
Solving Differential Equations by Computer – R. Herman, for MAT 361, Summer 2015 7/2/2015

Maple

Direction fields

Enter the differential equation, being careful to write the dependent variable as a function. DEplot can

be used to provide a direction field. Particular solutions can be added using a set of initial conditions. If

the direction field is not desired, then set arrows = none.

> restart: with(DEtools):

> ode := diff(y(t),t) = 1-y(t);

> DEplot(ode,y(t),t=0..10,y=0..5);

> ics:=[y(0)=1,y(0)=3,y(0)=5];

> DEplot(ode,y(t),t=0..10,y=0..5,ics,arrows=medium,linecolor =black);

Solutions

One can also seek analytic solutions using the differential equation in dsolve. Initial value problems are

solved by including initial conditions including braces.

> ode := diff(y(t),t) = 1-y(t);

> dsolve(ode,y(t));

> dsolve({ode,y(0)=1},y(t));

Second order differential equations can also be solved. Initial values can be entered as well.

> dsolve(x^2*diff(y(x),x$2)+3*x*diff(y(x),x)-3*y(x)=x^2,y(x));

> dsolve({x^2*diff(y(x),x$2)+3*x*diff(y(x),x)-3*y(x) = x^2, y(1)=1,
D(y)(1)=0},y(x));

Numerical Solution

Numerical solutions can be obtained using type = numeric

> with(plots):

> dsolve({EQ, ICs});

> p:=dsolve({EQ, ICs},type=numeric, range=0..1):

> odeplot(p);

One can choose a numerical method from a list and plot the solution.

> with(plots):

> ode:={x^2*diff(y(x),x$2)+3*x*diff(y(x),x)-3*y(x)=x^2}:
ics:={y(1)=1,D(y)(1)=0}:

> dsol := dsolve(ode union ics, numeric, method=rkf45, relerr=Float(1,-
8), abserr=Float(1,-8),maxfun=0, output=procedurelist):

> odeplot(dsol, [x,y(x)], 1..4);

Solving Differential Equations by Computer – R. Herman, for MAT 361, Summer 2015 7/2/2015

Systems of Differential Equations

Systems of first order equations can be solved and the solutions displayed using DEplot.

> restart: with(DEtools):

> EQ1:=diff(x(t),t) = -x(t)+6*y(t);

> EQ2:=diff(y(t),t) = x(t)-2*y(t);

> DEplot([EQ1,EQ2], [x(t),y(t)], t=0..5, x=-5..10, y=-5..5,
 [[x(0)=1,y(0)=1], [x(0)=1,y(0)=3], [x(0)=1,y(0)=-2], [x(0)=1,y(0)=-

3]], arrows=none,linecolor=blue);

MATLAB

Direction Fields
One can produce direction fields in MATLAB. A sample code is given by

>> [x,y]=meshgrid(0:.1:2,0:.1:1.5);

>> dy=1-y;

>> dx=ones(size(dy));

>> quiver(x,y,dx,dy)

>> axis([0,2,0,1.5])

>> xlabel('x')

>> ylabel('y')

The mesh command sets up the xy-grid. In this case x is in [0,2] and y is in [0,1.5}. In each case the grid
spacing is 0.1.

We let dy = 1-y and dx =1. Thus,
1

1 .
1

dy y
y

dx

The quiver command produces a vector (dx,dy) at (x,y). The slope of each vector is dy/dx. The other
commands label the axes and provides a window with xmin=0, xmax=2, ymin=0, ymax=1.5.

dsolve.

One can use MATLAB to obtain solutions and plots of solutions. The function dsolve obtains the
symbolic solution and ezplot is used to quickly plot the symbolic solution.

sol = dsolve('Dx=2*sin(t)-4*x','x(0)=0','t');

ezplot(sol,[0 10])

xlabel('t'),ylabel('x'), grid

ODE45 and other solvers.

There are several ODE solvers in MATLAB, implementing Runge-Kutta and other numerical schemes.
Examples of its use are in the text. For example, one can implement ode45 using

[t y]=ode45('func',[0 5],1);

plot(t,y)

Solving Differential Equations by Computer – R. Herman, for MAT 361, Summer 2015 7/2/2015

One can define func in a file func.m such as

function f=func(t,y)
f=-t*y/sqrt(2-y^2);

See MATLAB help for other examples.

SIMULINK

Simulink is a graphical environment for designing simulations of systems. Let’s use Simulink to solve the

differential equation 2sin3 4 .
dx

t x
dt

 The simulation in Simulink takes the form below.

Figure 1: System for solving first order ODE.

to integrate ,
dx

dt
 producing ().x t The Scope is This system uses the integrator block

used to plot the output of the Integrator, ().x t

The input of the integrator is the right side of the differential equation, 2sin3 4 .t x The sine function
can by input using the Sine Wave Function, whose parameters are set in the component. In order to get

4 (),x t we grab the output of the integrator and boost it by the Gain value. Then, using the adder

component, these terms are added, or subtracted, and fed into the integrator.That is the main idea
behind solving this system.

In MATLAB, type simulink to bring up Simulink Library Browser and then click the yellow plus to bring up
new model. [You can also click the Simulink Library icon in MATLAB.] We build the model by dragging
and connecting the needed components from sections such as Continuous, Math Operations, Sinks, or
Sources.

Figure 2: The Simulink Library Browser. [As seen in MATLAB 2014b.]

Solving Differential Equations by Computer – R. Herman, for MAT 361, Summer 2015 7/2/2015

For this example, follow the following steps:

 Drag the Integrator from Continuous group; Sum, Gain, Sine Wave from Math Operations; and, a
Scope from the Sink group, onto the model area.

Figure 3: Add needed components to the model window.

 Connect the Integrator to the Scope by clicking on the Integrator output and dragging to the
Scope until they are connected.

 Connect the output of Sum to the input of the Integrator.

Figure 4: Example of connecting two components.

 Right-click the Gain control and choose Flip Block under Rotate & Flip. Double-click the Gain and
change the Gain value from 1 to 4. It should change on the control.

 Double-click the Sum control to bring up Block Parameters and change from |++ to |+- in order
to set addition/subtraction nodes. [Note that the | is a blank node.]

Figure 5: Block Parameters for the Sum control.

 Double-click the Sine Wave function and change the frequency to 3 rad/s and the amplitude to
2. Also, set the time dropdown menu to Use Simulation Time.

Solving Differential Equations by Computer – R. Herman, for MAT 361, Summer 2015 7/2/2015

 Connect the Gain output to the negative input of Sum and the Sine Wave output to the positive
input on the Sum control.

 To add a node to route an x value to the Gain, hold the CTRL key and click on the Output line of
the Integrator and drag towards the input of the Gain.

 The initial value of x is inserted by double-clicking the Integrator and setting the value.

Figure 6: Connections for First Order ODE.

 One can annotate the diagram by clicking near where labels are needed and typing in the text
box. This leads to the model Figure 1.

 Save the file under a useable file name. This file can be called in MATLAB, or one can use the run
button to run the simulation.

 Double-click the scope to see the solution. One can use autoscale to rescale the scope view.

 Also, one can make further changes to the system by checking the Configuration Parameters
under the Simulation menu item. See Figure 7.

Figure 7: System Configuration Parameters.

In Figure 8 are shown a separable and a first order linear differential equation. The time dependent
functions are obtained using the Clock block and the Function block. These were done as independents
systems in the same model window.

Solving Differential Equations by Computer – R. Herman, for MAT 361, Summer 2015 7/2/2015

Figure 8: Two first order differential equations simulated in Simulink.

Often we might want to access the solutions in MATLAB. Using the first model in Figure 8, add the To
Workspace block. Double-click and rename the variable as y and change the output type to array. Run
the simulation. This will put tout and y data into the MATLAB workspace.

Figure 9: Adding To Workspace block for sending output to MATLAB.

In MATLAB you can plot the data using plot(tout,y). You can add labels with xlabel('t'), ylabel('y'), title('y
vs t'). Adding the command set(gcf,'Color',[1,1,1]) makes the plot background white.
We can solve second order constant coefficient differential equations using a pair of integrators. This is
displayed in Figure 9.

Figure 10. Second Order Constant Coefficient ODE.

Solving Differential Equations by Computer – R. Herman, for MAT 361, Summer 2015 7/2/2015

Exercises

1. Sketch by hand the direction field for ' (1).y y y Based on your sketch, draw solutions

satisfying the initial conditions (0) 1.5,1,0,,0.5.y

2. Use a computer package to draw the direction field for the given equations for

(,) [5,5] [5,5]x y and plot solutions throughout the region.

a. ' 1 .y x y

b. ' .y xy

c. ' 2 (3).y y y

d. 2' (4)(4).y y y

3. Construct the model in Figure 1 and produce a plot of the solution.

4. Modify the model in the last problem to solve () 2
dx

f t x
dt

 for different function, ().f t

5. Solve the following initial value problem using Maple, MATLAB, and Simulink. Are the solutions
the same? Provide plots of the solutions. Are these consistent with your answers in Problem 2?

a. ' 2 (3), (0) 0.5.y y y y

b. ' 1 .y x y

6. Consider the model in Figure 11. Fill in the question marks with the correct expression at that
point in the computation. What differential equation is solved by this simulation?

Figure 11: Mystery model for Problem 6.

hermanr
Pencil

hermanr
Pencil

Solving Differential Equations by Computer – R. Herman, for MAT 361, Summer 2015 7/2/2015

Other Models

Here are simulations of a forced, damped oscillator, projectile motion in the plane2, and a nonlinear

system of two first order differential equations.

