
Chapter 2

Second Order Differential Equations

“Either mathematics is too big for the human mind or the human mind is more than
a machine.” - Kurt Gödel (1906-1978)

2.1 Introduction

In the last section we saw how second order differential equations
naturally appear in the derivations for simple oscillating systems. In this
section we will look at more general second order linear differential equa-
tions.

Second order differential equations are typically harder than first order.
In most cases students are only exposed to second order linear differential
equations. A general form for a second order linear differential equation is given
by

a(x)y′′(x) + b(x)y′(x) + c(x)y(x) = f (x). (2.1)

One can rewrite this equation using operator terminology. Namely, one
first defines the differential operator L = a(x)D2 + b(x)D + c(x), where
D = d

dx . Then, Equation (2.1) becomes

Ly = f . (2.2)

The solutions of linear differential equations are found by making use of
the linearity of L. Namely, we consider the vector space1 consisting of real-

1 We assume that the reader has been in-
troduced to concepts in linear algebra.
Later in the text we will recall the def-
inition of a vector space and see that lin-
ear algebra is in the background of the
study of many concepts in the solution
of differential equations.

valued functions over some domain. Let f and g be vectors in this function
space. L is a linear operator if for two vectors f and g and scalar a, we have
that

a. L( f + g) = L f + Lg

b. L(a f ) = aL f .

One typically solves (2.1) by finding the general solution of the homoge-
neous problem,

Lyh = 0

and a particular solution of the nonhomogeneous problem,

Lyp = f .
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Then, the general solution of (2.1) is simply given as y = yh + yp. This is
true because of the linearity of L. Namely,

Ly = L(yh + yp)

= Lyh + Lyp

= 0 + f = f . (2.3)

There are methods for finding a particular solution of a nonhomogeneous
differential equation. These methods range from pure guessing, the Method
of Undetermined Coefficients, the Method of Variation of Parameters, or
Green’s functions. We will review these methods later in the chapter.

Determining solutions to the homogeneous problem, Lyh = 0, is not al-
ways easy. However, many now famous mathematicians and physicists have
studied a variety of second order linear equations and they have saved us
the trouble of finding solutions to the differential equations that often ap-
pear in applications. We will encounter many of these in the following
chapters. We will first begin with some simple homogeneous linear differ-
ential equations.

Linearity is also useful in producing the general solution of a homoge-
neous linear differential equation. If y1(x) and y2(x) are solutions of the
homogeneous equation, then the linear combination y(x) = c1y1(x) + c2y2(x)
is also a solution of the homogeneous equation. This is easily proven.

Let Ly1 = 0 and Ly12 = 0. We consider y = c1y1 + c2y2. Then, since L is
a linear operator,

Ly = L(c1y1 + c2y2)

= c1Ly1 + c2Ly2

= 0. (2.4)

Therefore, y is a solution.
In fact, if y1(x) and y2(x) are linearly independent, then y = c1y1 + c2y2

is the general solution of the homogeneous problem. A set of functions
{yi(x)}n

i=1 is a linearly independent set if and only if

c1y1(x) + . . . + cnyn(x) = 0

implies ci = 0, for i = 1, . . . , n. Otherwise, they are said to be linearly
dependent. Note that for n = 2, the general form is c1y1(x) + c2y2(x) = 0.
If y1 and y2 are linearly dependent, then the coefficients are not zero and
y2(x) = − c1

c2
y1(x) and is a multiple of y1(x). We see this in the next example.

Example 2.1. Show that y1(x) = x and y2(x) = 4x are linearly depen-
dent.

We set c1y1(x) + c2y2(x) = 0 and show that there are nonzero con-
stants, c1 and c2 satisfying this equation. Namely, let

c1x + c2(4x) = 0.

Then, for c1 = −4c2, this is true for any nonzero c2. Let c2 = 1 and we
have c1 = −4.
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Next we consider two functions that are not constant multiples of each
other.

Example 2.2. Show that y1(x) = x and y2(x) = x2 are linearly inde-
pendent.

We set c1y1(x) + c2y2(x) = 0 and show that it can only be true if
c1 = 0 and c2 = 0. Let

c1x + c2x2 = 0,

for all x. Differentiating, we have two sets of equations that must be
true for all x :

c1x + c2x2 = 0,

c1 + 2c2x = 0. (2.5)

Setting x = 0, we get c1 = 0. Setting x = 1, then c1 + c2 = 0. Thus,
c2 = 0.

Another approach would be to solve for the constants. Multiplying
the second equation by x and subtracting yields c2 = 0. Substituting
this result into the second equation, we find c1 = 0.

For second order differential equations we seek two linearly indepen-
dent functions, y1(x) and y2(x). As in the last example, we set c1y1(x) +
c2y2(x) = 0 and show that it can only be true if c1 = 0 and c2 = 0. Differen-
tiating, we have

c1y1(x) + c2y2(x) = 0,

c1y′1(x) + c2y′2(x) = 0. (2.6)

These must hold for all x in the domain of the solutions.
Now we solve for the constants. Multiplying the first equation by y′1(x)

and the second equation by y2(x), we have

c1y1(x)y′2(x) + c2y2(x)y′2(x) = 0,

c1y′1(x)y2(x) + c2y′2(x)y2(x) = 0. (2.7)

Subtracting gives [
y1(x)y′2(x)− y′1(x)y2(x)

]
c1 = 0.

Therefore, either c1 = 0 or y1(x)y′2(x)− y′1(x)y2(x) = 0. So, if the latter is
true, then c1 = 0 and therefore, c2 = 0. This gives a condition for which
y1(x) and y2(x) are linearly independent:

y1(x)y′2(x)− y′1(x)y2(x) = 0. (2.8)

We define this quantity as the Wronskian of y1(x) and y2(x). Linear independence of the solutions of
a differential equation can be established
by looking at the Wronskian of the so-
lutions. For a second order differential
equation the Wronskian is defined as

W(y1, y2) = y1(x)y′2(x)− y′1(x)y2(x).

The Wronskian can be written as a determinant:

W(y1, y2) =

∣∣∣∣∣ y1(x) y2(x)
y′1(x) y′2(x)

∣∣∣∣∣ = y1(x)y′2(x)− y′1(x)y2(x).

Thus, the definition of a Wronskian can be generalized to a set of n functions
{yi(x)}n

i=1 using an n× n determinant.
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Example 2.3. Determine if the set of functions {1, x, x2} are linearly
independent.

We compute the Wronskian.

W(y1, y2, y3) =

∣∣∣∣∣∣∣
y1(x) y2(x) y3(x)
y′1(x) y′2(x) y′3(x)
y′′1 (x) y′′2 (x) y′′3 (x)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
1 x x2

0 1 2x
0 0 2

∣∣∣∣∣∣∣
= 2. (2.9)

Since, W(1, x, x2) = 2 6= 0, then the set {1, x, x2} is linearly indepen-
dent.

2.2 Constant Coefficient Equations

The simplest second order differential equations are those with
constant coefficients. The general form for a homogeneous constant coeffi-
cient second order linear differential equation is given as

ay′′(x) + by′(x) + cy(x) = 0, (2.10)

where a, b, and c are constants.
Solutions to (2.10) are obtained by making a guess of y(x) = erx. Inserting

this guess into (2.10) leads to the characteristic equation

ar2 + br + c = 0. (2.11)

Namely, we compute the derivatives of y(x) = erx, to get y(x) = rerx, andThe characteristic equation for
ay′′ + by′ + cy = 0 is ar2 + br + c = 0.
Solutions of this quadratic equation lead
to solutions of the differential equation.

y(x) = r2erx. Inserting into (2.10), we have

0 = ay′′(x) + by′(x) + cy(x) = (ar2 + br + c)erx.

Since the exponential is never zero, we find that ar2 + br + c = 0.Two real, distinct roots, r1 and r2, give
solutions of the form

y(x) = c1er1x + c2er2x .
The roots of this equation, r1, r2, in turn lead to three types of solutions

depending upon the nature of the roots. In general, we have two linearly in-
dependent solutions, y1(x) = er1x and y2(x) = er2x, and the general solution
is given by a linear combination of these solutions,

y(x) = c1er1x + c2er2x.

For two real distinct roots, we are done. However, when the roots are real,
but equal, or complex conjugate roots, we need to do a little more work to
obtain usable solutions.

Example 2.4. y′′ − y′ − 6y = 0 y(0) = 2, y′(0) = 0.
The characteristic equation for this problem is r2 − r − 6 = 0. The

roots of this equation are found as r = −2, 3. Therefore, the general
solution can be quickly written down:

y(x) = c1e−2x + c2e3x.
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Note that there are two arbitrary constants in the general solution.
Therefore, one needs two pieces of information to find a particular
solution. Of course, we have the needed information in the form of
the initial conditions.

One also needs to evaluate the first derivative

y′(x) = −2c1e−2x + 3c2e3x

in order to attempt to satisfy the initial conditions. Evaluating y and
y′ at x = 0 yields

2 = c1 + c2

0 = −2c1 + 3c2 (2.12)

These two equations in two unknowns can readily be solved to give
c1 = 6/5 and c2 = 4/5. Therefore, the solution of the initial value
problem is obtained as y(x) = 6

5 e−2x + 4
5 e3x.

Repeated roots, r1 = r2 = r, give solu-
tions of the form

y(x) = (c1 + c2x)erx .

In the case when there is a repeated real root, one has only one solution,
y1(x) = erx. The question is how does one obtain the second linearly in-
dependent solution? Since the solutions should be independent, we must
have that the ratio y2(x)/y1(x) is not a constant. So, we guess the form
y2(x) = v(x)y1(x) = v(x)erx. (This process is called the Method of Reduc-
tion of Order. See Section 2.2.1)

For constant coefficient second order equations, we can write the equa-
tion as

(D− r)2y = 0,

where D = d
dx . We now insert y2(x) = v(x)erx into this equation. First we For more on the Method of Reduction of

Order, see Section 2.2.1.compute
(D− r)verx = v′erx.

Then,
0 = (D− r)2verx = (D− r)v′erx = v′′erx.

So, if y2(x) is to be a solution to the differential equation, then v′′(x)erx = 0
for all x. So, v′′(x) = 0, which implies that

v(x) = ax + b.

So,
y2(x) = (ax + b)erx.

Without loss of generality, we can take b = 0 and a = 1 to obtain the second
linearly independent solution, y2(x) = xerx. The general solution is then

y(x) = c1erx + c2xerx.

Example 2.5. y′′ + 6y′ + 9y = 0.
In this example we have r2 + 6r + 9 = 0. There is only one root,

r = −3. From the above discussion, we easily find the solution y(x) =
(c1 + c2x)e−3x.
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When one has complex roots in the solution of constant coefficient equa-
tions, one needs to look at the solutions

y1,2(x) = e(α±iβ)x.

We make use of Euler’s formula2, which is treated in Section A.36.2 Euler’s Formula is found using
Maclaurin series expansion

ex = 1 + x +
1
2

x2 +
1
3!

x3 + · · · .

Let x = iθ and find

eiθ = 1 + iθ +
1
2
(iθ)2 +

1
3!
(iθ)3 + · · · .

= 1− 1
2

θ2 +
1
4!

θ4 + · · ·

i
[

θ − 1
3!

θ3 +
1
5!

θ5 + · · ·
]

.

= cos θ + i sin θ.

eiβx = cos βx + i sin βx. (2.13)

Then, the linear combination of y1(x) and y2(x) becomes

Ae(α+iβ)x + Be(α−iβ)x = eαx
[

Aeiβx + Be−iβx
]

= eαx [(A + B) cos βx + i(A− B) sin βx]

≡ eαx(c1 cos βx + c2 sin βx). (2.14)

Thus, we see that we have a linear combination of two real, linearly inde-
pendent solutions, eαx cos βx and eαx sin βx.Complex roots, r = α± iβ, give solutions

of the form

y(x) = eαx(c1 cos βx + c2 sin βx).
Example 2.6. y′′ + 4y = 0.

The characteristic equation in this case is r2 + 4 = 0. The roots
are pure imaginary roots, r = ±2i, and the general solution consists
purely of sinusoidal functions, y(x) = c1 cos(2x) + c2 sin(2x), since
α = 0 and β = 2.

Example 2.7. y′′ + 2y′ + 4y = 0.
The characteristic equation in this case is r2 + 2r + 4 = 0. The roots

are complex, r = −1±
√

3i and the general solution can be written as

y(x) =
[
c1 cos(

√
3x) + c2 sin(

√
3x)
]

e−x.

Example 2.8. y′′ + 4y = sin x.
This is an example of a nonhomogeneous problem. The homoge-

neous problem was actually solved in Example 2.6. According to the
theory, we need only seek a particular solution to the nonhomoge-
neous problem and add it to the solution of the last example to get the
general solution.

The particular solution can be obtained by purely guessing, making
an educated guess, or using the Method of Variation of Parameters.
We will not review all of these techniques at this time. Due to the
simple form of the driving term, we will make an intelligent guess
of yp(x) = A sin x and determine what A needs to be. Inserting this
guess into the differential equation gives (−A + 4A) sin x = sin x. So,
we see that A = 1/3 works. The general solution of the nonhomoge-
neous problem is therefore y(x) = c1 cos(2x) + c2 sin(2x) + 1

3 sin x.

The three cases for constant coefficient linear second order differential
equations are summarized below.
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Classification of Roots of the Characteristic Equation
for Second Order Constant Coefficient ODEs

1. Real, distinct roots r1, r2. In this case the solutions corresponding to
each root are linearly independent. Therefore, the general solution is
simply y(x) = c1er1x + c2er2x.

2. Real, equal roots r1 = r2 = r. In this case the solutions corresponding
to each root are linearly dependent. To find a second linearly inde-
pendent solution, one uses the Method of Reduction of Order. This gives
the second solution as xerx. Therefore, the general solution is found as
y(x) = (c1 + c2x)erx.

3. Complex conjugate roots r1, r2 = α ± iβ. In this case the solutions
corresponding to each root are linearly independent. Making use of
Euler’s identity, eiθ = cos(θ) + i sin(θ), these complex exponentials
can be rewritten in terms of trigonometric functions. Namely, one
has that eαx cos(βx) and eαx sin(βx) are two linearly independent solu-
tions. Therefore, the general solution becomes y(x) = eαx(c1 cos(βx) +
c2 sin(βx)).

As we will see, one of the most important applications of such equations
is in the study of oscillations. Typical systems are a mass on a spring, or a
simple pendulum. For a mass m on a spring with spring constant k > 0, one
has from Hooke’s law that the position as a function of time, x(t), satisfies
the equation

mẍ + kx = 0.

This constant coefficient equation has pure imaginary roots (α = 0) and the
solutions are simple sine and cosine functions, leading to simple harmonic
motion.

2.2.1 Reduction of Order

We have seen the the Method of Reduction of Order was useful
in obtaining a second solution of a second order differential equation with
constant coefficients when one solution was known. It can also be used to
solve other second order differential equations. First, we review the method
by example.

Example 2.9. Verify that y1(x) = xe2x is a solution of y′′− 4y′+ 4y = 0
and use the Method of Reduction of Order to find a second linearly
independent solution.

We note that

y′1(x) = (1 + 2x)e2x,

y′′1 (x) = [2 + 2(1 + 2x)]e2x = (4 + 4x)e2x,
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Substituting the y1(x) and its derivatives into the differential equa-
tion, we have

y′′1 − 4y′1 + 4y1 = (4 + 4x)e2x − 4(1 + 2x)e2x + 4xe2x

= 0. (2.15)

In order to find a second linearly independent solution, y2(x), we
need a solution that is not a constant multiple of y1(x). So, we guess
the form y2(x) = v(x)y1(x). For this example, the function and its
derivatives are given by

y2 = vy1.

y′2 = (vy1)
′,

= v′y1 + vy′1.

y′′2 = (v′y1 + vy′1)
′,

= v′′y1 + 2v′y′1 + vy′′1 .

Substituting y2 and its derivatives into the differential equation, we
have

0 = y′′2 − 4y′2 + 4y2

= (v′′y1 + 2v′y′1 + vy′′1 )− 4(v′y1 + vy′1) + 4vy1

= v′′y1 + 2v′y′1 − 4v′y1 + v[y′′1 − 4y′1 + 4y1]

= v′′y1 + 2v′y′1 − 4v′y1

= v′′xe2x + 2v′(1 + 2x)e2x − 4v′xe2x

= [v′′x + 2v′]e2x. (2.16)

Therefore, v(x) satisfies the equation

v′′x + 2v′ = 0.

This is a first order equation for v′(x), which can be seen by introduc-
ing z(x) = v′(x), leading to the separable first order equation

x
dz
dx

= −2z.

This is readily solved to find z(x) = A
x2 . This gives

z =
dv
dx

=
A
x2 .

Further integration leads to

v(x) = −A
x
+ C.

This gives

y2(x) =

(
−A

x
+ C

)
xe2x

= −Ae2x + Cxe2x.
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Note that the second term is the original y1(x), so we do not need
this term and can set C = 0. Since the second linearly independent
solution can be determined up to a multiplicative constant, we can set
A = −1 to obtain the answer y2(x) = e2x. Note that this argument for
obtaining the simple form is reason enough to ignore the integration
constants when employing the Method of Reduction of Order.

For an example without constant coefficients, consider the following ex-
ample.

Example 2.10. Verify that y1(x) = x is a solution of x2y′′− 4xy′+ 4y =

0 and use the Method of Reduction of Order to find a second linearly
independent solution.

Substituting the y1(x) = x and its derivatives into the differential
equation, we have

x2y′′1 − 4xy′1 + 4y1 = 0− 4x + 4x

= 0. (2.17)

In order to find a second linearly independent solution, y2(x), we
need a solution that is not a constant multiple of y1(x). So, we guess
the form y2(x) = v(x)y1(x). For this example, the function and its
derivatives are given by

y2 = xv.

y′2 = (xv)′,

= v + xv′.

y′′2 = (v + xv′)′,

= 2v′ + xv′′.

Substituting y2 = xv(x) and its derivatives into the differential
equation, we have

0 = x2y′′2 − 4xy′2 + 4y2

= x2(2v′ + xv′′)− 4x(v + xv′) + 4xv

= x3v′′ − 2x2v′. (2.18)

Note how the v-terms cancel, leaving

xv′′ = 2v′.

This equation is solved by introducing z(x) = v′(x). Then, the equa-
tion becomes

x
dz
dx

= 2z.

Using separation of variables, we have

z =
dv
dx

= Ax2.
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Integrating, we obtain

v =
1
3

Ax3 + B.

This leads to the second solution in the form

y2(x) = x
(

1
3

Ax3 + B
)
=

1
3

Ax4 + Bx.

Since the general solution is

y(x) = c1x + c2

(
1
3

Ax4 + Bx
)

,

we see that we can choose B = 0 and A = 3 to obtian the general
solution as

y(x) = c1x + c2x4.

Therefore, we typically do not need the arbitrary constants found in
using reduction of order and simply report that y2(x) = x4.

2.3 Simple Harmonic Oscillators

The next physical problem of interest is that of simple harmonic
motion. Such motion comes up in many places in physics and provides
a generic first approximation to models of oscillatory motion. This is the
beginning of a major thread running throughout this course. You have seen
simple harmonic motion in your introductory physics class. We will review
SHM (or SHO in some texts) by looking at springs, pendula (the plural of
pendulum), and simple circuits.

2.3.1 Mass-Spring Systems

x

k

m

Figure 2.1: Spring-Mass system.

We begin with the case of a single block on a spring as shown in Figure
2.1. The net force in this case is the restoring force of the spring given by
Hooke’s Law,

Fs = −kx,

where k > 0 is the spring constant. Here x is the elongation, or displace-
ment of the spring from equilibrium. When the displacement is positive, the
spring force is negative and when the displacement is negative the spring
force is positive. We have depicted a horizontal system sitting on a fric-
tionless surface. A similar model can be provided for vertically oriented
springs. However, you need to account for gravity to determine the loca-
tion of equilibrium. Otherwise, the oscillatory motion about equilibrium is
modeled the same.

From Newton’s Second Law, F = mẍ, we obtain the equation for the
motion of the mass on the spring:

mẍ + kx = 0. (2.19)
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Dividing by the mass, this equation can be written in the form

ẍ + ω2x = 0, (2.20)

where

ω =

√
k
m

.

This is the generic differential equation for simple harmonic motion.
We will later derive solutions of such equations in a methodical way. For

now we note that two solutions of this equation are given by

x(t) = A cos ωt,

x(t) = A sin ωt, (2.21)

where ω is the angular frequency, measured in rad/s, and A is called the
amplitude of the oscillation. .

The angular frequency is related to the frequency by

ω = 2π f ,

where f is measured in cycles per second, or Hertz. Furthermore, this is
related to the period of oscillation, the time it takes the mass to go through
one cycle:

T = 1/ f .

2.3.2 The Simple Pendulum

L

m

O

Figure 2.2: A simple pendulum consists
of a point mass m attached to a string of
length L. It is released from an angle θ0.

The simple pendulum consists of a point mass m hanging on a string of
length L from some support. [See Figure 2.2.] One pulls the mass back
to some starting angle, θ0, and releases it. The goal is to find the angular
position as a function of time.

There are a couple of possible derivations. We could either use New-
ton’s Second Law of Motion, F = ma, or its rotational analogue in terms of
torque, τ = Iα. We will use the former only to limit the amount of physics
background needed.

There are two forces acting on the point mass. The first is gravity. This
points downward and has a magnitude of mg, where g is the standard sym-
bol for the acceleration due to gravity. The other force is the tension in the
string. In Figure 2.3 these forces and their sum are shown. The magnitude
of the sum is easily found as F = mg sin θ using the addition of these two
vectors.

L

mg

O

mg sin 0

T

Figure 2.3: There are two forces act-
ing on the mass, the weight mg and the
tension T. The net force is found to be
F = mg sin θ.

Now, Newton’s Second Law of Motion tells us that the net force is the
mass times the acceleration. So, we can write

mẍ = −mg sin θ.

Next, we need to relate x and θ. x is the distance traveled, which is the
length of the arc traced out by the point mass. The arclength is related to
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the angle, provided the angle is measure in radians. Namely, x = rθ for
r = L. Thus, we can write

mLθ̈ = −mg sin θ.

Canceling the masses, this then gives us the nonlinear pendulum equationLinear and nonlinear pendulum equa-
tion.

Lθ̈ + g sin θ = 0. (2.22)
The equation for a compound pendu-
lum takes a similar form. We start
with the rotational form of Newton’s
second law τ = Iα. Noting that the
torque due to gravity acts at the center
of mass position `, the torque is given
by τ = −mg` sin θ. Since α = θ̈, we
have Iθ̈ = −mg` sin θ. Then, for small
angles θ̈ + ω2θ = 0, where ω = mg`

I . For
a simple pendulum, we let ` = L and
I = mL2, and obtain ω =

√
g/L.

We note that this equation is of the same form as the mass-spring system.
We define ω =

√
g/L and obtain the equation for simple harmonic motion,

θ̈ + ω2θ = 0.

There are several variations of Equation (2.22) which will be used in this
text. The first one is the linear pendulum. This is obtained by making a
small angle approximation. For small angles we know that sin θ ≈ θ. Under
this approximation (2.22) becomes

Lθ̈ + gθ = 0. (2.23)

2.3.3 LRC Circuits

+

−V(t)

L R
C

Figure 2.4: Series LRC Circuit.

Another typical problem often encountered in a first year physics
class is that of an LRC series circuit. This circuit is pictured in Figure 2.4.
The resistor is a circuit element satisfying Ohm’s Law. The capacitor is a
device that stores electrical energy and an inductor, or coil, store magnetic
energy.

The physics for this problem stems from Kirchoff’s Rules for circuits.
Namely, the sum of the drops in electric potential are set equal to the rises
in electric potential. The potential drops across each circuit element are
given by

1. Resistor: V = IR.

2. Capacitor: V = q
C .

3. Inductor: V = L dI
dt .

Furthermore, we need to define the current as I = dq
dt . where q is the

charge in the circuit. Adding these potential drops, we set them equal to
the voltage supplied by the voltage source, V(t). Thus, we obtain

IR +
q
C
+ L

dI
dt

= V(t).

Since both q and I are unknown, we can replace the current by its expression
in terms of the charge to obtain

Lq̈ + Rq̇ +
1
C

q = V(t).

This is a second order equation for q(t).



second order differential equations 43

More complicated circuits are possible by looking at parallel connections,
or other combinations, of resistors, capacitors and inductors. This will result
in several equations for each loop in the circuit, leading to larger systems
of differential equations. An example of another circuit setup is shown in
Figure 2.5. This is not a problem that can be covered in the first year physics
course. One can set up a system of second order equations and proceed to
solve them. We will see how to solve such problems in the next chapter.

+

−V(t)

R1 R2

LC

Figure 2.5: Parallel LRC Circuit.
In the following we will look at special cases that arise for the series LRC

circuit equation. These include RC circuits, solvable by first order methods
and LC circuits, leading to oscillatory behavior.

2.3.4 RC Circuits*

We first consider the case of an RC circuit in which there is no in-
ductor. Also, we will consider what happens when one charges a capacitor
with a DC battery (V(t) = V0) and when one discharges a charged capacitor
(V(t) = 0) as shown in Figures 2.6 and 2.9.

For charging a capacitor, we have the initial value problem Charging a capacitor.

R
dq
dt

+
q
C

= V0, q(0) = 0. (2.24)

This equation is an example of a linear first order equation for q(t). However,
we can also rewrite it and solve it as a separable equation, since V0 is a
constant. We will do the former only as another example of finding the
integrating factor.

V0

R

C

Figure 2.6: RC Circuit for charging.

We first write the equation in standard form:

dq
dt

+
q

RC
=

V0

R
. (2.25)

The integrating factor is then

µ(t) = e
∫ dt

RC = et/RC.

Thus,
d
dt

(
qet/RC

)
=

V0

R
et/RC. (2.26)

Integrating, we have

qet/RC =
V0

R

∫
et/RC dt = CV0et/RC + K. (2.27)

Note that we introduced the integration constant, K. Now divide out the
exponential to get the general solution:

q = CV0 + Ke−t/RC. (2.28)

(If we had forgotten the K, we would not have gotten a correct solution for
the differential equation.)
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Next, we use the initial condition to get the particular solution. Namely,
setting t = 0, we have that

0 = q(0) = CV0 + K.

So, K = −CV0. Inserting this into the solution, we have

q(t) = CV0(1− e−t/RC). (2.29)

Now we can study the behavior of this solution. For large times the
second term goes to zero. Thus, the capacitor charges up, asymptotically, to
the final value of q0 = CV0. This is what we expect, because the current is no
longer flowing over R and this just gives the relation between the potential
difference across the capacitor plates when a charge of q0 is established on
the plates.

Figure 2.7: The charge as a function of
time for a charging capacitor with R =
2.00 kΩ, C = 6.00 mF, and V0 = 12 V.

Let’s put in some values for the parameters. We let R = 2.00 kΩ, C = 6.00
mF, and V0 = 12 V. A plot of the solution is given in Figure 2.7. We see that
the charge builds up to the value of CV0 = 0.072 C. If we use a smaller
resistance, R = 200 Ω, we see in Figure 2.8 that the capacitor charges to the
same value, but much faster.

The rate at which a capacitor charges, or discharges, is governed by theTime constant, τ = RC.

time constant, τ = RC. This is the constant factor in the exponential. The
larger it is, the slower the exponential term decays. If we set t = τ, we find
that

q(τ) = CV0(1− e−1) = (1− 0.3678794412 . . .)q0 ≈ 0.63q0.

Thus, at time t = τ, the capacitor has almost charged to two thirds of its
final value. For the first set of parameters, τ = 12s. For the second set,
τ = 1.2s.

Now, let’s assume the capacitor is charged with charge ±q0 on its plates.Discharging a capacitor.

If we disconnect the battery and reconnect the wires to complete the circuit
as shown in Figure 2.9, the charge will then move off the plates, discharging
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Figure 2.8: The charge as a function of
time for a charging capacitor with R =
200 Ω, C = 6.00 mF, and V0 = 12 V.

the capacitor. The relevant form of the initial value problem becomes

R
dq
dt

+
q
C

= 0, q(0) = q0. (2.30)

R

C

q0-q0

Figure 2.9: RC Circuit for discharging.

This equation is simpler to solve. Rearranging, we have

dq
dt

= − q
RC

. (2.31)

This is a simple exponential decay problem, which one can solve using sepa-
ration of variables. However, by now you should know how to immediately
write down the solution to such problems of the form y′ = ky. The solution
is

q(t) = q0e−t/τ , τ = RC.

Figure 2.10: The charge as a function
of time for a discharging capacitor with
R = 2.00 kΩ (solid) or R = 200 Ω
(dashed), and C = 6.00 mF, and q0 =
0.072 C.

We see that the charge decays exponentially. In principle, the capacitor
never fully discharges. That is why you are often instructed to place a shunt
across a discharged capacitor to fully discharge it.
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In Figure 2.10 we show the discharging of the two previous RC circuits.
Once again, τ = RC determines the behavior. At t = τ we have

q(τ) = q0e−1 = (0.3678794412 . . .)q0 ≈ 0.37q0.

So, at this time the capacitor only has about a third of its original value.

2.3.5 LC Circuits*

Another simple result comes from studying LC circuits. We will nowLC Oscillators.

connect a charged capacitor to an inductor as shown in Figure 2.11. In this
case, we consider the initial value problem

Lq̈ +
1
C

q = 0, q(0) = q0, q̇(0) = I(0) = 0. (2.32)

Dividing out the inductance, we have

q̈ +
1

LC
q = 0. (2.33)

L

C

q0-q0

Figure 2.11: An LC circuit.

This equation is a second order, constant coefficient equation. It is of the
same form as the ones for simple harmonic motion of a mass on a spring or
the linear pendulum. So, we expect oscillatory behavior. The characteristic
equation is

r2 +
1

LC
= 0.

The solutions are

r1,2 = ± i√
LC

.

Thus, the solution of (2.33) is of the form

q(t) = c1 cos(ωt) + c2 sin(ωt), ω = (LC)−1/2. (2.34)

Inserting the initial conditions yields

q(t) = q0 cos(ωt). (2.35)

The oscillations that result are understandable. As the charge leaves the
plates, the changing current induces a changing magnetic field in the induc-
tor. The stored electrical energy in the capacitor changes to stored magnetic
energy in the inductor. However, the process continues until the plates are
charged with opposite polarity and then the process begins in reverse. The
charged capacitor then discharges and the capacitor eventually returns to
its original state and the whole system repeats this over and over.

The frequency of this simple harmonic motion is easily found. It is given
by

f =
ω

2π
=

1
2π

1√
LC

. (2.36)

This is called the tuning frequency because of its role in tuning circuits.
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Example 2.11. Find the resonant frequency for C = 10µF and L =

100mH.

f =
1

2π

1√
(10× 10−6)(100× 10−3)

= 160Hz.

Of course, this is an ideal situation. There is always resistance in the
circuit, even if only a small amount from the wires. So, we really need to
account for resistance, or even add a resistor. This leads to a slightly more
complicated system in which damping will be present.

2.3.6 Damped Oscillations

As we have indicated, simple harmonic motion is an ideal situation. In
real systems we often have to contend with some energy loss in the system.
This leads to the damping of the oscillations. A standard example is a
spring-mass-damper system as shown in Figure 2.12 A mass is attached to
a spring and a damper is added which can absorb some of the energy of
the oscillations. the damping is modeled with a term proportional to the
velocity.

Figure 2.12: A spring-mass-damper sys-
tem has a damper added which can ab-
sorb some of the energy of the oscilla-
tions and is modeled with a term pro-
portional to the velocity.

There are other models for oscillations in which energy loss could be
in the spring, in the way a pendulum is attached to its support, or in the
resistance to the flow of current in an LC circuit. The simplest models of
resistance are the addition of a term proportional to first derivative of the
dependent variable. Thus, our three main examples with damping added
look like:

mẍ + bẋ + kx = 0. (2.37)

Lθ̈ + bθ̇ + gθ = 0. (2.38)

Lq̈ + Rq̇ +
1
C

q = 0. (2.39)

These are all examples of the general constant coefficient equation

ay′′(x) + by′(x) + cy(x) = 0. (2.40)

We have seen that solutions are obtained by looking at the characteristic
equation ar2 + br + c = 0. This leads to three different behaviors depending
on the discriminant in the quadratic formula:

r =
−b±

√
b2 − 4ac

2a
. (2.41)

We will consider the example of the damped spring. Then we have

r =
−b±

√
b2 − 4mk

2m
. (2.42)

For b > 0, there are three types of damping. Damped oscillator cases: Overdamped,
critically damped, and underdamped.
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I. Overdamped, b2 > 4mk

In this case we obtain two real root. Since this is Case I for constant
coefficient equations, we have that

x(t) = c1er1t + c2er2t.

We note that b2 − 4mk < b2. Thus, the roots are both negative. So, both
terms in the solution exponentially decay. The damping is so strong that
there is no oscillation in the system.

II. Critically Damped, b2 = 4mk

In this case we obtain one real root. This is Case II for constant coefficient
equations and the solution is given by

x(t) = (c1 + c2t)ert,

where r = −b/2m. Once again, the solution decays exponentially. The
damping is just strong enough to hinder any oscillation. If it were any
weaker the discriminant would be negative and we would need the third
case.

III. Underdamped, b2 < 4mk

Figure 2.13: A plot of underdamped os-
cillation given by x(t) = 2e0.15t cos 3t.
The dashed lines are given by x(t) =
±2e0.15t, indicating the bounds on the
amplitude of the motion.

In this case we have complex conjugate roots. We can write α = −b/2m
and β =

√
4mk− b2/2m. Then the solution is

x(t) = eαt(c1 cos βt + c2 sin βt).

These solutions exhibit oscillations due to the trigonometric functions,
but we see that the amplitude may decay in time due the overall factor of
eαt when α < 0. Consider the case that the initial conditions give c1 = A
and c2 = 0. (When is this?) Then, the solution, x(t) = Aeαt cos βt, looks
like the plot in Figure 2.13.

2.4 Forced Systems

All of the systems presented at the beginning of the last section exhibit
the same general behavior when a damping term is present. An additional
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term can be added that might cause even more complicated behavior. In
the case of LRC circuits, we have seen that the voltage source makes the
system nonhomogeneous. It provides what is called a source term. Such
terms can also arise in the mass-spring and pendulum systems. One can
drive such systems by periodically pushing the mass, or having the entire
system moved, or impacted by an outside force. Such systems are called
forced, or driven.

Typical systems in physics can be modeled by nonhomogeneous second
order equations. Thus, we want to find solutions of equations of the form

Ly(x) = a(x)y′′(x) + b(x)y′(x) + c(x)y(x) = f (x). (2.43)

As noted in Section 2.1, one solves this equation by finding the general
solution of the homogeneous problem,

Lyh = 0

and a particular solution of the nonhomogeneous problem,

Lyp = f .

Then, the general solution of (2.1) is simply given as y = yh + yp.
So far, we only know how to solve constant coefficient, homogeneous

equations. So, by adding a nonhomogeneous term to such equations we
will need to find the particular solution to the nonhomogeneous equation.

We could guess a solution, but that is not usually possible without a little
bit of experience. So, we need some other methods. There are two main
methods. In the first case, the Method of Undetermined Coefficients, one
makes an intelligent guess based on the form of f (x). In the second method,
one can systematically developed the particular solution. We will come back
to the Method of Variation of Parameters and we will also introduce the
powerful machinery of Green’s functions later in this section.

2.4.1 Method of Undetermined Coefficients

Let’s solve a simple differential equation highlighting how we can
handle nonhomogeneous equations.

Example 2.12. Consider the equation

y′′ + 2y′ − 3y = 4. (2.44)

The first step is to determine the solution of the homogeneous equa-
tion. Thus, we solve

y′′h + 2y′h − 3yh = 0. (2.45)

The characteristic equation is r2 + 2r− 3 = 0. The roots are r = 1,−3.
So, we can immediately write the solution

yh(x) = c1ex + c2e−3x.
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The second step is to find a particular solution of (2.44). What
possible function can we insert into this equation such that only a 4

remains? If we try something proportional to x, then we are left with a
linear function after inserting x and its derivatives. Perhaps a constant
function you might think. y = 4 does not work. But, we could try an
arbitrary constant, y = A.

Let’s see. Inserting y = A into (2.44), we obtain

−3A = 4.

Ah ha! We see that we can choose A = − 4
3 and this works. So, we

have a particular solution, yp(x) = − 4
3 . This step is done.

Combining the two solutions, we have the general solution to the
original nonhomogeneous equation (2.44). Namely,

y(x) = yh(x) + yp(x) = c1ex + c2e−3x − 4
3

.

Insert this solution into the equation and verify that it is indeed a
solution. If we had been given initial conditions, we could now use
them to determine the arbitrary constants.

Example 2.13. What if we had a different source term? Consider the
equation

y′′ + 2y′ − 3y = 4x. (2.46)

The only thing that would change is the particular solution. So, we
need a guess.

We know a constant function does not work by the last example.
So, let’s try yp = Ax. Inserting this function into Equation (2.46), we
obtain

2A− 3Ax = 4x.

Picking A = −4/3 would get rid of the x terms, but will not cancel
everything. We still have a constant left. So, we need something more
general.

Let’s try a linear function, yp(x) = Ax + B. Then we get after sub-
stitution into (2.46)

2A− 3(Ax + B) = 4x.

Equating the coefficients of the different powers of x on both sides, we
find a system of equations for the undetermined coefficients:

2A− 3B = 0

−3A = 4. (2.47)

These are easily solved to obtain

A = −4
3

B =
2
3

A = −8
9

. (2.48)
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So, the particular solution is

yp(x) = −4
3

x− 8
9

.

This gives the general solution to the nonhomogeneous problem as

y(x) = yh(x) + yp(x) = c1ex + c2e−3x − 4
3

x− 8
9

.

There are general forms that you can guess based upon the form of the
driving term, f (x). Some examples are given in Table 2.1. More general ap-
plications are covered in a standard text on differential equations. However,
the procedure is simple. Given f (x) in a particular form, you make an ap-
propriate guess up to some unknown parameters, or coefficients. Inserting
the guess leads to a system of equations for the unknown coefficients. Solve
the system and you have the solution. This solution is then added to the
general solution of the homogeneous differential equation.

f (x) Guess
anxn + an−1xn−1 + · · ·+ a1x + a0 Anxn + An−1xn−1 + · · ·+ A1x + A0

aebx Aebx

a cos ωx + b sin ωx A cos ωx + B sin ωx

Table 2.1: Forms used in the Method of
Undetermined Coefficients.

Example 2.14. Solve

y′′ + 2y′ − 3y = 2e−3x. (2.49)

According to the above, we would guess a solution of the form
yp = Ae−3x. Inserting our guess, we find

0 = 2e−3x.

Oops! The coefficient, A, disappeared! We cannot solve for it. What
went wrong?

The answer lies in the general solution of the homogeneous prob-
lem. Note that ex and e−3x are solutions to the homogeneous problem.
So, a multiple of e−3x will not get us anywhere. It turns out that there
is one further modification of the method. If the driving term contains
terms that are solutions of the homogeneous problem, then we need
to make a guess consisting of the smallest possible power of x times
the function which is no longer a solution of the homogeneous prob-
lem. Namely, we guess yp(x) = Axe−3x and differentiate this guess to
obtain the derivatives y′p = A(1− 3x)e−3x and y′′p = A(9x− 6)e−3x.

Inserting these derivatives into the differential equation, we obtain

[(9x− 6) + 2(1− 3x)− 3x]Ae−3x = 2e−3x.

Comparing coefficients, we have

−4A = 2.



52 differential equations

So, A = −1/2 and yp(x) = − 1
2 xe−3x. Thus, the solution to the prob-

lem is

y(x) =
(

2− 1
2

x
)

e−3x.

Modified Method of Undetermined Coefficients

In general, if any term in the guess yp(x) is a solution of the homogeneous
equation, then multiply the guess by xk, where k is the smallest positive
integer such that no term in xkyp(x) is a solution of the homogeneous
problem.

2.4.2 Periodically Forced Oscillations

A special type of forcing is periodic forcing. Realistic oscillations will
dampen and eventually stop if left unattended. For example, mechanical
clocks are driven by compound or torsional pendula and electric oscilla-
tors are often designed with the need to continue for long periods of time.
However, they are not perpetual motion machines and will need a peri-
odic injection of energy. This can be done systematically by adding periodic
forcing. Another simple example is the motion of a child on a swing in the
park. This simple damped pendulum system will naturally slow down to
equilibrium (stopped) if left alone. However, if the child pumps energy into
the swing at the right time, or if an adult pushes the child at the right time,
then the amplitude of the swing can be increased.

There are other systems, such as airplane wings and long bridge spans,
in which external driving forces might cause damage to the system. A well
know example is the wind induced collapse of the Tacoma Narrows Bridge
due to strong winds. Of course, if one is not careful, the child in theThe Tacoma Narrows Bridge opened in

Washington State (U.S.) in mid 1940.
However, in November of the same year
the winds excited a transverse mode of
vibration, which eventually (in a few
hours) lead to large amplitude oscilla-
tions and then collapse.

last example might get too much energy pumped into the system causing a
similar failure of the desired motion.

While there are many types of forced systems, and some fairly compli-
cated, we can easily get to the basic characteristics of forced oscillations by
modifying the mass-spring system by adding an external, time-dependent,
driving force. Such as system satisfies the equation

mẍ + b(̇x) + kx = F(t), (2.50)

where m is the mass, b is the damping constant, k is the spring constant,
and F(t) is the driving force. If F(t) is of simple form, then we can employ
the Method of Undetermined Coefficients. Since the systems we have con-
sidered so far are similar, one could easily apply the following to pendula
or circuits.

k m

b

F cos w t
0

Figure 2.14: An external driving force
is added to the spring-mass-damper sys-
tem.

As the damping term only complicates the solution, we will consider the
simpler case of undamped motion and assume that b = 0. Furthermore,
we will introduce a sinusoidal driving force, F(t) = F0 cos ωt in order to
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study periodic forcing. This leads to the simple periodically driven mass on
a spring system

mẍ + kx = F0 cos ωt. (2.51)

In order to find the general solution, we first obtain the solution to the
homogeneous problem,

xh = c1 cos ω0t + c2 sin ω0t,

where ω0 =
√

k
m . Next, we seek a particular solution to the nonhomoge-

neous problem. We will apply the Method of Undetermined Coefficients.
A natural guess for the particular solution would be to use xp = A cos ωt+

B sinωt. However, recall that the guess should not be a solution of the ho-
mogeneous problem. Comparing xp with xh, this would hold if ω 6= ω0.
Otherwise, one would need to use the Modified Method of Undetermined
Coefficients as described in the last section. So, we have two cases to con-
sider. Dividing through by the mass, we solve

the simple driven system,

ẍ + ω2
0 x =

F0

m
cos ωt.

Example 2.15. Solve ẍ + ω2
0x = F0

m cos ωt, for ω 6= ω0.
In this case we continue with the guess xp = A cos ωt + B sinωt.

Since there is no damping term, one quickly finds that B = 0. Inserting
xp = A cos ωt into the differential equation, we find that(

−ω2 + ω2
0

)
A cos ωt =

F0

m
cos ωt.

Solving for A, we obtain

A =
F0

m(ω2
0 −ω2)

.

The general solution for this case is thus,

x(t) = c1 cos ω0t + c2 sin ω0t +
F0

m(ω2
0 −ω2)

cos ωt. (2.52)

Example 2.16. Solve ẍ + ω2
0x = F0

m cos ω0t.
In this case, we need to employ the Modified Method of Undeter-

mined Coefficients. So, we make the guess xp = t (A cos ω0t + B sinω0t) .
Since there is no damping term, one finds that A = 0. Inserting the
guess in to the differential equation, we find that

B =
F0

2mω0
,

or the general solution is

x(t) = c1 cos ω0t + c2 sin ω0t +
F0

2mω
t sin ωt. (2.53)

The general solution to the problem is thus

x(t) = c1 cos ω0t + c2 sin ω0t +

{ F0
m(ω2

0−ω2)
cos ωt, ω 6= ω0,

F0
2mω0

t sin ω0t, ω = ω0.
(2.54)
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Special cases of these solutions provide interesting physics, which can
be explored by the reader in the homework. In the case that ω = ω0, we
see that the solution tends to grow as t gets large. This is what is called a
resonance. Essentially, one is driving the system at its natural frequency. As
the system is moving to the left, one pushes it to the left. If it is moving to
the right, one is adding energy in that direction. This forces the amplitude
of oscillation to continue to grow until the system breaks. An example of
such an oscillation is shown in Figure 2.15.

Figure 2.15: Plot of

x(t) = 5 cos 2t +
1
2

t sin 2t,

a solution of ẍ + 4x = 2 cos 2t showing
resonance.

In the case that ω 6= ω0, one can rewrite the solution in a simple form.
Let’s choose the initial conditions that c1 = −F0/(m(ω2

0−ω2)), c2 = 0. Then
one has (see Problem 13)

x(t) =
2F0

m(ω2
0 −ω2)

sin
(ω0 −ω)t

2
sin

(ω0 + ω)t
2

. (2.55)

For values of ω near ω0, one finds the solution consists of a rapid os-
cillation, due to the sin (ω0+ω)t

2 factor, with a slowly varying amplitude,
2F0

m(ω2
0−ω2)

sin (ω0−ω)t
2 . The reader can investigate this solution.

This slow variation is called a beat and the beat frequency is given by f =
|ω0−ω|

4π . In Figure 2.16 we see the high frequency oscillations are contained
by the lower beat frequency, f = 0.15

4π s. This corresponds to a period of
T = 1/ f ≈ 83.7 Hz, which looks about right from the figure.

Figure 2.16: Plot of

x(t) =
1

249

(
2045 cos 2t− 800 cos

43
20

t
)

,

a solution of ẍ + 4x = 2 cos 2.15t, show-
ing beats.

Example 2.17. Solve ẍ + x = 2 cos ωt, x(0) = 0, ẋ(0) = 0, for ω =

1, 1.15. For each case, we need the solution of the homogeneous prob-
lem,

xh(t) = c1 cos t + c2 sin t.

The particular solution depends on the value of ω.
For ω = 1, the driving term, 2 cos ωt, is a solution of the homoge-

neous problem. Thus, we assume

xp(t) = At cos t + Bt sin t.

Inserting this into the differential equation, we find A = 0 and B = 1.
So, the general solution is

x(t) = c1 cos t + c2 sin t + t sin t.

Imposing the initial conditions, we find

x(t) = t sin t.

This solution is shown in Figure 2.17.

Figure 2.17: Plot of

x(t) = t sin 2t,

a solution of ẍ + x = 2 cos t.

For ω = 1.15, the driving term, 2 cos ω1.15t, is not a solution of the
homogeneous problem. Thus, we assume

xp(t) = A cos 1.15t + B sin 1.15t.

Inserting this into the differential equation, we find A = − 800
129 and

B = 0. So, the general solution is

x(t) = c1 cos t + c2 sin t− 800
129

cos t.
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Imposing the initial conditions, we find

x(t) =
800
129

(cos t− cos 1.15t) .

This solution is shown in Figure 2.18. The beat frequency in this case
is the same as with Figure 2.16.

Figure 2.18: Plot of

x(t) =
800
129

(
cos t− cos

23
20

t
)

,

a solution of ẍ + x = 2 cos 1.15t.

2.4.3 Reduction of Order for Nonhomogeneous Equations

The Method of Reduction of Order is also useful for solving nonhomoge-
neous problems. In this case if we know one solution of the homogeneous
problem, then we can use it to obtain a particular solution of the nonhomo-
geneous problem. For example, consider the nonhomogeneous differential
equation

a(x)y′′(x) + b(x)y′(x) + c(x)y(x) = f (x). (2.56)

Let’s assume that y1(x) satisfies the homogeneous differential equation

a(x)y′′1 (x) + b(x)y′1(x) + c(x)y1(x) = 0. (2.57)

Then, we seek a particular solution, yp(x) = v(x)y1(x). Its derivatives are
given by

y′p = (vy1)
′,

= v′y1 + vy′1.

y′′p = (v′y1 + vy′1)
′,

= v′′y1 + 2v′y′1 + vy′′1 .

Substituting yp and its derivatives into the differential equation, we have

f = ay′′p + by′p + cyp

= a(v′′y1 + 2v′y′1 + vy′′1 ) + b(v′y1 + vy′1) + cvy1

= av′′y1 + 2av′y′1 + bv′y1 + v[ay′′1 + by′1 + cy1]

= av′′y1 + 2av′y′1 + bv′y1

Therefore, v(x) satisfies the second order equation

a(x)y(x)v
′′(x) + [2a(x)y′1(x) + b(x)y1(x)]v′(x) = f (x).

Letting z = v′, we see that we have the linear first order equation for
z(x) :

a(x)y(x)z
′(x) + [2a(x)y′1(x) + b(x)y1(x)]z(x) = f (x).

Example 2.18. Use the Method of Reduction of Order to solve y′′ +
y = sec x.

Solutions of the homogeneous equation, y′′ + y = 0 are sin x and
cos x. We can choose either to begin using the Method of Reduction of
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Order. Let’s take yp = v cos x. Its derivatives are given by

y′p = (v cos x)′,

= v′ cos x− v sin x.

y′′p = (v′ cos x− v sin x)′,

= v′′ cos x− 2v′ sin x− v cos x.

Substituting into the nonhomogeneous equation, we have

sec x = y′′p + yp

= v′′ cos x− 2v′ sin x− v cos x + v cos x

= v′′ cos x− 2v′ sin x

Letting v′ = z, we have the linear first order differential equation

(cos x)z′ − (2 sin x)z = sec x.

Rewriting the equation as,

z′ − (2 tan x)z = sec2 x.

Multiplying by the integrating factor,

µ(x) = − exp
∫ x

2 tan ξ dξ

= − exp 2 ln | sec x|
= cos2 x,

we obtain
(z cos2 x)′ = 1.

Integrating,
v′ = z = x sec2 x.

This can be integrated using integration by parts (letting U = x and
V = tan x):

v =
∫

x sec2 x dx

= x tan x−
∫

tan x dx

= x tan x− ln | sec x|.

We now have enough to write out the solution. The particular solu-
tion is given by

yp = vy1

= (x tan x− ln | sec x|) cos x

= x sin x + cos x ln | cos x|.

The general solution is then

y(x) = c1 cos x + c2 sin x + x sin x + cos x ln | cos x|.
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2.4.4 Method of Variation of Parameters

A more systematic way to find particular solutions is through the use
of the Method of Variation of Parameters. The derivation is a little detailed
and the solution is sometimes messy, but the application of the method is
straight forward if you can do the required integrals. We will first derive
the needed equations and then do some examples.

We begin with the nonhomogeneous equation. Let’s assume it is of the
standard form

a(x)y′′(x) + b(x)y′(x) + c(x)y(x) = f (x). (2.58)

We know that the solution of the homogeneous equation can be written in
terms of two linearly independent solutions, which we will call y1(x) and
y2(x) :

yh(x) = c1y1(x) + c2y2(x).

Replacing the constants with functions, then we no longer have a solution
to the homogeneous equation. Is it possible that we could stumble across
the right functions with which to replace the constants and somehow end
up with f (x) when inserted into the left side of the differential equation? It
turns out that we can.

So, let’s assume that the constants are replaced with two unknown func-
tions, which we will call c1(x) and c2(x). This change of the parameters
is where the name of the method derives. Thus, we are assuming that a
particular solution takes the form We assume the nonhomogeneous equa-

tion has a particular solution of the form

yp(x) = c1(x)y1(x) + c2(x)y2(x).yp(x) = c1(x)y1(x) + c2(x)y2(x). (2.59)

If this is to be a solution, then insertion into the differential equation should
make the equation hold. To do this we will first need to compute some
derivatives.

The first derivative is given by

y′p(x) = c1(x)y′1(x) + c2(x)y′2(x) + c′1(x)y1(x) + c′2(x)y2(x). (2.60)

Next we will need the second derivative. But, this will yield eight terms.
So, we will first make a simplifying assumption. Let’s assume that the last
two terms add to zero:

c′1(x)y1(x) + c′2(x)y2(x) = 0. (2.61)

It turns out that we will get the same results in the end if we did not assume
this. The important thing is that it works!

Under the assumption the first derivative simplifies to

y′p(x) = c1(x)y′1(x) + c2(x)y′2(x). (2.62)

The second derivative now only has four terms:

y′p(x) = c1(x)y′′1 (x) + c2(x)y′′2 (x) + c′1(x)y′1(x) + c′2(x)y′2(x). (2.63)
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Now that we have the derivatives, we can insert the guess into the differ-
ential equation. Thus, we have

f (x) = a(x)
[
c1(x)y′′1 (x) + c2(x)y′′2 (x) + c′1(x)y′1(x) + c′2(x)y′2(x)

]
+b(x)

[
c1(x)y′1(x) + c2(x)y′2(x)

]
+c(x) [c1(x)y1(x) + c2(x)y2(x)] . (2.64)

Regrouping the terms, we obtain

f (x) = c1(x)
[
a(x)y′′1 (x) + b(x)y′1(x) + c(x)y1(x)

]
+c2(x)

[
a(x)y′′2 (x) + b(x)y′2(x) + c(x)y2(x)

]
+a(x)

[
c′1(x)y′1(x) + c′2(x)y′2(x)

]
. (2.65)

Note that the first two rows vanish since y1 and y2 are solutions of the
homogeneous problem. This leaves the equation

f (x) = a(x)
[
c′1(x)y′1(x) + c′2(x)y′2(x)

]
,

which can be rearranged as

c′1(x)y′1(x) + c′2(x)y′2(x) =
f (x)
a(x)

. (2.66)

In summary, we have assumed a particular solution of the form

yp(x) = c1(x)y1(x) + c2(x)y2(x).

This is only possible if the unknown functions c1(x) and c2(x) satisfy the
system of equations

In order to solve the differential equation
Ly = f , we assume

yp(x) = c1(x)y1(x) + c2(x)y2(x),

for Ly1,2 = 0. Then, one need only solve
a simple system of equations (2.67).

c′1(x)y1(x) + c′2(x)y2(x) = 0

c′1(x)y′1(x) + c′2(x)y′2(x) =
f (x)
a(x)

. (2.67)

System (2.67) can be solved as

c′1(x) = − f y2

aW(y1, y2)
,

c′1(x) =
f y1

aW(y1, y2)
,

where W(y1, y2) = y1y′2 − y′1y2 is the
Wronskian. We use this solution in the
next section.

It is standard to solve this system for the derivatives of the unknown
functions and then present the integrated forms. However, one could just
as easily start from this system and solve the system for each problem en-
countered.

Example 2.19. Find the general solution of the nonhomogeneous prob-
lem: y′′ − y = e2x.

The general solution to the homogeneous problem y′′h − yh = 0 is

yh(x) = c1ex + c2e−x.

In order to use the Method of Variation of Parameters, we seek a
solution of the form

yp(x) = c1(x)ex + c2(x)e−x.
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We find the unknown functions by solving the system in (2.67), which
in this case becomes

c′1(x)ex + c′2(x)e−x = 0

c′1(x)ex − c′2(x)e−x = e2x. (2.68)

Adding these equations we find that

2c′1ex = e2x → c′1 =
1
2

ex.

Solving for c1(x) we find

c1(x) =
1
2

∫
ex dx =

1
2

ex.

Subtracting the equations in the system yields

2c′2e−x = −e2x → c′2 = −1
2

e3x.

Thus,

c2(x) = −1
2

∫
e3x dx = −1

6
e3x.

The particular solution is found by inserting these results into yp:

yp(x) = c1(x)y1(x) + c2(x)y2(x)

= (
1
2

ex)ex + (−1
6

e3x)e−x

=
1
3

e2x. (2.69)

Thus, we have the general solution of the nonhomogeneous problem
as

y(x) = c1ex + c2e−x +
1
3

e2x.

Example 2.20. Now consider the problem: y′′ + 4y = sin x.
The solution to the homogeneous problem is

yh(x) = c1 cos 2x + c2 sin 2x. (2.70)

We now seek a particular solution of the form

yh(x) = c1(x) cos 2x + c2(x) sin 2x.

We let y1(x) = cos 2x and y2(x) = sin 2x, a(x) = 1, f (x) = sin x in
system (2.67):

c′1(x) cos 2x + c′2(x) sin 2x = 0

−2c′1(x) sin 2x + 2c′2(x) cos 2x = sin x. (2.71)

Now, use your favorite method for solving a system of two equa-
tions and two unknowns. In this case, we can multiply the first equa-
tion by 2 sin 2x and the second equation by cos 2x. Adding the result-
ing equations will eliminate the c′1 terms. Thus, we have

c′2(x) =
1
2

sin x cos 2x =
1
2
(2 cos2 x− 1) sin x.
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Inserting this into the first equation of the system, we have

c′1(x) = −c′2(x)
sin 2x
cos 2x

= −1
2

sin x sin 2x = − sin2 x cos x.

These can easily be solved:

c2(x) =
1
2

∫
(2 cos2 x− 1) sin x dx =

1
2
(cos x− 2

3
cos3 x).

c1(x) = −
∫

sinx cos x dx = −1
3

sin3 x.

The final step in getting the particular solution is to insert these
functions into yp(x). This gives

yp(x) = c1(x)y1(x) + c2(x)y2(x)

= (−1
3

sin3 x) cos 2x + (
1
2

cos x− 1
3

cos3 x) sin x

=
1
3

sin x. (2.72)

So, the general solution is

y(x) = c1 cos 2x + c2 sin 2x +
1
3

sin x. (2.73)

2.4.5 Initial Value Green’s Functions*

In this section we will investigate the solution of initial value prob-
lems involving nonhomogeneous differential equations using Green’s func-
tions. Our goal is to solve the nonhomogeneous differential equation

a(t)y′′(t) + b(t)y′(t) + c(t)y(t) = f (t), (2.74)

subject to the initial conditions

y(0) = y0 y′(0) = v0.

Since we are interested in initial value problems, we will denote the inde-
pendent variable as a time variable, t.

Equation (2.74) can be written compactly as

L[y] = f ,

where L is the differential operator

L = a(t)
d2

dt2 + b(t)
d
dt

+ c(t).

The solution is formally given by

y = L−1[ f ].
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The inverse of a differential operator is an integral operator, which we seek
to write in the form

y(t) =
∫

G(t, τ) f (τ) dτ.

The function G(t, τ) is referred to as the kernel of the integral operator and
is called the Green’s function.

The history of the Green’s function dates back to 1828, when George
Green published work in which he sought solutions of Poisson’s equation
∇2u = f for the electric potential u defined inside a bounded volume with
specified boundary conditions on the surface of the volume. He introduced
a function now identified as what Riemann later coined the “Green’s func-
tion”. In this section we will derive the initial value Green’s function for
ordinary differential equations. Later in the book we will return to bound-
ary value Green’s functions and Green’s functions for partial differential
equations.

George Green (1793-1841), a British
mathematical physicist who had little
formal education and worked as a miller
and a baker, published An Essay on
the Application of Mathematical Analysis
to the Theories of Electricity and Mag-
netism in which he not only introduced
what is now known as Green’s func-
tion, but he also introduced potential
theory and Green’s Theorem in his stud-
ies of electricity and magnetism. Re-
cently his paper was posted at arXiv.org,
arXiv:0807.0088.

In the last section we solved nonhomogeneous equations like (2.74) using
the Method of Variation of Parameters. Letting,

yp(t) = c1(t)y1(t) + c2(t)y2(t), (2.75)

we found that we have to solve the system of equations

c′1(t)y1(t) + c′2(t)y2(t) = 0.

c′1(t)y
′
1(t) + c′2(t)y

′
2(t) =

f (t)
q(t)

. (2.76)

This system is easily solved to give

c′1(t) = − f (t)y2(t)
a(t)

[
y1(t)y′2(t)− y′1(t)y2(t)

]
c′2(t) =

f (t)y1(t)
a(t)

[
y1(t)y′2(t)− y′1(t)y2(t)

] . (2.77)

We note that the denominator in these expressions involves the Wronskian
of the solutions to the homogeneous problem, which is given by the deter-
minant

W(y1, y2)(t) =

∣∣∣∣∣ y1(t) y2(t)
y′1(t) y′2(t)

∣∣∣∣∣ .

When y1(t) and y2(t) are linearly independent, then the Wronskian is not
zero and we are guaranteed a solution to the above system.

So, after an integration, we find the parameters as

c1(t) = −
∫ t

t0

f (τ)y2(τ)

a(τ)W(τ)
dτ

c2(t) =
∫ t

t1

f (τ)y1(τ)

a(τ)W(τ)
dτ, (2.78)

where t0 and t1 are arbitrary constants to be determined from the initial
conditions.
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Therefore, the particular solution of (2.74) can be written as

yp(t) = y2(t)
∫ t

t1

f (τ)y1(τ)

a(τ)W(τ)
dτ − y1(t)

∫ t

t0

f (τ)y2(τ)

a(τ)W(τ)
dτ. (2.79)

We begin with the particular solution (2.79) of the nonhomogeneous dif-
ferential equation (2.74). This can be combined with the general solution of
the homogeneous problem to give the general solution of the nonhomoge-
neous differential equation:

yp(t) = c1y1(t) + c2y2(t) + y2(t)
∫ t

t1

f (τ)y1(τ)

a(τ)W(τ)
dτ − y1(t)

∫ t

t0

f (τ)y2(τ)

a(τ)W(τ)
dτ.

(2.80)
However, an appropriate choice of t0 and t1 can be found so that we

need not explicitly write out the solution to the homogeneous problem,
c1y1(t) + c2y2(t). However, setting up the solution in this form will allow
us to use t0 and t1 to determine particular solutions which satisfies certain
homogeneous conditions. In particular, we will show that Equation (2.80)
can be written in the form

y(t) = c1y1(t) + c2y2(t) +
∫ t

0
G(t, τ) f (τ) dτ, (2.81)

where the function G(t, τ) will be identified as the Green’s function.
The goal is to develop the Green’s function technique to solve the initial

value problem

a(t)y′′(t) + b(t)y′(t) + c(t)y(t) = f (t), y(0) = y0, y′(0) = v0. (2.82)

We first note that we can solve this initial value problem by solving two
separate initial value problems. We assume that the solution of the homo-
geneous problem satisfies the original initial conditions:

a(t)y′′h (t) + b(t)y′h(t) + c(t)yh(t) = 0, yh(0) = y0, y′h(0) = v0. (2.83)

We then assume that the particular solution satisfies the problem

a(t)y′′p(t) + b(t)y′p(t) + c(t)yp(t) = f (t), yp(0) = 0, y′p(0) = 0. (2.84)

Since the differential equation is linear, then we know that

y(t) = yh(t) + yp(t)

is a solution of the nonhomogeneous equation. Also, this solution satisfies
the initial conditions:

y(0) = yh(0) + yp(0) = y0 + 0 = y0,

y′(0) = y′h(0) + y′p(0) = v0 + 0 = v0.

Therefore, we need only focus on finding a particular solution that satisfies
homogeneous initial conditions. This will be done by finding values for t0

and t1 in Equation (2.79) which satisfy the homogeneous initial conditions,
yp(0) = 0 and y′p(0) = 0.
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First, we consider yp(0) = 0. We have

yp(0) = y2(0)
∫ 0

t1

f (τ)y1(τ)

a(τ)W(τ)
dτ − y1(0)

∫ 0

t0

f (τ)y2(τ)

a(τ)W(τ)
dτ. (2.85)

Here, y1(t) and y2(t) are taken to be any solutions of the homogeneous
differential equation. Let’s assume that y1(0) = 0 and y2 6= (0) = 0. Then,
we have

yp(0) = y2(0)
∫ 0

t1

f (τ)y1(τ)

a(τ)W(τ)
dτ (2.86)

We can force yp(0) = 0 if we set t1 = 0.
Now, we consider y′p(0) = 0. First we differentiate the solution and find

that

y′p(t) = y′2(t)
∫ t

0

f (τ)y1(τ)

a(τ)W(τ)
dτ − y′1(t)

∫ t

t0

f (τ)y2(τ)

a(τ)W(τ)
dτ, (2.87)

since the contributions from differentiating the integrals will cancel. Evalu-
ating this result at t = 0, we have

y′p(0) = −y′1(0)
∫ 0

t0

f (τ)y2(τ)

a(τ)W(τ)
dτ. (2.88)

Assuming that y′1(0) 6= 0, we can set t0 = 0.
Thus, we have found that

yp(x) = y2(t)
∫ t

0

f (τ)y1(τ)

a(τ)W(τ)
dτ − y1(t)

∫ t

0

f (τ)y2(τ)

a(τ)W(τ)
dτ

=
∫ t

0

[
y1(τ)y2(t)− y1(t)y2(τ)

a(τ)W(τ)

]
f (τ) dτ. (2.89)

This result is in the correct form and we can identify the temporal, or
initial value, Green’s function. So, the particular solution is given as

yp(t) =
∫ t

0
G(t, τ) f (τ) dτ, (2.90)

where the initial value Green’s function is defined as

G(t, τ) =
y1(τ)y2(t)− y1(t)y2(τ)

a(τ)W(τ)
.

We summarize
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Solution of IVP Using the Green’s Function

The solution of the initial value problem,

a(t)y′′(t) + b(t)y′(t) + c(t)y(t) = f (t), y(0) = y0, y′(0) = v0,

takes the form

y(t) = yh(t) +
∫ t

0
G(t, τ) f (τ) dτ, (2.91)

where

G(t, τ) =
y1(τ)y2(t)− y1(t)y2(τ)

a(τ)W(τ)
(2.92)

is the Green’s function and y1, y2, yh are solutions of the homogeneous
equation satisfying

y1(0) = 0, y2(0) 6= 0, y′1(0) 6= 0, y′2(0) = 0, yh(0) = y0, y′h(0) = v0.

Example 2.21. Solve the forced oscillator problem

x′′ + x = 2 cos t, x(0) = 4, x′(0) = 0.

We first solve the homogeneous problem with nonhomogeneous
initial conditions:

x′′h + xh = 0, xh(0) = 4, x′h(0) = 0.

The solution is easily seen to be xh(t) = 4 cos t.
Next, we construct the Green’s function. We need two linearly

independent solutions, y1(x), y2(x), to the homogeneous differential
equation satisfying different homogeneous conditions, y1(0) = 0 and
y′2(0) = 0. The simplest solutions are y1(t) = sin t and y2(t) = cos t.
The Wronskian is found as

W(t) = y1(t)y′2(t)− y′1(t)y2(t) = − sin2 t− cos2 t = −1.

Since a(t) = 1 in this problem, we compute the Green’s function,

G(t, τ) =
y1(τ)y2(t)− y1(t)y2(τ)

a(τ)W(τ)

= sin t cos τ − sin τ cos t

= sin(t− τ). (2.93)

Note that the Green’s function depends on t− τ. While this is useful
in some contexts, we will use the expanded form when carrying out
the integration.

We can now determine the particular solution of the nonhomoge-
neous differential equation. We have

xp(t) =
∫ t

0
G(t, τ) f (τ) dτ

=
∫ t

0
(sin t cos τ − sin τ cos t) (2 cos τ) dτ
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= 2 sin t
∫ t

0
cos2 τdτ − 2 cos t

∫ t

0
sin τ cos τdτ

= 2 sin t
[

τ

2
+

1
2

sin 2τ

]t

0
− 2 cos t

[
1
2

sin2 τ

]t

0
= t sin t. (2.94)

Therefore, the solution of the nonhomogeneous problem is the sum
of the solution of the homogeneous problem and this particular solu-
tion: x(t) = 4 cos t + t sin t.

2.5 Cauchy-Euler Equations

Another class of solvable linear differential equations that is
of interest are the Cauchy-Euler type of equations, also referred to in some
books as Euler’s equation. These are given by

ax2y′′(x) + bxy′(x) + cy(x) = 0. (2.95)

Note that in such equations the power of x in each of the coefficients matches
the order of the derivative in that term. These equations are solved in a
manner similar to the constant coefficient equations.

One begins by making the guess y(x) = xr. Inserting this function and
its derivatives,

y′(x) = rxr−1, y′′(x) = r(r− 1)xr−2,

into Equation (2.95), we have

[ar(r− 1) + br + c] xr = 0.

Since this has to be true for all x in the problem domain, we obtain the
characteristic equation The solutions of Cauchy-Euler equations

can be found using the characteristic
equation ar(r− 1) + br + c = 0.ar(r− 1) + br + c = 0. (2.96)

Just like the constant coefficient differential equation, we have a quadratic
equation and the nature of the roots again leads to three classes of solutions.
If there are two real, distinct roots, then the general solution takes the form
y(x) = c1xr1 + c2xr2 . For two real, distinct roots, the general

solution takes the form

y(x) = c1xr1 + c2xr2 .
Example 2.22. Find the general solution: x2y′′ + 5xy′ + 12y = 0.

As with the constant coefficient equations, we begin by writing
down the characteristic equation. Doing a simple computation,

0 = r(r− 1) + 5r + 12

= r2 + 4r + 12

= (r + 2)2 + 8,

−8 = (r + 2)2, (2.97)

one determines the roots are r = −2± 2
√

2i. Therefore, the general

solution is y(x) =
[
c1 cos(2

√
2 ln |x|) + c2 sin(2

√
2 ln |x|)

]
x−2
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Deriving the solution for Case 2 for the Cauchy-Euler equations works in
the same way as the second for constant coefficient equations, but it is a bit
messier. First note that for the real root, r = r1, the characteristic equation
has to factor as (r− r1)

2 = 0. Expanding, we have

r2 − 2r1r + r2
1 = 0.

The general characteristic equation is

ar(r− 1) + br + c = 0.

Dividing this equation by a and rewriting, we have

r2 + (
b
a
− 1)r +

c
a
= 0.

Comparing equations, we find

b
a
= 1− 2r1,

c
a
= r2

1.

So, the Cauchy-Euler equation for this case can be written in the form

x2y′′ + (1− 2r1)xy′ + r2
1y = 0.

Now we seek the second linearly independent solution in the form y2(x) =
v(x)xr1 . We first list this function and its derivatives,

y2(x) = vxr1 ,

y′2(x) = (xv′ + r1v)xr1−1,

y′′2 (x) = (x2v′′ + 2r1xv′ + r1(r1 − 1)v)xr1−2. (2.98)

Inserting these forms into the differential equation, we have

0 = x2y′′ + (1− 2r1)xy′ + r2
1y

= (xv′′ + v′)xr1+1. (2.99)

Thus, we need to solve the equation

xv′′ + v′ = 0,

or
v′′

v′
= − 1

x
.

Integrating, we have
ln |v′| = − ln |x|+ C,

where A = ±eC absorbs C and the signs from the absolute values. Expo-
nentiating, we obtain one last differential equation to solve,

v′ =
A
x

.

Thus,
v(x) = A ln |x|+ k.
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So, we have found that the second linearly independent equation can be
written as

y2(x) = xr1 ln |x|.

Therefore, the general solution is found as y(x) = (c1 + c2 ln |x|)xr.

Example 2.23. Solve the initial value problem: t2y′′ + 3ty′ + y = 0,
with the initial conditions y(1) = 0, y′(1) = 1.

For one root, r1 = r2 = r, the general
solution is of the form

y(x) = (c1 + c2 ln |x|)xr .

For this example the characteristic equation takes the form

r(r− 1) + 3r + 1 = 0,

or

r2 + 2r + 1 = 0.

There is only one real root, r = −1. Therefore, the general solution is

y(t) = (c1 + c2 ln |t|)t−1.

However, this problem is an initial value problem. At t = 1 we
know the values of y and y′. Using the general solution, we first have
that

0 = y(1) = c1.

Thus, we have so far that y(t) = c2 ln |t|t−1. Now, using the second
condition and

y′(t) = c2(1− ln |t|)t−2,

we have

1 = y(1) = c2.

Therefore, the solution of the initial value problem is y(t) = ln |t|t−1.

We now turn to the case of complex conjugate roots, r = α± iβ. When
dealing with the Cauchy-Euler equations, we have solutions of the form
y(x) = xα+iβ. The key to obtaining real solutions is to first rewrite xy :

xy = eln xy
= ey ln x.

Thus, a power can be written as an exponential and the solution can be
written as For complex conjugate roots, r = α± iβ,

the general solution takes the form

y(x) = xα(c1 cos(β ln |x|)+ c2 sin(β ln |x|)).
y(x) = xα+iβ = xαeiβ ln x, x > 0.

Recalling that

eiβ ln x = cos(β ln |x|) + i sin(β ln |x|),

we can now find two real, linearly independent solutions, xα cos(β ln |x|)
and xα sin(β ln |x|) following the same steps as earlier for the constant coef-
ficient case. This gives the general solution as

y(x) = xα(c1 cos(β ln |x|) + c2 sin(β ln |x|)).
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Example 2.24. Solve: x2y′′ − xy′ + 5y = 0.
The characteristic equation takes the form

r(r− 1)− r + 5 = 0,

or
r2 − 2r + 5 = 0.

The roots of this equation are complex, r1,2 = 1± 2i. Therefore, the
general solution is y(x) = x(c1 cos(2 ln |x|) + c2 sin(2 ln |x|)).

The three cases are summarized in the table below.

Classification of Roots of the Characteristic Equation
for Cauchy-Euler Differential Equations

1. Real, distinct roots r1, r2. In this case the solutions corresponding to
each root are linearly independent. Therefore, the general solution is
simply y(x) = c1xr1 + c2xr2 .

2. Real, equal roots r1 = r2 = r. In this case the solutions corresponding
to each root are linearly dependent. To find a second linearly indepen-
dent solution, one uses the Method of Reduction of Order. This gives
the second solution as xr ln |x|. Therefore, the general solution is found
as y(x) = (c1 + c2 ln |x|)xr.

3. Complex conjugate roots r1, r2 = α ± iβ. In this case the solutions
corresponding to each root are linearly independent. These com-
plex exponentials can be rewritten in terms of trigonometric functions.
Namely, one has that xα cos(β ln |x|) and xα sin(β ln |x|) are two lin-
early independent solutions. Therefore, the general solution becomes
y(x) = xα(c1 cos(β ln |x|) + c2 sin(β ln |x|)).

Nonhomogeneous Cauchy-Euler Equations

We can also solve some nonhomogeneous Cauchy-Euler equations using
the Method of Undetermined Coefficients or the Method of Variation of
Parameters. We will demonstrate this with a couple of examples.

Example 2.25. Find the solution of x2y′′ − xy′ − 3y = 2x2.
First we find the solution of the homogeneous equation. The char-

acteristic equation is r2 − 2r − 3 = 0. So, the roots are r = −1, 3 and
the solution is yh(x) = c1x−1 + c2x3.

We next need a particular solution. Let’s guess yp(x) = Ax2. In-
serting the guess into the nonhomogeneous differential equation, we
have

2x2 = x2y′′ − xy′ − 3y = 2x2

= 2Ax2 − 2Ax2 − 3Ax2

= −3Ax2. (2.100)
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So, A = −2/3. Therefore, the general solution of the problem is

y(x) = c1x−1 + c2x3 − 2
3

x2.

Example 2.26. Find the solution of x2y′′ − xy′ − 3y = 2x3.
In this case the nonhomogeneous term is a solution of the homoge-

neous problem, which we solved in the last example. So, we will need
a modification of the method. We have a problem of the form

ax2y′′ + bxy′ + cy = dxr,

where r is a solution of ar(r − 1) + br + c = 0. Let’s guess a solution
of the form y = Axr ln x. Then one finds that the differential equation
reduces to Axr(2ar− a+ b) = dxr. [You should verify this for yourself.]

With this in mind, we can now solve the problem at hand. Let
yp = Ax3 ln x. Inserting into the equation, we obtain 4Ax3 = 2x3, or
A = 1/2. The general solution of the problem can now be written as

y(x) = c1x−1 + c2x3 +
1
2

x3 ln x.

Example 2.27. Find the solution of x2y′′ − xy′ − 3y = 2x3 using Varia-
tion of Parameters.

As noted in the previous examples, the solution of the homoge-
neous problem has two linearly independent solutions, y1(x) = x−1

and y2(x) = x3. Assuming a particular solution of the form yp(x) =

c1(x)y1(x) + c2(x)y2(x), we need to solve the system (2.67):

c′1(x)x−1 + c′2(x)x3 = 0

−c′1(x)x−2 + 3c′2(x)x2 =
2x3

x2 = 2x. (2.101)

From the first equation of the system we have c′1(x) = −x4c′2(x).
Substituting this into the second equation gives c′2(x) = 1

2x . So, c2(x) =
1
2 ln |x| and, therefore, c1(x) = 1

8 x4. The particular solution is

yp(x) = c1(x)y1(x) + c2(x)y2(x) =
1
8

x3 +
1
2

x3 ln |x|.

Adding this to the homogeneous solution, we obtain the same solution
as in the last example using the Method of Undetermined Coefficients.
However, since 1

8 x3 is a solution of the homogeneous problem, it can
be absorbed into the first terms, leaving

y(x) = c1x−1 + c2x3 +
1
2

x3 ln x.
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Problems

1. Find all of the solutions of the second order differential equations. When
an initial condition is given, find the particular solution satisfying that con-
dition.

a. y′′ − 9y′ + 20y = 0.

b. y′′ − 3y′ + 4y = 0, y(0) = 0, y′(0) = 1.

c. 8y′′ + 4y′ + y = 0, y(0) = 1, y′(0) = 0.

d. x′′ − x′ − 6x = 0 for x = x(t).

2. Verify that the given function is a solution and use Reduction of Order
to find a second linearly independent solution.

a. x2y′′ − 2xy′ − 4y = 0, y1(x) = x4.

b. xy′′ − y′ + 4x3y = 0, y1(x) = sin(x2).

c. (1− x2)y′′− 2xy′+ 2y = 0, y1(x) = x. [Note: This is one solution
of Legendre’s differential equation in Example 4.4.]

d. (x− 1)y′′ − xy′ + y = 0, y1(x) = ex.

3. Prove that y1(x) = sinh x and y2(x) = 3 sinh x − 2 cosh x are linearly
independent solutions of y′′ − y = 0. Write y3(x) = cosh x as a linear com-
bination of y1 and y2.

4. Consider the nonhomogeneous differential equation x′′− 3x′+ 2x = 6e3t.

a. Find the general solution of the homogenous equation.

b. Find a particular solution using the Method of Undetermined Co-
efficients by guessing xp(t) = Ae3t.

c. Use your answers in the previous parts to write down the general
solution for this problem.

5. Find the general solution of the given equation by the method given.

a. y′′ − 3y′ + 2y = 10, Undetermined Coefficients.

b. y′′ + 2y′ + y = 5 + 10 sin 2x, Undetermined Coefficients.

c. y′′ − 5y′ + 6y = 3ex, Reduction of Order.

d. y′′ + 5y′ − 6y = 3ex, Reduction of Order.

e. y′′ + y = sec3 x, Reduction of Order.

f. y′′ + y′ = 3x2, Variation of Parameters.

g. y′′ − y = ex + 1, Variation of Parameters.

6. Use the Method of Variation of Parameters to determine the general
solution for the following problems.

a. y′′ + y = tan x.

b. y′′ − 4y′ + 4y = 6xe2x.
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c. y′′ − 2y′ + y = e2x

(1+ex)2 .

d. y′′ − 3y′ + 2y = cos(ex).

7. Instead of assuming that c′1y1 + c′2y2 = 0 in the derivation of the solu-
tion using Variation of Parameters, assume that c′1y1 + c′2y2 = h(x) for an
arbitrary function h(x) and show that one gets the same particular solution.

8. Find all of the solutions of the second order differential equations for x >

0. When an initial condition is given, find the particular solution satisfying
that condition.

a. x2y′′ + 3xy′ + 2y = 0.

b. x2y′′ − 3xy′ + 3y = 0, y(1) = 1, y′(1) = 0.

c. x2y′′ + 5xy′ + 4y = 0.

d. x2y′′ − 2xy′ + 3y = 0, y(1) = 3, y′(1) = 0.

e. x2y′′ + 3xy′ − 3y = 0.

9. Another approach to solving Cauchy-Euler equations is by transforming
the equation to one with constant coefficients.

a. Consider the equation

ax2y′′(x) + bxy′(x) + cy(x) = 0.

Make the change of variables x = et and y(x) = v(t). Show that

dy
dx

=
1
x

dv
dt

and
d2y
dx2 =

1
x2

(
d2v
dt2 −

dv
dt

)
b. Use the above transformation to solve the following equations:

i. x2y′′ + 3xy′ − 3y = 0.

ii. 2x2y′′ + 5xy′ + y = 0.

iii. 4x2y′′ + y = 0.

iii. x3y′′′ + xy′ − y = 0.

10. Solve the following nonhomogenous Cauchy-Euler equations for x > 0.

a. x2y′′ + 3xy′ − 3y = 3x2.

b. 2x2y′′ + 5xy′ + y = x2 + x.

c. x2y′′ + 5xy′ + 4y = 2x3.

d. x2y′′ − 2xy′ + 3y = 5x2, y(1) = 3, y′(1) = 0.

11. A spring fixed at its upper end is stretched six inches by a 10-pound
weight attached at its lower end. The spring-mass system is suspended in
a viscous medium so that the system is subjected to a damping force of
5 dx

dt lbs. Describe the motion of the system if the weight is drawn down an
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additional 4 inches and released. What would happen if you changed the
coefficient “5” to “4”? [You may need to consult your introductory physics
text. For example, the weight and mass are related by W = mg, where the
mass is in slugs and g = 32 ft/s2.]

12. Consider an LRC circuit with L = 1.00 H, R = 1.00 × 102 Ω, C =

1.00 × 10−4 f, and V = 1.00 × 103 V. Suppose that no charge is present
and no current is flowing at time t = 0 when a battery of voltage V is
inserted. Find the current and the charge on the capacitor as functions of
time. Describe how the system behaves over time.

13. Consider the problem of forced oscillations as described in section 2.4.2.

b. Plot the solutions in Equation (2.77) for the following cases: Let
c1 = 0.5, c2 = 0, F0 = 1.0 N, and m = 1.0 kg for t ∈ [0, 100].

i. ω0 = 2.0 rad/s, ω = 0.1 rad/s.

ii. ω0 = 2.0 rad/s, ω = 0.5 rad/s.

iii. ω0 = 2.0 rad/s, ω = 1.5 rad/s.

iv. ω0 = 2.0 rad/s, ω = 2.2 rad/s.

v. ω0 = 1.0 rad/s, ω = 1.2 rad/s.

vi. ω0 = 1.5 rad/s, ω = 1.5 rad/s.

d. Confirm that the solution in Equation (2.78) is the same as the
solution in Equation (2.77) for F0 = 2.0 N, m = 10.0 kg, ω0 = 1.5
rad/s, and ω = 1.25 rad/s, by plotting both solutions for t ∈
[0, 100].

14. A certain model of the motion light plastic ball tossed into the air is
given by

mx′′ + cx′ + mg = 0, x(0) = 0, x′(0) = v0.

Here m is the mass of the ball, g=9.8 m/s2 is the acceleration due to gravity
and c is a measure of the damping. Since there is no x term, we can write
this as a first order equation for the velocity v(t) = x′(t) :

mv′ + cv + mg = 0.

a. Find the general solution for the velocity v(t) of the linear first
order differential equation above.

b. Use the solution of part a to find the general solution for the posi-
tion x(t).

c. Find an expression to determine how long it takes for the ball to
reach it’s maximum height?

d. Assume that c/m = 5 s−1. For v0 = 5, 10, 15, 20 m/s, plot the
solution, x(t) versus the time, using computer software.

e. From your plots and the expression in part c, determine the rise
time. Do these answers agree?

f. What can you say about the time it takes for the ball to fall as
compared to the rise time?
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15. Find the solution of each initial value problem using the appropriate
initial value Green’s function.

a. y′′ − 3y′ + 2y = 20e−2x, y(0) = 0, y′(0) = 6.

b. y′′ + y = 2 sin 3x, y(0) = 5, y′(0) = 0.

c. y′′ + y = 1 + 2 cos x, y(0) = 2, y′(0) = 0.

d. x2y′′ − 2xy′ + 2y = 3x2 − x, y(1) = π, y′(1) = 0.

16. Use the initial value Green’s function for x′′ + x = f (t), x(0) = 4,
x′(0) = 0, to solve the following problems.

a. x′′ + x = 5t2.

b. x′′ + x = 2 tan t.

17. For the problem y′′ − k2y = f (x), y(0) = 0, y′(0) = 1,

a. Find the initial value Green’s function.

b. Use the Green’s function to solve y′′ − y = e−x.

c. Use the Green’s function to solve y′′ − 4y = e2x.

18. Find and use the initial value Green’s function to solve

x2y′′ + 3xy′ − 15y = x4ex, y(1) = 1, y′(1) = 0.
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