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Figure 4.7: 2D plot showing how the
function f (z) = ez maps a grid in the
z-plane into the w-plane.
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Figure 4.8: 2D plot showing how the
function f (z) =

√
z maps a grid in the

z-plane into the w-plane.

Example 4.7. Find the real and imaginary parts of f (z) = ln z.
In this case, we make use of the polar form of a complex number,

z = reiθ . Our first thought would be to simply compute

ln z = ln r + iθ.

However, the natural logarithm is multivalued, just like the square
root function. Recalling that e2πik = 1 for k an integer, we have
z = rei(θ+2πk). Therefore,

ln z = ln r + i(θ + 2πk), k = integer.

The natural logarithm is a multivalued function. In fact, there are
an infinite number of values for a given z. Of course, this contradicts
the definition of a function that you were first taught.

Figure 4.9: Domain coloring of the com-
plex z-plane assigning colors to arg(z).

Thus, one typically will only report the principal value,

Log z = ln r + iθ,

for θ restricted to some interval of length 2π, such as [0, 2π). In order
to account for the multivaluedness, one introduces a way to extend
the complex plane so as to include all of the branches. This is done
by assigning a plane to each branch, using (branch) cuts along lines,
and then gluing the planes together at the branch cuts to form what is
called a Riemann surface. We will not elaborate upon this any further
here and refer the interested reader to more advanced texts. Com-
paring the multivalued logarithm to the principal value logarithm, we
have

ln z = Log z + 2nπi.

We should note that some books use log z instead of ln z. It should not
be confused with the common logarithm.

4.2.1 Complex Domain Coloring

Another method for visualizing complex functions is domain col-
oring. The idea was described by Frank A. Farris. There are a few ap-
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Figure 4.10: Domain coloring for f (z) =
z2. The left figure shows the phase color-
ing. The right figure shows the colored
surface with height | f (z)|.

proaches to this method. The main idea is that one colors each point of the
z-plane (the domain) according to arg(z) as shown in Figure 4.9. The mod-
ulus, | f (z)| is then plotted as a surface. Examples are shown for f (z) = z2

in Figure 4.10 and f (z) = 1/z(1− z) in Figure 4.11.

Figure 4.11: Domain coloring for f (z) =
1/z(1 − z). The left figure shows the
phase coloring. The right figure shows
the colored surface with height | f (z)|.

We would like to put all of this information in one plot. We can do this
by adjusting the brightness of the colored domain using the modulus of the
function. In the plots that follow we use the fractional part of ln |z|. In Figure
4.12 we show the effect for the z-plane using f (z) = z. In the figures that
follow, we look at several other functions. In these plots, we have chosen to
view the functions in a circular window.

Figure 4.12: Domain coloring for the
function f (z) = z showing a coloring for
arg(z) and brightness based on | f (z)|.One can see the rich behavior hidden in these figures. As you progress

in your reading, especially after the next chapter, you should return to these
figures and locate the zeros, poles, branch points, and branch cuts. A search
online will lead you to other colorings and superposition of the uv grid on
these figures.

Figure 4.13: Domain coloring for the
function f (z) = z2.

As a final picture, we look at iteration in the complex plane. Consider
the function f (z) = z2− 0.75− 0.2i. Interesting figures result when studying
the iteration in the complex plane. In Figure 4.15 we show f (z) and f 20(z),
which is the iteration of f twenty times. It leads to an interesting coloring.
What happens when one keeps iterating? Such iterations lead to the study
of Julia and Mandelbrot sets . In Figure 4.16 we show six iterations of
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f (z) = (1− i/2) sin x.

Figure 4.14: Domain coloring for sev-
eral functions. On the top row, the do-
main coloring is shown for f (z) = z4

and f (z) = sin z. On the second row,
plots for f (z) =

√
1 + z and f (z) =

1
z(1/2−z)(z−i)(z−i+1) are shown. In the last
row, domain colorings for f (z) = ln z
and f (z) = sin(1/z) are shown.

Figure 4.15: Domain coloring for f (z) =
z2 − 0.75− 0.2i. The left figure shows the
phase coloring. On the right is the plot
for f 20(z).

The following code was used in MATLAB to produce these figures.

fn = @(x) (1-i/2)*sin(x);

xmin=-2; xmax=2; ymin=-2; ymax=2;

Nx=500;

Ny=500;

x=linspace(xmin,xmax,Nx);

y=linspace(ymin,ymax,Ny);

[X,Y] = meshgrid(x,y); z = complex(X,Y);

tmp=z; for n=1:6

tmp = fn(tmp);
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end Z=tmp;

XX=real(Z);

YY=imag(Z);

R2=max(max(X.^2));

R=max(max(XX.^2+YY.^2));

circle(:,:,1) = X.^2+Y.^2 < R2;

circle(:,:,2)=circle(:,:,1);

circle(:,:,3)=circle(:,:,1);

addcirc(:,:,1)=circle(:,:,1)==0;

addcirc(:,:,2)=circle(:,:,1)==0;

addcirc(:,:,3)=circle(:,:,1)==0;

warning off MATLAB:divideByZero;

hsvCircle=ones(Nx,Ny,3);

hsvCircle(:,:,1)=atan2(YY,XX)*180/pi+(atan2(YY,XX)*180/pi<0)*360;

hsvCircle(:,:,1)=hsvCircle(:,:,1)/360; lgz=log(XX.^2+YY.^2)/2;

hsvCircle(:,:,2)=0.75; hsvCircle(:,:,3)=1-(lgz-floor(lgz))/2;

hsvCircle(:,:,1) = flipud((hsvCircle(:,:,1)));

hsvCircle(:,:,2) = flipud((hsvCircle(:,:,2)));

hsvCircle(:,:,3) =flipud((hsvCircle(:,:,3)));

rgbCircle=hsv2rgb(hsvCircle);

rgbCircle=rgbCircle.*circle+addcirc;

image(rgbCircle)

axis square

set(gca,’XTickLabel’,{})

set(gca,’YTickLabel’,{})

Figure 4.16: Domain coloring for six it-
erations of f (z) = (1− i/2) sin x.
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Figure 4.50: In this figure we show the
combined mapping using two branches
of the square root function.
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Figure 4.51: Riemann surface for
f (z) = z1/2.

We now look at examples involving integrals of multivalued functions.

Example 4.45. Evaluate
∫ ∞

0

√
x

1 + x2 dx.

We consider the contour integral
∮

C

√
z

1+z2 dz. The first thing we can
see in this problem is the square root function in the integrand. Being
that there is a multivalued function, we locate the branch point and
determine where to draw the branch cut. In Figure 4.52 we show the
contour that we will use in this problem. Note that we picked the
branch cut along the positive x-axis.

x

y

CR

Cε C+

C−

i

−i

Figure 4.52: An example of a contour
which accounts for a branch cut.

We take the contour C to be positively oriented, being careful to
enclose the two poles and to hug the branch cut. It consists of two
circles. The outer circle CR is a circle of radius R and the inner circle
Cε will have a radius of ε. The sought-after answer will be obtained
by letting R → ∞ and ε → 0. On the large circle we have that the
integrand goes to zero fast enough as R→ ∞. The integral around the
small circle vanishes as ε → 0. We can see this by parametrizing the
circle as z = εeiθ for θ ∈ [0, 2π] :

∮
Cε

√
z

1 + z2 dz =
∫ 2π

0

√
εeiθ

1 + (εeiθ)2 iεeiθdθ

= iε3/2
∫ 2π

0

e3iθ/2

1 + (ε2e2iθ)
dθ. (4.69)

It should now be easy to see that as ε→ 0, this integral vanishes.
The integral above the branch cut is the one we are seeking,

lim
R→∞
ε→0

∫
C+

√
z

1 + z2 dz =
∫ ∞

0

√
x

1 + x2 dx.
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Figure 6.13: Computed discrete Fourier
coefficients for y(t) = sin(10πt), with
N = 128 points on the interval [0, 5].

discrete Fourier series, we obtain a curve representing the sampled
signal. This is shown in Figure 6.14. Note that the sampled data
is represented as data points (circles) and the reconstructed signal is
function displayed on the plot.
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Reconstructed Signal Figure 6.14: Reconstruction of y(t) =
sin(10πt) from its Fourier coefficients.

We can look at more interesting functions. For example, we can add two
pure notes together or make the amplitude time depdentent, such as shown
in the next examples.

Example 6.12. Determine the frequency content of the signal

y(t) = sin(10πt)− 1
2

cos(6πt).

This is the sum of two notes with frequencies of 5 Hz and 3 Hz.
It also shows a mixing of sines and cosines. The occurance of a sine
function does not affect the frequency content, as the sine function is
just a shift cosine function.
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Sampling this signal with N = 128 points on the interval [0, 5],
we see from Figure 6.15 that the implementation picks out the correct
frequencies and amplitudes.

Figure 6.15: Computed discrete Fourier
coefficients for sin(10πt) − 1

2 cos(6πt)
with N = 128 points on the interval
[0, 5].
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Example 6.13. Find the Fourier coefficients for the signal

y(t) = e−αt sin(10πt).

In this example we investigate the Fourier coefficients for a slightly
more complicated signal, one with a decaying amplitude. This could
represent a damped oscillator.

For α = 0.1, we consider the signal

y(t) = e−0.1t sin(10πt).

Here we again sample the signal with N = 128 points on the interval
[0, 5]. The Fourier coefficients are shown in Figure 6.16 and the cor-
responding reconstruction is shown in Figure 6.17. In this case we
see that a number of modes are excited and we no longer have one
frequency.

We will look into more interesting features in discrete signals in the next
chapter. We end with an application to a small data set and leave the anal-
ysis of this and other signals as an exercise for the reader.

Example 6.14. Analysis of monthly mean surface temperatures.
Consider the data2 of monthly mean surface temperatures at Am-2 This example is from Data Analysis

Methods in Physical Oceanography, W. J.
Emery and R.E. Thomson, Elsevier, 1997.

phitrite Point, Canada shown in Table 6.2. The temperature was recorded
in oC and averaged for each month over a two year period. We would
like to look for the frequency content of this time series.

Table 6.2: Monthly mean surface temper-
atures (oC) at Amphitrite Point, Canada
for 1982-1983.

Month 1 2 3 4 5 6 7 8 9 10 11 12

1982 7.6 7.4 8.2 9.2 10.2 11.5 12.4 13.4 13.7 11.8 10.1 9.0
1983 8.9 9.5 10.6 11.4 12.9 12.7 13.9 14.2 13.5 11.4 10.9 8.1

In Figure 6.18 we plot the data in Table 6.2 as circles. We then use
the data to compute the Fourier coefficients. These coefficients are
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Figure 6.16: Computed discrete Fourier
coefficients for y(t) = e−αt sin(10πt)
with α = 0.1 and N = 128 points on the
interval [0, 5].
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inserted into the discrete Fourier series and plotted as a curve. We see
that the resulting reconstruction fits the data.

Figure 6.18: Plot and reconstruction of
the monthly mean surface temperature
data.
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6.8 MATLAB Implementation

Discrete Fourier Transforms and FFT are easily implemented in
computer applications. In this section we describe the MALAB routines
used in this book.

6.8.1 MATLAB for the Discrete Fourier Transform

In this section we provide implementations of the discrete trigonomet-
ric transform in MATLAB. The first implementation is a straightforward
one which can be done in most programming languages. The second im-
plementation makes use of matrix computations that can be performed in
MATLAB or similar programs like GNU Octave or Pylab. Sums can be done
with matrix multiplication, as described in the next section. This eliminates
the loops in the first program below and speeds up the computation for
large data sets.

Direct Implementation for a data set

The following code was used to produce Figure 6.18. It shows a direct im-
plementation using loops to compute the trigonometric DFT as developed
in this chapter. The data is entered in vector y. The Fourier coefficients are
entered using the matrix capabilities of MATLAB as described in the next
section. The signal is then reconstructed using the finite series representa-
tion. Plots are provided to show this implementations as demonstrated in
earlier examples.



Chapter 7

Signal Analysis

There’s no sense in being precise when you don’t even know what you’re talking
about. - John von Neumann (1903 - 1957)

7.1 Introduction

Figure 7.1: Cool Edit displaying a WAV
file and its properties.

It is now time to look back at the Introducton and see what it
was that we promised to do in this course. The goal was to develop enough
tools to begin to understand what happens to the spectral content of signals
when analog signals are discretized. We started with a study of Fourier
series and just ended with discrete Fourier transforms. We have seen how
Fourier transform pairs, f (t) and f̂ (ω), are affected by recording a signal
over a finite time T at a sampling rate of fs. This in turn lead to the need
for discrete Fourier transforms (DFTs). However, we have yet to see some of
the effects of this discretization on the information that we obtain from the
spectral analysis of signals in practice. In this chapter we will look at results
of applying DFTs to a variety of signals.

Figure 7.2: Cool Edit displaying the
spectrum of a WAV file.

The simplest application of this analysis is the analysis of sound. Music,
which is inherently an analog signal, is recorded over a finite time interval
and is sampled at a rate that yields pleasing sounds that can be listened to
on the computer, a CD, or in an MP3 player.

You can record and edit sounds yourself. There are many audio editing
packages that are available. We have successfully used these packages plus
some minimal applets and mathematics packages to introduce high school
students and others with a minimal mathematics background to the Fourier
analysis of sounds. As we have seen, we need only understand that signals
can be represented as sums of sinusoidal functions of different frequencies
and amplitudes.

Figure 7.3: Goldwave displaying a sim-
ple tone.

For example, we have had students working with musical instruments,
bird sounds, dolphin sounds, ECGs, EEGs, digital images, and other forms
of recorded signals or information. One just needs to find a way to deter-
mine the frequency content of the signal and then pick out the dominant
frequencies to reconstruct the signal.

There are many packages that can be used to display sound and time
series. We will see how to use MATLAB, although one could use Maple or
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Mathematica to import and analyze sounds. There are also stand alone ed-
itors like Cool Edit Pro (bought out by Adobe in 2003 and renamed Adobe
Audition), Audacity ( http://audacity.sourceforge.net/) an open source ed-
itor, or Goldwave (http://www.goldwave.com/), which allows one to input
a formula and “play” it.

A sample Cool Edit session is shown in Figure 7.1. In this figure is dis-
played the sound print of a parrot. It is obviously a complex signal, made
up of many harmonics. Highlighting a part of the signal, one can look at
the frequency content of this signal. Such a spectrum is shown in Figure 7.2.
Notice the spikes every couple of thousand Hertz.

Figure 7.4: Goldwave display of function
editor.

Not many fancy, but inexpensive, sound editors have a frequency anal-
ysis component like Cool Edit had. One has to go out on to the web and
search for features that do not just entail editing sounds for MP3 players.
Goldwave allows one to enter a formula and then listen to the correspond-
ing sounds. This is also a feature not found in most editors. However, it is
a useful tool that takes little “programming” to connect the mathematics to
the signal. Cool Edit and others have a feature to generate tones, but this
is more exact. The interface for Goldwave is shown in Figure 7.3 and the
function editor is in 7.4. However, there are plenty of other editors. In the
early 2000’s the HASA (Handheld Audio Spectrum Analyzer) application
shown in Figure 7.5 was a good tool for pocket PCs. Also, spectrum ana-
lyzers are available for mobile devices, such as the iPhone (e.g. Pocket RTA
- Spectrum Analyser).

7.2 Periodogram Examples

Figure 7.5: HASA for pocket PCs.

The next step in the analysis is to understand the output of the
discrete transform, or the Fast Fourier Transform (FFT), that is generated by
such programs. Often we see spectrograms or periodograms. We should
understand what it is that they produce. As an example, lets say we have
the sum of a sine and a cosine function with different frequencies and am-
plitudes. We could represent the discrete Fourier coefficients as an’s and
bn’s, like we have computed many times in the course, in simple plots of the
coefficients vs n (or the frequency) such as shown in Figure 7.6. In this case
there is a cosine contribution of amplitude two at frequency f = 4 Hz and
a sine contribution of amplitude one at frequency f = 2 Hz. It takes two
plots to show both the an’s and bn’s. However, we are often only interested
in the energy content at each frequency. For this example, the last plot in
Figure 7.7 shows the spectral content in terms of the modulus of the signal.

n

an

1 2 3 4 5 6 7 8 9 10

−2
−1

0
1
2

n

bn

1 2 3 4 5 6 7 8 9 10

−2
−1

0
1
2

Figure 7.6: This Figure shows the spec-
tral coefficients for a signal of the form
f (t) = 2 cos 4t + sin 2t.

For example, cos 5t and 3 sin 5t would have spikes in their respective plots
at the same frequency, f = 5

2π . As noted earlier in Equation (6.30), we can
write the sum cos 5t + 3 sin 5t as a single sine function with an amplitude
cn =

√
a2

n + b2
n. Thus, a plot of the “modulus” of the signal is used more

often. However, in the examples we will sometimes display both forms
to bring home the relationship between the trigonometric and exponential

http://audacity.sourceforge.net/
http://www.goldwave.com/
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forms of the Fourier spectrum of the signal.
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Figure 7.7: This Figure shows the spec-
trum for a signal of the form f (t) =
2 cos 4t + sin 2t.

Once one has determined the Fourier coefficients, then one can recon-
struct the signal. In the case that one has the exact components, then the
reconstruction should be perfect as shown for the previous example in Fig-
ure 7.6. The reconstruction in this case gave the plot in Figure 7.8. However,
for real signals one does not know ahead of time what the actual frequencies
are that made up the signal.

t
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Figure 7.8: This Figure shows the origi-
nal signal of the form f (t) = 2 cos 4t +
sin 2t and a reconstruction based upon
the series expansion.

Figure 7.9: A piece of a typical bird
sound.

Figure 7.10: A Fourier analysis of the
bird sound in Figure 7.9.

For example, one could analyze a bird sound like the one shown in Figure
7.9. We capture a part of the sound and look at its spectrum. An example is
shown in Figure 7.10. Notice that the spectrum is not very clean, although
a few peaks stand out. We had a group of high school students carry out
this procedure. The students picked out a few of the dominant frequen-
cies and the corresponding amplitudes. Using just a few frequencies, they
reconstructed the bird signals. In Figure 7.11 we show the original and re-
constructed signals, respectively. While these might not look exactly the
same, they do sound very similar.

There are different methods for displaying the Fourier spectrum of sig-
nals. Here we define some of these.
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Figure 7.11: Analysis and reconstruction
of a bird sound.

Definition 7.1. A spectrogram is a three-dimensional plot of the energy of
the frequency content of a signal as it changes over time.

Figure 7.12: Example of spectrogram for
the bird sound.

An example of a spectrogram for the bird sound in Figure 7.9 is provided
in Figure 7.12. This figure was created using MATLAB’s built-in function
(in the Signal Processing Toolbox):

[y,NS,NBITS]=wavread(’firstbird.wav’);

spectrogram(y,128,120,128,NS);

title(’Spectrogram for Bird Signal’)

ylabel(’Time (s)’)

The spectrogram is created using what is called the short-time Fourier trans-
form, or STFT. This function divides a long signal into smaller blocks, or
windows, and then computes the Fourier transform on each block. This al-
lows one to track the changes in the spectrum content over time. In Figure
7.12 one can see three different blobs in the 3kHz-4kHz range at different
times, indicating how the three chirps of the bird can be picked up. This
gives more information than a Fourier analysis over the entire record length.

Definition 7.2. The power spectrum is a plot of the portion of a signal’s power
(energy per unit time) falling within given frequency bins. We can either
plot the Fourier coefficients, or the modulus of the Fourier transform.

Definition 7.3. Plots of cn =
√

a2
n + b2

n or c2
n vs frequency are sometimes

called periodograms.
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An example of a periodogram for the bird sound in Figure 7.9 is provided
in Figure 7.13. A periodogram can be created using MATLAB’s built-in
function (in the Signal Processing Toolbox):

[y,NS,NBITS]=wavread(’firstbird.wav’);

periodogram(y,[],’onesided’,1024,NS)
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Periodogram Power Spectral Density Estimate Figure 7.13: Example of periodogram for

the bird sound.

There are many other types of applications. We have had students study-
ing the oscillations of mass-spring systems and vibrating beams in differ-
ential equations. The setups are shown in Figure 7.14. On the left is a
mass-spring system situated above a motion probe. The data is collected
using an interface to a handheld computer. (More recently pocket PCs and
other mobile devices have been used.) On the left is a similar setup for a
clamped two-meter stick, which is clamped at different positions and the
motion of end of the stick is monitored.

Figure 7.14: Setup for experiments for
oscillations of mass-spring systems and
vibrating beams. Data is recorded at a
50 Hz sampling rate using handheld de-
vices connected to distance probes.

Of course, a simple mass on a spring exhibits the typical almost pure
sinusoidal function as shown in Figure 7.15. The data is then exported to
another program for analysis.

Students would learn how to fit their data to sinusoidal functions and
then determine the period of oscillation as compared to the theoretical
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Figure 7.15: Distance vs time plot for a
mass undergoing simple harmonic mo-
tion.

value. They could either do the fits in Maple (Figure 7.16) or Excel (Fig-
ure 7.17).

Figure 7.16: Example of fitting data in
Maple.

Figure 7.17: Example of fitting data in
Excel.

Fitting data to damped oscillations, such as shown in Figure 7.18, is more
difficult. This is the type of data one gets when measuring the vertical
position of a vibrating beam using the setup shown in Figure 7.14.

Typically, one has to try to guess several parameters in order to determine
the correct period, amplitude and damping. Of course, we know that it is
probably better to put such a function into a program like MATLAB and
then to perform a Fourier analysis on it to pick out the frequency. We did
this for the signal shown in Figure 7.19. The result of the spectral analysis
is shown in Figure 7.21. Do you see any predominant frequencies? Is this a
better method than trying to fit the data by hand?
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Figure 7.18: Distance vs time plot for a
vibrating beam clamped at one end. The
motion appears to be damped harmonic
motion.

Figure 7.19: Distance vs time plot in
MATLAB for a vibrating beam clamped
at one end.

7.3 Effects of Sampling

We are interested in how well the discrete Fourier transform

works with real signals. In the last section we saw a few examples of how
signal analysis might be used. We will look into other applications later.
For now, we want to examine the effects of discretization on signals so that
we can make sense out of the analysis we might do on real signals. We
need to begin with the simplest signals and then employ the DFT MATLAB
program in Section 6.8.1 to show the results of small changes to the data.
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Figure 7.20: Fourier coefficients for the
signal y(t) = sin(2π f0t) with f0 = 5.0
Hz, N = 128, on [0, 5].

Figure 7.21: Fourier spectrum for the sig-
nal shown in Figure 7.19.

Example 7.1. Sample the function y(t) = sin(10πt) for t ∈ [0, 5], and
N = 128.

We begin by inputting the signal, y(t) = sin(2π f0t), for frequency
f0 = 5.0 Hz We sample this function for N = 128 points on the interval
[0, 5]. The Fourier Trigonometric coefficients are given in Figure 7.20.
Note that the An’s are negligible (on the order of 10−15). There is a
spike at 5.0 Hz. We can also plot the periodogram as shown in Figure
7.22. We again obtain the expected result of a spike at f = 5.0 Hz. We
reconstruct the signal as shown in Figure 7.23. There appears to be
agreement between the function y(t), indicated by the line plot, and
the reconstruction, indicated by the circles.
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Figure 7.22: Fourier spectrum for the sig-
nal y(t) = sin(2π f0t) with f0 = 5.0 Hz,
N = 128, on [0, 5].
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Figure 7.23: The function y(t) is indi-
cated by the line plot and the reconstruc-
tion by circles.
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Example 7.2. Sample the function y(t) = 2 sin(12πt)− cos(12πt) for
t ∈ [0, 5], and N = 128.

In the set of Figures 7.24 and 7.25 we show the Fourier coefficients
and periodogram for the function y(t) = 2 sin(2π f0t) − cos(2π f1t)
for f0 = f1 = 6 Hz. We note that the heights in Figure 7.24 are the
amplitudes of the sine and cosine functions. The “peaks” are located at
the correct frequencies of 6 Hz. However, in the periodogram there is
no information regarding the phase shift; i.e., there is no information
as to whether the frequency content arises from a sine or a cosine
function. We just know that all of the signal energy is concentrated at
one frequency.

Figure 7.24: Fourier coefficients for the
signal y(t) = 2 sin(2π f0t) − cos(2π f1t)
with f0 = f1 = 6.0 Hz, N = 128, on
[0, 5].
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Periodogram Figure 7.25: Fourier spectrum for the

signal y(t) = 2 sin(2π f0t) − cos(2π f1t)
with f0 = f1 = 6.0 Hz, N = 128, on
[0, 5].

Example 7.3. Sample the function y(t) = 2 sin(12πt)− cos(10πt) for
t ∈ [0, 5], and N = 128.

In the set of Figures 7.26 and 7.27 we show the Fourier coefficients
and periodogram for the function y(t) = 2 sin(2π f0t)− cos(2π f1t) for
f0 = 6 Hz and f1 = 10 Hz. Once again we see that the amplitudes of
the Fourier coefficients are of the right height and in the right location.
In the periodogram we see that the energy of the signal is distributed
between two frequencies.
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Figure 7.26: Fourier coefficients for the
signal y(t) = 2 sin(2π f0t) − cos(2π f1t)
with f0 = 6 Hz and f1 = 10 Hz, N =
128, on [0, 5].
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Periodogram Figure 7.27: Fourier spectrum for the

signal y(t) = 2 sin(2π f0t) − cos(2π f1t)
with f0 = 6 Hz and f1 = 10 Hz. The sig-
nal was sampled with N = 128 points
on an interval of [0, 5].
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Example 7.4. Sample the function y(t) = 2 sin(12πt)− cos(10πt) for
t ∈ [0, 5], and N = 256.

In the last several examples we have computed the spectra in using
a sampled signal “recorded” over times in the interval [0, 5] and sam-
pled with N = 128 points. Sampling at N = 256 points leads to the
periodogram in Figure 7.28. We note that increasing the number of
points leads to a longer interval in frequency space.

Figure 7.28: Fourier spectrum for the
signal y(t) = 2 sin(2π f0t) − cos(2π f1t)
with f0 = 6 Hz and f1 = 10 Hz. The sig-
nal was sampled with N = 256 points
on an interval of [0, 5].
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Example 7.5. Sample the function y(t) = 2 sin(12πt)− cos(10πt) for
t ∈ [0, 10], and N = 128.

In this case we set N = 128 as before, but we double the record
length to T = 10. In Figure 7.29 we see that the frequency interval has
become shorter. We not only lost the 10 Hz frequency, but now we
have picked up a 2.8 Hz frequency. We know that the simple signal
did not have a frequency term corresponding to 2.8 Hz. So, where
did this come from? Also, we note that the interval between displayed
frequencies has changed.

Figure 7.29: Fourier spectrum for the
signal y(t) = 2 sin(2π f0t) − cos(2π f1t)
with f0 = 6 Hz and f1 = 10 Hz. The sig-
nal was sampled with N = 128 points
on an interval of [0, 10].
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For the cases where T = 5 the frequency spacing is 0.2 Hz as seen in
Figure 7.29. However, when we increase T to 10 s, we get a frequency
spacing of 0.1 Hz. Thus, it appears that ∆ f = 1

T . This makes sense,
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because at the beginning of the last chapter we defined

ωp = 2π fp =
2π

T
p.

This gives fp = p
T , or fp = 0, 1

T , 2
T , 3

T , . . . . Thus, ∆ f = 1
T . So, for T = 5,

∆ f = 1/5 = 0.2 and for T = 10, ∆ f = 1/10 = 0.1.
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7.29.
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Periodogram Figure 7.31: Zoomed in view of Figure

7.27. A similar view results for Figure
7.28.

So, changing the record length will change the frequency spacing.
But why does changing T introduce frequencies that are not there?
What if we reduced N? We saw that increasing N leads to longer
frequency intervals. Will reducing it lead to a problem similar to in-
creasing T? In Figure 7.32 we see the result of using only 64 points.
Yes, again we see the occurrence of a 2.8 Hz spike. Also, the range of
displayed frequencies is shorter. So, the range of displayed frequen-
cies depends upon both the numbers of points at which the signal is
sampled and the record length.

We will explain this masquerading of frequencies in terms of something
called aliasing. However, that is not the whole story. Notice that the fre-
quencies represented in the periodograms is discrete. Even in the case that
T = 5 and N = 128, we only displayed frequencies at intervals of 1

T = 0.2.
What would happen if the signal had a frequency in between these values?
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Figure 7.32: Fourier spectrum for the
signal y(t) = 2 sin(2π f0t) − cos(2π f1t)
with f0 = 6 Hz and f1 = 10 Hz. The
signal was sampled with N = 64 points
on an interval of [0, 5].
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Example 7.6. Sample the function y(t) = sin(12.2πt) for t ∈ [0, 5], and
N = 256.

In this example we consider changing the the 6 Hz frequency to
6.1 Hz. We see the result in Figure 7.33. Since we could not pinpoint
the signal’s frequencies at one of the allowed discrete frequencies, the
periodogram displays a spread in frequencies. This phenomenon is
called ringing or spectral leakage.

Figure 7.33: Fourier spectrum for the sig-
nal y(t) = 2 sin(2π f0t) with f0 = 6.1 Hz.
The signal was sampled with N = 256
points on an interval of [0, 5].

Frequency

0 5 10 15 20 25 30

P
o

w
e
r

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Periodogram

It is also interesting to see the effects on the individual Fourier co-
efficients. This is shown in Figure 7.34. While there is some appar-
ent distribution of energy amongst the An’s, it is still essentially zero.
Most of the effects indicate that the energy is distributed amongst sine
contributions.

What we have learned from these examples is that we need to be care-
ful in picking the record length and number of samples used in analyzing
analog signals. Sometimes we have control over these parameters, but other
times we are stuck with them depending upon the limitations of the record-
ing devices. Next we will investigate how the effects of ringing and aliasing
occur.
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Figure 7.34: Fourier spectrum for the sig-
nal y(t) = 2 sin(2π f0t) with f0 = 6.1 Hz.
The signal was sampled with N = 256
points on an interval of [0, 5].

7.4 Effect of Finite Record Length

In the previous section we saw examples of the effects of finite record
length on the spectrum of sampled data. In order to understand these effects
for general signals, we will focus on a signal containing only one frequency,
such as y(t) = sin(2π f0t). We will record this signal over a finite time
interval, t ∈ [0, T]. This leads us to studying a finite wave train. (Recall
that we has seen examples of finite wave trains earlier in the chapter on
Fourier Transforms and in the last chapter. However, in these cases we used
a cosine function. Also, in one of these cases we integrated over a symmetric
interval.)

We will consider sampling the finite sine wave train given by

y(t) =

{
sin 2π f0t, 0 ≤ t ≤ T

0, otherwise
. (7.1)

In order to understand the spectrum of this signal, we will first compute the
Fourier transform of this function. Afterwards, we will show how sampling
this finite wave train affects the Fourier transform.

Example 7.7. Compute the Fourier transform of the finite sine wave
train.

We begin by computing the Fourier transform of the finite wave
train and write the transform in terms of its real and imaginary parts.
The computation is straightforward and we obtain

ŷ( f ) =
∫ ∞

−∞
y(t)e2πi f t dt

=
∫ T

0
sin(2π f0t) cos(2π f t) dt + i

∫ T

0
sin(2π f0t) sin(2π f t) dt

=
1
2

∫ T

0
[sin(2π( f + f0)t)− sin(2π( f − f0)t)] dt

+
i
2

∫ T

0
[cos(2π( f − f0)t)− cos(2π( f + f0)t)] dt

=
1

4π

[
1

f + f0
− 1

f − f0

]
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Figure 7.55: Sampling a bandlimited
function, yΩ(t), where Ω = 1 and ∆t =
4π
3 . (a) ŷΩ(ω) is a triangular function

with bandwidth 2Ω = 2. (b) A picture of
F [yΩ ∗ ∆t comb 2π

∆t
] with the gate func-

tion. (c) The spectrum of the sampled
signal, GΩ(ω)F [yΩ ∗ ∆t comb 2π

∆t
].

Sketch the function GΩ(ω)F [yΩ ∗ ∆t comb 2π
∆t
] for sampling time ∆t =

4π
3 .

Correct sampling would be done with ∆t = π. So, we expect over-
lapping copies in the Fourier transform of the sampled signal. In Fig-
ure 7.55 we show the process.

In Figure 7.55(a) we show the sketch of the triangular function,
ŷΩ(ω). The bandwith is 2Ω = 2.

Next, in Figure 7.55(b) we draw the translations of ŷΩ(ω) in mul-
tiples of 2π/∆t = 1.5. Superimposed on the translations are the sum,
represented by F [yΩ ∗ ∆t comb 2π

∆t
].

The Fourier transform of the sampled signal is then obtained by
multiplying the sum of the translations in Figure 7.55(b) by GΩ(ω)

to obtain the final result, GΩ(ω)F [yΩ ∗ ∆t comb 2π
∆t
]. This is shown in

Figure 7.55(c).

7.7 Nonstationary Signals

7.7.1 Simple examples

A major assumption made in using Fourier transforms is that the fre-
quency content of a signal does not change in time. Such signals are called
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stationary. Consider the following example.
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Figure 7.56: A plot of the function f (t)
vs t.

Example 7.14. Let

f (t) =


1 sin(2π f0t), 0 ≤ t < 0.25,<
2 sin(2π f1t), 0.25 < t < 0.75,

1.5 sin(2π f2t), 0.75 < t ≤ 1,

where f0 = 20 Hz, f1 = 14 Hz and f3 = 7 Hz.
A plot of f (t) is shown in Figure 7.56. There are three frequencies

present, but occur at during different time intervals. The spectrum of
this signal using the discrete Fourier transform over the entire time
interval using N = 256 gives the plot in Figure 7.56. It indicates many
more frequencies are present than just the three we know about. In
Figure 7.58 we show a blow-up of the region containing the largest
values. While it looked like there might have been ringing, there are
peaks at the main frequencies, but somehow we could not capture the
fact that the signal is nonstationary.
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Figure 7.57: The application of the DFT
algorithm to f (t).
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Figure 7.58: A magnified view of the
DFT of f (t).

We can capture the time dependence of the frequency content by
splitting the time series into four blocks of width 0.25. This is shown in
Figure 7.59. Now we apply the DFT to each block as shown in Figure
7.60. Zooming in further in Figure 7.61, we see that each periodogram
displays different frequency content. However, since each block of f (t)
is not a perfect sine function, there still is a little inaccuracy in picking
out the exact frequency in each block.

Figure 7.59: A plot of the function f (t)
vs t split into four windows.
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Example 7.15. Consider changing the time interval to [0, 4π] in the
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Figure 7.60: The application of the DFT
algorithm to each of the four blocks of
f (t).
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Figure 7.61: A magnified view of the
DFT of the four blocks of f (t).
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previous example. Let

g(t) =


sin(2π f0t), 0 ≤ t < π,

2 sin(2π f1t), π ≤ t < 3π,
1.5 sin(2π f2t), 3π ≤ t ≤ 4π,

where f0 = 20 Hz, f1 = 14 Hz and f3 = 7 Hz. The four blocks
are shown in Figure 7.62. The DFT for these blocks with N = 512 is
shown in Figure 7.63. We see that the frequencies are more defined
and correct for the most part.

Figure 7.62: The four blocks of g(t).
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Another example is the “chirp” function. A chirp is a sinusoidal function
with a time varying frequency. When turned into a sound of the right length
and frequency range, a chirp sounds like the chirp of a bird. a linear chirp
is one in which the frequency changes linearly. The next example gives an
example of a chirp.

Example 7.16. Consider the linear chirp signal

y(t) = sin(2π

(
f0 + ( f1 − f0)

t
T
)t
)

, t ∈ [0, 1],

for f0 = 1.0 Hz and f1 = 10.0 Hz.
The function takes the form y(t) = sin 2π f t, where the frequency

is time-dependent, f (t) = f0 + ( f1− f0)
t
T . In Figure 7.64 we show this

linear chirp. The frequency varies from f0 = 1.0 Hz to f1 = 10.0 Hz.
When one computes the DTF of this signal, the periodogram in Figure
7.65 results. As one can see, a variety of frequencies appear and there
is no indication that the frequency is time varying.
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Figure 7.63: A magnified view of the
DFT of the four blocks of g(t).
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Figure 7.64: A chirp signal.
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Figure 7.65: DFT of the chirp signal.

7.7.2 The Spectrogram

The examples in the last section point to the need for a modifi-
cation of the Fourier transform for analog signals and the DFT for discrete
signals. In Example 7.15, we saw that computing the DFT over subintervals
of the signal, we can attempt to find the time dependence of the frequency
spectrum. This idea can be generalized for both continuous and discrete
Fourier transforms. In MATLAB the function spectrogram produces a plot
of the time-dependent frequency of a signal by using similar blocks, but by
sliding blocks of a given width in time across the signal and doing a Fourier
analysis for each block. The output is a spectrogram.

Example 7.17. Let

g(t) =


sin(2π f0t), 0 ≤ t < π,

2 sin(2π f1t), π ≤ t < 3π,
1.5 sin(2π f2t), 3π ≤ t ≤ 4π,

where f0 = 20 Hz, f1 = 14 Hz and f3 = 7 Hz.
We sample this signal at 512 points and using the MATLAB com-

mand spectrogram, in the form

spectrogram(g,rectwin(20),15,n,1/dt,’yaxis’)

to generate the spectrogram in Figure 7.66, where y is the signal sam-
pled at n = 512 points and dt = 4π/n. The blocks are 20 pts wide
with an overlap of 15 points. Note that the dominant three frequen-
cies appear roughly at the correct locations.
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Figure 7.66: The spectrogram plot of
g(t).
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Example 7.18. Let y(t) = sin(2π
(

f0 + ( f1 − f0)
t
T )t
)

, t ∈ [0, 1], for
f0 = 1.0 Hz and f1 = 10.0 Hz.

The the spectrogram in Figure 7.67 was produced by sampling this
signal at 512 points and using the MATLAB command

spectrogram(y,rectwin(20),15,n,1/dt,’yaxis’)

In the lower part of the figure we see a fuzzy linear region indicating
the linear dependence of the frequency on time roughly going from
f = 1 Hz to f = 10. Hz. The resolution of this frequency content
depends partly on the width of the rectangular block used and the
overlap of the blocks. In this case the command takes the form spec-
trogram(y,rectwin(w),o), where w is the width and o is the size of the
overlap.

Figure 7.67: The spectrogram plot of the
chirp y(t) = sin(2π

(
f0 + ( f1 − f0)

t
T )t
)

,
t ∈ [0, 1], for f0 = 1.0 Hz and f1 = 10.0
Hz.
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Let’s see how to formalize the process described in the last examples. We
begin with a sampled signal, yn, n = 0, . . . , N− 1, and a rectangular window
(or, block), wn = w(tn) of width M < N. Then, we compute the transform
of the product,

Yk,` = DFT {[y`w0, . . . , y`+nwn, . . . , y`+N−1wN−1]}
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This gives the spectrum which we can associate with a time associated
with a time over which the block is nonzero. Next, the window is translated
by a time t`. The shifted window is given by wn−` = w(tn − t`).

Example 7.19. A simple example of using overlapping blocks.
We consider the signal

y(t) =

{
2 sin 2πt, 0 ≤ t ≤ 5,

1.5 sin 3πt, 5 ≤ t ≤ 10.

This is shown in Figure 7.68(a).
The signal is then sampled with ∆t = 0.05 as shown in Figure

7.68(b).
Figure 7.68(c) shows the blocks that can be used. Each block is of

width 1.0 and translated y 0.75, leaving an overlap of 0.25 between
consecutive blocks.

We can change the values of the width of the rectangular block used and
the overlap of the blocks to see the effects on the output. Examples are
provided in Figures 7.69-7.70 for Examples 7.15 and 7.16. Each row is a
spectrogram of fixed with with a 20%, 40% 60% or 80% blockwidth overlap
as the blocks are translated across the signal. The block widths down the
figure are 10 pts, 20 pts, 30 pts, and 40 pts, respectively.

In Figures 7.69-7.70 we see that there is better frequency resolution for
wider blocks, but the time resolution is blurrier. However, increasing the
overlap with aid in resolving the time as well. The better frequency resolu-
tion is due to using more points in the DFT for that block.

7.7.3 Short-Time Fourier Transform

The key to studying nonstationary signals is the Short-Time Fourier
Transform (STFT). The continuous version of the discrete Short-Time Fourier
Transform is obtained by multiplying the signal by a sliding window func-
tion, w(t), which is translated translated along the time axis, and taking the
Fourier transform. The idea of Short-Time Fourier Transform is often cred-
ited to Dennis Gabor’s work in 1946. He used a Gaussian window function.

Formally, we define the window function, w(t), and multiply a shifted
window, w(t− τ), by the signal, y(t), and compute

STFT[y](τ, ω) ≡= Y(τ, ω) =
∫ ∞

−∞
y(t)w(t− τ)e−iωt dt. (7.17)

Note that the sign in the exponential is negative, which differs from our
earlier convention.

For the purpose of computation we can discretize the time and frequency
variables giving the discrete-time Short-Time Fourier Transform and the dis-
crete Short-Time Fourier Transform. The discrete-time Short-Time Fourier
Transform is given by

Y(n, ω) =
∞

∑
m=−∞

x[m]w[m− n]e−iωn. (7.18)
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Figure 7.68: (a) Plot of y(t). (b) Sampled
signal yn. (c) Translated windows show-
ing overlapping.
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Figure 7.69: The spectrogram plot of g(t)
in Example 7.15.
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Figure 7.70: The spectrogram plot of the
chirp signal, f (t), in Example 7.16.
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Figure 7.72: A plot of the rectangular
window with a = 0.25 and its Power
Spectral Density in dB/Hz.
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This window, named after Maurice S. Bartlett (1910-2002) is not used in
practice, but its Fourier transform is easily computed. The resulting plot of
the triangular window and its Power Spectral Density in dB/Hz is shown
in Figure 7.73. Here we plot

n=0:N-1;

w=1-abs(n-(N-1)/2)/((N-1)/2);

We see that is has a behavior similar to that of the rectangular window.
However, the spectral leakage is less. A more general form of the Bartlett
window is given by

w(t) =

{
1− 2|t|

T , |t| < T
2 ,

0, |t| ≥ T
2 .

A family of bell-shaped windows can be obtained in the form

w(t) = a + b cos(2π f t).

This is known as a generalized Hamming window, named after Richard
Wesley Hamming (1915-1998). Two members of this family are the Ham-
ming window,

w(t) =

{
0.538 + 0.461 cos 2πt

T , |t| < T
2 ,

0, |t| ≥ T
2 ,

and the Hann Window ( named after Julius Ferdinand von Hann (1839-
1921)),

w(t) =

{
0.5 + 0.5 cos 2πt

T , |t| < T
2 ,

0, |t| ≥ T
2 .
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Figure 7.73: A plot of the triangular win-
dow and its Power Spectral Density in
dB/Hz.

Another common window is the Blackman Window, named after Ralph
Beebe Blackman (1904-1990) .

w(t) =

{
0.427 + 0.497 cos 2πt

T + 0.0768 cos 4πt
T , |t| < T

2 ,
0, |t| ≥ T

2 .

In practice, one defines the windows at a set of discrete times. The Ham-
ming and Hann window can be encoded as

w[n] = 0.5
(

1− cos
(

2πn
N − 1

))
, n = 0, 1, . . . , N − 1

and the Hann window,

w[n] = a− b cos
(

2πn
N − 1

)
, n = 0, 1, . . . , N − 1,

where
a =

25
46
≈ 0.53836, b = 1− a ≈ 0.46164.

The plots of the Hamming and Hann windows and their Spectral Density
plots are shown in Figures 7.74-7.75, repsectively.

In Figure 7.76 we show a comparison of the Power Spectral Density plots
for the rectangular window as compared to a typical plot for the other win-
dows. We see that there are small differences in the latter three, but all
provide less leakage effects than the rectangular window. In particular, the
width of the central peaks is smaller and the heights of the sidelobes are
smaller.
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Figure 7.74: A plot of the Hann win-
dow and its Power Spectral Density in
dB/Hz.

n

0 200 400 600 800 1000

w
n

0

0.5

1
Hann Window

Frequency (Hz)

-500 0 500

P
o

w
er

/f
re

q
u

en
cy

 (
d

B
/H

z)

-100

-50

0
Power Spectral Density

Figure 7.75: A plot of the Hamming win-
dow and its Power Spectral Density in
dB/Hz.
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Power Spectral Density Figure 7.76: A comparison of the Power

Spectral Density plots for the rectangu-
lar window as compared to a typical plot
for the other windows discussed in the
text. Note how the rectangular window
leakage is larger than the others.

These figures were created using the MATLAB code below.

clear

close all

Fs=1024;

T=1;

N=T*Fs;

n=0:N-1;

fg=0;

for irn=1:4

fg=fg+1;

switch irn

case 1

figure(fg)

nz=.25*N;

w1=[zeros(1,nz),ones(1,N-2*nz),zeros(1,nz)];

subplot(211)

plot(n,w1)

title(’Rectangular Window’)

xlabel(’n’)

ylabel(’w_n’)

axis([0 N 0 1])

subplot(212)

pwelch(w1,[],[],[],Fs,’centered’);

axis([-500 500 -120 0])

case 2

figure(fg)
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w2=1-abs(n-(N-1)/2)/((N-1)/2);

subplot(211)

plot(n,w2)

title(’Triangular Window’)

xlabel(’n’)

ylabel(’w_n’)

axis([0 N 0 1])

subplot(212)

pwelch(w2,[],[],[],Fs,’centered’);

axis([-500 500 -120 0])

case 3

figure(fg)

w3=(1-cos(2*pi*n/(N-1)))/2;

subplot(211)

plot(n,w3)

title(’Hann Window’)

xlabel(’n’)

ylabel(’w_n’)

axis([0 N 0 1])

subplot(212)

pwelch(w3,[],[],[],Fs,’centered’);

axis([-500 500 -120 0])

case 4

figure(fg)

alpha=0.53836;

beta=1-alpha;

w4=alpha-beta*cos(2*pi*n/(N-1));

subplot(211)

plot(n,w4)

title(’Hamming Window’)

xlabel(’n’)

ylabel(’w_n’)

axis([0 N 0 1])

subplot(212)

pwelch(w4,[],[],[],Fs,’centered’);

axis([-500 500 -120 0])

end

end

[pxx1,f1]=pwelch(w1,[],[],[],Fs,’centered’);

[pxx2,f2]=pwelch(w2,[],[],[],Fs,’centered’);

[pxx3,f3]=pwelch(w3,[],[],[],Fs,’centered’);

[pxx4,f4]=pwelch(w4,[],[],[],Fs,’centered’);

figure(5)

plot(f1,10*log10(pxx1),f2,10*log10(pxx2), ...
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f3,10*log10(pxx3),f4,10*log10(pxx4))

axis([-500 500 -120 0])

xlabel(’Frequency (Hz)’)

ylabel(’Power/freq (dB/Hz)’)

title(’Power Spectral Density’)

legend(’Rectangular’,’Triangular’,’Hann’,’Hamming’)

figure(6)

plot(f1,10*log10(pxx1),f2,10*log10(pxx2), ...

f3,10*log10(pxx3),f4,10*log10(pxx4))

axis([-100 100 -120 0])

xlabel(’Frequency (Hz)’)

ylabel(’Power/freq (dB/Hz)’)

title(’Power Spectral Density’)

legend(’Rectangular’,’Triangular’,’Hann’,’Hamming’)

In MATLAB there are many built-in functions useful for studying the
spectral behavior of window functions. For example, wvtool produces the
Figures 7.77-7.79 which show comparisons with a rectangular window. In
Figure 7.77 we show the Power Spectral Density for a rectangular window
and a Hann window with N = 128. Lowering N to a value of 64, we can
see the effect of N on the spectral behavior of the windows in Figure 7.78.
In Figure Figure 7.79 we show the Power Spectral Density for a rectangular
window and a Hamming window with N = 64. It show similar characteris-
tics to that of the Hann window.
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Figure 7.77: A comparison of the Power
Spectral Density for a rectangular win-
dow and a Hann window with N = 128.

Window functions are useful for improving the spectral analysis of real
signals. Using window functions in the spectral domain, we create spectral
filters. These are useful in controlling the frequency content in the signal
and these filters are an important topic in signal processing. We leave any
detailed discussion of filtering and applications of windows to real signals
for texts devoted specifically to signal processing. In this book we mainly
have introduced the topic as an important application of Fourier analysis.
We will conclude with one more application, that of harmonic analysis when
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Figure 7.78: A comparison of the Power
Spectral Density for a rectangular win-
dow and a Hann window with N = 64.

Window Viewer

Samples

10 20 30 40 50 60

A
m

pl
itu

de

0

0.2

0.4

0.6

0.8

1

Time domain

Normalized Frequency  (×π rad/sample)

0 0.2 0.4 0.6 0.8

M
ag

ni
tu

de
 (

dB
)

-150

-100

-50

0

50
Frequency domain

Figure 7.79: A comparison of the Power
Spectral Density for a rectangular win-
dow and a Hamming window with N =
64.
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