosx, ξ ≤ x ≤ π

2 .
(26)

We see that G(x, ξ) is symmetric, G(x, ξ) = G(ξ, x).
We can now find the solution to Equation (21) using this Green’s function. Defining

L =
d

dx

(
e2x

d

dx

)
+ 2e2x,

y(x) and G satisfy the differential equations

Ly(x) = e2xf(x)

LG(x, ξ) = δ(x− ξ). (27)

As with the previous example, we multiply the first equation by G(x, ξ) and the second equation by y(x).
Subtracting and integrating we have∫ π

2

0

[G(x, ξ)Ly(x)− y(x)LG(x, ξ)] dx =

∫ π
2

0

[
e2xf(x)G(x, ξ)− y(x)δ(x− ξ)

]
dx[

e2x
(
G(x, ξ)dy(x)

dx
− y(x)

∂G(x, ξ)
∂x

)]π
2

0

=

∫ π
2

0

e2xf(x)G(x, ξ) dx− y(ξ)

y(ξ) =

∫ π
2

0

e2xf(x)G(x, ξ) dx+ eπB
∂G(π2 , ξ)

∂x
−A

∂G(0, ξ)
∂x

(28)
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Computing the derivative of the Green’s function,

∂G(x, ξ)
∂x

=

{
e−x−ξ(sinx cos ξ − cosx cos ξ), 0 ≤ x ≤ ξ,
e−x−ξ(sin ξ cosx+ sin ξ sinx), ξ ≤ x ≤ π

2 .
(29)

and evaluating it at the boundary points, we have

∂G(0, ξ)
∂x

= −e−ξ cos ξ,
∂G(π2 , ξ)

∂x
= e−

π
2 −ξ sin ξ.

The solution can be written as

y(ξ) =

∫ π
2

0

e2xf(x)G(x, ξ) dx+Be
π
2 −ξ sin ξ +Ae−ξ cos ξ

or

y(x) =

∫ π
2

0

e2ξf(ξ)G(x, ξ) dx+Be
π
2 −x sinx+Ae−x cosx.

Let’s compare this with the solution in Equation (16). We need

∂G(x, ξ)

∂ξ
=

{
−eξ−x(sinx cos ξ − sinx sin ξ), 0 ≤ x ≤ ξ,
−eξ−x(sin ξ cosx+ cos ξ cosx), ξ ≤ x ≤ π

2 .
(30)

Then,
∂G(x, 0)

∂ξ
= −e−x cosx,

∂G(x, π
2 )

∂x
= e

π
2 −x sinx.

Inserting these values and noting that G(x, ξ) = e2ξG(x, ξ)

y(x) =

∫ π/2

0

G(x, ξ)f(ξ) dξ +
∂G(x, π

2 )

∂ξ
B − ∂G(x, 0)

∂ξ
A

=

∫ π/2

0

e2ξG(x, ξ)f(ξ) dξ +Be
π
2 −x sinx+Ae−x cosx. (31)

Thus, the solutions using the Sturm-Liouville form of the problem and the original form are the same.
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