
Chapter 1

First Order Differential Equations

“The profound study of nature is the most fertile source of mathematical discover-
ies.” - Joseph Fourier (1768-1830)

1.1 Free Fall

In this chapter we will study some common differential equations that
appear in physics. We will begin with the simplest types of equations and
standard techniques for solving them We will end this part of the discussion
by returning to the problem of free fall with air resistance. We will then turn
to the study of oscillations, which are modeled by second order differential
equations.

Let us begin with a simple example from introductory physics. Recall Free fall example.

that free fall is the vertical motion of an object solely under the force of grav-
ity. It has been experimentally determined that an object near the surface
of the Earth falls at a constant acceleration in the absence of other forces,
such as air resistance. This constant acceleration is denoted by −g, where g
is called the acceleration due to gravity. The negative sign is an indication
that we have chosen a coordinate system in which up is positive.

We are interested in determining the position, y(t), of the falling body as
a function of time. From the definition of free fall, we have

ÿ(t) = −g. (1.1)

Note that we will occasionally use a dot to indicate time differentiation. Differentiation with respect to time is of-
ten denoted by dots instead of primes.This notation is standard in physics and we will begin to introduce you to

this notation, though at times we might use the more familiar prime notation
to indicate spatial differentiation, or general differentiation.

In Equation (1.1) we know g. It is a constant. Near the Earth’s surface it
is about 9.81 m/s2 or 32.2 ft/s2. What we do not know is y(t). This is our
first differential equation. In fact it is natural to see differential equations
appear in physics often through Newton’s Second Law, F = ma, as it plays
an important role in classical physics. We will return to this point later.

So, how does one solve the differential equation in (1.1)? We do so by
using what we know about calculus. It might be easier to see when we put
in a particular number instead of g. You might still be getting used to the
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fact that some letters are used to represent constants. We will come back to
the more general form after we see how to solve the differential equation.

Consider
ÿ(t) = 5. (1.2)

Recalling that the second derivative is just the derivative of a derivative, we
can rewrite this equation as

d
dt

(
dy
dt

)
= 5. (1.3)

This tells us that the derivative of dy/dt is 5. Can you think of a function
whose derivative is 5? (Do not forget that the independent variable is t.) Yes,
the derivative of 5t with respect to t is 5. Is this the only function whose
derivative is 5? No! You can also differentiate 5t + 1, 5t + π, 5t − 6, etc.
In general, the derivative of 5t + C is 5, where C is an arbitrary integration
constant.

So, Equation (1.2) can be reduced to

dy
dt

= 5t + C. (1.4)

Now we ask if you know a function whose derivative is 5t + C. Well, you
might be able to do this one in your head, but we just need to recall the
Fundamental Theorem of Calculus, which relates integrals and derivatives.
Thus, we have

y(t) =
5
2

t2 + Ct + D, (1.5)

where D is a second integration constant.
Equation (1.5) gives the solution to the original differential equation. That

means that when the solution is placed into the differential equation, both
sides of the differential equation give the same expression. You can always
check your answer to a differential equation by showing that your solution
satisfies the equation. In this case we have

ÿ(t) =
d2

dt2

(
5
2

t2 + Ct + D
)
=

d
dt
(5t + C) = 5.

Therefore, Equation (1.5) gives the general solution of the differential equa-
tion.

We also see that there are two arbitrary constants, C and D. Picking
any values for these gives a whole family of solutions. As we will see, the
equation ÿ(t) = 5 is a linear second order ordinary differential equation.
The general solution of such an equation always has two arbitrary constants.

Let’s return to the free fall problem. We solve it the same way. The only
difference is that we can replace the constant 5 with the constant −g. So, we
find that

dy
dt

= −gt + C, (1.6)

and
y(t) = −1

2
gt2 + Ct + D. (1.7)
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Once you get down the process, it only takes a line or two to solve.
There seems to be a problem. Imagine dropping a ball that then un-

dergoes free fall. We just determined that there are an infinite number of
solutions for the position of the ball at any time! Well, that is not possi-
ble. Experience tells us that if you drop a ball you expect it to behave the
same way every time. Or does it? Actually, you could drop the ball from
anywhere. You could also toss it up or throw it down. So, there are many
ways you can release the ball before it is in free fall producing many dif-
ferent paths, y(t). That is where the constants come in. They have physical
meanings.

If you set t = 0 in the equation, then you have that y(0) = D. Thus, D
gives the initial position of the ball. Typically, we denote initial values with
a subscript. So, we will write y(0) = y0. Thus, D = y0.

That leaves us to determine C. It appears at first in Equation (1.6). Recall
that dy

dt , the derivative of the position, is the vertical velocity, v(t). It is
positive when the ball moves upward. We will denote the initial velocity
v(0) = v0. Inserting t = 0 in Equation (1.6), we find that ẏ(0) = C. This
implies that C = v(0) = v0.

Putting this all together, we have the physical form of the solution for
free fall as

y(t) = −1
2

gt2 + v0t + y0. (1.8)

Doesn’t this equation look familiar? Now we see that the infinite family of
solutions consists of free fall resulting from initially dropping a ball at po-
sition y0 with initial velocity v0. The conditions y(0) = y0 and ẏ(0) = v0 are
called the initial conditions. A solution of a differential equation satisfying
a set of initial conditions is often called a particular solution. Specifying the
initial conditions results in a unique solution.

So, we have solved the free fall equation. Along the way we have be-
gun to see some of the features that will appear in the solutions of other
problems that are modeled with differential equation. Throughout the book
we will see several applications of differential equations. We will extend
our analysis to higher dimensions, in which we case will be faced with so-
called partial differential equations, which involve the partial derivatives of
functions of more that one variable.

But are we done with free fall? Not at all! We can relax some of the
conditions that we have imposed. We can add air resistance. We will visit
this problem later in this chapter after introducing some more techniques.
We can also provide a horizontal component of motion, leading to projectile
motion.

R

h(t)

M

m

Figure 1.1: Free fall far from the Earth
from a height h(t) from the surface.

Finally, we should also note that free fall at constant g only takes place
near the surface of the Earth. What if a tile falls off the shuttle far from the
surface of the Earth? It will also fall towards the Earth. Actually, the tile also
has a velocity component in the direction of the motion of the shuttle. So,
it would not necessarily take radial path downwards. For now, let’s ignore
that component.
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To look at this problem in more detail, we need to go to the origins of the
acceleration due to gravity. This comes out of Newton’s Law of Gravitation.
Consider a mass m at some distance h(t) from the surface of the (spheri-
cal) Earth. Letting M and R be the Earth’s mass and radius, respectively,
Newton’s Law of Gravitation states that

ma = F

m
d2h(t)

dt2 = −G
mM

(R + h(t))2 . (1.9)

Thus, we arrive at a differential equationHere G = 6.6730 × 10−11 m3kg−1s−2

is the Universal Gravitational Constant,
M = 5.9736× 1024 kg and R = 6371 km
are the Earth’s mass and mean radius,
respectively. For h << R, GM/R2 ≈ g.

d2h(t)
dt2 = − GM

(R + h(t))2 . (1.10)

This equation is not as easy to solve. We will leave it as a homework exercise
for the reader.

1.2 First Order Differential Equations

Before moving on, we first define an n-th order ordinary differential
equation. It is an equation for an unknown function y(x) that expresses an-th order ordinary differential equation

relationship between the unknown function and its first n derivatives. One
could write this generally as

F(y(n)(x), y(n−1)(x), . . . , y′(x), y(x), x) = 0. (1.11)

Here y(n)(x) represents the nth derivative of y(x).
An initial value problem consists of the differential equation plus theInitial value problem.

values of the first n− 1 derivatives at a particular value of the independent
variable, say x0:

y(n−1)(x0) = yn−1, y(n−2)(x0) = yn−2, . . . , y(x0) = y0. (1.12)

A linear nth order differential equation takes the formLinear nth order differential equation

an(x)y(n)(x) + an−1(x)y(n−1)(x) + . . . + a1(x)y′(x) + a0(x)y(x)) = f (x).
(1.13)

If f (x) ≡ 0, then the equation is said to be homogeneous, otherwise it is
called nonhomogeneous.Homogeneous and nonhomogeneous

equations. Typically, the first differential equations encountered are first order equa-
tions. A first order differential equation takes the formFirst order differential equation

F(y′, y, x) = 0. (1.14)

There are two common first order differential equations for which one can
formally obtain a solution. The first is the separable case and the second is
a first order equation. We indicate that we can formally obtain solutions, as
one can display the needed integration that leads to a solution. However,
the resulting integrals are not always reducible to elementary functions nor
does one obtain explicit solutions when the integrals are doable.
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1.2.1 Separable Equations

A first order equation is separable if it can be written the form

dy
dx

= f (x)g(y). (1.15)

Special cases result when either f (x) = 1 or g(y) = 1. In the first case the
equation is said to be autonomous.

The general solution to equation (1.15) is obtained in terms of two inte-
grals: Separable equations.

∫ dy
g(y)

=
∫

f (x) dx + C, (1.16)

where C is an integration constant. This yields a 1-parameter family of
solutions to the differential equation corresponding to different values of
C. If one can solve (1.16) for y(x), then one obtains an explicit solution.
Otherwise, one has a family of implicit solutions. If an initial condition is
given as well, then one might be able to find a member of the family that
satisfies this condition, which is often called a particular solution.

Figure 1.2: Plots of solutions from the 1-
parameter family of solutions of Exam-
ple 1.1 for several initial conditions.

Example 1.1. y′ = 2xy, y(0) = 2.
Applying (1.16), one has∫ dy

y
=
∫

2x dx + C.

Integrating yields
ln |y| = x2 + C.

Exponentiating, one obtains the general solution,

y(x) = ±ex2+C = Aex2
.

Here we have defined A = ±eC. Since C is an arbitrary constant, A is
an arbitrary constant. Several solutions in this 1-parameter family are
shown in Figure 1.2.

Next, one seeks a particular solution satisfying the initial condition.
For y(0) = 2, one finds that A = 2. So, the particular solution satisfy-
ing the initial condition is y(x) = 2ex2

.

Figure 1.3: Plots of solutions of Example
1.2 for several initial conditions.

Example 1.2. yy′ = −x. Following the same procedure as in the last
example, one obtains:∫

y dy = −
∫

x dx + C ⇒ y2 = −x2 + A, where A = 2C.

Thus, we obtain an implicit solution. Writing the solution as x2 + y2 =

A, we see that this is a family of circles for A > 0 and the origin for
A = 0. Plots of some solutions in this family are shown in Figure 1.3.
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1.2.2 Linear First Order Equations

The second type of first order equation encountered is the linear
first order differential equation in the standard form

y′(x) + p(x)y(x) = q(x). (1.17)

In this case one seeks an integrating factor, µ(x), which is a function that one
can multiply through the equation making the left side a perfect derivative.
Thus, obtaining,

d
dx

[µ(x)y(x)] = µ(x)q(x). (1.18)

The integrating factor that works is µ(x) = exp(
∫ x p(ξ) dξ). One can

derive µ(x) by expanding the derivative in Equation (1.18),

µ(x)y′(x) + µ′(x)y(x) = µ(x)q(x), (1.19)

and comparing this equation to the one obtained from multiplying (1.17) by
µ(x) :

µ(x)y′(x) + µ(x)p(x)y(x) = µ(x)q(x). (1.20)

Note that these last two equations would be the same if the second terms
were the same. Thus, we will require that

dµ(x)
dx

= µ(x)p(x).

This is a separable first order equation for µ(x) whose solution is the inte-
grating factor:Integrating factor.

µ(x) = exp
(∫ x

p(ξ) dξ

)
. (1.21)

Equation (1.18) is now easily integrated to obtain the general solution to
the linear first order differential equation:

y(x) =
1

µ(x)

[∫ x
µ(ξ)q(ξ) dξ + C

]
. (1.22)

Example 1.3. xy′ + y = x, x > 0, y(1) = 0.
One first notes that this is a linear first order differential equation.

Solving for y′, one can see that the equation is not separable. Further-
more, it is not in the standard form (1.17). So, we first rewrite the
equation as

dy
dx

+
1
x

y = 1. (1.23)

Noting that p(x) = 1
x , we determine the integrating factor

µ(x) = exp
[∫ x dξ

ξ

]
= eln x = x.
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Multiplying equation (1.23) by µ(x) = x, we actually get back the
original equation! In this case we have found that xy′ + y must have
been the derivative of something to start. In fact, (xy)′ = xy′ + x.
Therefore, the differential equation becomes

(xy)′ = x.

Integrating, one obtains

xy =
1
2

x2 + C,

or
y(x) =

1
2

x +
C
x

.

Inserting the initial condition into this solution, we have 0 = 1
2 + C.

Therefore, C = − 1
2 . Thus, the solution of the initial value problem is

y(x) =
1
2
(x− 1

x
).

We can verify that this is the solution. Since y′ = 1
2 + 1

2x2 , we have

xy′ + y =
1
2

x +
1

2x
+

1
2

(
x− 1

x

)
= x.

Also, y(1) = 1
2 (1− 1) = 0.

Example 1.4. (sin x)y′ + (cos x)y = x2.
Actually, this problem is easy if you realize that the left hand side

is a perfect derivative. Namely,

d
dx

((sin x)y) = (sin x)y′ + (cos x)y.

But, we will go through the process of finding the integrating factor
for practice.

First, we rewrite the original differential equation in standard form.
We divide the equation by sin x to obtain

y′ + (cot x)y = x2 csc x.

Then, we compute the integrating factor as

µ(x) = exp
(∫ x

cot ξ dξ

)
= eln(sin x) = sin x.

Using the integrating factor, the standard form equation becomes

d
dx

((sin x)y) = x2.

Integrating, we have

y sin x =
1
3

x3 + C.

So, the solution is

y(x) =
(

1
3

x3 + C
)

csc x.
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There are other first order equations that one can solve for closed form
solutions. However, many equations are not solvable, or one is simply inter-
ested in the behavior of solutions. In such cases one turns to direction fields
or numerical methods. We will return to a discussion of the qualitative be-
havior of differential equations later and numerical solutions of ordinary
differential equations later in the book.

1.2.3 Exact Differential Equations

Some first order differential equations can be solved easily if they are what
are called exact differential equations. These equations are typically written
using differentials. For example, the differential equation

N(x, y)
dy
dx

+ M(x, y) = 0 (1.24)

can be written in the form

M(x, y)dx + N(x, y)dy = 0.

This is seen by multiplying Equation (1.24) by dx and noting from calculus
that for a function y = y(x), the relation between the differentials dx and dy
is

dy =
dy
dx

dx.
Differential one-forms.

The expression M(x, y)dx + N(x, y)dy is called a differential one-form.
Such a one-form is called exact if there is a function u(x, y) such that

M(x, y)dx + N(x, y)dy = du.

However, from calculus we know that for any function u(x, y),Exact one-form.

du =
∂u
∂x

dx +
∂u
∂y

dy.

If du = M(x, y)dx + N(x, y)dy, then we have

∂u
∂x

= M(x, y)

∂u
∂y

= N(x, y). (1.25)

Since
∂2u

∂x∂y
=

∂2u
∂y∂x

when these second derivatives are continuous, by Clairaut’s Theorem, then
we have

∂M
∂y

=
∂N
∂x

must hold if M(x, y)dx + N(x, y)dy is to be an exact one-form.
In summary, we have found that
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The differential equation M(x, y)dx + N(x, y)dy = 0 is exact in the do-
main D of the xy-plane for M, N, My, and Nx continuous functions in D
if and only if

∂M
∂y

=
∂N
∂x

holds in the domain.

Condition for M(x, y)dx+ N(x, y)dy = 0
to be exact.

Furthermore, if du = M(x, y)dx + N(x, y)dy = 0, then u(x, y) = C, for C
an arbitrary constant. Thus, an implicit solution can be found as∫ x

x0

M(x, y) dx +
∫ y

y0

N(x, y) dy = C.

We show this in the following example.

Example 1.5. Show that (x3 + xy2) dx + (x2y + y3) dy = 0 is an exact
differential equation and obtain the corresponding implicit solution

We first note that

∂M
∂y

= 2xy,
∂N
∂x

= 2xy.

Since these partial derivatives are the same, the differential equation
is exact. So, we need to find the function u(x, y) such that du = (x3 +

xy2) dx + (x2y + y3) dy.

First, we note that x3 = d
(

x4

4

)
and y3 = d

(
y4

4

)
. The remaining

terms can be combined to find that

xy2 dx + x2y dy = xy(y dx + x dy)

= xy d(xy)

= d
(
(xy)2

2

)
. (1.26)

Combining these results, we have

u =
x4

4
+

x2y2

2
+

y4

4
= C.

What if the one-form is not exact?
So ,what if M(x, y)dx + N(x, y)dy is not exact? We can multiply the one-

form by an integrating factor, µ(x), and try to make he resulting form exact.
We let

du = µMdx + µNdy.

For the new form to be exact, we have to require that

∂

∂y
(µM) =

∂

∂x
(µN) .

Carrying out the differentiation, we have

N
∂µ

∂x
−M

∂µ

∂y
= µ

(
∂M
∂y
− ∂N

∂x

)
.
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Thus, the integrating factor satisfies a partial differential equation. If the
integrating factor is a function of only x or y, then this equation reduces to
ordinary differential equations for µ.

As an example, if µ = µ(x), then the integrating factor satisfies

N
dµ

dx
= µ

(
∂M
∂y
− ∂N

∂x

)
,

or

N
d ln µ

dx
=

∂M
∂y
− ∂N

∂x
.

If
µ

N

(
∂M
∂y
− ∂N

∂x

)
is only a function of x, then µ = µ(x).

If
µ

M

(
∂N
∂x
− ∂M

∂y

)
is only a function of y, then µ = µ(y).

Example 1.6. Find the general solution to the differential equation
(1 + y2) dx + xy dy = 0.

First, we note that this is not exact. We have M(x, y) = 1 + y2 and
N(x, y) = xy. Then,

∂M
∂y

= 2y,
∂N
∂x

= y.

Therefore, the differential equation is not exact.
Next, we seek the integrating factor. We let

du = µ(1 + y2) dx + µxy dy.

For the new form to be exact, we have to require that

xy
∂µ

∂x
− (1 + y2)

∂µ

∂y
= µ

(
∂(1 + y2)

∂y
− ∂xy

∂x

)
= µy.

If µ = µ(x), then

x
dµ

dx
= µ.

This is easily solved as a separable first order equation. We find that
µ(x) = x.

Multiplying the original equation by µ = x, we obtain

0 = x(1 + y2) dx + x2y dy = d
(

x2

2
+

x2y2

2

)
.

Thus,
x2

2
+

x2y2

2
= C

gives the solution.

1.3 Applications

In this section we will look at some simple applications which are
modeled with first order differential equations. We will begin with simple
exponential models of growth and decay.
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1.3.1 Growth and Decay

Some of the simplest models are those involving growth or decay.
For example, a population model can be obtained under simple assump-
tions. Let P(t) be the population at time t. We want to find an expression
for the rate of change of the population, dP

dt . Assuming that there is no mi-
gration of population, the only way the population can change is by adding
or subtracting individuals in the population. The equation would take the
form

dP
dt

= Rate In − Rate Out.

The Rate In could be due to the number of births per unit time and the Rate
Out by the number of deaths per unit time. The simplest forms for these
rates would be given by

Rate In = bP and the Rate Out = mP.

Here we have denoted the birth rate as b and the mortality rate as m. This
gives the total rate of change of population as

dP
dt

= bP−mP ≡ kP. (1.27)

Equation (1.27) is a separable equation. The separation follows as we
have seen earlier in the chapter. Rearranging the equation, its differential
form is

dP
P

= k dt.

Integrating, we have ∫ dP
P

=
∫

k dt

ln |P| = kt + C. (1.28)

Next, we solve for P(t) through exponentiation, Integrating, we have More generally, the initial value problem
dP/dt = kP, P(t0) = P0 has the solution

P(t) = P0ek(t−t0).|P(t)| = ekt+C

P(t) = ±ekt+C

= ±eCekt

= Aekt. (1.29)

Here we renamed the arbitrary constant, ±eC, as A.
If the population at t = 0 is P0, i.e., P(0) = P0, then the solution gives

P(0) = Ae0 = A = P0. So, the solution of the initial value problem is

P(t) = P0ekt.

Equation (1.27) the familiar exponential model of population growth: Malthusian population growth.

dP
dt

= kP.
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This is easily solved and one obtains exponential growth (k > 0) or de-
cay (k < 0). This Malthusian growth model has been named after Thomas
Robert Malthus (1766-1834), a clergyman who used this model to warn of
the impending doom of the human race if its reproductive practices contin-
ued.

Example 1.7. Consider a bacteria population of weight 20 g. If the
population doubles every 20 minutes, then what is the population
after 30 minutes? [Note: It is easier to weigh this population than to
count it.]

One looks at the given information before trying to answer the
question. First, we have the initial condition P0 = 20 g. Since the
population doubles every 20 minutes, then P(20) = 2P0 = 40. Here
we have take the time units as minutes. We are then asked to find
P(30).

We do not need to solve the differential equation. We will assume
a simple growth model. Using the general solution, P(t) = 20ekt, we
have

P(20) = 20e20k = 40,

or
e20k = 2.

We can solve this for k,

20k = ln 2, ⇒ k =
ln 2
20
≈ 0.035.

This gives an approximate solution, P(t) ≈ 20e.035t. Now we can
answer the original question. Namely, P(30) ≈ 57.

Of course, we could get an exact solution. With some simple ma-
nipulations, we have

P(t) = 20ekt

= 20e(
ln 2
20 )t

= 20
(

eln 2
) t

20

= 20
(

2
t

20

)
. (1.30)

This answer takes the general form for population doubling, P(t) =

P02
t
τ , where τ is the doubling rate.

Another standard growth-decay problem is radioactive decay. Certain
isotopes are unstable and the nucleus breaks apart, leading to nuclear decay.
The products of the decay may also be unstable and undergo further nuclear
decay. As an example, Uranium-238 (U-238) decays into Thorium-234 (Th-
234). Thorium-234 is unstable and decays into Protactinium (Pa-234). ThisRadioactive decay problems.

in turn decays in many steps until lead (Pb-206) is produced as shown in
Table 1.1. This lead isotope is stable and the decay process stops. While this
is one form of radioactive decay, there are other types. For example, Radon
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Isotope Half-life
U238 4.468x109 years
Th234

24.1 days
Pa234m

1.17 minutes
U234 2.47x105 years
Th230 8.0x104 years
Ra226

1602 years
Rn222

3.823 days
Po218

3.05 minutes
Pb214

26.8 minutes
Bi214

19.7 minutes
Po214

164 microsec
Pb210

21 years
Bi210

5.01 days
Po210

138.4 days
Pb206 Stable

Table 1.1: U-238 decay chain.

222 (Rn-222) gives up an alpha particle (helium nucleus) leaving Polonium
(Po-218).

Given a certain amount of radioactive material, it does not all decay at
one time. A measure of the tendency of a nucleus to decay is called the
half-life. This is the time it takes for half of the material to decay. This is
similar to the last example and can be understood using a simple example.

Example 1.8. If 150.0 g of Thorium-234 decays to 137.6 g of Thorium-
234 in three days, what is its half-life?

This is another simple decay process. If Q(t) represents the quantity
of unstable material, then Q(t) satisfies the rate equation

dQ
dt

= kQ

with k < 0. The solution of the initial value problem, as we have seen,
is Q(t) = Q0ekt.

Now, let the half-life be given by τ. Then, Q(τ) = 1
2 Q0. Inserting

this fact into the solution, we have

Q(τ) = Q0ekτ

1
2

Q0 = Q0ekτ

1
2

= ekτ . (1.31)

Noting that Q(t) = Q0

(
ek
)t

, we solve Equation (1.31) for

ek = 2−1/τ .

Then, the solution can be written in the general form

Q(t) = Q02−
t
τ .



14 differential equations

Note that the decay constant is k = − ln 2
τ < 0.

Returning to the problem, we are given

Q(3) = 1502−
3
τ = 137.6.

Solving to τ,

2−
3
τ =

136.7
150

−3 ln 2 = ln .9173τ

τ = − 3 ln 2
ln .9173

= 24.09. (1.32)

Therefore, the half-life is about 24.1 days.

1.3.2 Newton’s Law of Cooling

If you take your hot cup of tea, and let it sit in a cold room, the tea
will cool off and reach room temperature after a period of time. The law
of cooling is attributed to Isaac Newton (1642-1727) who was probably the
first to state results on how bodies cool.1 The main idea is that a body at1 Newton’s 1701 Law of Cooling is an ap-

proximation to how bodies cool for small
temperature differences (T − Ta � T)
and does not take into account all of the
cooling processes. One account is given
by C. T. O’Sullivan, Am. J. Phys (1990) p
956-960.

temperature T(t) is initially at temperature T(0) = T0. It is placed in an
environment at an ambient temperature of Ta. A simple model is given that
the rate of change of the temperature of the body is proportional to the
difference between the body temperature and its surroundings. Thus, we
have

dT
dt

∝ T − Ta.

The proportionality is removed by introducing a cooling constant,

dT
dt

= −k(T − Ta), (1.33)

where k > 0.
This differential equation can be solved by noting that the equation can

be written in the form

d
dt
(T − Ta) = −k(T − Ta).

This is now of the form of exponential decay of the function T(t)− Ta. The
solution is easily found as

T(t)− Ta = (T0 − Ta)e−kt,

or
T(t) = Ta + (T0 − Ta)e−kt.

Example 1.9. A cup of tea at 90oC cools to 85oC in ten minutes. If the
room temperature is 22oC, what is its temperature after 30 minutes?

Using the general solution with T0 = 90oC,

T(t) = 22 + (90− 22)e−k = 22 + 68e−kt,
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we then find k using the given information, T(10) = 85oC. We have

85 = T(10)

= 22 + 68e−10k

63 = 68e−10k

e−10k =
63
68
≈ 0.926

−10k = ln 0.926

k = − ln 0.926
10

= 0.00764. (1.34)

This gives the equation for this model as

T(t) = 22 + 68e−0.00764t.

Now we can answer the question. What is T(30)?

T(30) = 22 + 68e−0.00764(30) = 76oC.

1.3.3 Terminal Velocity

Now let’s return to free fall. What if there is air resistance? We first
need to model the air resistance. As an object falls faster and faster, the drag
force becomes greater. So, this resistive force is a function of the velocity.
There are a couple of standard models that people use to test this. The idea
is to write F = ma in the form

mÿ = −mg + f (v), (1.35)

where f (v) gives the resistive force and mg is the weight. Recall that this
applies to free fall near the Earth’s surface. Also, for it to be resistive, f (v)
should oppose the motion. If the body is falling, then f (v) should be pos-
itive. If it is rising, then f (v) would have to be negative to indicate the
opposition to the motion.

One common determination derives from the drag force on an object
moving through a fluid. This force is given by

f (v) =
1
2

CAρv2, (1.36)

where C is the drag coefficient, A is the cross sectional area and ρ is the
fluid density. For laminar flow the drag coefficient is constant.

Unless you are into aerodynamics, you do not need to get into the details
of the constants. So, it is best to absorb all of the constants into one to
simplify the computation. So, we will write f (v) = bv2. The differential
equation including drag can then be rewritten as

v̇ = kv2 − g, (1.37)

where k = b/m. Note that this is a first order equation for v(t). It is separa-
ble too!
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Formally, we can separate the variables and integrate over time to obtain

t + K =
∫ v dz

kz2 − g
. (1.38)

(Note: We used an integration constant of K since C is the drag coefficient
in this problem.) If we can do the integral, then we have a solution for
v. In fact, we can do this integral. You need to recall another common

This is the first use of Partial Fraction
Decomposition. We will explore this
method further in the section on Laplace
Transforms. method of integration, which we have not reviewed yet. Do you remember

Partial Fraction Decomposition? It involves factoring the denominator in the
integral. In the simplest case there are two linear factors in the denominator
and the integral is rewritten:∫ dx

(x− a)(x− b)
=

1
b− a

∫ [ 1
x− a

− 1
x− b

]
dx (1.39)

The new integral now has two terms which can be readily integrated.
In order to factor the denominator in the current problem, we first have

to rewrite the constants. We let α2 = g/k and write the integrand as

1
kz2 − g

=
1
k

1
z2 − α2 . (1.40)

Now we use a partial fraction decomposition to obtain

1
kz2 − g

=
1

2αk

[
1

z− α
− 1

z + α

]
. (1.41)

Now, the integrand can be easily integrated giving

t + K =
1

2αk
ln
∣∣∣∣v− α

v + α

∣∣∣∣ . (1.42)

Solving for v, we have

v(t) =
1− Be2αkt

1 + Be2αkt α, (1.43)

where B ≡ eK. B can be determined using the initial velocity.
There are other forms for the solution in terms of a tanh function, which

the reader can determine as an exercise. One important conclusion is that
for large times, the ratio in the solution approaches −1. Thus, v → −α =

−
√

g
k as t → ∞. This means that the falling object will reach a constant

terminal velocity.
As a simple computation, we can determine the terminal velocity. We

will take an 80 kg skydiver with a cross sectional area of about 0.093 m2.
(The skydiver is falling head first.) Assume that the air density is a constant
1.2 kg/m3 and the drag coefficient is C = 2.0. We first note that

vterminal = −
√

g
k
= −

√
2mg
CAρ

.

So,

vterminal = −

√
2(70)(9.8)

(2.0)(0.093)(1.2)
= −78m/s.
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This is about 175 mph, which is slightly higher than the actual terminal
velocity of a sky diver with arms and feet fully extended. One would need
a more accurate determination of C and A for a more realistic answer. Also,
the air density varies along the way.

1.3.4 Mixture Problems

Mixture problems often occur in a first course on differential
equations as examples of first order differential equations. In such prob-
lems we consider a tank of brine, water containing a specific amount of salt
with pure water entering and the mixture leaving, or the flow of a pollutant
into, or out of, a lake. The goal is to prdict the amount of salt, or pollutant,
at some later time.

In general one has a rate of flow of some concentration of mixture enter-
ing a region and a mixture leaving the region. The goal is to determine how
much stuff is in the region at a given time. This is governed by the equation

Rate of change of substance = Rate In − Rate Out.

The rates are not often given. One is generally given information about
the concentration and flow rates in and out of the system. If one pays
attention to the dimentsion and sketches the situation, then one can write
out this rate equation as a first order differential equation. We consider a
simple example.

Example 1.10. Single Tank Problem
A 50 gallon tank of pure water has a brine mixture with concentra-

tion of 2 pounds per gallon entering at the rate of 5 gallons per minute.
[See Figure 6.23.] At the same time the well-mixed contents drain out
at the rate of 5 gallons per minute. Find the amount of salt in the tank
at time t. In all such problems one assumes that the solution is well
mixed at each instant of time.

Figure 1.4: A typical mixing problem.

Let x(t) be the amount of salt at time t. Then the rate at which the
salt in the tank increases is due to the amount of salt entering the tank
less that leaving the tank. To figure out these rates, one notes that
dx/dt has units of pounds per minute. The amount of salt entering
per minute is given by the product of the entering concentration times
the rate at which the brine enters. This gives the correct units:(

2
pounds

gal

)(
5

gal
min

)
= 10

pounds
min

.

Similarly, one can determine the rate out as(
x pounds

50 gal

)(
5

gal
min

)
=

x
10

pounds
min

.

Thus, we have
dx
dt

= 10− x
10

.
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This equation is solved using the methods for linear first order
equations. The integrating factor is µ = ex/10, leading to the general
solution

x(t) = 100 + Ae−t/10.

Using the initial condition, one finds the particular solution

x(t) = 100
(

1− e−t/10
)

.

Often one is interested in the long time behavior of a system. In
this case we have that limt→∞ x(t) = 100 lb. This makes sense because
2 pounds per galloon enter during this time to eventually leave the
entire 50 gallons with this concentration. Thus,

50 gal× 2
lb

50 gal
= 100 lb.

1.3.5 Orthogonal Trajectories of Curves

There are many problems from geometry which have lead to the
study of differential equations. One such problem is the construction of
orthogonal trajectories. Give a a family of curves, y1(x; a), we seek another
family of curves y2(x; c) such that the second family of curves are perpen-
dicular the to given family. This means that the tangents of two intersecting
curves at the point of intersection are perpendicular to each other. The
slopes of the tangent lines are given by the derivatives y′1(x) and y′2(x). We
recall from elementary geometry that the slopes of two perpendicular lines
are related by

y′2(x) = − 1
y′1(x)

.

Example 1.11. Find a family of orthogonal trajectories to the family of
parabolae y1(x; a) = ax2.

We note that the new collection of curves has to satisfy the equation

y′2(x) = − 1
y′1(x)

= − 1
2ax

.

Before solving for y2(x), we need to eliminate the parameter a. From
the give function, we have that a = y

x2 . Inserting this into the equation
for y′2, we have

y′(x) = − 1
2ax

= − x
2y

.

Thus, to find y2(x), we have to solve the differential equation

2yy′ + x = 0.

Noting that (y2)′ = 2yy′ and ( 1
2 x2)′ = x,, this (exact) equation can be

written as
d

dx

(
y2 +

1
2

x2
)
= 0.
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Integrating, we find the family of solutions,

y2 +
1
2

x2 = k.

In Figure 1.5 we plot both families of orthogonal curves.

x

y

−5 5

−5

5
y2 + 1

2 x2 = k

y = ax2

Figure 1.5: Plot of orthogonal families of
curves, y = ax2 and y2 + 1

2 x2 = k.

1.3.6 Pursuit Curves*

Another application that is interesting is to find the path that a
body traces out as it moves towards a fixed point or another moving body.
Such curses are know as pursuit curves. These could model aircraft or
submarines following targets, or predators following prey. We demonstrate
this with an example.

Example 1.12. A hawk at point (x, y) sees a sparrow traveling at speed
v along a straight line. The hawk flies towards the sparrow at constant
speed w but always in a direction along line of sight between their
positions. If the hawk starts out at the point (a, 0) at t = 0, when the
sparrow is at (0, 0), then what is the path the hawk needs to follow?
Will the hawk catch the sparrow? The situation is shown in Figure 1.6.
We pick the path of the sparrow to be along the y−axis. Therefore, the
sparrow is at position (0, vt).

First we need the equation of the line of sight between the points
(x, y) and (0, vt). Considering that the slope of the line is the same as
the slope of the tangent to the path, y = y(x), we have

y′ =
y− vt

x
.

The hawk is moving at a constant speed, w. Since the speed is re-
lated to the time through the distance the hawk travels. we need to
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Figure 1.6: A hawk at point (x, y) sees
a sparrow at point (0, vt) and always
follows the straight line between these
points.

x

y

(0, vt)

(a, 0)

(x, y)

find the arclength of the path between (a, 0) and (x, y). This is given
by

L =
∫

ds =
∫ a

x

√
1 + [y′(x)]2 dx.

The distance is related to the speed, w, and the time, t, by L = wt.
Eliminating the time using y′ = y−vt

x , we have∫ a

x

√
1 + [y′(x)]2 dx =

w
v
(y− xy′).

Furthermore, we can differentiate this result with respect to x to get
rid of the integral, √

1 + [y′(x)]2 =
w
v

xy′′.

Even though this is a second order differential equation for y(x), it
is a first order separable equation in the speed function z(x) = y′(x).
Namely,

w
v

xz′ =
√

1 + z2.

Separating variables, we find

w
v

∫ dz√
1 + z2

=
∫ dx

x
.

The integrals can be computed using standard methods from calculus.
We can easily integrate the right hand side,∫ dx

x
= ln |x|+ c1.

The left hand side takes a little extra work, or looking the value up
in Tables or using a CAS package. Recall a trigonometric substitution
is in order. [See the Appendix.] We let z = tan θ. Then dz = sec2 θ dθ.
The methods proceeds as follows:∫ dz√

1 + z2
=

∫ sec2 θ√
1 + tan2 θ

dθ
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=
∫

sec θ dθ

= ln(tan θ + sec θ) + c2

= ln(z +
√

1 + z2) + c2. (1.44)

Putting these together, we have for x > 0,

ln(z +
√

1 + z2) =
v
w

ln x + C.

Using the initial condition z = y′ = 0 and x = a at t = 0,

0 =
v
w

ln a + C,

or C = − v
w ln a.

Using this value for c, we find

ln(z +
√

1 + z2) =
v
w

ln x− v
w

ln a

ln(z +
√

1 + z2) =
v
w

ln
x
a

ln(z +
√

1 + z2) = ln
( x

a

) v
w

z +
√

1 + z2 =
( x

a

) v
w . (1.45)

We can solve for z = y′, to find

y′ =
1
2

[( x
a

) v
w −

( x
a

)− v
w
]

Integrating,

y(x) =
a
2

[( x
a
)1+ v

w

1 + v
w
−
( x

a
)1− v

w

1− v
w

]
+ k.

The integration constant, k, can be found knowing y(a) = 0. This gives

0 =
a
2

[
1

1 + v
w
− 1

1− v
w

]
+ k

k =
a
2

[
1

1− v
w
− 1

1 + v
w

]
=

avw
w2 − v2 . (1.46)

The full solution for the path is given by

y(x) =
a
2

[( x
a
)1+ v

w

1 + v
w
−
( x

a
)1− v

w

1− v
w

]
+

avw
w2 − v2 .

Can the hawk catch the sparrow? This would happen if there is
a time when y(0) = vt. Inserting x = 0 into the solution, we have
y(0) = avw

w2−v2 = vt. This is possible if w > v.
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1.4 Other First Order Equations*

There are several nonlinear first order equations whose solution can be ob-
tained using special techniques. We conclude this chapter by looking at a
few of these equations named after famous mathematicians of the 17-18th
century inspired by various applications.

1.4.1 Bernoulli Equation*

We begin with the Bernoulli equation, named after Jacob Bernoulli (1655-
1705). The Bernoulli equation is of the form

dy
dx

+ p(x)y = q(x)yn, n 6= 0, 1.

Note that when n = 0, 1 the equation is linear and can be solved using an

The Bernoulli’s were a family of Swiss
mathematicians spanning three gener-
ations. It all started with Jacob
Bernoulli (1654-1705) and his brother
Johann Bernoulli (1667-1748). Jacob
had a son, Nicolaus Bernoulli (1687-
1759) and Johann (1667-1748) had three
sons, Nicolaus Bernoulli II (1695-1726),
Daniel Bernoulli (1700-1872), and Johann
Bernoulli II (1710-1790). The last gener-
ation consisted of Johann II’s sons, Jo-
hann Bernoulli III (1747-1807) and Jacob
Bernoulli II (1759-1789). Johann, Jacob
and Daniel Bernoulli were the most fa-
mous of the Bernoulli’s. Jacob studied
with Leibniz, Johann studied under his
older brother and later taught Leonhard
Euler (1707-1783) and Daniel Bernoulli,
who is known for his work in hydrody-
namics.

integrating factor. The key to solving this equation is using the transforma-
tion z(x) = 1

yn−1(x) to make the equation for z(x) linear. We demonstrate the
procedure using an example.

Example 1.13. Solve the Bernoulli equation xy′+ y = y2 ln x for x > 0.
In this example p(x) = 1, q(x) = ln x, and n = 2. Therefore, we let

z = 1
y . Then,

z′ = − 1
y2 y′ = z2y′.

Inserting z = y−1 and z′ = z2y′ into the differential equation, we
have

xy′ + y = y2 ln x

−x
z′

z2 +
1
z

=
ln x
z2

−xz′ + z = ln x

z′ − 1
x

z = − ln x
x

. (1.47)

Thus, the resulting equation is a linear first order differential equa-
tion. It can be solved using the integrating factor,

µ(x) = exp
(
−
∫ dx

x

)
=

1
x

.

Multiplying the differential equation by the integrating factor, we
have ( z

x

)′
=

ln x
x2 .

Integrating, we obtain

z
x

= −
∫ ln x

x2 + C

=
ln x

x
+
∫ dx

x2 + C

=
ln x

x
+

1
x
+ C. (1.48)



first order differential equations 23

Multiplying by x, we have z = ln x + 1 + Cx. Since z = y−1, the
general solution to the problem is

y =
1

ln x + 1 + Cx
.

1.4.2 Lagrange and Clairaut Equations*

Alexis Claude Clairaut (1713-1765) solved the differential equation

y = xy′ + g(y′).

This is a special case of the family of Lagrange equations,

y = x f (y′) + g(y′),

named after Joseph Louis Lagrange (1736-1813). These equations also have
solutions called singular solutions. Singular solution are solutions for which
there is a failure of uniqueness to the initial value problem at every point on
the curve. A singular solution is often one that is tangent to every solution
in a family of solutions.

First, we consider solving the more general Lagrange equation. Let p = y′

in the Lagrange equation, giving

y = x f (p) + g(p). (1.49)

Next, we differentiate with respect to x to find

y′ = p = f (p) + x f ′(p)p′ + g′(p)p′.

Here we used the Chain Rule. For example,

dg(p)
dx

=
dg
dp

dp
dx

.

Solving for p′, we have

dp
dx

=
p− f (p)

x f ′(p) + g′(p)
. (1.50)

Lagrange equations, y = x f (y′) + g(y′).

We have introduced p = p(x), viewed as a function of x. Let’s assume
that we can invert this function to find x = x(p). Then, from introductory
calculus, we know that the derivatives of a function and its inverse are re-
lated,

dx
dp

=
1
dp
dx

.

Applying this to Equation (1.50), we have

dx
dp

=
x f ′(p) + g′(p)

p− f (p)

x′ − f ′(p)
p− f (p)

x =
g′(p)

p− f (p)
, (1.51)
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assuming that p− f (p) 6= 0.
As can be seen, we have transformed the Lagrange equation into a first

order linear differential equation (1.51) for x(p). Using methods from earlier
in the chapter, we can in principle obtain a family of solutions

x = F(p, C),

where C is an arbitrary integration constant. Using Equation (1.49), one
might be able to eliminate p in Equation (1.51) to obtain a family of solutions
of the Lagrange equation in the form

ϕ(x, y, C) = 0.

If it is not possible to eliminate p from Equations (1.49) and (1.51), then
one could report the family of solutions as a parametric family of solutions
with p the parameter. So, the parametric solutions would take the form

x = F(p, C),

y = F(p, C) f (p) + g(p). (1.52)

We had also assumed the p − f (p) 6= 0. However, there might also be
solutions of Lagrange’s equation for which p− f (p) = 0. Such solutions are
called singular solutions.

Singular solutions are possible for La-
grange equations.

Example 1.14. Solve the Lagrange equation y = 2xy′ − y′2.
We will start with Equation (1.51). Noting that f (p) = 2p, g(p) =

−p2, we have

x′ − f ′(p)
p− f (p)

x =
g′(p)

p− f (p)

x′ − 2
p− 2p

x =
−2p

p− 2p

x′ +
2
p

x = 2. (1.53)
x

y

−4 4

−5

5

Figure 1.7: Family of solutions of the La-
grange equation y = 2xy′ − y′2.

This first order linear differential equation can be solved using an
integrating factor. Namely,

µ(p) = exp
(∫ 2

p
dp
)
= e2 ln p = p2.

Multiplying the differential equation by the integrating factor, we have

d
dp

(
xp2
)
= 2p2.

Integrating,

xp2 =
2
3

p3 + C.

This gives the general solution

x(p) =
2
3

p +
C
p2 .
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Replacing y′ = p in the original differential equation, we have
y = 2xp− p2. The family of solutions is then given by the parametric
equations

x =
2
3

p +
C
p2 ,

y = 2
(

2
3

p +
C
p2

)
p− p2

=
1
3

p2 +
2C
p

. (1.54)

The plots of these solutions is shown in Figure 1.7.

We also need to check for a singular solution. We solve the equation
p− f (p) = 0, or p = 0. This gives the solution y(x) = (2xp− p2)p=0 = 0.

The Clairaut differential equation is given by

y = xy′ + g(y′).

Letting p = y′, we have

y = xp + g(p).

This is the Lagrange equation with f (p) = p. Differentiating with respect to
x,

p = p + xp′ + g′(p)p′.

Rearranging, we find

x = −g′(p)

So, we have the parametric solution

Clairaut equations, y = xy′ + g(y′).

x = −g′(p),

y = −pg′(p) + g(p). (1.55)

For the case that y′ = C, it can be seen that y = Cx + g(C) is a general
solution solution. x

y

−5 5

−5

5

y = x2

4

y = Cx− C2

Figure 1.8: Plot of solutions to the
Clairaut equation y = xy′ − y′2. The
straight line solutions are a family of
curves whose limit is the parametric slu-
tion.

Example 1.15. Find the solutions of y = xy′ − y′2.
As noted, there is a family of straight line solutions y = Cx − C2,

since g(p) = −p2. There might also by a parametric solution not con-
tained n this family. It would be given by the set of equations

x = −g′(p) = 2p,

y = −pg′(p) + g(p) = 2p2 − p2 = p2. (1.56)

Eliminating p, we have the parabolic curve y = x2/4.
In Figure 1.8 we plot these solutions. The family of straight line

solutions are shown in blue. The limiting curve traced out, much like
string figures one might create, is the parametric curve.
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1.4.3 Riccati Equation*

Jacopo Francesco Riccati (1676-1754) studied curves with some
specified curvature. He proposed an equation of the form

y′ + a(x)y2 + b(x)y + c(x) = 0

around 1720. He communicated this to the Bernoulli’s. It was Daniel
Bernoulli who had actually solved this equation. As noted by Ranjan Roy
(2011), Riccati had published his equation in 1722 with a note that D. Bernoulli
giving the solution in terms of an anagram. Furthermore, when a ≡ 0, the
Riccati equation reduces to a Bernoulli equation.

In Section 7.2.1, we will show that the Ricatti equation can be transformed
into a second order linear differential equation. However, there are special
cases in which we can get our hands on the solutions. For example, if a, b,
and c are constants, then the differential equation can be integrated directly.
We have

dy
dx

= −(ay2 + by + c).

This equation is separable and we obtain

x− C = −
∫ dy

ay2 + by + c
.

When a differential equation is left in this form, it is said to be solved by
quadrature when the resulting integral in principle can be computed in
terms of elementary functions.2

2 By elementary functions we mean
well known functions like polynomials,
trigonometric, hyperbolic, and some not
so well know to undergraduates, such as
Jacobi or Weierstrass elliptic functions.

If a particular solution is known, then one can obtain a solution to the
Riccati equation. Let the known solution be y1(x) and assume that the
general solution takes the form y(x) = y1(x) + z(x) for some unknown
function z(x). Substituting this form into the differential equation, we can
show that v(x) = 1/z(x) satisfies a first order linear differential equation.

Inserting y = y1 + z into the general Riccati equation, we have

0 =
dy
dx

+ a(x)y2 + b(x)y + c

=
dz
dx

+ az2 + 2azy1 + bz +

+
dy1

dx
+ ay2

1 + by1 + c

=
dz
dx

+ a(x)[2y1z + z2] + b(x)z

−a(x)z2 =
dz
dx

+ [2a(x)y1 + b(x)]z. (1.57)

The last equation is a Bernoulli equation with n = 2. So, we can make it
a linear equation with the substitution z = 1

v , z′ = − z′
v2 . Then, we obtain a

differential equation for v(x). It is given by

v′ − (2a(x)y1(x) + b(x))v = a(x).
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Example 1.16. Find the general solution of the Riccati equation, y′ −
y2 + 2exy− e2x − ex = 0, using the particular solution y1(x) = ex.

We let the sought solution take the form y(x) = z(x) + ex. Then, the
equation for z(x) is found as

dz
dx

= z2.

This equation is simple enough to integrate directly to obtain z = 1
C−x .

Then, the solution to the problem becomes

y(x) =
1

C− x
+ ex.

Problems

1. Find all of the solutions of the first order differential equations. When
an initial condition is given, find the particular solution satisfying that con-
dition.

a.
dy
dx

=
ex

2y
.

b.
dy
dt

= y2(1 + t2), y(0) = 1.

c.
dy
dx

=

√
1− y2

x
.

d. xy′ = y(1− 2y), y(1) = 2.

e. y′ − (sin x)y = sin x.

f. xy′ − 2y = x2, y(1) = 1.

g.
ds
dt

+ 2s = st2, , s(0) = 1.

h. x′ − 2x = te2t.

i.
dy
dx

+ y = sin x, y(0) = 0.

j.
dy
dx
− 3

x
y = x3, y(1) = 4.

2. For the following determine if the differential equation is exact. If it
is not exact, find the integrating factor. Integrate the equations to obtain
solutions.

a. (3x2 + 6xy2) dx + (6x2y + 4y3) dy = 0.

b. (x + y2) dx− 2xy dy = 0.

c. (sin xy + xy cos xy) dx + x2 cos xy dy = 0.

d. (x2 + y) dx− x dy = 0.

e. (2xy2 − 3y3) dx + (7− 3xy2) dy = 0.

3. Consider the differential equation

dy
dx

=
x
y
− x

1 + y
.
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a. Find the 1-parameter family of solutions (general solution) of this
equation.

b. Find the solution of this equation satisfying the initial condition
y(0) = 1. Is this a member of the 1-parameter family?

4. A ball is thrown upward with an initial velocity of 49 m/s from 539 m
high. How high does the ball get and how long does in take before it hits
the ground? [Use results from the simple free fall problem, y′′ = −g.]

5. Consider the case of free fall with a damping force proportional to the
velocity, fD = ±kv with k = 0.1 kg/s.

a. Using the correct sign, consider a 50 kg mass falling from rest at a
height of 100m. Find the velocity as a function of time. Does the
mass reach terminal velocity?

b. Let the mass be thrown upward from the ground with an initial
speed of 50 m/s. Find the velocity as a function of time as it travels
upward and then falls to the ground. How high does the mass get?
What is its speed when it returns to the ground?

6. An piece of a satellite falls to the ground from a height of 10,000 m.
Ignoring air resistance, find the height as a function of time. [Hint: For free
fall from large distances,

ḧ = − GM
(R + h)2 .

Multiplying both sides by ḣ, show that

d
dt

(
1
2

ḣ2
)
=

d
dt

(
GM

R + h

)
.

Integrate and solve for ḣ. Further integrating gives h(t).]

7. The problem of growth and decay is stated as follows: The rate of change
of a quantity is proportional to the quantity. The differential equation for
such a problem is

dy
dt

= ±ky.

The solution of this growth and decay problem is y(t) = y0e±kt. Use this
solution to answer the following questions if forty percent of a radioactive
substance disappears in 100 years.

a. What is the half-life of the substance?

b. After how many years will 90% be gone?

8. Uranium 237 has a half-life of 6.78 days. If there are 10.0 grams of U-237

now, then how much will be left after two weeks?

9. The cells of a particular bacteria culture divide every three and a half
hours. If there are initially 250 cells, how many will there be after ten hours?
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10. The population of a city has doubled in 25 years. How many years will
it take for the population to triple?

11. Identify the type of differential equation. Find the general solution
and plot several particular solutions. Also, find the singular solution if one
exists.

a. y = xy′ + 1
y′ .

b. y = 2xy′ + ln y′.

c. y′ + 2xy = 2xy2.

d. y′ + 2xy = y2ex2
.

12. Find the general solution of the Riccati equation given the particular
solution.

a. xy′ − y2 + (2x + 1)y = x2 + 2x, y1(x) = x.

b. y′e−x + y2 − 2yex = 1− e2x, y1(x) = ex.
A function F(x, y) is said to be homoge-
neous of degree k if F(tx, ty) = tk F(x, y).13. The initial value problem

dy
dx

=
y2 + xy

x2 , y(1) = 1

does not fall into the class of problems considered in this chapter. The
function on the right-hand side is a homogeneous function of degree zero.
However, if one substitutes y(x) = xz(x) into the differential equation, one
obtains an equation for z(x) which can be solved. Use this substitution to
solve the initial value problem for y(x).

14. If M(x, y) and N(x, y) are homogeneous functions of the same degree,
then M/N can be written as a function of y/x. This suggests that a sub-
stitution of y(x) = xz(x) into M(x, y) dx + N(x, y) dy might simplify the
equation. For the following problems use this method to find the family of
solutions.

a. (x2 − xy + y2) dx− xy dy = 0.

b. xy dx− (x2 + y2) dy = 0.

c. (x2 + 2xy− 4y2) dx− (x2 − 8xy− 4y2) dy = 0.

15. Find the family of orthogonal curves to the given family of curves.

a. y = ax

b. y = ax2.

c. x2 + y2 = 2ax.

16. The temperature inside your house is 70
oF and it is 30

oF outside. At 1:00

A.M. the furnace breaks down. At 3:00 A.M. the temperature in the house
has dropped to 50

oF. Assuming the outside temperature is constant and that
Newton’s Law of Cooling applies, determine when the temperature inside
your house reaches 40

oF.
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17. A body is discovered during a murder investigation at 8:00 P.M. and
the temperature of the body is 70

oF. Two hours later the body temperature
has dropped to 60

oF in a room that is at 50
oF. Assuming that Newton’s Law

of Cooling applies and the body temperature of the person was 98.6oF at
the time of death, determine when the murder occurred.

18. Newton’s Law of Cooling states that the rate of heat loss of an object is
proportional to the temperature gradient, or

dQ
dt

= hA∆T,

where Q is the thermal energy, h is the heat transfer coefficient, A is the
surface area of the body, and ∆T = T − Ta. If Q = CT, where C is the heat
capacity, then we recover Equation (1.33) with k = hA/C.

However, there are modifications which include convection or radiation.
Solve the following models and compare the solution behaviors.

a. Newton T′ = −k(T − Ta)

b. Dulong-Petit T′ = −k(T − Ta)5/4

c. Newton-Stefan T′ = −k(T − Ta) − εσ(T4 − T4
a ) ≈ −k(T − Ta) −

b(T − Ta)2.

19. Initially a 200 gallon tank is filled with pure water. At time t = 0 a
salt concentration with 3 pounds of salt per gallon is added to the container
at the rate of 4 gallons per minute, and the well-stirred mixture is drained
from the container at the same rate.

a. Find the number of pounds of salt in the container as a function
of time.

b. How many minutes does it take for the concentration to reach 2

pounds per gallon?

c. What does the concentration in the container approach for large
values of time? Does this agree with your intuition?

d. Assuming that the tank holds much more than 200 gallons, and
everything is the same except that the mixture is drained at 3 gal-
lons per minute, what would the answers to parts a and b become?

20. You make two gallons of chili for a party. The recipe calls for two tea-
spoons of hot sauce per gallon, but you had accidentally put in two table-
spoons per gallon. You decide to feed your guests the chili anyway. Assume
that the guests take 1 cup/min of chili and you replace what was taken with
beans and tomatoes without any hot sauce. [1 gal = 16 cups and 1 Tb = 3

tsp.]

a. Write down the differential equation and initial condition for the
amount of hot sauce as a function of time in this mixture-type
problem.

b. Solve this initial value problem.

c. How long will it take to get the chili back to the recipe’s suggested
concentration?


	First Order Differential Equations
	Free Fall
	First Order Differential Equations
	Applications
	Other First Order Equations*
	Problems


