
R . H E R M A N

S O LV I N G D I F F E R E N T I A L E Q U AT I O N S
U S I N G S I M U L I N K

R . L . H E R M A N - V E R S I O N D AT E : D E C E M B E R 1 8 , 2 0 2 0

Copyright © 2020 by R. Herman

published by r. l. herman

This text has been reformatted from the original using a modification of the Tufte-book documentclass in LATEX.
See tufte-latex.googlecode.com.

solving differential equations using simulink by Russell Herman is licensed under a Creative Com-
mons Attribution-Noncommercial-Share Alike 3.0 United States License. These notes have resided at
http://people.uncw.edu/hermanr/mat361/simulink since Summer 2015.

First printing, 2015

Contents

1 Introduction to Simulink 1
1 Solving an ODE . 1

2 Handling Time in First Order Differential Equations 6

3 Working with Simulink Output 11

4 Printing Simulink Scope Images 12

5 Scilab and Xcos . 16

6 First Order ODEs in MATLAB 19

Symbolic Solutions . 19

ODE45 and Other Solvers. 21

Direction Fields . 23

7 Exercises . 25

2 First Order Differential Equations 27
1 Exponential Growth and Decay 27

2 Newton’s Law of Cooling . 29

3 Free Fall with Drag . 33

4 Pursuit Curves . 35

5 The Logistic Equation . 38

6 The Logistic Equation with Delay 39

7 Exercises . 41

3 Second Order Differential Equations 43
1 Constant Coefficient Equations 44

Harmonic Oscillation . 45

2 Projectile Motion . 54

3 The Bouncing Ball . 56

4 Nonlinear Pendulum Animation 58

5 Second Order ODEs in MATLAB 64

6 Exercises . 67

4 Transfer Functions and State Space Blocks 69
1 State Space Formulation . 69

2 Transfer Functions . 70

5 Systems of Differential Equations 75
1 Linear Systems . 75

4

2 Nonlinear Models . 76

The Jerk Equation . 76

Van der Pol Equation . 77

Lorenz Equations . 78

Lotka-Volterra Predator-Prey Model 81

SIR Model of Disease . 82

Michaelis-Menten Kinetics . 84

The Chua Circuit . 85

6 Index 91

1
Introduction to Simulink

There are several computer packages for finding solutions of dif- Most of these models were created
using Version 2015. Some changes in
Versions 2017-2020 are noted.

ferential equations, such as Maple, Mathematica, Maxima, MATLAB, etc.
These systems provide both symbolic and numeric approaches to finding
solutions. They often require a bit of coding. However, there are graphical
environments for solving problems, including differential equations. One
such environment is Simulink, which is closely connected to MATLAB. In
these notes we will first lead the reader through Simulink examples of so-
lutions of first and second order differential equations usually encountered
in a differential equations course. We will then look at examples of more Examples of MATLAB solutions of

differential equations will also be
provided.

complicated systems.

1.1 Solving an ODE

Simulink is a graphical environment for designing simulations
of systems. As an example, we will use Simulink to solve the first order
differential equation (ODE)

dx
dt

= 2 sin 3t− 4x. (1.1)

We will also need an initial condition of the form x(t0) = x0 at t = t0. For
this problem we will let x(0) = 0.

We can solve Equation (1.1) by integrating
dx
dt

to formally obtain

x(t) =
∫
(2 sin 3t− 4x(t)) dt.

We will view this as a system in which the input, x′ = 2 sin 3t− 4x, is fed
into an integrator and the output will be x(t). Generally, we have

x(t) =
∫

x′(t) dt.

This process is depicted in Figure 1.1.

input
∫

output
xx′ Figure 1.1: Schematic for a general

system in which the block takes the
input and produces an output.

In order to carry this out, we separately insert the terms 2 sin 3t and
−4x into the integration procedure. Since we do not know −4x, we take

2 solving differential equations using simulink

the output from the integrator, multiply it by 4, and subtract that from
2 sin 3t. This combined set of terms is then feed back into the integrator.
This is shown schematically in Figure 1.2.

2 sin 3t
∫

output

×4

+−
xx′ Figure 1.2: Schematic for solving

x′ = 2 sin 3t− 4x. The terms 2 sin 3t and
4x are fed into the integrator and x is
output.

When you have access to Simulink and MATLAB, you can start MAT-
LAB by typing simulink on the command line to bring up Simulink. Al-
ternatively, you can select Simulink on the MATLAB icon bar to launch
Simulink. Starting in 2017 Simulink opens with a start screen in which
there are several selections as shown in Figure 1.3.1 Pick the Blank Model 1 In earlier versions the Simulink Li-

brary Browser in Figure 1.5 would
appear.

to begin a new model or select a recently opened model. Then, you will be
in the Simulink workspace [see Figure 1.4].

Figure 1.3: The Simulink Start screen.
Pick the Blank Model to begin a new
model or select a recently opened
model.

From the workspace you can open the Simulink Library Browser as
shown in Figure 1.52. Next, click the yellow plus to bring up a new model. 2

We build models by dragging and connecting the needed components, or
blocks, from groups such as the Continuous, Math Operations, Sinks, or
Sources.

Now we can create the model for simulating Equation (1.1) in Simulink
as described in Figure schema2 using Simulink blocks and a differential
equation (ODE) solver. In the background Simulink uses one of MAT-
LAB’s ODE solvers, numerical routines for solving first order differential

equations, such as ode45. This system uses the Integrator block3
1
s

Integrator

to

3 The notation on the Integrator block is
related to the Laplace transform

L
[∫ t

0
f (τ) dτ

]
=

1
s

F(s),

where F(s) is the Laplace transform of
f (t).

integrate
dx
dt

, producing x(t).

introduction to simulink 3

Figure 1.4: A blank model in Simulink.

The input for the Integrator is the right side of the differential Equation
(1.1), 2 sin 3t − 4x. The sine function can be provided by using the Sine
Wave block, whose parameters are set in the Sine Wave block. In order to
get 4x, we grab the output of the Integrator (x) and boost it by changing
the Gain value to “4” Then, using the Sum component, these terms are
added, or subtracted, and fed into the integrator. The Scope is used to
plot the output of the Integrator block, x(t). That is the main idea behind
solving this system using the model in Figure 1.6.

For this example, we implement the following detailed steps in Simulink:

• Drag needed blocks into the model region [Figure 1.7.]:

– Integrator block from the Continuous group;

– Sum block from the Math Operations group,

– Gain block from the Math Operations group,

– Sine Wave block from the Math Operations group; and,

– Scope block from the Sink group.

• Connect the output of the Sum block to the input of the Integrator
block. [Figure 1.8.]

• Connect the Integrator to the Scope by clicking on the Integrator out-
put and dragging to the Scope until they are connected. In more recent
versions it is easier to double-click the unattached arrow to get a con-
nection.

• Right-click the Gain control and choose Flip Block under Rotate &
Flip. Double-click the Gain block and change the Gain block value
from 1 to 4. It should change on the control.

4 solving differential equations using simulink

Figure 1.5: The Simulink Library
Browser. This is where various blocks
can be found for constructing models.
[As seen in MATLAB 2015a.]

1
s

Integrator

4

Gain

ScopeSine Wave

Function

Figure 1.6: System for solving first
order ODE dx

dt = 2 sin 3t − 4x as a
Simulink simulation.

• Double-click the Sum control to bring up Block Parameters as shown in
Figure 1.9 and change from |++ to |+- in order to set addition/subtraction
nodes. [Note that the symbol ‘|’ is a blank node. Also, one can change
the block to rectangular form. This is often useful in displaying an over-
all flow direction to the model. In this case the spacer, |, is not needed.]

• Double-click the Sine Wave block and change the frequency to 3 rad/s
and the amplitude to 2. [See Figure 1.10] Set the time dropdown menu
to Use Simulation Time.

• Connect the Gain output to the negative input of Sum and the Sine
Wave output to the positive input on the Sum control. [Note: The Gain
can be set to a negative value and connected to a + node in the Sum
block to obtain the same effect.]

• To add a node to route an x value to the Gain, hold the CTRL key and
click on the Output line of the Integrator and drag towards the input

introduction to simulink 5

1
s

Integrator ScopeSine Wave

1

Gain

Figure 1.7: Add needed components to
the model window.

1
s

Integrator ScopeSine Wave

1
s

Integrator ScopeSine Wave

Figure 1.8: Example of connecting
two components: Align the compo-
nents, Click on output of one and drag
to another. Then, release to finalize
connection. Sometimes it is easier to
double-click the temporary arrow to
connect the blocks.

of the Gain. You can also Right-Click the line where you want the node
and drag from there to the Gain block. See Figure 1.11.

• The initial value, x(0), of x is inserted by double-clicking the Integrator
and setting the value. For this example we set x(0) = 0.

• One can annotate the diagram by clicking near where labels are needed
and typing in the text box. This leads to the model in Figure 1.12. In
more current versions the default is to hide block names.

In Release 2017b the names of blocks
are hidden. One can change this by
going to the block Properties and
changing the block parameter for
’HideAutomaticName’ or change the
model parameter ’HideAutomatic-
Names’.

• Save the file under a useable file name. This file can be called in
MATLAB, or one can use the run button to run the simulation.

• Double-click the Scope to see the solution. Figure 1.13 shows the Scope
plot after using the autoscale () feature to rescale the scope view.
A little effort is needed to change the plot attributes and to import the
plots into working documents. This will be discussed in Section 1.4.

• Also, one can make further changes to the system by checking the Con-
figuration Parameters under the Simulation menu item. See Figures
1.14-1.15. In particular, changing the Refine Factor can lead to smoother
solutions. The solution shown in Figure 1.13 had a setting of 1 and that
in Figure 1.16 is the result of setting the Refine Factor to 10.

As noted in setting the initial value, one can double-click the Integra-
tor block and set the initial condition. However, sometimes it is useful to
externally feed the initial condition into the block. Double-click the Inte-
grator block and change the initial condition source from internal to exter-
nal. This adds another input to the block. Drag a Constant block from the
Sources group into the model, connect it to the new input, and change the
constant value to the desired initial value. This results in the simulation
shown in Figure 1.17.

6 solving differential equations using simulink

Figure 1.9: Block Parameters for the
Sum control. In many cases it is best to
also select the rectangular shape over
the default round shape.

1.2 Handling Time in First Order Differential Equations

In this section we review the solutions of first order differential equa-
tions, separable first order differential equations and linear first order dif-
ferential equations involving explicit time dependence. The time depen- The independent variable is obtained

using the Clock block.dent functions are obtained using the Clock block and a Math Function
block. Double-clicking the Math Function block allows for the selection of
a number of common functions.

Example 1.1. Solve the initial value problem

dy
dt

=
2
t

y, where y(1) = 1. (1.2)

This is a separable equation. Placing y-variables on the left and
t-variables on the right side, we have∫ dy

y
=
∫ 2

t
dt.

Integrating both sides,

ln |y| = 2 ln |t|+ C = ln t2 + C.

Exponentiating, we obtain the general solution,

y(t) = At2,

where A = ±eC.
Using the initial condition, we have the solution, y(t) = t2.

We can set up the problem in Simulink as shown in Figure 1.18 for the
initial value problem

dy
dt

=
2
t

y,

introduction to simulink 7

Figure 1.10: Parameters for the Sine
Wave block. Select the amplitude and
frequency desired.

1
s

Integrator ScopeSine Wave

1

Gain

Figure 1.11: Add a node by right-
clicking one the line and dragging to
the input of a block.

where y(1) = 1. Running the simulation, we obtain the solution shown in
Figure 1.19.

The solution looks like y(t) = t2. We can verify this by plotting t2 along
with the solution t see if they are the same. Another method would be to
compute the difference between the numerical and exact solution, y(t)− t2.
In order to do this, we add a Math Function block, selecting the square
function and connect it to the time route and a Sum Block. The solution is
also fed into the latter block and the difference is fed into a second Scope
Block. This is shown in Figure 1.20.

The result of the simulation is shown in Figure 1.21. We note that this is
the numerical error, though the solution is only off by 1.4× 10−5 over the
given interval. Considering that the solution at t = 10 is Y(10) = 100, this
is a relative error of roughly 10−7. That seems perfectly acceptable.

It is simple to change the differential equation (1.2) in the previous
example to a linear first order differential equation.

dy
dt

=
2
t

y + t2.

8 solving differential equations using simulink

1
s

Integrator

4

Gain

ScopeSine Wave

Function

Figure 1.12: Connections for First Order
ODE model for dx

dt = 2 sin 3t− 4x.

Figure 1.13: Scope plot of the solution
of dx

dt = 2 sin 3t − 4x, x(0) = 0, with
Refine Factor= 1.

Example 1.2. Solve the linear first order differential equation,

dy
dt

=
2
t

y + t2, (1.3)

satisfying y(1) = 1.
We first rewrite Equation (1.3) in standard form,

dy
dt
− 2

t
y = t2. (1.4)

We can now determine the integrating factor,

µ(t) = exp
[
−
∫ t 2

τ
dτ

]
= exp [−2 ln t]

= t−2.

Multiplying Equation (1.4) by the integrating factor, µ(t), we can
find the solution:

t−2
(

dy
dt
− 2

t
y
)

= t−2t2

d
dt

(
t−2y

)
= 1

t−2y(t) = t + C

y(t) = t3 + Ct2. (1.5)

Using the initial condition, y(1) = 1, we obtain C = 0. Therefore,
the solution is y(t) = t3.

introduction to simulink 9

Figure 1.14: System Configuration
Parameters.

Figure 1.15: Configure Data Im-
port/Export Parameters. Changing
theRefine Factor can lead to smoother
solutions.

The model for this problem is shown in Figure 1.22. Running the sim-
ulation, we obtain the numerical solution, y(t) = t3, as shown in Figure
1.23. Computing the difference between the numerical and exact solutions
in this case, we find the error is about 6× 10−5.

Example 1.3. Consider the initial value problem,

dx
dt

= 2 sin 3t− 4x, x(0) = 0. (1.6)

This is the example that we first solved using Simulink. It is an-
other linear first order differential equation. In standard form is is
written as

dx
dt

+ 4x = 2 sin 3t.

The integrating factor is found to be

µ(t) = exp
[∫

4 dt
]
= e4t.

10 solving differential equations using simulink

Figure 1.16: Scope plot of the solution
of dx

dt = 2 sin 3t − 4x, x(0) = 0, with
Refine Factor= 10.

1
sxo

Integrator

4

Gain

Scope
Sine Wave

Function 1

Constant

Figure 1.17: Connections for the First
Order ODE model for dx

dt = 2 sin 3t− 4x
showing how to provide an external
initial value.

Multiplying Equation (1.6) by the integrating factor, we can obtain
the general solution:

d
dt

(
e4tx

)
= 2e4t sin 3t

e4tx = 2
∫

e4t sin 3t dt + C

=
2
25

e4t (4 sin 3t− 3 cos 3t) + C

x(t) =
2
25

(4 sin 3t− 3 cos 3t) + Ce−4t. (1.7)

Using the initial condition, x(0) = 0, we find C = 6
25 . Therefore,

the particular solution is

x(t) =
2

25
(4 sin 3t− 3 cos 3t) +

6
25

e−4t. (1.8)

The solution can be found using Simulink. The model for this
exact solution is shown in Figure 1.24. The plot on the scope matches
the solution we obtained earlier as seen in Figure 1.13.

introduction to simulink 11

dy/dt yt 1/t 2/t

y' = 2/t y, y(1)=1

Exact solution: y(t) = t
2

1
s

Integrator Scope

2

Gain

1

u
Math

Function

Clock

Product

Figure 1.18: First order separable
differential equation model.

Figure 1.19: Scope plot of the solution
of initial value problem (1.2), dy

dt = 2
t y,

where y(1) = 1.

1.3 Working with Simulink Output

Often we might want to access the solutions in MATLAB. Using
the model in Figure 1.18 for a first oder separable equation, we can add
the To Workspace block. This is shown in Figure 1.25. Double-click and
rename the variable as y and change the output type to array. When you
run the simulation, it will send the data to MATLAB for further analysis or
plotting. This will put tout and y data into the MATLAB workspace.

In MATLAB you can plot the data using plot(tout,y). You can add
labels with xlabel(‘t’), ylabel(‘y’), title(‘y vs t’). Adding the command
set(gcf,‘Color’,[1,1,1]) makes the plot background white. The result is
shown in Figure 1.26.

plot(tout,y)

xlabel(‘t’)

ylabel(‘y’)

title(‘y vs t’)

set(gcf,‘Color’,[1,1,1])

Once you have exported your data to the MATLAB workspace and
created a plot, then you can use the menu items under Tools to annotate
the plot. Once you are satisfied with the figure, go to the Edit menu and

12 solving differential equations using simulink

dy/dt yt 1/t 2/t

y' = 2/t y, y(1)=1

Exact solution: y(t) = t
2

1
s

Integrator Scope

2

Gain

1

u
Math

Function

Clock

Product

u2

Mat

Function2

Scope1

Figure 1.20: First order separable
differential equation model with extra
blocks to plot the difference between
the numerical and exact solution,
y(t)− t2, for Equation (1.2).

Figure 1.21: Scope plot of the difference
between the numerical and exact
solution, y(t)− t2, for Equation (1.2)

select Copy Figure. Go to your report document and Paste (CTRL-V) the
figure into your document. You can then resize the figure, center it, and
add a numbered Figure caption describing the figure. Other methods for
recording Simulink Scope images and the Simulink model are described
next.

1.4 Printing Simulink Scope Images

In this section we discuss different methods for transferring the plots
generated in Simulink models to a document or report. For example, you
might want to copy images produced by the scope or your model into an
MS Word document. There are several ways you can do this. You might
be able to use the Print icon to print to a file or printer, or you can follow
one of the following methods. Note: In 2015 it was not easy to export plots
from Simulink. In the 2017 versions, it is easier to do so and perhaps the

introduction to simulink 13

2/t y

dy/dt y

t

1/t 2/t
y' = 2/t y+t , y(1)=1

Exact solution: y(t) = t

t
2

2

3

1
s

Integrator1 Scope1

2

Gain1

1

u
Math

Function1

Clock

Product1

u2

Math

Function2

Figure 1.22: Linear first order differen-
tial equation model.

Figure 1.23: Scope plot of the difference
between the numerical and exact
solution, y(t)− t2.

preferred method unless you are using earlier methods.
We compare the 2017a Scope figure windows to those shown later

from 2015a. In Figure 1.27 one might see slight differences in the Scope
icons. In Figure 1.28 the File menu shows a menu item for Print to Figure.
Here one can put the scope figure in a MATLAB figure environment and
Save As a figure file of different types such as the png image in Figure
1.29. Other methods are provided below for producing output useful for
reports.

Method 1:
Select the Scope figure window in Figure 1.30, then hit ALT+PrintScrn

to copy the figure to a clipboard and paste the figure into your application.
You might want to change the colors before copying the scope image. Changing the scope appearance.

Click the Scope Parameters icon (2nd icon) and go to the Style tab as seen
in Figure 1.31. Change the Figure Color to black, Axes Colors to white
background and black writing, and Line Color to black. The selection of
these parameters is shown in Figure 1.31.

Now the Scope plot looks like Figure 1.32.

14 solving differential equations using simulink

Sine Wave

ScopeSine Wave1

6/25*exp(-4*u(1))

Fcn
Clock

2/25

Gain

Figure 1.24: Model for plotting the
exact solution (1.8) of the initial value
problem (1.6).

dy/dt yt 1/t 2/t

y' = 2/t y, y(1)=1

Exact solution: y(t) = t
2

1
s

Integrator Scope

2

Gain

1

u
Math

Function

Clock

Product

y

To Workspace

Figure 1.25: Adding To Workspace
block for sending output to MATLAB.

Method 2:
Go to Scope Parameters and select the History tab. Check the Save

data to workspace box. Note the variable name. Let’s change the name to
MyScopeData for this example. Saving with Structure with time will save
the data as a structure. Run the simulation again.

Now, go into the MATLAB command window. You should see the
MyScopeData data in the variable list. Type

plot(MyScopeData.time, MyScopeData.signals.values)

This gives the MATLAB plot in Figure 1.34 which can be manipulated
and saved or copied as an image.

Method 3:
You can save the scope image as a jpg image. Create the MATLAB code

in Table 1.1. Save this code as an m-file with a name like prfig.m. In MAT-
LAB run prfig (type prfig in the Command Window.) It should produce
the file ’mypic.jpg in your MATLAB folder. Of course, you can change the
name of the image before running prfig.m before inserting the figure into
your MS Word document as a Picture file.

Method 4:
You can add a To Workspace block to your simulation. This will auto- Add To Workspace block.

matically place the data in the MATLAB space. Go to the Simulink library
and add a To Workspace block to your model as discussed in the last sec-
tion. Connect this block to the input of the Scope (Right-click the input
line and drag to connect to the To Workspace block.) This will give the
connection as shown in Figure 1.36.

introduction to simulink 15

t
1 2 3 4 5 6 7 8 9 10

y

0

20

40

60

80

100

120
y vs t Figure 1.26: Plot of model solution in

MATLAB.

Figure 1.27: Scope plot using MATLAB
2017a. Note the differences in some
icons.

You can double-click this block and change the variable name that will
be saved. Let’s assume it is simout. Then, run the simulation. Go into
MATLAB and type

plot(simout.time,simout.data)

This will give you a plot of the Scope data. Now you can print, save
as an image, or copy (under Edit) to an MS Word document. Below is
what you get using Copy Figure under the Edit menu item in the Figure
window.

Printing Models
Once you have made a model, you might want to include it in a report.

It is easy to capture a model, but a complicated model might not print Printing models.

large enough to see the component annotations.

16 solving differential equations using simulink

Figure 1.28: Scope plot showing File
menu where one can Print to Figure.

Figure 1.29: MATLAB png image
saved as png file. The colors and other
attributes can be changed before saving
the Scope plot.

First open the desired model. Then, in MATLAB you can use the print
command to print the model. For example, typing the following in the
MATLAB command window prints the open model to an encapsulated
postscript file:

print -s -deps -r300 mymodel.eps

For jpg files, you can use

print -s -djpeg -r300 mymodel.jpg

For other formats, consult the MATLAB help system.

1.5 Scilab and Xcos

There are alternatives to using MATLAB. One example is Xcos.
Xcos is part of Scilab. Scilab is free and open source software for numerical Xcos is part of Scilab, an open source

alternative.

introduction to simulink 17

Figure 1.30: Scope plot. Note that the
plots in this section are generated by
the oscillator model in the next chapter.

Figure 1.31: Scope color parameters.

computation similar to MATLAB. Xcos is a graphical design environment.
The Xcos environment is shown in Figure 1.38.

After downloading and installing Scilab from http://www.scilab.org/,
one can type xcos or click on the icon to launch Xcos. This brings up
the Xcos Palettes browser and Xcos workspace as shown in Figures 1.39

and 1.40. This looks similar to Simulink’s Library Browser as shown in
Figure 1.5.

In Figure 1.41 we show the model for solving the first example of this
chapter:

dx
dt

= 2 sin 3t− 4x, x(0) = 0.

This is equivalent to the Simulink model in Figure 1.6. We see that this
model is similar to the Simulink construction. However, there are are some
differences. First of all, the block have a different appearance.

Next, there are some differences in setting up the block parameters. The
Sum block is set up by double-clicking the block and entering the signs
and number of input ports as [1;-1]. This indicates that the Sum block has

http://www.scilab.org/

18 solving differential equations using simulink

Figure 1.32: Scope plot with a white
background.

Figure 1.33: History tab in Scope
parameters.

two inputs. The first is positive and the second is negative.
The scope requires an additional input. Namely the time is entered

using a clock. In Simulink this is automatic, though we had also used the
clock to introduce time as an independent variable when needed.

The initial condition and the sine function parameters are entered by
double-clicking the integrator and sine block, respectively.

In order to run the simulation, one can click the “play” icon or select
Start under the Simulation menu item. The ODE solver can be changed
through Setup under the Simulation menu. The solution is shown in
Figure 1.42.

The blocks are not labeled like Simulink. One can label the blocks by
right-clicking and selecting Edit under the Format item. There one can
enter text to appear with the block. Annotation of the workspace is done
by selecting a Text_f block and adding text to it and changing the fontsize.
Sample annotations are shown in Figure 1.43.4 4 In newer Simulink versions the block

labels disappear. This can be changed
by going into the block Properties
and changing the model parameters
’HideAutomaticName’ or ’ShowName.’

We spent time earlier discussing how to capture images of the out-
put and models for reports. In Xcos it is a simple matter to Export the

introduction to simulink 19

0 1 2 3 4 5 6 7 8 9 10
-0.2

0

0.2

0.4

0.6

0.8

1
Figure 1.34: Plot generated by Method
2.

shh = get(0,’ShowHiddenHandles’);

set(0,’ShowHiddenHandles’,’On’)

set(gcf,’PaperPositionMode’,’auto’)

set(gcf,’InvertHardcopy’,’off’)

saveas(gcf,’mypic.jpg’)

set(0,’ShowHiddenHandles’,shh)

Table 1.1: MATLAB code for saving the
scope image as a jpg image.

model or the solutions by selecting Export under the File menu. There
are options for saving these to different formats. The images can also be
modified by changing the axis range, fonts, colors, etc.

1.6 First Order ODEs in MATLAB

One can use MATLAB to obtain solutions and plots of solutions of
differential equations. This can be done either symbolically, using dsolve,
or numerically, using numerical solvers like ode45. In this section we will
provide examples of using these to solve first order differential equations.
We will end with the code for drawing direction fields, which are useful
for looking at the general behavior of solutions of first order equations
without explicitly finding the solutions.

Symbolic Solutions

The function dsolve obtains the symbolic solution and ezplot
is used to quickly plot the symbolic solution. As an example, we apply
dsolve to solve the main model in this chapter.

At the MATLAB prompt, type the following:

sol = dsolve(’Dx=2*sin(t)-4*x’,’x(0)=0’,’t’);

20 solving differential equations using simulink

Figure 1.35: Scope plot from Method 3.

Figure 1.36: Use of a To Workspace
block.

ezplot(sol,[0 10])

xlabel(’t’),ylabel(’x’), grid

The solution is given as

sol =

(2*exp(-4*t))/17 - (2*17^(1/2)*cos(t + atan(4)))/17

Figure 1.44 shows the solution plot.
Another approach to symbolically solving a differential equation is

provided in the following code snippet. The dsolve command symboli-
cally solves the equation given by ’eq’ and using the initial condition in
’cond.’ It then plots the solution. This results in the same plot and solution
obtained earlier in the chapter.

syms t y(t)

dy = diff(y,t);

eq = dy + 4*y == 2*sin(3*t);

cond = y(0) == 0;

sol(t) = dsolve(eq,cond)

fplot(sol,[0 10])

xlabel(’t’)

ylabel(’y’)

title(’dy/dt-4y = t’)

introduction to simulink 21

Figure 1.37: Scope plot from Method 4.

Figure 1.38: The Xcos workspace.

ODE45 and Other Solvers.

There are several ODE solvers in MATLAB, implementing Runge-
Kutta and other numerical schemes. Examples of its use are in the differ-
ential equations textbook. For example, one can implement ode45 to solve
the initial value problem

dy
dt

= − yt√
2− y2

, y(0) = 1,

using the following code:

[t y]=ode45(’func’,[0 5],1);

plot(t,y)

xlabel(’t’),ylabel(’y’)

title(’y(t) vs t’)

22 solving differential equations using simulink

Figure 1.39: The Xcos Palette browser.

Figure 1.40: The Xcos workspace.

One can define the function func in a file func.m such as

function f=func(t,y)

f=-t*y/sqrt(2-y.^2);

Running the above ode45 code produces Figure 1.45.
One can also use ode45 to solve higher order differential equations. Sec-
ond order differential equations are discussed in Chapter 3 Section 5. See
MATLAB help for other examples and other ODE solvers.

introduction to simulink 23

Figure 1.41: The Xcos model for solving
the first order ODE dx

dt = 2 sin 3t− 4x.

Figure 1.42: The Xcos model solution of
dx
dt = 2 sin 3t− 4x, x(0) = 0.

Direction Fields

One can produce direction fields in MATLAB. For the differential
equation

dy
dx

= f (x, y),

we note that f (x, y) is the slope of the solution curve passing through the
point in the xy=plane. Thus, the direction field is a collection of tangent
vectors at points (x, y) indication the slope, f (x, y), at that point.

A sample code for drawing direction fields in MATLAB is given by

[x,y]=meshgrid(0:.1:2,0:.1:1.5);

dy=1-y;

dx=ones(size(dy));

quiver(x,y,dx,dy)

axis([0,2,0,1.5])

xlabel(’x’)

ylabel(’y’)

The mesh command sets up the xy-grid. In this case x is in [0, 2] and y
is in [0, 1.5]. In each case the grid spacing is 0.1.

We let dy = 1-y and dx =1. Thus,

dy
dx

=
1− y

1
= 1− y.

The quiver command produces a vector (dx,dy) at (x,y). The slope of
each vector is dy/dx. The other commands label the axes and provides a
window with xmin=0, xmax=2, ymin=0, ymax=1.5. The result of using the
above code is shown in Figure 1.46.

24 solving differential equations using simulink

Figure 1.43: The Xcos model with
annotation added.

t
0 1 2 3 4 5 6 7 8 9 10

x

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

(2 exp(-4 t))/17 - (2 171/2 cos(t + atan(4)))/17 Figure 1.44: The solution of Equation
(1.1) with x(0) = 0 found using
MATLAB’s dsolve command.

One can add solution, or integral, curves to the direction field for dif-
ferent initial conditions to further aid in seeing the connection between
direction fields and integral curves. One needs to add to the direction field
code the following lines:

hold on

[t,y] = ode45(@(t,y) 1-y, [0 2], .5);

plot(t,y,’k’,’LineWidth’,2)

[t,y] = ode45(@(t,y) 1-y, [0 2], 1.5);

plot(t,y,’k’,’LineWidth’,2)

hold off

Here the function f (t, y) = 1− y is entered this time using MATLAB’s
anonymous function, @(t,y) 1-y. Before plotting, the hold command is
invoked to allow plotting several plots on the same figure. The result is
shown in Figure 1.47

introduction to simulink 25

t
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
y(t) vs t Figure 1.45: A plot of the solution of

dy
dt = − yt√

2−y2
, y(0) = 1, found using

MATLAB’s ode45 command.

x
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

y

0

0.5

1

1.5
Figure 1.46: A direction field produced
using MATLAB’s quiver function for
y′ = 1− y.

1.7 Exercises

1. Construct the model in Figure 1.6 for solving the initial value problem
dx
dt = 2 sin 3t− 4x, x(0) = 0, and produce a plot of the solution.

2. Modify the model in the Problem 1. to solve
dx
dt

= f (t) − 2x for a

different function, f (t) and initial condition.

3. Solve the following initial value problems using MATLAB’s dsolve
command (See Section 1.6) and Simulink. Provide plots of the solutions
for both cases. How do the solutions compare?

a. y′ = xy, y(0) = 1.

b. y′ = 2y(3 − y), for different initial conditions, y(0) = 4,
y(0) = 2, and y(0) = −1.

c. y′ = 1 + x + y, y(0) = 1.

d. y′ = (y2 − 4)(y− 4) for different initial conditions, y(0) = 5,
y(0) = 3, y(0) = 1, y(0) = −1, and y(0) = −3.

4. Use MATLAB to plot direction fields for the following:

26 solving differential equations using simulink

x
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

y

0

0.5

1

1.5
Figure 1.47: A direction field produced
using MATLAB’s quiver function for
y′ = 1− y with solution curves added.

a. y′ = xy.

b. y′ = 2y(3− y).

c. y′ = 1 + x + y.

d. y′ = (y2 − 4)(y− 4).

5. Solve the following initial value problems using one of MATLAB’s
numerical ODE solvers like ode45. Plot the solutions and compare with
the corresponding solutions in Problem 3.

a. y′ = xy, y(0) = 1.

b. y′ = 2y(3 − y), for different initial conditions, y(0) = 4,
y(0) = 2, and y(0) = −1.

c. y′ = 1 + x + y, y(0) = 1.

d. y′ = (y2 − 4)(y− 4) for different initial conditions, y(0) = 5,
y(0) = 3, y(0) = 1, y(0) = −1, and y(0) = −3.

2
First Order Differential Equations

We have seen how to solve simple first order differential equations
using Simulink. In particular we have solved initial value problems for the
equations

dy
dt

=
2
t

y, y(1) = 1, (2.1)

dy
dt

=
2
t

y + t2, y(1) = 1, (2.2)

dx
dt

= 2 sin 3t− 4x, x(0) = 0. (2.3)

The Simulink models were provided in Figures 1.18, 1.22, and 1.6, respec-
tively.

In this chapter we solve a few more first order equations in the form of
applications. These will include growth and decay, Newton’s Law of Cool-
ing, pursuit curves, free fall and terminal velocity, the logistic equation,
and the logistic equation with delay.

2.1 Exponential Growth and Decay

The simplest differential equations are those governing growth
and decay. As an example, we will discuss population models.

Let P(t) be the population at time t. We seek an expression for the rate

of change of the population,
dP
dt

. Assuming that there is no migration
of population, the only way the population can change is by adding or
subtracting individuals in the population. The equation would take the
form

dP
dt

= Rate In − Rate Out.

The Rate In could be due to the number of births per unit time and the
Rate Out by the number of deaths per unit time. The simplest forms for
these rates would be given by terms proportional to the population:

Rate In = bP and Rate Out = mP.

Here we have denoted the birth rate as b and the mortality rate as m. This
gives the total rate of change of population as

dP
dt

= bP−mP ≡ kP, (2.4)

28 solving differential equations using simulink

where k = b−m.
Equation (2.4) is easily modeled in Simulink. All of the needed blocks

are under the Commonly Used Blocks group. We need an Integrator, Con-
stant, Gain, and a Scope block. The output from the Integrator can be
feed into a Gain control, which represents k, and the output from the
Gain, kP, can then be used as an input to the Integrator. We add the
Scope in order to plot the solution. The model is shown in Figure 2.1.
Note that a Constant block was added to provide an external input of the
initial condition.

P
P'

1
sxo

Integrator
10

Constant

-0.5

Gain

Scope

Figure 2.1: Simulink model for expo-
nential growth and decay. The initial
value, P(0) = 10, is set in the Constant
block and k = −0.5 is set in the Gain.

The solution for exponential decay with P(0) = 10 and k = −0.5 is
shown in Figure 2.2. The simulation time was set at 10s.

Figure 2.2: Solution for the exponential
decay with P(0) = 10 and k = −0.5.
The simulation time was set at 10.

The exact solution is easily found noting that Equation (2.4) is a separa-
ble equation. Rearranging the equation, its differential form is

dP
P

= k dt.

Integrating, we have ∫ dP
P

=
∫

k dt

first order differential equations 29

ln |P| = kt + C. (2.5)

Next, we solve for P(t) through exponentiation,

|P(t)| = ekt+C

P(t) = ±ekt+C

= Aekt. (2.6)

Here we have defined the arbitrary constant, A = ±eC.
If the population at t = 0 is P0, i.e., P(0) = P0, then the solution gives

P(0) = Ae0 = A = P0. So, the solution of the initial value problem is

P(t) = P0ekt.

In the Simulink model, the initial value was given as P(0) = 10 and the
decay constant by k = −0.5. Therefore, the solution in Figure 2.2 is of the
function P(t) = 10e−0.5t.

Equation (2.4) is the familiar exponential model of population growth: Malthusian population growth.

dP
dt

= kP.

We obtained solutions exhibiting exponential growth (k > 0) or decay
(k < 0). This Malthusian growth model has been named after Thomas
Robert Malthus (1766-1834), a clergyman who used this model to warn
of the impending doom of the human race if its reproductive practices
continued. Later we modify this model to account for competition for
resources, leading to the logistic differential equation.

2.2 Newton’s Law of Cooling

If you take your hot cup of tea, and let it sit in a cold room, the tea
will cool off and reach room temperature after a period of time. The law
of cooling is attributed to Isaac Newton (1642-1727) who was probably
the first to state results on how bodies cool.1 The main idea is that a body 1 Newton’s 1701 Law of Cooling is

an approximation to how bodies cool
for small temperature differences
(T − Ta � T) and does not take into ac-
count all of the cooling processes. One
account is given by C. T. O’Sullivan,
Am. J. Phys (1990) p 956-960.

at temperature T(t) is initially at temperature T(0) = T0. It is placed in
an environment at an ambient temperature of Ta. The goal is to find the
temperature at a later time, T(t).

We will assume that the rate of change of the temperature of the body
is proportional to the temperature difference between the body and its
surroundings. Thus, we have

dT
dt

∝ T − Ta.

The proportionality is removed by introducing a cooling constant,

dT
dt

= −k(T − Ta), (2.7)

30 solving differential equations using simulink

where k > 0.
This differential equation can be solved by first rewriting the equations

as
d
dt
(T − Ta) = −k(T − Ta).

This now takes the form of exponential decay of the function T(t) − Ta.
The solution is easily found as

T(t)− Ta = (T0 − Ta)e−kt,

or
T(t) = Ta + (T0 − Ta)e−kt.

Example 2.1. A cup of tea at 90oC cools to 85oC in ten minutes. If the
room temperature is 22oC, what is its temperature after 30 minutes?

Using the general solution with T0 = 90oC,

T(t) = 22 + (90− 22)e−k = 22 + 68e−kt,

we then find k using the given information, T(10) = 85oC. We have

85 = T(10)

= 22 + 68e−10k

63 = 68e−10k

e−10k =
63
68
≈ 0.926

−10k = ln 0.926

k = − ln 0.926
10

≈ 0.00764 min−1.

This gives the solution for this model as

T(t) = 22 + 68e−0.00764t.

Now we can answer the question. What is T(30)?

T(30) = 22 + 68e−0.00764(30) = 76oC.

Newton's Law of Cooling
T' = - k (T-T0)

T'

T1
s

xo

Integrator

Product

-1

Gain

0.1

k

20

Ta

60

T0

Scope

Figure 2.3: Simulation model for New-
ton’s Law of Cooling, T′ = −k(T − Ta),
T(0) = T0. Here we set k = 0.1 s−1,
Ta = 20oC, and T0 = 60oC.

first order differential equations 31

Next we model Equation (2.7) in Simulink. The input for the Integrator
is simply −k(T − Ta). We need to define the constants k and Ta. We will
externally input the initial condition, T(0) = T0 in the Integrator block.
The simple model is shown in Figure 2.3. In this case we set k = 0.1 s−1,
Ta = 20oC, and T0 = 60oC. Running the simulation for 100 s, we obtain the
solution shown in Figure 2.4.

Figure 2.4: Solution of Newton’s Law of
Cooling example.

How good is the solution? We can solve the problem by hand for this
set of parameters. However, we will take this opportunity to introduce
the idea of a subsystem and set up a model in which we can interactively
modify the constants and get Simulink to automatically provide the exact
solution for comparison.

Newton's Law of Cooling
T' = - k (T-T0)

T'

T1
s

xo

Integrator

Product

-1

Gain 1

T(t)
2

T(0)

1

k

3

T ambient

Figure 2.5: Creating a subsystem for the
Newton’s Law of Cooling model.

We begin by replacing the scope with an output block. The Out1 block
can be found in the Sink group. The input to the subsystem will be the Creating a subsystem.

three parameters, k, T0, and Ta. Each of these constant blocks in Figure 2.3
will be replaced by an In1 block, found in the Sources group. In Figure 2.5
the three inputs and one output are now oval blocks.

Double-click each of the three input blocks, one at a time, and set the
Port Number of k, T0, and Ta, to 1, 2, and 3, respectively. Finally, rename
each of these controls using the labels that make sense, such as k for k. In

32 solving differential equations using simulink

1

T(t)

2

T(0)

1

k

3

T ambient

k

T(0)

T ambient

T(t)

Subsystem

Figure 2.6: Subsystem for Newton’s
Law of Cooling, T′ = −k(T − Ta),
T(0) = T0.

Figure 2.5 we show the subsystem that we have created.
Now highlight the entire subsystem using CTRL-A. In the menu sys-

tem, look for Create Subsystem from Selection. This is under the menu
item Diagram and subitem Subsystem & Model Reference. Rearranging
the resulting subsystem, one has something like the subsystem block in
Figure 2.6. This is the equivalent of a black box with three inputs and one
output.

Next, we can make use of the subsystem just created. Replace the three
input ports with constant blocks. Rename the Constant blocks with the
parameter name and fill each block with a value. The output port can be
replaced with a Scope block, or any other form of output desired. This can
be seen in Figure 2.7.

Before finishing with this model, we will build in the exact solution.
Recall that the general solution can be written in terms of the parameters
as

T(t) = Ta + (T0 − Ta)e−kt.

So, we can feed the values of the parameters in the model into a Fcn block
and output the exact solution for comparison. We will also need a time
value. So, we will need the Clock block as well.

Newton's Law of Cooling
T' = - k (T-T0)

k

T(0)

T ambient

T(t)

Cooling System

20

Ta

60

IC

0.1

k

Scope

Figure 2.7: Using a user-created subsys-
tem for Newton’s Law of Cooling.

The entire model is shown in Figure 2.8. The subsystem is labeled Cool-
ing System The top portion is a repetition of the Newton’s Law of Cooling
model implemented previously.

We have added a Fcn block from the User-Defined Functions group.
The input will be a vector containing all of the variables in the exact solu-
tion. This is accomplished by adding a Mux (or Multiplex) block. Double-
click the Mux block and set the number of inputs to 4.

Now, double-click the Fcn block and enter the exact solution in the form

u(1)+u(2)*exp(-u(3)*u(4))

first order differential equations 33

Newton's Law of Cooling
T' = - k (T-T0)

Exact Solution

Clock

k

T(0)

T ambient

T(t)

Cooling system

20

Ta

60

IC

0.1

k

Scope

f(u)

Fcn Scope1

Figure 2.8: Model of Newton’s Law of
Cooling, T′ = −k(T − Ta), T(0) = T0,
using the subsystem feature.

Here we have assumed that the variables are fed into the Mux block in the
order Ta, T0 − Ta, k, and t. In Figure 2.8 one can see how the values are
routed into the Mux block.

The output can be attached to a second scope, as shown, or can be sub-
tracted from the output of the Cooling System block to show the closeness
of the two solutions. One can also send the output to MATLAB using the
To Workspace block.

2.3 Free Fall with Drag

Consider an object falling to the ground with air resistance? Free
fall is the vertical motion of an object solely under the force of gravity. It
has been experimentally determined that an object near the surface of the
Earth falls at a constant acceleration in the absence of other forces, such
as air resistance. This constant acceleration is denoted by −g, where g is
called the acceleration due to gravity. The negative sign is an indication
that we have chosen a coordinate system in which “up” is positive.

We are interested in determining the position, y(t), of a falling body as
a function of time. The differential equation governing free fall is have

ÿ(t) = −g. (2.8)

Note that we will occasionally use a dot to indicate time differentiation.
We need to model the air resistance. As an object falls faster and faster,

the resistive force becomes greater. This drag force is a function of the
velocity. The idea is to write Newton’s Second Law of Motion F = ma in
the form

mÿ = −mg + f (v), (2.9)

where f (v) gives the resistive force and mg is the weight. Note that this
applies to free fall near the Earth’s surface. Also, for f (v) to be a resis-

34 solving differential equations using simulink

tive force, f (v) should oppose the motion. If the body is falling, then f (v)
should be positive. If the body is rising, then f (v) would have to be nega-
tive to indicate the opposition to the motion.

We will model the drag as quadratic in the speed, f (v) = bv2.

Example 2.2. Solve the free fall problem with f (v) = bv2.
The differential equation that we need to solve is

v̇ = kv2 − g, (2.10)

where k = b/m. Note that this is a first order equation for v(t).
Formally, we can separate the variables and integrate over time to

obtain
t + C =

∫ v dz
kz2 − g

. (2.11)

If we can do the integral, then we have a solution for v. We evaluate
this integral using Partial Fraction Decomposition.

In order to factor the denominator in the current problem, we
first have to rewrite the constants. We let α2 = g/k and write the
integrand as

1
kz2 − g

=
1
k

1
z2 − α2 . (2.12)

Noting that

1
kz2 − g

=
1

2αk

[
1

z− α
− 1

z + α

]
, (2.13)

the integrand can be easily integrated to find

t + C =
1

2αk
ln
∣∣∣∣v− α

v + α

∣∣∣∣ . (2.14)

Solving for v, we have

v(t) =
1− Ae2αkt

1 + Ae2αkt α, (2.15)

where A ≡ eC. A can be determined using the initial velocity by
inserting t = 0,

v(0) =
1− A
1 + A

α.

Then,

A =
α− v0

α + v0
.

There are other forms for the solution in terms of a tanh function, which
the reader can determine as an exercise. One important conclusion is that
for large times, the ratio in the solution approaches −1. Thus, v → −α =

−
√

g
k as t → ∞. This means that the falling object will reach a constant

terminal velocity.
Equation (2.10) can be modeled in Simulink. The model is shown in

Figure 2.9. The solution for k = 0.00159m−1, which is found for the above
sample computation, is shown in Figure 2.10. We see that terminal velocity

is obtained and matches the predicted value, −
√

g
k = −78 m/s.

first order differential equations 35

v'

Free Fall with Drag
v' = kv^2 - g

v1
sxo

Integrator

9.8

g

0.00159

k

Scope

u2

Math

Function

0

Constant1

Figure 2.9: Model for free fall with drag
as described by v̇ = kv2 − g.

Figure 2.10: Solution for free fall with
drag with k = 0.00159 starting from
rest.

2.4 Pursuit Curves

Another application that is interesting is to find the path that a
body traces out as it moves towards a fixed point or another moving body.
Such curves are know as pursuit curves. These could model aircraft or
submarines following targets, or predators following prey. For example, a
hawk follows a sparrow, a large fish chases a small fish, or a fox chases a
rabbit.

Example 2.3. A dog at point (x, y) sees a cat traveling at speed v
along a straight line. The dog runs towards the cat at constant speed
w but always in a direction along line of sight between their posi-
tions. If the dog starts out at the point (0, 0) at t = 0, when the cat is
at (a, 0), then what is the path the dog needs to follow? Will the dog
catch the cat?

We show the path in Figure 2.12. Let the cat’s path be along the

36 solving differential equations using simulink

x

y

(a, vt)

(a, 0)

(x, y)

Figure 2.11: A dog at point (x, y) sees a
cat at point (a, vt) and always follows
the straight line between these points.

line x = a. Therefore, the cat is at position (a, vt) at time t. The goal is
to find the dog’s path, (x(t), y(t)), or y = y(x).

First we consider the equation of the line of sight between the
points (x, y) and (a, vt). Considering that the slope of this line is the
same as the slope of the tangent to the path, y = y(x), we have

y′ =
vt− y
a− x

.

The dog is moving at a constant speed, w and the distance the dog
to travels s given by L = wt, where t is the running time from the
origin. The distance the dog travels is also given by the arclength of
the path between (0, 0) and (x, y) :

L =
∫ x

0

√
1 + [y′(x)]2 dx.

Eliminating the time using y′ = vt−y
a−x , we have∫ x

0

√
1 + [y′(x)]2 dx =

w
v
(y + (a− x)y′).

Furthermore, we can differentiate this result with respect to x to get
rid of the integral,√

1 + [y′(x)]2 =
w
v
(a− x)y′′. (2.16)

This is the differential equation governing the dog’s pursuit. A
Simulink model of this problem is shown in Figure 2.12.

The full solution for the path is given by

y(x) =
a
2

[(x
a
)1+ v

w

1 + v
w
−
(x

a
)1− v

w

1− v
w

]
+

avw
w2 − v2 .

Can the dog catch the cat? This would happen if there is a time
when y(0) = vt. Inserting x = 0 into the solution, we have y(0) =

avw
w2−v2 = vt. This is possible if w > v.

first order differential equations 37

y'1
sxo

Integrator

1
sxo

Integrator1

0

y'(0)

0

y(0)

1

v

2

w

Clock

sqrt(1+u^2)

Fcn

Product

Scope

9.000001

Constant

u(3)*u(2)*u(1)/(u(1)̂ 2-u(2)̂ 2)

Fcn1

5.997

6

Display

Figure 2.12: Model for the pursuit
curve, (a − x)y′′ = v

w

√
1 + [y′(x)]2,

y(0) = 0, y′(0) = 0, for w = 2 and
v = 1.

Analytic Solution
For the interested reader, we complete the solution of the problem by

noting that Equation (2.16) can be rewritten as a first order separable equa-
tion in the slope function z(x) = y′(x). Namely,

w
v
(a− x)z′ =

v
x

√
1 + z2.

Separating variables, we find

w
v

∫ dz√
1 + z2

= ln(z +
√

1 + z2)
∫ dx

a− x
.

The integrals can be computed using standard methods from calculus.
We can easily integrate the right hand side,

∫ dx
a− x

= − ln |a− x|+ c1.

The left hand side takes a little extra work,2 or looking the integral to find 2 One can use trigonometric substitu-
tion. Let z = tan θ and dz = sec2 θ dθ.
Then, the method proceeds as follows:∫ dz√

1 + z2
=

∫ sec2 θ√
1 + tan2 θ

dθ

=
∫

sec θ dθ

= ln(tan θ + sec θ) + c2

= ln(z +
√

1 + z2) + c2.

∫ dz√
1 + z2

= ln(z +
√

1 + z2) + c2.

Putting these results together, we have for x > 0,

ln(z +
√

1 + z2) =
v
w

ln x + C.

Using the initial condition z = y′ = 0 and x = a at t = 0,

0 =
v
w

ln a + C,

or C = − v
w ln a.

38 solving differential equations using simulink

Figure 2.13: Solution for the pursuit
curve.

Using this value for c, we find

ln(z +
√

1 + z2) =
v
w

ln x− v
w

ln a

= ln
(x

a

) v
w

z +
√

1 + z2 =
(x

a

) v
w . (2.17)

We can solve for z = y′, to find

y′ =
1
2

[(x
a

) v
w −

(x
a

)− v
w
]

Integrating,

y(x) =
a
2

[(x
a
)1+ v

w

1 + v
w
−
(x

a
)1− v

w

1− v
w

]
+ k.

Since y(a) = 0, we can solve for the integration constant, k,

k =
a
2

[
1

1− v
w
− 1

1 + v
w

]
=

avw
w2 − v2 .

2.5 The Logistic Equation

In this section we will explore a nonlinear population model. Typ-
ically, we want to model the growth of a given population, y(t), and the
differential equation governing the growth behavior of this population is
developed in a manner similar to that done in the section on growth and
decay. Recall the simple population model from Section 2.1,

dy
dt

= by−my, (2.18)

first order differential equations 39

where we had defined the birth rate as b and the mortality rate as m. If
these rates are constant, then we can define k = b − m and obtain the
familiar exponential model of population growth.

When more realistic populations get large enough, there is competition
for resources, such as space and food, which can lead to a higher mortality
rate. Thus, the mortality rate may be a function of the population size,
m = m(y). The simplest model would be a linear dependence, m = m̃ + cy.
Then, the previous exponential model would take the form

dy
dt

= ky− cy2, (2.19)

where k = b− m̃. This is known as the logistic model of population growth.

The logistic model was first published
in 1838 by Pierre François Verhulst
(1804-1849) in the form

dN
dt

= rN
(

1− N
K

)
,

where N is the population at time t, r is
the growth rate, and K is what is called
the carrying capacity. Note that in this
model r = k = Kc.

Typically, c is small and the added nonlinear term does not kick in until
the population gets large enough.

Example 2.4. Show that Equation (2.19) can be written in the form

z′ = kz(1− z)

which has only one parameter.
We carry this out by rescaling the population, y(t) = αz(t), where

α is to be determined. Inserting this transformation, we have

y′ = ky− cy2

αz′ = αkz− cα2z2,

or
z′ = kz

(
1− α

c
k

z
)

.

Thus, we obtain the result, z′ = kz(1− z), if we pick α = k
c .

The point of this derivation is to show that there is only one free param-
eter, k, and that many combinations of c and k in the original problem lead
to essentially the same solution up to rescaling.

We can model the logistic equation, y′ = ry(1 − y), with r = 1 and
y(0) = 0.1 in Simulink. The model is shown in Figure 2.14. Running the
model gives the solution in Figure 2.15. It shows the typical sigmoidal
curve bounded by the solutions y = 0 and y = 1.

2.6 The Logistic Equation with Delay

Sometimes the rate of change does not immediately take place when
the system changes. This can be modeled using differential-delay equa-
tions. For example, when the resources are being depleted, the effects
might be delayed. So, a possible model would be the logistic equation with
delay,

y′ = ry(t)(1− y(t− τ)),

where τ is a fixed delay time.

40 solving differential equations using simulink

y' y

1-y

y

Logistic Equation

y' = r y (1-y)

1
s

Integrator

1

Gain Scope

Product

1

Constant

Figure 2.14: Simulink model for the
logistic equation, y′ = ry(1− y).

Figure 2.15: Solution of the logistic
equation, y′ = ry(1− y), with r = 1 and
y(0) = 0.1.

The problem with trying to solve this model at time t is that we need
to know something about the solution for earlier times, y(t− τ). One way
to tackle the problem is to specify the solution for times [0, τ] and then
to solve the equation with delay using this starting value. So, if y = 2
initially, we could let y = 2 for [0, τ].

The Simulink model is shown in Figure 2.16. A Switch block is used
to specify the starting values for times up to τ = 1. Then, the differential
equation solver takes over with a Delay block used to enter the delay term.
This model produces the solution in Figure 2.17.

first order differential equations 41

y' y

y' = alpha y(t)(1-y(t-1))

1-y(t-1)

y

y(1-y(t-1))

Logistic Equation with Delay

y(t-1)

1
s

Integrator

2

Alpha

Scope

Product

1

Constant

Transport

Delay

 >= 1

Switch to enter y=2

for t<=1
0

Solve y'=0

Clock

Figure 2.16: Model for the logistic
equation with delay, y′ = ry(t)(1−
y(t− τ)).2.7 Exercises

1. Model the following first order differential equations in Simulink and
find the solutions for different initial conditions.

a.
dy
dx

=
ex

2y
.

b.
dy
dt

= y2(1 + t2).

c.
dy
dx

=

√
1− y2

x
.

d. xy′ = y(1− 2y).
e. y′ − (sin x)y = sin x.

f. xy′ − 2y = x2.

g.
ds
dt

+ 2s = st2.

h. x′ − 2x = te2t.

i.
dy
dx

+ y = sin x,.

j.
dy
dx
− 3

x
y = x3.

2. Consider the case of free fall with a damping force proportional to the
velocity, fD = ±kv with k = 0.1 kg/s.

a. Using the correct sign, consider a 50 kg mass falling from rest
at a height of 100m. Find the velocity as a function of time.
Does the mass reach terminal velocity?

b. Let the mass be thrown upward from the ground with an
initial speed of 50 m/s. Find the velocity as a function of time
as it travels upward and then falls to the ground. How high
does the mass get? What is its speed when it returns to the
ground?

42 solving differential equations using simulink

Figure 2.17: Solution of the logistic
equation with delay, y′ = ry(t)(1−
y(t− 1)) for y = 2, t ∈ [0, 1].

3. A paratrooper, 322 lbs including munitions, jumps from 10,000 ft.
Model this free fall with air resistance f (v) = 15v2 in Simulink. First,
write down the free fall equation. Use the model to solve for v(t). Is
there a terminal velocity? Find the time to land and the impact velocity.

4. Model the following problem in Simulink: The temperature inside your
house is 70

oF and it is 30
oF outside. At 1:00 A.M. the furnace breaks

down. At 3:00 A.M. the temperature in the house has dropped to 50
oF.

Assuming the outside temperature is constant and that Newton’s Law
of Cooling applies, determine when the temperature inside your house
reaches 40

oF.

5. Model the following problem in Simulink: A body is discovered during
a murder investigation at 8:00 P.M. and the temperature of the body is
70

oF. Two hours later the body temperature has dropped to 60
oF in a

room that is at 50
oF. Assuming that Newton’s Law of Cooling applies

and the body temperature of the person was 98.6oF at the time of death,
determine when the murder occurred.

3

Second Order Differential Equations

We now turn to second order differential equations. Such
equations involve the second derivative, y′′(x). Let’s assume that we can
write the equation as

y′′(x) = F(x, y(x), y′(x)).

We would like to solve this equation using Simulink. This is accomplished
using two integrators in order to output y′(x) and y(x).

input
∫

outputy′y′′
(b)

input
∫

output
yy′

(a)

∫
output

yy′
input

∫y′′
(c)

Figure 3.1: Basic schemes for using
Integrator blocks for solving second
order differential equations.

As shown in Figure 3.1(b), sending y′′(x) into the Integrator block, we
get out y′(x). This is similar to using y′(x) to get y(x) in Figure 3.1(a). As
shown in Figure 3.1(c), combining two Integrator blocks, we can input
y′′(x) = F(x, y, y′) and get out y and y′. Feeding this output into F(x, y, y′),
we then obtain a model for solving the second order differential equation.
The general schematic for solving an initial value problem of the form
y′′ = F(x, y, y′), y(0) = y0, y′(0) = v0, is shown in Figure 3.2.

∫
output

yy′∫y′′

F(x, y, y′)

y′(0) y(0)

Figure 3.2: This is a general schematic
for solving an initial value problem of
the form y′′ = F(x, y, y′), y(0) = y0,
y′(0) = v0.

In this chapter we will demonstrate the modeling of second order con-
stant coefficient differential equations and show some simple applications.

44 solving differential equations using simulink

3.1 Constant Coefficient Equations

We can solve second order constant coefficient differential

equations using a pair of integrators. An example is displayed in Figure
3.3. Here we solve the constant coefficient differential equation

ay′′ + by′ + cy = 0

by first rewriting the equation as

y′′ = F(y, y′) = − b
a

y′ − c
a

y.

Example 3.1. Model the initial value problem

y′′ + 5y′ + 6y = 0, y(0) = 0, y′(0) = 1,

in Simulink.
The simulation in Figure 3.3 solves the equation

y′′ + 5y′ + 6y = 0

with appropriate initial conditions. There are two integrators. One
integrates the first input, y′′, and the other integrates the output of
the first integrator, y′, giving an output of y. Each Integrator block
needs an initial condition. The first takes y′(0) = 1 and the second
needs y(0) = 0.

y' yy''

b/a y'

c/a y

Second Order Constant Coefficient ODE

1
s

Integrator

1
s

Integrator1

5

b/a

6

c/a

Scope

Figure 3.3: Model for the second order
constant coefficient ODE y′′ + 5y′ +
6y = 0.

The outputs, y and y′ are multiplied by the appropriate constants
using a Gain block. They are then combined to form the input,
F(y, y′) = −5y′ − 6y, to the system of integrators. Running the
simulation for 5 units of time, the Scope gives the solution shown in
Figure 3.4.
Analytical Solution

second order differential equations 45

x
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

y

0

0.05

0.1

0.15
y(x) vs x Figure 3.4: Solution plot for the initial

value problem y′′ + 5y′ + 6y = 0,
y(0) = 0, y′(0) = 1 using Simulink.

Recall the solution of this problem is found by first seeking the
two linearly independent solutions. Assuming solutions of the form
y(x) = erx, the characteristic equation is

r2 + 5r + 6 = 0.

The roots of the equation are r = −2,−3. Therefore, the two linearly
independent solutions are y1(x) = e−2x and y2(x) = e−3x. The
general solution is

y(x) = c1e−2x + c2e−3x.

The initial conditions hold if

0 = c1 + c2, 1 = −2c1 − 3c2.

So, c1 = 1 and c2 = −1. The solution to the initial value problem is

y(x) = e−2x − e−3x.

The plot of this solution is shown in Figure 3.5. It is seen to agree
with the solution shown in Figure 3.4.

x

y

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.15

Figure 3.5: Plot of the exact solution
of the initial value problem y′′ + 5y′ +
6y = 0, y(0) = 0, y′(0) = 1.

Harmonic Oscillation

In the following we will suppress units.
In SI units the mass is in kilograms
(kg), displacement x is in meters (m),
and force is in Newtons (N). Then,
k has units of N/m. One could also
use CGS units of g, cm, dynes, and
dynes/cm, respectively. Time units
will generally be in seconds, leaving
frequencies in s−1, or Hertz (Hz).

A typical application of second order, constant coefficient differential equa-
tions is the simple harmonic oscillator as shown in Figure 3.6. Consider
a mass, m, attached to a spring with spring constant, k. According to

46 solving differential equations using simulink

Hooke’s law, a stretched spring will react with a force F = −kx, where
x is the displacement of the spring from its unstretched equilibrium. The
mass experiences a net for and will accelerate according to Newton’s Sec-
ond Law of Motion, F = ma. Setting these forces equal and noting that
a = ẍ, we have

mẍ + kx = 0.

m

m

k

F = −kx
x

Figure 3.6: A simple harmonic oscillator
consists of a mass, m, attached to a
spring with spring constant, k.

Here we assume that x = x(t) and let the derivatives be time deriva-
tives. The characteristic equation is given by mr2 + k = 0, or

r = ±i

√
k
m
≡ ±iω0.

Then, the general solution is given as

x(t) = A cos ω0t + B sin ω0t.

We will model the equation for simple harmonic motion and it varia-
tions in the next examples. Namely, we will look at Simulink examples of
simple harmonic motion, damped harmonic motion, and forced harmonic
motion.

Example 3.2. Simple Harmonic Motion
A Simulink model for simple harmonic motion is shown in Figure

3.7. We write the differential equation in the form

ẍ = − 1
m
(kx).

For this example we set k = 5 and m = 2. We also specify the initial
conditions x(0) = 1 and ẋ(0) = 0 in the two integrators.

Simple Harmonic Oscillator

x' xx'' 1
s

Integrator

1
s

Integrator1

5

k

Scope1

-1/2

-1/m

Figure 3.7: A model for simple har-
monic motion, mẍ + kx = 0.

The output on the scope is shown in Figure 3.8 for t ∈ [0, 10].
Solving the initial value problem we find that x(t) = cos ω0t, where

ω0 =

√
k
m

=

√
5
2

.

Thus, the period is

T =
2π

ω0
≈ 3.9738s.

From Figure 3.8 we might have estimated the period as 4 s.

second order differential equations 47

Time offset: 0

Figure 3.8: Output for the solution of
the simple harmonic oscillator model.

Example 3.3. Damped Simple Harmonic Motion
A simple modification of the harmonic oscillator is obtained by

adding a damping term proportional to the velocity, ẋ. This results in
the differential equation

mẍ + bẋ + kx = 0,

where b > 0 is the damping constant.
We can verify the damping behavior in the solution by studying

the characteristic equation,

mr2 + br + k = 0,

where x(t) = ert is a guess for form of the the linearly independent
solutions. The solutions of the characteristic equation are found
using the quadratic formula,

r =
−b±

√
b2 − 4km

2m
.

If b2 − 4km < 0, then the roots of the characteristic equation are
complex conjugate roots and the solution takes the form

x(t) = e−bt/2m [A cos ω0t + B sin ω0t] ,

where

ω0 =

√
4km− b2

2m
.

In this case one has oscillatroy solutions with an exponentially decay-
ing amplitude.

A Simulink model for the damped harmonic oscillator can be
created using the differential equation in the form ẍ = − 1

m (bẋ + kx).
This leads to a modification of the model in Figure 3.7. We simply
add a term bẋ. The model is shown in Figure 3.9.

We consider a specific example using k = 5, m = 2, and b = 0.1.
The initial conditions x(0) = 1 and ẋ(0) = 0 are used in the two

48 solving differential equations using simulink

Damped Oscillator

x' xx'' 1
s

Integrator

1
s

Integrator1

0.1

b
5

k

Scope1

1/2

1/m

Figure 3.9: A model for damped simple
harmonic motion, mẍ + bẋ + kx = 0.

Time offset: 0

Figure 3.10: Output for the solution of
the damped harmonic oscillator model.

integrators. Running the model for t ∈ [0, 20], the solution seen in the
Scope block is shown in Figure 3.10. We note that ω0 = 1.5809 Hz,
or the period of oscillation is T = 3.9743s. This is consistent with the
Simulink solution.

Applying the initial conditions, x(0) = 1 and ẋ(0) = 0, to the
general solution, we find that A = 1 and

0 = − b
2m

A + ω0B, or

B =
b

2mω0
. (3.1)

Therefore, the particular solution of the initial value problem can be
written as

x(t) = e−bt/2m
[

cos ω0t +
b

2mω0
sin ω0t

]
.

For the parameter values in the problem a plot of this oslution is
shown in Figure 3.11 and agrees with Figure 3.10 for this example.

The plot in Figure 3.11 was obtained using MATLAB’s ezplot
function and it symbolic capability. The code is given below for this
example.

syms t

second order differential equations 49

t

0 5 10 15 20

-1

-0.5

0

0.5

1

Damped Harmonic Motion Figure 3.11: The analytic solution
for the damped harmonic oscillator
example.

b=.1; m=2; k=5;

omega=sqrt(4*k*m-b^2)/2/m;

alpha=b/2/m;

A=1;

B=b/(2*m*omega);

x=exp(-alpha*t)*(A*cos(omega*t)+B*sin(omega*t));

ezplot(x,[0,20]);

title(’Damped Harmonic Motion’)

Another modification of the problem is to introduce forcing. In general,
the corresponding nonhomogeneous equation is mẍ + bẋ + kx = f (t). One
need only add f (t) to the sum that is sent into the first Integrator block.
This also requires the Clock block and some function blocks. We show this
in the next examples.

Example 3.4. Forced Simple Harmonic Motion
We consider a simple sinusoidal forcing and no damping given by

mẍ + kx = F0 sin ωt.

The Simulink model in Figure 3.9 is modified to produce the model
in Figure 3.12 by adding a Sine Wave Function and a Clock. We left
the damping Gain block but set the multiplier to zero. We also note
that the Sum block shape was changed to rectangular to accommo-
date more inputs and to direct a consistent flow of the processes.

Using the constants m = 2, k = 10, we set F0 = 1 and ω = 2 in the
Sine Wave Function. This results in the output shown in Figure 3.13.
Note that the solution is a modulated oscillation. This is understood
from looking at the analytic form of the solution.

Recall that we can obtain the analytic solution to this problem us-
ing the Method of Undetermined Coefficients. The general solution

50 solving differential equations using simulink

Forced Oscillator

x' xx'' 1
s

Integrator

1
s

Integrator1

0

b
10

k

Scope1

1/2

1/m

t

Sine Wave

Function

Clock

Figure 3.12: A model for forced simple
harmonic motion, mẍ + kx = sin ωt.

Time offset: 0

Figure 3.13: Output for the solution of
the forced simple harmonic oscillator
model.

is a solution of the homogeneous problem plus a particular solution,
or guess, to the nonhomogeneous problem. Thus, we have

x(t) = A cos ω0t + B sin ω0t + xp(t).

We make an educated guess for a function xp(t) satisfying

mẍp + kxp = F0 sin ωt.

Knowing that two derivatives of a sine function returns a constant
times the sine function, we assume that xp(t) = a sin ωt, providing
that this is not a solution of the homogeneous problem. Namely,
ω 6= ω0.

Inserting this guess into the differential equation, we have

−mω2a sin ωt + ka sin ωt = F0 sin ωt.

Since this is true for all t, −mω2a + ka = F0. Noting that k = mω2
0, we

can solve for a,

a =
F0

m(ω2
0 −ω2)

.

Then, the general solution is given by

x(t) = A cos ω0t + B sin ω0t +
F0

m(ω2
0 −ω2)

sin ωt, ω 6= ω0.

second order differential equations 51

The initial conditions, x(0) = 1 and ẋ(0) = 0, were again used
in the two integrators. The first condition gives A = 1. The second
condition can be written as

0 = ω0B +
F0ω

m(ω2
0 −ω2)

.

Solving for B, we obtain

B = − F0ω

mω0(ω
2
0 −ω2)

.

t

0 20 40 60 80 100

-1.5

-1

-0.5

0

0.5

1

1.5

Forced Harmonic Motion Figure 3.14: The analytic solution for
the forced harmonic oscillator example.

Inserting the constants1 in this problem, the exact solution to the 1 Recall that m = 2, k = 10, F0 = 1,
ω = 2. Therefore, ω0 =

√
k/m =

√
5.initial value problem is found as

x(t) =
1
2

sin 2t + cos
√

5t− 1√
5

sin
√

5t.

The plot of this solution is in Figure 3.14. It agrees with that given by
the Simulink model in Figure 3.13.

Example 3.5. Derive a modulation form of the solution from Exam-
ple 3.4. Details showing how to derive a modu-

lated form, x(t) = C(ψ(t)) sin(θ(t) + δ).The solution,

x(t) =
1
2

sin 2t + cos
√

5t− 1√
5

sin
√

5t, (3.2)

in Figure 3.14 looks like what one would get when adding sinusoidal
functions with frequencies that are close. It is the principle used by
piano tuners when using a tuning fork to tune a piano key. If the
piano key note is slightly different from that of a tuning fork, then
when both are sounded at the same time, one hears a beat pattern.
This is heard as the low frequency of the envelope similar to that in
Figure 3.14. In the last example we had two frequencies, ω = 2 and
ω0 =

√
5 ≈ 2.2361, which were close together.

52 solving differential equations using simulink

We will combine the the trigonometric functions in Equation (3.2)
and show the root of this modulation. We seek a solution in the form

x(t) = C(ψ(t)) sin(θ(t) + δ),

where C(ψ(t)) is the modulation amplitude for a higher frequency
sinusoidal function and δ is a phase shift. This is accomplished using
trigonometric identities.

In the following we will need the result that

y = α cos θ + β sin θ

= a sin(θ + ϕ). (3.3)

Expanding the second expression, we have

a sin(θ + ϕ) = a sin ϕ cos θ + a cos ϕ sin θ.

Equating coefficients of cos θ and sin θ, we have

α = a sin ϕ, β = a cos ϕ.

Adding the squares of these equations,

a2 = α2 + β2,

and taking the ratio of the equations yield

tan ϕ =
α

β
.

We now use this result to combine the terms in x(t) into a single
sine function with a varying amplitude. We begin by combining the
last two terms of Equation (3.2) as

cos
√

5t− 1√
5

sin
√

5t = a sin(
√

5t + ϕ)

and set θ =
√

5t, α = 1 and β = − 1√
5

. Then, we have that

a2 = 1 +
1
5
=

6
5

and
tan ϕ = −

√
5.

Since the angle is in the second quadrant of the βα-plane, ϕ = π −
tan−1(

√
5). This gives the solution in the new form

x(t) =
1
2

sin 2t +

√
6
5

sin(
√

5t + ϕ). (3.4)

We now combine the terms in Equation (3.4). Assume that the
solution is the sum of the two sine functions

x(t) = A sin(θ + ψ) + B sin(θ − ψ), (3.5)

second order differential equations 53

where the variables A, B, θ and ψ are to be determined. It is easy to

see that A = 1
2 , B = a =

√
6
5 , and

θ + ψ = 2t, θ − ψ =
√

5t + ϕ.

Solving this system,

θ =
(2 +

√
5)t + ϕ

2
, ψ =

(2−
√

5)t− ϕ

2
.

Expanding the sine functions in Equation (3.5), we have

x(t) = (A + B) sin θ cos ψ + (A− B) cos θ sin ψ

= [(A− B) sin ψ] cos θ + [(A + B) cos ψ] sin θ

= α cos θ + β sin θ, (3.6)

where

α = (A− B) sin ψ

β = (A + B) cos ψ.

We can combine the terms in α cos θ + β sin θ in the form

x(t) = α cos θ + β sin θ = C(ψ(t)) sin(θ(t) + δ)

using the previous derivation, leading to

C2 = α2 + β2

= (A− B)2 sin2 ψ + (A + B)2 cos2 ψ

= A2 + B2 + 2AB cos 2ψ

=
29
20

+

√
6
5

cos 2ψ

tan δ =
α

β
.

=

(
A− B
A + B

)
tan ψ.

=

 1
2 −

√
6
5

1
2 +

√
6
5

 tan ψ

=

(√
5− 2

√
6√

5 + 2
√

6

)
tan ψ.

Thus, we have x(t) = C sin(θ(t) + δ) for C and δ defined by the
above relations,

θ =
(2 +

√
5)t + ϕ

2
, ψ =

(2−
√

5)t− ϕ

2
,

and tan ϕ = −
√

5. This gives a modulated solution by an ampli-
tude envelope with a slowly varying frequency and high freqency
oscillations given by the function sin(θ(t) + δ), whose period is
T = 2π

ωθ
= 4π

2+
√

5
= 2.9665s as compared to π

ωψ
= 2π
|2−
√

5| = 26.6160s for

the envelope. This function is shown in Figure 3.15.

54 solving differential equations using simulink

t

0 20 40 60 80 100

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Analytic Modulated Solution Figure 3.15: The solution, x(t) =
C sin(θ(t) + δ), for the forced harmonic
oscillator example.

Forced damped oscillator

Example 3.6. Model the forced, damped harmonic oscillator.
A simple application is the forced, damped harmonic oscillator.

Recall that this is modeled using a second order, constant coefficient
equation,

mx′′ + cx′ + kx = F(t)

for some driving force F(t). Rewriting the equation, we have

x′′ =
1
m

F(t)− c
m

x′ − k
m

x.

This suggests a model like that shown in Figure 3.16. In this exam-
ple the forcing term was taken as a step function.

F(t) =

{
0, t < 1,
1, t ≥ 1.

The Step function block is set to start at F = 0 and increases to a
constant value of F = 1 after t = 1. The other constants are given as
m = 1.0 kg, c = 0.5 kg/s, and k = 2.0 N/m.

In Figure 3.17 is shown the solution plot for the forced, damped,
harmonic oscillator model with initial values of x(0) = 1 and x′(0) =
0. In this model there is also an XY Graph block. The position and
velocity data is fed into this block and the output is a plot of the
solution in the phase plane. This is shown in Figure 3.18.

3.2 Projectile Motion

Another example is that of projectile motion. This is a system
of equations or a single equation for a vector function. Let the position
vector for the projectile be given by r = [x, y]. Then, the projectile satisfies

second order differential equations 55

Forced, damped oscillator

x' xx'' 1
s

Integrator

1
s

Integrator1

0.5

c/m

2

k/m

Step

1

1/m

Scope

Scope1

XY Graph

Figure 3.16: Forced, damped oscillator.

Figure 3.17: Scope plot of the solution
of the forced, damped, harmonic
oscillator model.

the second order equation r′′ = −g. We solve this equation using two
integrators and setting up the system with a two component vector. [For
a simpler model solving for a two component vector, look at the Bouncing
Ball Problem in the next section.]

To make things more interesting, we can add a drag force. Thus, we
solve the system

r′′ = −g− kvv.

The magnitude of the drag is proportional to v2. If the projectile is moving
directly upward, the drag is negative, opposing the motion. The model
will need functions to compute the speed, v, and will need two integrators
with the appropriate initial position and velocity. The gravitational force
will also be provided with a constant block. This model is shown in Figure
3.19

For a change, we set up the model in British units (foot-pound-second).
The initial position is [0, 4] ft and the initial velocity is [80, 80] ft/s. The

56 solving differential equations using simulink

Figure 3.18: XY Graph output for
the solution of the forced, damped,
harmonic oscillator model.

gravitational constant is −g = [0,−32] ft/s2. The value of the drag coeffi-
cient does not show in the figure. [The value shows when the Gain block
is resized.] The position and speed vs time plots are shown in Figure 3.20.
Note that changing the simulation time is one way to only display the time
that the mass is above y = 0. Also, the plot of speed shows that the speed
is always positive.

Also shown in this model is the use of the XY Graph block. It takes
two inputs in order to plot the path y vs x. XY Graphs automatically plot
when the simulation is run, as opposed to the Scope plots, which need to
be double-clicked to display the plots. One also needs to double-click the
XY Graph block to change the scale shown. For this model the output is
shown in Figure 3.21. This plot is useful for determining the maximum
height and range of the projectile.

.

3.3 The Bouncing Ball

As seen in the projectile motion model output in Figure 3.20,
the projectile may not stop when it reaches the ground. One needs a way
to determine when this has happened and reverse the direction of the
motion. In this section we will look at a simple model in which a ball goes
through free fall and bounces when it reaches the ground.

The ball satisfies the second order equation x′′ = −g. Noting that the
velocity is v = x′, this can be written as two first order equations,

x′ = v,

v′ = −g. (3.7)

second order differential equations 57

[x,y]

Initial Velocity

[x',y']
[x'',y'']

Projectile Motion

1
sxo

Integrate x''

1
sxo

Integrate x'
XY Graph

[80,80] [0,4]

Initial Position

Dot Product
Product

u

Sqrt v vs t

y vs t

-K-

Drag Coefficient

[0,-32]
gravitational

acceleration

Figure 3.19: Projectile motion model.

Figure 3.20: Output of the Scope Blocks
for the projectile motion model for
position and velocity vs time.

This system of equations can be then be put into matrix form,

d
dt

[
x
v

]
=

[
0 1
0 0

] [
x
v

]
+

[
0
−g

]

This system can be used to produce the Simulink model in Figure 3.22,
where we have introduced initial conditions x(0) = 3 and v(0) = 0 in the
form of an initial vector, [3; 0].

In the model we use matrix multiplication to set up the right hand side
of the equation. A 2× 2 matrix is entered in the gain and the acceleration
term is added separately. In order to plot the position vs time, we put a
Demux block to separate out the components of the “state” vector and
added a Terminator block to terminate the unused v-branch.

The output of the simulation, which was run for a time of 1 second, is
shown in Figure 3.23. Note that the ball has fallen below ground level. We
would like for the ball to bounce from the ground. In order to do so, we
will test to see when x ≤ 0 and v ≤ 0. This is accomplished by adding
some test conditions to the Integrator block.

58 solving differential equations using simulink

Figure 3.21: Output of the XY Graph
block for the projectile motion model
showing vertical position vs horizontal
position.

x'=v
v'=-g

[x,v]

x[x,v]'

Free Fall

v

[0 1;0 0]* u

Gain

[0;-9.8]

Acceleration

Scope

Terminator

1
sxo

Integrator

[3;0]

Constant

Figure 3.22: Free fall model.

Double-click the Integrator block and set the External reset to rising.
This will add a third input as shown in Figure 3.24. Then, replace the
initial condition Constant block with an IC block. This is found in the
Signal Attributes group. It looks like the IC block in Figure 3.24.

Next, we enter the conditions determining when the block hits the
ground and change the block velocity. The input to the condition con-
sist of the Boolean condition, (u[1]<=0)&&(u[2]<0), and the new position
and velocity. Here u[1] and u[2] are the position and velocity components.
We set the position as u[1] and the velocity as -0.8*u[2]. These expressions
are entered using Fcn blocks from the User-Defined Function group. This
model is shown in Figure 3.25 with the needed connections to the Fcn
blocks and the Integrator block. This output is shown in Figure 3.26.

3.4 Nonlinear Pendulum Animation

Plotting and animating solutions from a model can be done by
sending the output of a model to MATLAB. In this section we will solve
a nonlinear pendulum problem and show how one sends the output to
create a simple animation of the pendulum motion.

A simple pendulum consists of a point mass m attached to a string of
length L as shown in Figure 3.27. It is released from an angle θ0. Newton’s

second order differential equations 59

Figure 3.23: Height vs time Scope plot
for the free fall model.

Figure 3.24: Modified Integrator and IC
blocks.

Second Law of Motion tells us that the net force is the mass times the
acceleration. So, we can write

mẍ = −mg sin θ.

Next, we need to relate x and θ. x is the distance traveled, which is the
length of the arc traced out by the point mass. The arclength is related to
the angle, provided the angle is measure in radians. Namely, x = rθ for
r = L. Thus, we can write

mLθ̈ = −mg sin θ.

Canceling the masses, this then gives us the nonlinear pendulum equation Nonlinear pendulum equation.

Lθ̈ + g sin θ = 0. (3.8)

60 solving differential equations using simulink

x'=v
v'=-g

[x,v]

[x,v]'

Bouncing Ball

v

x
1
s

xo

Integrator

[0 1;0 0]* u

Gain

[0;-9.8]

Acceleration

Scope

[3;0]

IC

(u[1]<=0)&&(u[2]<0)

Fcn

u[1]

Fcn1

 -0.8*u[2]

Fcn2

Terminator

Figure 3.25: The bouncing ball model.

Figure 3.26: Output from the bouncing
ball model showing plot of height vs
time.

m

θ
L

Figure 3.27: A simple pendulum con-
sists of a point mass m attached to a
string of length L. It is released from an
angle θ0.

We can use Simulink to model this equation. Such a model is shown in
Figure 3.28.It is set up to solve the model in the form

θ̈ = − g
L

sin θ.

The constants are entered using Constant blocks and two Integrator blocks
are used.

We enter the parameters in the system using variables instead of partic-
ular constants. These parameters are introduced in a MATLAB m-file. The
constants are L, g, and initial conditions theta0 and v0 in the Integrator
blocks. Save this model as pend.mdl.

Now, one creates an m-file, pendulum.m with the following code. Here
we define the constants first. Then enter the initial conditions followed by
the simulation.

second order differential equations 61

theta'' theta' theta
L

Length

-g

gravitational

acceleration

1
s

Integrator

1
s

Integrator1 Scope

sin

Trigonometric

Function

Divide

Figure 3.28: Nonlinear pendulum
model.

m=1.0;

L=1.0;

g=9.8;

v0=0;

theta0=pi/6;

t0=0;

tf=15;

myopts = simset(’MaxStep’, 0.01);

sim(’pend’, [t0 tf],myopts)

Typing pendulum in the command window, assuming that this file and
the model are save and run from the same folder, will produce a Scope
plot for t ∈ [0, 15]. The function simset will make the plot smoother.

In order to plot the solution in MATLAB, the solution needs to be out-
put to the MATLAB workspace. This is accomplished by adding a To
Workspace block for the theta output variable and one for time, using a
Clock. Double-clicking each block, one can change the output variable
names to theta and time, respectively. The resulting model is shown in
Figure 3.29

theta'' theta' theta
L

Length

-g

gravitational

acceleration

1
s

Integrator

1
s

Integrator1 Scope

sin

Trigonometric

Function

Divide

time

To Workspace
Clock

theta

To Workspace1

Figure 3.29: Nonlinear pendulum
model with To Workspace blocks
added to output θ(t) and t.

To see a plot of the solution, add the following lines to pendulum.m:

figure(1)

plot(time,theta)

xlabel(’t’)

ylabel(’\theta’)

62 solving differential equations using simulink

Running the new pendulum.m m-file produces the plot in Figure 3.30.

t

0 5 10 15

θ

-0.6

-0.4

-0.2

0

0.2

0.4

0.6 Figure 3.30: Plot of solution, θ(t) vs t, to
the nonlinear pendulum model.

One can also animate the motion of the pendulum mass on the string.
We use the data produces from Simulink to locate the position of the mass
(as a ball) and the end of the string. For each time the mass and string are
redrawn as we loop through time. The code to be added to pendulum.m is
given as

rball=.05; % mass radius

x=L*sin(theta);

y=-L*cos(theta);

posx=x(1); posy=y(1); % Mass’s initial position

%Initialize figure, mass, and string

fig=figure(2);

axs=axes(’Parent’,fig);

ball=rectangle(’Position’,[posx-rball,posy-rball,2*rball,2*rball],...

’Curvature’,[1,1],...

’FaceColor’,’b’,...

’Parent’,axs);

rod=line([0 posx],[0 posy],’Marker’,’.’,’LineStyle’,’-’)

axis(axs,[-L,L,-L-rball,L]);

for j=2:length(time)

set(ball,’Position’,[x(j)-rball,y(j)-rball,2*rball,2*rball]);

set(rod,’XData’,[0 x(j)],’YData’,[0 y(j)]);

axis([-L,L,-L-rball,L])

pause(0.1);

end

In Figure 3.31 we show the starting location of the pendulum simula-
tion.

It is interesting to compare the linear and nonlinear pendulum solutions

second order differential equations 63

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1 Figure 3.31: Simulation of the nonlinear
pendulum in MATLAB.

to see when the small angle approximation holds. This can be done by
combining the two models and comparing the solutions in a scope plot.
Figure 3.32 shows such a model. The equations being solved are

θ′′ + 4θ = 0

theta′′ + 4 sin θ = 0. (3.9)

Linear Pendulum
x''+k x=0

Nonlinear Pendulum
x''+k sin x=0

1
sxo

Integrator

sin(u)

Fcn 1
sxo

Integrator1
4

Constant

Product

0

Constant1

1

Constant2

-1

Gain

Scope

1
sxo

Integrator2

1
sxo

Integrator3

4

Constant3

Product1

0

Constant4

1

Constant5

-1

Gain1

Sine Wave

Figure 3.32: Linear and nonlinear
pendulum.

64 solving differential equations using simulink

3.5 Second Order ODEs in MATLAB

We can also use ode45 to solve second and higher order differential
equations. The key is to rewrite the single differential equation as a system
of first order equations. Consider the simple harmonic oscillator equation,
ẍ + ω2x = 0. Defining y1 = x and y2 = ẋ, and noting that

ẍ + ω2x = ẏ2 + ω2y1,

we have

ẏ1 = y2,

ẏ2 = −ω2y1.

Furthermore, we can view this system in the form ẏ = y. In particular,
we have

d
dt

[
y1

y2

]
=

[
y1

−ω2y2

]
Now, we can use ode45. We modify the code slightly from Chapter 1.

[t y]=ode45(’func’,[0 5],[1 0]);

Here [0 5] gives the time interval and [1 0] gives the initial conditions

y1(0) = x(0) = 1, y2(0) = ẋ(0) = 0.

The function func is a set of commands saved to the file func.m for
computing the righthand side of the system of differential equations. For
the simple harmonic oscillator, we enter the function as

function dy=func(t,y)

omega=1.0;

dy(1,1) = y(2);

dy(2,1) = -omega^2*y(1);

There are a variety of ways to introduce the parameter ω. Here we simply
defined it within the function. Furthermore, the output dy should be a
column vector.

After running the solver, we then need to display the solution. The
output should be a column vector with the position as the first element
and the velocity as the second element. So, in order to plot the solution as
a function of time, we can plot the first column of the solution, y(:,1), vs t:

plot(t,y(:,1))

xlabel(’t’),ylabel(’y’)

title(’y(t) vs t’)

second order differential equations 65

t
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

y

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
y(t) vs t Figure 3.33: Solution plot for the simple

harmonic oscillator.

The resulting solution is shown in Figure 3.33.
We can also do a phase plot of velocity vs position. In this case, one can

plot the second column, y(:,2), vs the first column, y(:,1):

plot(y(:,1),y(:,2))

xlabel(’y’),ylabel(’v’)

title(’v(t) vs y(t)’)

The resulting solution is shown in Figure 3.34.

x
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

v

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
v(t) vs x(t) Figure 3.34: Phase plot for the simple

harmonic oscillator.

Finally, we can plot a direction field using a quiver plot and add solu-
tion curves using ode45. The direction field is given for ω = 1 by dx=y
and dy=-x.

clear

[x,y]=meshgrid(-2:.2:2,-2:.2:2);

dx=y;

dy=-x;

quiver(x,y,dx,dy)

axis([-2,2,-2,2])

xlabel(’x’)

ylabel(’y’)

66 solving differential equations using simulink

hold on

[t y]=ode45(’func’,[0 6.28],[1 0]);

plot(y(:,1),y(:,2))

hold off

The resulting plot is given in Figure 3.35.

x
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

y

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Figure 3.35: Phase plot for the simple
harmonic oscillator.

second order differential equations 67

3.6 Exercises

1. Model the following initial value problems in Simulink and compare
solutions to those using ode45.

a. y′′ − 9y′ + 20y = 0, , y(0) = 0, y′(0) = 1.

b. y′′ − 3y′ + 4y = 0, y(0) = 0, y′(0) = 1.

c. 8y′′ + 4y′ + y = 0, y(0) = 1, y′(0) = 0.

d. x′′ − x′ − 6x = 0 for x = x(t), x(0) = 0, x′(0) = 1.

2. Model the given equation in Simulink for an appropriate initial condi-
tion and plot the solution. Analytically determine and plot the solution
and compare to the model solution.

a. y′′ − 3y′ + 2y = 10.

b. y′′ + 2y′ + y = 5 + 10 sin 2x.

c. y′′ − 5y′ + 6y = 3ex.

d. y′′ + 5y′ − 6y = 3ex.

e. y′′ + y = sec3 x.

f. y′′ + y′ = 3x2.

g. y′′ − y = ex + 1.

3. Consider the model in Figure 3.36. Fill in the question marks with the
correct expression at that point in the computation. What differential
equation is solved by this simulation? [Put the equation in the simplest,
recognizable form.]

?
?

?

What does this model solve?

?

?

1
sxo

Integrator

1
sxo

Integrator1

3

b

10

c

Scope

Clock

u2

Math

Function

Divide

Divide1

1

y(0)

0

y'(0)

Figure 3.36: Mystery model for Problem
4.

4. Model the given equation in Simulink for an appropriate initial condi-
tion and plot the solution. Analytically determine and plot the solution
and compare to the model solution.

a. x2y′′ + 3xy′ + 2y = 0.

b. x2y′′ − 3xy′ + 3y = 0, y(1) = 1, y′(1) = 0.

c. x2y′′ + 5xy′ + 4y = 0.

d. x2y′′ − 2xy′ + 3y = 0, y(1) = 3, y′(1) = 0.

68 solving differential equations using simulink

e. x2y′′ + 3xy′ − 3y = x2.

f. x2y′′ + 3xy′ − 3y = x2.

g. 2x2y′′ + 5xy′ + y = x2 + x.

h. x2y′′ + 5xy′ + 4y = 0.

i. x2y′′ − 2xy′ + 3y = 0.

5. Consider an LRC circuit with L = 1.00 H, R = 1.00 × 102 Ω, C =

1.00× 10−4 f, and V = 1.00× 103 V. Suppose that no charge is present
and no current is flowing at time t = 0 when a battery of voltage V is
inserted. Use a Simulink model to find the current and the charge on
the capacitor as functions of time. Describe how the system behaves
over time.

6. A certain model of the motion light plastic ball tossed into the air is
given by

mx′′ + cx′ + mg = 0, x(0) = 0, x′(0) = v0.

Here m is the mass of the ball, g=9.8 m/s2 is the acceleration due to
gravity and c is a measure of the damping. Since there is no x term, we
can write this as a first order equation for the velocity v(t) = x′(t) :

mv′ + cv + mg = 0.

a. Model this problem using Simulink.

b. Determine how long it takes for the ball to reach it’s maxi-
mum height?

c. Assume that c/m = 5 s−1. For v0 = 5, 10, 15, 20 m/s, plot the
solution, x(t), versus the time.

d. From your plots and the expression in part b., determine the
rise time. Do these answers agree?

e. What can you say about the time it takes for the ball to fall as
compared to the rise time?

4

Transfer Functions and State Space
Blocks

4.1 State Space Formulation

There are other more elegant approaches to solving a differential
equation in Simullink. Take for example the differential equation for a
forced, damped harmonic oscillator,

mx′′ + bx′ + kx = u(t). (4.1)

Note that we changed the driving force to u(t).
Defining x1 = x′ and x2 = x′, this second order differential equation can

be written as a system of two first order differential equations,

x′1 = − b
m

x1 −
k
m

x2 +
1
m

u(t)

x′2 = x1 (4.2)

Note that x′′2 = x′1 gives the second order equation with x = x2. Also, this
is not the typical order of equations usually encountered when studying
systems of differential equations. This order is chosen to be consistent with
the State Space Block which we will use later.

This system can be written in matrix form: x′ = Ax + Bu, where

x =

[
x1

x2

]
,

A =

 − b
m
− k

m
1 0

 ,

B =

 1
m
0

 .

We now think of x′ = Ax + Bu, as a system whose input is given by the
forcing term u(t) and we need to integrate the right hand side for a given
input function. The output of this system is the solution vector, x. Also,
we might want to output a plot of the forcing function. Thus, the complete
output from the system can be written as

y = Cx + Du,

70 solving differential equations using simulink

where C is a row vector and D = 0 or 1. In particular, we might only want
to output the solution component x2. So, we let C = [0, 1] and D = 0. The
block diagram for this process is shown in Figure 4.1.

u B 1
s C

D

A

++ ++xẋ

input

y

output

Figure 4.1: State space representation of
the system x′ = Ax + Bu, y = Cx + Du,

The whole process is captured in the State Space Block. This block is
found in the Continuous group. The implementation of this system with
a sinusoidal forcing term is depicted in Figure 4.2. This shows the pair of
equations

x′ = Ax + Bu,

y = Cx + Du. (4.3)

yu x' = Ax+Bu
 y = Cx+Du

State-Space
Sine Wave

Function

Scope

Figure 4.2: The use of theState Space
Block displaying a Sine Wave input
and output to a Scope.

As an example, we consider the case where m = 2 kg, b = 0.2 kg/s, and
k = 1.0 N/m. We also let u(t) = sin t. Then, we have

A =

[
−0.1 −0.5

1 0

]
,

B =

[
0.5
0

]
,

C = [0, 1], and D = 0. These values are put into the block by going into the
Function Block Parameters dialog box for the State Space block as shown
in Figure 4.3. Note that there is a place to enter the initial condition, such
as [x1(0), x2(0)]T = [0, 1]T . In this case one would type [0; 1]. A compari-
son of outputs from using this initial condition to zero initial conditions is
shown in Figure 4.4. Figure 4.5 shows the system needed to produce this
plot.

4.2 Transfer Functions

Another method for solving the differential equation com-
pactly is to use the Transfer Fcn block. This is shown in Figure 4.6. One
needs to enter the transfer function numerator and denominator in the
Function Block Parameter box, shown in Figure 4.7. Essentially, this is

transfer functions and state space blocks 71

Figure 4.3: State space block parame-
ters.

recognized as the Laplace transform of the differential equation with zero
initial conditions.

Recall, the Laplace transform of a function f (t) is defined as

X(s) = L[x](s) =
∫ ∞

0
x(t)e−st dt, s > 0. (4.4)

Also, we have the properties

L
[

dx
dt

]
= sX(s)− x(0)

L
[

d2x
dt2

]
= s2X(s)− sx(0)− x′(0). (4.5)

Taking the Lplace transform of the differential equation, 2x′′ + .2x′ + x =

sin t, with x(0) = x′(0) = 0,

(2s2 + .2s + 1)X(s) =
1

s2 + 1
.

Solving for X(s),

X(s) =
1

2s2 + .2s + 1
L[u(t)].

Therefore, the transfer function comes from the factor multiplying
L[u(t)]. In this case, one enters the coefficients of the second order dif-
ferential equation into the denominator as [2 .2 1]. Unfortunately, one can
only solve problems with zero initial conditions.

If one knows the transfer function, then one can use it to create an
equivalent State Space block. This is done using the MATLAB function
tf2ss(1,[2,.2,1]). We note that this produces the parameters A, B, C, D, but
what it gives is

B =

[
1
0

]
,

72 solving differential equations using simulink

Figure 4.4: Solution to the forced,
damped harmonic oscillator problem
with initial conditions set to 0 or [0;1].

u

y

yx' = Ax+Bu
 y = Cx+Du

State-Space

Scope

x' = Ax+Bu
 y = Cx+Du

State-Space1

Sine Wave

Function1

Figure 4.5: The use of theState Space
Block dispaying a Sine Wave input
and output to a Scope. The Mux block
(from Signal Routing) is used to feed
solutions from two systems using
different initial conditions.

and C = [0, 0.5], This differs from what we derived above. The difference
lies in the fact that we can multiply B by any constant and divide C by
that constant and not affect the solution of the problem. In this case, the
constant in question is the mass, m = 2.0.

transfer functions and state space blocks 73

1

2s +.2s+12

Transfer FcnSine Wave

Function

Scope

Figure 4.6: The use of the Transfer
Fcn Block with a Sine Wave input and
output to a Scope.

Figure 4.7: Block parameter display for
the Transfer Fcn block.

5

Systems of Differential Equations

5.1 Linear Systems

We consider the linear system

x′ = ax + by

y′ = cx + dy. (5.1)

This can be modeled using two integrators, one for each equation. Due to
the coupling, we have to connect the outputs from the integrators to the
inputs.

As an example, we show in Figure 5.1 the case a = 0, b = 1, c = −1,
d = 0. This is the linear system of first order equations for x′′ + x = 0, and
y = x′. We also insert the initial conditions x(0) = 1, y(0) = 2. Running the
model, results in the plots in Figures 5.2 and 5.3.

x

Linear System of Differential Equations

y

y

x

y

x

x'=ax+by
y'=cx+dy

1
sxo

Integrator

1
sxo

Integrator1

Scope

1

x(0)

2

y(0)

0

a

-1

c

0

d

1

b

XY Graph

Figure 5.1: Linear system using two
integrators.

76 solving differential equations using simulink

Figure 5.2: Linear system using two
integrators.

This system can by put in matrix form,[
x
y

]′
=

[
0 1
−1 0

] [
x
y

]

This can be modeled by introducing matrix multiplication in a gain block
as shown in Figure 5.4. The input and output to the Integrator block are
vectors. The output is split using a Demux block to plot x and y sepa-
rately. The Scope block plots the two signals separately as functions of t.
The XY Graph block is used to plat the phase plane, y vs x..

We can also use a State Space block to solve this system. This is shown
in Figure 5.5. We set the input as u = 0. In order to output both x and y,
we set A = [01; 0− 1], B = [0; 0], C = [10; 01], and D = [0; 0]. We also set
the initial conditions to [1; 2]. The solution plots are the same as shown in
Figures 5.2 and 5.3.

5.2 Nonlinear Models

The Jerk Equation

In this section we consider modeling a few common nonlinear sys-
tems with interesting behaviors in Simulink. These examples stem from a
variety of applications such as biological systems, predator-prey models,
chemical reactions, such as Michaelis-Menten kinetics, circuits, and other
dynamical systems. We begin with the jerk model.

If one denotes x(t) as the position as a function of time, t, then we are
familiar with the idea that x′(t) would be the velocity and x′′(t) the accel-
eration. However, you might not be as familiar with the jerk. This is the

systems of differential equations 77

Figure 5.3: Linear system using two
integrators.

[x';y']

x

y

Linear System of Differential Equations

[x;y]1
sxo

Integrator

 0 1

-1 0
* u

Gain

Scope

[1;2]

IC

XY Graph

Figure 5.4: Linear system using matrix
operation.

third derivative, x′′′(t). The jerk equation modeled in Figure 5.6 is

x′′′ + cx′′ + bx′ + ax + x2 = 0.

As a third order equation, one needs initial values for x, x′, and x′′.

Van der Pol Equation

Solutions, known as limit cycles, are common in nature. Rayleigh
investigated the problem

x′′ + c
(

1
3
(x′)2 − 1

)
x′ + x = 0 (5.2)

in the study of the vibrations of a violin string. Balthasar van der Pol
(1889-1959) studied an electrical circuit, modeling this behavior. Limit

78 solving differential equations using simulink

y

x
[x;y]x' = Ax+Bu

 y = Cx+Du

State-Space

0

Constant Scope XY Graph

Figure 5.5: Linear system using matrix
operation.

Nonlinear Jerk Equation

x''' + cx'' + bx' + ax + x = 0
2

x
x'' x'x'''

2x1
s

Integrator

1
s

Integrator1

1
s

Integrator2
Product

0.42

c

1.1

b

1

a

XY Graph

Figure 5.6: Nonlinear jerk model.

cycles are isolated periodic solutions towards which neighboring states
might tend when stable. A slight change of the Rayleigh system leads to
the van der Pol equation:

x′′ + c(x2 − 1)x′ + x = 0 (5.3)

The limit cycle is found in the model and solutions in Figures 5.7-5.9.

x

Reset to fixed-step, Runge-Kutta, dt = 0.1

x'' x'

Van der Pol Equation
x''=mu (1-x^2)x'-x

1
s

Integrator

1
s

Integrator1

Scope

1

GainProduct

1-u^2

Fcn

XY Graph

Figure 5.7: van der Pol equation.

Lorenz Equations

The Lorenz model is another typical model used as an example of
a nonlinear system. The Lorenz model is a simple model for atmospheric

systems of differential equations 79

Figure 5.8: Solution plot for the van der
Pol equation.

convection developed by Edward Lorenz in 1963. The system is given by
the three equations

dx
dt

= σ(y− x)

dy
dt

= x(ρ− z)− y

dz
dt

= xy− βz.

Figures 5.10-5.12 show the models and a famous solution to the Lorenz
equations.

Using the data sent to the MATLAB workspace, a three dimensional
model can be constructed. The following produces an animation of the
data resulting in a 3D plot.

Z=simout.data;

N=length(Z(:,1));

figure(3)

axHndl = gca;

figNumber = gcf;

hndlList = get(figNumber,’UserData’);

set(axHndl, ...

’XLim’,[0 50],’YLim’,[-20 20],’ZLim’,[-30 30], ...

’XTick’,[],’YTick’,[],’ZTick’,[], ...

’SortMethod’,’childorder’, ...

’Visible’,’on’, ...

’NextPlot’,’add’, ...

80 solving differential equations using simulink

Figure 5.9: Phase plane plot for the van
der Pol equation.

Lorenz System

yz

xy

z

y

xx 1
s

Integrator

1
s

Integrator1

1
s

Integrator2

simout

To Workspace

-2.666666

beta

Product 10

rho

Product1

28

sigma

XY Graph

Figure 5.10: Model for Lorenz equa-
tions.

’View’,[-37.5,30], ...

’Clipping’,’off’);

xlabel(’x’);

ylabel(’y’);

zlabel(’z’);

y(1) = Z(1,1);

y(2) = Z(1,2);

y(3) = Z(1,3);

L = 5;

Y = y*ones(1,L);

systems of differential equations 81

Figure 5.11: XY plot for the Lorenz
model.

cla;

head = line(’color’,’r’, ’Marker’,’.’,’MarkerSize’,10,’LineStyle’,’none’, ...

’XData’,y(1),’YData’,y(2),’ZData’,y(3)) ;

body = animatedline(’color’,’b’, ’LineStyle’,’-’) ;

tail = animatedline(’color’,’b’, ’LineStyle’,’-’) ;

for j=2:N

y(1) = Z(j,1);

y(2) = Z(j,2);

y(3) = Z(j,3);

% Update the plot

Y = [y Y(:,1:L-1)];

set(head, ’XData’, Y(1,1), ’YData’, Y(2,1), ’ZData’, Y(3,1));

addpoints(body, Y(1,2), Y(2,2), Y(3,2));

addpoints(tail, Y(1,L), Y(2,L), Y(3,L));

pause(0.1)

% Update the animation every ten steps

if ~mod(j,10)

drawnow;

end

end

Lotka-Volterra Predator-Prey Model

Two well-known nonlinear population models are the predator-
prey and competing species models. In the predator-prey model, one typ-
ically has one species, the predator, feeding on the other, the prey. We will

82 solving differential equations using simulink

z

xy

Figure 5.12: Three dimensional plot for
the Lorenz model.

look at the standard Lotka-Volterra model in this section. The competing The Lotka-Volterra model is named
after Alfred James Lotka (1880-1949)
and Vito Volterra (1860-1940).

species model looks similar, except there are a few sign changes, since one
species is not feeding on the other. Also, we can build in logistic terms into
our model. We will save this latter type of model for the homework.

The Lotka-Volterra model takes the form The Lotka-Volterra model of population
dynamics.

ẋ = ax− bxy,

ẏ = −dy + cxy, (5.4)

where a, b, c, and d are positive constants. In this model, we can think
of x as the population of rabbits (prey) and y is the population of foxes
(predators). Choosing all constants to be positive, we can describe the
terms.

• ax: When left alone, the rabbit population will grow. Thus a is the
natural growth rate without predators.

• −dy: When there are no rabbits, the fox population should decay.
Thus, the coefficient needs to be negative.

• −bxy: We add a nonlinear term corresponding to the depletion of
the rabbits when the foxes are around.

• cxy: The more rabbits there are, the more food for the foxes. So, we
add a nonlinear term giving rise to an increase in fox population.

SIR Model of Disease

Another interesting area of application of differential equation
is in predicting the spread of disease. Typically, one has a population of
susceptible people or animals. Several infected individuals are introduced
into the population and one is interested in how the infection spreads and

systems of differential equations 83

x

y' y

xy

Predator-Prey Model

 x' = x - axy
 y' = - y + bxy

x'
x

Scope

1
sxo

Rabbits

1
sxo

Foxes

Product

0.02

a

0.01

b

XY Graph

50

IC

10

IC1

y

Figure 5.13: Predator-Prey model.

if the number of infected people drastically increases or dies off. In the
SIR model one uses a compartmental analysis by breaking the population
into three classes. First, we let S(t) represent the healthy people, who are
susceptible to infection. Let I(t) be the number of infected people. Of
these infected people, some will die from the infection and others could
recover. We will consider the case that initially there is one infected person
and the rest, say N, are healthy. Can we predict how many deaths have
occurred by time t?

We can first look into a linear model. We assume that the rate of change
of any population would be due to those entering the group less those
leaving the group. For example, the number of healthy people decreases
due infection and can increase when some of the infected group recovers.
Let’s assume that a) the rate of infection is proportional to the number of
healthy people, aS, and b) the number who recover is proportional to the
number of infected people, rI. Thus, the rate of change of healthy people is
found as

dS
dt

= −aS + rI.

Let the number of deaths be D(t). Then, the death rate could be taken
to be proportional to the number of infected people. So,

dD
dt

= dI

Finally, the rate of change of infected people is due to healthy people
getting infected and the infected people who either recover or die. Using
the corresponding terms in the other equations, we can write the rate of
change of infected people as

dI
dt

= aS− rI − dI.

84 solving differential equations using simulink

This linear system of differential equations can be written in matrix
form.

d
dt

 S
I
D

 =

 −a r 0
a −d− r 0
0 d 0

 S

I
D

 . (5.5)

The commonly used nonlinear SIR model is given by

dS
dt

= −βSI

dI
dt

= βSI − γI

dR
dt

= γI, (5.6)

where S is the number of susceptible individuals, I is the number of in-
fected individuals, and R are the number who have been removed from
the the other groups, either by recovering or dying. The Simulink model is
given in Figure 5.14.

NSIR Model

1
s

Integrator S

1
s

Integrator1 I

1
s

Integrator2 R

Product

.5

beta

Product1

.33

gamma

Divide

-1

Gain

Figure 5.14: SIR epidemic model.

Michaelis-Menten Kinetics

The Michaelis-Menten kinetics reaction is given by

E + S
k1

// ES
k3oo

k2

// E + P.

This approximates the dynamics under the assumption that the concen-
tration of the enzyme remains constant. The enzyme interacts with the
substrate to form an enzyme–substrate complex, leading to a release of
enzyme. E, S, and P are the enzyme, substrate, and product, respectively.
The system of differential equations corresponding to the dynamics of
these reactions is

systems of differential equations 85

d[S]
dt

= −k1[E][S] + k3[ES],

d[E]
dt

= −k1[E][S] + (k2 + k2)[ES],

d[ES]
dt

= k1[E][S]− (k2 + k2)[ES],

d[P]
dt

= k3[ES]. (5.7)

In chemical kinetics one seeks to determine the rate of product formation
(v = d[P]/dt = k3[ES]). Assuming that [ES] is a constant, one seeks v as a
function of [S] and the total enzyme concentration [ET] = [E] + [ES].

The Chua Circuit

The Chua circuit, as shown in Figure 5.15, consists of an inductor, a
resistor, two capacitors and a nonlinear resistor, or other nonlinear compo-
nent. The system of differential equations is found using Kirchoff’s circuit
laws. There are two junctions, labeled as 1 and 2. The total current into
each node equals the current leaving the node. There are three loops over
which one sums the potential rises and drops.

L

R

C2

1

C1

2

r

IL

IR

iq̇2 q̇1

Figure 5.15: The Chua circuit used in
this note.

Using junction rules, we have at nodes 1 and 2:

IL = q̇2 + IR, (5.8)

IR = q̇1 + i. (5.9)

Kirchoff’s Loop rules for the three small loops are

L
dIL
dt

= −V2, (5.10)

IRR = V2 −V1, (5.11)

Vr =
q1

C1
. (5.12)

We seek a system of differential equations for V1, V2, and IL. Noting that
qi = CiVi, for i = 1, 2, we find from Equations (5.8) and (5.11):

C2V̇2 = IL − R−1(V2 −V1).

86 solving differential equations using simulink

From Equation (5.9) we have, using Equation (5.11),

C1V̇1 = R−1(V2 −V1)− g(V1),

where g(x) gives the characteristics of the nonlinear component in the
circuit. This is typically of the form

g(x) = ax +
1
2

b (|x + 1| − |x− 1|) .

This function is show in Figures 5.16-5.17 for a = 0 abd a 6= 0.

x

y

1

-1

1-1

Figure 5.16: g(x) =
1
2 (|x + 1| − |x− 1|) .

x

y

1

-1

1-1

Figure 5.17: g(x) = ax +
1
2 b (|x + 1| − |x− 1|) .

The last equation comes from Equation (5.10) and often a term −rIL is
added. So, we have

C1V̇1 = R−1(V2 −V1)− g(V1), (5.13)

C2V̇2 = IL − R−1(V2 −V1), (5.14)

LİL = −V2 − rIL. (5.15)

These equations are made dimensionless by introducing some charac-
teristic scales. Let C1 and R1 be characteristic scales of capacitance and
resistance. We let α−1 = R/R1, r̄ = r/R1, and define

x =
V1

VC
, y =

V2

VC
, z =

ILR1

VC
.

This gives

R1C1 ẋ = α(y− x)− g(V1)/VC, (5.16)

R1C2ẏ = z− α(y− x), (5.17)
L

R1
ż = −y− r̄z. (5.18)

systems of differential equations 87

Chua's Circuit

x' = alpha [y - x + bx + 0.5(a-b)(|x+1|-|x-1|)]

y' = x - y + z

z' = - beta y

z'

y'

z

y

xx'9

alpha

x1
s

Integrator

1
s

Integrator1

-100/7

- beta

y

z

1
s

Integrator2

1

Constant

1

Constant1

|u|

Abs

|u|

Abs1

5/7

b

8/7

a

Product

Product1

.5

Gain

XY Graph

Figure 5.18: Nonlinear Chua model.

Finally, we can rescale the time as τ = t/R1C1, where R1C1 is the char-
acteristic time constant. Then,

d
dt

=
dτ

dt
d

dτ
=

1
R1C1

d
dτ

.

So,

ẋ = α(y− x)− g(V1)/VC, (5.19)
C2

C1
ẏ = z− α(y− x), (5.20)

L
R2

1C1
ż = −y− r̄z. (5.21)

So, we define σ = C1
C2

, β =
R2

1C1
L , γ = r̄, and

f (x) = g(V1)/aVC.

Then,

ẋ = α(y− x− f (x)), (5.22)

ẏ = σ(z− α(y− x)), (5.23)

ż = −βy− γz. (5.24)

Finally, many models have no parameters in the second equation. So,
we let x = µX, y = µY and z = νZ to see if this is possible. Then,

µẊ = αµ(Y− X)− a f (µX), (5.25)

µẎ = σ(νZ− αµ(Y− X)), (5.26)

νŻ = −βµY− γνZ. (5.27)

Simplifying, we have

Ẋ = α(Y− X)− α

µ
f (µX), (5.28)

88 solving differential equations using simulink

Ẏ = σ(
ν

µ
Z− α(Y− X)), (5.29)

Ż = − βµ

ν
Y− γZ. (5.30)

So, we need to chose σ = α−1 and µ
ν = σ.

Ẋ = α(Y− X− f̄ (X)), (5.31)

Ẏ = Z−Y + X, (5.32)

Ż = −β̄Y− γZ, (5.33)

where β̄ = βσ and f̄ (X) = µ f (µX). This is the version of the model we can
explore.

We have obtained a dimensionless set of first order differential equa-
tions of the form

ẋ = α(y− x− f (x)), (5.34)

ẏ = z− y + x, (5.35)

ż = −βy− γz, (5.36)

where
f (x) = ax +

1
2

b (|x + 1| − |x− 1|) .

We can write this system in matrix form as

dx
dt

=

 −α α 0
1 −1 1
0 −β −γ

 x +

 −α f (x)
0
0

 ,

where

x =

 x
y
z

 .

We can model this in Simulink as shown in Figure 5.19. The linear part
of the system is encoded as a subsystem. The subsystem is shown in Fig-
ure 5.20.

The subsystem takes inputs of the variables α, β, and γ and outputs the
matrix in the linear part of the system, L. Then, the nonlinear part of the
system is added to Lx. This is integrated with given initial conditions to
arrive at the solution. A sample of the solutions is given in Figures 5.21

and 5.22.
The plots in Figures 5.21 and 5.22 were created by using the to Workspace

block. The variable name was changed to chuaput and the data was sent
to the MALAB workspace. Then the following code was used to plot the
data.

% Plot x, y, z vs t

figure(1)

systems of differential equations 89

[-alpha f(x); 0; 0]
x

v

Lv
L

y

z

9.35

alpha

14.79

beta

0.016

gamma

alpha

beta

gamma

L

Subsystem

1
sxo

Integrator

[.05;0.06;.07]

ICs
XY Graph

Matrix
Multiply

Matrix Multiply

Scope

f(u)

-f(x)

Product

0

a13

0

a1

chuaout

To Workspace

Figure 5.19: Chua circuit.

0

a13

0

a31

2

Matrix

Concatenate

P:[2,1]

Permute

Dimensions

-1

Gain

-1

Gain2

-1

Gain3

1

alpha

2

beta

3

gamma

1

L

[1;-1;1]

row2

Figure 5.20: Linear subsystem of Chua
model.

plot(chuaout.time,chuaout.Data);

xlabel(’t’)

legend(’x(t)’,’y(t)’,’z(t)’,’Location’,’south’,’Orientation’,’horizontal’)

% Plot spacecurve

figure(2)

x=chuaout.data(:,1);

y=chuaout.data(:,2);

z=chuaout.data(:,3);

plot3(x,y,z)

xlabel(’x’)

ylabel(’y’)

zlabel(’z’)

90 solving differential equations using simulink

Figure 5.21: Solutions of Chua model as
a function of time.

Figure 5.22: 3d plot of Chua solutions.

6
Index

acceleration due to gravity, 33

air resistance, 33

animation, 58, 79

annotate, 5

anonymous function, 24

beats, 51

block
hidden names, 5

block labels, 18

blocks, 2

Clock, 6, 49

Constant, 5

Continuous, 2

Delay, 40

Demux, 57

Fcn, 58

Gain, 3

IC, 58

Integrator, 2

Math Function, 6

Math Operations, 2

Parameters, 4

Scope, 3

Sine Wave, 3, 49

Sinks, 2

Sources, 2

Sum, 3

Switch, 40

Terminator, 57

To Workspace, 14, 61

Boolean condition, 58

bouncing ball, 56

British units, 55

carrying capacity, 39

Chua circuit, 85

circuit, 85

Configuration Parameters, 5

cooling, 29

damped motion, 47

delay model, 39

direction field, 65

direction fields, 23

disease model, 83

drag, 33

dsolve, 19

enzyme kinetics, 84

exact solution, 7

ezplot, 19, 48

first order
linear, 6

separable, 6

forced, damped harmonic oscillator, 49

free fall, 33

harmonic oscillator, 45

forced, damped, 49

damped, 47

HideAutomaticName, 5

history, 14

Hooke’s law, 46

initial condition
external, 5

initial value, 5

integrating factor, 8

jerk, 76

Kirchoff’s laws, 85

labels disappear, 18

Laplace Transform, 2, 71

Law of cooling, 29

Library Browser, 2

limit cycles, 77

logistic equation, 39

Lorenz model, 79

Lotka, Alfred James, 82

Lotka-Volterra model, 82

Malthus, Thomas Robert, 29

MATLAB, 2

Scope Data, 14

92 solving differential equations using simulink

anonymous, 24

direction field, 23

dsolve, 19

ezplot, 19

function, 22

hold command, 24

ode45, 21

plotting, 11

quiver, 23

save image, 14

syms, 20

workspace, 11

matrix form, 57

Michaelis-Menten kinetics, 84

modulation, 49

MS documents, 12, 14

MyScopeData, 14

Newton’s Law of Cooling, 29

Newton’s Second Law, 46

Newton, Isaac, 29

nonlinear pendulum, 58

numerical error, 7

ODE, 1

ode45, 2, 21

second order, 64

partial fraction decomposition, 34

pendulum, 58

phase plot, 65

phase shift, 52

plot, 11

plotting images, 12

population models, 27, 38

logistic, 39

Lotka-Volterra, 82

Malthusian, 29

prfig, 14

printing models, 15

projectile motion, 54

pursuit curves, 35

quiver, 65

range, 56

Rayleigh, 77

refine Factor, 5

Scilab, 16

Scope parameters, 13

second order, 43

constant coefficients, 44

simout, 15

simple harmonic oscillator, 45, 64

simset, 61

simulation, 62

Simulink, 1

SIR model, 84

step function, 54

subsystem, 31, 88

symbolic, 48

System Configuration, 5

terminal velocity, 33

time variable, 6

trigonometric identities, 52

Undetermined Coefficients, 49

units, 45

van der Pol, Balthasar, 77

Verhulst, Pierre François, 39

Xcos, 16

	Introduction to Simulink
	Solving an ODE
	Handling Time in First Order Differential Equations
	Working with Simulink Output
	Printing Simulink Scope Images
	Scilab and Xcos
	First Order ODEs in MATLAB
	Exercises

	First Order Differential Equations
	Exponential Growth and Decay
	Newton's Law of Cooling
	Free Fall with Drag
	Pursuit Curves
	The Logistic Equation
	The Logistic Equation with Delay
	Exercises

	Second Order Differential Equations
	Constant Coefficient Equations
	Projectile Motion
	The Bouncing Ball
	Nonlinear Pendulum Animation
	Second Order ODEs in MATLAB
	Exercises

	Transfer Functions and State Space Blocks
	State Space Formulation
	Transfer Functions

	Systems of Differential Equations
	Linear Systems
	Nonlinear Models

	Index

