
3

Second Order Differential Equations

We now turn to second order differential equations. Such
equations involve the second derivative, y′′(x). Let’s assume that we can
write the equation as

y′′(x) = F(x, y(x), y′(x)).

We would like to solve this equation using Simulink. This is accomplished
using two integrators in order to output y′(x) and y(x).

input
∫

outputy′y′′
(b)

input
∫

output
yy′

(a)

∫
output

yy′
input

∫y′′
(c)

Figure 3.1: Basic schemes for using
Integrator blocks for solving second
order differential equations.

As shown in Figure 3.1(b), sending y′′(x) into the Integrator block, we
get out y′(x). This is similar to using y′(x) to get y(x) in Figure 3.1(a). As
shown in Figure 3.1(c), combining two Integrator blocks, we can input
y′′(x) = F(x, y, y′) and get out y and y′. Feeding this output into F(x, y, y′),
we then obtain a model for solving the second order differential equation.
The general schematic for solving an initial value problem of the form
y′′ = F(x, y, y′), y(0) = y0, y′(0) = v0, is shown in Figure 3.2.

∫
output

yy′∫y′′

F(x, y, y′)

y′(0) y(0)

Figure 3.2: This is a general schematic
for solving an initial value problem of
the form y′′ = F(x, y, y′), y(0) = y0,
y′(0) = v0.

In this chapter we will demonstrate the modeling of second order con-
stant coefficient differential equations and show some simple applications.

44 solving differential equations using simulink

3.1 Constant Coefficient Equations

We can solve second order constant coefficient differential

equations using a pair of integrators. An example is displayed in Figure
3.3. Here we solve the constant coefficient differential equation

ay′′ + by′ + cy = 0

by first rewriting the equation as

y′′ = F(y, y′) = − b
a

y′ − c
a

y.

Example 3.1. Model the initial value problem

y′′ + 5y′ + 6y = 0, y(0) = 0, y′(0) = 1,

in Simulink.
The simulation in Figure 3.3 solves the equation

y′′ + 5y′ + 6y = 0

with appropriate initial conditions. There are two integrators. One
integrates the first input, y′′, and the other integrates the output of
the first integrator, y′, giving an output of y. Each Integrator block
needs an initial condition. The first takes y′(0) = 1 and the second
needs y(0) = 0.

y' yy''

b/a y'

c/a y

Second Order Constant Coefficient ODE

1
s

Integrator

1
s

Integrator1

5

b/a

6

c/a

Scope

Figure 3.3: Model for the second order
constant coefficient ODE y′′ + 5y′ +
6y = 0.

The outputs, y and y′ are multiplied by the appropriate constants
using a Gain block. They are then combined to form the input,
F(y, y′) = −5y′ − 6y, to the system of integrators. Running the
simulation for 5 units of time, the Scope gives the solution shown in
Figure 3.4.
Analytical Solution

second order differential equations 45

x
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

y

0

0.05

0.1

0.15
y(x) vs x Figure 3.4: Solution plot for the initial

value problem y′′ + 5y′ + 6y = 0,
y(0) = 0, y′(0) = 1 using Simulink.

Recall the solution of this problem is found by first seeking the
two linearly independent solutions. Assuming solutions of the form
y(x) = erx, the characteristic equation is

r2 + 5r + 6 = 0.

The roots of the equation are r = −2,−3. Therefore, the two linearly
independent solutions are y1(x) = e−2x and y2(x) = e−3x. The
general solution is

y(x) = c1e−2x + c2e−3x.

The initial conditions hold if

0 = c1 + c2, 1 = −2c1 − 3c2.

So, c1 = 1 and c2 = −1. The solution to the initial value problem is

y(x) = e−2x − e−3x.

The plot of this solution is shown in Figure 3.5. It is seen to agree
with the solution shown in Figure 3.4.

x

y

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.15

Figure 3.5: Plot of the exact solution
of the initial value problem y′′ + 5y′ +
6y = 0, y(0) = 0, y′(0) = 1.

Harmonic Oscillation

In the following we will suppress units.
In SI units the mass is in kilograms
(kg), displacement x is in meters (m),
and force is in Newtons (N). Then,
k has units of N/m. One could also
use CGS units of g, cm, dynes, and
dynes/cm, respectively. Time units
will generally be in seconds, leaving
frequencies in s−1, or Hertz (Hz).

A typical application of second order, constant coefficient differential equa-
tions is the simple harmonic oscillator as shown in Figure 3.6. Consider
a mass, m, attached to a spring with spring constant, k. According to

46 solving differential equations using simulink

Hooke’s law, a stretched spring will react with a force F = −kx, where
x is the displacement of the spring from its unstretched equilibrium. The
mass experiences a net for and will accelerate according to Newton’s Sec-
ond Law of Motion, F = ma. Setting these forces equal and noting that
a = ẍ, we have

mẍ + kx = 0.

m

m

k

F = −kx
x

Figure 3.6: A simple harmonic oscillator
consists of a mass, m, attached to a
spring with spring constant, k.

Here we assume that x = x(t) and let the derivatives be time deriva-
tives. The characteristic equation is given by mr2 + k = 0, or

r = ±i

√
k
m
≡ ±iω0.

Then, the general solution is given as

x(t) = A cos ω0t + B sin ω0t.

We will model the equation for simple harmonic motion and it varia-
tions in the next examples. Namely, we will look at Simulink examples of
simple harmonic motion, damped harmonic motion, and forced harmonic
motion.

Example 3.2. Simple Harmonic Motion
A Simulink model for simple harmonic motion is shown in Figure

3.7. We write the differential equation in the form

ẍ = − 1
m
(kx).

For this example we set k = 5 and m = 2. We also specify the initial
conditions x(0) = 1 and ẋ(0) = 0 in the two integrators.

Simple Harmonic Oscillator

x' xx'' 1
s

Integrator

1
s

Integrator1

5

k

Scope1

-1/2

-1/m

Figure 3.7: A model for simple har-
monic motion, mẍ + kx = 0.

The output on the scope is shown in Figure 3.8 for t ∈ [0, 10].
Solving the initial value problem we find that x(t) = cos ω0t, where

ω0 =

√
k
m

=

√
5
2

.

Thus, the period is

T =
2π

ω0
≈ 3.9738s.

From Figure 3.8 we might have estimated the period as 4 s.

second order differential equations 47

Time offset: 0

Figure 3.8: Output for the solution of
the simple harmonic oscillator model.

Example 3.3. Damped Simple Harmonic Motion
A simple modification of the harmonic oscillator is obtained by

adding a damping term proportional to the velocity, ẋ. This results in
the differential equation

mẍ + bẋ + kx = 0,

where b > 0 is the damping constant.
We can verify the damping behavior in the solution by studying

the characteristic equation,

mr2 + br + k = 0,

where x(t) = ert is a guess for form of the the linearly independent
solutions. The solutions of the characteristic equation are found
using the quadratic formula,

r =
−b±

√
b2 − 4km

2m
.

If b2 − 4km < 0, then the roots of the characteristic equation are
complex conjugate roots and the solution takes the form

x(t) = e−bt/2m [A cos ω0t + B sin ω0t] ,

where

ω0 =

√
4km− b2

2m
.

In this case one has oscillatroy solutions with an exponentially decay-
ing amplitude.

A Simulink model for the damped harmonic oscillator can be
created using the differential equation in the form ẍ = − 1

m (bẋ + kx).
This leads to a modification of the model in Figure 3.7. We simply
add a term bẋ. The model is shown in Figure 3.9.

We consider a specific example using k = 5, m = 2, and b = 0.1.
The initial conditions x(0) = 1 and ẋ(0) = 0 are used in the two

48 solving differential equations using simulink

Damped Oscillator

x' xx'' 1
s

Integrator

1
s

Integrator1

0.1

b
5

k

Scope1

1/2

1/m

Figure 3.9: A model for damped simple
harmonic motion, mẍ + bẋ + kx = 0.

Time offset: 0

Figure 3.10: Output for the solution of
the damped harmonic oscillator model.

integrators. Running the model for t ∈ [0, 20], the solution seen in the
Scope block is shown in Figure 3.10. We note that ω0 = 1.5809 Hz,
or the period of oscillation is T = 3.9743s. This is consistent with the
Simulink solution.

Applying the initial conditions, x(0) = 1 and ẋ(0) = 0, to the
general solution, we find that A = 1 and

0 = − b
2m

A + ω0B, or

B =
b

2mω0
. (3.1)

Therefore, the particular solution of the initial value problem can be
written as

x(t) = e−bt/2m
[

cos ω0t +
b

2mω0
sin ω0t

]
.

For the parameter values in the problem a plot of this oslution is
shown in Figure 3.11 and agrees with Figure 3.10 for this example.

The plot in Figure 3.11 was obtained using MATLAB’s ezplot
function and it symbolic capability. The code is given below for this
example.

syms t

second order differential equations 49

t

0 5 10 15 20

-1

-0.5

0

0.5

1

Damped Harmonic Motion Figure 3.11: The analytic solution
for the damped harmonic oscillator
example.

b=.1; m=2; k=5;

omega=sqrt(4*k*m-b^2)/2/m;

alpha=b/2/m;

A=1;

B=b/(2*m*omega);

x=exp(-alpha*t)*(A*cos(omega*t)+B*sin(omega*t));

ezplot(x,[0,20]);

title(’Damped Harmonic Motion’)

Another modification of the problem is to introduce forcing. In general,
the corresponding nonhomogeneous equation is mẍ + bẋ + kx = f (t). One
need only add f (t) to the sum that is sent into the first Integrator block.
This also requires the Clock block and some function blocks. We show this
in the next examples.

Example 3.4. Forced Simple Harmonic Motion
We consider a simple sinusoidal forcing and no damping given by

mẍ + kx = F0 sin ωt.

The Simulink model in Figure 3.9 is modified to produce the model
in Figure 3.12 by adding a Sine Wave Function and a Clock. We left
the damping Gain block but set the multiplier to zero. We also note
that the Sum block shape was changed to rectangular to accommo-
date more inputs and to direct a consistent flow of the processes.

Using the constants m = 2, k = 10, we set F0 = 1 and ω = 2 in the
Sine Wave Function. This results in the output shown in Figure 3.13.
Note that the solution is a modulated oscillation. This is understood
from looking at the analytic form of the solution.

Recall that we can obtain the analytic solution to this problem us-
ing the Method of Undetermined Coefficients. The general solution

50 solving differential equations using simulink

Forced Oscillator

x' xx'' 1
s

Integrator

1
s

Integrator1

0

b
10

k

Scope1

1/2

1/m

t

Sine Wave

Function

Clock

Figure 3.12: A model for forced simple
harmonic motion, mẍ + kx = sin ωt.

Time offset: 0

Figure 3.13: Output for the solution of
the forced simple harmonic oscillator
model.

is a solution of the homogeneous problem plus a particular solution,
or guess, to the nonhomogeneous problem. Thus, we have

x(t) = A cos ω0t + B sin ω0t + xp(t).

We make an educated guess for a function xp(t) satisfying

mẍp + kxp = F0 sin ωt.

Knowing that two derivatives of a sine function returns a constant
times the sine function, we assume that xp(t) = a sin ωt, providing
that this is not a solution of the homogeneous problem. Namely,
ω 6= ω0.

Inserting this guess into the differential equation, we have

−mω2a sin ωt + ka sin ωt = F0 sin ωt.

Since this is true for all t, −mω2a + ka = F0. Noting that k = mω2
0, we

can solve for a,

a =
F0

m(ω2
0 −ω2)

.

Then, the general solution is given by

x(t) = A cos ω0t + B sin ω0t +
F0

m(ω2
0 −ω2)

sin ωt, ω 6= ω0.

second order differential equations 51

The initial conditions, x(0) = 1 and ẋ(0) = 0, were again used
in the two integrators. The first condition gives A = 1. The second
condition can be written as

0 = ω0B +
F0ω

m(ω2
0 −ω2)

.

Solving for B, we obtain

B = − F0ω

mω0(ω
2
0 −ω2)

.

t

0 20 40 60 80 100

-1.5

-1

-0.5

0

0.5

1

1.5

Forced Harmonic Motion Figure 3.14: The analytic solution for
the forced harmonic oscillator example.

Inserting the constants1 in this problem, the exact solution to the 1 Recall that m = 2, k = 10, F0 = 1,
ω = 2. Therefore, ω0 =

√
k/m =

√
5.initial value problem is found as

x(t) =
1
2

sin 2t + cos
√

5t− 1√
5

sin
√

5t.

The plot of this solution is in Figure 3.14. It agrees with that given by
the Simulink model in Figure 3.13.

Example 3.5. Derive a modulation form of the solution from Exam-
ple 3.4. Details showing how to derive a modu-

lated form, x(t) = C(ψ(t)) sin(θ(t) + δ).The solution,

x(t) =
1
2

sin 2t + cos
√

5t− 1√
5

sin
√

5t, (3.2)

in Figure 3.14 looks like what one would get when adding sinusoidal
functions with frequencies that are close. It is the principle used by
piano tuners when using a tuning fork to tune a piano key. If the
piano key note is slightly different from that of a tuning fork, then
when both are sounded at the same time, one hears a beat pattern.
This is heard as the low frequency of the envelope similar to that in
Figure 3.14. In the last example we had two frequencies, ω = 2 and
ω0 =

√
5 ≈ 2.2361, which were close together.

52 solving differential equations using simulink

We will combine the the trigonometric functions in Equation (3.2)
and show the root of this modulation. We seek a solution in the form

x(t) = C(ψ(t)) sin(θ(t) + δ),

where C(ψ(t)) is the modulation amplitude for a higher frequency
sinusoidal function and δ is a phase shift. This is accomplished using
trigonometric identities.

In the following we will need the result that

y = α cos θ + β sin θ

= a sin(θ + ϕ). (3.3)

Expanding the second expression, we have

a sin(θ + ϕ) = a sin ϕ cos θ + a cos ϕ sin θ.

Equating coefficients of cos θ and sin θ, we have

α = a sin ϕ, β = a cos ϕ.

Adding the squares of these equations,

a2 = α2 + β2,

and taking the ratio of the equations yield

tan ϕ =
α

β
.

We now use this result to combine the terms in x(t) into a single
sine function with a varying amplitude. We begin by combining the
last two terms of Equation (3.2) as

cos
√

5t− 1√
5

sin
√

5t = a sin(
√

5t + ϕ)

and set θ =
√

5t, α = 1 and β = − 1√
5

. Then, we have that

a2 = 1 +
1
5
=

6
5

and
tan ϕ = −

√
5.

Since the angle is in the second quadrant of the βα-plane, ϕ = π −
tan−1(

√
5). This gives the solution in the new form

x(t) =
1
2

sin 2t +

√
6
5

sin(
√

5t + ϕ). (3.4)

We now combine the terms in Equation (3.4). Assume that the
solution is the sum of the two sine functions

x(t) = A sin(θ + ψ) + B sin(θ − ψ), (3.5)

second order differential equations 53

where the variables A, B, θ and ψ are to be determined. It is easy to

see that A = 1
2 , B = a =

√
6
5 , and

θ + ψ = 2t, θ − ψ =
√

5t + ϕ.

Solving this system,

θ =
(2 +

√
5)t + ϕ

2
, ψ =

(2−
√

5)t− ϕ

2
.

Expanding the sine functions in Equation (3.5), we have

x(t) = (A + B) sin θ cos ψ + (A− B) cos θ sin ψ

= [(A− B) sin ψ] cos θ + [(A + B) cos ψ] sin θ

= α cos θ + β sin θ, (3.6)

where

α = (A− B) sin ψ

β = (A + B) cos ψ.

We can combine the terms in α cos θ + β sin θ in the form

x(t) = α cos θ + β sin θ = C(ψ(t)) sin(θ(t) + δ)

using the previous derivation, leading to

C2 = α2 + β2

= (A− B)2 sin2 ψ + (A + B)2 cos2 ψ

= A2 + B2 + 2AB cos 2ψ

=
29
20

+

√
6
5

cos 2ψ

tan δ =
α

β
.

=

(
A− B
A + B

)
tan ψ.

=

 1
2 −

√
6
5

1
2 +

√
6
5

 tan ψ

=

(√
5− 2

√
6√

5 + 2
√

6

)
tan ψ.

Thus, we have x(t) = C sin(θ(t) + δ) for C and δ defined by the
above relations,

θ =
(2 +

√
5)t + ϕ

2
, ψ =

(2−
√

5)t− ϕ

2
,

and tan ϕ = −
√

5. This gives a modulated solution by an ampli-
tude envelope with a slowly varying frequency and high freqency
oscillations given by the function sin(θ(t) + δ), whose period is
T = 2π

ωθ
= 4π

2+
√

5
= 2.9665s as compared to π

ωψ
= 2π
|2−
√

5| = 26.6160s for

the envelope. This function is shown in Figure 3.15.

54 solving differential equations using simulink

t

0 20 40 60 80 100

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Analytic Modulated Solution Figure 3.15: The solution, x(t) =
C sin(θ(t) + δ), for the forced harmonic
oscillator example.

Forced damped oscillator

Example 3.6. Model the forced, damped harmonic oscillator.
A simple application is the forced, damped harmonic oscillator.

Recall that this is modeled using a second order, constant coefficient
equation,

mx′′ + cx′ + kx = F(t)

for some driving force F(t). Rewriting the equation, we have

x′′ =
1
m

F(t)− c
m

x′ − k
m

x.

This suggests a model like that shown in Figure 3.16. In this exam-
ple the forcing term was taken as a step function.

F(t) =

{
0, t < 1,
1, t ≥ 1.

The Step function block is set to start at F = 0 and increases to a
constant value of F = 1 after t = 1. The other constants are given as
m = 1.0 kg, c = 0.5 kg/s, and k = 2.0 N/m.

In Figure 3.17 is shown the solution plot for the forced, damped,
harmonic oscillator model with initial values of x(0) = 1 and x′(0) =
0. In this model there is also an XY Graph block. The position and
velocity data is fed into this block and the output is a plot of the
solution in the phase plane. This is shown in Figure 3.18.

3.2 Projectile Motion

Another example is that of projectile motion. This is a system
of equations or a single equation for a vector function. Let the position
vector for the projectile be given by r = [x, y]. Then, the projectile satisfies

second order differential equations 55

Forced, damped oscillator

x' xx'' 1
s

Integrator

1
s

Integrator1

0.5

c/m

2

k/m

Step

1

1/m

Scope

Scope1

XY Graph

Figure 3.16: Forced, damped oscillator.

Figure 3.17: Scope plot of the solution
of the forced, damped, harmonic
oscillator model.

the second order equation r′′ = −g. We solve this equation using two
integrators and setting up the system with a two component vector. [For
a simpler model solving for a two component vector, look at the Bouncing
Ball Problem in the next section.]

To make things more interesting, we can add a drag force. Thus, we
solve the system

r′′ = −g− kvv.

The magnitude of the drag is proportional to v2. If the projectile is moving
directly upward, the drag is negative, opposing the motion. The model
will need functions to compute the speed, v, and will need two integrators
with the appropriate initial position and velocity. The gravitational force
will also be provided with a constant block. This model is shown in Figure
3.19

For a change, we set up the model in British units (foot-pound-second).
The initial position is [0, 4] ft and the initial velocity is [80, 80] ft/s. The

56 solving differential equations using simulink

Figure 3.18: XY Graph output for
the solution of the forced, damped,
harmonic oscillator model.

gravitational constant is −g = [0,−32] ft/s2. The value of the drag coeffi-
cient does not show in the figure. [The value shows when the Gain block
is resized.] The position and speed vs time plots are shown in Figure 3.20.
Note that changing the simulation time is one way to only display the time
that the mass is above y = 0. Also, the plot of speed shows that the speed
is always positive.

Also shown in this model is the use of the XY Graph block. It takes
two inputs in order to plot the path y vs x. XY Graphs automatically plot
when the simulation is run, as opposed to the Scope plots, which need to
be double-clicked to display the plots. One also needs to double-click the
XY Graph block to change the scale shown. For this model the output is
shown in Figure 3.21. This plot is useful for determining the maximum
height and range of the projectile.

.

3.3 The Bouncing Ball

As seen in the projectile motion model output in Figure 3.20,
the projectile may not stop when it reaches the ground. One needs a way
to determine when this has happened and reverse the direction of the
motion. In this section we will look at a simple model in which a ball goes
through free fall and bounces when it reaches the ground.

The ball satisfies the second order equation x′′ = −g. Noting that the
velocity is v = x′, this can be written as two first order equations,

x′ = v,

v′ = −g. (3.7)

second order differential equations 57

[x,y]

Initial Velocity

[x',y']
[x'',y'']

Projectile Motion

1
sxo

Integrate x''

1
sxo

Integrate x'
XY Graph

[80,80] [0,4]

Initial Position

Dot Product
Product

u

Sqrt v vs t

y vs t

-K-

Drag Coefficient

[0,-32]
gravitational

acceleration

Figure 3.19: Projectile motion model.

Figure 3.20: Output of the Scope Blocks
for the projectile motion model for
position and velocity vs time.

This system of equations can be then be put into matrix form,

d
dt

[
x
v

]
=

[
0 1
0 0

] [
x
v

]
+

[
0
−g

]

This system can be used to produce the Simulink model in Figure 3.22,
where we have introduced initial conditions x(0) = 3 and v(0) = 0 in the
form of an initial vector, [3; 0].

In the model we use matrix multiplication to set up the right hand side
of the equation. A 2× 2 matrix is entered in the gain and the acceleration
term is added separately. In order to plot the position vs time, we put a
Demux block to separate out the components of the “state” vector and
added a Terminator block to terminate the unused v-branch.

The output of the simulation, which was run for a time of 1 second, is
shown in Figure 3.23. Note that the ball has fallen below ground level. We
would like for the ball to bounce from the ground. In order to do so, we
will test to see when x ≤ 0 and v ≤ 0. This is accomplished by adding
some test conditions to the Integrator block.

58 solving differential equations using simulink

Figure 3.21: Output of the XY Graph
block for the projectile motion model
showing vertical position vs horizontal
position.

x'=v
v'=-g

[x,v]

x[x,v]'

Free Fall

v

[0 1;0 0]* u

Gain

[0;-9.8]

Acceleration

Scope

Terminator

1
sxo

Integrator

[3;0]

Constant

Figure 3.22: Free fall model.

Double-click the Integrator block and set the External reset to rising.
This will add a third input as shown in Figure 3.24. Then, replace the
initial condition Constant block with an IC block. This is found in the
Signal Attributes group. It looks like the IC block in Figure 3.24.

Next, we enter the conditions determining when the block hits the
ground and change the block velocity. The input to the condition con-
sist of the Boolean condition, (u[1]<=0)&&(u[2]<0), and the new position
and velocity. Here u[1] and u[2] are the position and velocity components.
We set the position as u[1] and the velocity as -0.8*u[2]. These expressions
are entered using Fcn blocks from the User-Defined Function group. This
model is shown in Figure 3.25 with the needed connections to the Fcn
blocks and the Integrator block. This output is shown in Figure 3.26.

3.4 Nonlinear Pendulum Animation

Plotting and animating solutions from a model can be done by
sending the output of a model to MATLAB. In this section we will solve
a nonlinear pendulum problem and show how one sends the output to
create a simple animation of the pendulum motion.

A simple pendulum consists of a point mass m attached to a string of
length L as shown in Figure 3.27. It is released from an angle θ0. Newton’s

second order differential equations 59

Figure 3.23: Height vs time Scope plot
for the free fall model.

Figure 3.24: Modified Integrator and IC
blocks.

Second Law of Motion tells us that the net force is the mass times the
acceleration. So, we can write

mẍ = −mg sin θ.

Next, we need to relate x and θ. x is the distance traveled, which is the
length of the arc traced out by the point mass. The arclength is related to
the angle, provided the angle is measure in radians. Namely, x = rθ for
r = L. Thus, we can write

mLθ̈ = −mg sin θ.

Canceling the masses, this then gives us the nonlinear pendulum equation Nonlinear pendulum equation.

Lθ̈ + g sin θ = 0. (3.8)

60 solving differential equations using simulink

x'=v
v'=-g

[x,v]

[x,v]'

Bouncing Ball

v

x
1
s

xo

Integrator

[0 1;0 0]* u

Gain

[0;-9.8]

Acceleration

Scope

[3;0]

IC

(u[1]<=0)&&(u[2]<0)

Fcn

u[1]

Fcn1

 -0.8*u[2]

Fcn2

Terminator

Figure 3.25: The bouncing ball model.

Figure 3.26: Output from the bouncing
ball model showing plot of height vs
time.

m

θ
L

Figure 3.27: A simple pendulum con-
sists of a point mass m attached to a
string of length L. It is released from an
angle θ0.

We can use Simulink to model this equation. Such a model is shown in
Figure 3.28.It is set up to solve the model in the form

θ̈ = − g
L

sin θ.

The constants are entered using Constant blocks and two Integrator blocks
are used.

We enter the parameters in the system using variables instead of partic-
ular constants. These parameters are introduced in a MATLAB m-file. The
constants are L, g, and initial conditions theta0 and v0 in the Integrator
blocks. Save this model as pend.mdl.

Now, one creates an m-file, pendulum.m with the following code. Here
we define the constants first. Then enter the initial conditions followed by
the simulation.

second order differential equations 61

theta'' theta' theta
L

Length

-g

gravitational

acceleration

1
s

Integrator

1
s

Integrator1 Scope

sin

Trigonometric

Function

Divide

Figure 3.28: Nonlinear pendulum
model.

m=1.0;

L=1.0;

g=9.8;

v0=0;

theta0=pi/6;

t0=0;

tf=15;

myopts = simset(’MaxStep’, 0.01);

sim(’pend’, [t0 tf],myopts)

Typing pendulum in the command window, assuming that this file and
the model are save and run from the same folder, will produce a Scope
plot for t ∈ [0, 15]. The function simset will make the plot smoother.

In order to plot the solution in MATLAB, the solution needs to be out-
put to the MATLAB workspace. This is accomplished by adding a To
Workspace block for the theta output variable and one for time, using a
Clock. Double-clicking each block, one can change the output variable
names to theta and time, respectively. The resulting model is shown in
Figure 3.29

theta'' theta' theta
L

Length

-g

gravitational

acceleration

1
s

Integrator

1
s

Integrator1 Scope

sin

Trigonometric

Function

Divide

time

To Workspace
Clock

theta

To Workspace1

Figure 3.29: Nonlinear pendulum
model with To Workspace blocks
added to output θ(t) and t.

To see a plot of the solution, add the following lines to pendulum.m:

figure(1)

plot(time,theta)

xlabel(’t’)

ylabel(’\theta’)

62 solving differential equations using simulink

Running the new pendulum.m m-file produces the plot in Figure 3.30.

t

0 5 10 15

θ

-0.6

-0.4

-0.2

0

0.2

0.4

0.6 Figure 3.30: Plot of solution, θ(t) vs t, to
the nonlinear pendulum model.

One can also animate the motion of the pendulum mass on the string.
We use the data produces from Simulink to locate the position of the mass
(as a ball) and the end of the string. For each time the mass and string are
redrawn as we loop through time. The code to be added to pendulum.m is
given as

rball=.05; % mass radius

x=L*sin(theta);

y=-L*cos(theta);

posx=x(1); posy=y(1); % Mass’s initial position

%Initialize figure, mass, and string

fig=figure(2);

axs=axes(’Parent’,fig);

ball=rectangle(’Position’,[posx-rball,posy-rball,2*rball,2*rball],...

’Curvature’,[1,1],...

’FaceColor’,’b’,...

’Parent’,axs);

rod=line([0 posx],[0 posy],’Marker’,’.’,’LineStyle’,’-’)

axis(axs,[-L,L,-L-rball,L]);

for j=2:length(time)

set(ball,’Position’,[x(j)-rball,y(j)-rball,2*rball,2*rball]);

set(rod,’XData’,[0 x(j)],’YData’,[0 y(j)]);

axis([-L,L,-L-rball,L])

pause(0.1);

end

In Figure 3.31 we show the starting location of the pendulum simula-
tion.

It is interesting to compare the linear and nonlinear pendulum solutions

second order differential equations 63

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1 Figure 3.31: Simulation of the nonlinear
pendulum in MATLAB.

to see when the small angle approximation holds. This can be done by
combining the two models and comparing the solutions in a scope plot.
Figure 3.32 shows such a model. The equations being solved are

θ′′ + 4θ = 0

theta′′ + 4 sin θ = 0. (3.9)

Linear Pendulum
x''+k x=0

Nonlinear Pendulum
x''+k sin x=0

1
sxo

Integrator

sin(u)

Fcn 1
sxo

Integrator1
4

Constant

Product

0

Constant1

1

Constant2

-1

Gain

Scope

1
sxo

Integrator2

1
sxo

Integrator3

4

Constant3

Product1

0

Constant4

1

Constant5

-1

Gain1

Sine Wave

Figure 3.32: Linear and nonlinear
pendulum.

64 solving differential equations using simulink

3.5 Second Order ODEs in MATLAB

We can also use ode45 to solve second and higher order differential
equations. The key is to rewrite the single differential equation as a system
of first order equations. Consider the simple harmonic oscillator equation,
ẍ + ω2x = 0. Defining y1 = x and y2 = ẋ, and noting that

ẍ + ω2x = ẏ2 + ω2y1,

we have

ẏ1 = y2,

ẏ2 = −ω2y1.

Furthermore, we can view this system in the form ẏ = y. In particular,
we have

d
dt

[
y1

y2

]
=

[
y1

−ω2y2

]
Now, we can use ode45. We modify the code slightly from Chapter 1.

[t y]=ode45(’func’,[0 5],[1 0]);

Here [0 5] gives the time interval and [1 0] gives the initial conditions

y1(0) = x(0) = 1, y2(0) = ẋ(0) = 0.

The function func is a set of commands saved to the file func.m for
computing the righthand side of the system of differential equations. For
the simple harmonic oscillator, we enter the function as

function dy=func(t,y)

omega=1.0;

dy(1,1) = y(2);

dy(2,1) = -omega^2*y(1);

There are a variety of ways to introduce the parameter ω. Here we simply
defined it within the function. Furthermore, the output dy should be a
column vector.

After running the solver, we then need to display the solution. The
output should be a column vector with the position as the first element
and the velocity as the second element. So, in order to plot the solution as
a function of time, we can plot the first column of the solution, y(:,1), vs t:

plot(t,y(:,1))

xlabel(’t’),ylabel(’y’)

title(’y(t) vs t’)

second order differential equations 65

t
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

y

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
y(t) vs t Figure 3.33: Solution plot for the simple

harmonic oscillator.

The resulting solution is shown in Figure 3.33.
We can also do a phase plot of velocity vs position. In this case, one can

plot the second column, y(:,2), vs the first column, y(:,1):

plot(y(:,1),y(:,2))

xlabel(’y’),ylabel(’v’)

title(’v(t) vs y(t)’)

The resulting solution is shown in Figure 3.34.

x
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

v

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
v(t) vs x(t) Figure 3.34: Phase plot for the simple

harmonic oscillator.

Finally, we can plot a direction field using a quiver plot and add solu-
tion curves using ode45. The direction field is given for ω = 1 by dx=y
and dy=-x.

clear

[x,y]=meshgrid(-2:.2:2,-2:.2:2);

dx=y;

dy=-x;

quiver(x,y,dx,dy)

axis([-2,2,-2,2])

xlabel(’x’)

ylabel(’y’)

66 solving differential equations using simulink

hold on

[t y]=ode45(’func’,[0 6.28],[1 0]);

plot(y(:,1),y(:,2))

hold off

The resulting plot is given in Figure 3.35.

x
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

y

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Figure 3.35: Phase plot for the simple
harmonic oscillator.

second order differential equations 67

3.6 Exercises

1. Model the following initial value problems in Simulink and compare
solutions to those using ode45.

a. y′′ − 9y′ + 20y = 0, , y(0) = 0, y′(0) = 1.

b. y′′ − 3y′ + 4y = 0, y(0) = 0, y′(0) = 1.

c. 8y′′ + 4y′ + y = 0, y(0) = 1, y′(0) = 0.

d. x′′ − x′ − 6x = 0 for x = x(t), x(0) = 0, x′(0) = 1.

2. Model the given equation in Simulink for an appropriate initial condi-
tion and plot the solution. Analytically determine and plot the solution
and compare to the model solution.

a. y′′ − 3y′ + 2y = 10.

b. y′′ + 2y′ + y = 5 + 10 sin 2x.

c. y′′ − 5y′ + 6y = 3ex.

d. y′′ + 5y′ − 6y = 3ex.

e. y′′ + y = sec3 x.

f. y′′ + y′ = 3x2.

g. y′′ − y = ex + 1.

3. Consider the model in Figure 3.36. Fill in the question marks with the
correct expression at that point in the computation. What differential
equation is solved by this simulation? [Put the equation in the simplest,
recognizable form.]

?
?

?

What does this model solve?

?

?

1
sxo

Integrator

1
sxo

Integrator1

3

b

10

c

Scope

Clock

u2

Math

Function

Divide

Divide1

1

y(0)

0

y'(0)

Figure 3.36: Mystery model for Problem
4.

4. Model the given equation in Simulink for an appropriate initial condi-
tion and plot the solution. Analytically determine and plot the solution
and compare to the model solution.

a. x2y′′ + 3xy′ + 2y = 0.

b. x2y′′ − 3xy′ + 3y = 0, y(1) = 1, y′(1) = 0.

c. x2y′′ + 5xy′ + 4y = 0.

d. x2y′′ − 2xy′ + 3y = 0, y(1) = 3, y′(1) = 0.

68 solving differential equations using simulink

e. x2y′′ + 3xy′ − 3y = x2.

f. x2y′′ + 3xy′ − 3y = x2.

g. 2x2y′′ + 5xy′ + y = x2 + x.

h. x2y′′ + 5xy′ + 4y = 0.

i. x2y′′ − 2xy′ + 3y = 0.

5. Consider an LRC circuit with L = 1.00 H, R = 1.00 × 102 Ω, C =

1.00× 10−4 f, and V = 1.00× 103 V. Suppose that no charge is present
and no current is flowing at time t = 0 when a battery of voltage V is
inserted. Use a Simulink model to find the current and the charge on
the capacitor as functions of time. Describe how the system behaves
over time.

6. A certain model of the motion light plastic ball tossed into the air is
given by

mx′′ + cx′ + mg = 0, x(0) = 0, x′(0) = v0.

Here m is the mass of the ball, g=9.8 m/s2 is the acceleration due to
gravity and c is a measure of the damping. Since there is no x term, we
can write this as a first order equation for the velocity v(t) = x′(t) :

mv′ + cv + mg = 0.

a. Model this problem using Simulink.

b. Determine how long it takes for the ball to reach it’s maxi-
mum height?

c. Assume that c/m = 5 s−1. For v0 = 5, 10, 15, 20 m/s, plot the
solution, x(t), versus the time.

d. From your plots and the expression in part b., determine the
rise time. Do these answers agree?

e. What can you say about the time it takes for the ball to fall as
compared to the rise time?

	Second Order Differential Equations
	Constant Coefficient Equations
	Projectile Motion
	The Bouncing Ball
	Nonlinear Pendulum Animation
	Second Order ODEs in MATLAB
	Exercises

