Ordinary Differential Equations Spring 2025
Dr. R. L. Herman Revised: April 21, 2025

Green’s Function Example

We consider solving a problem of the form

™

v’ +2y +2y = f(x), y(0) =07y<§) =0. (1)

This problem takes the form Ly = f, where L = D? 4+ 2D + 2 is not a self-adjoint operator. The adjoint
operator is given by LT = D? — 2D + 2. We can also put this problem in Sturm-Liouville form,

Ly(a) = & (d@;@) 122y (z) = & f(x). @)

We seek the Green’s functions associated with each operator satisfying homogeneous boundary conditions
and the equations

LG(;&f) = 6(;6_5)
LIGA2,6) = 6(z—¢)
LG(x,6) = bz —&). (3)

We then use G(z, &) and G(z,£) to construct solutions to the boundary value problem.

We first seek the Green’s function, G(z, ), satisfying

0°G(z,¢)

0x? +2

+2G(x,8) = 6(x =), (4)

0G(z,§)
ox

and the boundary conditions G(0,§) = 0, G (%,¢) = 0. We will see that this Green’s function is not
symmetric.

We will then find the adjoint Green’s function, G4 (x, £), satisfying
PO, 00 (w,8)

Ox? ox
and the boundary conditions G4(0,¢) = 0, G4 (g,f) = 0. We will show that G(¢,z) = GA4(z,¢) and use

both functions to find the solution to the boundary value problem. We will then show that this solution is
the same as using the Sturm-Liouville operator.

+ 2G4 (x,8) = 6(x — £), (5)

Example 1. Find the Green’s function satisfying Equation (4).
Defining g(z) = G(x, &), then for x # &,

9" +2¢9'+29=0, g(0)=0,9 (g) =0.

The characteristic equation is 2 + 2r +2 = 0. So, r = —1 £ 4. This gives the general solution as

g(z) = e (acosx + bsinx).



For 0 < z < &, we find the solution g, (z) satisfying the boundary condition g;(0) = 0.
91(0) = €®(acos0 + bsin0) = a = 0.

So, g1(z) = be T sinx.

Similarly, we find the solution go(x), { < x < 7, satisfying the boundary condition g, (%) = 0. In this
case we find go(z) = ae™* cos z.

Now we construct the Green’s function. So far, we have the piecewise defined function

be™®sinx, 0<z<E, (6)

G, §) = { ae”®cosx, §<x< 7.
The first condition is that G(x, &) be continuous at « = £. This gives
be ¢ siné = ae ¢ cosé.
This can be satisfied by defining
a=csin, b=ccosé.

So, we have

_J ce™®sinzcos, 0<zx <¢,
Gl@,€) = { ce ¥sinfcosx, << T (7)
The next condition is that aG(:c &) is discontinuous at z = &. We show this by integrating Equation (4)
over the interval z € [ —¢€,{ + €]. Usmg the definition of the Dirac delta function and continuity of G(z, §),

we let € approach zero to obtain

/£+e { Gz g) 8G(x,€) +2G(x,§)] b /:265(1; — &) dx

e Ox? Ox
. [0G(z,€) e >
lim {MHG(@«,@LE - K =g ds
aa(x,@r* X
e ®)
[ 2 P

This gives a jump condition for the discontinuity of the derivative at x = £ where £ is the value above
x =& and £ is the value below = = £.

We can apply this to G(z, ). Namely, we have

€+
1 = [aGéZ’O] =ce* [— sin ¢ cos & — sin? & — (—sin € cos € + cos? §)]
e
= —ce &,
So, ¢ = —ef and the Green’s function is
—ef Tsinzcosé, 0<a<E,
Gla.€) = { —ef % sinfcosx, &<x< g ©)

We see that G(z,€) is not symmetric, G(z,£) # G(&,x). Thus, it seems that G(z,€&) does not satisfy a
reciprocity condition.



Example 2. Find the adjoint Green’s function satisfying Equation (5).

The derivation parallels that for G(z, ). However, in this case we start with the general solution g4 (z) =
GA(x,¢), for
1 !/ i
oV =20V 1204 =0, w£E gM0)=0.¢" () =0
as

g (z) = e*(acosz + bsinz).
Following the same steps as before, we find the adjoint Green’s function,

—e®“fsinzcosé, 0<x<E,

GA(:c,ﬁ) = { —e*€sinfcosz, £<a< z. (10)

While G4 (z, &) # GA(€,z), we do have that G(z, &) = GA(£, 2) gives the form of a reciprocity condition.
Example 3. Derive a general relation between G(z,¢) and G4 (z, €).

From the last example we have found G(z, &) = GA(€, z) for a specific problem. In general these Green’s
functions satisfy the equations for = € [a, ]:

LG(z,§) = d(xz—¢)
LAGA(x,€) = §(x—¢). (11)
Multiply the first equation by G4 (x,¢’) and the second equation by G(z,£). Subtract and integrate

b b
/ (G4 (. ) LG (2, €) — Gla, ) LACA(x, €] di = / (G4 (2, €)6(z — €) — Gz, £)6(z — £)] da.

Assuming appropriate boundary conditions, we have

/b G 2,¢)LG(z, &) do = /b G(z,&)L*GA(z,¢) da.
So, after applying the Dirac delta function integrations, we have
G €)= G(E,9).
Now we can return to the original problem but adding nonhomogeneous boundary conditions.

Example 4. Use the adjoint Green’s function to solve

Y +2y +2y = f(x), y(0)=Ay (%) = B. (12)
Defining L = D? + 2D + 2, we have
Ly(z) = f(z)
LAGH(2,6) = 0(z—¢). (13)

As with the previous example, we multiply the first equation by G4 (z, &) and the second equation by y(z).
Subtracting and integrating we have

/2 o POAE) 00,0
[ et @o 0@+ e s e - (TG -2 a6 (0,9)) | as

w/2
- / (A (2, ) f(2) — y(@)d(z — )] do (14)



Cleaning this up, we find that

/2 Al /2
|7 3 et - 25w 26| a= [ 64w o)) o u6)
0 0

oz

or, after applying boundary conditions,

/2 A T
we = [ Mo - |64 v - Ty + (@66
B OGA(Z,€) 0G4(0,¢)
= / G, O f (@) do + —— 2B = —— == A

/2

(15)

Since G4 (z,¢) = G(&, ), we can exchange variables to obtain the solution in terms of the Green’s function,

G, &)
/2 oGA 3, A 7
vo) = [ Glenngaes R p 20,
- 0G(z,T)  9G(z,0)
_ / Gl () de+ =B — =T A

We now apply this general solution to a specific problem.

Example 5. Use Equation (16) with the Green’s function in Equation (9) to solve

y' +2y +2y=>5sinz, y(0)=2e,y (g) =0.

0G(x, %) _ 9G(z,0)
€ ¢

z w/2
- / Ga.€)(€) dé + / G(a,€)£(€) dé — 2e
0 x

A

0G(z,0)
29

z /2
= / [—eg_:” sin € cos x] 5sin(&) d¢ + / [—eg_l sin x cos §] 5sin(&) d¢
0 T

—2e— [*6571 sin £ cos x] £=0

z /2
= —5e *cos a:/ e sin?£d¢ —5e® sina:/ e siné cos & dé + 2er "% cosx
0 T

5¢% 2+1 % gin? 2 ISinl’COSl’+26$ cos T
= —be —— 4+ —€®sinz — —e -
5 5 5 5

1 1 1 x
+ (—mezsin2x+(5€ Cos2x+g 2> sinx} +2e' " cosz

= 2 %coszr—2cosT+sinz —e? Tsinz + 2% cosx
= 2[6_””(1—1—6)—1}00896—1—(1—62 ~*)sinz.

(16)

(17)

(18)



We can check this solution by using the Method of Undetermined Coefficients to obtain the solution.
We know the solution to the homogeneous equation is

yn(x) = e “(c1sinz + ¢y cos ).

We seek a particular solution,
yp(x) = czsinx + ¢4 cos z.

Inserting into the differential equation, we have
[c3 — 2¢q]sinx + [c4 + 2¢3] cosz = Hsinx.
This is true when c¢3 = 1 and ¢4 = —2. So, the general solution to the nonhomogeneous equation is

y(x) = e (e sinx + cp cos ) + sina — 2 cos .

For the solution of the boundary value problem, we need to satisfy the boundary conditions.

y(0) = ca—2=2e,
y(g) = e Ze+1=0. (19)
So, co = 2(1+¢) and ¢; = —e? and the solution is
y(x) = e “(—e?sinz+2(1+e)cosz)+sinz —2cosx
= 2[e"(14+e)—1]cosz+ (1—6%_36) sin . (20)

So, the solutions agree.

We have seen how we can solve for and use the Green’s function and adjoint Green’s function in an
example inolving a non-Hermitian operator. However, we also know that we can cast the problem in Sturm-
Liouville form. So, how do these methods differ if we used the Sturm-Liouville operator and its Green’s
function?

Example 6. Consider the boundary value problem

v+ 42y = f@), y(0) =4y (F) =B (21)

Put this in Sturm-Liouville form, find its Green’s function, and write the solution in terms of the Green’s
function.

The Sturm-Liouville form of the differential equation is

% <62$dyd(x$)> + 2e*7y(x) = e** f(x). (22)

The associated Green’s function would then satisfy

0, (2082

i w) +262°G(2,€) = 3z — &). (23)



Following Example 1, we find the Green’s function satisfying the homogeneous boundary conditions,
G(0,€) =0, G (Z,€) =0, takes the form

G, €) :{ ce Tsinxcosé, 0<xz<E, (24)

—T o3 s
ce” " siné& cos x, fgng.
So far, this function is continuous at = = €.

We need to derive the jump condition for the discontinuity of the derivative of the Green’s function. As
before, we integrate the Green’s function equation over the interval x € [€ — €, + €] to obtain

L2 () g = [ o gas

lim [62“’ 99(x,¢)

E—e
E+te %)
e } = - O(x — &) dx

E—e
{ ag(x@r*
.

e—0

o =1 (25)

We can apply this to G(x,&). Namely, we have

L [621: ag(x,é)r

= ce®e ¢ [—sin —sin? ¢ — (—sin
B = ce? [—sin€cosé —sin® & — (—s ﬁcosf—l—coszf)]

£
= —ceg.

So, ¢ = —e~¢ and the Green’s function is

Q(m,f):{ —e‘“‘ésinxcosf, 0<z <, (26)

—e ¢ sinfcosx, &<zx< %

We see that G(x, &) is symmetric, G(z,£) = G(§,x

We can now find the solution to Equation (21

~— T

using this Green’s function. Defining

d d
L=— (6295) + 2e27,
T dx

y(z) and G satisfy the differential equations
Ly(x) = € f(x)
LG(x,§) = oz —8). (27)

As with the previous example, we multiply the first equation by G(z, &) and the second equation by y(x).
Subtracting and integrating we have

™

/05 G(x, &) Ly(z) — y(x)LG(x,€)] dr = Ai [€** f(2)G(x,€) — y(x)d(x — €)] du

[e% (g(x, WD () 298 )} ! / T e ()G (. €) da— y(©

0 0

WO = [ 6o+ rpEE 000 (3

0 ox ox



Computing the derivative of the Green’s function,

0G(x,6) [ e ™ f(sinwcosé —coszcos), 0<x<E,
or | e Y(sinfcosz +sinésinz), {<a<I.
and evaluating it at the boundary points, we have
8g(075> _ _6_5 COSg, g(faé) — e—g—g Sinf.
ox ox

The solution can be written as

y(€) = /5 e?® f(x)G(x, &) dr + Be? Ssiné 4+ Ae S cosé

0

or
y(z) = /2 2 f(6)G(x, &) dx + Be? ®sinz + Ae " cos .
0
Let’s compare this with the solution in Equation (16). We need
0G(x,6) [ —e*%(sinzcosé —sinzsing), 0<z<¢,
o6 | —e*"(sinfcosz + cosfcosx), << I
Then,
0G(x,0) e cos 0G(z,5) 5% gin
I P ~
Inserting these values and noting that G(z,¢) = e2¢G(z, &)
" IG(w,3) o 9G(x,0)
= G d "2°B — A
T A 5
™/

2
= / eXG(x,6)f(€) dé + Be? “sinz 4+ Ae % cosx.

0

Thus, the solutions using the Sturm-Liouville form of the problem and the original form are the same.

(31)



