## MAT 361 Exam I



| 5. (5 pts) Determine if $(x + y \cos x) dx + \sin x dy = 0$ is<br>exact, then find the solution.                                                                | <ul> <li>7. (7 pts) The initial mass of an iodine isotope is 350g. The half-life of the isotope is 20 days.</li> <li>a. Find the decay constant and write the equation for the mass as a function of time, y(t).</li> </ul> |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                 | b. Determine the iodine mass after 90 days.                                                                                                                                                                                 |
| <ul> <li>6. (5 pts) Consider the differential equation x<sup>2</sup>y"+xy'-4y=0, x&gt;0.</li> <li>a. Verify that y(x) = x<sup>2</sup> is a solution.</li> </ul> | <ul> <li>8. (4 pts) A 1.50 kg mass oscillates on a spring with spring constant 7.50 N/m and damping constant 0.070 kg/s.</li> <li>a. Write the differential equation for the position of the mass.</li> </ul>               |
| b. Find a second linearly independent solution using the method of reduction of order.                                                                          | b. What type of damped oscillation is this?                                                                                                                                                                                 |
|                                                                                                                                                                 | 9. (2 pts) A 10.0 kg ball is dropped from a cliff. The force of air resistance is seven times the speed. Write the governing differential equation for this free fall in terms of $v, \frac{dv}{dt}, g$ .                   |
|                                                                                                                                                                 | <b>Bonus:</b> Find the terminal velocity for Problem 9.                                                                                                                                                                     |