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Systems of Differential Equations

5.1 Linear Systems

We consider the linear system

x′ = ax + by

y′ = cx + dy. (5.1)

This can be modeled using two integrators, one for each equation. Due to
the coupling, we have to connect the outputs from the integrators to the
inputs.

As an example, we show in Figure 5.1 the case a = 0, b = 1, c = −1,
d = 0. This is the linear system of first order equations for x′′ + x = 0, and
y = x′. We also insert the initial conditions x(0) = 1, y(0) = 2. Running the
model, results in the plots in Figures 5.2 and 5.3.
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Figure 5.1: Linear system using two
integrators.
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Figure 5.2: Linear system using two
integrators.

This system can by put in matrix form,[
x
y

]′
=

[
0 1
−1 0

] [
x
y

]

This can be modeled by introducing matrix multiplication in a gain block
as shown in Figure 5.4. The input and output to the Integrator block are
vectors. The output is split using a Demux block to plot x and y sepa-
rately. The Scope block plots the two signals separately as functions of t.
The XY Graph block is used to plat the phase plane, y vs x..

We can also use a State Space block to solve this system. This is shown
in Figure 5.5. We set the input as u = 0. In order to output both x and y,
we set A = [01; 0− 1], B = [0; 0], C = [10; 01], and D = [0; 0]. We also set
the initial conditions to [1; 2]. The solution plots are the same as shown in
Figures 5.2 and 5.3.

5.2 Nonlinear Models

The Jerk Equation

In this section we consider modeling a few common nonlinear sys-
tems with interesting behaviors in Simulink. These examples stem from a
variety of applications such as biological systems, predator-prey models,
chemical reactions, such as Michaelis-Menten kinetics, circuits, and other
dynamical systems. We begin with the jerk model.

If one denotes x(t) as the position as a function of time, t, then we are
familiar with the idea that x′(t) would be the velocity and x′′(t) the accel-
eration. However, you might not be as familiar with the jerk. This is the
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Figure 5.3: Linear system using two
integrators.
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Figure 5.4: Linear system using matrix
operation.

third derivative, x′′′(t). The jerk equation modeled in Figure 5.6 is

x′′′ + cx′′ + bx′ + ax + x2 = 0.

As a third order equation, one needs initial values for x, x′, and x′′.

Van der Pol Equation

Solutions, known as limit cycles, are common in nature. Rayleigh
investigated the problem

x′′ + c
(

1
3
(x′)2 − 1

)
x′ + x = 0 (5.2)

in the study of the vibrations of a violin string. Balthasar van der Pol
(1889-1959) studied an electrical circuit, modeling this behavior. Limit
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Figure 5.6: Nonlinear jerk model.

cycles are isolated periodic solutions towards which neighboring states
might tend when stable. A slight change of the Rayleigh system leads to
the van der Pol equation:

x′′ + c(x2 − 1)x′ + x = 0 (5.3)

The limit cycle is found in the model and solutions in Figures 5.7-5.9.
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Figure 5.7: van der Pol equation.

Lorenz Equations

The Lorenz model is another typical model used as an example of
a nonlinear system. The Lorenz model is a simple model for atmospheric
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Figure 5.8: Solution plot for the van der
Pol equation.

convection developed by Edward Lorenz in 1963. The system is given by
the three equations

dx
dt

= σ(y− x)

dy
dt

= x(ρ− z)− y

dz
dt

= xy− βz.

Figures 5.10-5.12 show the models and a famous solution to the Lorenz
equations.

Using the data sent to the MATLAB workspace, a three dimensional
model can be constructed. The following produces an animation of the
data resulting in a 3D plot.

Z=simout.data;

N=length(Z(:,1));

figure(3)

axHndl = gca;

figNumber = gcf;

hndlList = get(figNumber,’UserData’);

set(axHndl, ...

’XLim’,[0 50],’YLim’,[-20 20],’ZLim’,[-30 30], ...

’XTick’,[],’YTick’,[],’ZTick’,[], ...

’SortMethod’,’childorder’, ...

’Visible’,’on’, ...

’NextPlot’,’add’, ...
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Figure 5.9: Phase plane plot for the van
der Pol equation.
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Figure 5.10: Model for Lorenz equa-
tions.

’View’,[-37.5,30], ...

’Clipping’,’off’);

xlabel(’x’);

ylabel(’y’);

zlabel(’z’);

y(1) = Z(1,1);

y(2) = Z(1,2);

y(3) = Z(1,3);

L = 5;

Y = y*ones(1,L);
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Figure 5.11: XY plot for the Lorenz
model.

cla;

head = line(’color’,’r’, ’Marker’,’.’,’MarkerSize’,10,’LineStyle’,’none’, ...

’XData’,y(1),’YData’,y(2),’ZData’,y(3)) ;

body = animatedline(’color’,’b’, ’LineStyle’,’-’) ;

tail = animatedline(’color’,’b’, ’LineStyle’,’-’) ;

for j=2:N

y(1) = Z(j,1);

y(2) = Z(j,2);

y(3) = Z(j,3);

% Update the plot

Y = [y Y(:,1:L-1)];

set(head, ’XData’, Y(1,1), ’YData’, Y(2,1), ’ZData’, Y(3,1));

addpoints(body, Y(1,2), Y(2,2), Y(3,2));

addpoints(tail, Y(1,L), Y(2,L), Y(3,L));

pause(0.1)

% Update the animation every ten steps

if ~mod(j,10)

drawnow;

end

end

Lotka-Volterra Predator-Prey Model

Two well-known nonlinear population models are the predator-
prey and competing species models. In the predator-prey model, one typ-
ically has one species, the predator, feeding on the other, the prey. We will
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Figure 5.12: Three dimensional plot for
the Lorenz model.

look at the standard Lotka-Volterra model in this section. The competing The Lotka-Volterra model is named
after Alfred James Lotka (1880-1949)
and Vito Volterra (1860-1940).

species model looks similar, except there are a few sign changes, since one
species is not feeding on the other. Also, we can build in logistic terms into
our model. We will save this latter type of model for the homework.

The Lotka-Volterra model takes the form The Lotka-Volterra model of population
dynamics.

ẋ = ax− bxy,

ẏ = −dy + cxy, (5.4)

where a, b, c, and d are positive constants. In this model, we can think
of x as the population of rabbits (prey) and y is the population of foxes
(predators). Choosing all constants to be positive, we can describe the
terms.

• ax: When left alone, the rabbit population will grow. Thus a is the
natural growth rate without predators.

• −dy: When there are no rabbits, the fox population should decay.
Thus, the coefficient needs to be negative.

• −bxy: We add a nonlinear term corresponding to the depletion of
the rabbits when the foxes are around.

• cxy: The more rabbits there are, the more food for the foxes. So, we
add a nonlinear term giving rise to an increase in fox population.

SIR Model of Disease

Another interesting area of application of differential equation
is in predicting the spread of disease. Typically, one has a population of
susceptible people or animals. Several infected individuals are introduced
into the population and one is interested in how the infection spreads and
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if the number of infected people drastically increases or dies off. In the
SIR model one uses a compartmental analysis by breaking the population
into three classes. First, we let S(t) represent the healthy people, who are
susceptible to infection. Let I(t) be the number of infected people. Of
these infected people, some will die from the infection and others could
recover. We will consider the case that initially there is one infected person
and the rest, say N, are healthy. Can we predict how many deaths have
occurred by time t?

We can first look into a linear model. We assume that the rate of change
of any population would be due to those entering the group less those
leaving the group. For example, the number of healthy people decreases
due infection and can increase when some of the infected group recovers.
Let’s assume that a) the rate of infection is proportional to the number of
healthy people, aS, and b) the number who recover is proportional to the
number of infected people, rI. Thus, the rate of change of healthy people is
found as

dS
dt

= −aS + rI.

Let the number of deaths be D(t). Then, the death rate could be taken
to be proportional to the number of infected people. So,

dD
dt

= dI

Finally, the rate of change of infected people is due to healthy people
getting infected and the infected people who either recover or die. Using
the corresponding terms in the other equations, we can write the rate of
change of infected people as

dI
dt

= aS− rI − dI.
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This linear system of differential equations can be written in matrix
form.

d
dt

 S
I
D

 =

 −a r 0
a −d− r 0
0 d 0


 S

I
D

 . (5.5)

The commonly used nonlinear SIR model is given by

dS
dt

= −βSI

dI
dt

= βSI − γI

dR
dt

= γI, (5.6)

where S is the number of susceptible individuals, I is the number of in-
fected individuals, and R are the number who have been removed from
the the other groups, either by recovering or dying. The Simulink model is
given in Figure 5.14.
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Figure 5.14: SIR epidemic model.

Michaelis-Menten Kinetics

The Michaelis-Menten kinetics reaction is given by

E + S
k1

// ES
k3oo

k2

// E + P.

This approximates the dynamics under the assumption that the concen-
tration of the enzyme remains constant. The enzyme interacts with the
substrate to form an enzyme–substrate complex, leading to a release of
enzyme. E, S, and P are the enzyme, substrate, and product, respectively.
The system of differential equations corresponding to the dynamics of
these reactions is
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d[S]
dt

= −k1[E][S] + k3[ES],

d[E]
dt

= −k1[E][S] + (k2 + k2)[ES],

d[ES]
dt

= k1[E][S]− (k2 + k2)[ES],

d[P]
dt

= k3[ES]. (5.7)

In chemical kinetics one seeks to determine the rate of product formation
(v = d[P]/dt = k3[ES]). Assuming that [ES] is a constant, one seeks v as a
function of [S] and the total enzyme concentration [ET ] = [E] + [ES].

The Chua Circuit

The Chua circuit, as shown in Figure 5.15, consists of an inductor, a
resistor, two capacitors and a nonlinear resistor, or other nonlinear compo-
nent. The system of differential equations is found using Kirchoff’s circuit
laws. There are two junctions, labeled as 1 and 2. The total current into
each node equals the current leaving the node. There are three loops over
which one sums the potential rises and drops.

L

R

C2

1

C1

2

r

IL

IR

iq̇2 q̇1

Figure 5.15: The Chua circuit used in
this note.

Using junction rules, we have at nodes 1 and 2:

IL = q̇2 + IR, (5.8)

IR = q̇1 + i. (5.9)

Kirchoff’s Loop rules for the three small loops are

L
dIL
dt

= −V2, (5.10)

IRR = V2 −V1, (5.11)

Vr =
q1

C1
. (5.12)

We seek a system of differential equations for V1, V2, and IL. Noting that
qi = CiVi, for i = 1, 2, we find from Equations (5.8) and (5.11):

C2V̇2 = IL − R−1(V2 −V1).
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From Equation (5.9) we have, using Equation (5.11),

C1V̇1 = R−1(V2 −V1)− g(V1),

where g(x) gives the characteristics of the nonlinear component in the
circuit. This is typically of the form

g(x) = ax +
1
2

b (|x + 1| − |x− 1|) .

This function is show in Figures 5.16-5.17 for a = 0 abd a 6= 0.

x

y

1

-1

1-1

Figure 5.16: g(x) =
1
2 (|x + 1| − |x− 1|) .
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Figure 5.17: g(x) = ax +
1
2 b (|x + 1| − |x− 1|) .

The last equation comes from Equation (5.10) and often a term −rIL is
added. So, we have

C1V̇1 = R−1(V2 −V1)− g(V1), (5.13)

C2V̇2 = IL − R−1(V2 −V1), (5.14)

LİL = −V2 − rIL. (5.15)

These equations are made dimensionless by introducing some charac-
teristic scales. Let C1 and R1 be characteristic scales of capacitance and
resistance. We let α−1 = R/R1, r̄ = r/R1, and define

x =
V1

VC
, y =

V2

VC
, z =

ILR1

VC
.

This gives

R1C1 ẋ = α(y− x)− g(V1)/VC, (5.16)

R1C2ẏ = z− α(y− x), (5.17)
L

R1
ż = −y− r̄z. (5.18)
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Figure 5.18: Nonlinear Chua model.

Finally, we can rescale the time as τ = t/R1C1, where R1C1 is the char-
acteristic time constant. Then,

d
dt

=
dτ

dt
d

dτ
=

1
R1C1

d
dτ

.

So,

ẋ = α(y− x)− g(V1)/VC, (5.19)
C2

C1
ẏ = z− α(y− x), (5.20)

L
R2

1C1
ż = −y− r̄z. (5.21)

So, we define σ = C1
C2

, β =
R2

1C1
L , γ = r̄, and

f (x) = g(V1)/aVC.

Then,

ẋ = α(y− x− f (x)), (5.22)

ẏ = σ(z− α(y− x)), (5.23)

ż = −βy− γz. (5.24)

Finally, many models have no parameters in the second equation. So,
we let x = µX, y = µY and z = νZ to see if this is possible. Then,

µẊ = αµ(Y− X)− a f (µX), (5.25)

µẎ = σ(νZ− αµ(Y− X)), (5.26)

νŻ = −βµY− γνZ. (5.27)

Simplifying, we have

Ẋ = α(Y− X)− α

µ
f (µX), (5.28)
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Ẏ = σ(
ν

µ
Z− α(Y− X)), (5.29)

Ż = − βµ

ν
Y− γZ. (5.30)

So, we need to chose σ = α−1 and µ
ν = σ.

Ẋ = α(Y− X− f̄ (X)), (5.31)

Ẏ = Z−Y + X, (5.32)

Ż = −β̄Y− γZ, (5.33)

where β̄ = βσ and f̄ (X) = µ f (µX). This is the version of the model we can
explore.

We have obtained a dimensionless set of first order differential equa-
tions of the form

ẋ = α(y− x− f (x)), (5.34)

ẏ = z− y + x, (5.35)

ż = −βy− γz, (5.36)

where
f (x) = ax +

1
2

b (|x + 1| − |x− 1|) .

We can write this system in matrix form as

dx
dt

=

 −α α 0
1 −1 1
0 −β −γ

 x +

 −α f (x)
0
0

 ,

where

x =

 x
y
z

 .

We can model this in Simulink as shown in Figure 5.19. The linear part
of the system is encoded as a subsystem. The subsystem is shown in Fig-
ure 5.20.

The subsystem takes inputs of the variables α, β, and γ and outputs the
matrix in the linear part of the system, L. Then, the nonlinear part of the
system is added to Lx. This is integrated with given initial conditions to
arrive at the solution. A sample of the solutions is given in Figures 5.21

and 5.22.
The plots in Figures 5.21 and 5.22 were created by using the to Workspace

block. The variable name was changed to chuaput and the data was sent
to the MALAB workspace. Then the following code was used to plot the
data.

% Plot x, y, z vs t

figure(1)
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Figure 5.19: Chua circuit.
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Figure 5.20: Linear subsystem of Chua
model.

plot(chuaout.time,chuaout.Data);

xlabel(’t’)

legend(’x(t)’,’y(t)’,’z(t)’,’Location’,’south’,’Orientation’,’horizontal’)

% Plot spacecurve

figure(2)

x=chuaout.data(:,1);

y=chuaout.data(:,2);

z=chuaout.data(:,3);

plot3(x,y,z)

xlabel(’x’)

ylabel(’y’)

zlabel(’z’)
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Figure 5.21: Solutions of Chua model as
a function of time.

Figure 5.22: 3d plot of Chua solutions.
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