MAT 463/563 Practice Problems for Final Exam

- 1. Consider the ODE $xy'' + (1-x)y' + \lambda y = 0, 0 \le x < \infty$, when answering a-c.
 - a. Put this equation in self-adjoint form.
 - b. Write out the Lagrange identity for this equation.
 - c. Prove that solutions corresponding to different eigenvalues are orthogonal under appropriate conditions.
- 2. Determine the Fourier coefficients for $f(x) = 3\sin 2x \cos^2 x$, $x \in [-\pi, \pi]$ without doing any integration.
- 3. Let $f(x) = 2\pi x$, $0 < x < 2\pi$.
 - a. Determine the Fourier series representation of f(x).
 - b. Find the Fourier cosine series of f(x) on $[0, 2\pi]$.
 - c. Sketch several periods showing what you would expect a graph of this Fourier series.

d. Sketch the even periodic extension of f(x).

4. Use the generating function $g(x,t) = \frac{1}{\sqrt{1-2xt+t^2}}$ to find $P_n(-1)$.

5. Recall the Green's function $G(x,\xi) = \begin{cases} C\xi(1-x), & 0 \le \xi \le x \\ Cx(1-\xi), & x \le \xi \le 1 \end{cases}$ is used to solve the problem

- y'' = f(x) for some specific boundary conditions.
 - a. What are the boundary conditions?
 - b. Prove that the Green's function is symmetric.
 - c. Determine C.

6. Consider the boundary value problem $\frac{d^2 y}{dx^2} = 6\sin\frac{3x}{2}$, y(0) = 0, $y'(\pi) = 0$.

- a. Solve this problem by direct integration.
- b. Determine the Green's function for this problem, $\frac{\partial^2 G(x,\xi)}{\partial x^2} = \delta(x-\xi), \quad G(0,\xi) = 0,$

$$\frac{\partial}{\partial x}G(\pi,\xi)=0$$

- c. Use the Green's function to solve the nonhomogeneous problem.
- d. Find the eigenfunctions of the corresponding eignenvalue problem, $\phi''(x) + \lambda \phi(x) = 0$, $\phi(0) = 0$, $\phi'(\pi) = 0$.
- e. Use these eigenfunctions to solve the nonhomogeneous problem; i.e., assume that $y(x) = \sum c_n \phi_n(x)$ and find the expansion coefficients.
- 7. Consider the boundary value problem $x^2 y'' 2xy + 2y = 0$, y(1) = 0, y(2) = 1.
 - a. Solve the given problem.
 - b. Using what you have learned in this course, describe how you would solve the nonhomogeneous problem: $x^2y'' 2xy' + 2y = f(x)$, y(1) = 0, y(2) = 1.
- 8. Use the Method of Variation of Parameters to solve: $y''+4y = \sec 2x$

MAT 463/563 Practice Problems for Final Exam

- 9. Show that the set $\{\cos 3nx\}, n = 0, 1, 2, ...$ is orthogonal on $|x| \le \pi$. Determine the corresponding orthonormal set.
- 10. Write n!! in terms of Gamma functions.
- 11. Find the Fourier-Legendre series expansion of f(x) = x on [-1,1]. Some possible relations that you might need are: $(n+1)P_{n+1}(x) (2n+1)xP_n(x) + nP_{n-1}(x) = 0$, n = 1, 2, ...;

$$(2n+1)P_n(x) = P_{n+1}'(x) - P_{n-1}'(x), \quad n = 1, 2, \dots; \quad \int_{-1}^{1} P_n^2(x) \, dx = \frac{2}{2n+1}, \quad n = 0, 1, 2, \dots$$

12. Construct an orthonormal basis for \mathbb{R}^3 using the vectors <1,1,0>,<2,0,1>,<2,2,1>.

13. Find and expression for
$$\Gamma\left(\frac{1}{2}-n\right)$$
 in terms of $\sqrt{\pi}$

14. Use a specific Fourier series expansion to show that $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} = \frac{\pi^2}{12}.$

15. Let $g(x,t) = \frac{e^{-xt/(1-t)}}{1-t} = \sum_{n=0}^{\infty} L_n(x)t^n$ be the generating function for Laguerre polynomials. Show that

$$L'_{n}(0) = -n \text{ and } L''_{n}(0) = \frac{1}{2}n(n-1).$$

16. Show that the sequence $\left\{\frac{\sin nx}{\pi x}\right\}$ approaches $\delta(x)$.